
Oracle® Fusion Middleware
Developing Jakarta Enterprise Beans Using
Deployment Descriptors

15c (15.1.1.0.0)
G41771-01
October 2025

Oracle Fusion Middleware Developing Jakarta Enterprise Beans Using Deployment Descriptors, 15c (15.1.1.0.0)

G41771-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation ii

Conventions ii

1 Understanding Jakarta Enterprise Beans

How Do Applications Use EJBs? 1

Session EJBs Implement Business Logic 1

Stateless Session Beans 2

Stateful Session Beans 2

Entity EJBs Maintain Persistent Data 2

Message-Driven Beans Implement Loosely Coupled Business Logic 2

EJB Anatomy and Environment 3

EJB Components 3

The EJB Container 4

EJB Deployment Descriptors 4

Key Deployment Element Mappings 5

Bean and Resource References 5

Security Roles 6

EJBs, Clients, and Application Objects 6

EJB Communications 8

EJBs and Message Destination References 8

WebLogic Server Value-Added EJB Features 8

Performance-Enhancing Features for WebLogic Server EJBs 9

Pooling Improves EJB Response Time 9

Caching Improves EJB Performance 9

Additional Caching Capabilities for CMP Entities 10

Field Groups for Efficient Queries (CMP Entities) 10

Configurable Write Behaviors 10

Operation Ordering and Batching (CMP Entities) 10

Optimized Database Updates (CMP Entities) 10

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page i of xxiv

Read-Only Pattern and Read-Only Invalidation (CMP Entities) 10

CMP Beans Increase Developer Productivity 11

Automatic Primary Key Generation (CMP Entities) 11

Automatic Table Creation (CMP Entities) 11

Dynamic Queries (CMP Entities) 11

Reliability and Availability Features 11

Load Balancing Among Clustered EJBs Increases Scalability 11

Failover for Clustered EJBs Increases Reliability 12

Securing EJBs 13

2 Designing EJBs

Choosing the Right Bean Type 1

Session Bean Features 2

Stateful Session Beans 2

Stateless Session Beans 2

Stateless Beans Offer Performance and Scalability Advantages 2

Exposing Stateless Session Beans as Web Services 3

Entity Bean Features 3

Key Features of Entity Beans 3

Read-Write versus Read-Only Entity Beans 4

Entity Bean Performance and Data Consistency Characteristics 4

Message-Driven Beans 5

Persistence Management Alternatives 6

Use Container-Managed Persistence (CMP) for Productivity and Portability 6

Use Bean-Managed Persistence (BMP) Only When Necessary 7

Transaction Design and Management Options 7

Understanding Transaction Demarcation Strategies and Performance 7

Demarcating Transactions at the Server Level is Most Efficient 7

Container-Managed Transactions Are Simpler to Develop and Perform Well 7

Rollback 8

Transaction Boundaries 8

Distributing Transactions Across Beans 8

Costly Option: Distributing Transactions Across Databases 8

Bean-Level Transaction Management 8

When to Use Bean-Managed Transactions 9

Keep Bean-Managed Transactions Short 9

Client-Level Transaction Management is Costly 9

Transaction Isolation: A Performance vs. Data Consistency Choice 9

Satisfying Application Requirements with WebLogic Server EJBs 10

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page ii of xxiv

3 Implementing EJBs

Overview of the EJB Development Process 2

Create a Source Directory 3

Create EJB Classes and Interfaces 4

Using WebLogic Server Generic Bean Templates 4

Programming Client Access to EJBs 5

Programming Client to Obtain Initial Context 5

Programming Client to Look Up a Home Interface 5

Using EJB Links 5

Configuring EJBs to Send Requests to a URL 6

Specifying an HTTP Resource by URL 6

Specifying an HTTP Resource by Its JNDI Name 6

Accessing HTTP Resources from Bean Code 6

Configuring Network Communications for an EJB 7

Programming and Configuring Transactions 7

Programming Container-Managed Transactions 7

Configuring Automatic Retry of Container-Managed Transactions 7

Programming Bean-Managed Transactions 9

Programming Transactions That Are Distributed Across EJBs 10

Calling multiple EJBs from a client's transaction context 10

Using an EJB "Wrapper" to Encapsulate a Cross-EJB Transaction 10

Programming the EJB Timer Service 11

Clustered Versus Local EJB Timer Services 11

Clustered EJB Timer Services 11

Local EJB Timer Services 12

Using Java Programming Interfaces to Program Timer Objects 12

EJB Timer-related Programming Interfaces 12

WebLogic Server-specific Timer-related Programming Interfaces 12

Timer Deployment Descriptors 14

Configuring Clustered EJB Timers 15

Declare Web Service References 16

Compile Java Source 16

Edit Deployment Descriptors 16

Security Elements 17

Resource Mapping Elements 17

Persistence Elements 18

Clustering Elements 19

Data Consistency Elements 20

Container-Managed Transactions Elements 21

Performance Elements 23

Network Communications Elements 24

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page iii of xxiv

Generate EJB Wrapper Classes, and Stub and Skeleton Files 25

appc and Generated Class Name Collisions 26

Package 26

Packaging Considerations for EJBs with Clients in Other Applications 26

Deploy 26

Solving Problems During Development 27

Adding Line Numbers to Class Files 27

Creating Debug Messages 27

WebLogic Server Tools for Developing EJBs 27

Oracle JDeveloper 27

Oracle Enterprise Pack for Eclipse 28

javac 28

DDInit 28

WebLogic Server Ant Utilities 28

weblogic.Deployer 28

appc 28

DDConverter 29

Comparison of EJB Tool Features 29

4 Session EJBs

Comparing Stateless and Stateful Session Beans 1

Pooling for Stateless Session EJBs 2

Caching and Passivating Stateful Session EJBs 4

Stateful Session EJB Creation 5

Stateful Session EJB Passivation 6

Controlling Passivation 6

Eager Passivation (LRU) 6

Lazy Passivation (NRU) 6

Specifying the Persistent Store Directory for Passivated Beans 7

Configuring Concurrent Access to Stateful Session Beans 7

Design Decisions for Session Beans 8

Choosing Between Stateless and Stateful Beans 8

Choosing the Optimal Free Pool Setting for Stateless Session Beans 8

Implementing Session Beans 8

WebLogic-Specific Configurable Behaviors for Session Beans 9

5 Entity EJBs

Managing Entity Bean Pooling and Caching 1

Understanding Entity Pooling 3

Understanding Entity Caching 3

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page iv of xxiv

Understanding Passivation of Entity Beans 4

Understanding ejbLoad() and ejbStore() Behavior 4

Controlling the Behavior of ejbLoad() and ejbStore() 5

Disabling Cache Flushing 5

Configuring Application-Level Caching 5

Using Primary Keys 6

Specifying Primary Keys and Primary Key Classes 7

Guidelines for Primary Keys 8

Automatically Generating Primary Keys 8

Specifying Automatic Key Generation for Oracle Databases 9

Specifying Automatic Key Generation for Microsoft SQL Server 9

Generating Primary Keys with a Named Sequence Table 10

Declaring Primary Key Field Type 10

Support for Oracle Database SEQUENCE 11

String-Valued CMP Field Trimming 11

Benefits of String Trimming 11

Disabling String Trimming 11

Configuring Entity EJBs for Database Operations 11

Configuring Table Mapping 12

Automatic Table Creation (Development Only) 13

Delaying Database Inserts 14

Why Delay Database Inserts? 15

Configuring Delayed Database Inserts 15

Limiting Database Reads with cache-between-transactions 16

Updating the Database Before Transaction Ends 17

Dynamic Queries 17

Enabling Dynamic Queries 17

Executing Dynamic Queries 17

Enabling BLOB and CLOB Column Support for Oracle or DB2 Databases 18

Specifying a BLOB Column Using the Deployment Descriptor 18

Serialization for cmp-fields of Type byte[] Mapped to an Oracle Blob 18

Specifying a CLOB Column Using the Deployment Descriptor 18

Optimized CLOB Column Insertion on Oracle 10g 18

Specifying Field Groups 19

Ordering and Batching Operations 20

Operation Ordering 20

Batch Operations Guidelines and Limitations 20

Using Query Caching (Read-Only Entity Beans) 21

Using SQL in Entity Beans 21

Using Container-Managed Relationships (CMRs) 21

CMR Requirements and Limitations 22

CMR Cardinality 22

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page v of xxiv

CMR Direction 22

Removing CMRs 23

Defining Container-Managed Relationships (CMRs) 23

Specifying Relationships in ejb-jar.xml 23

Specifying Relationship Cardinality 24

Specifying Relationship Directionality 25

Specifying Relationships in weblogic-cmp-jar.xml 25

One-to-One and One-to-Many Relationships 25

Many-to-Many Relationships 26

Specifying CMRs for EJBs that Map to Multiple Tables 27

About CMR Fields and CMR Field Accessor Methods 27

Using Cascade Delete for Entities in CMRs 28

Relationship Caching 29

Enabling Relationship Caching 29

Choosing a Concurrency Strategy 30

Exclusive Concurrency 31

Database Concurrency 31

Optimistic Concurrency 31

Preventing Stale Optimistic Bean Data 32

Explicit Invalidation of Optimistic Beans 32

Invalidation Options for Optimistic Concurrency in Clusters 32

Check Data for Validity with Optimistic Concurrency 32

Optimistic Concurrency and Oracle Databases 34

Read Only Concurrency 34

Concurrency Strategy Trade-Offs 35

Configuring Concurrency Strategy 35

Deadlock Prevention for Exclusive Concurrency and Cascade Deletes 36

Using the Read-Mostly Pattern 36

Configuring Entity Beans for Read-Mostly Pattern 36

Invalidating Read-Only Entity EJBs Implicitly 37

Invalidating Entity EJBs Explicitly 37

CMP Entity Bean Descriptors Element by Feature 38

Container-Managed Relationship Elements 38

Primary Key Elements 38

6 Message-Driven EJBs

7 Deployment Guidelines for EJBs

Before You Deploy an EJB 1

Understanding and Performing Deployment Tasks 1

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page vi of xxiv

Deployment Guidelines for EJBs 2

Deploy EJBs as Part of an Enterprise Application 2

Deploy EJBs That Call Each Other in the Same Application 2

Switching Protocol Limitation 3

Deploying EJBs that Use Dependency Injection 3

Deploy Homogeneously to a Cluster 3

Deploying Pinned EJBs to a Cluster 3

Redeploying an EJB 4

Using FastSwap Deployment to Minimize Deployment 4

Understanding Warning Messages 5

Disabling EJB Deployment Warning Messages 5

A Deployment Descriptor Schema and Document Type Definitions
Reference

XML Schema Definitions and Namespace Declarations A-1

weblogic-ejb-jar.xml Namespace Declaration and Schema Location A-2

weblogic-cmp-jar.xml Namespace Declaration and Schema Location A-2

ejb-jar.xml Namespace Declaration and Schema Location A-2

Document Type Definitions and DOCTYPE Header Information A-3

B weblogic-ejb-jar.xml Deployment Descriptor Reference

2.1 weblogic-ejb-jar.xml File Structure B-5

2.1 weblogic-ejb-jar.xml Elements B-6

allow-concurrent-calls B-9

Function B-10

Example B-10

allow-remove-during-transaction B-10

Function B-10

Example B-10

cache-between-transactions B-11

Function B-11

Example B-11

cache-type B-11

Function B-11

Example B-12

client-authentication B-12

Function B-12

Example B-12

client-cert-authentication B-12

Function B-12

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page vii of xxiv

Example B-12

clients-on-same-server B-13

Function B-13

Example B-13

component-factory-class-name B-13

Function B-13

concurrency-strategy B-14

Function B-14

Example B-15

confidentiality B-15

Function B-15

Example B-15

connection-factory-jndi-name B-15

Function B-16

Example B-16

connection-factory-resource-link B-16

Function B-16

create-as-principal-name B-16

Function B-16

delay-updates-until-end-of-tx B-17

Function B-17

Example B-17

description B-18

Function B-18

Example B-18

destination-jndi-name B-18

Function B-19

Example B-19

destination-resource-link B-19

Function B-19

disable-warning B-19

Function B-19

Example B-20

dispatch-policy B-20

Function B-20

Example B-20

distributed-destination-connection B-20

Function B-21

Example B-21

durable-subscription-deletion B-21

Function B-22

Example B-22

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page viii of xxiv

ejb-name B-22

Function B-22

Example B-22

ejb-reference-description B-22

Function B-23

Example B-23

ejb-ref-name B-23

Function B-23

Example B-23

enable-bean-class-redeploy B-23

Function B-24

Example B-24

enable-call-by-reference B-24

Function B-24

Example B-25

enable-dynamic-queries B-25

Function B-25

Example B-25

entity-always-uses-transaction B-25

Function B-26

entity-cache B-26

Function B-26

Example B-26

entity-cache-name B-26

Function B-27

Example B-27

entity-cache-ref B-27

Function B-27

Example B-27

entity-clustering B-28

Function B-28

Example B-28

entity-descriptor B-28

Function B-28

Example B-29

estimated-bean-size B-29

Function B-29

Example B-29

externally-defined B-30

Function B-30

finders-load-bean B-30

Function B-30

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page ix of xxiv

Example B-30

generate-unique-jms-client-id B-31

Function B-31

global-role B-31

home-call-router-class-name B-31

Function B-31

Example B-32

home-is-clusterable B-32

Function B-32

Example B-32

home-load-algorithm B-32

Function B-33

Example B-33

idempotent-methods B-33

Function B-34

Example B-34

identity-assertion B-34

Function B-34

Example B-34

idle-timeout-seconds B-35

Function B-35

Example B-36

iiop-security-descriptor B-36

Function B-36

Example B-36

init-suspend-seconds B-36

Function B-37

initial-beans-in-free-pool B-37

Function B-37

Example B-37

initial-context-factory B-37

Function B-38

Example B-38

integrity B-38

Function B-38

Example B-38

invalidation-target B-38

Function B-39

Example B-39

is-modified-method-name B-39

Function B-39

Example B-40

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page x of xxiv

isolation-level B-40

Function B-40

Oracle Database-Only Isolation Levels B-41

Example B-41

jms-client-id B-41

Function B-42

Example B-42

jms-polling-interval-seconds B-42

Function B-42

Example B-42

jndi-binding B-42

Function B-43

Example B-43

jndi-name B-43

Function B-44

Example B-44

local-jndi-name B-44

Function B-44

Example B-45

max-beans-in-cache B-45

Function B-45

Example B-45

max-beans-in-free-pool B-45

Function B-46

Example B-46

max-messages-in-transaction B-46

Function B-46

max-queries-in-cache B-46

Function B-47

max-suspend-seconds B-47

Function B-47

message-destination-descriptor B-47

Function B-47

Example B-47

message-destination-name B-48

Function B-48

Example B-48

message-driven-descriptor B-48

Function B-48

Example B-48

method B-49

Function B-49

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page xi of xxiv

Example B-49

method-intf B-49

Function B-50

Example B-50

method-name B-50

Function B-50

Example B-50

method-param B-51

Function B-51

Example B-51

method-params B-51

Function B-51

Example B-52

network-access-point B-52

Function B-52

Example B-52

passivate-as-principal-name B-52

Function B-52

persistence B-53

Function B-53

Example B-53

persistence-use B-54

Function B-54

Example B-54

persistent-store-dir B-54

Function B-54

Example B-54

persistent-store-logical-name B-55

Function B-55

pool B-55

Function B-55

Example B-56

principal-name B-56

Function B-56

Example B-56

provider-url B-56

Function B-57

Example B-57

read-timeout-seconds B-57

Function B-57

Example B-57

remote-client-timeout B-58

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page xii of xxiv

Function B-58

Example B-58

remove-as-principal-name B-58

Function B-58

replication-type B-59

Function B-59

Example B-59

resource-env-ref-name B-59

Function B-60

Example B-60

res-ref-name B-60

Function B-60

Example B-60

resource-adapter-jndi-name B-60

Function B-60

resource-description B-60

Function B-61

Example B-61

resource-env-description B-61

Function B-61

Example B-61

resource-link B-62

Function B-62

Example B-62

retry-count B-62

Function B-62

retry-methods-on-rollback B-62

Function B-63

role-name B-63

Function B-63

Example B-63

run-as-identity-principal B-63

Function B-64

Example B-64

run-as-principal-name B-64

Function B-64

Example B-64

run-as-role-assignment B-64

Function B-65

Example B-65

A_EJB_with_runAs_role_X B-66

B_EJB_with_runAs_role_X B-66

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page xiii of xxiv

C_EJB_with_runAs_role_Y B-66

security-permission B-67

Function B-67

Example B-67

security-permission-spec B-67

Function B-67

Example B-68

security-role-assignment B-68

Function B-68

Example B-68

service-reference-description B-69

Function B-69

Example B-69

session-timeout-seconds B-69

Function B-70

Example B-70

singleton-bean-call-router-class-name B-70

Function B-70

Example B-70

singleton-bean-is-clusterable B-70

Function B-71

Example B-71

singleton-bean-load-algorithm B-71

Function B-71

Example B-72

singleton-clustering B-72

Function B-72

Example B-72

singleton-session-descriptor B-72

Function B-73

Example B-73

stateful-session-cache B-73

Function B-73

Example B-73

stateful-session-clustering B-74

Function B-74

Example B-74

stateful-session-descriptor B-74

Function B-74

Example B-75

stateless-bean-call-router-class-name B-75

Function B-75

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page xiv of xxiv

Example B-75

stateless-bean-is-clusterable B-75

Function B-76

Example B-76

stateless-bean-load-algorithm B-76

Function B-76

Example B-77

stateless-clustering B-77

Function B-77

Example B-77

stateless-session-descriptor B-77

Function B-78

Example B-78

stick-to-first-server B-78

Function B-78

Example B-78

timer-descriptor B-78

Function B-79

timer-implementation B-79

Function B-79

Example B-80

transaction-descriptor B-80

Function B-80

Example B-80

transaction-isolation B-80

Function B-80

Example B-80

transport-requirements B-81

Function B-81

Example B-81

trans-timeout-seconds B-81

Function B-82

Example B-82

type-identifier B-82

Function B-82

Example B-82

type-storage B-82

Function B-83

Example B-83

type-version B-83

Function B-83

Example B-84

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page xv of xxiv

use-serverside-stubs B-84

Function B-84

Example B-84

use81-style-polling B-84

Function B-85

Example B-85

weblogic-compatibility B-85

Function B-85

weblogic-ejb-jar B-85

Function B-85

weblogic-enterprise-bean B-85

Function B-86

work-manager B-86

Function B-86

C weblogic-cmp-jar.xml Deployment Descriptor Reference

2.1 weblogic-cmp-jar.xml Deployment Descriptor File Structure C-3

2.1 weblogic-cmp-jar.xml Deployment Descriptor Elements C-4

allow-readonly-create-and-remove C-6

Function C-7

Example C-7

automatic-key-generation C-7

Function C-7

Example C-7

caching-element C-8

Function C-8

Example C-8

caching-name C-8

Function C-9

Example C-9

check-exists-on-method C-9

Function C-9

Example C-9

cluster-invalidation-disabled C-9

Function C-10

Example C-10

cmp-field C-10

Function C-10

Example C-10

cmr-field C-10

Function C-11

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page xvi of xxiv

Example C-11

column-map C-11

Function C-11

Example C-11

compatibility C-12

Function C-12

Example C-12

create-default-dbms-table C-12

Function C-12

Automatic Table Creation C-13

Automatic Oracle Database SEQUENCE Generation C-13

Example C-14

database-specific-sql C-14

Function C-15

Example C-15

database-type C-15

Function C-15

Example C-15

data-source-jndi-name C-15

Function C-16

Example C-16

db-cascade-delete C-16

Function C-16

Setting up Oracle Database for Cascade Delete C-17

Example C-17

dbms-column C-17

Function C-17

Example C-17

dbms-column-type C-18

Function C-18

Example C-18

dbms-default-value C-18

Function C-19

Example C-19

default-dbms-tables-ddl C-19

Function C-19

delay-database-insert-until C-19

Function C-19

Example C-20

description C-20

Function C-20

Example C-20

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page xvii of xxiv

disable-string-trimming C-20

Function C-21

Example C-21

ejb-name C-21

Function C-21

Example C-21

ejb-ql-query C-21

Function C-22

Example C-22

enable-batch-operations C-22

Function C-22

Example C-22

enable-query-caching C-22

Function C-23

Example C-23

field-group C-23

Function C-23

Example C-23

field-map C-24

Function C-24

Example C-24

finders-return-nulls C-24

Function C-25

Example C-25

foreign-key-column C-25

Function C-25

Example C-25

foreign-key-table C-25

Function C-26

Example C-26

generator-name C-26

Function C-26

Example C-26

generator-type C-26

Function C-27

Example C-27

group-name C-27

Function C-28

Example C-28

include-updates C-28

Function C-28

Example C-28

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page xviii of xxiv

instance-lock-order C-28

Function C-29

Example C-29

key-cache-size C-29

Function C-30

Example C-30

key-column C-30

Function C-30

Example C-30

lock-order C-30

Function C-31

Example C-31

max-elements C-31

Function C-31

Example C-31

method-name C-31

Function C-32

Example C-32

method-param C-32

Function C-32

Example C-32

method-params C-32

Function C-33

Example C-33

optimistic-column C-33

Function C-33

Example C-33

order-database-operations C-33

Function C-34

Example C-34

pass-through-columns C-34

Function C-34

Example C-34

primary-key-table C-34

Function C-35

Example C-35

query-method C-35

Function C-35

Example C-35

relation-name C-35

Function C-36

Example C-36

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page xix of xxiv

relationship-caching C-36

Function C-36

Example C-36

relationship-role-map C-37

Function C-37

Example C-37

Mapping a Bean on Foreign Key Side of a Relationship to Multiple Tables C-37

Mapping a Bean on Primary Key Side of a Relationship to Multiple Tables C-38

relationship-role-name C-38

Function C-38

Example C-39

serialize-byte-array-to-oracle-blob C-39

Function C-39

Example C-39

serialize-char-array-to-bytes C-39

Function C-40

Example C-40

sql C-40

Function C-40

Example C-40

sql-query C-41

Function C-41

Example C-41

sql-select-distinct C-41

Function C-42

Example C-42

sql-shape C-42

Function C-42

Example C-42

sql-shape-name C-43

Function C-43

Example C-43

table-map C-43

Function C-43

Example C-44

table-name C-44

Function C-45

Example C-45

trigger-updates-optimistic-column C-45

Function C-45

Example C-45

unknown-primary-key-field C-46

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page xx of xxiv

Function C-46

Example C-46

use-select-for-update C-46

Function C-46

Example C-47

validate-db-schema-with C-47

Function C-47

Example C-47

verify-columns C-47

Function C-48

Example C-48

verify-rows C-48

Function C-48

Example C-49

version-column-initial-value C-49

Function C-49

Example C-49

weblogic-ql C-49

Function C-49

Example C-49

weblogic-query C-50

Function C-50

Example C-50

weblogic-rdbms-bean C-51

Function C-51

Example C-51

weblogic-rdbms-jar C-51

Function C-51

Example C-51

weblogic-rdbms-relation C-52

Function C-52

Examples C-52

Defining a One-to-One Relationship C-52

Defining a One-to-Many Relationship C-54

Defining a Many-to-Many Relationship C-54

weblogic-relationship-role C-55

Function C-55

Example C-55

D appc Reference

appc D-1

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page xxi of xxiv

Advantages of Using appc D-1

appc Syntax D-2

Designating Alternative Deployment Descriptors D-2

appc Options D-2

appc and EJBs D-4

E Important Information for EJB 1.1 Users

Writing for RDBMS Persistence for EJB 1.1 CMP E-2

Finder Signature E-2

finder-list Element E-2

finder-query Element E-3

Using WebLogic Query Language (WLQL) for EJB 1.1 CMP E-3

WLQL Syntax E-3

WLQL Operators E-4

WLQL Operands E-4

Examples of WLQL Expressions E-5

Using SQL for CMP 1.1 Finder Queries E-6

Tuned EJB 1.1 CMP Updates in WebLogic Server E-7

Using is-modified-method-name to Limit Calls to ejbStore() E-7

5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure E-8

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements E-8

caching-descriptor E-9

max-beans-in-free-pool E-10

initial-beans-in-free-pool E-10

max-beans-in-cache E-10

idle-timeout-seconds E-10

cache-strategy E-11

read-timeout-seconds E-11

persistence-descriptor E-11

is-modified-method-name E-11

delay-updates-until-end-of-tx E-11

persistence-type E-12

db-is-shared E-13

stateful-session-persistent-store-dir E-13

persistence-use E-13

clustering-descriptor E-13

home-is-clusterable E-13

home-load-algorithm E-14

home-call-router-class-name E-14

stateless-bean-is-clusterable E-14

stateless-bean-load-algorithm E-14

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page xxii of xxiv

stateless-bean-call-router-class-name E-14

stateless-bean-methods-are-idempotent E-14

transaction-descriptor E-15

trans-timeout-seconds E-15

reference-descriptor E-15

resource-description E-15

ejb-reference-description E-15

enable-call-by-reference E-16

jndi-name E-16

transaction-isolation E-16

isolation-level E-16

Oracle-Only Isolation Levels E-17

method E-18

security-role-assignment E-18

1.1 weblogic-cmp-jar.xml Deployment Descriptor File Structure E-18

1.1 weblogic-cmp-jar.xml Deployment Descriptor Elements E-19

RDBMS Definition Elements E-20

enable-tuned-updates E-20

pool-name E-20

schema-name E-20

table-name E-20

EJB Field-Mapping Elements E-20

attribute-map E-21

object-link E-21

bean-field E-21

dbms-column E-21

Finder Elements E-21

finder-list E-21

finder E-22

method-name E-22

method-params E-22

method-param E-22

finder-query E-22

finder-expression E-23

F EJB Query Language (EJB-QL) and WebLogic Server

EJB QL Requirement for EJB 2.x Beans F-1

Using the EJB 2.x WebLogic QL Extension for EJB QL F-2

upper and lower Functions F-2

upper F-2

lower F-2

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page xxiii of xxiv

Using ORDER BY F-3

Using Subqueries F-3

Subquery Return Types F-4

Subqueries as Comparison Operands F-5

Correlated and Uncorrelated Subqueries F-6

DISTINCT Clause with Subqueries F-7

Using Arithmetic Functions F-7

Using Aggregate Functions F-8

Using Queries that Return ResultSets F-9

Using Oracle SELECT HINTS F-11

"get" and "set" Method Restrictions F-11

Properties-Based Methods of the Query Interface F-11

Migrating from WLQL to EJB QL F-12

Known Issue with Implied Cross Products F-12

EJB QL Error-Reporting F-13

Visual Indicator of Error in Query F-13

Multiple Errors Reported after a Single Compilation F-13

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page xxiv of xxiv

Preface

This document is a resource for software developers who develop applications that include
WebLogic Server EJBs.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documentation

• Conventions

Audience
This document is a resource for software developers who develop applications that include
WebLogic Server EJBs. It also contains information that is useful for business analysts and
system architects who are evaluating WebLogic Server or considering the use of WebLogic
Server EJBs for a particular application.

The topics in this document are relevant during the design and development phases of a
software project. The document also includes topics that are useful in solving application
problems that are discovered during test and pre-production phases of a project. This
document does not address production phase administration, monitoring, or performance
tuning.

It is assumed that the reader is familiar with Jakarta EE and EJB concepts. This document
emphasizes the value-added features provided by WebLogic Server EJBs and key information
about how to use WebLogic Server features and facilities to get an EJB application up and
running.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
This document contains EJB-specific design and development information when using
deployment descriptors. For more general information on programming and packaging EJBs,
see Developing Jakarta Enterprise Beans for Oracle WebLogic Server.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

• Developing Message-Driven Beans for Oracle WebLogic Server is a resource for
developing applications that use message-driven beans (MDBs).

• Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic
Server applications.

• Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications in development and production
environments.

• Tuning Performance of Oracle WebLogic Server provides information on how to monitor
performance and tune the components in a WebLogic Server.

Samples and Tutorials

Oracle provides a variety of code examples and tutorials that show WebLogic Server
configuration and API use, and provide practical instructions on how to perform key
development tasks. For more information, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

Oracle recommends that you run some or all of the EJB examples before developing your own
EJBs.

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in WebLogic Server in What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page ii of ii

1
Understanding Jakarta Enterprise Beans

Review the different Jakarta Enterprise Bean (EJB) types and the functions they can serve in
an application, and how they work with other application objects and WebLogic Server.
It is assumed the reader is familiar with Java programming and EJB concepts and features.

This chapter includes the following topics:

• How Do Applications Use EJBs?
Examine the purpose and capabilities of each bean type.

• EJB Anatomy and Environment
Examine the classes required for each bean type, the EJB run-time environment, and the
deployment descriptor files that govern a bean's run-time behavior.

• EJBs, Clients, and Application Objects
Understand how EJBs typically relate to other components of a WebLogic Server
application and to clients.

• EJBs and Message Destination References
Learn how to use logical message destinations to map a logical message destination,
defined in ejb-jar.xml, to an actual message destination, defined in weblogic-ejb-
jar.xml.

• WebLogic Server Value-Added EJB Features
Examine the key features in WebLogic Server that ease the process of EJB development,
and enhance the performance, reliability, and availability of EJB applications.

• Securing EJBs
You can use the WebLogic Server security features to control both access to your EJBs
(authorization) and verification of an EJB's identity when it interacts with other application
components and other EJBs (authentication).

How Do Applications Use EJBs?
Examine the purpose and capabilities of each bean type.

This section includes the following topics:

• Session EJBs Implement Business Logic

• Entity EJBs Maintain Persistent Data

• Message-Driven Beans Implement Loosely Coupled Business Logic

Session EJBs Implement Business Logic
Session beans implement business logic. A session bean instance serves one client at a time.
There are two types of session beans: stateful and stateless.

• Stateless Session Beans

• Stateful Session Beans

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 13

Stateless Session Beans
A stateless session bean does not store session or client state information between
invocations—the only state it might contain is not specific to a client, for instance, a cached
database connection or a reference to another EJB. At most, a stateless session bean may
store state for the duration of a method invocation. When a method completes, state
information is not retained. Any instance of a stateless session bean can serve any client—any
instance is equivalent. Stateless session beans can provide better performance than stateful
session beans, because each stateless session bean instance can support multiple clients,
albeit one at a time.

Example: An Internet application that allows visitors to click a "Contact Us" link and send an
email could use a stateless session bean to generate the email, based on the to and from
information gathered from the user by a JSP.

Stateful Session Beans
Stateful session beans maintain state information that reflects the interaction between the bean
and a particular client across methods and transactions. A stateful session bean can manage
interactions between a client and other enterprise beans, or manage a workflow.

Example: A company Web site that allows employees to view and update personal profile
information could use a stateful session bean to call a variety of other beans to provide the
services required by a user, after the user clicks "View my Data" on a page:

• Accept the login data from a JSP, and call another EJB whose job it is to validate the login
data.

• Send confirmation of authorization to the JSP.

• Call a bean that accesses profile information for the authorized user.

Entity EJBs Maintain Persistent Data
An entity bean represents a set of persistent data, usually rows in a database, and provides
methods for maintaining or reading that data. An entity bean is uniquely identified by a primary
key, and can provide services to multiple clients simultaneously. Entity beans can participate in
relationships with other entity beans. The relationships between entity beans are a function of
the real-world entities that the entity beans model. An entity bean's fields and its relationships
to other entity beans are defined in an object schema, which is specified in the bean's ejb-
jar.xml deployment descriptor.

An entity bean can have other bean types, such as message-driven or session beans, as
clients, or be directly accessed by Web components. The client uses the entity bean to access
data in a persistent store. An entity bean encapsulates the mechanics of database access,
isolating that complexity from its clients and de-coupling physical database details from
business logic.

Example: The stateful session bean in the previous example, which orchestrates services for
an employee accessing personal profile information on a company intranet, could use an entity
bean for getting and updating the employee's profile.

Message-Driven Beans Implement Loosely Coupled Business Logic
A message-driven bean implements loosely coupled or asynchronous business logic in which
the response to a request need not be immediate. A message-driven bean receives messages

Chapter 1
How Do Applications Use EJBs?

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 13

from a JMS Queue or Topic, and performs business logic based on the message contents. It is
an asynchronous interface between EJBs and JMS.

Throughout its life cycle, an MDB instance can process messages from multiple clients,
although not simultaneously. It does not retain state for a specific client. All instances of a
message-driven bean are equivalent—the EJB container can assign a message to any MDB
instance. The container can pool these instances to allow streams of messages to be
processed concurrently.

The EJB container interacts directly with a message-driven bean—creating bean instances and
passing JMS messages to those instances as necessary. The container creates bean
instances at deployment time, adding and removing instances during operation based on
message traffic.

See Developing Message-Driven Beans for Oracle WebLogic Server.

Example: In an on-line shopping application, where the process of taking an order from a
customer results in a process that issues a purchase order to a supplier, the supplier ordering
process could be implemented by a message-driven bean. While taking the customer order
always results in placing a supplier order, the steps are loosely coupled because it is not
necessary to generate the supplier order before confirming the customer order. It is acceptable
or beneficial for customer orders to "stack up" before the associated supplier orders are
issued.

EJB Anatomy and Environment
Examine the classes required for each bean type, the EJB run-time environment, and the
deployment descriptor files that govern a bean's run-time behavior.

This section includes the following topics:

• EJB Components

• The EJB Container

• EJB Deployment Descriptors

• Key Deployment Element Mappings

EJB Components
The composition of a bean varies by bean type. Table 1-1 defines the classes that make up
each type of EJB, and defines the purpose of the class type.

Table 1-1 Components of an EJB

EJB
Component

Description Stateless
Session

Stateful
Session

Entity MDB

Remote
interface

The remote interface exposes business logic to
remote clients—clients running in a separate
application from the EJB. It defines the
business methods a remote client can call.

Yes Yes Yes No

Local
interface

The local interface exposes business logic to
local clients—those running in the same
application as the EJB. It defines the business
methods a local client can call.

Note: Not available for 1.1 EJBs.

Yes Yes Yes No

Chapter 1
EJB Anatomy and Environment

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 13

Table 1-1 (Cont.) Components of an EJB

EJB
Component

Description Stateless
Session

Stateful
Session

Entity MDB

Local home
interface

The local home interface, also referred to as an
EJB factory or life-cycle interface, provides
methods that local clients—those running in the
same application as the EJB—can use to
create, remove, and in the case of an entity
bean, find instances of the bean.

The local home interface also has "home
methods"—business logic that is not specific to
a particular bean instance.

Yes Yes Yes No

Remote home
interface

The remote home interface, also referred to as
an EJB factory, or life-cycle interface, provides
methods that remote clients—those running in
a separate application from the EJB—can use
to create, remove, and find instances of the
bean.

Yes Yes Yes No

Bean class The bean class implements business logic. Yes Yes Yes Yes

Primary key
class

Only entity beans have a primary key class.
The primary key class maps to one or more
fields in a database—identifying the persistent
data to which the entity bean corresponds.

No No Yes No

The EJB Container
An EJB container is a run-time container for beans that are deployed to an application server.
The container is automatically created when the application server starts up, and serves as an
interface between a bean and run-time services such as:

• Life cycle management

• Code generation

• Persistence management

• Security

• Transaction management

• Locking and concurrency control

EJB Deployment Descriptors
The structure of a bean and its run-time behavior are defined in one or more XML deployment
descriptor files. Programmers create deployment descriptors during the EJB packaging
process, and the descriptors become a part of the EJB deployment when the bean is compiled.

Note

EJB 4.0 does not strictly require deployment descriptors like ejb-jar.xml for basic
EJB configuration. EJB 3.x and later versions leverage annotations for defining EJB
components and their configurations.

Chapter 1
EJB Anatomy and Environment

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 13

WebLogic Server EJBs have three deployment descriptors:

• ejb-jar.xml—The standard Jakarta EE deployment descriptor. All beans must be
specified in an ejb-jar.xml. An ejb-jar.xml can specify multiple beans that will be
deployed together.

• weblogic-ejb-jar.xml—WebLogic Server-specific deployment descriptor that contains
elements related to WebLogic Server features such as clustering, caching, and
transactions. This file is required if your beans take advantage of WebLogic Server-specific
features. Like ejb-jar.xml, weblogic-ejb-jar.xml can specify multiple beans that will be
deployed together. See weblogic-ejb-jar.xml Deployment Descriptor Reference.

• weblogic-cmp-jar.xml—WebLogic Server-specific deployment descriptor that contains
elements related to container-managed persistence for entity beans. Entity beans that use
container-managed persistence must be specified in a weblogic-cmp-jar.xml file. See
weblogic-cmp-jar.xml Deployment Descriptor Reference.

Key Deployment Element Mappings
As described in EJB Deployment Descriptors, a WebLogic Server EJB's runtime behavior can
be controlled by elements in three different descriptor files: ejb-jar.xml, weblogic-ejb-
jar.xml, and weblogic-cmp-jar.xml.

Table 1-2 lists the elements whose values should match in each descriptor file. The elements
listed in the table are defined in Bean and Resource References and Security Roles.

Table 1-2 Element Mapping Among Descriptor Files

Map this
element...

in this element
of ejb-jar.xml...

to the same element in this element
of weblogic-ejb-jar.xml...

and to this element in
weblogic-cmp-
jar.xml...

role-name security-role security-role-assignment N/A

ejb-name message-
driven,
entity, or
session

weblogic-enterprise-bean weblogic-rdbms-
bean

ejb-ref-name assembly-
descriptor

ejb-reference-description if the
referenced bean runs in a different
container than the current bean.

N/A

res-ref-name resource-ref resource-description N/A

• Bean and Resource References

• Security Roles

Bean and Resource References
Each descriptor file contains elements that identify a bean, and the runtime factory resources it
uses:

• ejb-name—the name used to identify a bean in each deployment descriptor file,
independent of the name that application code uses to refer to the bean.

• ejb-ref-name—the name by which a bean in another JAR is referred to in the referencing
bean's code.

Chapter 1
EJB Anatomy and Environment

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 13

• res-ref-name—the name by which a resource factory is referred to in the referencing
bean's code.

A given bean or resource factory is identified by the same value in each descriptor file that
contains it. Table 1-1 lists the bean and resource references elements, and their location in
each descriptor file.

For instance, for a container-managed persistence entity bean named LineItem, this line:

<ejb-name>LineItem</ejb-name>

would appear in the:

• assembly-descriptor element of ejb-jar.xml

• enterprise-bean element of weblogic-ejb-jar.xml

• weblogic-rdbms-bean element of weblogic-cmp-jar.xml

Security Roles
Security roles are defined in the role-name element in ejb-jar.xml and weblogic-ejb-
jar.xml.

For information on:

• Programming security features for an EJB, see Securing EJBs in Developing Applications
with the WebLogic Security Service.

• Editing deployment descriptor files, see Edit Deployment Descriptors.

• Elements in ejb-jar.xml, see https://jakarta.ee/xml/ns/jakartaee/ejb-jar_4_0.xsd.

• Elements in weblogic-ejb-jar.xml, see weblogic-ejb-jar.xml Deployment Descriptor
Reference.

• Elements in weblogic-cmp-jar.xml, see weblogic-cmp-jar.xml Deployment Descriptor
Reference.

EJBs, Clients, and Application Objects
Understand how EJBs typically relate to other components of a WebLogic Server application
and to clients.

Figure 1-1 illustrates how EJBs typically relate to other components of a WebLogic Server
application and to clients.

Chapter 1
EJBs, Clients, and Application Objects

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 13

https://jakarta.ee/xml/ns/jakartaee/ejb-jar_4_0.xsd

Figure 1-1 EJBs and Other Application Components

An EJB can be accessed by server-side or client-side objects such as servlets, Java client
applications, other EJBs, applets, and non-Java clients.

Any client of an EJB, whether in the same or a different application, accesses it in a similar
fashion. WebLogic Server automatically creates implementations of an EJB's home and
business interfaces that can function remotely, unless the bean has only a local interface.

All EJBs must specify their environment properties using the Java Naming and Directory
Interface (JNDI). You can configure the JNDI namespaces of EJB clients to include the home
interfaces for EJBs that reside anywhere on the network—on multiple machines, application
servers, or containers.

Most beans do not require a global JNDI name—specified in the jndi-name and local-jndi-
name elements of weblogic-ejb-jar.xml. Most beans reference to each other using ejb-
links, as described in Using EJB Links.

Chapter 1
EJBs, Clients, and Application Objects

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 13

Because of network overhead, it is more efficient to access beans from a client on the same
machine than from a remote client, and even more efficient if the client is in the same
application.

See Programming Client Access to EJBs for information on programming client access to an
EJB.

• EJB Communications

EJB Communications
WebLogic Server EJBs use:

• T3—To communicate with remote objects. T3 is a WebLogic-proprietary remote network
protocol that implements the Remote Method Invocation (RMI) protocol.

• RMI—To communicate with remote objects. RMI enables an application to obtain a
reference to an object located elsewhere in the network, and to invoke methods on that
object as though it were co-located with the client on the same JVM locally in the client's
virtual machine.

An EJB with a remote interface is an RMI object. An EJB's remote interface extends
java.rmi.remote. For more information on WebLogic RMI, see Developing RMI
Applications for Oracle WebLogic Server.

• HTTP—An EJB can obtain an HTTP connection to a Web server external to the WebLogic
Server environment by using the java.net.URL resource connection factory. See
Configuring EJBs to Send Requests to a URL.

You can specify the attributes of the network connection an EJB uses by binding the EJB to a
WebLogic Server custom network channel. See Configuring Network Communications for an
EJB.

EJBs and Message Destination References
Learn how to use logical message destinations to map a logical message destination, defined
in ejb-jar.xml, to an actual message destination, defined in weblogic-ejb-jar.xml.

You can use logical message destinations to map a logical message destination, to an actual
message destination, as described in Configuring EJBs to Use Logical Message Destinations
in Developing Message-Driven Beans for Oracle WebLogic Server.

If a message destination reference cannot be resolved during deployment, a warning is issued
but the deployment will succeed. MDBs linked to unavailable message destinations periodically
attempt to connect to the message destination. Until the message destination is available,
attempts to look up message-destination-references declared in ejb-jar.xml fail with a
javax.naming.NamingException. When the message destination becomes available, the
MDBs will connect to it and service messages from it.

WebLogic Server Value-Added EJB Features
Examine the key features in WebLogic Server that ease the process of EJB development, and
enhance the performance, reliability, and availability of EJB applications.

This section describes the key WebLogic Server features in detail.

• Performance-Enhancing Features for WebLogic Server EJBs

• Pooling Improves EJB Response Time

Chapter 1
EJBs and Message Destination References

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 13

• Caching Improves EJB Performance

• Additional Caching Capabilities for CMP Entities

• Field Groups for Efficient Queries (CMP Entities)

• Configurable Write Behaviors

• Operation Ordering and Batching (CMP Entities)

• Optimized Database Updates (CMP Entities)

• Read-Only Pattern and Read-Only Invalidation (CMP Entities)

• CMP Beans Increase Developer Productivity

• Automatic Primary Key Generation (CMP Entities)

• Automatic Table Creation (CMP Entities)

• Dynamic Queries (CMP Entities)

• Reliability and Availability Features

• Load Balancing Among Clustered EJBs Increases Scalability

• Failover for Clustered EJBs Increases Reliability

Performance-Enhancing Features for WebLogic Server EJBs
WebLogic Server supports pooling, caching, and other features that improve the response time
and performance of EJBs. In a production environment, these features can reduce the time it
takes for a client to obtain an EJB instance and access and maintain persistent data.

Pooling Improves EJB Response Time
WebLogic Server maintains a free pool of ready-to-use EJB instances for stateless session
beans, message-driven beans, and entity beans. The EJB container creates a configurable
number of bean instances at startup, so that a new instance does not have to be created for
every request. When a client is done with an EJB instance, the container returns it to the pool
for reuse. For more information see:

• Understanding Entity Pooling

• Message-Driven EJB Life Cycle and the Free Pool in Developing Message-Driven Beans
for Oracle WebLogic Server

• Pooling for Stateless Session EJBs

Caching Improves EJB Performance
WebLogic Server supports caching for stateful session beans and entity beans.

An inactive cached bean instance can be passivated—removed from the cache and written to
disk—and restored to memory later as necessary. Passivating bean instances optimizes use of
system resources.

You can configure the size of the cache, and related behaviors such as rules for removing
beans from the cache. Caching is supported for entity EJBs, whether they use container-
managed or bean-managed persistence.

For more information, see:

• Understanding Entity Caching

Chapter 1
WebLogic Server Value-Added EJB Features

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 13

• Caching and Passivating Stateful Session EJBs

Additional caching features are available for EJBs that use container-managed persistence, as
described in the following section.

Additional Caching Capabilities for CMP Entities
WebLogic Server provides these caching capabilities for entity beans that use container
managed persistence:

• Relationship caching—Relationship caching improves the performance of entity beans by
loading related beans into the cache and avoiding multiple queries by issuing a join query
for the related beans. For more information, see Relationship Caching.

• Application-level caching—Application-level caching, also known as "combined caching,"
allows multiple entity beans that are part of the same Jakarta EE application to share a
single runtime cache. For more information, see Configuring Application-Level Caching .

• Caching between transactions—Use caching between transactions or long term caching to
enable the EJB container to cache an entity bean's persistent data between transactions.
For more information, see Limiting Database Reads with cache-between-transactions.

Field Groups for Efficient Queries (CMP Entities)
A group specifies a set of persistent attributes of an entity bean. A field-group represents a
subset of the container-managed persistence (CMP) and container-managed relation (CMR)
fields of a bean. You can put related fields in a bean into groups that are faulted into memory
together as a unit. You can associate a group with a query or relationship, so that when a bean
is loaded as the result of executing a query or following a relationship, only the fields
mentioned in the group are loaded. For more information, see Specifying Field Groups.

Configurable Write Behaviors
You can configure the behavior of the ejbLoad() and ejbStore() methods to enhance
performance, by avoiding unnecessary calls to ejbStore(). As appropriate, you can ensure
that WebLogic Server calls ejbStore() after each method call, rather than at the conclusion of
the transaction. For more information, see Understanding ejbLoad() and ejbStore() Behavior.

Operation Ordering and Batching (CMP Entities)
WebLogic Server allows you to batch and order multiple database operations so that they can
be completed in a single database "round-trip". This allows you to avoid the bottlenecks that
might otherwise occur when multiple entity instances are affected by a single transaction. For
more information, see Ordering and Batching Operations.

Optimized Database Updates (CMP Entities)
In this release of WebLogic Server, for CMP 2.0 entity beans, the setXXX() method does not
write the values of unchanged primitive and immutable fields to the database. This optimization
improves performance, especially in applications with a high volume of database updates.

Read-Only Pattern and Read-Only Invalidation (CMP Entities)
For EJB data that is only occasionally updated, you can create a "read-mostly pattern" by
implementing a combination of read-only and read-write EJBs. If you use the read-mostly

Chapter 1
WebLogic Server Value-Added EJB Features

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 13

pattern, you can use multicast invalidation to maintain data consistency—an efficient
mechanism for invalidating read-only cached data after updates. Use of the invalidate()
method after the transaction update has completed invalidates the local cache and results in a
multicast message sent to the other servers in the cluster to invalidate their cached copies. For
more information, see Using the Read-Mostly Pattern.

CMP Beans Increase Developer Productivity
WebLogic Server provides a variety of value-added database access features for entity beans
that use container-managed persistence:

Automatic Primary Key Generation (CMP Entities)
WebLogic Server supports multiple methods to automatically generate simple primary key for
CMP entity EJBs, including use of an Oracle SEQUENCE (which can be automatically generated
by WebLogic Server). For more information, see Automatically Generating Primary Keys.

Automatic Table Creation (CMP Entities)
You can configure the EJB container to automatically change the underlying table schema as
entity beans change, ensuring that tables always reflect the most recent object-relationship
mapping. For more information, see Automatic Table Creation (Development Only).

Dynamic Queries (CMP Entities)
WebLogic Server allows you to construct and execute EJB-QL queries programmatically in
your application code. This allows you to create and execute new queries without having to
update and deploy an EJB. It also reduces the size and complexity of the EJB deployment
descriptors. For more information, see Choosing a Concurrency Strategy.

Reliability and Availability Features
WebLogic Server EJBs can be deployed to a cluster, allowing support for load balancing, and
failover for remote clients of an EJB. EJBs must be deployed to all clustered servers.

A WebLogic Server cluster consists of multiple WebLogic Server server instances running
simultaneously and working together to provide increased scalability and reliability. A cluster
appears to clients as a single WebLogic Server instance. The server instances that constitute a
cluster can run on the same machine, or be located on different machines.

Failover and load balancing for EJBs are handled by replica-aware stubs, which can locate
instances of the object throughout the cluster. Replica-aware stubs are created for EJBs as a
result of the object compilation process. EJBs can have two different replica-aware stubs: one
for the EJBHome interface and one for the EJBObject interface. This allows some bean types to
take advantage of load balancing and failover features at the home level when a client looks up
an EJB object using the EJBHome stub and at the method level when a client makes method
calls against the EJB using the EJBObject stub. Table 1-1 summarizes the load balancing and
failover support (method level and home level) for each EJB type.

Load Balancing Among Clustered EJBs Increases Scalability
The bean stub contains the load balancing algorithm (or the call routing class) used to load
balance method calls to the object. On each call, the stub can employ its load algorithm to
choose which replica to call.

Chapter 1
WebLogic Server Value-Added EJB Features

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 11 of 13

WebLogic Server clusters support multiple algorithms for load balancing clustered EJBs; the
default is the round-robin method. See Load Balancing in a Cluster in Administering Clusters
for Oracle WebLogic Server.

All bean types support load balancing at the home level. All bean types, except read-write
entity beans, support load balancing at the method level.

Note

WebLogic Server does not always load-balance an object's method calls. In most
cases, it is more efficient to use a replica that is collocated with the stub itself, rather
than using a replica that resides on a remote server.

Failover for Clustered EJBs Increases Reliability
Failover for EJBs is accomplished using the EJBHome stub or, when supported, the EJBObject
stub. When a client makes a call through a stub to a service that fails, the stub detects the
failure and retries the call on another replica.

EJB failover requires that bean methods must be idempotent, and configured as such in
weblogic-ejb-jar.xml. See Replication and Failover for EJBs and RMI Objects in
Administering Clusters for Oracle WebLogic Server.

Table 1-3 summarizes failover and load balancing features for clustered EJBs.

Table 1-3 Failover and Load Balancing for Clustered EJBs

EJB Type Home Level
Failover

Method
Level
Failover

Notes

Stateless
Session

Supported Supported Stateless session EJB clustering behaviors are configured
in weblogic-ejb-jar.xml. See WebLogic-Specific
Configurable Behaviors for Session Beans.

Stateful
session

Supported Supported The EJBObject stub maintains the location of the EJB's
primary and secondary states. Secondary server instances
are selected using the same rules defined in Using
Replication Groups in Administering Clusters for Oracle
WebLogic Server.

Stateful session EJB clustering behaviors are configured in
weblogic-ejb-jar.xml. See WebLogic-Specific
Configurable Behaviors for Session Beans.

Read-Write
Entity

Supported Not
supported

EJBHome stubs do not fail over in the event of a
recoverable call failure.

Failover is not supported during method execution, only
after method completion, or if the method fails to connect
to a server instance.

A read-write bean's home obtains a local instance of the
bean and returns a stub pinned to the local server
instance.

Entity clustering behaviors are configured in weblogic-
ejb-jar.xml. See Clustering Elements.

Chapter 1
WebLogic Server Value-Added EJB Features

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 12 of 13

Table 1-3 (Cont.) Failover and Load Balancing for Clustered EJBs

EJB Type Home Level
Failover

Method
Level
Failover

Notes

Read-Only
Entity

Supported Supported EJBHome stubs do not failover in the event of a recoverable
call failure.

Entity clustering behaviors are configured in weblogic-
ejb-jar.xml. See Clustering Elements.

Message-
Driven

N/A N/A WebLogic Jakarta Messaging Service (JMS) supports
clustering of JMS servers. See JMS and Clustering in
Administering Clusters for Oracle WebLogic Server.

See Replication and Failover for EJBs and RMI Objects and Load Balancing for EJBs and RMI
Objects in Administering Clusters for Oracle WebLogic Server.

Securing EJBs
You can use the WebLogic Server security features to control both access to your EJBs
(authorization) and verification of an EJB's identity when it interacts with other application
components and other EJBs (authentication).

WebLogic Server enables application developers to build security into their EJB applications
using Jakarta EE and WebLogic Server deployment descriptors, or allows system
administrators to control security on EJB applications from the WebLogic Remote Console.
The latter option frees developers from having to code security, and provides administrators
with a centralized tool for defining security policies on: entire enterprise applications (EARs);
an EJB JAR containing multiple EJBs; a particular EJB within that JAR; or a single method
within that EJB.

For more information about security and EJBs:

• Security Fundamentals in Understanding Security for Oracle WebLogic Server has
introductory information about authentication, authorization and other security topics.

• Securing EJBs in Developing Applications with the WebLogic Security Service provides
instructions for configuring authentication and authorization for EJBs.

• Securing Resources Using Roles and Policies for Oracle WebLogic Server contains
instructions for on configuring authentication and authorization for your EJBs.

Chapter 1
Securing EJBs

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 13 of 13

2
Designing EJBs

Understand the design options for WebLogic Server EJBs, bean behaviors to consider during
the design process, and recommended design patterns.
This chapter includes the following topics:

It is assumed the reader is familiar with Java programming, EJB 4.0 and earlier, and the
features described in WebLogic Server Value-Added EJB Features.

After finalizing your bean design, refer to programming and other implementation topics in
Implementing EJBs.

• Choosing the Right Bean Type
When choosing the bean type for a processing task, examine the different capabilities of
the various been types.

• Persistence Management Alternatives
Persistence management strategy determines how an entity bean's database access is
performed.

• Transaction Design and Management Options
A transaction is a unit of work that changes application state—whether on disk, in memory
or in a database—that, once started, is completed entirely, or not at all.

• Satisfying Application Requirements with WebLogic Server EJBs
Understand the variety of value-added features for enterprise beans that you can configure
to meet the requirements of your application in WebLogic Server.

Choosing the Right Bean Type
When choosing the bean type for a processing task, examine the different capabilities of the
various been types.

Bean types vary in terms of the bean's relationship with its client. Some bean types stick with a
client throughout a series of processes, serving as a sort of general contractor—acquiring and
orchestrating services for the client. There are other bean types that act like subcontractors,
they deliver the same single function to multiple client-oriented general contractor beans. A
client-oriented bean keeps track of client interactions and other information associated with the
client process, throughout a client session—a capability referred to as maintaining state. Beans
that deliver commodity services to multiple client-oriented beans do not maintain state.

The following sections describe the client interaction and state management characteristics of
each bean type.

Note

For a basic overview of each bean type, including an example of a business process
to which each bean type is well suited, see How Do Applications Use EJBs?.

• Session Bean Features

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 10

• Stateful Session Beans

• Stateless Session Beans

• Entity Bean Features

• Message-Driven Beans

Session Bean Features
A session bean represents a single client inside the server. To access an application that is
deployed on the server, the client invokes the session bean's methods. The session bean
performs work for its client, shielding the client from complexity by executing business tasks
inside the server.

A session bean instance has a single client. Session beans are not persistent—when the client
terminates, its session bean appears to terminate and is no longer associated with the client.

A session bean can be used as a facade, between Web applications and entity beans to
contain complex interactions and reduce RMI calls. When a client application accesses a
remote entity bean directly, each getter method is a remote call. A session facade bean can
access the entity bean locally, collect the data in a structure, and return it by value. The two
types of session beans, those that maintain state and those that do not, are described in the
following sections.

Stateful Session Beans
Stateful session beans support conversational services with tightly-coupled clients. A stateful
session bean accomplishes a task for a particular client. It maintains state for the duration of a
client session. After session completion, state is not retained.

Stateful session beans are instantiated on a per client basis, and can multiply and consume
resources rapidly.

Stateless Session Beans
Like a stateful session bean, a stateless session bean performs a task for a particular client.
Unlike a stateful session bean, stateless session beans do not maintain client state. A
stateless session bean may maintain state only for the duration of a method invocation. When
the method is finished, the state is no longer retained.

Except during method invocation, all instances of a stateless bean are equivalent, allowing the
EJB container to assign an instance to any client request. When a home interface creates a
stateless bean, it returns a replica-aware stub that can route to any server where the bean is
deployed. Because a stateless bean holds no state on behalf of the client, the stub is free to
route any call to any server that hosts the bean.

• Stateless Beans Offer Performance and Scalability Advantages

• Exposing Stateless Session Beans as Web Services

Stateless Beans Offer Performance and Scalability Advantages
Because stateless session beans are never written to secondary storage, they typically offer
better performance than stateful beans.

For applications that require large numbers of clients, stateless session beans offer better
scalability than stateful session beans.

Chapter 2
Choosing the Right Bean Type

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 10

The system overhead of creating an instance is less for a stateless session bean than for a
stateful session bean.

• You can simply obtain a stateless session bean instance from the free pool.

• A stateful session bean instance is instantiated upon client request, has to set the session
context, and must be garbage-collected at the end of the session.

You can typically support more clients with a stateless session bean than a stateful session
bean. A stateless session bean instance is only reserved for the duration of a single client
request, while a stateful session bean is reserved for the duration of a session.

The number of stateless session bean instances required is usually roughly equivalent to the
number of threads in the server execute queue—in the order of hundreds, while the number of
stateful session bean instances required corresponds more closely to the number of clients of
the application—which for some applications may be hundreds of thousands.

Exposing Stateless Session Beans as Web Services
In this release of WebLogic Server, you can expose stateless session beans as Web Services
through the Web service endpoint interface. See Developing JAX-WS Web Services for Oracle
WebLogic Server.

Entity Bean Features
An entity bean represents a business object in a persistent storage mechanism. Some
examples of business objects are customers, orders, and products. In the Jakarta EE SDK, the
persistent storage mechanism is a relational database. Typically, each entity bean has an
underlying table in a relational database, and each instance of the bean corresponds to a row
in that table.

• Key Features of Entity Beans

• Read-Write versus Read-Only Entity Beans

• Entity Bean Performance and Data Consistency Characteristics

Key Features of Entity Beans
These are the key features of entity beans:

• Persistence—Entity bean persistence can be managed by the EJB container, or the bean
itself. If a bean uses container-managed persistence, the EJB container automatically
generates the necessary database access calls. The code that you write for the entity bean
does not include these calls. With bean-managed persistence, you must write the
database access code and include it in the bean.

• Shared Access—Throughout its life cycle, an entity bean instance can support multiple
clients, although not at the same time. Because the clients might want to change the same
data, it is important that entity beans work within transactions. Typically, the EJB container
provides transaction management. In this case, you specify the transaction attributes in the
bean's ejb-jar.xml file that control how transactions are managed. You do not have to
code the transaction boundaries in the bean—the container marks the boundaries for you.
For information about transaction management, see Transaction Design and Management
Options.

• Primary Key—Each entity bean has a unique object identifier. A customer entity bean, for
example, might be identified by a customer number. The unique identifier, or primary key,

Chapter 2
Choosing the Right Bean Type

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 10

enables the client to locate a particular entity bean. For more information, see Using
Container-Managed Relationships (CMRs).

• Relationships—Like a table in a relational database, an entity bean may be related to other
entity beans. You implement relationships differently for entity beans with bean-managed
persistence and for those with container-managed persistence. With bean-managed
persistence, the code that you write implements the relationships. But with container-
managed persistence, the EJB container takes care of the relationships for you. For this
reason, relationships in entity beans with container-managed persistence are often
referred to as container-managed relationships. For more information, see Using Cascade
Delete for Entities in CMRs.

Read-Write versus Read-Only Entity Beans
WebLogic Server supports two types of entity beans: read-write and read-only.

Read-only beans perform better than read-write beans, because they reduce the number of
times that data is read from the database.

Some applications require the use of read-write entity beans—the choice depends on
frequency of updates and data consistency requirements. Table 2-1 provide key guidelines.

Table 2-1 Comparing Read-Write and Read-Only Entity Beans

Application
Requirement

Choose read-write entity beans
if...

Choose read-only entity beans if...

Frequency of updates Your application data is updated
often.

Example: A real-time stock quote
feed.

Your application data is not updated
often, or at all.

Example: A swimwear catalogue.

Data consistency Your application requires
transactionally consistent snapshots
of data as it is updated.

Example: An application that
updates bank account balances.

You can tolerate some level of staleness
in the data: it does not have to be
completely up-to-date.

Example: A news feed. Users want to
see the story as soon as it is in the
database, but it is not updated
transactionally.

Entity Bean Performance and Data Consistency Characteristics
These sections describe approaches for choosing the entity bean implementation, based on
your requirements for performance and data consistency.

• Use Read-Only Beans to Improve Performance If Stale Data Is Tolerable

• Use Read-Write Beans for Higher Data Consistency

• Combine Read-Only and Read-Write Beans to Optimize Performance

• Use Session Facades to Optimize Performance for Remote Entity Beans

• Avoid the Use of Transfer Objects

Use Read-Only Beans to Improve Performance If Stale Data Is Tolerable
Read-only entity beans are recommended whenever stale data is tolerable—they are suitable
for product catalogs and the majority of content within many applications. Primary key-based
reads are performed against a local entity cache that is invalided on a timer basis. Other

Chapter 2
Choosing the Right Bean Type

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 10

queries are made against the database. Read-only entity beans perform three to four times
faster than transactional entities.

Note

A client can successfully call setter methods on a read-only entity bean; however, the
data will never be moved into the persistent store.

Use Read-Write Beans for Higher Data Consistency
Read-write entity beans are recommended for applications that require high data consistency,
for example, customer account maintenance. All reads and writes are performed against the
database.

Note

For entity beans that use bean-managed persistence, or EJB 1.1 entity beans that use
container-managed persistence, you can reduce the number of database writes by
specifying the isModified method in weblogic-ejb-jar.xml.

Combine Read-Only and Read-Write Beans to Optimize Performance
For read-mostly applications, characterized by frequent reads, and occasional updates (for
instance, a catalog)—a combination of read-only and read-write beans that extend the read-
only beans is suitable. The read-only bean provides fast, weakly consistent reads, while the
read-write bean provides strongly consistent writes.

Use Session Facades to Optimize Performance for Remote Entity Beans
To avoid the overhead imposed by remote calls, avoid accessing remote EJB entity beans from
client or servlet code. Instead, use a session bean, referred to as a facade, to contain complex
interactions and reduce calls from Web applications to RMI objects. When a client application
accesses a remote entity bean directly, each getter method is a remote call. A session facade
bean can access the entity bean locally, collect the data in a structure, and return it by value.

Alternatively, there are no disadvantages to accessing a local entity bean instance directly from
the Web tier—it is preferable to do so than to use a facade.

Avoid the Use of Transfer Objects
Avoid the use of transfer objects, also referred to as value objects or helper classes. (A transfer
object is a serializable class within an EJB that groups related attributes, forming a composite
value, which is used as the return type of a remote business method.)

To optimize performance, accessing local entity instances is always preferable to the use of
transfer objects.

Message-Driven Beans
A message-driven bean (MDB) is an enterprise bean that allows Jakarta EE applications to
process messages asynchronously. An MDB acts as a JMS or JCA message listener, which is

Chapter 2
Choosing the Right Bean Type

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 10

similar to an event listener except that it receives messages instead of events. The messages
may be sent by any Jakarta EE component—an application client, another enterprise bean, or
a Web component—or by non-Jakarta EE applications.

See Developing Message-Driven Beans for Oracle WebLogic Server.

Persistence Management Alternatives
Persistence management strategy determines how an entity bean's database access is
performed.

Configure the persistence management strategy—either container-managed or bean-managed
—for an entity bean in the persistence-type element in ejb-jar.xml.

Note

You can specify the use of a third-party persistence service for entity beans that use
container-managed persistence in the persistence-use element in weblogic-ejb-
jar.xml.

• Use Container-Managed Persistence (CMP) for Productivity and Portability

• Use Bean-Managed Persistence (BMP) Only When Necessary

Use Container-Managed Persistence (CMP) for Productivity and Portability
A CMP bean relies upon the EJB container for all database interaction. The bean does not
contain code that accesses the database. Instead, the EJB container generates the database
access methods, based on information about the entity bean's persistent fields and
relationships, in weblogic-cmp-jar.xml. For more information, see "weblogic-cmp-jar.xml
Deployment Descriptor Reference".

CMP beans use EJB QL for database access. See EJB Query Language (EJB-QL) and
WebLogic Server.

Container-managed persistence offers these advantages:

• Reduced programming effort—You do not write methods to perform database access for a
CMP bean. The EJB container generates the methods automatically.

• Increased portability—CMP increases bean portability in these ways:

– De-coupling physical database details from business logic makes a bean logically
independent of the associated database. If you implement a modified database design,
or change to a different database server, you do not have to modify bean code.

– You can redeploy the bean on a different Jakarta EE application server without
modifying or recompiling bean code.

Note

If you redeploy a bean that uses features that are not supported by the target
application server, changes to the bean code might be necessary.

For more information on features supported by CMP entities, see Entity EJBs.

Chapter 2
Persistence Management Alternatives

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 10

Use Bean-Managed Persistence (BMP) Only When Necessary
A bean that manages its own persistence must contain the methods that perform data access.

BMP is not encouraged—CMP offers many advantages over bean-managed persistence, as
described in Use Container-Managed Persistence (CMP) for Productivity and Portability.

However, some application requirements cannot be satisfied by CMP beans. For instance, you
must use BMP if:

• Your application must use an existing library of stored SQL procedures.

• The target database does not support JDBC.

• There is complex mapping between the bean and database tables. For instance, the bean
maps multiple tables that do not share a primary key.

Transaction Design and Management Options
A transaction is a unit of work that changes application state—whether on disk, in memory or in
a database—that, once started, is completed entirely, or not at all.

This section describes the transaction design and management options in detail.

• Understanding Transaction Demarcation Strategies and Performance

• Demarcating Transactions at the Server Level is Most Efficient

• Container-Managed Transactions Are Simpler to Develop and Perform Well

• Bean-Level Transaction Management

• Client-Level Transaction Management is Costly

• Transaction Isolation: A Performance vs. Data Consistency Choice

Understanding Transaction Demarcation Strategies and Performance
Transactions can be demarcated—started, and ended with a commit or rollback—by the EJB
container, by bean code, or by client code.

Demarcating Transactions at the Server Level is Most Efficient
Transactions are costly application resources, especially database transactions, because they
reserve a network connection for the duration of the transaction. In a multi-tiered architecture—
with database, application server, and Web layers—you optimize performance by reducing the
network traffic "round trip." The best approach is to start and stop transactions at the
application server level, in the EJB container.

Container-Managed Transactions Are Simpler to Develop and Perform Well
Container-managed transactions (CMTs) are supported by all bean types: session, entity, and
message-driven. They provide good performance, and simplify development because the
enterprise bean code does not include statements that begin and end the transaction.

Each method in a CMT bean can be associated with a single transaction, but does not have to
be. In a container-managed transaction, the EJB container manages the transaction, including

Chapter 2
Transaction Design and Management Options

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 10

start, stop, commit, and rollback. Usually, the container starts a transaction just before a bean
method starts, and commits it just before the method exits.

For information about the elements related to transaction management in ejb-jar.xml and
weblogic-ejb-jar.xml, see Container-Managed Transactions Elements.

• Rollback

• Transaction Boundaries

• Distributing Transactions Across Beans

• Costly Option: Distributing Transactions Across Databases

Rollback
If an exception is thrown during a transaction, the container will automatically roll back the
transaction. You can configure the EJB container to automatically retry container-managed
transactions that have rolled back, provided the transactions did not roll back as the result of
system exception-based errors. You can also explicitly program rollbacks in your bean. For
more information see Implementing EJBs.

Transaction Boundaries
You control how the EJB container manages the transaction boundaries when delegating a
method invocation to an enterprise bean's business method for different invocation scenarios,
with the trans-attribute element in ejb-jar.xml.

For example, if the client calling a transaction is itself running in a transaction, the trans-
attribute element for the called transaction determines whether it will run in a new transaction
or within the calling transaction.

Distributing Transactions Across Beans
A single database transaction can span multiple beans, on multiple servers instances. For
information about implementing transactions that involve more than one bean, see
Programming Transactions That Are Distributed Across EJBs.

Costly Option: Distributing Transactions Across Databases
Transactions that update multiple datastores must commit or roll back as a logical unit. The
two-phase commit protocol is a method of coordinating a single transaction across multiple
resource managers to ensure that updates are committed in all participating databases, or are
fully rolled back out of all the databases.

Two-phase commit is resource-intensive. Avoid distributing transactions across databases.

Bean-Level Transaction Management
In a bean-managed transaction, the EJB code manages the transaction, including start, stop,
commit, and rollback. Bean-managed transactions are supported by all session and message-
driven beans; you cannot use bean-managed transactions with entity beans.

Chapter 2
Transaction Design and Management Options

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 10

Note

Bean-managed transactions cannot use container-provided transaction management
features. Do not combine bean-managed and container-managed transactions in the
same bean.

• When to Use Bean-Managed Transactions

• Keep Bean-Managed Transactions Short

When to Use Bean-Managed Transactions
These are examples of requirements that may dictate the use of bean-managed transactions:

• You need to define multiple transactions with a single method call. With container-
managed transactions, a method can only be associated with a single transaction. You can
use a bean-managed transaction to define multiple transactions with a single method.
However, consider avoiding the need for a bean-managed transaction by breaking the
method in to multiple methods, each with its own container-managed transaction.

• You need to define a single transaction that spans multiple EJB method calls. For example,
a stateful session EJB that uses one method to begin a transaction, and another method to
commit or roll back a transaction.

Try to avoid this practice, because it requires detailed information about the workings of
the EJB object. However, if this scenario is required, you must use bean-managed
transaction coordination, and you must coordinate client calls to the respective methods.

Keep Bean-Managed Transactions Short
To simplify development, and improve reliability, keep bean-managed transactions reasonably
short.

For information about implementing bean-managed transactions, see Programming Bean-
Managed Transactions.

Client-Level Transaction Management is Costly
Client applications are subject to interruptions or unexpected terminations. If you start and stop
a transaction at the client level, you risk:

• Consumption of network resources during waits for user actions, interruptions, until
resumption of client activity or timeout.

• Consumption of processing resources and network resources to rollback the transaction
after timeout or termination of the transaction.

Do not manage transactions in client applications unless there are overriding reasons to do so.

Transaction Isolation: A Performance vs. Data Consistency Choice
A transaction's isolation level is the degree to which it exposes updated but uncommitted data
to other transactions. Allowing access to uncommitted data can improve performance, but
increases the risk of incorrect data being supplied to other transactions.

Chapter 2
Transaction Design and Management Options

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 10

Set the isolation level for bean-managed transactions in the bean's Java code. For instructions,
see Programming Bean-Managed Transactions.

Set the isolation level for container-managed transactions in the isolation-level sub-element of
the transaction-isolation element of weblogic-ejb-jar.xml. WebLogic Server passes this
value to the underlying database. The behavior of the transaction depends both on the EJB's
isolation level setting and the concurrency control of the underlying persistent store.

For more information on setting container-managed transaction isolation levels, see
Developing JTA Applications for Oracle WebLogic Server.

Satisfying Application Requirements with WebLogic Server EJBs
Understand the variety of value-added features for enterprise beans that you can configure to
meet the requirements of your application in WebLogic Server.

These features are described in WebLogic Server Value-Added EJB Features.

Table 2-2 cross references requirement types with topics that describe design strategies and
WebLogic Server features you can use to satisfy your application requirements.

Table 2-2 Features and Design Patterns

When designing for... Consider these design patterns and WebLogic Server features...

Availability and reliability • Failover for Clustered EJBs Increases Reliability
• Load Balancing Among Clustered EJBs Increases Scalability

Scalability • Stateless Beans Offer Performance and Scalability Advantages

Data Consistency • Use Container-Managed Persistence (CMP) for Productivity and
Portability

• Use Read-Write Beans for Higher Data Consistency.
• Transaction Isolation: A Performance vs. Data Consistency Choice
• Keep Bean-Managed Transactions Short

Developer and
Administrator Productivity

• Use Container-Managed Persistence (CMP) for Productivity and
Portability

• Container-Managed Transactions Are Simpler to Develop and Perform
Well

Performance Choosing bean types and design patterns:

• Combine Read-Only and Read-Write Beans to Optimize Performance
• Use Read-Only Beans to Improve Performance If Stale Data Is Tolerable
• Use Session Facades to Optimize Performance for Remote Entity Beans
• Avoid the Use of Transfer Objects
• Stateless Beans Offer Performance and Scalability Advantages
Clustering features:

• Load Balancing Among Clustered EJBs Increases Scalability
Pooling and caching:

• Performance-Enhancing Features for WebLogic Server EJBs
Transaction management:

• Container-Managed Transactions Are Simpler to Develop and Perform
Well

• Demarcating Transactions at the Server Level is Most Efficient
• Transaction Isolation: A Performance vs. Data Consistency Choice
• Costly Option: Distributing Transactions Across Databases
• Keep Bean-Managed Transactions Short

Chapter 2
Satisfying Application Requirements with WebLogic Server EJBs

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 10

3
Implementing EJBs

This chapter describes the EJB implementation process, and provides guidance for how to get
an EJB up and running in WebLogic Server.
It is assumed that you understand WebLogic Server's value-added EJB features, have
selected a design pattern for your application, and have made key design decisions.

For a review of WebLogic Server EJB features, see WebLogic Server Value-Added EJB
Features.

For discussion of design options for EJBs, factors to consider during the design process, and
recommended design patterns see Designing EJBs.

This chapter includes the following topics:

• Overview of the EJB Development Process
Learn about the key implementation tasks and associated results in the process of
developing EJB.

• Create a Source Directory
Learn how to create a source directory where you can assemble the EJB.

• Create EJB Classes and Interfaces

• Programming the EJB Timer Service

• Declare Web Service References
Web Service references, declared in an EJB's deployment descriptor, maps a logical name
for a Web Service to an actual Web Service interface, which allows you to refer to the Web
Service using a logical name. The bean code then performs a JNDI lookup using the Web
Service reference name.

• Compile Java Source
Learn about the tools that support compilation and the compilation process.

• Edit Deployment Descriptors
Elements in ejb-jar.xml, weblogic-ejb-jar.xml, and for container-managed persistence
entity beans, weblogic-cmp-jar.xml, control the run-time characteristics of your
application. You can modify these deployment descriptors using an XML editing tool.

• Generate EJB Wrapper Classes, and Stub and Skeleton Files
Container classes include the internal representation of the EJB that WebLogic Server
uses and the implementation of the external interfaces (home, local, and/or remote) that
clients use. You can use Oracle Workshop for WebLogic Platform or appc to generate
container classes.

• Package
You can package EJBs as part of an enterprise application.

• Deploy
Deploying an EJB enables WebLogic Server to serve the components of an EJB to clients.
You can deploy an EJB using one of several procedures, depending on your environment
and whether or not your EJB is in production.

• Solving Problems During Development
Learn about the WebLogic Server features that are useful for checking out and debugging
deployed EJBs.

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 29

• WebLogic Server Tools for Developing EJBs
Examine the Oracle tools that support the EJB development process.

Overview of the EJB Development Process
Learn about the key implementation tasks and associated results in the process of developing
EJB.

This section is a brief overview of the EJB development process. It describes the key
implementation tasks and associated results.

Figure 3-1 illustrates the process of developing an EJB. The steps in the process, and the
results of each are described in Table 3-1. Subsequent sections detail each step in the
process.

Figure 3-1 EJB Development Process Overview

Chapter 3
Overview of the EJB Development Process

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 29

Table 3-1 EJB Development Tasks and Results

Step Description Result

Create a Source
Directory

Create the directory structure for your
source files, deployment descriptors, and
files that are generated during the
implementation process.

A directory structure on your local
drive.

Create EJB Classes
and Interfaces

Create the classes that make up your
bean. Insert appropriate tags in your
source code to enable automatic
generation of deployment descriptor
elements later in the implementation
process.

.java file for each class

Compile Java Source Compile source code. .class file for each class

Edit Deployment
Descriptors

You may need to edit deployment
descriptors to ensure they correctly reflect
all desired runtime behaviors for your
bean.

• ejb-jar.xml,
• weblogic-ejb-jar.xml,

which contains elements that
control WebLogic Server-
specific features, and

• weblogic-cmp-jar.xml, if
the bean is a container-
managed persistence entity
bean.

Generate EJB Wrapper
Classes, and Stub and
Skeleton Files

Generate the container classes used to
access the deployment unit, including
classes for home and remote interfaces.

Generated classes are added to
archive or directory.

Package Package compiled files, generated files,
and deployment descriptors for
deployment.

If appropriate, you can leave your files
unarchived in an exploded directory.

Archive, either a JAR or an EAR

Deploy Target the archive or application directory
to desired Managed Server, or a WebLogic
Server cluster, in accordance with selected
staging mode.

The deployment settings for the
bean are written to EJBComponent
element in config.xml.

Create a Source Directory
Learn how to create a source directory where you can assemble the EJB.

Oracle recommends a split development directory structure, which segregates source and
output files in parallel directory structures. For instructions on how to set up a split directory
structure and package your EJB as an enterprise application archive (EAR), see Overview of
the Split Development Directory Environment in Developing Applications for Oracle WebLogic
Server.

If you prefer to package and deploy your EJB in a JAR file, create a directory for your class
files, and within that directory, a subdirectory named META-INF for deployment descriptor files.

Example 3-1 Directory Structure for Packaging JAR

myEJB/
 META-INF/
 ejb-jar.xml

Chapter 3
Create a Source Directory

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 29

 weblogic-ejb-jar.xml
 weblogic-cmp-jar.xml
 foo.class
 fooHome.class
 fooBean.class

Create EJB Classes and Interfaces
The classes required depend on the type of EJB you are developing, as described in EJB
Components.

The sections that follow provide tips and guidelines for using WebLogic Server-specific EJB
features.

• Using WebLogic Server Generic Bean Templates

• Programming Client Access to EJBs

• Programming Client to Obtain Initial Context

• Programming Client to Look Up a Home Interface

• Configuring EJBs to Send Requests to a URL

• Specifying an HTTP Resource by URL

• Specifying an HTTP Resource by Its JNDI Name

• Accessing HTTP Resources from Bean Code

• Configuring Network Communications for an EJB

• Programming and Configuring Transactions

• Programming Container-Managed Transactions

• Configuring Automatic Retry of Container-Managed Transactions

• Programming Bean-Managed Transactions

• Programming Transactions That Are Distributed Across EJBs

Using WebLogic Server Generic Bean Templates
For each EJB type, WebLogic Server provides a generic class that contains Java callbacks, or
listeners, that are required for most EJBs. The generic classes are in the weblogic.ejb
package:

• GenericEnterpriseBean

• GenericEntityBean

• GenericMessageDrivenBean

• GenericSessionBean

You can implement a generic bean template in a class of your own by importing the generic
class into the class you are writing. This example imports the GenericSessionBean class into
HelloWorldEJB:

import weblogic.ejb.GenericSessionBean;
 ...
public class HelloWorldEJB extends GenericSessionBean {

Chapter 3
Create EJB Classes and Interfaces

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 29

Programming Client Access to EJBs
The following sections provide guidelines for programming client access to an EJB.

Programming Client to Obtain Initial Context
Local clients obtain initial context using the getInitialContext method, similar to the following
excerpt.

Example 3-2 Local Client Performing a Lookup

...
Context ctx = getInitialContexLt("t3://localhost:7001", "user1", "user1Password");
...
static Context getInitialContext(String url, String user, String password) {
 Properties h = new Properties();
 "weblogic.jndi.WLInitialContextFactory");
 h.put(Context.PROVIDER_URL, url);
 h.put(Context.SECURITY_PRINCIPAL, user);
 h.put(Context.SECURITY_CREDENTIALS, password);

 return new InitialContext(h);
}

Remote clients obtain an InitialContext from the WebLogic Server InitialContext factory.

Programming Client to Look Up a Home Interface
A client can look up the entity bean's home interface in one of two ways:

• By following an EJB reference. This approach offers better performance than the
alternative, looking up the home interface directly from the Java Naming and Directory
Interface, and is a Oracle best practice. For instructions on using EJB references, see the
following section, Using EJB Links.

• Directly from the Java Naming and Directory Interface (JNDI). The container binds the
entity bean's home interface in the global, server-side JNDI name space. See Developing
JNDI Applications for Oracle WebLogic Server.

• Using EJB Links

Using EJB Links
Using EJB links is a Oracle best practice and WebLogic Server fully supports EJB links as
defined in the EJB specification. You can link an EJB reference that is declared in one
application component to an enterprise bean that is declared in the same Jakarta EE
application.

In the ejb-jar.xml file, specify the link to the EJB using the ejb-link element of the ejb-ref
element of the referencing application component. The value of ejb-link must match that of
the ejb-name in both ejb-jar.xml and weblogic-ejb-jar.xml of the target EJB. The target
EJB can be in any EJB JAR file in the same Jakarta EE application as the referencing
application component.

Because ejb-names are not required to be unique across EJB JAR files, you may need to
provide the qualified path for the link. Use the following syntax to provide the path name for the
EJBs within the same Jakarta EE application.

Chapter 3
Create EJB Classes and Interfaces

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 29

<ejb-link>../products/product.jar#ProductEJB</ejb-link>

This reference provides the path name of the EJB JAR file that contains the referenced EJB
with the appended ejb-name of the target bean separated from the path by "#". The path name
is relative to the referencing application component JAR file.

Configuring EJBs to Send Requests to a URL
To enable an EJB to open an HttpURLConnection to an external HTTP server using the
java.net.URL resource manager connection factory type, specify the URL, or specify an object
bound in the JNDI tree that maps to a URL, using the resource-ref element in ejb-jar.xml
and the res-ref-name element in weblogic-ejb-jar.xml.

Specifying an HTTP Resource by URL
To specify the URL to which an EJB sends requests:

1. In ejb-jar.xml, specify the URL in the <jndi-name> element of the resource-ref
element.

2. In weblogic-ejb-jar.xml, specify the URL in the <jndi-name> element of the resource-
description element:

<resource-description>
 <res-ref-name>url/MyURL</res-ref-name>
 <jndi-name>http://www.rediff.com/</jndi-name>
</resource-description>

WebLogic Server creates a URL object with the jndi-name provided and binds the object
to the java:comp/env.

Specifying an HTTP Resource by Its JNDI Name
To specify an object that is bound in JNDI and maps to a URL, instead of specifying a URL:

1. In ejb-jar.xml, specify the name by which the URL is bound in JNDI in the <jndi-name>
element of the resource-ref element.

2. In weblogic-ejb-jar.xml, specify the name by which the URL is bound in JNDI in the
<jndi-name> element of the resource-description element:

<resource-description>
 <res-ref-name>url/MyURL1</res-ref-name>
 <jndi-name>firstName</jndi-name>
</resource-description>

where firstName is the object bound to the JNDI tree that maps to the URL. This binding
could be done in a startup class. When jndi-name is not a valid URL, WebLogic Server
treats it as an object that maps to a URL and is already bound in the JNDI tree, and binds
a LinkRef with that jndi-name.

Accessing HTTP Resources from Bean Code
Regardless of how you specified an HTTP resource—by its URL or a JNDI name that maps to
the URL—you can access it from EJB code in this way:

URL url = (URL) context.lookup("java:comp/env/url/MyURL");
connection = (HttpURLConnection)url.openConnection();

Chapter 3
Create EJB Classes and Interfaces

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 29

Configuring Network Communications for an EJB
You can control the attributes of the network connection an EJB uses for communications by
configuring a custom network channel and assigning it to the EJB. For information about
WebLogic Server network channels and associated configuration instructions see Configure
Network Resources in Administering Server Environments for Oracle WebLogic Server. After
you configure a custom channel, assign it to an EJB using the network-access-point element
in weblogic-ejb-jar.xml.

Programming and Configuring Transactions
Transaction design decisions are discussed in Transaction Design and Management Options.
The following sections contain guidelines for programming transactions.

For information using transactions with entity beans, see Understanding ejbLoad() and
ejbStore() Behavior.

Programming Container-Managed Transactions
Container-managed transactions are simpler to program than bean-managed transactions,
because they leave the job of demarcation—starting and stopping the transaction—to the EJB
container.

You configure the desired transaction behaviors in ejb-jar.xml and weblogic-ejb-jar.xml.
For related information see Container-Managed Transactions Elements.

Key programming guidelines for container-managed transactions include:

• Preserve transaction boundaries—Do not invoke methods that interfere with the
transaction boundaries set by the container. Do not use:

– The commit, setAutoCommit, and rollback methods of java.sql.Connection

– The getUserTransaction method of jakarta.ejb.EJBContext

– Any method of jakarta.transaction.UserTransaction

• Roll back transactions explicitly—To cause the container to roll back a container-managed
transaction explicitly, invoke the setRollbackOnly method of the EJBContext interface. (If
the bean throws an application exception, typically an EJBException, the rollback is
automatic.)

• Avoid serialization problems—Many data stores provide limited support for detecting
serialization problems, even for a single user connection. In such cases, even with
transaction-isolation in weblogic-ejb-jar.xml set to TransactionSerializable,
exceptions or rollbacks in the EJB client might occur if contention occurs between clients
for the same rows. To avoid such exceptions, you can:

– Include code in your client application to catch SQL exceptions, and resolve them
appropriately; for example, by restarting the transaction.

– For Oracle databases, use the transaction isolation settings described in isolation-
level.

Configuring Automatic Retry of Container-Managed Transactions
In this release of WebLogic Server, you can specify that, if a business method that has started
a transaction fails because of a transaction rollback that is not related to a system exception,

Chapter 3
Create EJB Classes and Interfaces

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 29

the EJB container will start a new transaction and retry the failed method up to a specified
number of times. If the method fails for the specified number of retry attempts, the EJB
container throws an exception.

Note

The EJB container does not retry any transactions that fail because of system
exception-based errors.

To configure automatic retry of container-managed transactions:

1. Make sure your bean is a container-managed session or entity bean.

You can configure automatic retry of container-managed transactions for container-
managed session and entity beans only. You cannot configure automatic retry of container-
managed transactions for message-driven beans because MDBs do not acknowledge
receipt of a message they are processing when the transaction that brackets the receipt of
the message is rolled back; messages are automatically retried until they are
acknowledged. You also cannot configure automatic retry of container-managed
transactions for timer beans because, when a timer bean's ejbTimeout method starts and
is rolled back, the timeout is always retried.

2. Make sure the business methods for which you want to configure automatic retry of
transactions are defined in the bean's remote or local interface or as home methods (local
home business logic that is not specific to a particular bean instance) in the home
interface; the methods must have one of the following container-managed transaction
attributes:

• RequiresNew. If a method's transaction attribute (trans-attribute element in ejb-
jar.xml) is RequiresNew, a new transaction is always started prior to the invocation of
the method and, if configured, automatic retry of transactions occurs if the transaction
fails.

• Required. If a method's transaction attribute (trans-attribute element in ejb-
jar.xml) is Required, the method is retried with a new transaction only if the failed
transaction was begun on behalf of the method.

For more information on:

• Programming interfaces, see Create EJB Classes and Interfaces.

• The trans-attribute element in ejb-jar.xml, see trans-attribute in Container-
Managed Transactions Elements.

3. Make sure the methods for which you want to enable automatic retry of transactions are
safe to be re-invoked. A retry of a failed method must yield results that are identical to the
results the previous attempt, had it been successful, would have yielded. In particular:

• If invoking a method initiates a call chain, it must be safe to reinvoke the entire call
chain when the method is retried.

• All of the method's parameters must be safe for reuse; when a method is retried, it is
retried with the same parameters that were used to invoke the failed attempt. In
general, parameters that are primitives, immutable objects, or are references to read-
only objects are safe for reuse. If a parameter is a reference to an object that is to be
modified by the method, reinvoking the method must not negatively affect the result of
the method call.

Chapter 3
Create EJB Classes and Interfaces

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 29

• If the bean that contains the method that is being retried is a stateful session bean, the
bean's conversational state must be safe to re-invoke. Since a stateful session bean's
state is not transactional and is not restored during a transaction rollback, in order to
use the automatic retry of transactions feature, you must first be sure the bean's state
is still valid after a rollback.

4. Specify the methods for which you want the EJB container to automatically retry
transactions and the number of retry attempts you want the EJB container to make in the
retry-methods-on-rollback element in weblogic-ejb-jar.xml.

Programming Bean-Managed Transactions
This section contains programming considerations for bean-managed transactions. For a
summary of the distinguishing features of bean-level transactions and a discussion of related
design considerations, see Bean-Level Transaction Management .

• Demarcate transaction boundaries—To define transaction boundaries in EJB or client
code, you must obtain a UserTransaction object and begin a transaction before you
obtain a Java Transaction Service (JTS) or JDBC database connection. To obtain the
UserTransaction object, use this command:

ctx.lookup("jakarta.transaction.UserTransaction");

After obtaining the UserTransaction object, specify transaction boundaries with
tx.begin(), tx.commit(), tx.rollback().

If you start a transaction after obtaining a database connection, the connection has no
relationship to the new transaction, and there are no semantics to "enlist" the connection in
a subsequent transaction context. If a JTS connection is not associated with a transaction
context, it operates similarly to a standard JDBC connection that has autocommit equal to
true, and updates are automatically committed to the datastore.

Once you create a database connection within a transaction context, that connection is
reserved until the transaction commits or rolls back. To optimize performance and
throughput, ensure that transactions complete quickly, so that the database connection can
be released and made available to other client requests.

Note

You can associate only a single database connection with an active transaction
context.

• Setting transaction isolation level—For bean-managed transactions, you define isolation
level in the bean code. Allowable isolation levels are defined on the java.sql.Connection
interface. For information on isolation level behaviors, see isolation-level.

See Example 3-3 for a code sample.

• Avoid restricted methods—Do not invoke the getRollbackOnly and setRollbackOnly
methods of the EJBContext interface in bean-managed transactions. These methods
should be used only in container-managed transactions. For bean-managed transactions,
invoke the getStatus and rollback methods of the UserTransaction interface.

• Use one connection per active transaction context—You can associate only a single
database connection with an active transaction context.

Chapter 3
Create EJB Classes and Interfaces

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 29

Example 3-3 Setting Transaction Isolation Level in BMT

import jakarta.transaction.Transaction;
import java.sql.Connection
import weblogic.transaction.TxHelper:
import weblogic.transaction.Transaction;
import weblogic.transaction.TxConstants;
User Transaction tx = (UserTransaction)
ctx.lookup("jakarta.transaction.UserTransaction");
//Begin user transaction
 tx.begin();
//Set transaction isolation level to TransactionReadCommitted
Transaction tx = TxHelper.getTransaction();
 tx.setProperty (TxConstants.ISOLATION_LEVEL, new Integer
 (Connection.TransactionReadCommitted));
//perform transaction work
 tx.commit();

Programming Transactions That Are Distributed Across EJBs
This section describes two approaches for distributing a transaction across multiple beans,
which may reside on multiple server instances.

• Calling multiple EJBs from a client's transaction context

• Using an EJB "Wrapper" to Encapsulate a Cross-EJB Transaction

Calling multiple EJBs from a client's transaction context
The code fragment below is from a client application that obtains a UserTransaction object
and uses it to begin and commit a transaction. The client invokes two EJBs within the context
of the transaction.

import jakarta.transaction.*;
...
u = (UserTransaction) jndiContext.lookup("jakarta.transaction.UserTransaction");
u.begin();
account1.withdraw(100);
account2.deposit(100);
u.commit();
...

The updates performed by the account1 and account2 beans occur within the context of a
single UserTransaction. The EJBs commit or roll back together, as a logical unit, whether the
beans reside on the same server instance, different server instances, or a WebLogic Server
cluster.

All EJBs called from a single transaction context must support the client transaction—each
beans' trans-attribute element in ejb-jar.xml must be set to Required, Supports, or
Mandatory.

Using an EJB "Wrapper" to Encapsulate a Cross-EJB Transaction
You can use a "wrapper" EJB that encapsulates a transaction. The client calls the wrapper EJB
to perform an action such as a bank transfer, and the wrapper starts a new transaction and
invokes one or more EJBs to do the work of the transaction.

Chapter 3
Create EJB Classes and Interfaces

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 29

The wrapper EJB can explicitly obtain a transaction context before invoking other EJBs, or
WebLogic Server can automatically create a new transaction context, if the wrapper's trans-
attribute element in ejb-jar.xml is set to Required or RequiresNew.

All EJBs invoked by the wrapper EJB must support the wrapper EJB's transaction context—
their trans-attribute elements must be set to Required, Supports, or Mandatory.

Programming the EJB Timer Service
WebLogic Server supports the EJB timer service defined in the EJB specification. The EJB
timer service is an EJB-container-provided service that allows you to create timers that
schedule callbacks to occur when a timer object expires.
For more information about EJB timer services, see the Timer Service chapter in the Jakarta
Enterprise Bean Specification.

Timer objects can be created for entity beans, message-driven beans, and stateless session
beans. Timer objects expire at a specified time, after an elapsed period of time, or at specified
intervals. For instance, you can use the timer service to send out notification when an EJB
remains in a certain state for an elapsed period of time.

The WebLogic EJB timer service is intended to be used as a coarse-grained timer service.
Rather than having a large number of timer objects performing the same task on a unique set
of data, Oracle recommends using a small number of timers that perform bulk tasks on the
data. For example, assume you have an EJB that represents an employee's expense report.
Each expense report must be approved by a manager before it can be processed. You could
use one EJB timer to periodically inspect all pending expense reports and send an email to the
corresponding manager to remind them to either approve or reject the reports that are waiting
for their approval.

• Clustered Versus Local EJB Timer Services

• Clustered EJB Timer Services

• Local EJB Timer Services

• Using Java Programming Interfaces to Program Timer Objects

• EJB Timer-related Programming Interfaces

• WebLogic Server-specific Timer-related Programming Interfaces

• Timer Deployment Descriptors

• Configuring Clustered EJB Timers

Clustered Versus Local EJB Timer Services
You can configure two types of EJB timer services: clustered or local.

Clustered EJB Timer Services
Clustered EJB timer services provide the following advantages:

• Better visibility.

Timers are accessible from any node in a cluster. For example, the
jakarta.ejb.TimerService.getTimers() method returns a complete list of all stateless
session or message-driven bean timers in a cluster that were created for the EJB. If you
pass the primary key of the entity bean to the getTimers() method, a list of timers for that
entity bean are returned.

Chapter 3
Programming the EJB Timer Service

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 11 of 29

https://jakarta.ee/specifications/enterprise-beans/
https://jakarta.ee/specifications/enterprise-beans/

• Automatic load balancing and failover.

Clustered EJB timer services take advantage of the load balancing and failover capabilities
of the Job Scheduler.

For information about the configuring a clustered EJB timer service, see Configuring Clustered
EJB Timers.

Local EJB Timer Services
Local EJB timer services execute only on the server on which they are created and are visible
only to the beans on that server. With a local EJB timer service, you do not have to configure a
cluster, database, JDBC data source, or leasing service, as you do for clustered EJB timer
services.

You cannot migrate a local EJB timer object from one server to another; timer objects can only
be migrated as part of an entire server. If a server that contains EJB timers goes down for any
reason, you must restart the server or migrate the entire server in order for the timers to
execute.

Enterprise bean timers are of two types: programmatic timers and automatic timers.

Using Java Programming Interfaces to Program Timer Objects
This section summarizes the Java programming interfaces defined in the EJB specification that
you can use to program timers. For detailed information on these interfaces, refer to the EJB
specification. This section also provides details about the WebLogic Server-specific timer-
related interfaces.

EJB Timer-related Programming Interfaces
EJB interfaces you can use to program timers are described in the following table.

Table 3-2 EJB Timer-related Programming Interfaces

Programming Interface Description

jakarta.ejb.TimedObject Implement for the enterprise bean class of a bean that will be
registered with the timer service for timer callbacks. This interface
has a single method, ejbTimeout.

EJBContext Access the timer service using the getTimerService method.

jakarta.ejb.TimerService Create new EJB timers or access existing EJB timers for the EJB.

jakarta.ejb.Timer Access information about a particular EJB timer.

jakarta.ejb.TimerHandle Define a serializable timer handle that can be persisted. Since timers
are local objects, a TimerHandle must not be passed through a
bean's remote interface or Web service interface.

For more information on EJB timer-related programming interfaces, see the EJB Specification.

WebLogic Server-specific Timer-related Programming Interfaces
WebLogic Server-specific interfaces you can use to program timers include:

• weblogic.management.runtime.EJBTimerRuntimeMBean—provides runtime information
and administrative functionality for timers from a particular EJBHome. The

Chapter 3
Programming the EJB Timer Service

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 12 of 29

weblogic.management.runtime.EJBTimerRuntimeMBean interface is shown in
Example 3-4.

• weblogic.ejb.WLTimerService interface—extends the jakarta.ejb.TimerService
interface to allow users to specify WebLogic Server-specific configuration information for a
timer. The weblogic.ejb.WLTimerService interface is shown in Example 3-5; for
information on the jakarta.ejb.TimerService, see the EJB Specification.

Note

The weblogic.ejb.WLTimerService interface is not supported by the clustered
EJB timer service, as described in Configuring Clustered EJB Timers.

• weblogic.ejb.WLTimerInfo interface—used in the weblogic.ejb.WLTimerService
interface to pass WebLogic Server-specific configuration information for a timer. The
weblogic.ejb.WLTimerInfo method is shown in Example 3-6.

Note

The weblogic.ejb.WLTimerService interface is not supported by the clustered
EJB timer service, as described in Configuring Clustered EJB Timers.

• weblogic.ejb.WLTimer interface—extends the jakarta.ejb.Timer interface to provide
additional information about the current state of the timer. The weblogic.ejb.WLTimer
interface is shown in Example 3-7.

Note

The weblogic.ejb.WLTimerService interface is not supported by the clustered
EJB timer service, as described in Configuring Clustered EJB Timers.

Example 3-4 weblogic.management.runtime.EJBTimerRuntimeMBean Interface

public interface weblogic.management.runtime.EJBTimerRuntimeMBean {
 public int getTimeoutCount(); // get the number of successful timeout notifications
that have been made
 public int getActiveTimerCount(); // get the number of active timers for this EJBHome
 public int getCancelledTimerCount(); // get the number of timers that have been
cancelled for this EJBHome
 public int getDisabledTimerCount(); // get the number of timers temporarily disabled
for this EJBHome
 public void activateDisabledTimers(); // activate any temporarily disabled timers
}

Example 3-5 weblogic.ejb.WLTimerService Interface

public interface WLTimerService extends TimerService {
 public Timer createTimer(Date initial, long duration, Serializable info,
 WLTimerInfo wlTimerInfo)
 throws IllegalArgumentException, IllegalStateException, EJBException;
 public Timer createTimer(Date expiration, Serializable info,
 WLTimerInfo wlTimerInfo)
 throws IllegalArgumentException, IllegalStateException, EJBException;
 public Timer createTimer(long initial, long duration, Serializable info

Chapter 3
Programming the EJB Timer Service

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 13 of 29

 WLTimerInfo wlTimerInfo)
 throws IllegalArgumentException, IllegalStateException, EJBException;
 public Timer createTimer(long duration, Serializable info,
 WLTimerInfo wlTimerInfo)
 throws IllegalArgumentException, IllegalStateException, EJBException;
}

Example 3-6 weblogic.ejb.WLTimerInfo Interface

public final interface WLTimerInfo {
 public static int REMOVE_TIMER_ACTION = 1;
 public static int DISABLE_TIMER_ACTION = 2;
 public static int SKIP_TIMEOUT_ACTION = 3;
 /**
 * Sets the maximum number of retry attempts that will be
 * performed for this timer. If all retry attempts
 * are unsuccesful, the timeout failure action will
 * be executed.
 */
 public void setMaxRetryAttempts(int retries);
 public int getMaxRetryAttempts();
 /**
 * Sets the number of milliseconds that should elapse
 * before any retry attempts are made.
 */
 public void setRetryDelay(long millis);
 public long getRetryDelay();
 /**
 * Sets the maximum number of timeouts that can occur
 * for this timer. After the specified number of
 * timeouts have occurred successfully, the timer
 * will be removed.
 */
 public void setMaxTimeouts(int max);
 public int getMaxTimeouts();
/**
 * Sets the action the container will take when ejbTimeout
 * and all retry attempts fail. The REMOVE_TIMER_ACTION,
 * DISABLE_TIMER_ACTION, and SKIP_TIMEOUT_ACTION fields
 * of this interface define the possible values.
 */
 public void setTimeoutFailureAction(int action);
 public int getTimeoutFailureAction();
}

Example 3-7 weblogic.ejb.WLTimer Interface

public interface WLTimer extends Timer {
 public int getRetryAttemptCount();
 public int getMaximumRetryAttempts();
 public int getCompletedTimeoutCount();
}

Timer Deployment Descriptors
The following deployment descriptor elements pertain to timers.

Chapter 3
Programming the EJB Timer Service

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 14 of 29

Table 3-3 Timer Deployment Descriptors

Element Description

timer-descriptor EJB timer object.

timer-implementation Whether the EJB timer service is clustered or non-
clustered. For information about the clustered EJB timer
service, see Configuring Clustered EJB Timers.

persistent-store-logical-name Name of a persistent store on the server's file system
where WebLogic Server stores timer objects.

For more information on these elements, see weblogic-ejb-jar.xml Deployment Descriptor
Reference.

Configuring Clustered EJB Timers

Note

To review the advantages of using clustered EJB timers, see Clustered Versus Local
EJB Timer Services.

To configure the clustering of EJB timers, perform the following steps:

1. Ensure that you have configured the following:

• A clustered domain. For more information, see Setting up WebLogic Clusters in
Administering Clusters for Oracle WebLogic Server.

• Features of the Job Scheduler, including:

– HA database, such as Oracle, DB2, Informix, MySQL, Sybase, or MSSQL.

– JDBC data source that is mapped to the HA database using the <data-source-
for-job-scheduler> element in the config.xml file.

– Leasing service. By default, database leasing will be used and the JDBC data
source defined by the <data-source-for-job-scheduler> element in the
config.xml file will be used.

For more information about configuring the Job Scheduler, see "The Timer and Work
Manager API" in Developing CommonJ Applications for Oracle WebLogic Server.

2. To enable the clustered EJB timer service, set the timer-implementation element in the
weblogic-ejb-jar.xml deployment descriptor to Clustered:

<timer-implementation>Clustered</timer-implementation>

For more information, see timer-implementation.

Please note the following changes in the behavior of the clustered EJB timer service:

• The weblogic.ejb.WLTimer* interfaces are not supported with clustered EJB timer
services.

• When creating a new clustered EJB timer using the createTimer() method, you may
notice a delay in timeout execution during the initial setup of the timer.

Chapter 3
Programming the EJB Timer Service

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 15 of 29

• The Job Scheduler provides an "at least once" execution guarantee. When a clustered
EJB timer expires, the database is not updated until the timer listener callback method
completes. If the server were to crash before the database is updated, the timer expiration
would be executed twice.

• Timer configuration options related to the actions to take in the event of failure are not valid
for the clustered EJB timer service. These configuration options include: retry delay,
maximum number of retry attempts, maximum number of timeouts, and timeout failure
actions.

• The Job Scheduler queries the database every 30 seconds to identify timers that are due
to expire. Execution may be delayed for timers with an interval duration less than 30
seconds.

• Only transactional timers will be retried in the event of failure.

• Fixed rate scheduling of timer execution is not supported.

Declare Web Service References
Web Service references, declared in an EJB's deployment descriptor, maps a logical name for
a Web Service to an actual Web Service interface, which allows you to refer to the Web
Service using a logical name. The bean code then performs a JNDI lookup using the Web
Service reference name.

This release of WebLogic Server complies with the EJB 2.1 requirements related to declaring
and accessing external Web Services.

See Developing JAX-WS Web Services for Oracle WebLogic Server.

Compile Java Source
Learn about the tools that support compilation and the compilation process.

For a list of tools that support the compilation process, see Table 3-1.

For information on the compilation process, see Developing Applications for Oracle WebLogic
Server.

Edit Deployment Descriptors
Elements in ejb-jar.xml, weblogic-ejb-jar.xml, and for container-managed persistence
entity beans, weblogic-cmp-jar.xml, control the run-time characteristics of your application.
You can modify these deployment descriptors using an XML editing tool.

If you need to modify a descriptor element, you can edit the descriptor file with any plain text
editor. However, to avoid introducing errors, use a tool designed for XML editing.

The following sections are a quick reference to WebLogic Server-specific deployment
elements. Each section contains the elements related to a type of feature or behavior. The
table in each section defines relevant elements in terms of the behavior it controls, the bean
type it relates to (if bean type-specific), the parent element in weblogic-ejb-jar.xml that
contains the element, and the behavior you can expect if you do not explicitly specify the
element in weblogic-ejb-jar.xml.

For comprehensive documentation of the elements in each descriptor file, definitions, and
sample usage, refer to:

Chapter 3
Declare Web Service References

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 16 of 29

• weblogic-ejb-jar.xml Deployment Descriptor Reference

• weblogic-cmp-jar.xml Deployment Descriptor Reference

• Your Sun documentation for elements in ejb-jar.xml.

Note

In the sections that follow, click the element name in the "Element" column to view
detailed documentation on the element.

• Security Elements

• Resource Mapping Elements

• Persistence Elements

• Clustering Elements

• Data Consistency Elements

• Container-Managed Transactions Elements

• Performance Elements

• Network Communications Elements

Security Elements
This table lists the elements in weblogic-ejb-jar.xml related to security.

Table 3-4 Security Elements in weblogic-ejb-jar.xml

Element Description Default

security-role-
assignment

Maps security roles in ejb-jar.xml file to the names of security
principals in WebLogic Server.

Required if ejb-jar.xml defines application roles.

none

security-permission Additional Java security permission that is granted to this EJB. none

run-as-principal-
name

Security principal name to use as the run-as principal for a bean
that has specified a security-identity run-as-role-name
in ejb-jar.xml.

none

iiop-security-
descriptor

Security options for beans that use the RMI-IIOP protocol. none

Resource Mapping Elements
This table lists the elements in weblogic-ejb-jar.xml that map the names of beans or
resources used in source code to their JNDI names in the deployment environment.

Chapter 3
Edit Deployment Descriptors

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 17 of 29

Table 3-5 Resource Mapping Elements in weblogic-ejb-jar.xml

Element Bean
Type

Description Default

jndi-name All JNDI name of a resource or reference
available in WebLogic Server.

Note: Assigning a JNDI name to a bean is not
recommended. Global JNDI names generate
heavy multicast traffic during clustered server
startup. See Using EJB Links for the better
practice.

none

local-jndi-name All JNDI name for a bean's local home. If a bean
has both a remote and a local home, then it
must have two JNDI names; one for each
home.

none

concurrency-
strategy

MDB JNDI name of the JMS connection factory that
the bean uses to create queues and topics.

weblogic.jms.Message.DrivenBeanConn
ectionFactory

destination-jndi-
name

MDB JNDI name that associates a message-driven
bean with a queue or topic in the JNDI tree.

none

initial-context-
factory

MDB Initial context factory that the EJB container
uses to create connection factories.

weblogic.jndi.WLInitial.Context.Fac
tory

jms-client-id MDB Client ID for the message-driven bean
associated with a durable subscriber topic.

Value of ejb-name

message-
destination-
descriptor

MDB Maps a message destination reference
in the ejb-jar.xml file to an actual
message destination, such as a JMS Queue
or Topic, in WebLogic Server.

n/a

provider-url MDB Specifies the URL provider to be used by the
InitialContext.

t3://localhost:7001

Persistence Elements
This table lists elements in weblogic-ejb-jar.xml that specify how the state of a bean is
persisted.

Table 3-6 Persistence Elements in weblogic-ejb-jar.xml

Element Bean Type Description Default

type-identifier Entity Specifies EJB persistence type. WebLogic Server
RDBMS-based persistence uses the identifier,
WebLogic_CMP_RDBMS

n/a

type-storage Entity Defines path, relative to the top level of the EJB's
JAR deployment file or deployment directory, of the
file that stores data for this persistence type.

WebLogic Server RDBMS-based persistence
generally uses an XML file named weblogic-cmp-
jar.xml to store persistence data for a bean. This
file is stored in the META-INF subdirectory of the
JAR file.

n/a

Chapter 3
Edit Deployment Descriptors

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 18 of 29

Table 3-6 (Cont.) Persistence Elements in weblogic-ejb-jar.xml

Element Bean Type Description Default

type-version Entity Version of the persistence type specified by type-
identifier. For WebLogic 2.0 CMP persistence, use
the value 2.0.

For WebLogic 1.1 CMP persistence, use the value
1.1.

n/a

delay-updates-until-
end-of-tx

Entity If true, the EJB container attempts to delay writing
updates to a bean's state to the database until the
end of a transaction. However, the container still
flushes updates to the database before executing an
EJB finder or select query if the include-updates
element (in the weblogic-query element of
weblogic-cmp-jar.xml) for the query is true.

Applicable to both container-managed persistence
and bean-managed persistence beans.

True

finders-load-bean Entity Causes beans returned by a finder or ejbSelect
method to be loaded immediately into the cache
before the method returns.

Note: Applicable to container-managed persistence
beans only.

True

persistent-store-dir Stateful
Session

Directory where state of passivated stateful session
bean instances is stored.

pstore

is-modified-method-
name

Entity The method called by the container to determine
whether or not the bean has been modified and
needs to have its changes written to the database.

Applies to bean-managed persistence or EJB 1.1
container-managed persistence beans.

If not
specified,
bean state is
persisted
after each
method
completes.

Clustering Elements
This table lists the elements in weblogic-ejb-jar.xml related to clustering. These elements
control failover and load balancing behaviors for clustered beans in a WebLogic Server cluster.

Table 3-7 Clustering Elements in weblogic-ejb-jar.xml

Element Bean Type Description Default

home-call-router-
class-name

Stateful Session

Stateless Session

Entity

Custom class to be used for routing home
method calls. This class must
implement
weblogic.rmi.extensions.CallRoute
r().

None

home-is-clusterable Stateful Session

Stateless Session

Entity

Indicates whether the bean home can be
clustered.

True

Chapter 3
Edit Deployment Descriptors

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 19 of 29

Table 3-7 (Cont.) Clustering Elements in weblogic-ejb-jar.xml

Element Bean Type Description Default

home-load-algorithm Stateful Session

Stateless Session

Entity

Algorithm to use for load-balancing among
replicas of the bean home.

Value of
weblogic.clu
ster.default
LoadAlgorith
m

idempotent-methods Stateless Session

Entity

Idempotent methods for a clustered EJB.
An idempotent method can be repeated
with no negative side-effects.

Methods of stateless session bean homes
and read-only entity bean interfaces do not
need to be explicitly identified—they are
automatically set to be idempotent.

None

replication-type Stateful Session Indicates the replication used for stateful
session beans in a cluster: in-memory or
none.

none

stateless-bean-call-
router-class-name

Stateless Session Custom class to be used for routing bean
method calls.

None

stateless-bean-is-
clusterable

Stateless Session Indicates that the bean is clusterable.

Use only for session beans whose
session-type in ejb-jar.xml is
Stateless.

True

stateless-bean-load-
algorithm

Stateless Session Algorithm to use for load-balancing among
replicas of the bean.

Value of the
property
weblogic.clu
ster.default
LoadAlgorith
m

use-serverside-stubs Stateless Session Causes the bean home to use server-side
stubs in the server context.

False

Data Consistency Elements
This table lists the elements in weblogic-ejb-jar.xml related to the consistency of the bean
instance data and the database. These elements control behaviors such as how and when the
database is updated to reflect the values in the bean instance is done.

Note

For elements related to container-managed persistence, see Managing Entity Bean
Pooling and Caching .

Table 3-8 Data Consistency Elements in weblogic-ejb-jar.xml

Element Bean Type Description Default

concurrency-strategy Entity How concurrent access to an entity bean is
managed.

Database

Chapter 3
Edit Deployment Descriptors

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 20 of 29

Table 3-8 (Cont.) Data Consistency Elements in weblogic-ejb-jar.xml

Element Bean Type Description Default

invalidation-target Entity The read-only entity bean to invalidate when
this container-managed persistence entity bean
is modified.

Note: Only applicable to EJB 2.x CMP beans.

None

delay-updates-until-
end-of-tx

Entity If true, the EJB container attempts to delay
writing updates to a bean's state to the
database until the end of a transaction.
However, the container still flushes updates to
the database before executing an EJB finder or
select query if the include-updates element
(in the weblogic-query element of
weblogic-cmp-jar.xml) for the query is
true.

Applicable to both container-managed
persistence and bean-managed persistence
beans.

True

Container-Managed Transactions Elements
Table 3-9 lists the elements in ejb-jar.xml related to container-managed transactions.

Table 3-9 Container-Managed Transaction Elements in ejb-jar.xml

Element Description Default

transaction-type Allowable values are Bean or Container. None, EJB 2.x requires
this attribute to be
specified.

Chapter 3
Edit Deployment Descriptors

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 21 of 29

Table 3-9 (Cont.) Container-Managed Transaction Elements in ejb-jar.xml

Element Description Default

trans-attribute Specifies how the container manages the transaction boundaries when
delegating a method invocation to an enterprise bean's business
method. Allowable values are:

• NotSupported

With the NotSupported value, when an entity bean runs in an
unspecified transaction, if a transaction exists, the EJB container
suspends the transaction; when an entity bean runs in an
unspecified transaction, and no transaction exists, the EJB
container takes no action.

• Supports

With the Supports value, when an entity bean runs in an
unspecified transaction, if a transaction exists, the EJB container
uses the current transaction; when an entity bean runs in an
unspecified transaction, and no transaction exists, the EJB
container takes no action.

• Required
• RequiresNew
• Mandatory
• Never

With the Never value, when an entity bean runs in an unspecified
transaction, if a transaction exists, the EJB container throws an
exception; when an entity bean runs in an unspecified transaction,
and no transaction exists, the EJB container takes no action.

Note: In in pre-9.0 releases of WebLogic Server, the EJB container
would start a new transaction when no transaction existed and the
value of trans-attribute was NotSupported, Supports, and
Never. Set entity-always-uses-transaction in weblogic-ejb-
jar.xml to True if you want the EJB container to behave as it did in
pre-9.0 releases of WebLogic Server and create a new transaction.

Because clients do not provide a transaction context for calls to an
MDB, MDBs that use container-managed transactions must
have trans-attribute of Required.

If not specified, the EJB
container issues a
warning, and uses
NotSupported for
MDBs and Supports
for other types of EJBs.

transaction-scope This optional element specifies whether an enterprise bean requires
distributed transactions for its methods or whether the local transaction
optimization may be used.

Allowable values are Local and Distributed.

If not specified, the
container assumes that
distributed transactions
must be used.

Table 3-10 lists the elements in weblogic-ejb-jar.xml related to container-managed
transactions.

Table 3-10 Container-Managed Transaction Elements in weblogic-ejb-jar.xml

Element Description Default

retry-methods-on-
rollback

The methods for which you want the EJB container to
automatically retry container-managed transactions that
have rolled back.

Note: Regardless of the methods specified in this
element, the EJB container does not retry any
transactions that fail because of system exception-based
errors.

None

Chapter 3
Edit Deployment Descriptors

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 22 of 29

Table 3-10 (Cont.) Container-Managed Transaction Elements in weblogic-ejb-jar.xml

Element Description Default

transaction-isolation The transaction isolation level used when method starts a
transaction. The specified transaction level is not used if
the method inherits an existing transaction.

The default of the
underlying DBMS

trans-timeout-
seconds

Maximum duration for a transaction. None

Performance Elements
This table lists the elements in weblogic-ejb-jar.xml related to performance.

Table 3-11 Performance Elements in weblogic-ejb-jar.xml

Element Bean
Type

Description Default

allow-concurrent-
calls

Stateful
Session

Whether multiple clients can simultaneously access a
bean without triggering a Remote Exception.

The server throws a RemoteException when a stateful
session bean instance is currently handling a method
call and another (concurrent) method call arrives on the
server.

False

cache-between-
transactions

Entity Causes the container to cache the persistent data of an
entity bean between transactions.

False

cache-type Stateful
Session

Order in which stateful session beans are removed from
the cache.

NRU

(not recently
used)

clients-on-same-
server

All Indicates that all clients of the bean are collocated with
the bean on the same server instance. This element is
only used if the EJB has a global JNDI name; setting it to
true prevents the JNDI name from being replicated.

A value of true can reduce cluster startup time in large
clusters.

False

delay-updates-
until-end-of-tx

Entity If true, the EJB container attempts to delay writing
updates to a bean's state to the database until the end of
a transaction.

However, the container still flushes updates to the
database before executing an EJB finder or select query
if the include-updates element (in the weblogic-
query element of weblogic-cmp-jar.xml) for the
query is true.

Applicable to both container-managed persistence and
bean-managed persistence beans.

True

dispatch-policy All Specifies the thread pool used to handle requests to the
bean.

None

Chapter 3
Edit Deployment Descriptors

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 23 of 29

Table 3-11 (Cont.) Performance Elements in weblogic-ejb-jar.xml

Element Bean
Type

Description Default

entity-cache-name Entity The application-level entity cache, which can cache
instances of multiple entity beans that are part of the
same application.

Note: Application level caches are declared in the
weblogic-application.xml.

None

estimated-bean-
size

Entity Estimated average size, in bytes, of an entity bean
instance.

None

finders-load-bean Entity Causes beans returned by a finder or ejbSelect
method to be loaded immediately into the cache before
the method returns.

Note: Applicable to container-managed persistence
beans only.

True

idle-timeout-
seconds

Entity Number of seconds of inactivity after which a bean is
passivated.

Note: This element is not currently used.

600

idle-timeout-
seconds

Stateful
Session

Number of seconds of inactivity after which a bean is
passivated.

600

initial-beans-in-
free-pool

Entity

Message-
Driven

Stateless
Session

Number of instances of an EJB instantiated by the
container at startup.

0

is-modified-
method-name

Entity The method that changes the state of bean. Specifying
this method causes WebLogic server to persist the bean
state when the method completes.

Note: Applies to bean-managed persistence or EJB 1.1
container-managed persistence beans.

If not
specified,
bean state is
persisted after
each method
completes.

jms-polling-
interval-seconds

Message-
driven

The number of seconds between attempts by the EJB
container to reconnect to a JMS destination that has
become unavailable.

10

max-beans-in-
cache

Entity

Stateful
Session

Maximum number of instances in the cache. 1000

max-beans-in-free-
pool

Entity

Stateless
Session

Message-
Driven

Maximum number of instances in the free pool. 1000

read-timeout-
seconds

Entity The number of seconds between ejbLoad calls on a
read-only entity bean. If read-timeout-seconds is
0, ejbLoad is only called when the bean is brought into
the cache.

600

Network Communications Elements
This table lists the elements in weblogic-ejb-jar.xml related to network communications.

Chapter 3
Edit Deployment Descriptors

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 24 of 29

Table 3-12 Communications Elements in weblogic-ejb-jar.xml

Element Bean Type Description Default

network-access-point all Assigns a custom network channel to an EJB. n/a

Generate EJB Wrapper Classes, and Stub and Skeleton Files
Container classes include the internal representation of the EJB that WebLogic Server uses
and the implementation of the external interfaces (home, local, and/or remote) that clients use.
You can use Oracle Workshop for WebLogic Platform or appc to generate container classes.

Container classes are generated in according to the descriptor elements in weblogic-ejb-
jar.xml. For example, if you specify clustering elements, appc creates cluster-aware classes
that will be used for deployment. You can use appc directly from the command line by
supplying the required options and arguments. See appc for more information.

The following figure shows the container classes added to the deployment unit when the EAR
or JAR file is generated.

Figure 3-2 Generating EJB Container Classes

• appc and Generated Class Name Collisions

Chapter 3
Generate EJB Wrapper Classes, and Stub and Skeleton Files

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 25 of 29

appc and Generated Class Name Collisions
Although infrequent, when you generate classes with appc, you may encounter a generated
class name collision which could result in a ClassCastException and other undesirable
behavior. This is because the names of the generated classes are based on three keys: the
bean class name, the bean class package, and the ejb-name for the bean. This problem
occurs when you use an EAR file that contains multiple JAR files and at least two of the JAR
files contain an EJB with both the same bean class, package, or classname, and both of those
EJBs have the same ejb-name in their respective JAR files. If you experience this problem,
change the ejb-name of one of the beans to make it unique.

Because the ejb-name is one of the keys on which the file name is based and the ejb-name
must be unique within a JAR file, this problem never occurs with two EJBs in the same JAR
file. Also, because each EAR file has its own classloader, this problem never occurs with two
EJBs in different EAR files.

Package
You can package EJBs as part of an enterprise application.

Oracle recommends that you package EJBs as part of an enterprise application. See
Deploying and Packaging from a Split Development Directory in Developing Applications for
Oracle WebLogic Server.

• Packaging Considerations for EJBs with Clients in Other Applications

Packaging Considerations for EJBs with Clients in Other Applications
WebLogic Server supports the use of ejb-client.jar files for packaging the EJB classes that
a programmatic client in a different application requires to access the EJB.

Specify the name of the client JAR in the ejb-client-jar element of the bean's ejb-jar.xml
file. When you run the appc compiler, a JAR file with the classes required to access the EJB is
generated.

Make the client JAR available to the remote client. For Web applications, put the ejb-
client.jar in the /lib directory. For non-Web clients, include ejb-client.jar in the client's
classpath.

Note

WebLogic Server classloading behavior varies, depending on whether the client is
stand-alone. Stand-alone clients with access to the ejb-client.jar can load the
necessary classes over the network. However, for security reasons, programmatic
clients running in a server instance cannot load classes over the network.

Deploy
Deploying an EJB enables WebLogic Server to serve the components of an EJB to clients. You
can deploy an EJB using one of several procedures, depending on your environment and
whether or not your EJB is in production.

Chapter 3
Package

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 26 of 29

For general instructions on deploying WebLogic Server applications and modules, including
EJBs, see Deploying Applications to Oracle WebLogic Server. For EJB-specific deployment
issues and procedures, see Deployment Guidelines for EJBs.

Solving Problems During Development
Learn about the WebLogic Server features that are useful for checking out and debugging
deployed EJBs.

The following sections describe the debugging features in WebLogic Server.

• Adding Line Numbers to Class Files

• Creating Debug Messages

Adding Line Numbers to Class Files
If you compile your EJBs with appc, you can use the appc -lineNumbers command option to
add line numbers to generated class files to aid in debugging. For information, see appc
Reference.

Creating Debug Messages
For instructions on how to create messages in your application to help you troubleshoot and
solve bugs and problems, see Configuring Log Files and Filtering Log Messages for Oracle
WebLogic Server.

WebLogic Server Tools for Developing EJBs
Examine the Oracle tools that support the EJB development process.

For a comparison of the features available in each tool, see Table 3-13.

• Oracle JDeveloper

• Oracle Enterprise Pack for Eclipse

• javac

• DDInit

• WebLogic Server Ant Utilities

• weblogic.Deployer

• appc

• DDConverter

• Comparison of EJB Tool Features

Oracle JDeveloper
Oracle JDeveloper is a full-featured Java IDE that can be used for end-to-end development of
EJBs. For more information, see the Oracle JDeveloper online help. For information about
installing JDeveloper, see Installing Oracle JDeveloper.

Chapter 3
Solving Problems During Development

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 27 of 29

Oracle Enterprise Pack for Eclipse
Oracle Enterprise Eclipse (OEPE) provides a collection of plug-ins to the Eclipse IDE platform
that facilitate development of WebLogic Web services. For more information, see the Eclipse
IDE platform online help.

javac
The javac compiler provided with the Java SE JDK provides java compilation capabilities. For
information on javac, see http://www.oracle.com/technetwork/java/index-
jsp-142903.html#documentation.

DDInit
DDInit is a utility for generating deployment descriptors for WebLogic Server applications.
DDInit uses information from the class files to create deployment descriptor files.

See DDInit in Command Reference for Oracle WebLogic Server.

WebLogic Server Ant Utilities
WebLogic Server includes Ant utilities to create skeleton deployment descriptors.

The Ant task examines a directory containing an EJB and creates deployment descriptors
based on the directory contents. Because the Ant utility does not have information about all
desired configurations and mappings for your EJB, the skeleton deployment descriptors the
utility creates are incomplete. After the utility creates the skeleton deployment descriptors, you
can use a text editor or an XML editor to edit the deployment descriptors and complete the
configuration of your EJB.

See Deploying Applications Using wldeploy in Developing Applications for Oracle WebLogic
Server.

weblogic.Deployer
The weblogic.Deployer command-line tool is a Java-based deployment tool that provides a
command line interface to the WebLogic Server deployment API. This tool was developed for
administrators and developers who need to initiate deployment from the command line, a shell
script, or any automated environment other than Java.

See weblogic.Deployer Command-Line Reference in Deploying Applications to Oracle
WebLogic Server.

appc
The appc compiler generates and compiles the classes needed to deploy EJBs and JSPs to
WebLogic Server. It validates the deployment descriptors for compliance with the current
specifications at both the individual module level and the application level. The application-
level checks include checks between the application-level deployment descriptors and the
individual modules as well as validation checks across the modules.

Chapter 3
WebLogic Server Tools for Developing EJBs

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 28 of 29

http://www.oracle.com/technetwork/java/index-jsp-142903.html#documentation
http://www.oracle.com/technetwork/java/index-jsp-142903.html#documentation

Note

The appc compiler replaces the deprecated ejbc utility. Therefore, Oracle
recommends that you use appc instead of the deprecated ejbc.

See appc Reference.

DDConverter
DDConverter is a command line tool that upgrades deployment descriptors from earlier
releases of WebLogic Server. Oracle recommends that you always upgrade your deployment
descriptors in order to take advantage of the features in the current Jakarta EE specification
and release of WebLogic Server.

You can use weblogic.DDConverter to upgrade your deployment descriptors. For information
on using weblogic.DDConverter, see Developing Applications for Oracle WebLogic Server.

Note

With this release of WebLogic Server, the EJB-specific DDConverter,
weblogic.ejb20.utils.DDConverter, is deprecated. Instead, use the new application-
level DDConverter, weblogic.DDConverter, to convert your application's deployment
descriptors, including the EJB-specific deployment descriptors.

Comparison of EJB Tool Features
The following table lists Oracle tools for EJB development, and the features provided by each.
Yes indicates the tool contains the corresponding feature.

Table 3-13 EJB Tools and Features

EJB Tool Generate
Interfaces
and Home
Interfaces

Compile
Java
Code

Generate
Deployment
Descriptors

View and Edit
Deployment
Descriptors

Deploy

WebLogic
Workshop

Yes Yes Yes No Yes

appc No Yes No No No

javac No Yes No No No

DDinit No No Yes No No

Deployer No No No No Yes

DDConverter No No Yes No No

Chapter 3
WebLogic Server Tools for Developing EJBs

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 29 of 29

4
Session EJBs

Learn how session beans work within the EJB container, and provides design and
development guidelines that are specific to session beans.
For a description of the overall bean development process, see Implementing EJBs.

It is assumed that the reader is familiar with Java programming and session bean features and
capabilities. For an introduction to session bean features and how they are typically used in
applications, see Session EJBs Implement Business Logic and Session Bean Features.

This chapter includes the following topics:

• Comparing Stateless and Stateful Session Beans
Examine the differences between stateless and stateful session beans.

• Pooling for Stateless Session EJBs
Learn how WebLogic Server initializes new instances of the EJB.

• Caching and Passivating Stateful Session EJBs
WebLogic Server uses a cache of bean instances to improve the performance of stateful
session EJBs. The cache stores active EJB instances in memory so that they are
immediately available for client requests. The cache contains EJBs that are currently in
use by a client and instances that were recently in use. Stateful session beans in cache
are bound to a particular client.

• Design Decisions for Session Beans
Examine some design decisions relevant to session beans.

• Implementing Session Beans
You can configure WebLogic Server-specific session bean behavior by setting bean-
specific deployment descriptor elements.

Comparing Stateless and Stateful Session Beans
Examine the differences between stateless and stateful session beans.

This section compares the key differences between stateless and stateful session beans.

Table 4-1 Comparing Stateless and Stateful Session Beans

Stateless Session Beans Stateful Sessions Beans

Are pooled in memory, to save the overhead of
creating a bean every time one is needed.
WebLogic Server uses a bean instance when
needed and puts it back in the pool when the work
is complete.

Stateless sessions beans provide faster
performance than stateful beans.

Each client creates a new instance of a bean, and
eventually removes it. Instances may be passivated
to disk if the cache fills up.

An application issues an ejbRemove() to remove
the bean from the cache.

Stateful sessions beans do not perform as well as
stateless sessions beans.

Have no identity and no client association; they
are anonymous.

Are bound to particular client instances.Each bean
has an implicit identity. Each time a client interacts
with a stateful session bean during a session, it is
the same object.

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 10

Table 4-1 (Cont.) Comparing Stateless and Stateful Session Beans

Stateless Session Beans Stateful Sessions Beans

Do not persist. The bean has no state between
calls.

Persist. A stateful session bean's state is preserved
for the duration of a session.

See Choosing Between Stateless and Stateful Beans for a discussion of when to use which
type of session bean.

Pooling for Stateless Session EJBs
Learn how WebLogic Server initializes new instances of the EJB.

By default, no stateless session EJB instances exist in WebLogic Server at startup time. As
individual beans are invoked, WebLogic Server initializes new instances of the EJB.

However, in a production environment, WebLogic Server can provide improved performance
and throughput for stateless session EJBs by maintaining a free pool of unbound stateless
session EJBs—instances that are not currently processing a method call. If an unbound
instance is available to serve a request, response time improves, because the request does
not have to wait for an instance to be created. The free pool improves performance by reusing
objects and skipping container callbacks when it can.

Upon startup, WebLogic Server automatically creates and populates the free pool with the
quantity of instances you specify in the bean's initial-beans-in-free-pool deployment
element in the weblogic-ejb-jar.xml file. By default, initial-beans-in-free-pool is set to
0.

The following figure illustrates the WebLogic Server free pool, and the processes by which
stateless EJBs enter and leave the pool. Dotted lines indicate the "state" of the EJB from the
perspective of WebLogic Server.

Chapter 4
Pooling for Stateless Session EJBs

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 10

Figure 4-1 WebLogic Server Free Pool Showing Stateless Session EJB Life Cycle

If you configure a pool, WebLogic Server will service method calls with an EJB instance from
the free pool, if one is available. The EJB remains active for the duration of the client's method
call. After the method completes, the EJB instance is returned to the free pool. Because
WebLogic Server unbinds stateless session beans from clients after each method call, the
actual bean class instance that a client uses may be different from invocation to invocation.

If all instances of an EJB class are active and max-beans-in-free-pool has been reached,
new clients requesting the EJB class will be blocked until an active EJB completes a method
call. If the transaction times out (or, for non-transactional calls, if five minutes elapse),
WebLogic Server throws a RemoteException for a remote client or an EJBException for a local
client.

Note

The maximum size of the free pool is limited by the value of the max-beans-in-free-
pool element, available memory, or the number of execute threads.

Chapter 4
Pooling for Stateless Session EJBs

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 10

You can configure the WebLogic Server to remove bean instances that have remained unused
in the pool for a period of time specified in idle-timeout-seconds element in the pool
element. When beans have been in the pool unused for the amount of time you specify in
idle-timeout-seconds, they are removed from the pool until the number of beans in the pool
reaches the number specified in initial-beans-in-free-pool; the number of beans in the
pool will never fall below the number specified in initial-beans-in-free-pool.

When an application requests a bean instance from the free pool, there are three possible
outcomes:

• An instance is available in the pool. WebLogic Server makes that instance available and
your application proceeds with processing.

• No instance is available in the pool, but the number of instances in use is less than max-
beans-in-free-pool. WebLogic Server allocates a new bean instance and gives it to you.

• No instances are available in the pool and the number of instances in use is already max-
beans-in-free-pool. Your application must wait until either your transaction times out or a
bean instance that already exists in the pool becomes available.

Caching and Passivating Stateful Session EJBs
WebLogic Server uses a cache of bean instances to improve the performance of stateful
session EJBs. The cache stores active EJB instances in memory so that they are immediately
available for client requests. The cache contains EJBs that are currently in use by a client and
instances that were recently in use. Stateful session beans in cache are bound to a particular
client.

The following figure illustrates the WebLogic Server cache, and the processes by which
stateful EJBs enter and leave the cache.

Chapter 4
Caching and Passivating Stateful Session EJBs

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 10

Figure 4-2 Stateful Session EJB Life Cycle

• Stateful Session EJB Creation

• Stateful Session EJB Passivation

• Controlling Passivation

• Specifying the Persistent Store Directory for Passivated Beans

• Configuring Concurrent Access to Stateful Session Beans

Stateful Session EJB Creation
No stateful session EJB instances exist in WebLogic Server at startup. Before a client begins
accessing a stateful session bean, it creates a new bean instance to use during its session
with the bean. When the session is over the instance is destroyed. While the session is in
progress, the instance is cached in memory.

Chapter 4
Caching and Passivating Stateful Session EJBs

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 10

Stateful Session EJB Passivation
Passivation is the process by which WebLogic Server removes an EJB instance from cache
while preserving its state on disk. While passivated, EJBs are not in memory and are not
immediately available for client requests, as they are when in the cache.

The EJB developer must ensure that a call to the ejbPassivate() method leaves a stateful
session bean in a condition such that WebLogic Server can serialize its data and passivate the
instance. During passivation, WebLogic Server attempts to serialize any fields that are not
declared transient. This means that you must ensure that all non-transient fields represent
serializable objects, such as the bean's remote or home interface. EJB 2.1 specifies the field
types that are allowed.

Controlling Passivation
The rules that govern the passivation of stateful session beans vary, based on the value of the
beans cache-type element, which can be:

• LRU—least recently used, or eager passivation.

• NRU—not recently used, or as lazy passivation

The idle-timeout-seconds and max-beans-in-cache elements also affect passivation and
removal behaviors, based on the value of cache-type.

• Eager Passivation (LRU)

• Lazy Passivation (NRU)

Eager Passivation (LRU)
When you configure eager passivation for a stateful session bean by setting cache-type to
LRU, the container passivates instances to disk:

• As soon as an instance has been inactive for idle-timeout-seconds, regardless of the
value of max-beans-in-cache.

• When max-beans-in-cache is reached, even though idle-timeout-seconds has not
expired.

The container removes a passivated instance from disk after it has been inactive for idle-
timeout-seconds after passivation. This is referred to as a lazy remove.

Note

ejbRemove may not be called on bean instances that are deleted after idle-timeout-
seconds is reached.

Lazy Passivation (NRU)
When lazy passivation is configured by setting cache-type to NRU, the container avoids
passivating beans, because of the associated systems overhead—pressure on the cache is
the only event that causes passivation or eager removal of beans.

Chapter 4
Caching and Passivating Stateful Session EJBs

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 10

When the cache is full and a bean instance must be removed from the cache to make room for
another instance, the container:

Note

ejbRemove may not be called on bean instances that are deleted after idle-timeout-
seconds is reached.

• Removes the bean instance from the cache without passivating it to disk if idle-timeout-
seconds has expired. This is referred to as a eager remove. An eager remove ensures that
an inactive instance does not consume memory or disk resources.

• Passivates the bean instance to disk if idle-timeout-seconds has not expired.

Specifying the Persistent Store Directory for Passivated Beans
When a stateful session bean is passivated, its state is stored in a file system directory. Each
server instance has its own directory for storing the state of passivated stateful session beans,
known as the persistent store directory. The persistent store directory contains one
subdirectory for each passivated bean.

The persistent store directory is created by default in the server instance directory, for example:

D:\releases\<version>\bea\user_domains\mydomain\myserver\tmp\pstore\

The path to the persistence store is:

RootDirectory\ServerName\persistent-store-dir

where:

• RootDirectory—the directory where WebLogic Server runs.

RootDirectory can be specified at server startup with the -Dweblogic.RootDirectory
property.

• ServerName—the name of the server instance.

• persistent-store-dir—the value of the of the persistent-store-dir element in the
<stateful-session-descriptor> element of weblogic-ejb-jar.xml. If no value is
specified for <persistent-store-dir>, the directory is named pstore by default.

The persistent store directory contains a subdirectory, named with a hash code, for each
passivated bean. For example, the subdirectory for a passivated bean in the example above
might be:

D:\releases\810\bea\user_domains\mydomain\myserver\pstore\14t89gex0m2fr

Configuring Concurrent Access to Stateful Session Beans
In accordance with the EJB 2.x specification, simultaneous access to a stateful session EJB
results in a RemoteException. This access restriction on stateful session EJBs applies whether
the EJB client is remote or internal to WebLogic Server. To override this restriction and
configure a stateful session bean to allow concurrent calls, set the allow-concurrent-calls
deployment element.

Chapter 4
Caching and Passivating Stateful Session EJBs

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 10

If multiple servlet classes access a stateful session EJB, each servlet thread (rather than each
instance of the servlet class) must have its own session EJB instance. To prevent concurrent
access, a JSP/servlet can use a stateful session bean in request scope.

Design Decisions for Session Beans
Examine some design decisions relevant to session beans.

This section discusses some of these designs in detail:

• Choosing Between Stateless and Stateful Beans

• Choosing the Optimal Free Pool Setting for Stateless Session Beans

Choosing Between Stateless and Stateful Beans
Stateless session beans are a good choice if your application does not need to maintain state
for a particular client between business method calls. WebLogic Server is multi-threaded,
servicing multiple clients simultaneously. With stateless session beans, the EJB container is
free to use any available, pooled bean instance to service a client request, rather than
reserving an instance for each client for the duration of a session. This results in greater
resource utilization, scalability and throughput.

Stateless session beans are preferred for their light-weight implementation. They are a good
choice if your application's beans perform autonomous, distinct tasks without bean-to-bean
interaction.

Stateful session beans are a good choice if you need to preserve the bean's state for the
duration of the session.

For examples of applications of stateless and stateful session beans, see Stateless Session
Beans and Stateful Session Beans .

Choosing the Optimal Free Pool Setting for Stateless Session Beans
When you choose values for initial-beans-in-free-pool and max-beans-in-free-pool you
must weigh memory consumption against slowing down your application. If the number of
stateless session bean instances is too high, the free pool contains inactive instances that
consume memory. If the number is too low, a client may not obtain an instance when it needs
it. This leads to client threads blocking until an instance frees up, slowing down the application.

Usually max-beans-in-free-pool should be equal to the number of worker threads in the
server instance, so that when a thread tries to do work an instance is available.

Implementing Session Beans
You can configure WebLogic Server-specific session bean behavior by setting bean-specific
deployment descriptor elements.

Implementing EJBs takes you through session bean implementation step-by-step.

• WebLogic-Specific Configurable Behaviors for Session Beans

Chapter 4
Design Decisions for Session Beans

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 10

WebLogic-Specific Configurable Behaviors for Session Beans
Table 4-2 summarizes the deployment descriptor elements you set to configure the behavior of
a stateless session bean and how the bean behaves if you do not configure the element. All of
the elements listed are sub-elements of the stateless-session-descriptor element in
weblogic-ejb-jar.xml.

Table 4-3 summarizes the deployment descriptor elements you set to configure the behavior of
a stateful session bean and how the bean behaves if you do not configure the element. All of
the elements listed are sub-elements of the stateful-session-descriptor element in
weblogic-ejb-jar.xml.

Table 4-2 WebLogic-Specific Features for Stateless Session EJBs

To control Set the following
weblogic-ejb-jar.xml element

Default behavior

The number of inactive
instances of a stateless
session bean that exist in
WebLogic Server when it is
started.

See Pooling for Stateless
Session EJBs.

initial-beans-in-free-pool WebLogic Server creates 0
beans in the free pool.

The number of seconds a
bean can be idle in the pool
before WebLogic Server can
remove it.

Note: Idle beans can only be
removed from the pool until the
number of beans in the pool
reaches initial-beans-in-
free-pool.

idle-timeout-seconds WebLogic Server removes
beans from the free pool
when they have been idle for
600 seconds.

The maximum size of the free
pool of inactive stateless
session beans.

max-beans-in-free-pool WebLogic Server limits the
maximum number of beans
in the free pool to 1000.

How WebLogic Server
replicates stateless session
EJB instances in a cluster.

See Reliability and Availability
Features.

• stateless-clustering
• home-is-clusterable
• home-load-algorithm
• home-call-router-class-name
• stateless-bean-is-clusterable
• stateless-bean-load-algorithm
• stateless-bean-call-router-class-name

The EJB can be deployed to
multiple servers in a cluster.

Chapter 4
Implementing Session Beans

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 10

Table 4-3 WebLogic-Specific Features for Stateful Session EJBs

Behavior weblogic-ejb-jar.xml
element

Default

Whether multiple clients can simultaneously
access a bean without triggering a Remote
Exception.

See Configuring Concurrent Access to
Stateful Session Beans.

allow-concurrent-calls False—The server throws a
RemoteException when a
stateful session bean instance
is currently handling a method
call and another (concurrent)
method call arrives on the
server.

Whether the EJB container can remove a
stateful session bean within a transaction
context without provoking an error.

allow-remove-during-
transaction

False—The server throws an
exception when a stateful
session bean is removed within
a transaction context.

The number of stateful been instances that
can exist in cache.

max-beans-in-cache 1000

The period of inactivity before a stateful
session bean instance remains in cache
(given that max-beans-in-cache has not
been reached), and after passivation,
remains on disk.

idle-timeout-seconds 600 seconds

The rules for removing a stateful session
bean instance from the cache.

cache-type NRU (not recently used)—For
a description of this behavior,
see Lazy Passivation (NRU).

Where WebLogic Server stores the state of
passivated stateful session bean instances.

persistent-store-dir pstore

To support method failover, specify the
idempotent methods for a clustered EJB. An
idempotent method can be repeated with no
negative side-effects.

idempotent-methods None

Custom class to be used for routing home
method calls.

home-call-router-class-
name

None

Indicates if the bean home can be
clustered.

home-is-clusterable True

Algorithm to use for load-balancing among
replicas of the bean home.

home-load-algorithm Algorithm specified by the
property
weblogic.cluster.default
LoadAlgorithm

Indicates the replication used for stateful
session beans in a cluster: in-memory or
none.

replication-type None

Chapter 4
Implementing Session Beans

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 10

5
Entity EJBs

Understand the value-added features of WebLogic Server for programming and using entity
beans in applications, and associated design and development guidelines.
It is assumed that the reader is familiar with Java programming and entity bean features and
capabilities. For an introduction to entity beans and how they are typically used in applications,
see Entity EJBs Maintain Persistent Data and Entity Bean Features.

For a description of the overall bean development process, see Implementing EJBs.

This chapter includes the following topics:

• Managing Entity Bean Pooling and Caching
Learn how to improve performance and throughput for entity EJBs.

• Using Primary Keys
Learn how each entity bean instance can define a different class for its primary key.

• Configuring Entity EJBs for Database Operations
You can map entity EJBs to database tables and control database access behaviors.

• Using SQL in Entity Beans
You can use EJB-QL or standard or database-specific SQL for entity beans that use
container-managed persistence (CMP). Oracle recommends that you use EJB-QL with or
without WebLogic extensions for most queries and use SQL only when needed for
instance, to make use of vendor-specific features that cannot be accessed without using
vendor-specific SQL.

• Using Container-Managed Relationships (CMRs)
Container-managed relationships (CMRs) are relationships that you define between two
entity EJBs, analogous to the relationships between the tables in a database.

• Choosing a Concurrency Strategy
An entity bean's concurrency strategy specifies how the EJB container should manage
concurrent access to the bean; it determines how and when WebLogic Server
synchronizes its cached copy of the entity with the database.

• CMP Entity Bean Descriptors Element by Feature
Examine the WebLogic Server-specific deployment for CMP entity beans.

Managing Entity Bean Pooling and Caching
Learn how to improve performance and throughput for entity EJBs.

WebLogic Server provides these features to improve performance and throughput for entity
EJBs:

• Free pool—stores anonymous entity beans that are used for invoking finders, home
methods, and creating entity beans.

• Cache—contains instances that have an identity—a primary key, or are currently enlisted
in a transaction (READY and ACTIVE entity EJB instances).

Figure 5-1 illustrates the life cycle of an entity bean instance. The sections that follow describe
pooling and how the container populates and manages the free pool and the cache.

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 39

Figure 5-1 Entity Bean Life Cycle

• Understanding Entity Pooling

• Understanding Entity Caching

• Understanding Passivation of Entity Beans

• Understanding ejbLoad() and ejbStore() Behavior

• Controlling the Behavior of ejbLoad() and ejbStore()

• Disabling Cache Flushing

• Configuring Application-Level Caching

Chapter 5
Managing Entity Bean Pooling and Caching

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 39

Understanding Entity Pooling
If you specify a non-zero value for the initial-beans-in-free-pool element in weblogic-
ejb-jar.xml, WebLogic Server populates the pool with the specified quantity of bean
instances at startup.

The default value of initial-beans-in-free-pool is zero. Populating the free pool at startup
improves initial response time for the EJB, because initial requests for the bean can be
satisfied without generating a new instance.

An attempt to obtain an entity bean instance from the free pool will always succeed, even if the
pool is empty. If the pool is empty, a new bean instance is be created and returned.

Pooled beans are anonymous instances, and are used for finders and home methods. The
maximum number of instances the pool can contain is specified by the max-beans-in-free-
pool element, in weblogic-ejb-jar.xml which set to 1,000 by default.

You can configure WebLogic Server to remove entity beans that have remained in the pool
unused for a period of time specified in idle-timeout-seconds element in the pool element.
When beans have been in the pool unused for the amount of time you specify in idle-
timeout-seconds, they are removed from the pool until the number of beans in the pool
reaches the number specified in initial-beans-in-free-pool; the number of beans in the
pool will never fall below the number specified in initial-beans-in-free-pool.

Understanding Entity Caching
When a business method is called on a bean, the container obtains an instance from the pool,
calls ejbActivate, and the instance services the method call.

A READY instance is in the cache, has an identity—an associated primary key, but is not
currently enlisted in a transaction. WebLogic maintains READY entity EJB instances in least-
recently-used (LRU) order.

An ACTIVE instance is currently enlisted in a transaction. After completing the transaction, the
instance becomes READY, and remains in cache until space is needed for other beans.

The effect of the max-beans-in-cache element, and the quantity of instances with the same
primary key allowed in the cache vary by concurrency strategy. Figure 5-1 lists, for each
concurrency strategy, how the value of the max-beans-in-cache element in weblogic-ejb-
jar.xml limits the number of entity bean instances in the cache, and how many entity bean
instances with the same primary key are allowed in the cache.

Table 5-1 Entity EJB Caching Behavior by Concurrency Type

Concurrency
Option

What is the effect of max-beans-in-cache
on the number of bean instances
in the cache?

How many instances with
same primary key can exist
in cache simultaneously?

Exclusive max-beans-in-cache = number of ACTIVE bean
+ number of READY instances.

one

Database The cache can contain up to max-beans-in-
cache ACTIVE bean instances and up to max-
beans-in-cache READY bean instances.

multiple

ReadOnly max-beans-in-cache = number of ACTIVE bean
+ number of READY instances.

one

Chapter 5
Managing Entity Bean Pooling and Caching

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 39

READY entity EJB instances are removed from the cache when the space is needed for other
beans. When a READY instance is removed from cache, ejbPassivate is called on the bean,
and the container will try to put it back into the free pool.

You can configure WebLogic Server to periodically remove entity instances from cache when
they have been idle—not participated in a transaction—for a period of time specified in idle-
timeout-seconds. For a dedicated cache, the fixed periodicity of the cleaning task is equal to
the value of idle-timeout-seconds. For an application level cache, multiple types of entity
beans may share the cache each of which is allowed to have its own value of idle-timeout-
seconds. In this case, the fixed periodicity of the cleaning task is equal to MIN(Set of idle-
timeout-seconds for all beans in cache), and the cleaning task may run with a variable
periodicity.

When the container tries to return an instance to the free pool and the pool already contains
max-beans-in-free-pool instances, the instance is discarded.

ACTIVE entity EJB instances will not be removed from cache until the transaction they are
participating in commits or rolls back, at which point they will become READY, and hence
eligible for removal from the cache.

Understanding Passivation of Entity Beans
Entity beans that are involved in transactions can be passivated when necessary in order to
attempt to prevent a CacheFullException when an attempt is made to insert an entity bean into
a cache that is full. Passivation is handled automatically by the EJB container and you do not
need to change the way you program EJBs in order to take advantage of this feature.
However, you can optionally program your EJBs to communicate to the cache that they are
done performing all operations in the current transaction. The cache can then make use of this
information when evaluating beans for the possibility of passivation.

To optionally program EJBs to notify their cache that they are done performing operations in
the current transaction, you can use the operationsComplete Jakarta API as follows:

weblogic.ejb.interfaces.EJBLocalObject
public.void.operationsComplete()
weblogic.ejb.EJBObject
public.void.operationsComplete()

Understanding ejbLoad() and ejbStore() Behavior
This section describes how and when the persistent data for a CMP 2.1 entity bean is loaded
to cache and written back to persistent storage.

• findXXX()—By default, calling a finder method on a CMP bean results in immediate load
of the bean's persistent data to cache. This behavior is controlled by the finders-load-
bean element in the persistence element of weblogic-ejb-jar.xml.

• ejbLoad()—For CMP 2.1 entity beans, ejbLoad() causes a "lazy" load of a bean's
persistent data to the entity cache when the next getXXX() for the bean's data is called.
That is, when a transaction is initiated for a CMP 2.0 entity bean instance, WebLogic
Server reads the bean's data from the entity cache, rather than the database, unless
ejbLoad() has been called since the bean was last loaded to cache.

By default, WebLogic Server calls ejbLoad() each time a new transaction is initiated for
the entity bean.

Chapter 5
Managing Entity Bean Pooling and Caching

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 39

Note

When used with CMP 1.1 entity beans and entity beans that use bean-managed
persistence, ejbLoad() does not perform the lazy load—for these bean types, the
bean's persistent data is loaded to cache during the ejbLoad().

• ejbStore()—WebLogic Server writes the persistent fields of an entity EJB to the database
using calls to ejbStore().

By default, WebLogic Server calls ejbStore() when the transaction commits.

Controlling the Behavior of ejbLoad() and ejbStore()
For applications in which multiple clients can currently access and modify a bean's underlying
data, the default behavior of ejbLoad() and ejbStore() described in Understanding ejbLoad()
and ejbStore() Behavior ensures database integrity by:

• Ensuring that each new transaction uses the latest version of the EJB's persistent data,
and

• Updating the database upon transaction commitment.

However, depending on your requirements, you may prefer to call ejbLoad() and ejbStore()
either more or less frequently. For instance, you might want to limit calls that access the
database for performance reasons. If your application does not allow multiple transactions to
concurrently access the EJB—for example, if the bean uses Exclusive concurrency—loading
the data at the beginning of each transaction is unnecessary. Given that no other clients or
systems update the EJB's underlying data, the cached EJB data is always up-to-date, and
calling ejbLoad() results in extra overhead. In such cases, you can safely reduce calls to
ejbLoad(), as described in Limiting Database Reads with cache-between-transactions.

Alternatively, you might want to deviate from the standard ejbStore() behavior, by calling it
before a transaction commits, in order to access and use intermediate transaction results. For
instructions, see Updating the Database Before Transaction Ends.

Disabling Cache Flushing
According to the EJB specification, updates made by a transaction must be reflected in the
results of query-finders and ejbSelects issued during the transaction. This requirement can
slow performance. If you prefer not to flush the cache before the query is executed, you can
change the value of the include-updates element in weblogic-cmp-jar.xml from its default
value of True to False.

The decision to disable cache flushing depends on whether performance is more important
than seeing the most current data. Setting include-updates to False provides the best
performance but updates of the current transaction are not reflected in the query. If include-
updates is True the container flushes all changes for the transactions to the database before
executing the new query.

You can safely turn cache flushing off if your transactions do not re-query modified data—a
common scenario—and get the best performance.

Configuring Application-Level Caching
Application-level caching—also known as "combined caching"—allows multiple entity beans
that are part of the same Jakarta EE enterprise application to share a single runtime cache.

Chapter 5
Managing Entity Bean Pooling and Caching

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 39

There are no restrictions on the number of different entity beans that may reference an
individual cache.

Application-level caching offers the following advantages:

• Reduces the number of entity bean caches, and hence the effort to configure the cache.

• Better utilization of memory and heap space, because of reduced fragmentation. For
example, if a particular EJB home experiences a burst of activity, it can make use of all
memory available to the combined cache, while other EJBs that use the cache are paged
out. If two EJBs use different caches, when one bean's cache becomes full, the container
cannot page out EJBs in the other bean's cache, resulting in wasted memory.

• Simplifies management; combined caching enables a system administrator to tune a single
cache, instead of many caches.

• Provides better scalability

Application-level caching is not the best choice, however, for applications that experience high
throughput. Because one thread of control exists per cache at a time, high throughput can
create a bottleneck situation as tasks compete for control of the thread.

To configure an application-level cache:

1. Verify that the weblogic-application.xml file is located in the META-INF directory of the
EAR file.

2. Define the application-level cache in the entity-cache element of weblogic-
application.xml. For a definition of this element and the child elements it contains, see
"entity-cache" in Enterprise Application Deployment Descriptor Elements in Developing
Applications for Oracle WebLogic Server.

3. Reference the application-level cache in the entity-cache-ref element of the entity-
descriptor element in weblogic-ejb-jar.xml.

Note that:

• entity-cache-name should be the name of the application-level cache, as specified in
weblogic-application.xml.

• The concurrency-strategy you specify for the bean must be compatible with the
caching-strategy specified in weblogic-application.xml. A read-only entity can
only use a multiversion application-level cache. See "caching-strategy" in Enterprise
Application Deployment Descriptor Elements in Deploying Applications to Oracle
WebLogic Server.

The weblogic-application.xml deployment descriptor is documented in Enterprise
Application Deployment Descriptor Elements in Deploying Applications to Oracle WebLogic
Server.

Using Primary Keys
Learn how each entity bean instance can define a different class for its primary key.

Every entity EJB must have a primary key that uniquely identifies an entity bean within its
home. Each entity bean instance can define a different class for its primary key; multiple entity
beans can use the same primary key class, as appropriate.

If two entity bean instances have the same home and the same primary key, they are
considered identical. A client can invoke the getPrimaryKey() method on the reference to an
entity bean instance's remote interface to determine the instance's identity within its home.

Chapter 5
Using Primary Keys

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 39

The instance identity associated with a reference does not change during the lifetime of the
reference. Therefore, the getPrimaryKey() method always returns the same value when called
on the same entity object reference. A client that knows the primary key of an entity object can
obtain a reference to the entity object by invoking the findByPrimaryKey(key) method on the
bean's home interface.

• Specifying Primary Keys and Primary Key Classes

• Guidelines for Primary Keys

• Automatically Generating Primary Keys

• Specifying Automatic Key Generation for Oracle Databases

• Specifying Automatic Key Generation for Microsoft SQL Server

• Generating Primary Keys with a Named Sequence Table

• Declaring Primary Key Field Type

• Support for Oracle Database SEQUENCE

• String-Valued CMP Field Trimming

• Benefits of String Trimming

• Disabling String Trimming

Specifying Primary Keys and Primary Key Classes
You can map a primary key to one or multiple fields:

• Mapping a Primary Key to a Single CMP Field

In the entity bean class, you can have a primary key that maps to a single CMP field. CMP
fields must be specified in both ejb-jar.xml and weblogic-cmp-jar.xml. In both descriptor
files, CMP fields are specified in the cmp-field element. For simple primary keys, also
specify the primary key in the primkey-field element in the ejb-jar.xml. In addition,
specify the primary key field's class in the prim-key-class element in ejb-jar.xml.

• Wrapping One or More CMP Fields in a Primary Key Class

You can define your own primary key class that maps to single or multiple CMP fields. The
primary key class must be public, and have a public constructor with no parameters.
Specify the name of the primary key class in the prim-key-class element in ejb-jar.xml.
All fields in the primary key class must be public, and must have the same names as the
corresponding cmp-fields in ejb-jar.xml and weblogic-ejb-jar.xml. For compound
primary keys, which map to multiple CMP fields, do not specify primkey-field in ejb-
jar.xml.

• Anonymous Primary Key Class

If your entity EJB uses an anonymous primary key class, you must subclass the EJB and
add a cmp-field of type java.lang.Integer to the subclass. Enable automatic primary
key generation for the field so that the container fills in field values automatically, and map
the field to a database column in the weblogic-cmp-jar.xml deployment descriptor.

Finally, update the ejb-jar.xml file to specify the EJB subclass, rather than the original
EJB class, and deploy the bean to WebLogic Server.

Chapter 5
Using Primary Keys

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 39

Note

If you use the original EJB (instead of the subclass) with an anonymous primary
key class, WebLogic Server displays the following error message during
deployment:

In EJB ejb_name, an 'Unknown Primary Key Class' (<prim-key-class> ==
java.lang.Object) MUST be specified at Deployment time (as something
other than java.lang.Object).

Guidelines for Primary Keys
Follow these suggestions when using primary keys with WebLogic Server:

• Do not construct a new primary key class with an ejbCreate. Instead, allow the container
to create the primary key class internally, as described in Automatically Generating Primary
Keys.

• In an application that manages its own primary key values, for a simple primary key—one
composed of a single atomic value such as a String or an Integer—make the primary
key class a container-managed field. Set the value of the primary key cmp-field using the
setXXX method within the ejbCreate method.

• Do not use a cmp-field of the type BigDecimal as a primary key field for CMP beans. The
boolean BigDecimal.equals (object x) method considers two BigDecimal equal only if
they are equal in value and scale. This is because there are differences in precision
between the Java language and different databases. For example, the method does not
consider 7.1 and 7.10 to be equal. Consequently, this method will most likely return False
or cause the CMP bean to fail.

If you need to use BigDecimal as the primary key, you should:

1. Implement a primary key class.

2. In the primary key class, implement the boolean equal (Object x) method.

3. In the equal method, use boolean BigDecimal.compareTo(BigDecimal val).

• If you are mapping a database column to a cmp-field and a cmr-field concurrently and
the cmp-field is a primary key field, set the value when the ejbCreate() method is
invoked by using the setXXX method for the cmp-field. In this case, the cmr-field is
initialized automatically, and the setXXX method for the cmr-field cannot be used.
Conversely, if the cmp-field is not a primary key field, the cmp-field is read-only. The
column is updated using the cmr-field, and the cmp-field provides a read-only view of
the foreign key.

Automatically Generating Primary Keys
WebLogic Server supports the automatic primary key generation feature for CMP entity beans.
This feature is supported for simple (non-compound) primary keys only.

WebLogic Server supports two methods of automatic primary key generation:

• Native database primary key generation—The database generates the primary key. To
enable this feature, specify the database and a generator name in the <automatic-key-
generation> element of weblogic-cmp-jar.xml. Based on the values you configure, the
container generates code that obtains the primary key from the database. This feature is

Chapter 5
Using Primary Keys

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 39

supported for Oracle and Microsoft SQL Server databases only. In addition, see the
instructions in Declaring Primary Key Field Type.

• Primary keys generated from a SEQUENCE table.

Whichever method of generated primary keys you use, see the instructions in Declaring
Primary Key Field Type.

Specifying Automatic Key Generation for Oracle Databases
Generated primary key support for Oracle databases uses a SEQUENCE entity in the Oracle
database to generate unique primary keys. The Oracle database SEQUENCE is called when a
new number is needed. Specify automatic key generation in the automatic-key-generation
element in weblogic-cmp-jar.xml. Specify the name of the Oracle database SEQUENCE in the
generator-nam element. If the Oracle database SEQUENCE was created with a SEQUENCE
INCREMENT, specify a key-cache-size. The value of key-cache-size must match the value of
the Oracle database SEQUENCE INCREMENT. If these two values are different, duplicate keys can
result.

When using the Oracle database SEQUENCE object for generating primary keys:

• Do not set the generator-type to USER_DESIGNATED_TABLE with Oracle. Doing so sets the
TX ISOLATION LEVEL to SERIALIZABLE, which can cause the following exception:

jakarta.ejb.EJBException: nested exception is: java.sql.SQLException: Automatic
Key Generation Error: attempted to UPDATE or QUERY NAMED SEQUENCE TABLE
NamedSequenceTable, but encountered SQLException java.sql.SQLException:
ORA-08177: can't serialize access for this transaction.

Instead, use the AutoKey option with Oracle databases.

• In this release, WebLogic Server does not support Oracle database's synonym feature for
the SEQUENCE schema object. If you migrate an application that uses synonyms for
SEQUENCEs from a release prior to WebLogic Server 8.1 to this release, the following errors
result:

[EJB:011066]During EJB deployment, error(s) were encountered while setting up The
ORACLE SEQUENCE named 'XXX' with INCREMENT value '1'
[EJB:011064]The ORACLE SEQUENCE named 'XXX' with INCREMENT '1' was not found in the
database'

Specifying Automatic Key Generation for Microsoft SQL Server
Generated primary key support for Microsoft SQL Server databases uses SQL Server's
IDENTITY column. When the bean is created and a new row is inserted in the database table,
SQL Server automatically inserts the next primary key value into the column that was specified
as an IDENTITY column.

Note

For instructions on creating a SQL Server table that contains an IDENTITY
column, see Microsoft documentation.

Once the IDENTITY column is created in the table, specify automatic key generation in
weblogic-cmp-jar.xml as shown below.

Chapter 5
Using Primary Keys

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 39

<automatic-key-generation>
 <generator-type>SQLServer</generator-type>
</automatic-key-generation>

Generating Primary Keys with a Named Sequence Table
A sequence table is a database-neutral way to generate primary keys. The sequence table
holds a monotonically increasing integer sequence value that is used as the primary key value
in bean instances as they are created.

Create a table named SEQUENCE to hold the current primary key value. The table consists of a
single row with a single column, as defined by the following statement:

CREATE table_name (SEQUENCE int)
INSERT into table_name VALUES (0)

To use this feature, make sure that the underlying database supports a transaction isolation
level of Serializable. The Serializable value indicates that simultaneously executing a
transaction multiple times has the same effect as executing the transaction multiple times in a
serial fashion. This is important in a WebLogic Server cluster, in which multiple servers
instances access the sequence table concurrently. See your database documentation to
determine the isolation levels it supports.

Specify automatic key generation in the weblogic-cmp-jar.xml file, as shown below. In
addition, see the instructions in Declaring Primary Key Field Type.

<automatic-key-generation>
 <generator-type>NamedSequenceTable</generator-type>
 MY_SEQUENCE_TABLE_NAME</generator-name>
 <key-cache-size>100</key-cache-size>
</automatic-key-generation>

Specify the name of the sequence table in the generator-name element.

Specify the size of the key cache— how many keys the container will fetch in a single DBMS
call—in the key-cache-size element. Oracle recommends a key-cache-size greater than
one. This setting reduces the number of calls to the database to fetch the next key value.

Oracle recommends that you define one NAMED SEQUENCE table per bean type. Beans of
different types should not share a common NAMED SEQUENCE table. This reduces contention for
the key table.

Declaring Primary Key Field Type
For both native DBMS primary key generation, or key generation using a named sequence
table, in the abstract get and set methods of the associated entity bean, declare the primary
field type to be either:

• java.lang.Integer

• java.lang.Long

In weblogic-cmp-jar.xml, set the key-cache-size element to specify how many primary key
values in the sequence should be fetched from the database at a time. For example, setting
key_cache_size to 10 results in one database access for every 10 beans created, to update
the sequence. The default value of key_cache_size is 1. Oracle recommends that you set
key_cache_size to a value greater than one, to minimize database accesses and to improve
performance.

Chapter 5
Using Primary Keys

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 39

Support for Oracle Database SEQUENCE
WebLogic Server can automatically create an Oracle database SEQUENCE—a number generator
that generates a unique integer each time it is called.

An Oracle database SEQUENCE can use a specified "increment value", which is the value by
which the integer is incremented on each subsequent generation. For example, if a SEQUENCE
generates the integer 24 and the increment value is 10, then the next integer the SEQUENCE
generates will be 34.

String-Valued CMP Field Trimming
In this release of WebLogic Server, by default, the EJB container trims string-valued CMP
fields of their trailing spaces when they are retrieved from a database. All string-valued CMP
fields are also trimmed of their trailing spaces in their set method.

Benefits of String Trimming
Untrimmed primary key fields can cause comparison operators to fail and can result in non-
portable behavior. Automatic string trimming is beneficial because it causes a string retrieved
from a database to be identical to the string that was inserted into the database. For instance,
suppose:

• a primary key field is mapped to the char(10) datatype in database

• you insert the value "smith" into the database column

• since "smith" is five characters in length and the char datatype is a fixed-length—of ten
characters, in this case—the database pads the value by appending five blank spaces,
resulting in "smith " being inserted into the database

• you issue a SELECT statement to retrieve "smith" from the database, only, due to the
database-appended characters, "smith " is retrieved

A comparison of the retrieved "smith " value with the original "smith" string would fail unless
the retrieved value was first trimmed of its trailing spaces. With this release of WebLogic
Server, the trailing spaces are trimmed automatically and, therefore, the comparison would not
fail.

Disabling String Trimming
Automatic string trimming is enabled by default in this release. When you use DDConverter to
convert deployment descriptors from prior releases of WebLogic Server, DDConverter
automatically disables string trimming in the new deployment descriptors it creates.

If you want to disable string trimming for deployment descriptors that are newly created in this
release of WebLogic Server, you can set disable-string-trimming in weblogic-cmp-jar.xml
to True. For more information on the disable-string-trimming element, see disable-string-
trimming.

Configuring Entity EJBs for Database Operations
You can map entity EJBs to database tables and control database access behaviors.

Chapter 5
Configuring Entity EJBs for Database Operations

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 11 of 39

The following sections provide instructions for mapping entity EJBs to database tables and
controlling database access behaviors.

• Configuring Table Mapping

• Automatic Table Creation (Development Only)

• Delaying Database Inserts

• Why Delay Database Inserts?

• Configuring Delayed Database Inserts

• Limiting Database Reads with cache-between-transactions

• Updating the Database Before Transaction Ends

• Dynamic Queries

• Enabling Dynamic Queries

• Executing Dynamic Queries

• Enabling BLOB and CLOB Column Support for Oracle or DB2 Databases

• Specifying a BLOB Column Using the Deployment Descriptor

• Serialization for cmp-fields of Type byte[] Mapped to an Oracle Blob

• Specifying a CLOB Column Using the Deployment Descriptor

• Optimized CLOB Column Insertion on Oracle 10g

• Specifying Field Groups

• Ordering and Batching Operations

• Operation Ordering

• Batch Operations Guidelines and Limitations

• Using Query Caching (Read-Only Entity Beans)

Configuring Table Mapping
A CMP bean can be mapped to one or more database tables. When a CMP bean is mapped to
multiple tables, each table contains a row that corresponds to a particular bean instance. So,
each table to which a bean maps will have the same number of rows at any point in time, and
contain the same set of homogeneous primary key values. Consequently, each table must
have the same number of primary key columns, and corresponding primary key columns in
different tables must have the same type, though they may have different names. Tables that
map to the same bean must not have referential integrity constraints declared between their
primary keys. If they do, removal of a bean instance can result in a runtime error.

You map the cmp-fields of a bean to the columns of a table using the table-map element in
weblogic-cmp-jar.xml, specifying one table-map element for each database table to which
the bean maps. Each table-map element maps the primary key column(s) of the table to the
primary key field(s) of the bean. Non-primary key fields may only be mapped to a single table.

Example 5-1 and Example 5-2 contain table-map elements for a bean that maps to a single
and a bean that maps to multiple tables, respectively.

Example 5-1 Mapping a CMP Entity to One Database Table

<table-map>
 <table-name>TableName</table-name>
 <field-map>

Chapter 5
Configuring Entity EJBs for Database Operations

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 12 of 39

 <cmp-field>name</cmp-field>
 <dbms-column>name_in_tablename</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>street_address</cmp-field>
 <dbms-column>street_address_in_tablename
 </dbms_column>
 </field-map>
 <field-map>
 <cmp-field>phone</cmp-field>
 <dbms-column>phone_in_tablename</dbms-column>
 </field-map>

Example 5-2 Mapping a CMP Entity to Two DBMS Tables

<table-map>
 <table-name>TableName_1</table-name>
 <field-map>
 <!--Note 'name'is the primary key field of this EJB -->
 <cmp-field>name</cmp-field>
 <dbms-column>name_in_tablename_1</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>street_address</cmp-field>
 <dbms-column>street_address_in_tablename_1</dbms-column>
 </field-map>
</table-map>
<table-map>
 <table-name>TableName_2</table-name>
 <field-map>
 <!--Note 'name'is the primary key field of this EJB -->
 <cmp-field>name</cmp-field>
 <dbms-column>name_in_tablename_2</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>phone</cmp-field>
 <dbms-column>phone_in_tablename_2</dbms-column>
 </field-map>
</table-map>

Automatic Table Creation (Development Only)
To make iterative development easier, the WebLogic Server EJB container can be configured
to automatically change the underlying table schema as entity beans change, ensuring that
tables always reflect the most recent object relationship mapping.

Note

This feature is disabled when a server instance is running in production mode, as a
production environment may require the use of more precise table schema definitions.
To ensure that the container only changes tables it created, container-created tables
include an extra column, called wls_temp.

The syntax of table creation statements (DDL) varies from database to database, so table
creation may fail on databases that are not fully supported. If this occurs, create the tables
manually.

Chapter 5
Configuring Entity EJBs for Database Operations

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 13 of 39

Table 5-2 Controlling Automatic Table Creation Behavior With <create-default-dbms-
tables>

Setting
<create-default-dbms-tables>
to this value...

Results in this behavior...

Disabled The EJB container takes no action when underlying table schema
changes. This is the default value.

CreateOnly For each CMP bean in the JAR, if there is no table in the database
for the bean, the container attempts to create the table based on
information found in the deployment descriptor, including join
tables, sequence tables, and Oracle database sequences. If table
creation fails, a Table Not Found error is thrown, and the user
must create the table manually.

DropAndCreate For each CMP bean in the JAR:

• if table columns have not changed, no action is taken, and the
existing data is preserved.

• if the columns have changed, then the container drops and
recreates the table and all table data is lost.

Note: You must ensure that the column type and cmp-field types
are compatible. The EJB container does not attempt to ensure the
column type and cmp-field types are compatible.

DropAndCreate

Always

For each CMP bean listed in the JAR, the container drops and
creates the table whether or not columns have changed.

AlterOrCreate For each CMP bean in the JAR:

• if the table exists, the container attempts to alter the table
schema using the ALTER TABLE SQL command and the
container saves the data.

• if the table does not exist, the container creates the table
during deployment.

Note: Do not use AlterOrCreate if a new column is specified as a
primary key or a column with null values is specified as the new
primary key column. Due to database limitations, use
DropAndCreate instead.

Note

Sequence tables, join tables, and Oracle database SEQUENCEs are supported.

Enable this feature using the create-default-dbms-table element in weblogic-cmp-jar.xml.
The behavior of this feature varies according to the value of the element, as described in the
following table. The EJB container actions described in the table occur during deployment.

Delaying Database Inserts
Because of timing issues that may occur when creating a CMP bean, WebLogic Server
enables you to specify at what point during the bean creation process the bean is inserted into
the database.

Chapter 5
Configuring Entity EJBs for Database Operations

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 14 of 39

Why Delay Database Inserts?
You cannot set a cmr-field until the primary key value for the bean—which is set when
ejbPostCreate is called—is available. Hence, you cannot set a cmr-field until
ejbPostCreate. This factor in combination with other conditions can lead to these problems:

• Problem 1: Non-null foreign key constraint

If a database row is inserted after ejbCreate (that is, before ejbPostCreate), then the
foreign key is given a null value. This is because foreign key columns are set when cmr-
fields are set.

Solution: Set delay-insert-until in weblogic-cmp-jar.xml to ejbCreate, which causes
the insert to be done immediately after the ejbCreate, and set the relationship during
ejbPostCreate.

• Problem 2: Creating beans during ejbPostCreate

When a related bean is created, the database insert for that bean happens before the
create call finishes. If the database row for the related bean contains a foreign key that
refers to the current bean and the foreign key has a referential integrity constraint defined,
the insert will fail if the current bean's database row has not been inserted yet.

Solution: Set delay-insert-until to ejbCreate so that the row for the current bean exists
during the ejbPostCreate.

Note

In a one-to-one relationship, if the parent bean's primary key is embedded in the
child bean's CMR field, when the EJB container creates the beans, it will not
check if the parent bean has children, for performance reasons. To avoid a
duplicationKeyException database exception, you must set the foreign key
constraint on the child table in the database.

• Problem 3: Both Problem 1 and Problem 2 exist

Solution: Do not create related beans during ejbPostCreate. Create the current bean and
after the creation is finished, create the related beans and set up relationships.

Oracle recommends that applications always do this. Applications should never create
related beans during creation of another bean.

Configuring Delayed Database Inserts
You can delay database inserts until the end of the ejbCreate method or ejbPostCreate
method, using the delay-database-insert-until element in weblogic-cmp-jar.xml. To
batch, order, and perform updates at the end of the transaction, set both enable-batch-
operations and order-database-operations in weblogic-cmp-jar.xml to "True".

If you choose to delay database updates for a transaction that updates related beans, you
must define the relationship between the beans in the weblogic-rdbms-relation of weblogic-
cmp-jar.xml. Otherwise, database constraint errors may result when the EJB container
attempts to perform the updates.

Chapter 5
Configuring Entity EJBs for Database Operations

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 15 of 39

Limiting Database Reads with cache-between-transactions
As described in Understanding ejbLoad() and ejbStore() Behavior, by default, WebLogic Server
calls ejbLoad() each time a transaction is initiated for an entity bean.

You can configure WebLogic Server to call ejbLoad() only when a client first references the
bean or when a transaction is rolled back. This behavior is referred to as long-term caching.
You enable long-term caching by setting the cache-between-transactions element in
weblogic-ejb-jar.xml to true.

Long-term caching is allowed only if the concurrency-strategy for a bean is Exclusive,
ReadOnly, or Optimistic. When long-term caching is configured for a:

• ReadOnly bean, WebLogic Server ignores the value of the cache-between-transactions.
WebLogic Server always performs long-term caching of read-only data, regardless of the
value of cache-between-transactions.

• Exclusive bean, the EJB container must have exclusive update access to the underlying
data: the data must not be updated by another application outside of the EJB container.

Note

If a bean with Exclusive concurrency is deployed in a cluster long-term caching is
automatically disabled because any server instance in the cluster may update the
bean data. This would make caching between transactions impossible.

• Optimistic bean, the EJB container reuses cached data for each transaction after the
client first references the bean, but ensures that updates are transactionally consistent by
checking for optimistic conflicts at the end of each transaction.

Note

In a cluster, when a bean with Optimistic concurrency is updated, notifications are
broadcast to other cluster members to prevent optimistic conflicts.

Table 5-3 lists the allowable values for the cache-between-transactions element by entity
bean type and concurrency strategy.

Table 5-3 Permitted cache-between-transactions values, by Concurrency Strategy and
Entity Type

Concurrency
Strategy

BMP Entity CMP 2.0 Bean CMP 1.1 Entity

Database False False False

Exclusive True or False True or False True or False

Optimistic Not applicable. Optimistic
concurrency is not available for
BMP beans.

True or False Not applicable. Optimistic
concurrency is not available for
CMP 1.1 beans.

Chapter 5
Configuring Entity EJBs for Database Operations

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 16 of 39

Updating the Database Before Transaction Ends
As described in Understanding ejbLoad() and ejbStore() Behavior, by default, WebLogic Server
calls ejbStore() only when the transaction commits.

To make intermediate results of uncommitted transactions available to other database users,
set delay-updates-until-end-of-tx in the persistence element of weblogic-ejb-jar.xml to
False—this causes WebLogic Server to call ejbStore() after each method call.

Note

While setting delay-updates-until-end-of-tx to false results in database
updates after each method call, the updates are not committed until the end of the
transaction.

Dynamic Queries
Dynamic queries allow you to construct and execute EJB-QL or SQL queries programmatically
in your application code.

Using dynamic queries provides the following benefits:

• The ability to create and execute new queries without having to update and deploy an EJB.

• The ability to reduce the size of the EJB's deployment descriptor file. This is because
finder queries can be dynamically created instead of statically defined in the deployment
descriptors.

Enabling Dynamic Queries
To enable dynamic queries:

1. Set the enable-dynamic-queries element in the EJB's weblogic-ejb-jar.xml to True:

<enable-dynamic-queries>True</enable-dynamic-queries>

2. Set standard method permissions to control access to dynamic queries by specifying the
method-permission element in the ejb-jar.xml deployment descriptor file.

Setting method-permission for the createQuery() method of the
weblogic.ejb.QueryHome interface controls access to the weblogic.ejb.Query object
necessary to execute the dynamic queries.

If you specify method-permission for the createQuery() method, the method-permission
settings apply to the execute and find methods of the Query class.

Executing Dynamic Queries
The following code sample demonstrates how to execute a dynamic query.

InitialContext ic=new InitialContext();
FooHome fh=(FooHome)ic.lookup("fooHome");
QueryHome qh=(QueryHome)fh;
String ejbql="SELECT OBJECT(e)FROM EmployeeBean e WHERE e.name='rob'"
Query query=qh.createQuery();

Chapter 5
Configuring Entity EJBs for Database Operations

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 17 of 39

query.setMaxElements(10)
Collection results=query.find(ejbql);

Enabling BLOB and CLOB Column Support for Oracle or DB2 Databases
WebLogic Server supports Oracle and DB2 databases Binary Large Object (BLOB) and
Character Large Object (CLOB) DBMS columns for CMP entity beans.

WebLogic Server maps BLOBs to a cmp-field that has a byte array or serializable type. At this
time, no support is available for mapping char arrays to a CLOB column.

To enable BLOB/CLOB support:

1. In the bean class, declare the variable.

2. Edit the XML by declaring the dbms-default-value and dbms-column-type deployment
descriptors in the weblogic-cmp-jar.xml file.

3. Create the BLOB or CLOB in the Oracle or DB2 database.

Specifying a BLOB Column Using the Deployment Descriptor
The following XML code shows how to specify a BLOB object using the dbms-column-type
element in weblogic-cmp-jar-xml file.

<field-map>
 <cmp-field>photo</cmp-field>
 <dbms-column>PICTURE</dbms-column>
 <dbms-column-type>Blob</dbms-column-type>
 <dbms-default-value>DB2</dbms-default-value>
</field-map>

Serialization for cmp-fields of Type byte[] Mapped to an Oracle Blob
In this release of WebLogic Server, cmp-fields of type byte[] mapped to a Blob are not
serialized by default; the EJB container persists the byte[] directly and does not serialize it.

To cause WebLogic Server to serialize cmp-fields of type byte[] mapped to a Blob in an
Oracle database, set the serialize-byte-array-to-oracle-blob compatibility flag, which
was introduced in WebLogic Server 8.1 SP02, to True.

Specifying a CLOB Column Using the Deployment Descriptor
The following XML code shows how to specify a CLOB object using the dbms-column element
in weblogic-cmp-jar-xml.

<field-map>
 <cmp-field>description</cmp-field>
 <dbms-column>product_description</dbms-column>
 <dbms_column-type>Clob</dbms-column-type>
 <dbms-default-value>Oracle</dbms-default-value>
</field-map>

Optimized CLOB Column Insertion on Oracle 10g
The Oracle 9i and 10g drivers have different requirements for successful insertion of CLOB
column values into database rows. The Oracle 9i driver requires that a database row is locked

Chapter 5
Configuring Entity EJBs for Database Operations

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 18 of 39

before a CLOB value can be inserted into it. As a result, on Oracle 9i, WebLogic Server does
the following to insert a row that contains a CLOB column value into a table:

1. Inserts a row with all values other than the CLOB column into the table.

2. Issues a SELECT FOR UPDATE statement on the row created in step 1, above.

3. Inserts the CLOB value into the row.

While these steps are necessary for successful insertion of a row that contains a CLOB column
value on Oracle 9i, the steps cause an unnecessary performance hit on Oracle 10g. The
Oracle 10g driver features improved handling of CLOBS and does not require a lock on a row
before a CLOB column value can be inserted into it. On Oracle 10g, WebLogic Server uses a
single INSERT statement to insert a row with a CLOB column value into a table, which results in
increased performance of CMP EJBs.

To make use of this WebLogic Server optimization for Oracle 10g, you do not need to configure
anything additional. Simply specify Oracle as your database and WebLogic Server checks to
see if your Oracle version is Oracle 9i or Oracle 10g. If WebLogic Server identifies your
database as Oracle 10g, rows containing CLOB values are inserted into tables in single INSERT
statements. If WebLogic Server identifies your database as Oracle 9i, rows containing CLOB
values are inserted into tables in three steps as previously described.

See "Handling CLOBs - Made easy with Oracle JDBC 10g" at http://www.oracle.com/
technetwork/java/jms/index.html#DUPS_OK_ACKNOWLEDGE.

Specifying Field Groups
A field group represents a subset of a bean's container-managed persistence (CMP) and
container-managed relationship (CMR) fields. To improve performance, you can put related
fields in a bean into groups that are faulted into memory together as a unit.

You can associate a group with a query or relationship, so that when a bean is loaded as the
result of executing a query or following a relationship, only the fields mentioned in the group
are loaded.

A special group named "default" is used for queries and relationships that have no group
specified. By default, the default group contains all of a bean's CMP fields and any CMR fields
that add a foreign key to the bean's table.

A field can belong to multiple groups. In this case, the getXXX() method for the field faults in
the first group that contains the field.

You specify field groups in the field-group element of weblogic-cmp-jar.xml file, as shown
in Example 5-3.

Example 5-3 Specifying Field Groups

<weblogic-rdbms-bean>
 <ejb-name>XXXBean</ejb-name>
 <field-group>
 <group-name>medical-data</group-name>
 <cmp-field>insurance</cmp-field>
 <cmr-field>doctors</cmr-fields>
 </field-group>
</weblogic-rdbms-bean>

Chapter 5
Configuring Entity EJBs for Database Operations

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 19 of 39

http://www.oracle.com/technetwork/java/jms/index.html#DUPS_OK_ACKNOWLEDGE
http://www.oracle.com/technetwork/java/jms/index.html#DUPS_OK_ACKNOWLEDGE

Ordering and Batching Operations
Multiple instances of the same container-managed persistence (CMP) entity bean are often
changed in a single transaction. If the EJB container issues SQL for every CMP entity bean
instance, updates can become a performance bottleneck.

The EJB batch operations features solves this problem by updating multiple entries in a
database table in one batch of SQL statements. This can dramatically improve performance by
doing multiple database inserts, deletes, or updates for CMP beans in one database round-trip.

To permit batch database inserts, updates or deletes, set the enable-batch-operations
element in the weblogic-cmp-jar.xml file to True.

Operation Ordering
Database operation ordering prevents constraint errors by taking into account database
dependencies, and ordering inserts, updates and deletes accordingly.

Enabling database ordering causes the EJB container to do two things:

• Delay all database operations—insert, update, and delete—to commit time

• Order database operations at commit time

For example, assume a Customer A, who is related to Salesman A. If Salesman A is deleted,
and Customer A is assigned to Salesman B, the container would order the operations in this
fashion:

1. Update Customer A to refer to Salesman B.

2. Remove Salesman A.

This ensures that Customer A never refers to a salesman that does not exist, which would
cause a database referential integrity error.

To enable the EJB container to correctly order database operations for related beans, you must
specify the relationship between the beans, in the weblogic-rdbms-relation of weblogic-
cmp-jar.xml. Otherwise, database constraint errors may result when the EJB container
attempts to perform the updates.

Batch Operations Guidelines and Limitations
When using batch operations, you must set the boundary for the transaction, as batch
operations only apply to the inserts, updates or deletes between transaction begin and
transaction commit.

Batch operations only work with drivers that support the addBatch() and executeBatch()
methods. If the EJB container detects unsupported drivers, it reports that batch operations are
not supported and disables batch operations.

There are several limitations on using batch operations:

• You cannot use the Automatically Generating Primary Keys feature with batch operations if
the generator-type is set to sybase or sqlServer. If you have enabled automatic primary
key generation with either of these types, WebLogic Server automatically disables batch
operations and issues a warning.

• The total number of entries created in a single batch operation cannot exceed the max-
beans-in-cache setting, which is specified in the weblogic-ejb-jar.xml file.

Chapter 5
Configuring Entity EJBs for Database Operations

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 20 of 39

• If you set the dbms-column-type element in weblogic-cmp-jar.xml to either Blob or Clob,
batch operation automatically turns off because you will not save much time if a Blob or
Clob column exists in the database table. In this case, WebLogic Server performs one
insert per bean, which is the default behavior.

Using Query Caching (Read-Only Entity Beans)
You can choose to cache read-only entity EJBs at the query level. Caching read-only entity
EJBs at the query level improves performance because it enables the EJBs to be accessed in
cache by any finder, thereby avoiding the need to access the database. For information, see
enable-query-caching.

Using SQL in Entity Beans
You can use EJB-QL or standard or database-specific SQL for entity beans that use container-
managed persistence (CMP). Oracle recommends that you use EJB-QL with or without
WebLogic extensions for most queries and use SQL only when needed for instance, to make
use of vendor-specific features that cannot be accessed without using vendor-specific SQL.

You can use SQL in queries that cache multiple related objects, to implement finder and select
methods, or with stored procedures.

To use EJB-QL in queries in this release of WebLogic Server, you do not need to change any
mapping information in weblogic-cmp-jar.xml. You simply continue to map each CMP and
CMR field to database columns as you did in pre-9.0 releases of WebLogic Server. For
information, see, Configuring Entity EJBs for Database Operations and Using Container-
Managed Relationships (CMRs). To use SQL in queries, you must describe the shape of the
SQL result with the sql-shape element. SQL shape primarily consists of the SQL tables and
columns that are returned. The EJB containers uses the SQL shape together with the CMP
and CMP field mappings to return objects from the query. For more information, see:

• sql-shape

• sql-query

Using Container-Managed Relationships (CMRs)
Container-managed relationships (CMRs) are relationships that you define between two entity
EJBs, analogous to the relationships between the tables in a database.

If you define a CMR between two EJBs that are involved in the same processing task, your
application can benefit from these features:

• Related beans can be cached together, reducing the number of queries necessary to
accomplish a processing task.

• Batched database operations can be ordered correctly at the end of a transaction, avoiding
data consistency problems.

• Related beans can be deleted automatically, using the cascade delete feature.

The sections that follow describe the features and limitations of WebLogic Server CMRs. For
instruction on configuring CMRs, see Defining Container-Managed Relationships (CMRs).

• CMR Requirements and Limitations

• CMR Cardinality

• CMR Direction

Chapter 5
Using SQL in Entity Beans

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 21 of 39

• Removing CMRs

• Defining Container-Managed Relationships (CMRs)

• Specifying Relationships in ejb-jar.xml

• Specifying Relationships in weblogic-cmp-jar.xml

• About CMR Fields and CMR Field Accessor Methods

• Using Cascade Delete for Entities in CMRs

• Relationship Caching

• Enabling Relationship Caching

CMR Requirements and Limitations
You can define a relationship between two WebLogic Server entity beans that will be packaged
in the same JAR and whose data persist in the same database. Entities that participate in the
same relationship must map to the same datasource. WebLogic Server does not support
relationships between entity beans that are mapped to different datasources. The abstract
schema for each bean that participates in a container-managed relationship must be defined in
the same ejb-jar.xml file.

EJB 2.1 states that if an entity bean does not have a local interface, the only CMR in which it
can participate is a unidirectional one, from itself to another entity bean. However, WebLogic
Server allows an entity bean with only a remote interface to:

• Participate in CMRs that are bidirectional, or

• Be the target of a unidirectional CMR with another entity.

Because this feature is not specified in EJB 2.1, entity beans that have only remote interfaces,
and either participate in bidirectional relationships or are the target of a unidirectional
relationship, may not be portable to other application servers.

CMR Cardinality
An entity bean can have a one-to-one, one-to-many, or many-to-many relationship with another
entity bean.

CMR Direction
Any CMR, whether one-to-one, one-to-many, or many-to-many, can be either unidirectional or
bidirectional. The direction of a CMR determines whether the bean on one side of the
relationship can be accessed by the bean on the other side.

Unidirectional CMRs can be navigated in one direction only—the "dependent bean" is unaware
of the other bean in the relationship. CMR-related features such as cascade deletes can only
be applied to the dependent bean. For example, if cascade deletes have been configured for a
unidirectional CMR from to EJB1 to EJB2, deleting EJB1 will cause deletion of EJB2, but deleting
EJB2 will not cause deletion of EJB1.

Chapter 5
Using Container-Managed Relationships (CMRs)

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 22 of 39

Note

For the cascade delete feature, the cardinality of the relationship is a factor—cascade
deletes are not supported from the many side of a relationship, even if the relationship
is bidirectional.

Bidirectional relationships can be navigated in both directions—each bean in the relationship is
aware of the other. CMR-related features are supported in both directions. For example, if
cascade deletes have been configured for a bidirectional CMR between EJB1 to EJB2, deleting
either bean in the CMR will cause deletion of the other bean.

Removing CMRs
When a bean instance that participates in a relationship is removed, the container
automatically removes the relationship. For instance, given a relationship between an
employee and a department, if the employee is removed, the container removes the
relationship between the employee and the department as well.

Defining Container-Managed Relationships (CMRs)
Defining a CMR involves specifying the relationship and its cardinality and direction in ejb-
jar.xml. You define database mapping details for the relationship and enable relationship
caching in weblogic-cmp-jar.xml. These sections provide instructions:

• Specifying Relationships in ejb-jar.xml

• Specifying Relationships in weblogic-cmp-jar.xml

Specifying Relationships in ejb-jar.xml
Container-managed relationships are defined in the ejb-relation element of ejb-jar.xml.
Example 5-4 shows the ejb-relation element for a relationship between two entity EJBs:
TeacherEJB and StudentEJB.

The ejb-relation element contains a ejb-relationship-role for each side of the
relationship. The role elements specify each bean's view of the relationship.

Example 5-4 One-to-Many, Bidirectional CMR in ejb-jar.xml

<ejb-relation>
 <ejb-relation-name>TeacherEJB-StudentEJB</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>teacher-has-student
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>TeacherEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>teacher</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>student-has-teacher
 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>

Chapter 5
Using Container-Managed Relationships (CMRs)

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 23 of 39

 <relationship-role-source>
 <ejb-name>StudentEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>student</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>

• Specifying Relationship Cardinality

• Specifying Relationship Directionality

Specifying Relationship Cardinality
The cardinality on each side of a relationship is indicated using the multiplicity element in its
ejb-relationship-role element.

In Example 5-5, the cardinality of the TeacherEJB-StudentEJB relationship is one-to-many—it
is specified by setting multiplicity to one on the TeacherEJB side and Many on the
StudentEJB side.

The cardinality of the CMR in Example 5-5, is one-to-one—the multiplicity is set to one in
both role elements for the relationship.

Table 5-4 Cardinality and cmr-field-type

If relationship between EJB1
and EJB2 is ...

EJB1's cmr-field
contains ...

EJB2's cmr-field contains ...

one-to-one single valued object single valued object

one-to-many single valued object Collection

many-to-many Collection Collection

Example 5-5 One-to-One, Unidirectional CMR in ejb-jar.xml

<ejb-relation>
 <ejb-relation-name>MentorEJB-StudentEJB</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>mentor-has-student
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>MentorEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>mentorID</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>student-has-mentor
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>StudentEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>

Chapter 5
Using Container-Managed Relationships (CMRs)

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 24 of 39

If a side of a relationship has a <multiplicity> of Many, its <cmr-field> is a collection, and
you must specify its <cmr-field-type> as java.util.Collection, as shown in the
StudentEJB side of the relationship in Example 5-4. It is not necessary to specify the cmr-
field-type when the cmr-field is a single valued object.

Table 5-4 lists the contents of cmr-field for each bean in a relationship, based on the
cardinality of the relationship.

Specifying Relationship Directionality
The directionality of a CMR is configured by the inclusion (or exclusion) of a cmr-field in the
ejb-relationship-role element for each side of the relationship

A bidirectional CMR has a cmr-field element in the ejb-relationship-role element for both
sides of the relationship, as shown in Example 5-4.

A unidirectional relationship has a cmr-field in only one of the role elements for the
relationship. The ejb-relationship-role for the starting EJB contains a cmr-field, but the
role element for the target bean does not. Example 5-5 specifies a unidirectional relationship
from MentorEJB to StudentEJB— there is no cmr-field element in the ejb-relationship-
role element for StudentEJB.

Specifying Relationships in weblogic-cmp-jar.xml
Each CMR defined in ejb-jar.xml must also be defined in a weblogic-rdbms-relation
element in weblogic-cmp-jar.xml. weblogic-rdbms-relation identifies the relationship, and
contains the relationship-role-map element, which maps the database-level relationship
between the participants in the relationship, for one or both sides of the relationship.

The relation-name in weblogic-rdbms-relation must be the same as the ejb-relation-
name for the CMR in ejb-jar.xml.

• One-to-One and One-to-Many Relationships

• Many-to-Many Relationships

• Specifying CMRs for EJBs that Map to Multiple Tables

One-to-One and One-to-Many Relationships
For one-to-one and one-to-many relationships, relationship-role-map is defined for only one
side of the relationship.

For one-to-one relationships, the mapping is from a foreign key in one bean to the primary key
of the other.

Example 5-6 is the weblogic-rdbms-relation element for a the one-to-one relationship
between MentorEJB and StudentEJB, whose <ejb-relation> is shown in Example 5-5.

Example 5-6 One-to-One CMR weblogic-cmp-jar.xml

<weblogic-rdbms-relation>
 <relation-name>MentorEJB-StudentEJB</relation-name>
 <weblogic-relationship-role>
 <relationship-role-name>
 mentor-has-student
 </relationship-role-name>
 <relationship-role-map>
 <column-map>

Chapter 5
Using Container-Managed Relationships (CMRs)

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 25 of 39

 <foreign-key-column>student</foreign-key-column>
 <key-column>StudentID/key-column>
 </column-map>
 </relationship-role-map>
 </weblogic-relationship-role>

For one-to-many relationships, the mapping is also always from a foreign key in one bean to
the primary key of another. In a one-to-many relationship, the foreign key is always associated
with the bean that is on the many side of the relationship.

Example 5-7 is the weblogic-rdbms-relation element for a the one-to-many relationship
between TeacherEJB and StudentEJB, whose <ejb-relation> is shown in Example 5-4.

Example 5-7 weblogic-rdbms-relation for a One-to-Many CMR

<weblogic-rdbms-relation>
 <relation-name>TeacherEJB-StudentEJB</relation-name>
 <weblogic-relationship-role>
 <relationship-role-name>
 teacher-has-student
 </relationship-role-name>
 <relationship-role-map>
 <column-map>
 <foreign-key-column>student</foreign-key-column>
 <key-column>StudentID/key-column>
 </column-map>
 </relationship-role-map>
 </weblogic-relationship-role>

Many-to-Many Relationships
For many-to-many relationships, specify a weblogic-relationship-role element for each
side of the relationship. The mapping involves a join table. Each row in the join table contains
two foreign keys that map to the primary keys of the entities involved in the relationship. The
direction of a relationship does not affect how you specify the database mapping for the
relationship.

Example 5-8 shows the weblogic-rdbms-relation element for the friends relationship
between two employees.

The FRIENDS join table has two columns, first-friend-id and second-friend-id. Each
column contains a foreign key that designates a particular employee who is a friend of another
employee. The primary key column of the employee table is id. The example assumes that the
employee bean is mapped to a single table. If employee bean is mapped to multiple tables,
then the table containing the primary key column must be specified in the relation-role-map.
For an example, see Specifying CMRs for EJBs that Map to Multiple Tables.

Example 5-8 weblogic-rdbms-relation for a Many-to-Many CMR

<weblogic-rdbms-relation>
 <relation-name>friends</relation-name>
 <table-name>FRIENDS</table-name>
 <weblogic-relationship-role>
 <relationship-role-name>first-friend
 </relationship-role-name>
 <relationship-role-map>
 <column-map>
 <foreign-key-column>first-friend-id</foreign-key-column>
 <key-column>id</key-column>
 </column-map
 </relationship-role-map>

Chapter 5
Using Container-Managed Relationships (CMRs)

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 26 of 39

 <weblogic-relationship-role>
 <weblogic-relationship-role>
 <relationship-role-name>second-friend</relationship-role-name>
 <relationship-role-map>
 <column-map>
 <foreign-key-column>second-friend-id</foreign-key-column>
 <key-column>id</key-column>
 </column-map>
 </relationship-role-map>
 </weblogic-relationship-role>
</weblogic-rdbms-relation>

Specifying CMRs for EJBs that Map to Multiple Tables
A CMP bean that is involved in a relationship may be mapped to multiple DBMS tables.

• If the bean on the foreign-key side of a one-to-one or one-to-many relationship is mapped
to multiple tables then the name of the table containing the foreign-key columns must be
specified using the foreign-key-table element.

• Conversely, if the bean on the primary-key side of a one-to-one or one-to-many
relationship or a bean participating in a many-to-many relationship is mapped to multiple
tables then the name of the table containing the primary-key must be specified using the
primary-key-table element.

If neither of the beans in a relationship is mapped to multiple tables, then the foreign-key-
table and primary-key-table elements may be omitted since the tables being used are
implicit.

Example 5-9 contains a relationship-role-map for a CMR in which the bean on the foreign-
key side of a one-to-one relationship, Fk_Bean, is mapped to two tables: Fk_BeanTable_1 and
Fk_BeanTable_2.

The foreign key columns for the relationship, Fk_column_1 and Fk_column_2, are located in
Fk_BeanTable_2. The bean on the primary key side, Pk_Bean, is mapped to a single table with
primary-key columns Pk_table_pkColumn_1 and Pk_table_pkColumn_2.

The table that contains the foreign-key columns is specified by the <foreign-key-table>
element.

Example 5-9 One-to-One CMR, One Bean Maps to Multiple Tables

<relationship-role-map
 <foreign-key-table>Fk_BeanTable_2</foreign-key-table>
 <column-map>
 <foreign-key-column>Fk_column_1</foreign-key-column>
 <key-column>Pk_table_pkColumn_1</key-column>
 </column-map>
 <column-map>
 <foreign-key-column>Fk_column_2</foreign-key-column>
 <key-column>Pk_table_pkColumn_2</key-column>
 </column-map>
</relationship-role-map>

About CMR Fields and CMR Field Accessor Methods
CMR fields are not stored as attributes of an implementation class—they are accessible in the
bean through CMR field accessor methods that you write. CMR field accessor methods:

Chapter 5
Using Container-Managed Relationships (CMRs)

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 27 of 39

• Must begin with get...() and set...() and the text following get.../set... must match
the name of the relation field as it is declared in the ejb-jar.xml.

• Must exist in the implementation class for every CMR field.

• Must be declared abstract

To allow remote clients to use CMR field accessor methods, put the getter and/or setter
method signatures in the remote interface. However, CMR fields of a Collection datatype
cannot be exposed in the remote interface. A CMR field that is a Collection can only be
accessed by local methods.

Using Cascade Delete for Entities in CMRs
When a cascade delete is performed, the deletion of a bean instance that participates in a
relationship with another bean instance causes the container to also automatically delete all of
the dependent bean instances. This feature is an efficient way to maintain data integrity.

For example, if the Employee bean has a one-to-many relationship to the Employee_Projects
bean, deleting an Employee bean instance causes instances of the Employee_Projects bean to
also be deleted.

You can specify cascade delete for one-to-one and one-to-many relationships; many-to-many
relationships are not supported.

WebLogic Server supports two methods of cascade delete:

• Jakarta EE Cascade Delete—This method does not require that the underlying database
have built-in support for cascade deletes. Configure the behavior using the cascade-
delete element in ejb-jar.xml, as shown in the following example:

<ejb-relation>
 <ejb-relation-name>Customer-Account</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Account-Has-Customer
 </ejb-relationship-role-name>
 <multiplicity>one</multiplicity>
 <cascade-delete/>
 </ejb-relationship-role>
</ejb-relation>

Note

The cascade-delete element can only be specified for a ejb-
relationship-role element if the other ejb-relationship-role in the
relationship has multiplicity of one.

• Database-Level Cascade Delete (Oracle only)—This method allows an application to take
advantage of a database's built-in support for cascade delete, and possibly improve
performance. When db-cascade-delete is enabled, the underlying database must be set
up for cascade deletes. For instructions and examples of setting up database cascade
delete in Oracle WebLogic Server, db-cascade-delete.

In a high volume transaction environment, transactions that use exclusive concurrency can
encounter deadlocks when a transaction that performs a cascade delete needs access to the
same entity bean as a transaction that does not perform a cascade delete. For information on
how to avoid such deadlocks, see Deadlock Prevention for Exclusive Concurrency and
Cascade Deletes.

Chapter 5
Using Container-Managed Relationships (CMRs)

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 28 of 39

Relationship Caching
Relationship caching—also known as "pre-fetching" or "eager relationship caching'—improves
the performance of entity beans by loading related beans into the cache and preventing
multiple queries by issuing a join query for the related bean. If a set of beans is accessed as
part of the same unit of work, then your application should load them into cache at the same
time.

Suppose your application contains entity beans with the following relationships:

customerBean has a one-to-many relationship with accountBean
accountBean has a one-to-one relationship with addressBean
customerBean has a one-to-one relationship with phoneBean

Consider the following EJB code for accountBean and addressBean, which have a 1-to-1
relationship:

Account acct = acctHome.findByPrimaryKey("103243");
Address addr = acct.getAddress();

Without relationship caching, an SQL query is issued by the first line of code to load the
accountBean and another SQL query is issued by the second line of code to load the
addressBean; this results in two queries to the database.

With relationship caching, a single query is issued to load both accountBean and addressBean
by the first line of code, which should result in better performance. So, if you know that a
related bean will be accessed after executing a particular finder method, it is a good idea to let
the finder method know via the relationship caching feature.

The relationship caching feature has the following limitations:

• Relationship caching is supported for one-to-one, one-to-many, and many-to-one
relationships. It is not supported for many-to-many relationships.

• When using weblogic-ql, this feature only works with finder methods that return
references to either EJBObject or EJBLocalObject beans.

If you enable relationship caching for a finder or a select method, the result of the query will
always be a distinct set even if the distinct keyword is not specified. This is due to a technical
limitation that does not allow the EJB container to distinguish duplicates in the underlying
JDBC result set.

With relationship caching enabled, changes to the relationship are automatically reflected in
cache. For instance, if an instance is added on the "many" side of a one-to-many relationship,
that change is reflected in the cached relationship—a subsequent query to the bean on the
"one" side of the relationship causes the relationship to be refreshed in cache, so that the new
instance is available to the query.

Enabling Relationship Caching
To enable relationship caching:

1. Specify the caching-name element in the weblogic-query element of the weblogic-cmp-
jar.xml file.

If a caching-name element is specified in the weblogic-query element, when the finder
query is executed, WebLogic Server loads data for related beans as specified by the
relationship-caching element that the caching-name element specifies.

Chapter 5
Using Container-Managed Relationships (CMRs)

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 29 of 39

2. Make sure that the finders-load-bean element (in weblogic-ejb-jar.xml) for the bean
that contains the finder is not set to False or relationship caching will not be enabled. The
default value of finder-load-bean is True.

3. Specify the database-type element in the weblogic-cmp-jar.xml file. Relationship
caching uses outer joins for queries and outer join syntax can vary by database type.

Because relationship caching uses join queries, the number of caching-element elements in
the relationship-caching element can increase duplicates in the result set. Specify one one-
to-many relationships per caching-element to avoid duplicates in the result set.

Specify the relationship-caching element in weblogic-cmp-jar.xml, as shown in this
example:

<relationship-caching>
 <caching-name>cacheMoreBeans</caching-name>
 <caching-element>
 <cmr-field>accounts</cmr-field>
 <group-name>acct_group</group-name>
 <caching-element>
 <cmr-field>address</cmr-field>
 <group-name>addr_group</group-name>
 </caching-element>
 </caching-element>
 <caching-element>
 <cmr-field>phone</cmr-field>
 <group-name>phone_group</group-name>
 </caching-element>
</relationship-caching>

The accounts and phone fields are cmr-fields in customerBean; the address field is a cmr‐field
in the accountBean; and addr_group and phone_group are groups in addressBean and
phoneBean.

Using nested caching-element elements enables the bean to load more than one level of
related beans. In the above sample, addressBean is the second level related bean because it is
nested in the accountBean. Currently, there is no limitation on the number of caching-elements
that you can specify. However, setting too many caching-element levels could have an impact
on the performance of the current transaction.

Choosing a Concurrency Strategy
An entity bean's concurrency strategy specifies how the EJB container should manage
concurrent access to the bean; it determines how and when WebLogic Server synchronizes its
cached copy of the entity with the database.

Concurrency strategies supported by WebLogic Server are described in the following sections.

• Exclusive Concurrency

• Database Concurrency

• Optimistic Concurrency

• Preventing Stale Optimistic Bean Data

• Explicit Invalidation of Optimistic Beans

• Invalidation Options for Optimistic Concurrency in Clusters

• Check Data for Validity with Optimistic Concurrency

• Optimistic Concurrency and Oracle Databases

Chapter 5
Choosing a Concurrency Strategy

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 30 of 39

• Read Only Concurrency

• Concurrency Strategy Trade-Offs

• Configuring Concurrency Strategy

• Deadlock Prevention for Exclusive Concurrency and Cascade Deletes

• Using the Read-Mostly Pattern

• Configuring Entity Beans for Read-Mostly Pattern

• Invalidating Read-Only Entity EJBs Implicitly

• Invalidating Entity EJBs Explicitly

Exclusive Concurrency
With exclusive concurrency, the container places an exclusive lock on cached EJB instances
when the bean is associated with a transaction. Other requests for the EJB instance are
blocked until the transaction completes. Exclusive locks are local to the server instance, so this
strategy is most appropriate for a single server architecture. When used in a cluster, exclusive
concurrency serializes all requests to a bean instance within a server instance, but
concurrency between servers in the cluster that access the same bean concurrently is
governed by the database.

Multiple clients can use the exclusive concurrency option to access entity EJBs in a serial
fashion. Using this exclusive option means that if two clients simultaneously attempt to access
the same entity EJB instance (an instance having the same primary key), the second client is
blocked until the EJB is available.

Database Concurrency
With database concurrency, concurrency control for an EJB for each transaction is deferred to
the underlying datastore. WebLogic Server allocates a separate entity bean instance to each
transaction and allows concurrency control to be handled by the database. This is the default
option.

With the Database mechanism, the EJB container continues to cache instances of entity bean
instances. However, the container does not cache the intermediate state of a bean instance
between transactions. Instead, WebLogic Server issues a SQL SELECT for each instance at the
beginning of a transaction to obtain the latest EJB data. A SQL UPDATE is issued if there are
changes.

The request to commit data is subsequently passed along to the database. The database,
therefore, handles all concurrency control and deadlock detection for the EJB's data.

Optimistic Concurrency
As with the Database concurrency strategy, Optimistic concurrency gives each transaction its
own bean instance. The Optimistic concurrency strategy does not hold any locks in the EJB
container or the database while the transaction is in process.

Chapter 5
Choosing a Concurrency Strategy

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 31 of 39

Note

For databases that do read-locking (non-Oracle databases) optimistic beans read data
in a separate, local transaction. The local transaction commits as soon as the read
completes. This strategy avoids read locks and can allow for better scalability when
transactions do not update the same data concurrently.

Preventing Stale Optimistic Bean Data
To prevent optimistic data from going stale, the container activates a new bean instance for
each transaction so that requests proceed in parallel. WebLogic Server calls ejbLoad() for
entity beans based on the value specified in read-timeout-seconds, provided the value of
cache-between-transactions is True.

Explicit Invalidation of Optimistic Beans
You can invalidate optimistic beans explicitly when the underlying data is updated outside the
EJB container (this is also known as a "backdoor update"). For information, see Invalidating
Entity EJBs Explicitly.

Invalidation Options for Optimistic Concurrency in Clusters
By default, when a bean that has a concurrency-strategy of Optimistic is deployed in a
cluster and a member of the cluster updates the bean, the EJB container attempts to invalidate
all copies of the bean in all servers in the cluster. This invalidation allows you to avoid
optimistic concurrency failures, but can be a drain on performance because it is a resource-
intensive operation. If you prefer, you can set cluster-invalidation-disabled in weblogic-
cmp-jar.xml to True to prevent the EJB container from attempting to invalidate copies of the
bean across the cluster.

Check Data for Validity with Optimistic Concurrency
You can configure the EJB container to validate an Optimistic bean's transaction data before
committing the transaction, to verify that no data read or updated by the transaction has bean
changed by another transaction. If it detects changed data, the EJB container rolls back the
transaction.

Note

The EJB container does not validate Blob or Clob fields in a bean with
Optimistic concurrency. The workaround is to use version or timestamp checking.

Configure validity checking for a bean with Optimistic concurrency using the verify-columns
and verify-rows elements in the table-map element for the bean in weblogic-cmp-jar.xml
file.

The verify-rows element specifies the rows in a table that the EJB container should check
when optimistic concurrency is used; the verify-columns element specifies how columns in a
table are checked for validity when you use the optimistic concurrency strategy.

Chapter 5
Choosing a Concurrency Strategy

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 32 of 39

1. Set the verify-rows element to:

• Read—To check all rows in the table that have been read during the transaction. This
includes both rows that are simply read and rows that are read and then updated or
deleted by the transaction. Checking all rows entails additional overhead because it
generally increases the amount of optimistic checking that must be performed by the
EJB container. With the Read option, committed transactions read a set of rows that
are guaranteed not to be modified by another transaction until after the transaction
commits. This results in a high level of consistency which is very close to the ANSI
definition of SERIALIZABLE consistency.

• Modified—To check only the rows that have been updated or deleted by the current
transaction. This setting ensures that two transactions will not update the same row
concurrently, resulting in a lost update, but it allows reads and updates of different
transactions to be interleaved. This results in a level of consistency that falls between
the ANSI READ_COMMITTED and REPEATABLE_READ levels of consistency.

2. Set the value of the verify-columns element to:

• Read—To check all columns in the table that have been read during the transaction.
This includes both rows that are simply read and rows that are read and then updated
or deleted by the transaction.

• Modified—To check only the columns that have been updated or deleted by the
current transaction.

Note

If verify-rows is set to Read then the verify-columns element cannot have a
value of Modified since this combination would result in only checking the
modified rows.

• Version—To check that a version column exists in the table and that this column is
used to implement optimistic concurrency.

A version column must be created with an initial value of 0 or any positive integer, and
must increment by 1 whenever the row is modified. For more information, see version-
column-initial-value.

Additionally, if you use database triggers to update version columns in the database
and you set trigger-updates-optimistic-column to True, the database triggers must
initialize the version column in the database when the bean is created.

• Timestamp—To check that a timestamp column exists in the table and that this column
is used to implement optimistic concurrency. Timestamp-based optimistic concurrency
requires a 1 second granularity for the database column.

By default, the EJB container manages the version and timestamp columns and ensures
that these columns are kept up to date. If you choose to instead let database triggers
maintain version and timestamp columns, set the value of trigger-updates-optimistic-
column to True.

Chapter 5
Choosing a Concurrency Strategy

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 33 of 39

Note

The version or timestamp column is not updated if the transaction did not modify
any regular CMP or CMR fields—if the only data changed during the transaction
was the value of the version or timestamp column (as a result of transaction
initiation) the column used for optimistic checking will not be updated at the end of
the transaction.

3. If verify-columns is set to Version or Timestamp:

a. Specify the version or timestamp column using the optimistic-column in the table-
map element in the weblogic-cmp-jar.xml file. Mapping this column to a cmp-field is
optional.

The optimistic-column element identifies a database column that contains a version
or timestamp value used to implement optimistic concurrency. This element is case
maintaining, though not all databases are case sensitive. The value of this element is
ignored unless verify-columns is set to Version or Timestamp.

b. Specify the initial value of the version column using the version-column-initial-
value element in the weblogic-cmp-jar.xml file.

If the EJB is mapped to multiple tables, optimistic checking is only performed on the tables that
are updated during the transaction.

Optimistic Concurrency and Oracle Databases
For Oracle databases, if you set verify-columns to Modified for an entity EJB with a CMP
non-key field type java.util.Date and implementation type Oracle DATE, WebLogic Server
throws an optimistic concurrency violation exception when a simple update is made to the non-
key DATE field—even though only one user is updating the record.

This problem occurs because of a mismatch in date value precision between the Oracle DATE
column and the java.util.Date type. The java.util.Date type is in milliseconds, and the
Oracle DATE column is not. There are two ways to avoid this error:

• Set the Oracle database column type to Timestamp, a higher precision type introduced in
Oracle9i.

• Include logic in your application to zero out the milliseconds of a java.util.Date value. To
accomplish this, prepare a date field for an entity bean java.util.Date field in this way:

Calendar cal = Calendar.getInstance();
cal.set(Calendar.MILLISECOND, 0); // clears millisecond
Date myDate = cal.getTime();

Read Only Concurrency
Used to signify that a bean is read-only. The container activates a new bean instance for each
transaction so that requests proceed in parallel. WebLogic Server calls ejbLoad() for read-only
beans based on the read-timeout-seconds parameter.

To allow generation of more efficient code for read-only beans, create and remove operations
are not allowed for EJBs that use ReadOnly concurrency in this release of WebLogic Server.

To allow read-only beans to use create and remove operations—for instance, to support legacy
behavior—set the allow-readonly-create-and-remove element in weblogic-cmp-jar.xml to
True.

Chapter 5
Choosing a Concurrency Strategy

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 34 of 39

Concurrency Strategy Trade-Offs
Concurrency strategies present a trade-off between performance and freshness of data. You
should choose a concurrency strategy based on which of these factors weighs more heavily in
your application. The trade-offs are summarized in Table 5-5.

Table 5-5 Concurrency Strategy Trade-offs

Concurrency
Strategy

Benefits Risks and Limitations When to Choose It

Database Deferring concurrency control
to the database improves
throughput, compared to
exclusive concurrency, for
concurrent access to data and
provides deadlock detection.

Risk of deadlock, as each transaction
must obtain an update lock from the
database.

Mitigate deadlock risk by setting use-
select-for-update in weblogic-
cmp-jar.

xml. This causes the database to take
out an exclusive lock when the read is
done, avoiding the deadlock that can
occur when a read lock is upgraded to
an exclusive lock.

Makes the bean more dependent on
the database's lock policies, which
might reduce the bean's portability.

If the database concurrency
control is sufficient for your
application and you do not
require additional features
provided by the container.

Note: Use the transaction-
isolation element in
combination with Database
concurrency to achieve the
desired concurrency behavior.

Optimistic Provides highest level of
concurrent access, as it holds
no locks in the EJB container
or database during a
transaction.

Multiple transactions can access the
same application data at the same
time.

If multiple transactions are
unlikely to attempt to modify the
same application data at the
same time.

Exclusive Serializes access to EJB data
in a single server (non-
clustered environment) for a
high level of consistency.
Avoids deadlocks due to lock
upgrades, and prevents
unnecessary calls to
ejbLoad() to refresh the bean
instance's persistent fields.

Performance degradation can result.
Once a client has locked an EJB
instance, other clients are blocked from
the EJB's data, even those who require
only read-access.

To provide backwards
compatibility for applications that
rely on this strategy.

For applications in which a high
level of concurrency is essential,
and more important than
performance.

Read Only N/A N/A N/A

Configuring Concurrency Strategy
Specify the concurrency mechanism for a bean by setting the concurrency-strategy element
in the entity-cache element in weblogic-ejb-jar.xml. Because concurrency-strategy is
defined at the bean level, different beans in the same application can use different concurrency
strategies, as appropriate.

If you do not specify a concurrency-strategy, WebLogic Server uses Database concurrency
by default.

Chapter 5
Choosing a Concurrency Strategy

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 35 of 39

Deadlock Prevention for Exclusive Concurrency and Cascade Deletes
In situations of high throughput, transactions that use an exclusive concurrency strategy can
encounter deadlocks if a transaction that performs a cascade delete needs access to the same
entity bean as a transaction that does not perform a cascade delete.

You can prevent such deadlocks with the lock-order element of weblogic-cmp-jar.xml
deployment descriptor file. lock-order defines the order in which beans are locked during a
cascade delete of related beans. Its value is an integer value. The bean with the lowest lock-
order value is processed first, the bean with the next lowest lock-order value is processed
next, and so on.

The locking order specified should be the same as the locking order used by other transactions
in the application.

lock-order causes a cascade delete to lock bean instances in the same order as their other
transactions. If the normal lock order is BeanA, then BeanB, specify this lock-order, and
cascade delete will use it.

Using the Read-Mostly Pattern
For persistent data that is only occasionally updated, you can implement a "read-mostly
pattern" in WebLogic Server by mapping a read-only and a read-write entity bean to the same
data. You use the read-only entity bean for reads and the read-write entity bean for writes.

The read-only entity EJB loads bean data at intervals specified by the read-timeout-seconds
element in the entity-cache (or entity-cache-ref) element for the bean in weblogic-ejb-
jar.xml. To ensure that the read-only bean always returns current data, the read-only bean
must be invalidated when the read-write bean changes the entity bean data. You can configure
WebLogic Server to automatically invalidate the read-only bean, or explicitly invalidate it in
bean code, as described in Invalidating Read-Only Entity EJBs Implicitly and Invalidating Entity
EJBs Explicitly respectively.

In a WebLogic Server cluster, the read-mostly pattern gives clients of the read-only EJB the
performance advantage of reading from cache, while clients of the read-write EJB enjoy true
transactional behavior—the read-write EJB's cached state always matches the persistent
data in the database.

Configuring Entity Beans for Read-Mostly Pattern
These practices will reduce the likelihood of data consistency problems with the read-mostly
pattern.

• Configuring the read-only beans' read-timeout-seconds element in weblogic-ejb-
jar.xml:

– To the same value in all beans that can be updated in the same transaction.

– To the shortest period that yields acceptable performance levels.

• Design read-write beans:

– To update the minimum data set necessary; avoid implementing beans that write
numerous, unchanged fields to the datastore at each ejbStore().

– To update their data on a timely basis; do not use a read-write bean in lengthy
transactions that might run longer than the read-timeout-seconds setting for its read-
only counterparts.

Chapter 5
Choosing a Concurrency Strategy

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 36 of 39

– To invalidate the read-only counterpart of a read-write bean when the read-write bean
updates bean data.

If you are running EJB 2.x, you can approximate the read-mostly pattern using a single bean
that uses optimistic concurrency. An optimistic bean acts like a read-only bean when
performing a read—it reads from the cache and can return stale data. However, when an
optimistic bean performs a write, the container ensures that the data being updated has not
changed—providing the same level of consistency for writes as a bean that uses Database
concurrency. See Choosing a Concurrency Strategy.

Invalidating Read-Only Entity EJBs Implicitly
The invalidation-target element in the entity-descriptor element in weblogic-ejb-
jar.xml identifies a read-only entity EJB that should be invalidated when a CMP entity bean
has been modified.

invalidation-target may only be specified for an EJB 2.x CMP entity bean. The target ejb-
name must be a read-only entity EJB.

Invalidating Entity EJBs Explicitly
In this release of WebLogic Server, you can invalidate any optimistic entity bean that has
cache-between-transactions enabled, by calling the following invalidate() method on
either the CachingHome or CachingLocalHome interface.

Example 5-10 CachingHome and CachingLocalHome interfaces

package weblogic.ejb;

public interface CachingHome {
 public void invalidate(Object pk) throws RemoteException;
 public void invalidate (Collection pks) throws RemoteException;
 public void invalidateAll() throws RemoteException;

public interface CachingLocalHome {
 public void invalidate(Object pk) throws RemoteException;
 public void invalidate (Collection pks) throws RemoteException;
 public void invalidateAll() throws RemoteException
}

The following example code shows how to cast the home to CachingHome and then call the
method:

Example 5-11 Casting the Home and Calling the Method

import javax.naming.InitialContext;
import weblogic.ejb.CachingHome;

Context initial = new InitialContext();
Object o = initial.lookup("CustomerEJB_CustomerHome");
CustomerHome customerHome = (CustomerHome)o;

CachingHome customerCaching = (CachingHome)customerHome;
customerCaching.invalidateAll();

The invalidate() method causes the entity beans to be invalidated in the local server
instance. If the server instance is a member of a cluster, it multicasts a message to the other
clustered servers to invalidate their cached copies of the bean. Upon the next getXXX() to an
invalidated entity bean, the container loads the current version of the bean's persistent data to

Chapter 5
Choosing a Concurrency Strategy

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 37 of 39

the entity cache from the database, as described in Understanding ejbLoad() and ejbStore()
Behavior.

WebLogic Server calls invalidate() after the update transaction has completed. If the
invalidation occurs during a transaction update, the previous version might be read if the
isolation-level for transactions does not permit reading uncommitted data.

CMP Entity Bean Descriptors Element by Feature
Examine the WebLogic Server-specific deployment for CMP entity beans.

Each of the following section contains the elements related to a particular type of feature or
behavior. The table in each section defines relevant elements terms of: the behavior it controls,
the parent element in weblogic-cmp-jar.xml that contains the element, and the behavior you
can expect if you do not explicitly specify the element in weblogic-cmp-jar.xml.

• Container-Managed Relationship Elements

• Primary Key Elements

Container-Managed Relationship Elements
The following lists the container-managed relationship elements in weblogic-cmp-jar.xml.

Table 5-6 Container-managed Relationship Elements in weblogic-cmp-jar.xml

Element Description

relation-name Name of the relationship.

Note: If an ejb-relation-name for the relationship is specified in ejb-
jar.xml, relation-name must contain the same value as ejb-relation-
name.

relationship-role-name The name of the relationship role. (A relationship has two roles—one for each
side of the relationship).

For a 1-1 or 1-m relationship, specify only the role on the foreign-key side.
For examples, see Defining a One-to-One Relationship and Defining a One-
to-Many Relationship.

For a m:m relationship, specify the roles on both sides of the relationship.
roles. For an example, see Defining a Many-to-Many Relationship.

Note: The value of <relationship-role-

name> should match the name of an ejb-relationship-role in ejb-
jar.xml.

foreign-key-column Specifies the target side of the key column mapping for the relationship—the
foreign key column.

key-column Specifies the initiating side of the key column mapping for the relationship—
the primary key column.

Primary Key Elements
The following lists the primary key elements in weblogic-cmp-jar.xml.

Chapter 5
CMP Entity Bean Descriptors Element by Feature

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 38 of 39

Table 5-7 Primary Key Elements in weblogic-cmp-jar.xml

Element Description Default

generator-type Identifies the facility used to generate primary keys. Values
include Oracle, SQLServer, or SQLServer2000,
NamedSequenceTable.

n/a

generator-name Defines the Oracle SEQUENCE, or the name of a SEQUENCE
table used.

n/a

key-cache-size Specifies the size of the key cache. 1

create-default-dbms-table Determines behavior related to if and how the EJB container
will create database tables.

Disabled

Chapter 5
CMP Entity Bean Descriptors Element by Feature

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 39 of 39

6
Message-Driven EJBs

Learn about the message-driven bean (MDB) life cycle, design considerations, and instructions
for key implementation tasks.

Developing Message-Driven Beans for Oracle WebLogic Server describes the message-driven
bean (MDB) life cycle, design considerations, and instructions for key implementation tasks.
For a description of the overall EJB development process, see Implementing EJBs.

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 1

7
Deployment Guidelines for EJBs

Learn about the EJB-specific deployment guidelines.
For deployment topics that are common to all deployable application units, you will see cross-
references to topics in Deploying Applications to Oracle WebLogic Server, a comprehensive
guide to deploying WebLogic Server applications and modules.

This chapter includes the following topics:

• Before You Deploy an EJB
Examine the tasks that need to be completed before you begin with the EJB deployment.

• Understanding and Performing Deployment Tasks
Examine some of the deployment strategies to perform the deployment tasks.

• Deployment Guidelines for EJBs
Understand the guidelines to deploy EJBs on WebLogic Server.

Before You Deploy an EJB
Examine the tasks that need to be completed before you begin with the EJB deployment.

Before starting the deployment process you should have:

• Functional, tested bean code, in an exploded directory format or packaged in an archive
file—a JAR for a stand-alone EJB or an EAR if the EJB is part of an enterprise application
—along with the deployment descriptors. For production environments, Oracle
recommends that you package your application as an EAR.

For an overview of the steps required to create and package an EJB, see Overview of the
EJB Development Process.

• Configured the required deployment descriptors—ejb-jar.xml and weblogic-ejb-
jar.xml, and, for entity EJBs that use container-managed persistence, weblogic-cmp-
jar.xml.

Understanding and Performing Deployment Tasks
Examine some of the deployment strategies to perform the deployment tasks.

Table 7-1 is a guide to WebLogic Server documentation topics that help you make decisions
about deployment strategies and provide instructions for performing deployment tasks. For
EJB-specific deployment topics, see Deployment Guidelines for EJBs.

Table 7-1 Deployment Tasks and Topics

If You Want To.... See This Topic

Deploy in a development environment Deploying and Packaging from a Split Development Directory in
Developing Applications for Oracle WebLogic Server.

Select a deployment tool Deployment Tools in Deploying Applications to Oracle WebLogic
Server

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 5

Table 7-1 (Cont.) Deployment Tasks and Topics

If You Want To.... See This Topic

Determine appropriate packaging for
a deployment

Preparing Applications and Modules for Deployment in Deploying
Applications to Oracle WebLogic Server.

Organizing EJB components in a split
directory structure.

EJBs in Developing Applications for Oracle WebLogic Server.

Select staging mode Controlling Deployment File Copying with Staging Modes in
Deploying Applications to Oracle WebLogic Server.

Perform specific deployment tasks Overview of the Deployment Process in Deploying Applications
to Oracle WebLogic Server.

Deployment Guidelines for EJBs
Understand the guidelines to deploy EJBs on WebLogic Server.

The following sections provide guidelines for deploying EJBs.

• Deploy EJBs as Part of an Enterprise Application

• Deploy EJBs That Call Each Other in the Same Application

• Deploying EJBs that Use Dependency Injection

• Deploy Homogeneously to a Cluster

• Deploying Pinned EJBs to a Cluster

• Redeploying an EJB

• Using FastSwap Deployment to Minimize Deployment

• Understanding Warning Messages

• Disabling EJB Deployment Warning Messages

Deploy EJBs as Part of an Enterprise Application
Oracle recommends that you package and deploy your stand-alone EJB applications as part of
an Enterprise application. An Enterprise application is a Jakarta EE deployment unit that
bundles together Web applications, EJBs, and Resource Adapters into a single deployable
unit.

This is a Oracle best practice, which allows for easier application migration, additions, and
changes. Also, packaging your applications as part of an Enterprise application allows you to
take advantage of the split development directory structure, which provides a number of
benefits over the traditional single directory structure. See Overview of the Split Development
Directory Environment in Developing Applications for Oracle WebLogic Server.

Deploy EJBs That Call Each Other in the Same Application
When an EJB in one application calls an EJB in another application, WebLogic Server passes
method arguments by value, due to classloading requirements. When EJBs are in the same
application, WebLogic Server can pass method arguments by reference; this improves the
performance of method invocation because parameters are not copied.

Chapter 7
Deployment Guidelines for EJBs

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 5

For best performance, package components that call each other in the same application, and
set enable-call-by-reference in weblogic-ejb-jar.xml to True. (By default, enable-call-
by-reference is False.)

• Switching Protocol Limitation

Switching Protocol Limitation

If an application client request has multiple hops, and QOS is configured differently between
servers, then you must switch the protocol.

For example, when a client sends an SSL request to a JMS front-end cluster, the JMS front-
end cluster then forwards the request to the JMS back-end cluster using clear text. In this
case, you may need to switch from the t3s protocol to the t3 protocol.

Note

You can switch the protocol only in a default channel. Custom channels do not support
protocol switching.

Deploying EJBs that Use Dependency Injection
When an EJB uses dependency injection, the resource name defined in the class and the
superclass must be unique. For example:

public class ClientServlet extends HttpServlet {
 @EJB(name = 'DateServiceBean', beanInterface = DateService.class)
 private DateService bean; }
public class DerivedClientServlet extends ClientServlet {
 @EJB(name = MyDateServiceBean', beanInterface = DateService.class)
 private DateService bean; }

For more information about dependency injection, see Using Jakarta Annotations and
Dependency Injection in Developing Applications for Oracle WebLogic Server.

Deploy Homogeneously to a Cluster
If your EJBs will run on a WebLogic Server cluster, Oracle recommends that you deploy them
homogeneously—to each Managed Server in the cluster. Alternatively, you can deploy an EJB
to only to a single server in the cluster (that is, "pin" a module to a server). This type of
deployment is less common, and should be used only in special circumstances where pinned
services are required. See, Understanding Cluster Configuration in Administering Clusters for
Oracle WebLogic Server.

Deploying Pinned EJBs to a Cluster
There is a known issue with deploying or redeploying EJBs to a single server instance in a
cluster—referred to as pinned deployment—if the JAR file contains contain uncompiled classes
and interfaces.

During deployment, the uncompiled EJB is copied to each server instance in the cluster, but it
is compiled only on the server instance to which it has been deployed. As a result, the server
instances in the cluster to which the EJB was not targeted lack the classes generated during

Chapter 7
Deployment Guidelines for EJBs

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 5

compilation that are necessary to invoke the EJB. When a client on another server instance
tries to invoke the pinned EJB, it fails, and an Assertion error is thrown in the RMI layer.

If you are deploying or redeploying an EJB to a single server instance in a cluster, compile the
EJB with appc before deploying it, to ensure that the generated classes are copied to all server
instances available to all nodes in the cluster.

For more information on pinned deployments, see Deploying to a Single Server Instance
(Pinned Deployment) in Administering Clusters for Oracle WebLogic Server.

Redeploying an EJB
When you make changes to a deployed EJB's classes, you must redeploy the EJB. If you use
automatic deployment, deployment occurs automatically when you restart WebLogic Server.
Otherwise, you must explicitly redeploy the EJB.

Redeploying an EJB deployment enables an EJB provider to make changes to a deployed
EJB's classes, recompile, and then "refresh" the classes in a running server.

When you redeploy, the classes currently loaded for the EJB are immediately marked as
unavailable in the server, and the EJB's classloader and associated classes are removed. At
the same time, a new EJB classloader is created, which loads and maintains the revised EJB
classes.

When clients next acquire a reference to the EJB, their EJB method calls use the changed EJB
classes.

You can redeploy an EJB that is standalone or part of an application using any of the
administration tools listed in Summary of System Administration Tools and APIs in
Understanding Oracle WebLogic Server. See Redeploying Applications in a Production
Environment in Deploying Applications to Oracle WebLogic Server.

Production redeployment is not supported for:

• applications that use JTS drivers.

• applications that include EJB 1.1 container-managed persistence (CMP) EJBs. To use
production redeployment with applications that include CMP EJBs, use EJB 2.x CMP
instead of EJB 1.1 CMP.

For more information on production redeployment limitations, see Requirements and
Restrictions for Production Redeployment in Deploying Applications to Oracle WebLogic
Server.

Using FastSwap Deployment to Minimize Deployment
During iterative development of an EJB application, you make many modifications to the EJB
implementation class file, typically redeploying an EJB module multiple times during its
development.

Java EE 5 introduces the ability to redefine a class at runtime without dropping its ClassLoader
or abandoning existing instances. This allows containers to reload altered classes without
disturbing running applications, vastly speeding up iterative development cycles and improving
the overall development and testing experiences.

With FastSwap, Java classes are redefined in-place without reloading the ClassLoader,
thereby having the decided advantage of fast turnaround times. This means that you do not
have to wait for an application to redeploy for your changes to take affect. Instead, you can
make your changes, auto compile, and then see the effects immediately.

Chapter 7
Deployment Guidelines for EJBs

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 5

For more information about FastSwap, see Using FastSwap Deployment to Minimize
Redeployment in Deploying Applications to Oracle WebLogic Server.

Understanding Warning Messages
To get information about a particular warning, use the weblogic.GetMessage tool. For example:

java weblogic.GetMessage -detail -id BEA-010202

Disabling EJB Deployment Warning Messages
You can disable certain WebLogic Server warning messages that occur during deployment.
You may find this useful if the messages provide information of which you are already aware.

For example, if the methods in your EJB makes calls by reference rather than by value,
WebLogic Server generates this warning during deployment: "Call-by-reference not
enabled."

You can use the disable-warning element in weblogic-ejb-jar.xml to disable certain
messages. For a list of messages you can disable, and instructions for disabling the
messages, see disable-warning.

Chapter 7
Deployment Guidelines for EJBs

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 5

A
Deployment Descriptor Schema and
Document Type Definitions Reference

Examine the EJB XSD-based deployment descriptors, namespace declarations for WebLogic
Server, EJB DTD-based deployment descriptors, and DOCTYPE headers for deployment
descriptors from pre-9.0 releases of WebLogic Server.
WebLogic Server deployment descriptors are XML Schema Definition-based (XSD). In pre-9.0
releases of WebLogic Server, deployment descriptors were Document Type Definition-based
(DTD). For backward compatibility, WebLogic Server supports XSD- or DTD-based deployment
descriptors; you can deploy applications that use DTD-based descriptors without modifying
them.

Note

If you are using metadata annotations in your EJB 3.x implementation, refer to EJB
Metadata Annotations Reference in Developing Jakarta Enterprise Beans for Oracle
WebLogic Server.

For information on the elements in WebLogic Server EJB deployment descriptors, see the
following sections:

• weblogic-ejb-jar.xml Deployment Descriptor Reference

• weblogic-cmp-jar.xml Deployment Descriptor Reference

For information on the EJB 1.1 deployment descriptor elements, see Important Information for
EJB 1.1 Users.

This appendix includes the following topics:

• XML Schema Definitions and Namespace Declarations
An XSD deployment descriptor file requires a namespace declaration in the root element of
the file. Namespace declarations in the root element of a deployment descriptor file apply
to all elements in the descriptor unless a specific element includes another namespace
declaration that overrides the root namespace declaration.

• Document Type Definitions and DOCTYPE Header Information
WebLogic Server ignores the DTD locations embedded within the DOCTYPE header of
XML deployment files, and instead uses the DTD locations that were installed along with
the server. However, the DOCTYPE header information must include a valid URL syntax in
order to avoid parser errors.

XML Schema Definitions and Namespace Declarations
An XSD deployment descriptor file requires a namespace declaration in the root element of the
file. Namespace declarations in the root element of a deployment descriptor file apply to all
elements in the descriptor unless a specific element includes another namespace declaration
that overrides the root namespace declaration.

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-1 of A-4

The contents and arrangement of elements in your deployment descriptor files must conform to
the appropriate XSD.

Note

If you use DDConverter to convert your DTD-based deployment descriptors to XSD-
based, the correct namespace declaration is automatically written to your descriptor
files.

Oracle recommends that you always include the schema location URL along with the
namespace declaration in your XML deployment descriptor files; if you do not include the
schema location in your XML deployment descriptor files, you may not be able to edit the
descriptor files with a third-party tool.

• weblogic-ejb-jar.xml Namespace Declaration and Schema Location

• weblogic-cmp-jar.xml Namespace Declaration and Schema Location

• ejb-jar.xml Namespace Declaration and Schema Location

weblogic-ejb-jar.xml Namespace Declaration and Schema Location
The correct text for the namespace declaration and schema location for the WebLogic Server
weblogic-ejb-jar.xml file is as follows.

<weblogic-ejb-jar xmlns="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar http://
xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd">
...
</weblogic-ejb-jar>

weblogic-cmp-jar.xml Namespace Declaration and Schema Location
The correct text for the namespace declaration and schema location for the WebLogic Server
weblogic-cmp-jar.xml file is as follows.

<weblogic-rdbms-jar xmlns="http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1.2/weblogic-
rdbms-jar.xsd">
...
</weblogic-rdbms-jar>

ejb-jar.xml Namespace Declaration and Schema Location
The correct text for the namespace declaration and schema location for the Enterprise
JavaBeans 2.1 ejb-jar.xml file is as follows.

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/ejb-
jar_2_1.xsd">
...
</ejb-jar>

Appendix A
XML Schema Definitions and Namespace Declarations

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-2 of A-4

Document Type Definitions and DOCTYPE Header Information
WebLogic Server ignores the DTD locations embedded within the DOCTYPE header of XML
deployment files, and instead uses the DTD locations that were installed along with the server.
However, the DOCTYPE header information must include a valid URL syntax in order to avoid
parser errors.

In prior releases of WebLogic Server, the contents and arrangement of elements in your
deployment descriptor files must have conformed to the appropriate DTD.

When editing or creating XML deployment files, it is critical to include the correct DOCTYPE
header for each deployment file. In particular, using an incorrect PUBLIC element within the
DOCTYPE header can result in parser errors that may be difficult to diagnose.

The header refers to the location and version of the Document Type Definition (DTD) file for
the deployment descriptor. Although this header references an external URL at java.sun.com,
WebLogic Server contains its own copy of the DTD file, so your host server need not have
access to the Internet. However, you must still include this <!DOCTYPE...> element in your
weblogic-ejb-jar.xml and weblogic-cmp-jar.xml files, and have them reference the
external URL because the version of the DTD contained in this element is used to identify the
version of this deployment descriptor.

XML files with incorrect header information may yield error messages similar to the following,
when used with a tool that parses the XML (such as appc):

SAXException: This document may not have the identifier `identifier_name'

where identifier_name generally includes the invalid text from the PUBLIC element.

The correct text for the PUBLIC elements for the WebLogic-Server-specific weblogic-ejb-
jar.xml file is listed, by WebLogic Server release, in Table A-1.

Table A-1 PUBLIC Elements of weblogic-ejb-jar.xml

WebLogic
Server
Release

XML File PUBLIC Element String

8.1.x weblogic-ejb-jar.xml '-//BEA Systems, Inc.//DTD WebLogic 8.1.0
EJB//EN' 'http://www.bea.com/servers/
wls810/dtd/weblogic-ejb-jar.dtd'

7.0.x weblogic-ejb-jar.xml '-//BEA Systems, Inc.//DTD WebLogic 7.0.0
EJB//EN' 'http://www.bea.com/servers/
wls700/dtd/weblogic-ejb-jar.dtd'

6.1.x

and

6.0.x

weblogic-ejb-jar.xml '-//BEA Systems, Inc.//DTD WebLogic 6.0.0
EJB//EN' 'http://www.bea.com/servers/
wls600/dtd/weblogic-ejb-jar.dtd'

5.1.0 weblogic-ejb-jar.xml '-//BEA Systems, Inc.//DTD WebLogic 5.1.0
EJB//EN'

'http://www.bea.com/servers/wls510/dtd/
weblogic-ejb-jar.dtd'

The correct text for the PUBLIC elements for the WebLogic-Server-specific weblogic-cmp-
jar.xml file is listed, by WebLogic Server release, in Table A-2.

Appendix A
Document Type Definitions and DOCTYPE Header Information

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-3 of A-4

Table A-2 PUBLIC Elements of weblogic-cmp-jar.xml

WebLogic
Server
Release

XML File PUBLIC Element String

8.1.x weblogic-cmp-jar.xml '-// BEA Systems, Inc.//DTD WebLogic 8.1.0
EJB RDBMS Persistence//EN' 'http://
www.bea.com/servers/wls810/dtd/weblogic-
rdbms20-persistence-810.dtd'

7.0.x weblogic-cmp-jar.xml '-// BEA Systems, Inc.//DTD WebLogic 7.0.0
EJB RDBMS Persistence//EN' 'http://
www.bea.com/servers/wls700/dtd/weblogic-
rdbms20-persistence-700.dtd'

6.1.x

and

6.0.x

weblogic-cmp-jar.xml '-// BEA Systems, Inc.//DTD WebLogic 6.0.0
EJB RDBMS Persistence//EN' 'http://
www.bea.com/servers/wls600/dtd/weblogic-
rdbms20-persistence-600.dtd'

See Deployment Descriptor Schema and Document Type Definitions Reference for more
information on the weblogic-cmp-jar.xml file.

The correct text for the PUBLIC elements for the Sun-Microsystems-specific ejb-jar.xml file is
listed, by Enterprise JavaBeans version, in Table A-3.

Table A-3 PUBLIC Elements of ejb-jar.xml

EJB Version XML File PUBLIC Element String

2.0 ejb-jar.xml '-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN'

'http://java.sun.com/dtd/ejb-jar_2_0.dtd'

1.1 ejb-jar.xml '-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN'

'http://www.java.sun.com/j2ee/dtds/ejb-
jar_1_1.dtd'

Appendix A
Document Type Definitions and DOCTYPE Header Information

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-4 of A-4

B
weblogic-ejb-jar.xml Deployment Descriptor
Reference

The EJB 2.1 elements in the weblogic-ejb-jar.xml file, the WebLogic-specific XML Schema-
based (XSD) deployment descriptor file. Use these definitions to create the WebLogic-specific
weblogic-ejb-jar.xml file that is part of your EJB deployment.
In pre-9.0 releases of WebLogic Server, weblogic-ejb-jar.xml was Document Type
Definition-based (DTD). For backward compatibility, WebLogic Server still supports XSD-based
or DTD-based EJB descriptors; you can deploy applications that use DTD-based descriptors in
WebLogic Server without modifying the descriptors.

Note

If you are using metadata annotations in your EJB 3.x implementation, refer to EJB
Metadata Annotations Reference in Developing Jakarta Enterprise Beans for Oracle
WebLogic Server.

For information on:

• XML Schema Definitions and the namespace declaration required in weblogic-ejb-
jar.xml, as well as Document Type Definitions and DOCTYPE headers, see Deployment
Descriptor Schema and Document Type Definitions Reference.

• the weblogic-cmp-jar.xml file, see weblogic-cmp-jar.xml Deployment Descriptor
Reference.

• EJB 1.1 deployment descriptor elements, see Important Information for EJB 1.1 Users.

See the complete weblogic-ejb-jar.xsd schema at http://www.oracle.com/webfolder/
technetwork/weblogic/weblogic-ejb-jar/index.html.

This appendix includes the following topics:

• 2.1 weblogic-ejb-jar.xml File Structure

• 2.1 weblogic-ejb-jar.xml Elements

• allow-concurrent-calls

• allow-remove-during-transaction

• cache-between-transactions

• cache-type

• client-authentication

• client-cert-authentication

• clients-on-same-server

• component-factory-class-name

• concurrency-strategy

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-1 of B-86

http://www.oracle.com/webfolder/technetwork/weblogic/weblogic-ejb-jar/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/weblogic-ejb-jar/index.html

• confidentiality

• connection-factory-jndi-name

• connection-factory-resource-link

• create-as-principal-name

• delay-updates-until-end-of-tx

• description

• destination-jndi-name

• destination-resource-link

• disable-warning

• dispatch-policy

• distributed-destination-connection

• durable-subscription-deletion

• ejb-name

• ejb-reference-description

• ejb-ref-name

• enable-bean-class-redeploy

• enable-call-by-reference

• enable-dynamic-queries

• entity-always-uses-transaction

• entity-cache

• entity-cache-name

• entity-cache-ref

• entity-clustering

• entity-descriptor

• estimated-bean-size

• externally-defined

• finders-load-bean

• generate-unique-jms-client-id

• global-role

• home-call-router-class-name

• home-is-clusterable

• home-load-algorithm

• idempotent-methods

• identity-assertion

• idle-timeout-seconds

• iiop-security-descriptor

• init-suspend-seconds

• initial-beans-in-free-pool

Appendix B

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-2 of B-86

• initial-context-factory

• integrity

• invalidation-target

• is-modified-method-name

• isolation-level

• jms-client-id

• jms-polling-interval-seconds

• jndi-binding

• jndi-name

• local-jndi-name

• max-beans-in-cache

• max-beans-in-free-pool

• max-messages-in-transaction

• max-queries-in-cache

• max-suspend-seconds

• message-destination-descriptor

• message-destination-name

• message-driven-descriptor

• method

• method-intf

• method-name

• method-param

• method-params

• network-access-point

• passivate-as-principal-name

• persistence

• persistence-use

• persistent-store-dir

• persistent-store-logical-name

• pool

• principal-name

• provider-url

• read-timeout-seconds

• remote-client-timeout

• remove-as-principal-name

• replication-type

• resource-env-ref-name

• res-ref-name

Appendix B

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-3 of B-86

• resource-adapter-jndi-name

• resource-description

• resource-env-description

• resource-link

• retry-count

• retry-methods-on-rollback

• role-name

• run-as-identity-principal

• run-as-principal-name

• run-as-role-assignment

• security-permission

• security-permission-spec

• security-role-assignment

• service-reference-description

• session-timeout-seconds

• singleton-bean-call-router-class-name

• singleton-bean-is-clusterable

• singleton-bean-load-algorithm

• singleton-clustering

• singleton-session-descriptor

• stateful-session-cache

• stateful-session-clustering

• stateful-session-descriptor

• stateless-bean-call-router-class-name

• stateless-bean-is-clusterable

• stateless-bean-load-algorithm

• stateless-clustering

• stateless-session-descriptor

• stick-to-first-server

• timer-descriptor

• timer-implementation

• transaction-descriptor

• transaction-isolation

• transport-requirements

• trans-timeout-seconds

• type-identifier

• type-storage

• type-version

Appendix B

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-4 of B-86

• use-serverside-stubs

• use81-style-polling

• weblogic-compatibility

• weblogic-ejb-jar

• weblogic-enterprise-bean

• work-manager

2.1 weblogic-ejb-jar.xml File Structure
The WebLogic Server weblogic-ejb-jar.xml deployment descriptor file describes the
elements that are unique to WebLogic Server.

The top level elements in the WebLogic Server weblogic-ejb-jar.xml are as follows:

• description

• weblogic-enterprise-bean

– ejb-name

– entity-descriptor | stateless-session-descriptor | stateful-session-
descriptor | message-driven-descriptor

– transaction-descriptor

– iiop-security-descriptor

– enable-call-by-reference

– network-access-point

– clients-on-same-server

– run-as-principal-name

– create-as-principal-name

– remove-as-principal-name

– passivate-as-principal-name

– jndi-name

– local-jndi-name

– dispatch-policy

– remote-client-timeout

– stick-to-first-server

• security-role-assignment

• run-as-role-assignment

• security-permission

• transaction-isolation

• message-destination-descriptor

• idempotent-methods

• retry-methods-on-rollback

Appendix B
2.1 weblogic-ejb-jar.xml File Structure

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-5 of B-86

• enable-bean-class-redeploy

• timer-implementation

• disable-warning

• work-manager

• component-factory-class-name

• weblogic-compatibility

2.1 weblogic-ejb-jar.xml Elements
Examine the elements in weblogic-ejb-jar.xml that are supported in this release of
WebLogic Server.

The following list of the elements in weblogic-ejb-jar.xml :

• allow-concurrent-calls

• allow-remove-during-transaction

• cache-between-transactions

• cache-type

• client-authentication

• client-cert-authentication

• clients-on-same-server

• component-factory-class-name

• concurrency-strategy

• confidentiality

• connection-factory-jndi-name

• connection-factory-resource-link

• create-as-principal-name

• delay-updates-until-end-of-tx

• description

• destination-jndi-name

• destination-resource-link

• disable-warning

• dispatch-policy

• distributed-destination-connection

• durable-subscription-deletion

• ejb-name

• ejb-reference-description

• ejb-ref-name

• enable-bean-class-redeploy

• enable-call-by-reference

Appendix B
2.1 weblogic-ejb-jar.xml Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-6 of B-86

• enable-dynamic-queries

• entity-always-uses-transaction

• entity-cache

• entity-cache-name

• entity-cache-ref

• entity-clustering

• entity-descriptor

• estimated-bean-size

• externally-defined

• finders-load-bean

• generate-unique-jms-client-id

• global-role

• home-call-router-class-name

• home-is-clusterable

• home-load-algorithm

• idempotent-methods

• identity-assertion

• idle-timeout-seconds

• iiop-security-descriptor

• init-suspend-seconds

• initial-beans-in-free-pool

• initial-context-factory

• integrity

• invalidation-target

• is-modified-method-name

• isolation-level

• jms-client-id

• jms-polling-interval-seconds

• jndi-binding

• jndi-name

• local-jndi-name

• max-beans-in-cache

• max-beans-in-free-pool

• max-messages-in-transaction

• max-queries-in-cache

• max-suspend-seconds

• message-destination-descriptor

• message-destination-name

Appendix B
2.1 weblogic-ejb-jar.xml Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-7 of B-86

• message-driven-descriptor

• method

• method-intf

• method-name

• method-param

• method-params

• network-access-point

• passivate-as-principal-name

• persistence

• persistence-use

• persistent-store-dir

• persistent-store-logical-name

• pool

• principal-name

• provider-url

• read-timeout-seconds

• remote-client-timeout

• remove-as-principal-name

• replication-type

• resource-env-ref-name

• res-ref-name

• resource-adapter-jndi-name

• resource-description

• resource-env-description

• resource-link

• retry-count

• retry-methods-on-rollback

• role-name

• run-as-identity-principal

• run-as-principal-name

• run-as-role-assignment

• security-permission

• security-permission-spec

• security-role-assignment

• service-reference-description

• session-timeout-seconds

• singleton-bean-call-router-class-name

• singleton-bean-is-clusterable

Appendix B
2.1 weblogic-ejb-jar.xml Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-8 of B-86

• singleton-bean-load-algorithm

• singleton-clustering

• singleton-session-descriptor

• stateful-session-cache

• stateful-session-clustering

• stateful-session-descriptor

• stateless-bean-call-router-class-name

• stateless-bean-is-clusterable

• stateless-bean-load-algorithm

• stateless-clustering

• stateless-session-descriptor

• stick-to-first-server

• timer-descriptor

• timer-implementation

• transaction-descriptor

• transaction-isolation

• transport-requirements

• trans-timeout-seconds

• type-identifier

• type-storage

• type-version

• use-serverside-stubs

• use81-style-polling

• weblogic-compatibility

• weblogic-ejb-jar

• weblogic-enterprise-bean

• work-manager

allow-concurrent-calls

Note

The allows-concurrent-calls element is deprecated in the WebLogic Server EJB
3.1 container. Oracle recommends using the jakarta.ejb.AccessTimeout metadata
annotation instead, which enables you to specify the amount of time that a concurrent
access attempt should block before timing out. See EJB Metadata Annotations
Reference in Developing Jakarta Enterprise Beans for Oracle WebLogic Server.

Range of values: True | False

Appendix B
allow-concurrent-calls

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-9 of B-86

Default value: False

Parent elements:

• weblogic-enterprise-bean

• stateful-session-descriptor

• Function

• Example

Function
Specifies whether a stateful session bean instance allows concurrent method calls. By default,
allows-concurrent-calls is False, in accordance with the EJB specification, and WebLogic
Server will throw a RemoteException when a stateful session bean instance is currently
handling a method call and another (concurrent) method call arrives on the server.

When this value is set to True, the EJB container blocks the concurrent method call and allows
it to proceed when the previous call has completed.

Example
See stateful-session-descriptor.

allow-remove-during-transaction
Range of values: True | False

Default value: False

Parent elements:

weblogic-enterprise-bean
 stateful-session-descriptor

• Function

• Example

Function
Specifies that the remove method on a stateful session bean can be invoked within a
transaction context.

Note

Stateful session beans implementing the Synchronization interface should not use
this tag and then call remove before the transaction ends. If this is done the EJB
container will not invoke the synchronization callbacks.

Example
See stateful-session-descriptor.

Appendix B
allow-remove-during-transaction

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-10 of B-86

cache-between-transactions
Range of values: True | False

Default value: False

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-cache or entity cache-ref

• Function

• Example

Function
Formerly the db-is-shared element, specifies whether the EJB container will cache the
persistent data of an entity bean across (between) transactions.

Specify True to enable the EJB container to perform long term caching of the data. Specify
False to enable the EJB container to perform short term caching of the data.

A Read-Only bean ignores the value of the cache-between-transactions element because
WebLogic Server always performs long term caching of Read-Only data.

See Limiting Database Reads with cache-between-transactions for more information.

Example
See persistence.

cache-type
Range of values: NRU | LRU

Default value: NRU

Parent elements:

weblogic-enterprise-bean
 stateful-session-cache

• Function

• Example

Function
Specifies the order in which EJBs are removed from the cache. The values are:

• Least recently used (LRU)

• Not recently used (NRU)

The minimum cache size for NRU is 8. If max-beans-in-cache is less than 8, WebLogic
Server uses a value of 8 for max-beans-in-cache.

Appendix B
cache-between-transactions

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-11 of B-86

Example
<stateful-session-cache>
 <cache-type>NRU</cache-type>
</stateful-session-cache>

client-authentication
Range of values: none | supported | required

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 iiop-security-descriptor

• Function

• Example

Function
Specifies whether the EJB supports or requires client authentication.

Example
See iiop-security-descriptor.

client-cert-authentication
Range of values: none | supported | required

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 iiop-security-descriptor
 transport-requirements

• Function

• Example

Function
Specifies whether the EJB supports or requires client certificate authentication at the transport
level.

Example
See transport-requirements.

Appendix B
client-authentication

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-12 of B-86

clients-on-same-server
Range of values: True | False

Default value: False

Parent element:

weblogic-enterprise-bean

• Function

• Example

Function
Determines whether WebLogic Server sends JNDI announcements for this EJB when it is
deployed. When this attribute is False (the default), a WebLogic Server cluster automatically
updates its JNDI tree to indicate the location of this EJB on a particular server. This ensures
that all clients can access the EJB, even if the client is not collocated on the same server.

You can set clients-on-same-server to True when you know that all clients that will access
this EJB will do so from the same server on which the bean is deployed. In this case, a
WebLogic Server cluster does not send JNDI announcements for this EJB when it is deployed.
Because JNDI updates in a cluster utilize multicast traffic, setting clients-on-same-server to
True can reduce the startup time for very large clusters.

See Optimization for Collocated Objects in Administering Clusters for Oracle WebLogic Server
for more information on collocated EJBs.

Example
<weblogic-enterprise-bean>
 <ejb-name>AccountBean</ejb-name>
 ...
 <clients-on-same-server>True</clients-on-same-server>
</weblogic-enterprise-bean>

component-factory-class-name
Range of values: N/A

Default value: null

Parent element:

weblogic-ejb-jar

• Function

Function
Enable the Spring extension by setting this element to
org.springframework.jee.interfaces.SpringComponentFactory. This element exists in EJB,
Web, and application descriptors. A module-level descriptor overwrites an application-level
descriptor. If the tag is set to null (default), the Spring extension is disabled.

Appendix B
clients-on-same-server

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-13 of B-86

concurrency-strategy
Range of values: Exclusive | Database | ReadOnly | Optimistic

Default value: Database

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-cache

Or

weblogic-enterprise-bean
 entity-descriptor
 entity-cache-ref

• Function

• Example

Function
Specifies how the container should manage concurrent access to an entity bean. Set this
element to one of four values:

• Exclusive causes WebLogic Server to place an exclusive lock on cached entity EJB
instances when the bean is associated with a transaction. Other requests for the EJB
instance are blocked until the transaction completes. This option was the default locking
behavior for WebLogic Server 3.1 through 5.1.

• Database causes WebLogic Server to defer locking requests for an entity EJB to the
underlying datastore. With the Database concurrency strategy, WebLogic Server allocates
a separate entity bean instance and allows locking and caching to be handled by the
database. This is the default option.

• ReadOnly is used for read-only entity beans. Activates a new instance for each transaction
so that requests proceed in parallel. WebLogic Server calls ejbLoad() for ReadOnly beans
are based on the read-timeout-seconds parameter.

• Optimistic holds no locks in the EJB container or database during a transaction. The EJB
container verifies that none of the data updated by a transaction has changed before
committing the transaction. If any updated data changed, the EJB container rolls back the
transaction.

Note

When a cluster member updates a bean with a concurrency-strategy of
Optimistic that is deployed to a cluster, the EJB container attempts to invalidate
all copies of the bean in all servers in the cluster. You can disable this behavior by
setting cluster-invalidation-disabled in weblogic-cmp-jar.xml to True. For
more information, see Invalidation Options for Optimistic Concurrency in Clusters.

Appendix B
concurrency-strategy

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-14 of B-86

See Choosing a Concurrency Strategy for more information on the Exclusive and Database
locking behaviors. See Read-Write versus Read-Only Entity Beans for more information about
read-only entity EJBs.

Example
<weblogic-enterprise-bean>
 <ejb-name>AccountBean</ejb-name>
 <entity-descriptor>
 <entity-cache>
 <concurrency-strategy>ReadOnly</concurrency-strategy>
 </entity-cache>
 </entity-descriptor>
</weblogic-enterprise-bean>

confidentiality
Range of values: none | supported | required

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 iiop-security-descriptor
 transport-requirements

• Function

• Example

Function
Specifies the transport confidentiality requirements for the EJB. Using the confidentiality
element ensures that the data is sent between the client and server in such a way as to
prevent other entities from observing the contents.

Example
See transport-requirements.

connection-factory-jndi-name
Range of values: Valid JNDI name

Default value: If not specified, the default is
weblogic.jms.MessageDrivenBeanConnectionFactory, which must have been declared in the
JMSConnectionFactory element in config.xml.

Parent elements:

weblogic-enterprise-bean
 message-driven-descriptor

• Function

• Example

Appendix B
confidentiality

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-15 of B-86

Function
Specifies the JNDI name of the JMS Connection Factory that a message-driven EJB looks up
to create its queues and topics. See "Configuring MDBs for Destinations" and "How to Set
connection-factory-jndi-name" in

Example
<message-driven-descriptor>
 <connection-factory-jndi-name>
 java:comp/env/jms/MyConnectionFactory
 </connection-factory-jndi-name>
</message-driven-descriptor>

connection-factory-resource-link
Range of values: Valid resource within a JMS module

Default value: n/a.

Parent elements:

weblogic-enterprise-bean
 message-destination-descriptor

• Function

Function
Maps to a resource within a JMS module defined in ejb-jar.xml to an actual JMS Module
Reference in WebLogic Server.

create-as-principal-name
Range of values: Valid principal name

Default value: n/a

Parent element:

weblogic-enterprise-bean

• Function

Function
Introduced in WebLogic Server 8.1 SP01, specifies the principal to be used in situations where
ejbCreate would otherwise run with an anonymous principal. Under such conditions, the
choice of which principal to run as is governed by the following rule:

if create-as-principal-name is set

then use that principal

else

Appendix B
connection-factory-resource-link

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-16 of B-86

If a run-as role has been specified for the bean in ejb-jar.xml

then use a principal according to the rules for setting the run-as-role-assignment

else

run ejbCreate as an anonymous principal.

The create-as-principal-name element only needs to be specified if operations within
ejbCreate require more permissions than the anonymous principal would have.

This element effects the ejbCreate methods of stateless session beans and message-driven
beans.

See also remove-as-principal-name, passivate-as-principal-name, and principal-name.

delay-updates-until-end-of-tx
Range of values: True | False

Default value: True

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 persistence

• Function

• Example

Function
Set the delay-updates-until-end-of-tx element to True (the default) to update the
persistent store of all beans in a transaction at the completion of the transaction. This setting
generally improves performance by avoiding unnecessary updates. However, it does not
preserve the ordering of database updates within a database transaction.

If your datastore uses an isolation level of TransactionReadUncommitted, you may want to
allow other database users to view the intermediate results of in-progress transactions. In this
case, set delay-updates-to-end-of-tx to False to update the bean's persistent store at the
conclusion of each method invoke. See Understanding ejbLoad() and ejbStore() Behavior for
more information.

Note

Setting delay-updates-until-end-of-tx to False does not cause database
updates to be "committed" to the database after each method invoke; they are only
sent to the database. Updates are committed or rolled back in the database only at the
conclusion of the transaction.

Example
<entity-descriptor>
 <persistence>

Appendix B
delay-updates-until-end-of-tx

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-17 of B-86

 ...
 ...
 <delay-updates-until-end-of-tx>False</delay-updates-until-end-of-tx>
 </persistence>
</entity-descriptor>

description
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar

and

weblogic-ejb-jar
 transaction-isolation
 method

and

weblogic-ejb-jar
 idempotent-methods
 method

and

weblogic-ejb-jar
 retry-methods-on-rollback

• Function

• Example

Function
Describes the parent element.

Example
<description>Contains a description of parent element</description>

destination-jndi-name
Range of values: Valid JNDI name

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 message-destination-descriptor

and

weblogic-enterprise-bean
 message-driven-descriptor

Appendix B
description

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-18 of B-86

• Function

• Example

Function
Specifies the JNDI name used to associate a message-driven bean with an actual JMS Queue
or Topic deployed in the WebLogic Server JNDI tree.

Example
See message-destination-descriptor and message-driven-descriptor.

destination-resource-link
Range of values: Valid resource within a JMS module

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 message-destination-descriptor

• Function

Function
Maps to a resource within a JMS module defined in ejb-jar.xml to an actual JMS Module
Reference in WebLogic Server.

disable-warning
Range of values: BEA-010001 | BEA-010054 | BEA-010200 | BEA-010202

Default value: n/a

Parent element:

weblogic-ejb-jar

• Function

• Example

Function
Specifies that WebLogic Server should disable the warning message whose ID is specified.
Set this element to one of four values:

• BEA-010001—Disables this warning message: "EJB class loaded from system classpath
during deployment."

• BEA-010054—Disables this warning message: "EJB class loaded from system classpath
during compilation."

Appendix B
destination-resource-link

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-19 of B-86

• BEA-010200—Disables this warning message: "EJB impl class contains a public static field,
method or class."

• BEA-010202—Disables this warning message: "Call-by-reference not enabled."

Example
To disable the warning message: "Call-by-reference not enabled", set <disable-warning>, as
shown below.

<disable-warning>BEA-010202</disable-warning>

dispatch-policy
Range of values: Valid execute queue name

Default value: n/a

Parent element:

weblogic-enterprise-bean

• Function

• Example

Function
Designates which server execute thread pool the EJB should run in. Dispatch polices are
supported for all types of beans, including entity, session, and message-driven.

If no dispatch-policy is specified, or the specified dispatch-policy refers to a nonexistent
server execute thread pool, then the server's default execute thread pool is used instead.

WebLogic Server ignores dispatch-policy if the host server instance does not have an
execute thread queue bearing a corresponding name.

If a message-driven bean (MDB) is driven by a foreign (non-WebLogic) destination source,
WebLogic Server might ignore dispatch-policy, as the MDB may instead run in the foreign
provider's threading mechanism. For example, for the IBM WebSphere MQSeries messaging
software, dispatch-policy is not honored for non-transactional queues; instead the
application code runs in an MQSeries thread. For MQSeries transactional queues, and both
non-transactional and transactional topics, dispatch-policy is honored.

The maximum number of concurrently running MDB instances is designated by a combination
of max-beans-in-free-pool and dispatch-policy values. See MDB Thread Management in
Tuning Performance of Oracle WebLogic Server.

Example
<dispatch-policy>queue_name</dispatch-policy>

distributed-destination-connection
Range of values: LocalOnly | EveryMember

Default value: LocalOnly

Appendix B
dispatch-policy

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-20 of B-86

Parent elements:

weblogic-ejb-jar
 weblogic-enterprise-bean
 message-driven-descriptor

• Function

• Example

Function

Note

This element is valid for WebLogic JMS 9.0 or later.

Specifies whether an MDB that accesses a WebLogic JMS distributed queue in the same
cluster consumes from all distributed destination members or only those members local to the
current Weblogic Server.

Valid values include:

• LocalOnly—Deployment descriptor and message-driven bean are in the same cluster.

• EveryMember—Deployment descriptor is on a remote server.

If set to EveryMember, the total number of connections will be equal to: (the number of
servers where message-driven bean is deployed) x (the number of destinations). For
larger deployments, the number of connections may consume a considerable amount of
resources.

The EveryMember setting incurs additional network and CPU overhead transferring messages
from remote servers to the local MDB; it is normally only recommended for limited use cases
(such as MDBs with JMS selector filters that are unique to the current server).

Example
<distributed-destination-connection>EveryMember</distributed-destination-connection>

durable-subscription-deletion
Range of values: True | False

Default value: False

Parent elements:

weblogic-ejb-jar
 weblogic-enterprise-bean
 message-driven-descriptor

• Function

• Example

Appendix B
durable-subscription-deletion

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-21 of B-86

Function
Indicates whether you want durable topic subscriptions to be automatically deleted when an
MDB is undeployed or removed.

Example
<durable-subscription-deletion>True</durable-subscription-deletion>

ejb-name
Range of values: Name, which conforms to the lexical rules for an NMTOKEN, of an EJB that
is defined in ejb-jar.xml

Default value: n/a

Parent elements:

weblogic-enterprise-bean

and

weblogic-enterprise-bean
 method

• Function

• Example

Function
Specifies an enterprise bean's name, using the same name for the bean that is specified in
ejb-jar.xml. The enterprise bean code does not depend on the name; therefore the name
can be changed during the application assembly process without breaking the enterprise
bean's function. There is no architected relationship between the ejb-name in the deployment
descriptor and the JNDI name that the Deployer will assign to the enterprise bean's home.

Note

Not recommended in weblogic-enterprise-bean. For more information, see Using
EJB Links.

Example
See method.

ejb-reference-description
Range of values: n/a

Default value: n/a

Appendix B
ejb-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-22 of B-86

Parent element:

weblogic-enterprise-bean

• Function

• Example

Function
Maps the JNDI name of an EJB in WebLogic Server to the name by which it is specified in the
ejb-ref-name element in ejb-jar.xml.

Example
<ejb-reference-description>
 <ejb-ref-name>AdminBean</ejb-ref-name>
 <jndi-name>payroll.AdminBean</jndi-name>
</ejb-reference-description>

ejb-ref-name
Range of values: Valid ejb-ref-name specified in the associated ejb-jar.xml file

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 ejb-reference-description

• Function

• Example

Function
Specifies a resource reference name. This element is the reference that the EJB provider
places within the ejb-jar.xml deployment file.

Example
<ejb-reference-description>
 <ejb-ref-name>AdminBean</ejb-ref-name>
 <jndi-name>payroll.AdminBean</jndi-name>
</ejb-reference-description>

enable-bean-class-redeploy
Range of values: True | False

Default value: False

Parent element:

weblogic-enterprise-jar

Appendix B
ejb-ref-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-23 of B-86

• Function

• Example

Function
By default, the EJB implementation class is loaded in the same classloader as the rest of the
EJB classes. When the enable-bean-class-redeploy element is enabled, the implementation
class, along with its super classes, gets loaded in a child classloader of the EJB module
classloader. This allows the EJB implementation class to be redeployed without redeploying
the entire EJB module.

There are some potential problems with loading the bean class in a child classloader. First, the
bean class will no longer be visible to any classes loaded in the parent classloader, so those
classes cannot refer to the bean class or errors will occur. Also, the bean class will not be able
to invoke any package protected methods on any classes loaded in a different classloader. So,
if your bean class invokes a helper class in the same package, the helper class methods must
be declared public or IllegalAccessErrors will result.

Note

This element is deprecated for EJB 3.0. Starting with WebLogic Server 10.3.0, you
can replace this feature with FastSwap. See Using FastSwap Deployment to Minimize
Redeployment in Deploying Applications to Oracle WebLogic Server.

Example
The following XML element enables redeployment of an individual bean class:

<enable-bean-class-redeploy>True</enable-bean-class-redeploy>

enable-call-by-reference
Range of values: True | False

Default value: False

Parent element:

weblogic-enterprise-bean

• Function

• Example

Function
When enable-call-by-reference is False, parameters to the EJB methods are copied—or
passed by value—regardless of whether the EJB is called remotely or from within the same
EAR.

When enable-call-by-reference is True, EJB methods called from within the same EAR file
or standalone JAR file will pass arguments by reference. This improves the performance of
method invocation since parameters are not copied.

Appendix B
enable-call-by-reference

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-24 of B-86

Note

When an EJB is called remotely, method parameters are always passed by value.
Remote calls may be between applications on different JVMs or between applications
on the same JVM.

For example, suppose two applications named EJBApp1.ear, and EJBApp2.ear are
deployed on the same server. EJBApp1.ear includes EJB1, and EJBApp2.ear includes
EJB2. In this situation, the calls between EJB1 and EJB2 are considered remote calls
even though they are on the same JVM.

Example
<weblogic-enterprise-bean>
 <ejb-name>AccountBean</ejb-name>

 <enable-call-by-reference>False</enable-call-by-reference>

</weblogic-enterprise-bean>

enable-dynamic-queries
Range of values: True | False

Default value: True

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

• Function

• Example

Function
Set to True to enable dynamic queries. Dynamic queries are only available for use with EJB
2.x CMP beans.

Example
<enable-dynamic-queries>True</enable-dynamic-queries>

entity-always-uses-transaction
Range of values: True | False

Default value: False

Parent elements:

weblogic-ejb-jar
 weblogic-compatibility

Appendix B
enable-dynamic-queries

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-25 of B-86

• Function

Function
This element, introduced in WebLogic Server 9.0, allows you to specify whether an entity bean
must always use a transaction. Before WebLogic Server 9.0, when an entity bean ran in an
unspecified transaction, the EJB container would create a transaction for the entity bean. Now,
the EJB container no longer creates a transaction when an entity bean runs in an unspecified
transaction. To disable this behavior and cause the EJB container to create a transaction for
entity beans that run in unspecified transaction, set the value of this element to True.

entity-cache
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

• Function

• Example

Function
Defines the following options used to cache entity EJB instances within WebLogic Server:

• max-beans-in-cache

• idle-timeout-seconds

• read-timeout-seconds

• concurrency-strategy

See Understanding Entity Caching for more information.

Example
<entity-descriptor>
 <entity-cache>
 <max-beans-in-cache>...</max-beans-in-cache>
 <idle-timeout-seconds>...</idle-timeout-seconds>
 <read-timeout-seconds>...<read-timeout-seconds>
 <concurrency-strategy>...</concurrency-strategy>
 </entity-cache>
 <persistence>...</persistence>
 <entity-clustering>...</entity-clustering>
</entity-descriptor>

entity-cache-name
Range of values: Name assigned to an application level entity cache in the weblogic-
application.xml file

Appendix B
entity-cache

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-26 of B-86

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-cache-ref

• Function

• Example

Function
Refers to an application level entity cache that the entity bean uses. An application level cache
is a cache that may be shared by multiple entity beans in the same application. The value you
specify for entity-cache-name must match the name assigned to an application level entity
cache in the weblogic-application.xml file.

For more information about the weblogic-application.xml file, see Enterprise Application
Deployment Descriptor Elements in Developing Applications for Oracle WebLogic Server.

Example
See entity-cache-ref.

entity-cache-ref
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

• Function

• Example

Function
Refers to an application level entity cache which can cache instances of multiple entity beans
that are part of the same application. Application level entity caches are declared in the
weblogic-application.xml file.

Use concurrency-strategy to define the type of concurrency you want the bean to use. The
concurrency-strategy must be compatible with the application level cache's caching strategy.
For example, an Exclusive cache only supports beans with a concurrency-strategy of
Exclusive. A MultiVersion cache supports the Database, ReadOnly, and Optimistic
concurrency strategies.

Example
<entity-cache-ref>
 <entity-cache-name>AllEntityCache</entity-cache-name>
 <read-timeout-seconds>600</read-timeout-seconds>

Appendix B
entity-cache-ref

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-27 of B-86

 <cache-between-transactions>true</cache-between-transactions>
 <concurrency-strategy>ReadOnly</concurrency-strategy>
 <estimated-bean-size>20</estimated-bean-size>
</entity-cache-ref>

entity-clustering
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

• Function

• Example

Function
Specifies how an entity bean will be replicated in a WebLogic cluster:

• home-is-clusterable

• home-load-algorithm

• home-call-router-class-name

• use-serverside-stubs

Example
<entity-clustering>
 <home-is-clusterable>True</home-is-clusterable>
 <home-load-algorithm>random</home-load-algorithm>
 <home-call-router-class-name>beanRouter</home-call-router-class-name>
 <use-serverside-stubs>True</use-serverside-stubs>
</entity-clustering>

entity-descriptor
Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

• Function

• Example

Function
Specifies the following deployment parameters that are applicable to an entity bean:

• pool

Appendix B
entity-clustering

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-28 of B-86

• timer-descriptor

• entity-cache or entity-cache-ref

• persistence

• entity-clustering

• invalidation-target

• enable-dynamic-queries

Example
<entity-descriptor>
 <pool>...</pool>
 <timer-descriptor>...</timer-descriptor>
 <entity-cache>...</entity-cache>
 <persistence>...</persistence>
 <entity-clustering>...</entity-clustering>
 <invalidation-target>...</invalidation-target>
 <enable-dynamic-queries>...</enable-dynamic-queries>
</entity-descriptor>

estimated-bean-size
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

• Function

• Example

Function
Specifies the estimated average size of the instances of an entity bean in bytes. This is the
average number of bytes of memory that is consumed by each instance.

Use the estimated-bean-size element when the application level cache you use to cache
beans is also specified in terms of bytes and megabytes.

Although you may not know the exact number of bytes consumed by the entity bean instances,
specifying a size allows you to give some relative weight to the beans that share a cache at
one time.

For example, suppose bean A and bean B share a cache, called AB-cache, that has a size of
1000 bytes and the size of A is 10 bytes and the size of B is 20 bytes, then the cache can hold
at most 100 instances of A and 50 instances of B. If 100 instances of A are cached, this implies
that 0 instances of B are cached.

Example
See entity-cache-ref.

Appendix B
estimated-bean-size

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-29 of B-86

externally-defined
Range of values: True | False

Default value: none

Parent elements:

weblogic-ejb-jar
 security-role-assignment

• Function

Function
Indicates that a particular security role is defined externally in a security realm, outside of the
deployment descriptor. Because the security role and its principal-name mapping is defined
elsewhere, principal-names are not to be specified in the deployment descriptor. This tag is
used as an indicative placeholder instead of a set of principal-name elements. Use this
element instead of global-role, which has been deprecated and was removed from WebLogic
Server in release 9.0.

finders-load-bean
Range of values: True | False

Default value: True

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 persistence

• Function

• Example

Function
Valid only for CMP entity EJBs. The finders-load-bean element determines whether
WebLogic Server loads the EJB into the cache after a call to a finder method returns a
reference to the bean. If you set this element to True, WebLogic Server immediately loads the
bean into the cache if a reference to a bean is returned by the finder. If you set this element to
False, WebLogic Server does not automatically load the bean into the cache until the first
method invocation; this behavior is consistent with the EJB 1.1 specification.

Example
<entity-descriptor>
 <persistence>
 <finders-load-bean>True</finders-load-bean>
 </persistence>
</entity-descriptor>

Appendix B
externally-defined

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-30 of B-86

generate-unique-jms-client-id
Range of values: True | False

Default value: False

Parent elements:

weblogic-ejb-jar
 weblogic-enterprise-bean
 message-driven-descriptor

• Function

Function
Indicates whether or not you want the EJB container to generate a unique client-id for every
instance of an MDB. Enabling this flag makes it easier to deploy durable MDBs to multiple
server instances in a WebLogic Server cluster.

global-role
The global-role element is deprecated and was removed from WebLogic Server in release
9.0. Use the externally-defined element instead.

home-call-router-class-name
Range of values: Valid name of a custom class

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-clustering

and

weblogic-enterprise-bean
 stateful-session-descriptor
 stateful-session-clustering

and

weblogic-enterprise-bean
 stateless-session-descriptor
 stateless-session-clustering

• Function

• Example

Function
Specifies the name of a custom class to use for routing bean method calls. This class must
implement weblogic.rmi.cluster.CallRouter(). If specified, an instance of this class is

Appendix B
generate-unique-jms-client-id

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-31 of B-86

called before each method call. The router class has the opportunity to choose a server to
route to based on the method parameters. The class returns either a server name or null,
which indicates that the current load algorithm should select the server.

Example
See entity-clustering and stateful-session-clustering.

home-is-clusterable
Range of values: True | False

Default value: True

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-clustering

and

weblogic-enterprise-bean
 stateful-session-descriptor
 stateful-session-clustering

and

weblogic-enterprise-bean
 stateful-session-descriptor
 stateless-clustering

• Function

• Example

Function
When home-is-clusterable is True, the EJB can be deployed from multiple WebLogic
Servers in a cluster. Calls to the home stub are load-balanced between the servers on which
this bean is deployed, and if a server hosting the bean is unreachable, the call automatically
fails over to another server hosting the bean.

Example
See entity-clustering.

home-load-algorithm
Range of values: round-robin | random | weight-based | RoundRobinAffinity |
RandomAffinity | WeightBasedAffinity

Default value: Value of weblogic.cluster.defaultLoadAlgorithm

Parent elements:

Appendix B
home-is-clusterable

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-32 of B-86

weblogic-enterprise-bean
 entity-descriptor
 entity-clustering

and

weblogic-enterprise-bean
 stateful-session-descriptor
 stateful-session-clustering

and

weblogic-enterprise-bean
 entity-descriptor
 entity-clustering

• Function

• Example

Function
Specifies the algorithm to use for load balancing between replicas of the EJB home in a
cluster. If this element is not defined, WebLogic Server uses the algorithm specified by the
server element, weblogic.cluster.defaultLoadAlgorithm.

You can define home-load-algorithm as one of the following values:

• round-robin—Load balancing is performed in a sequential fashion among the servers
hosting the bean.

• random—Replicas of the EJB home are deployed randomly among the servers hosting the
bean.

• weight-based—Replicas of the EJB home are deployed on host servers according to the
servers' current workload.

• round-robin-affinity—server affinity governs connections between external Java clients
and server instances; round robin load balancing is used for connections between server
instances.

• weight-based-affinity—server affinity governs connections between external Java
clients and server instances; weight-based load balancing is used for connections between
server instances.

• random-affinity—server affinity governs connections between external Java clients and
server instances; random load balancing is used for connections between server
instances.

See Load Balancing for EJBs and RMI Objects in Administering Clusters for Oracle WebLogic
Server.

Example
See entity-clustering and stateful-session-clustering.

idempotent-methods
Range of values: n/a

Default value: n/a

Appendix B
idempotent-methods

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-33 of B-86

Parent element:

weblogic-ejb-jar

• Function

• Example

Function
Defines list of methods of a clustered EJB which are written in such a way that repeated calls
to the same method with the same arguments has exactly the same effect as a single call. This
allows the failover handler to retry a failed call without knowing whether the call actually
compiled on the failed server. When you enable idempotent-methods for a method, the EJB
stub can automatically recover from any failure as long as it can reach another server hosting
the EJB.

Clustering must be enabled for the EJB. To enable clustering, see entity-clustering, stateful-
session-clustering, and stateless-clustering.

The methods on stateless session bean homes and read-only entity beans are automatically
set to be idempotent. It is not necessary to explicitly specify them as idempotent.

Example
<idempotent-method>
 <method>
 <description>...</description>
 <ejb-name>...</ejb-name>
 <method-intf>...</method-intf>
 <method-name>...</method-name>
 <method-params>...</method-params>
 </method>
</idempotent-method>

identity-assertion
Range of values: none | supported | required

Default value: none

Parent elements:

weblogic-enterprise-bean
 iiop-security-descriptor

• Function

• Example

Function
Specifies whether the EJB supports or requires identity assertion.

Example
See iiop-security-descriptor.

Appendix B
identity-assertion

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-34 of B-86

idle-timeout-seconds
Range of values: 0 to maxSeconds, where 0 denotes unlimited and maxSeconds is the
maximum value of an int

Default value: 600

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-cache

and

weblogic-enterprise-bean
 entity-descriptor
 entity-cache-ref

and

weblogic-enterprise-bean
 stateful-session-descriptor
 stateful-session-cache

and

weblogic-enterprise-bean
 stateless-session-descriptor or message-driven-descriptor or entity-descriptor
 pool

• Function

• Example

Function
Defines the maximum length of time an EJB should remain in the cache. After this time has
elapsed, WebLogic Server removes the bean instance if the number of beans in cache
approaches the limit of max-beans-in-cache. The removed bean instances are passivated.
See Caching and Passivating Stateful Session EJBs and Managing Entity Bean Pooling and
Caching for more information.

Also defines the maximum length of time an EJB should remain idle in the free pool before it is
removed. After this time has elapsed, WebLogic Server removes the bean instance from the
free pool so long as doing so will not cause the number of beans in the pool to fall below the
number specified in initial-beans-in-free-pool.

Note

Although idle-timeout-seconds appears in the entity-cache element, WebLogic
Server 8.1 SP1 and SP2 do not use its value in managing the life cycle of entity EJBs
—in those service packs, idle-timeout-seconds has no effect on when entity beans
are removed from cache.

Appendix B
idle-timeout-seconds

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-35 of B-86

Example
The following entry indicates that the stateful session EJB, AccountBean, should become
eligible for removal if max-beans-in-cache is reached and the bean has been in cache for 20
minutes:

<weblogic-enterprise-bean>
 <ejb-name>AccountBean</ejb-name>
 <stateful-session-descriptor>
 <stateful-session-cache>
 <max-beans-in-cache>200</max-beans-in-cache>
 <idle-timeout-seconds>1200</idle-timeout-seconds>
 </stateful-session-cache>
 </stateful-session-descriptor>
</weblogic-enterprise-bean>

iiop-security-descriptor
Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

• Function

• Example

Function
Specifies security configuration parameters at the bean level. These parameters determine the
IIOP security information contained in the IOR.

Example
<iiop-security-descriptor>
 <transport-requirements>...</transport-requirements>
 <client-authentication>supported<client-authentication>
 <identity-assertion>supported</identity-assertion>
</iiop-security-descriptor>

init-suspend-seconds
Range of values: any integer

Default value: 5

Parent elements:

weblogic-enterprise-bean
 message-driven-descriptor

• Function

Appendix B
iiop-security-descriptor

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-36 of B-86

Function
Specifies the initial number of seconds to suspend an MDB's JMS connection when the EJB
container detects a JMS resource outage. See Configuring Suspension of Message Delivery
During JMS Resource Outages in Developing Message-Driven Beans for Oracle WebLogic
Server.

initial-beans-in-free-pool
Range of values: 0 to maxBeans

Default value: 0

Parent elements:

weblogic-enterprise-bean
 stateless-session-descriptor or message-driven-descriptor or entity-descriptor
 pool

• Function

• Example

Function
If you specify a value for initial-beans-in-free-pool, you set the initial size of the pool.
WebLogic Server populates the free pool with the specified number of bean instances for every
bean class at startup. Populating the free pool in this way improves initial response time for the
EJB, because initial requests for the bean can be satisfied without generating a new instance.

Note

Based on the Enterprise JavaBean specification, the
javax.ejb.ActivationConfigProperty annotation is used for MDBs only. This
annotation is not used for session or entity beans.

Example
See pool.

initial-context-factory
Range of values: Valid name of an initial context factory

Default value: weblogic.jndi.WLInitialContextFactory

Parent elements:

weblogic-enterprise-bean
 message-destination-descriptor

and

Appendix B
initial-beans-in-free-pool

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-37 of B-86

weblogic-enterprise-bean
 message-driven-descriptor

• Function

• Example

Function
Specifies the initial context factory used by the JMS provider to create initial context. See
Configuring MDBs for Destinations and How to Set initial-context-factory in Developing
Message-Driven Beans for Oracle WebLogic Server.

Example
<message-driven-descriptor>
 <initial-context-factory>fiorano.jms.rtl.FioranoInitialContextFactory
 </initial-context-factory>
</message-driven-descriptor>

See also message-destination-descriptor.

integrity
Range of values: none | supported | required

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 iiop-security-descriptor
 transport-requirements

• Function

• Example

Function
Specifies the transport integrity requirements for the EJB. Using the integrity element
ensures that the data is sent between the client and server in such a way that it cannot be
changed in transit.

Example
See transport-requirements.

invalidation-target
Range of values: n/a

Default value: n/a

Parent elements:

Appendix B
integrity

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-38 of B-86

weblogic-enterprise-bean
 entity-descriptor

• Function

• Example

Function
Specifies a Read-Only entity EJB that should be invalidated when this container-managed
persistence entity EJB has been modified.

The target ejb-name must be a Read-Only entity EJB and this element can only be specified
for an EJB 2.x container-managed persistence entity EJB.

Example
<invalidation-target>
 <ejb-name>StockReaderEJB</ejb-name>
</invalidation-target>

is-modified-method-name
Range of values: Valid entity EJB method name

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 persistence

• Function

• Example

Function
Specifies a method that WebLogic Server calls when the EJB is stored. The specified method
must return a boolean value. If no method is specified, WebLogic Server always assumes that
the EJB has been modified and always saves it.

Providing a method and setting it as appropriate can improve performance for EJB 1.1-
compliant beans, and for beans that use bean-managed persistence. However, any errors in
the method's return value can cause data inconsistency problems.

Note

isModified() is no longer required for 2.x CMP entity EJBs based on the EJB 2.x
specification. However, it still applies to BMP and 1.1 CMP EJBs. When you deploy
EJB 2.x entity beans with container-managed persistence, WebLogic Server
automatically detects which EJB fields have been modified, and writes only those
fields to the underlying datastore.

Appendix B
is-modified-method-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-39 of B-86

Example
<entity-descriptor>
 <persistence>
 <is-modified-method-name>semidivine</is-modified-method-name>
 </persistence>
</entity-descriptor>

isolation-level
Range of values: TransactionSerializable | TransactionReadCommitted |
TransactionReadUncommitted | TransactionRepeatableRead |
TransactionReadCommittedForUpdate | TransactionReadCommittedForUpdateNoWait

Default value: Default value of the underlying database

Parent elements:

weblogic-ejb-jar
 transaction-isolation

• Function

• Oracle Database-Only Isolation Levels

• Example

Function
Defines method-level transaction isolation settings for an EJB. Allowable values include:

• TransactionSerializable—Simultaneously executing this transaction multiple times has
the same effect as executing the transaction multiple times in a serial fashion.

Note

For Oracle databases, Oracle recommends that you use the
TransactionReadCommittedForUpdate isolation level instead of the
TransactionSerializable isolation level. This is because Oracle databases do
not lock read data at the TransactionSerializable isolation level. Additionally, at
the TransactionSerializable isolation level, it is possible for concurrent
transactions on Oracle databases to proceed without throwing the Oracle
exception ORA-08177 "can't serialize access for this transaction"). For
more information on the TransactionReadCommittedForUpdate isolation level, see
Oracle Database-Only Isolation Levels.

• TransactionReadCommitted—The transaction can view only committed updates from other
transactions.

• TransactionReadUncommitted—The transaction can view uncommitted updates from other
transactions.

• TransactionRepeatableRead—Once the transaction reads a subset of data, repeated
reads of the same data return the same values, even if other transactions have
subsequently modified the data.

Appendix B
isolation-level

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-40 of B-86

Oracle Database-Only Isolation Levels
These addition values are supported only for Oracle databases, and only for container-
managed persistence (CMP) EJBs:

• TransactionReadCommittedForUpdate— Supported only for Oracle databases, for
container-managed persistence (CMP) EJBs only. This value sets the isolation level to
TransactionReadCommitted, and for the duration of the transaction, all SQL SELECT
statements executed in any method are executed with FOR UPDATE appended to them. This
causes the secluded rows to be locked for update. If the Oracle database cannot lock the
rows affected by the query immediately, then it waits until the rows are free. This condition
remains in effect until the transaction does a COMMIT or ROLLBACK.

This isolation level can be used to avoid the error:

java.sql.SQLException: ORA-08177: can't serialize access for this transaction

which can (but does not always) occur when using the TransactionSerializable isolation
level with Oracle databases.

Note

For Oracle databases, Oracle recommends that you use this isolation level
(TransactionReadCommittedForUpdate) instead of the TransactionSerializable
isolation level. This is because Oracle databases do not lock read data at the
TransactionSerializable isolation level.

• TransactionReadCommittedForUpdateNoWait—Supported only for Oracle databases, for
container-managed persistence (CMP) EJBs only.

This value sets the isolation level to TransactionReadCommitted, and for the duration of
the transaction, all SQL SELECT statements executed in any method are executed with
FOR UPDATE NO WAIT appended to them. This causes the selected rows to be locked
for update.

In contrast to the TransactionReadCommittedForUpdate setting,
TransactionReadCommittedForUpdateNoWait causes the Oracle DBMS to NOT WAIT if the
required locks cannot be acquired immediately—the affected SELECT query will fail and an
exception will be thrown by the container.

Refer to your database documentation for more information on support for different isolation
levels.

Example
See transaction-isolation.

jms-client-id
Range of values: n/a

Default value: ejb-name for the EJB

Parent element:

message-driven-descriptor

Appendix B
jms-client-id

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-41 of B-86

• Function

• Example

Function
Specifies a client ID for the MDB when it connects to a JMS destination. Required for durable
subscriptions to JMS topics.

If you specify the connection factory that the MDB uses in connection-factory-jndi-name,
the client ID can be defined in the ClientID element of the associated JMSConnectionFactory
element in config.xml.

If JMSConnectionFactory in config.xml does not specify a ClientID, or if you use the default
connection factory, (you do not specify connection-factory-jndi-name) the message-driven
bean uses the jms-client-id value as its client id.

Example
<jms-client-id>MyClientID</jms-client-id>

jms-polling-interval-seconds
Range of values: n/a

Default value: 10 seconds

Parent element:

message-driven-descriptor

• Function

• Example

Function
Specifies the number of seconds between each attempt to reconnect to the JMS destination.
Each message-driven bean listens on an associated JMS destination. If the JMS destination is
located on another WebLogic Server instance or a foreign JMS provider, then the JMS
destination may become unreachable. In this case, the EJB container automatically attempts to
reconnect to the JMS Server. Once the JMS Server is up again, the message-driven bean can
again receive messages.

Example
<jms-polling-interval-seconds>5</jms-polling-interval-seconds>

jndi-binding
Range of values: Custom JNDI name

Default value: n/a

Parent elements:

weblogic-enterprise-bean

Appendix B
jms-polling-interval-seconds

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-42 of B-86

and

weblogic-enterprise-bean
 resource-description

and

weblogic-enterprise-bean
 ejb-reference-description

• Function

• Example

Function
Specifies the custom JNDI name that can be applied to a bean class or business interface to
indicate a JNDI name for a certain client view. When applied to a bean class to indicate the
JNDI name of a no-interface view, the className is optional.

Example
See resource-description and ejb-reference-description.

jndi-name

Note

The jndi-name element is deprecated in this release of WebLogic Server. Use jndi-
binding instead.

Range of values: Valid JNDI name

Default value: n/a

Parent elements:

weblogic-enterprise-bean

and

weblogic-enterprise-bean
 resource-description

and

weblogic-enterprise-bean
 ejb-reference-description

• Function

• Example

Appendix B
jndi-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-43 of B-86

Function
Specifies the JNDI name of an actual EJB, resource, or reference available in WebLogic
Server.

Note

Assigning a JNDI name to a bean is not recommended. Global JNDI names generate
heavy multicast traffic during clustered server startup. See Using EJB Links for the
better practice. If you have an EAR library that contains EJBs, you cannot deploy
multiple applications that reference the library because attempting to do so will result
in a JNDI name conflict. This is because global JNDI name cannot be set for individual
EJBs in EAR libraries; it can only be set for an entire library.

Example
See resource-description and ejb-reference-description.

local-jndi-name

Note

The local-jndi-name element is deprecated in this release of WebLogic Server. Use
jndi-binding instead.

Range of values: Valid JNDI name

Default value: n/a

Parent elements:

weblogic-enterprise-bean

• Function

• Example

Function
JNDI name for a bean's local home. If a bean has both a remote and a local home, then it can
be assigned two JNDI names; one for each home.

Note

Assigning a JNDI name to a bean is not recommended. See Using EJB Links for the
better practice.

Appendix B
local-jndi-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-44 of B-86

Example
<local-jndi-name>weblogic.jndi.WLInitialContext
</local-jndi-name>

max-beans-in-cache
Range of values: 1 to maxBeans

Default value: 1000

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-cache

and

weblogic-enterprise-bean
 stateful-session-descriptor
 stateful-session-cache

• Function

• Example

Function
Specifies the maximum number of objects of this class that are allowed in memory. When max-
bean-in-cache is reached, WebLogic Server passivates some EJBs that have not recently
been used by a client. max-beans-in-cache also affects when EJBs are removed from the
WebLogic Server cache, as described in Caching and Passivating Stateful Session EJBs.

Example
<weblogic-enterprise-bean>
 <ejb-name>AccountBean</ejb-name>
 <entity-descriptor>
 <entity-cache>
 <max-beans-in-cache>200</max-beans-in-cache>
 </entity-cache>
 </entity-descriptor>
</weblogic-enterprise-bean>

max-beans-in-free-pool
Range of values: 0 to maxBeans

Default value: 1000

Parent elements:

weblogic-enterprise-bean
 stateless-session-descriptor
 pool

Appendix B
max-beans-in-cache

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-45 of B-86

and

weblogic-enterprise-bean
 message-driven-descriptor
 pool

and

weblogic-enterprise-bean
 entity-descriptor
 pool

• Function

• Example

Function
WebLogic Server maintains a free pool of EJBs for every entity bean, stateless session bean,
and message-driven bean class. The max-beans-in-free-pool element defines the size of this
pool.

Note

Based on the Enterprise JavaBean specification, the
javax.ejb.ActivationConfigProperty annotation is used for MDBs only. This
annotation is not used for session or entity beans.

Example
See pool.

max-messages-in-transaction
Range of values: All positive integers

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 message-driven-descriptor

• Function

Function
Specifies the maximum number of messages that can be in a transaction for this MDB.

max-queries-in-cache
Range of values: All positive integers

Default value: n/a

Appendix B
max-messages-in-transaction

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-46 of B-86

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

• Function

Function
This element, introduced in WebLogic Server 9.0, specifies the maximum number of read-only
entity queries to cache at the bean level. For information on caching read-only entity queries at
the application level, see Using Query Caching (Read-Only Entity Beans).

max-suspend-seconds
Range of values: Any integer

Default value: 60

Parent elements:

weblogic-enterprise-bean
 message-driven-descriptor

• Function

Function
Specifies the maximum number of seconds to suspend an MDB's JMS connection when the
EJB container detects a JMS resource outage. To disable JMS connection suspension when
the EJB container detects a JMS resource outage, set the value of this element to 0. See
Configuring Suspension of Message Delivery During JMS Resource Outages in Developing
Message-Driven Beans for Oracle WebLogic Server.

message-destination-descriptor
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean

• Function

• Example

Function
Maps a message destination reference in the ejb-jar.xml file to an actual message
destination, such as a JMS Queue or Topic, in WebLogic Server.

Example
<message-destination-descriptor>
 <message-destination-name>...</message-destination-name>

Appendix B
max-suspend-seconds

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-47 of B-86

 <destination-jndi-name>...</destination-jndi-name>
 <resource-link>...</resource-link>
 <initial-context-factory>...</initial-context-factory>
 <provider-url>...</provider-url>
</message-destination-descriptor>

message-destination-name
Range of values: A valid message destination reference name from the ejb-jar.xml file

Default value: n/a

Requirements: This element is required if the EJB specifies messages destination references
in ejb-jar.xml.

Parent elements:

weblogic-enterprise-bean
 message-destination-descriptor

• Function

• Example

Function
Specifies the name of a message destination reference. This is the reference that the EJB
provider places within the ejb-jar.xml deployment file.

Example
See message-destination-descriptor.

message-driven-descriptor
Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

• Function

• Example

Function
Associates a message-driven bean with a JMS destination in WebLogic Server.

Example
<message-driven-descriptor>
 <pool>...</pool>
 <timer-descriptor>...</timer-descriptor>
 <destination-jndi-name>...</destination-jndi-name>
 <initial-context-factory>...</initial-context-factory>

Appendix B
message-destination-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-48 of B-86

 <provider-url>...</provider-url>
 <connection-factory-jndi-name>...</connection-factory-jndi-name>
 <jms-polling-interval-seconds>...</jms-polling-interval-seconds>
 <jms-client-id>...</jms-client-id>
 <generate-unique-jms-client-id>...</generate-unique-jms-client-id>
 <durable-subscription-deletion>...</durable-subscription-deletion>
 <max-messages-in-transaction>...</max-messages-in-transaction>
 <distributed-destination-connection>...</distributed-destination-connection>
 <use81-style-polling>...</use81-style-polling>
 <init-suspend-seconds>...</init-suspend-seconds>
 <max-suspend-seconds>...</max-suspend-seconds>
</message-driven-descriptor>

method
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar
 transaction-isolation

and

weblogic-ejb-jar
 idempotent-methods

and

weblogic-ejb-jar
 retry-methods-on-rollback

• Function

• Example

Function
Defines a method or set of methods for an enterprise bean's home or remote interface.

Example
<method>
 <description>...</description>
 <ejb-name>...</ejb-name>
 <method-intf>...</method-intf>
 <method-name>...</method-name>
 <method-params>...</method-params>
</method>

method-intf
Range of values: Home | Remote | Local | Localhome

Default value: n/a

Parent elements:

Appendix B
method

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-49 of B-86

weblogic-ejb-jar
 transaction-isolation
 method

and

weblogic-ejb-jar
 idempotent-methods
 method

• Function

• Example

Function
Specifies the EJB interface to which WebLogic Server applies isolation level properties, if the
method has the same signature in multiple interfaces.

Example
See method.

method-name
Range of values: Name of an EJB defined in ejb-jar.xml | *

Default value: n/a

Parent elements:

weblogic-ejb-jar
 transaction-isolation
 method

and

weblogic-ejb-jar
 idempotent-methods
 method

• Function

• Example

Function
Specifies the name of an individual EJB method to which WebLogic Server applies isolation
level properties. Use the asterisk (*) to specify all methods in the EJB's home and remote
interfaces.

If you specify a method-name, the method must be available in the specified ejb-name.

Example
See method.

Appendix B
method-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-50 of B-86

method-param
Range of values: Fully-qualified Java type name of a method parameter

Default value: n/a

Parent elements:

weblogic-ejb-jar
 transaction-isolation
 method
 method-params

and

weblogic-ejb-jar
 idempotent-methods
 method
 method-params

• Function

• Example

Function
Specifies the fully-qualified Java type name of a method parameter.

Example
See method-params.

method-params
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar
 transaction-isolation
 method

and

weblogic-ejb-jar
 idempotent-methods
 method

• Function

• Example

Function
Contains one or more elements that define the Java type name of each of the method's
parameters.

Appendix B
method-param

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-51 of B-86

Example
The method-params element contains one or more method-param elements, as shown here:

<method-params>
 <method-param>java.lang.String</method-param>
 ...
</method-params>

network-access-point
Range of values: Name of a custom network access point

Default value: n/a

Parent elements:

weblogic-enterprise-bean

• Function

• Example

Function
Assigns a custom network channel that the EJB will use for network communications. A
network channel defines a set of connection attributes. See Configuring Network Resources in
Administering Server Environments for Oracle WebLogic Server.

Example
<weblogic-enterprise-bean>
 <network-access-point>SSLChannel</network-access-point>
</weblogic-enterprise-bean>

passivate-as-principal-name
Range of values: Valid WebLogic Server principal

Default value: n/a

Parent elements:

weblogic-enterprise-bean

• Function

Function
The passivate-as-principal-name element, introduced in WebLogic Server 8.1 SP01,
specifies the principal to be used in situations where ejbPassivate would otherwise run with
an anonymous principal. Under such conditions, the choice of which principal to run as is
governed by the following rule:

If passivate-as-principal-name is set

Appendix B
network-access-point

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-52 of B-86

then use that principal

else

if a run-as role has been specified for the bean in ejb-jar.xml

then use a principal according to the rules for setting the run-as-role-assignment

else

run ejbPassivate as an anonymous principal.

The passivate-as-principal-name element only needs to be specified if operations within
ejbPassivate require more permissions than the anonymous principal would have.

This element affects the ejbPassivate methods of stateless session beans when passivation
occurs due to a cache timeout.

See also remove-as-principal-name, create-as-principal-name, and principal-name.

persistence
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

• Function

• Example

Function
Required only for entity EJBs that use container-managed persistence services. The
persistence element defines the following options that determine the persistence type,
transaction commit behavior, and ejbLoad() and ejbStore() behavior for entity EJBs in
WebLogic Server:

• is-modified-method-name

• delay-updates-until-end-of-tx

• finders-load-bean

• persistence-use

Example
<entity-descriptor>
 <persistence>
 <is-modified-method-name>...</is-modified-method-name>
 <delay-updates-until-end-of-tx>...</delay-updates-until-end-of-tx>
 <finders-load-beand>...</finders-load-bean>
 <persistence-use>...</persistence-use>
 </persistence>
</entity-descriptor>

Appendix B
persistence

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-53 of B-86

persistence-use
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 persistence

• Function

• Example

Function
Required only for entity EJBs that use container-managed persistence services. The
persistence-use element stores an identifier of the persistence type to be used for this
particular bean.

Example
<persistence-use>
 <type-identifier>WebLogic_CMP_RDBMS</type-identifier>
 <type-version>5.1.0</type-version>
 <type-storage>META-INF/weblogic-cmp-jar.xml</type-storage>
</persistence-use>

persistent-store-dir
Range of values: Valid file system directory

Default value: pstore

Parent elements:

weblogic-enterprise-bean
 stateful-session-descriptor

• Function

• Example

Function
Specifies a file system directory where WebLogic Server stores the state of passivated stateful
session bean instances. For more information, see Specifying the Persistent Store Directory
for Passivated Beans.

Example
<stateful-session-descriptor>
 <stateful-session-cache>...</stateful-session-cache>
 <allow-concurrent-calls>...</allow-concurrent-calls>

Appendix B
persistence-use

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-54 of B-86

 <persistent-store-dir>MyPersistenceDir</persistent-store-dir>
 <stateful-session-clustering>...</stateful-session-clustering>
 <allow-remove-during-transaction>
</stateful-session-descriptor>

persistent-store-logical-name
Range of values: Valid name of a persistent store on the file system

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 timer-descriptor

and

weblogic-enterprise-bean
 message-driven-descriptor
 timer-descriptor

• Function

Function
Specifies the name of a persistent store on the server's file system where WebLogic Server
stores timer objects. If you do not specify a persistent store name in this element, WebLogic
Server stores timer objects in the default store.

pool
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 stateless-session-descriptor or message-driven-descriptor

and

 entity-descriptor

• Function

• Example

Function
Configures the behavior of the WebLogic Server free pool for entity EJBs, stateless session
EJBs, and message-driven EJBs. The options are:

• max-beans-in-free-pool

• initial-beans-in-free-pool

• idle-timeout-seconds

Appendix B
persistent-store-logical-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-55 of B-86

Example
<stateless-session-descriptor>
 <pool>
 <max-beans-in-free-pool>500</max-beans-in-free-pool>
 <initial-beans-in-free-pool>250</initial-beans-in-free-pool>
 </pool>
</stateless-session-descriptor>

principal-name
Range of values: Valid WebLogic Server principal name

Default value: n/a

Parent elements:

weblogic-ejb-jar
 security-role-assignment

• Function

• Example

Function
Specifies the name of an actual WebLogic Server principal to apply to the specified role-name.
At least one principal-name is required in the security-role-assignment element. You may
define more than one principal-name for each role-name.

Example
See security-role-assignment.

provider-url
Range of values: Valid URL

Default value: t3://localhost:7001

Parent elements:

weblogic-enterprise-bean
 message-destination-descriptor

and

weblogic-enterprise-bean
 message-driven-descriptor

• Function

• Example

Appendix B
principal-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-56 of B-86

Function
Specifies the URL to be used by the InitialContext. See Configuring MDBs for Destinations
and How to Set provider-urlin Developing Message-Driven Beans for Oracle WebLogic Server.

Example
<message-driven-descriptor>
 <provider-url>WeblogicURL:Port</provider-url>
</message-driven-descriptor>

See also message-destination-descriptor.

read-timeout-seconds
Range of values: 0 to maxSeconds, where maxSeconds is the maximum value of an int

Default value: 600

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-cache

or

weblogic-enterprise-bean
 entity-descriptor
 entity-cache-ref

• Function

• Example

Function
Specifies the number of seconds between ejbLoad() calls on a Read-Only entity bean. A value
of 0 causes WebLogic Server to call ejbLoad() only when the bean is brought into the cache.

Example
The following entry causes WebLogic Server to call ejbLoad() for instances of the
AccountBean class only when the instance is first brought into the cache:

<weblogic-enterprise-bean>
 <ejb-name>AccountBean</ejb-name>
 <entity-descriptor>
 <entity-cache>
 <read-timeout-seconds>0</read-timeout-seconds>
 </entity-cache>
 </entity-descriptor>
</weblogic-enterprise-bean>

Appendix B
read-timeout-seconds

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-57 of B-86

remote-client-timeout
Range of values: 0 to maxSeconds, where maxSeconds is the maximum value of an int

Default value: 0

Parent elements:

weblogic-enterprise-bean

• Function

• Example

Function
Specifies the length of time that a remote RMI client will wait before it will time out. See Using a
Read Timeout in Developing RMI Applications for Oracle WebLogic Server.

Example
The following entry causes a remote RMI client to timeout after waiting 5 seconds.

<weblogic-enterprise-bean>
 <ejb-name>AccountBean</ejb-name>
 ...
 <remote-client-timeout>5</remote-client-timeout>
</weblogic-enterprise-bean>

remove-as-principal-name
Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

• Function

Function
This parameter only needs to be specified if operations within ejbRemove need more
permissions than the anonymous principal would have.

The remove-as-principal-name element, introduced in WebLogic Server 8.1 SP1, specifies
the principal to be used in situations where ejbRemove would otherwise run with an anonymous
principal. Under such conditions, the choice of which principal to run as is governed by the
following rule:

If remove-as-principal-name is set

then use that principal

else

Appendix B
remote-client-timeout

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-58 of B-86

if a run-as role has been specified for the bean in ejb-jar.xml

then use a principal according to the rules for setting the run-as-role-assignment

else

run ejbRemove as an anonymous principal

The remove-as-principal-name element only needs to be specified if operations within
ejbRemove require more permissions than the anonymous principal would have.

This element effects the ejbRemove methods of stateless session beans and message-drive
beans.

See also passivate-as-principal-name, create-as-principal-name, and principal-name.

replication-type
Range of values: InMemory | None

Default value: None

Parent elements:

weblogic-enterprise-bean
 stateful-session-descriptor
 stateful-session-clustering

• Function

• Example

Function
Determines whether WebLogic Server replicates the state of stateful session EJBs across
WebLogic Server instances in a cluster. If you select InMemory, the state of the EJB is
replicated. If you select None, the state is not replicated.

Example
See stateful-session-clustering.

resource-env-ref-name
Range of values: A valid resource environment reference name from the ejb-jar.xml file

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 resource-env-description

• Function

• Example

Appendix B
replication-type

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-59 of B-86

Function
Specifies the name of a resource environment reference.

Example
See resource-description.

res-ref-name
Range of values: A valid resource reference name from the ejb-jar.xml file

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 resource-description

• Function

• Example

Function
Specifies the name of a resourcefactory reference. This is the reference that the EJB
provider places within the ejb-jar.xml deployment file. Required element if the EJB specifies
resource references in ejb-jar.xml

Example
See resource-description.

resource-adapter-jndi-name
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar
 weblogic-enterprise-bean
 message-driven-descriptor

• Function

Function
Identifies the resource adapter that this MDB receives messages from.

resource-description
Range of values: n/a

Appendix B
res-ref-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-60 of B-86

Default value: n/a

Parent element:

weblogic-enterprise-bean

• Function

• Example

Function
Maps a resource reference defined in ejb-jar.xml to the JNDI name of an actual resource
available in WebLogic Server.

Example
<resource-description>
 <res-ref-name>. . .</res-ref-name>
 <jndi-name>...</jndi-name>
</resource-description>
<ejb-reference-description>
 <ejb-ref-name>. . .</ejb-ref-name>
 <jndi-name>. . .</jndi-name>
</ejb-reference-description>

resource-env-description
Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

• Function

• Example

Function
Maps a resource environment reference defined in ejb-jar.xml to the JNDI name of an actual
resource available in WebLogic Server.

Example
<resource-env-description>
 <resource-env-ref-name>. . .</resource-env-ref-name>
 <jndi-name>...</jndi-name>
</reference-env-description>

When jndi-name is not a valid URL, WebLogic Server treats it as a object that maps to a URL
and is already bound in the JNDI tree, and binds a LinkRef with that jndi-name.

Appendix B
resource-env-description

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-61 of B-86

resource-link
Range of values: Valid resource within a JMS module

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 message-destination-descriptor

• Function

• Example

Function
Maps to a resource within a JMS module defined in ejb-jar.xml to an actual JMS Module
Reference in WebLogic Server.

Example
See message-destination-descriptor.

retry-count
Range of values: Any positive integer

Note

While it is possible to set this value to less than or equal to 0, Oracle recommends that
you do not do so because the EJB container will not retry transactions when this value
is not greater than or equal to 1.

Default value: n/a

Parent elements:

weblogic-ejb-jar
 retry-methods-on-rollback

• Function

Function
Specifies the number of times you want the EJB container to automatically retry a container-
managed transaction method that has rolled back.

retry-methods-on-rollback
Range of values: n/a

Appendix B
resource-link

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-62 of B-86

Default value: n/a

Parent element:

weblogic-ejb-jar

• Function

Function
Specifies the methods for which you want the EJB container to automatically retry container-
managed transactions that have rolled back. Automatic transaction retry is supported for
session and entity beans that use container-managed transaction demarcation. Additionally,
regardless of the methods specified in this element, the EJB container does not retry
transactions that fail because of system exception-based errors.

role-name
Range of values: Valid application role name

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 security-role-assignment

• Function

• Example

Function
Identifies an application role name that the EJB provider placed in the ejb-jar.xml
deployment descriptor. Subsequent principal-name elements in the element map WebLogic
Server principals to the specified role-name.

Example
See security-role-assignment.

run-as-identity-principal
Range of values: Valid security principal name

Default value: n/a

Parent elements:

weblogic-enterprise-bean

• Function

• Example

Appendix B
role-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-63 of B-86

Function

Note

The run-as-identity-principal element is deprecated in this release of WebLogic
Server. Use run-as-principal-name instead.

The run-as-identity-principal element specifies which security principal name is to be
used as the run-as principal for a bean that has specified a security identity run-as-role-name
its ejb-jar.xml deployment descriptor.

For an explanation of how the mapping of run-as role-names to run-as-identity-principals or
run-as-principal-names occurs, see the comments for the run-as-role-assignment element.

Example
<run-as-identity-principal>
 Fred
</run-as-identity-principal>

run-as-principal-name
Range of values: Valid principal

Default value: n/a

Parent elements:

weblogic-enterprise-bean

• Function

• Example

Function
Specifies which security principal name is to be used as the run-as principal for a bean that
has specified a security-identity run-as role-name in its ejb-jar.xml deployment
descriptor.

For an explanation of how the mapping of run-as role-names to run-as-principal-names
occurs, see the comments for the run-as-role-assignment element.

Example
<run-as-principal-name>
 Fred
</run-as-principal-name>

run-as-role-assignment
Range of values: n/a

Appendix B
run-as-principal-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-64 of B-86

Default value: n/a

Parent elements:

weblogic-enterprise-bean

• Function

• Example

• A_EJB_with_runAs_role_X

• B_EJB_with_runAs_role_X

• C_EJB_with_runAs_role_Y

Function
Maps a given security-identity run-as role-name specified in the ejb-jar.xml deployment
descriptor file to a run-as-principal-name.

The value of the run-as-principal-name for a given role-name that is specified here is scoped
to all beans in the ejb-jar.xml deployment descriptor; it applies to all beans that specify that
role-name as their security-identity run-as-role-name.

The run-as-principal-name value specified here can be overridden at the individual bean
level by specifying a run-as-principal-name under that bean's weblogic-enterprise-bean
element.

Note

For a given bean, if there is no run-as-principal-name specified in either a run-as-
role-assignment or in a bean specific run-as-principal-name tag, then the EJB
container chooses the first principal-name of a security user in the weblogic-
enterprise-bean security-role-assignment for the role-name and uses that
principal-name as the run-as-principal-name.

Example
Suppose that in the ejb-jar.xml deployment descriptor file:

• Beans 'A_EJB_with_runAs_role_X' and 'B_EJB_with_runAs_role_X'

specify a security-identity run-as role-name 'runAs_role_X'.

• Bean 'C_EJB_with_runAs_role_Y'

specifies a security-identity run-as role-name 'runAs_role_Y'.

Consider the following excerpts from the corresponding weblogic-ejb-jar.xml deployment
descriptor file:

<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>
 A_EJB_with_runAs_role_x
 </ejb-name>
 </weblogic-enterprise-bean>
 <weblogic-enterprise-bean>

Appendix B
run-as-role-assignment

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-65 of B-86

 <ejb-name>
 B_EJB_with_runAs_role_X
 </ejb-name>
 <run-as-principal-name>
 Joe
 </run-as-principal-name>
 </weblogic-enterprise-bean>
 <weblogic-enterprise-bean>
 <ejb-name>
 C_EJB_with_runAs_role_Y
 </ejb-name>
 </weblogic-enterprise-bean>
 <security-role-assignment>
 <role-name>
 runAs_role_Y
 </role-name>
 <principal-name>
 first_principal_of_role_Y
 </principal-name>
 <principal-name>
 second_principal_of_role_Y
 </principal-name>
 </security-role-assignment>
 <run-as-role-assignment>
 <role-name>
 runAs_role_X
 </role-name>
 <run-as-principal-name>
 Fred
 </run-as-principal-name>
 </run-as-role-assignment>
</weblogic-ejb-jar>

Each of the beans chooses a different principal name to use as its run-as-principal-name.

A_EJB_with_runAs_role_X
This bean's run-as role-name is 'runAs_role_X'. The jar scoped <run-as-role-assignment>
mapping will be used to look up the name of the principal to use.

The <run-as-role-assignment> mapping specifies that for <role-name> 'runAs_role_X' we are
to use <run-as-principal-name> 'Fred'.

"Fred" is the principal name that will be used.

B_EJB_with_runAs_role_X
This bean's run-as role-name is also 'runAs_role_X'. This bean will not use the jar scoped
<run-as-role-assignment> to look up the name of the principal to use because that value is
overridden by this bean's <weblogic-enterprise-bean> <run-as-principal-name> value
'Joe'.

"Joe" is the principal name that will be used.

C_EJB_with_runAs_role_Y
This bean's run-as role-name is 'runAs_role_Y'. There is no explicit mapping of 'runAs_role_Y'
to a run-as principal name; that is, there is no jar-scoped <run-as-role-assignment> for

Appendix B
run-as-role-assignment

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-66 of B-86

'runAs_role_Y' nor is there a bean scoped <run-as-principal-name> specified in this bean's
weblogic-enterprise-bean.

To determine the principal name to use, the <security-role-assignment> for <role-name>
"runAs_role_Y" is examined. The first <principal-name> corresponding to a User (i.e. not a
Group) is chosen.

"first_principal_of_role_Y" is the principal name that will be used.

security-permission
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar

• Function

• Example

Function
Specifies a security permission that is associated with a Java EE Sandbox.

For more information, see the security permission specification:

http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html

Example
<security-permission>
 <description>Optional explanation goes here</description>
 <security-permission-spec>
 ...
 </security-permission-spec>
</security-permission>

security-permission-spec
Range of values: n/a

Default value: n/a

Parent element:

security-permission

• Function

• Example

Function
Specifies a single security permission based on the Security policy file syntax.

For more information, see the security permission specification:

Appendix B
security-permission

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-67 of B-86

http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html

http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html

Example
To grant the "read" permission to "java.vm.version," and prevent it from being overwritten:

1. Set the security-permission-spec as shown below:

<security-permission>
 <description>Optional explanation goes here</description>
 <security-permission-spec> grant { permission java.util.PropertyPermission
"java.vm.version", "read"; };
 </security-permission-spec>
</security-permission>

2. Modify the startWeblogic script to start the server using this option:

JAVA_OPTIONS=-Djava.security.manager

3. Create a directory named lib in your domain directory.

4. Add this line to the %WL_HOME%\server\lib\weblogic.policy file:

add grant codeBase "file:/<Your user_projects dir>/YourDomain/lib/-" { permission
java.security.AllPermission; };

This is necessary because the EJB stub's classpath is lib.

security-role-assignment
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar

• Function

• Example

Function
Maps application roles in the ejb-jar.xml file to the names of security principals available in
WebLogic Server.

Example
<security-role-assignment>
 <role-name>PayrollAdmin</role-name>
 <principal-name>Tanya</principal-name>
 <principal-name>system</principal-name>
 <externally-defined>True</externally-defined>
 ...
</security-role-assignment>

Appendix B
security-role-assignment

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-68 of B-86

http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html

service-reference-description
Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

• Function

• Example

Function
Maps a Web Service destination reference in the ejb-jar.xml file to an actual Web Service in
WebLogic Server.

• wsdl-url — the url of the dynamic wsdl of the referenced web service used by the client to
create stub to invoke remote web service.

• port-info — defines wsdl:port information specified in wsdl.

• port-name — defines the local name of wsdl:port.

• stub-property — property to be set on the client-side stub, it has the same effect of as
javax.xml.rpc.Stub._setProperty(prop_name, prop_value).

Example
<service-reference-description>
 <service-ref-name>service/WebServiceBroker</service-ref-name>
 <wsdl-url>
 http://@PROXY_SERVER@/webservice/BrokerServiceBean?wsdl
 </wsdl-url>
 <call-property>...</call-property>
 <port-info>
 <port-name>BrokerServiceIntfPort</port-name>
 <stub-property>
 <name>javax.xml.rpc.service.endpoint.address</name>
 <value>http://@PROXY_SERVER@/webservice/BrokerServiceBean<;/value>
 </stub-property>
 </port-info>
</service-reference-description>

session-timeout-seconds
Range of values: (None specified)

Default value: idle-timeout-seconds

Parent elements:

weblogic-enterprise-bean
 stateful-session-descriptor
 stateful-session-cache

• Function

Appendix B
service-reference-description

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-69 of B-86

• Example

Function
Determines how long the EJB container leaves a passivated stateful session bean on disk. The
container removes a passivated EJB session-timeout-seconds after passivating the bean
instance to disk. If session-timeout-seconds is not specified, the default is the value specified
by idle-timeout-seconds.

Example
<stateful-session-descriptor>
 <stateful-session-cache>
 <max-beans-in-cache>4</max-beans-in-cache>
 <idle-timeout-seconds>5</idle-timeout-seconds>
 <session-timeout-seconds>120</session-timeout-seconds>
 <cache-type>LRU</cache-type>
 </stateful-session-cache>
</stateful-session-descriptor>

singleton-bean-call-router-class-name
Range of values: Valid custom class name

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 singleton-session-descriptor
 singleton-clustering

• Function

• Example

Function
Specifies the name of a custom class to use for routing bean method calls. This class must
implement weblogic.rmi.cluster.CallRouter(). If specified, an instance of this class is
called before each method call. The router class has the opportunity to choose a server to
route to based on the method parameters. The class returns either a server name or null,
which indicates that the current load algorithm should select the server.

Example
See singleton-clustering.

singleton-bean-is-clusterable
Range of values: true | false

Default value: false

Parent elements:

Appendix B
singleton-bean-call-router-class-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-70 of B-86

weblogic-enterprise-bean
 singleton-session-descriptor

• Function

• Example

Function
Marks the remote business views of the bean as clusterable and supports load balancing and
failover.

When singleton-bean-is-clusterable is True, the EJB can be deployed from multiple
WebLogic Servers in a cluster. Calls to the home stub are load-balanced between the servers
on which this bean is deployed, and if a server hosting the bean is unreachable, the call
automatically fails over to another server hosting the bean.

Example
See singleton-clustering.

singleton-bean-load-algorithm
Range of values: round-robin | random | weight-based | RoundRobinAffinity |
RandomAffinity | WeightBasedAffinity

Default value: Value of weblogic.cluster.defaultLoadAlgorithm

Parent elements:

weblogic-enterprise-bean
 singleton-session-descriptor
 singleton-clustering

• Function

• Example

Function
Specifies the algorithm to use for load balancing between replicas of the EJB home.

You can define singleton-bean-load-algorithm as one of the following values:

• round-robin—Load balancing is performed in a sequential fashion among the servers
hosting the bean.

• random—Load balancing is performed randomly among the servers hosting the bean.

• weight-based—Load balancing is performed according to the servers' current workload.

• round-robin-affinity—Server affinity governs connections between external Java
clients and server instances; round robin load balancing is used for connections between
server instances.

• weight-based-affinity—Server affinity governs connections between external Java
clients and server instances; weight-based load balancing is used for connections between
server instances.

Appendix B
singleton-bean-load-algorithm

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-71 of B-86

• random-affinity—Server affinity governs connections between external Java clients and
server instances; random load balancing is used for connections between server
instances.

See Load Balancing for EJBs and RMI Objects in Administering Clusters for Oracle WebLogic
Server.

Example
See singleton-clustering.

singleton-clustering
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 singleton-session-descriptor

• Function

• Example

Function
Specifies options that determine how WebLogic Server replicates singleton session EJB
instances in a cluster.

Example
<singleton-clustering>
 <singleton-bean-is-clusterable>
 True
 </singleton-bean-is-clusterable>
 <singleton-bean-load-algorithm>
 random</singleton-bean-load-algorithm>
 <singleton-bean-call-router-class-name>
 beanRouter
 </singleton-bean-call-router-class-name>
 <singleton-bean-methods-are-idempotent>
 True
 </singleton-bean-methods-are-idempotent>
</singleton-clustering>

singleton-session-descriptor
Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

Appendix B
singleton-clustering

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-72 of B-86

• Function

• Example

Function
Defines deployment behaviors, such as caching, clustering, and persistence, for singleton
session EJBs in WebLogic Server.

Example
<singleton-session-descriptor>
 <pool>...</pool>
 <singleton-clustering>...</singleton-clustering>
</singleton-session-descriptor>

stateful-session-cache
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 stateful-session-descriptor

• Function

• Example

Function
Defines the following options used to cache stateful session EJB instances.

• max-beans-in-cache

• idle-timeout-seconds

• session-timeout-sections

• cache-type

See Caching and Passivating Stateful Session EJBs for more information about caching of
stateful session beans.

Example
The following example shows how to specify the stateful-session-cache element

<stateful-session-cache>
 <max-beans-in-cache>...</max-beans-in-cache>
 <idle-timeout-seconds>...</idle-timeout-seconds>
 <session-timeout-seconds>...</session-timeout-seconds>
 <cache-type>...</cache-type>
</stateful-session-cache>

Appendix B
stateful-session-cache

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-73 of B-86

stateful-session-clustering
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 stateful-session-descriptor

• Function

• Example

Function
Specifies the following options that determine how WebLogic Server replicates stateful session
EJB instances in a cluster:

• home-is-clusterable

• home-load-algorithm

• home-call-router-class-name

• replication-type

Example
<stateful-session-clustering>
 <home-is-clusterable>True</home-is-clusterable>
 <home-load-algorithm>random</home-load-algorithm>
 <home-call-router-class-name>beanRouter</home-call-router-class-name>
 <replication-type>InMemory</replication-type>
</stateful-session-clustering>

stateful-session-descriptor
Range of values: n/a

Default value: n/a

Parent element:

weblogic-enterprise-bean

• Function

• Example

Function
Defines deployment behaviors, such as caching, clustering, and persistence, for stateless
session EJBs in WebLogic Server.

Appendix B
stateful-session-clustering

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-74 of B-86

Example
<stateful-session-descriptor>
 <stateful-session-cache>...</stateful-session-cache>
 <allow-concurrent-calls>...</allow-concurrent-calls>
 <allow-remove-during-transaction>...
 </allow-remove-during-transaction>
 <persistent-store-dir>/myPersistenceStore</persistent-store-dir>
 <stateful-session-clustering>...</stateful-session-clustering>
</stateful-session-descriptor>

stateless-bean-call-router-class-name
Range of values: Valid custom class name

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 stateless-session-descriptor
 stateless-clustering

• Function

• Example

Function
Specifies the name of a custom class to use for routing bean method calls. This class must
implement weblogic.rmi.cluster.CallRouter(). If specified, an instance of this class is
called before each method call. The router class has the opportunity to choose a server to
route to based on the method parameters. The class returns either a server name or null,
which indicates that the current load algorithm should select the server.

Example
See stateless-clustering.

stateless-bean-is-clusterable
Range of values: True | False

Default value: True

Parent elements:

weblogic-enterprise-bean
 stateless-session-descriptor
 stateless-clustering

• Function

• Example

Appendix B
stateless-bean-call-router-class-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-75 of B-86

Function
When stateless-bean-is-clusterable is True, the EJB can be deployed from multiple
WebLogic Servers in a cluster. Calls to the home stub are load-balanced between the servers
on which this bean is deployed, and if a server hosting the bean is unreachable, the call
automatically fails over to another server hosting the bean.

Example
See stateless-clustering.

stateless-bean-load-algorithm
Range of values: round-robin | random | weight-based | RoundRobinAffinity |
RandomAffinity | WeightBasedAffinity

Default value: Value of weblogic.cluster.defaultLoadAlgorithm

Parent elements:

weblogic-enterprise-bean
 stateless-session-descriptor
 stateless-clustering

• Function

• Example

Function
Specifies the algorithm to use for load balancing between replicas of the EJB home.

You can define stateless-bean-load-algorithm as one of the following values:

• round-robin—Load balancing is performed in a sequential fashion among the servers
hosting the bean.

• random—Load balancing is performed randomly among the servers hosting the bean.

• weight-based—Load balancing is performed according to the servers' current workload.

• round-robin-affinity—Server affinity governs connections between external Java
clients and server instances; round robin load balancing is used for connections between
server instances.

• weight-based-affinity—Server affinity governs connections between external Java
clients and server instances; weight-based load balancing is used for connections between
server instances.

• random-affinity—Server affinity governs connections between external Java clients and
server instances; random load balancing is used for connections between server
instances.

See Load Balancing for EJBs and RMI Objects in Administering Clusters for Oracle WebLogic
Server.

Appendix B
stateless-bean-load-algorithm

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-76 of B-86

Example
See stateless-clustering.

stateless-clustering
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 stateless-session-descriptor

• Function

• Example

Function
Specifies options that determine how WebLogic Server replicates stateless session EJB
instances in a cluster.

Example
<stateless-clustering>
 <stateless-bean-is-clusterable>
 True
 </stateless-bean-is-clusterable>
 <stateless-bean-load-algorithm>
 random</stateless-bean-load-algorithm>
 <stateless-bean-call-router-class-name>
 beanRouter
 </stateless-bean-call-router-class-name>
 <stateless-bean-methods-are-idempotent>
 True
 </stateless-bean-methods-are-idempotent>
</stateless-clustering>

stateless-session-descriptor
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean

• Function

• Example

Appendix B
stateless-clustering

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-77 of B-86

Function
Defines deployment parameters, such as caching, clustering, and persistence for stateless
session EJBs in WebLogic Server.

Example
<stateless-session-descriptor>
 <pool>...</pool>
 <stateless-clustering>...</stateless-clustering>
</stateless-session-descriptor>

stick-to-first-server
Range of values: True or False

Default value: False

Parent element:

weblogic-enterprise-bean

• Function

• Example

Function
Defines "sticky" load balancing in a cluster. The server chosen for servicing the first request is
used for all subsequent requests.

Example
<stick-to-first-server>
 True
</stick-to-first-server>

timer-descriptor
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor

or

 message-driven-descriptor

or

 singleton-session-descriptor

Appendix B
stick-to-first-server

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-78 of B-86

or

 stateless-session-descriptor

• Function

Function
Specifies the persistent store that will be used to store the local timer information for the bean.

timer-implementation
Range of values:

Valid values include:

• Clustered—Specifies that timers are cluster aware. This option provides EJB timers with
features such as automatic failover, load balancing, and improved accessibility within the
cluster. This option is recommended for EJBs that will be deployed to a cluster of
WebLogic servers.

• Local—Specifies that timers will only execute on the server on which they are created and
are only visible to the beans on that server. When you set this element to Local, if you
deploy an EJB to a cluster, and invoke the EJB to create a timer, that call could go to any
server on the cluster. Another invocation (for instance, to cancel the timer) could also go to
any server on the cluster and will not necessarily go to the same server in which the call to
create the timer went. For instance, if the call to create a timer is directed to server1, and
the call to cancel it is directed to server2, the EJB on server2 would not see the timer on
server1 and would, therefore, fail to cancel it.

To avoid the limitation when using local timers, you can use one of the following approaches:

• Pin the EJB deployment to a single server in the cluster. This causes all calls to the EJB to
go to server to which the EJB is pinned and all timers to exist on that same server. The
trade-off to using this approach is that the EJB cannot take advantage of clustering
benefits such as load balancing and failover.

• Ensure that calls to cancel timers go to all servers in the cluster by using a message-driven
bean (MDB) that listens on a JMS topic. The message to cancel the timer can be published
to the JMS topic and serviced by an MDB on each server. Then, the MDB on each server
can invoke a cancelTimer method on the bean. The trade-off to using this approach is that
it makes your application more complex and attempting to cancel timers on all servers is
inefficient.

Default value: Local (the current file store-backed EJB timer service is used)

Parent element:

weblogic-ejb-jar

• Function

• Example

Function
Specifies whether the EJB timer service is cluster aware.

Appendix B
timer-implementation

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-79 of B-86

Example
<timer-implementation>
 Clustered
</timer-implementation>

transaction-descriptor
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean

• Function

• Example

Function
Specifies options that define transaction behavior in WebLogic Server. Currently, this element
includes only one child element: trans-timeout-seconds.

Example
<transaction-descriptor>
<trans-timeout-seconds>20</trans-timeout-seconds>
</transaction-descriptor>

transaction-isolation
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar

• Function

• Example

Function
Defines method-level transaction isolation settings for an EJB.

Example
<transaction-isolation>
 <isolation-level>...</isolation-level>
 <method>
 <description>...</description>

Appendix B
transaction-descriptor

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-80 of B-86

 <ejb-name>...</ejb-name>
 <method-intf>...</method-intf>
 <method-name>...</method-name>
 <method-params>...</method-params>
 </method>
</transaction-isolation>

For more information, see isolation-level.

transport-requirements
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 iiop-security-descriptor

• Function

• Example

Function
Provides the transport requirements for the EJB.

Example
<iiop-security-descriptor>
 <transport-requirements>
 <confidentiality>supported</confidentiality>
 <integrity>supported</integrity>
 <client-cert-authentication>suppoted
 </client-cert-authentication>
 </transport-requirements>
</iiop-security-descriptor>

trans-timeout-seconds
Range of values: 0 to max

Default value: From domain-level JTA configuration.

Parent elements:

weblogic-enterprise-bean
 transaction-descriptor

• Function

• Example

Appendix B
transport-requirements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-81 of B-86

Function
Specifies the maximum duration for an EJB's container-initiated transactions. If a transaction
lasts longer than trans-timeout-seconds, WebLogic Server rolls back the transaction.

Example
See transaction-descriptor.

type-identifier
Range of values: Valid string. WebLogic_CMP_RDBMS specifies WebLogic Server RDBMS-based
persistence.

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 persistence
 persistence-use

• Function

• Example

Function
Required only for entity EJBs that use container-managed persistence services. Specifies an
entity EJB persistence type. WebLogic Server RDBMS-based persistence uses the identifier,
WebLogic_CMP_RDBMS. If you use a different persistence vendor, consult the vendor's
documentation for information on the correct type-identifier.

Example
See persistence-use for an example that shows the complete persistence type definition for
WebLogic Server RDBMS-based persistence.

type-storage
Range of values: Valid string

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 persistence
 persistence-use

• Function

• Example

Appendix B
type-identifier

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-82 of B-86

Function
Required only for entity EJBs that use container-managed persistence services. Defines the
full path of the file that stores data for this persistence type. The path must specify the file's
location relative to the top level of the EJB's JAR deployment file or deployment directory.

WebLogic Server RDBMS-based persistence generally uses an XML file named weblogic-
cmp-jar.xml to store persistence data for a bean. This file is stored in the META-INF
subdirectory of the JAR file.

Example
See persistence-use for an example that shows the complete persistence type definition for
WebLogic Server RDBMS-based persistence.

type-version
Range of values: Valid string

Default value: n/a

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 persistence
 persistence-use

• Function

• Example

Function
Required for entity EJBs that use container-managed persistence service, if multiple versions
of the same persistence type are installed. Identifies the version of the specified persistence
type. For example, for WebLogic 2.0 CMP persistence, use the value:

6.0

For WebLogic 1.1 CMP persistence, use the value:

5.1.0

This element is necessary if multiple versions of the same persistence type are installed.

If you use WebLogic Server RDBMS-based persistence, the specified version must exactly
match the RDBMS persistence version for the WebLogic Server release. Specifying an
incorrect version results in the error:

weblogic.ejb.persistence.PersistenceSetupException: Error initializing the CMP
Persistence Type for your bean: No installed Persistence Type matches the signature of
(identifier 'Weblogic_CMP_RDBMS', version 'version_number').

Appendix B
type-version

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-83 of B-86

Example
See persistence-use for an example that shows the complete persistence type definition for
WebLogic Server RDBMS-based persistence.

use-serverside-stubs
Range of values: true | false

Default value: false

Parent elements:

weblogic-enterprise-bean
 entity-descriptor
 entity-clustering

and

weblogic-enterprise-bean
 stateful-session-descriptor
 stateful-session-clustering

and

weblogic-enterprise-bean
 entity-descriptor
 entity-clustering

• Function

• Example

Function
Causes the bean home to use server-side stubs in the context of server.

Example
See the example for entity-clustering.

use81-style-polling
Range of values: true | false

Default value: false

Parent elements:

weblogic-ejb-jar
 weblogic-enterprise-bean
 message-driven-descriptor

• Function

• Example

Appendix B
use-serverside-stubs

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-84 of B-86

Function
Enables backwards compatibility for WLS Version 8.1-style polling.

In WLS version 8.1 and earlier, transactional MDBs with batching enabled created a dedicated
polling thread for each deployed MDB. This polling thread was not allocated from the pool
specified by dispatch-policy, it was an entirely new thread in addition to the all other threads
running on the system. See Backwards Compatibility for WLS 10.0 and Earlier-style Polling in
Tuning Performance of Oracle WebLogic Server.

Example
See the example for entity-clustering.

weblogic-compatibility
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar

• Function

Function
This element, introduced in WebLogic Server 9.0 contains elements that specify compatibility
flags.

weblogic-ejb-jar
Range of values: n/a

Default value: n/a

Parent elements: n/a

• Function

Function
weblogic-ejb-jar is the root element of the WebLogic component of the EJB deployment
descriptor.

weblogic-enterprise-bean
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar

Appendix B
weblogic-compatibility

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-85 of B-86

• Function

Function
Contains the deployment information for a bean that is available in WebLogic Server.

work-manager
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-ejb-jar

• Function

Function
Specifies a work manager to manage work requests for EJBs.

For more information on work managers, see Using Work Managers to Optimize Scheduled
Work in Administering Server Environments for Oracle WebLogic Server.

Appendix B
work-manager

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-86 of B-86

C
weblogic-cmp-jar.xml Deployment Descriptor
Reference

Learn about the EJB 2.1 elements in the weblogic-cmp-jar.xml file, the WebLogic-specific
XML Schema-based (XSD) deployment descriptor file. Use these definitions to create the
WebLogic-specific weblogic-cmp-jar.xml file that is part of your EJB deployment. Use this
deployment descriptor file to specify container-managed-persistence (CMP) behavior.

Note

If you are using metadata annotations in your EJB 3.x implementation, refer to EJB
Metadata Annotations Reference in Developing Jakarta Enterprise Beans for Oracle
WebLogic Server.

The WebLogic Server weblogic-cmp-jar.xml file is XML Schema-based (XSD). In pre-9.0
releases of WebLogic Server, weblogic-cmp-jar.xml was Document Type Definition-based
(DTD). For backward compatibility, WebLogic Server still supports XSD- or DTD-based EJB
descriptors; you can deploy applications that use DTD-based descriptors in WebLogic Server
without modifying the descriptors.

For information on the EJB 1.1 deployment descriptor elements see Important Information for
EJB 1.1 Users.

For information on:

• XML Schema Definitions and the namespace declaration required in weblogic-cmp-
jar.xml, as well as Document Type Definitions and DOCTYPE headers, see Deployment
Descriptor Schema and Document Type Definitions Reference.

• the weblogic-ejb-jar.xml file, see weblogic-ejb-jar.xml Deployment Descriptor
Reference.

EJB 1.1 deployment descriptor elements, see Important Information for EJB 1.1 Users.

This appendix includes the following topics:

• 2.1 weblogic-cmp-jar.xml Deployment Descriptor File Structure

• 2.1 weblogic-cmp-jar.xml Deployment Descriptor Elements

• allow-readonly-create-and-remove

• automatic-key-generation

• caching-element

• caching-name

• check-exists-on-method

• cluster-invalidation-disabled

• cmp-field

• cmr-field

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-1 of C-56

• column-map

• compatibility

• create-default-dbms-table

• database-specific-sql

• database-type

• data-source-jndi-name

• db-cascade-delete

• dbms-column

• dbms-column-type

• dbms-default-value

• default-dbms-tables-ddl

• delay-database-insert-until

• description

• disable-string-trimming

• ejb-name

• ejb-ql-query

• enable-batch-operations

• enable-query-caching

• field-group

• field-map

• finders-return-nulls

• foreign-key-column

• foreign-key-table

• generator-name

• generator-type

• group-name

• include-updates

• instance-lock-order

• key-cache-size

• key-column

• lock-order

• max-elements

• method-name

• method-param

• method-params

• optimistic-column

• order-database-operations

• pass-through-columns

Appendix C

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-2 of C-56

• primary-key-table

• query-method

• relation-name

• relationship-caching

• relationship-role-map

• relationship-role-name

• serialize-byte-array-to-oracle-blob

• serialize-char-array-to-bytes

• sql

• sql-query

• sql-select-distinct

• sql-shape

• sql-shape-name

• table-map

• table-name

• trigger-updates-optimistic-column

• unknown-primary-key-field

• use-select-for-update

• validate-db-schema-with

• verify-columns

• verify-rows

• version-column-initial-value

• weblogic-ql

• weblogic-query

• weblogic-rdbms-bean

• weblogic-rdbms-jar

• weblogic-rdbms-relation

• weblogic-relationship-role

2.1 weblogic-cmp-jar.xml Deployment Descriptor File Structure
The weblogic-cmp-jar.xml file defines deployment descriptors for entity EJBs that use
WebLogic Server RDBMS-based persistence services. The EJB container uses a version of
weblogic-cmp-jar.xml that is different from the XML shipped with pre-9.0 releases of
WebLogic Server.

You can continue to use the earlier weblogic-cmp-jar.xml DTD beans that you deploy to this
release of WebLogic Server; likewise, you can continue to use the weblogic-cmp-jar.xml
DTD that was supported in WebLogic Server 8.1. Though deployment descriptors are XSD-
based beginning with WebLogic Server 9.0, for backward compatibility, WebLogic Server
continues to support DTD-based descriptors. However, if you want to use any of the CMP 2.1
features, you must use the XSD described below.

Appendix C
2.1 weblogic-cmp-jar.xml Deployment Descriptor File Structure

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-3 of C-56

Oracle recommends that you run DDConverter to convert EJB deployment descriptors from
pre-9.0 releases of WebLogic Server to conform to the current release of WebLogic Server.
DDConverter converts your DTD-based EJB deployment descriptors from pre-9.0 releases of
WebLogic Server to XSD-based descriptors supported in this release.

Note

Oracle recommends that you always convert descriptors when migrating applications
to a new WebLogic Server release.

The top-level element of the WebLogic Server weblogic-cmp-jar.xml consists of a weblogic-
rdbms-jar element:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 ejb-name
 data-source-jndi-name
 table-map
 field-group
 relationship-caching
 sql-shape
 weblogic-query
 delay-database-insert-until
 use-select-for-update
 lock-order
 instance-lock-order
 automatic-key-generation
 check-exists-on-method
 cluster-invalidation-disabled

weblogic-rdbms-relation
 relation-name
 table-name
 weblogic-relationship-role
order-database-operations
enable-batch-operations
create-default-dbms-tables
validate-db-schema-with
database-type
default-dbms-tables-ddl

compatibility
 serialize-byte-array-to-oracle-blob
 serialize-char-array-to-bytes
 allow-readonly-create-and-remove
 disable-string-trimming

2.1 weblogic-cmp-jar.xml Deployment Descriptor Elements
This list of the elements in weblogic-cmp-jar.xml includes all elements that are supported in
WebLogic Server.

• allow-readonly-create-and-remove

• automatic-key-generation

• caching-element

Appendix C
2.1 weblogic-cmp-jar.xml Deployment Descriptor Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-4 of C-56

• caching-name

• check-exists-on-method

• cluster-invalidation-disabled

• cmp-field

• cmr-field

• column-map

• compatibility

• create-default-dbms-table

• database-specific-sql

• database-type

• data-source-jndi-name

• db-cascade-delete

• dbms-column

• dbms-column-type

• dbms-default-value

• default-dbms-tables-ddl

• delay-database-insert-until

• description

• disable-string-trimming

• ejb-name

• ejb-ql-query

• enable-batch-operations

• enable-query-caching

• field-group

• field-map

• finders-return-nulls

• foreign-key-column

• foreign-key-table

• generator-name

• generator-type

• group-name

• include-updates

• instance-lock-order

• key-cache-size

• key-column

• lock-order

• max-elements

• method-name

Appendix C
2.1 weblogic-cmp-jar.xml Deployment Descriptor Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-5 of C-56

• method-param

• method-params

• optimistic-column

• order-database-operations

• pass-through-columns

• primary-key-table

• query-method

• relation-name

• relationship-caching

• relationship-role-map

• relationship-role-name

• serialize-byte-array-to-oracle-blob

• serialize-char-array-to-bytes

• sql

• sql-query

• sql-select-distinct

• sql-shape

• sql-shape-name

• table-map

• table-name

• trigger-updates-optimistic-column

• unknown-primary-key-field

• use-select-for-update

• validate-db-schema-with

• verify-columns

• verify-rows

• version-column-initial-value

• weblogic-ql

• weblogic-query

• weblogic-rdbms-bean

• weblogic-rdbms-jar

• weblogic-rdbms-relation

• weblogic-relationship-role

allow-readonly-create-and-remove
Range of values: true | false

Default value: false

Appendix C
allow-readonly-create-and-remove

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-6 of C-56

Parent elements:

weblogic-rdbms-jar
 compatibility

• Function

• Example

Function
This element, introduced in WebLogic Server 8.1 SP02, is a backward compatibility flag. It is
used to enable create and remove operations for an EJB that uses ReadOnly concurrency.

Prior to WebLogic Server 8.1 SP2, these operations were allowed, although they had no
transactional meaning. They have been disallowed so that more efficient code can be
generated for ReadOnly beans, and because using them is a bad practice.

Example
<compatibility>
 <allow-readonly-create-and-remove>
 true
 </allow-readonly-create-and-remove>
</compatibility>

automatic-key-generation
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-bean

• Function

• Example

Function
The automatic-key-generation element specifies how primary keys will be automatically
generated. For more information about this feature, see Automatically Generating Primary
Keys.

Example
The following code samples show the automatic-key-generation element for different primary
key generation methods. For supported generation methods, see generator-type.

Example C-1 automatic-key-generation With generator-type=Oracle

<automatic-key-generation>
 <generator-type>Oracle</generator-type>
 <generator-name>test_sequence</generator-name>
 <key-cache-size>10</key-cache-size>
</automatic-key-generation>

Appendix C
automatic-key-generation

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-7 of C-56

Example C-2 automatic-key-generation With generator-type=SQL-SERVER

<automatic-key-generation>
 <generator-type>SQL-SERVER</generator-type>
</automatic-key-generation>

Example C-3 automatic-key-generation With generator-type=NamedSequenceTable

<automatic-key-generation>
 <generator-type>NamedSequenceTable</generator-type>
 <generator-name>MY_SEQUENCE_TABLE_NAME</generator-name>
 <key-cache-size>100</key-cache-size>
</automatic-key-generation>

caching-element
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 relationship-caching

• Function

• Example

Function
Specifies the cmr-field and the group-name in the related bean. If group-name is not
specified, the default group-name (load all fields) is used. For more information, see group-
name.

caching-element can contain nested caching elements, as in the example shown in
relationship-caching.

For information about relationship caching, see Relationship Caching.

Example
See relationship-caching:

caching-name
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 relationship-caching

• Function

• Example

Appendix C
caching-element

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-8 of C-56

Function
The caching-name element specifies the name of a relationship cache. For more information
about relationship caching, see Relationship Caching.

Example
See relationship-caching.

check-exists-on-method
Range of values: True | False

Default value: True

Parent elements:

weblogic-rdbms-bean

• Function

• Example

Function
By default, the EJB container checks that a container-managed persistence (CMP) entity bean
exists before any business method invoked on the bean completes. This means the container
notifies an application as soon as any business method is invoked on a container-managed
entity bean that has been removed.

To specify that the EJB container wait for transaction completion to perform the existence
check, set check-exists-on-method to False. This results in high performance and still
provides a sufficient level of checking for most applications.

Example
The following example specifies that WebLogic Server notify the application that a business
method has been invoked on a CMP entity bean that has been removed.

<check-exists-on-method>True</check-exists-on-method>

cluster-invalidation-disabled
Range of values: true | false

Default value: false

Parent elements:

weblogic-rdbms-bean

• Function

• Example

Appendix C
check-exists-on-method

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-9 of C-56

Function
This flag, introduced in WebLogic Server 9.0, is used to disable or enable invalidation of an
EJB that uses Optimistic or ReadOnly concurrency when the EJB is updated by a member of
a cluster to which it is deployed. For more information, see Invalidation Options for Optimistic
Concurrency in Clusters.

Example
<cluster-invalidation-disabled>true</cluster-invalidation-disabled>

cmp-field
Range of values: Valid name of field in the bean. Field must have matching cmp-entry in ejb-
jar.xml. Field name is case-sensitive.

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 field-map

and

weblogic-rdbms-relation
 field-group

• Function

• Example

Function
This name specifies the mapped field in the bean instance which should be populated with
information from the database.

Example
See field-map.

cmr-field
Range of values: Valid name of field in the bean. Field must have matching cmr-field entry
in ejb-jar.xml

Default value: n/a

Parent elements:

weblogic-rdbms-relation
 field-group

and

Appendix C
cmp-field

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-10 of C-56

relationship-caching
 caching-element

• Function

• Example

Function
Specifies the name of a container-managed relationship field.

Example
<cmr-field>stock options</cmr-field>

column-map
Range of values: n/a

Default value: n/a

Parent elements:

<weblogic-rdbms-relation>
 <weblogic-relationship-role>
 <relationship-role-map>

• Function

• Example

Function
This element represents the mapping of a foreign key column in one table in the database to a
corresponding primary key. The two columns may or may not be in the same table. The tables
to which the columns belong are implicit from the context in which the column-map element
appears in the deployment descriptor.

Example
The following is an example of the column-map element:

Note

You do not need to specify the key-column element if the foreign-key-column refers
to a remote bean.

<column-map>
 <foreign-key-column>account-id</foreign-key-column>
 <key-column>id</key-column>
</column-map>

Appendix C
column-map

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-11 of C-56

compatibility
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar

• Function

• Example

Function
The <compatibility> element, introduced in WebLogic Server 8.1 SP02, contains elements
that specify compatibility flags for all of the cmp beans described in the descriptor file.

Example
<compatibility>
 <serialize-byte-array-to-oracle-blob>...</serialize-byte-array-to-oracle-blob>
 <serialize-char-array-to-bytes>...</serialize-char-array-to-bytes>
 <allow-readonly-create-and-remove>...</allow-readonly-create-and-remove>
 <disable-string-trimming>...</disable-string-trimming>
</compatibility>

create-default-dbms-table
Range of values: Disabled | CreateOnly | DropAndCreate | DropAndCreateAlways |
AlterOrCreate

Default value: Disabled

Parent elements:

weblogic-rdbms-jar

• Function

• Automatic Table Creation

• Automatic Oracle Database SEQUENCE Generation

• Example

Function
The create-default-dbms-table element performs two functions:

• It determines whether or how WebLogic Server automatically creates a default table based
on the descriptions in the deployment files and the bean class, when underlying table
schema have changed.

• It determines whether or how WebLogic Server automatically creates an Oracle database
SEQUENCE.

Appendix C
compatibility

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-12 of C-56

Use this element only for convenience during development phases. This is because the table
schema in the DBMS CREATE statement used are the EJB container's best approximation of the
definition. A production environment typically requires more precise schema definition.

Automatic Table Creation
The following table describes how WebLogic Server handles automatic table creation, based
on the value of create-default-dbms-tables.

Table C-1 Automatic Table Creation

Setting <create-default-dbms-tables>
to this value...

Results in this behavior with respect to automatic table creation...

Disabled The EJB container takes no action with respect to automatic table creation.
This is the default value.

CreateOnly The EJB container automatically generates the table upon detecting
changed schema.

The container attempts to create the table based on information found in the
deployment files and in the bean class. If table creation fails, a 'Table Not
Found' error is thrown, and the user must create the table manually.

DropAndCreate The EJB container automatically generates the table upon detecting
changed schema.

The container drops and recreates the table during deployment only if
columns have changed. The container does not save data.

You must ensure that the column type and cmp-field types are compatible.
The EJB container does not attempt to ensure the column type and cmp-
field types are compatible.

DropAndCreateAlways The EJB container automatically generates the table upon detecting
changed schema.

The container drops and creates the table during deployment whether or
not columns have changed. The container does not save the data.

AlterOrCreate The EJB container automatically generates the table upon detecting
changed schema.

The container creates the table if it does not yet exist. If the table does exist,
the container alters the table schema. Table data is saved.

Note: Do not choose this setting if a new column is specified as a primary
key or if a column with null values is specified as the new primary key
column.

If TABLE CREATION fails, the server throws a Table Not Found error and the table must be
created manually.

See Automatic Table Creation (Development Only).

Automatic Oracle Database SEQUENCE Generation

Note

Automatic Oracle database SEQUENCE generation works only with servers running in
development mode.

Appendix C
create-default-dbms-table

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-13 of C-56

The following table describes how WebLogic Server handles automatic SEQUENCE
generation, based on the value of create-default-dbms-tables.

Table C-2 Automatic Oracle Database SEQUENCE Generation

Setting <create-default-dbms-tables>
to this value...

Results in this behavior...

Disabled The EJB container takes no action with respect to SEQUENCE generation.
This is the default value.

CreateOnly The EJB container creates a SEQUENCE, and constructs its name by
appending "_WL" to the value of the generator-name element.

DropAndCreate The EJB container creates a SEQUENCE, and constructs its name by
appending "_WL" to the value of the generator-name element.

If the SEQUENCE's increment value does not match the value of the key-
cache-size element, the container alters the increment value to match the
value of key-cache-size.

DropAndCreateAlways The EJB container creates a SEQUENCE, and constructs its name by
appending "_WL" to the value of the generator-name element.

If the SEQUENCE's increment value does not match the value of the key-
cache-size element, the container alters the increment value to match the
value of key-cache-size.

AlterOrCreate The EJB container creates a SEQUENCE, and constructs its name by
appending "_WL" to the value of the generator-name element.

If the SEQUENCE's increment value does not match the value of the key-
cache-size element, the container alters the increment value to match the
value of key-cache-size.

For more information on automatic generation of an Oracle database SEQUENCE, see
Support for Oracle Database SEQUENCE .

Example
The following example specifies the create-default-dbms-tables element.

<create-default-dbms-tables>CreateOnly</create-default-dbms-tables>

database-specific-sql
Range of values: n/a

Default value: n/a

Requirements: database-type must be specified.

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 weblogic-query
 sql-query

• Function

• Example

Appendix C
database-specific-sql

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-14 of C-56

Function
The database-specific-sql element specifies a database-specific SQL statement.

Example
<database-specific-sql>
 <database-type>SQLServer</database-type>
 <sql>SELECT name, phone, location, testid FROM medrecappPharmacyBeanTable WHERE
 testid = ?1 AND SUBSTRING(testid, 1,5) = 'local' ORDER BY name
 </sql>
</database-specific-sql>

database-type
Range of values: DB2 | Informix | MySQL | Oracle | SQLServer | SQLServer2000 |
Sybase

Default value: n/a

Parent elements:

weblogic-rdbms-jar

and

weblogic-rdbms-jar
 weblogic-rdbms-bean
 weblogic-quer
 sql-query
 database-specific-sql

• Function

• Example

Function
The database-type element specifies the database used as the underlying WebLogic Server
dbms or the dbms against which to execute a vendor-specific SQL statement. If you specify
database-type in the weblogic-rdbms-jar element, the database you specify applies to the
entire weblogic-rdbms-jar deployment descriptor file unless it is overridden in a database-
specific-sql element by another database-type element.

Example
<database-type>Oracle</database-type>

data-source-jndi-name
Range of values: Valid WebLogic Server JDBC data source name

Default value: n/a

Parent elements:

Appendix C
database-type

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-15 of C-56

weblogic-rdbms-bean

• Function

• Example

Function
Specifies the JDBC data source name to be used for database connectivity for this bean. For
more information on data sources, see Developing JDBC Applications for Oracle WebLogic
Server.

Note

Prior to WebLogic Server 9.0, this element was data-source-name.

Example
See table-name.

db-cascade-delete
Range of values: n/a

Default value: By default, database cascade delete is not used. The EJB container performs
cascade deletes by issuing an individual SQL DELETE.

Parent elements:

weblogic-rdbms-bean
 weblogic-relationship-role

• Function

• Setting up Oracle Database for Cascade Delete

• Example

Function
Allows an application to take advantage of a database's built-in support for cascade delete,
and possibly improve performance. This functionality is supported only for:

• Oracle databases

• One-to-one or one-to-many relationships.

If db-cascade-delete is enabled in weblogic-cmp-rdbms-jar.xml, you must

• Enable cascade-delete in ejb-jar.xml

• Enable cascade delete in the database table definition.

Appendix C
db-cascade-delete

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-16 of C-56

Note

If db-cascade-delete is not specified, do not enable the database's cascade
delete functionality, as this will produce incorrect results.

Setting up Oracle Database for Cascade Delete
The following Oracle database table definition will cause deletion all of the emp rows if the
owning dept is deleted in the database.

CREATE TABLE dept
(deptno NUMBER(2) CONSTRAINT pk_dept PRIMARY KEY,
dname VARCHAR2(9));
CREATE TABLE emp
(empno NUMBER(4) PRIMARY KEY,
ename VARCHAR2(10),
deptno NUMBER(2) CONSTRAINT fk_deptno
REFERENCES dept(deptno)
ON DELETE CASCADE);

Example
<weblogic-relationship-role>
 <db-cascade-delete/>
</weblogic-relationship-role>

dbms-column
Range of values: Valid database column

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 field-map

• Function

• Example

Function
The name of the database column to which the field should be mapped.

Note

dbms-column is case maintaining, although not all database are case sensitive.

Example
See field-map.

Appendix C
dbms-column

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-17 of C-56

dbms-column-type
Range of values: Blob | Clob | LongString | SybaseBinary

Default value: n/a

Requirements: To specify Blob or Clob in this element, you must also set dbms-default-
value to Oracle or DB2 databases.

Parent elements:

weblogic-rdbms-bean
 field-map

• Function

• Example

Function
Specifies the type of the cmp-field. Maps the current field to a Blob or Clob in an Oracle or
DB2 database or to a LongString or SybaseBinary in a Sybase database.

• Blob—maps the field to an Oracle or DB2 database Blob.

• Clob—maps the field to an Oracle or DB2 database Clob.

• LongString—tells the container to use setCharacterStream to write String data into the
database. Some JDBC drivers have problems writing more than 4K of data using
setString.

• SybaseBinary—tells the container to use setBytes to write bytes into the binary column,
because setBinaryStream does not work with SybaseXADriver.

Example
<field-map>
 <cmp-field>photo</cmp-field>
 <dbms-column>PICTURE</dbms-column>
 <dbms_column-type>OracleBlob</dbms-column-type>
</field-map>

dbms-default-value
Range of values: DB2 | Informix| MySQL | Oracle | SQLServer | SQLServer2000 |
Sybase

Default value:

Parent elements:

weblogic-rdbms-bean
 field-map

• Function

• Example

Appendix C
dbms-column-type

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-18 of C-56

Function
Specifies the database used as the default underlying dbms. This value can be overridden by
the database-type element.

Example
<dbms-default-value>Oracle</dbms-default-value>

default-dbms-tables-ddl
Range of values: Valid file name

Default value:

Parent elements:

weblogic-rdbms-jar

• Function

Function
Specifies the DDL file name to which the EJB container writes the table creation scripts.

delay-database-insert-until
Range of values: ejbCreate | ejbPostCreate

Default value: ejbPostCreate

Requirememts:

Parent elements:

weblogic-rdbms-bean

• Function

• Example

Function
Specifies when a new CMP bean is inserted into the database. The allowable values cause the
following behavior:

• ejbCreate - perform database insert immediately after ejbCreate. This setting yields
better performance than ejbCreate by avoiding an unnecessary store operation.

• ejbPostCreate - perform insert immediately after ejbPostCreate.

This element has an effect only when order-database-operations is False. By default,
order-database-operations is true, which causes new beans to be inserted at the
transaction commit time.

Appendix C
default-dbms-tables-ddl

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-19 of C-56

Delaying the database insert until after ejbPostCreate is required when a cmr-field is
mapped to a foreign-key column that does not allow null values. In this case, the cmr-field
must be set to a non-null value in ejbPostCreate before the bean is inserted into the database.

For maximum flexibility, avoid creating related beans in your ejbPostCreate method. If
ejbPostCreate creates related beans, and database constraints prevent related beans from
referring to a bean that has not yet been created, it is not possible to perform a database insert
until after the method completion.

Note

cmr-fields may not be set during ejbCreate, before the primary key of the bean is
known.

Example
<delay-database-insert-until>ejbPostCreate</delay-database-insert-until>

description
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 weblogic-query

or

weblogic-rdbms-jar
 weblogic-rdbms-bean
 sql-shape

• Function

• Example

Function
The description element provides text that describes the parent element.

Example
<description>Contains a description of parent element</description>

disable-string-trimming
Range of values: True | False

Default value: False

Appendix C
description

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-20 of C-56

Parent elements:

compatibility

• Function

• Example

Function
This element, introduced in WebLogic Server 9.0, is a compatibility flag. It is used to specify
whether a cmp-field of type string[] should be trimmed. Set this flag to True to disable string
trimming. For more information on string trimming, see String-Valued CMP Field Trimming and
Disabling String Trimming.

Example
<compatibility>
 <disable-string-trimming>True</disable-string-trimming>
</compatibility>

ejb-name
Range of values: Must match the ejb-name of a cmp entity bean defined in the ejb-jar.xml

Default value: n/a

Parent elements:

weblogic-rdbms-bean

• Function

• Example

Function
The name that specifies an EJB as defined in the ejb-cmp-rdbms.xml. This name must match
the ejb-name of a cmp entity bean contained in the ejb-jar.xml.

Example
See table-name.

ejb-ql-query
Range of values:

Default value:

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 weblogic-query

• Function

Appendix C
ejb-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-21 of C-56

• Example

Function
The ejb-ql-query element specifies an EJB-QL query. You should only specify EJB-QL
queries that implement EJB finders or contain WebLogic-specific extensions in the weblogic-
cmp-jar.xml deployment descriptor; specify queries that use only standard EJB-QL features in
the ejb-jar.xml deployment descriptor.

Example
See weblogic-query.

enable-batch-operations
Range of values: True | False

Default value: True

Parent elements:

weblogic-rdbms-jar

• Function

• Example

Function
This element, introduced in WebLogic Server 8.1, controls whether or not the EJB container
allows batch database operations, including batch inserts, batch updates, and batch deletes.

If this element is set to True, the EJB delays database operations in a transaction until commit
time.

Example
The following XML sample demonstrates use of the enable-batch-operations element:

<enable-batch-operations>True</enable-batch-operations>

enable-query-caching
Range of values: True | False

Default value: True

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 weblogic-query

or

weblogic-rdbms-jar
 weblogic-rdbms-relation

Appendix C
enable-batch-operations

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-22 of C-56

• Function

• Example

Function
This element, introduced in WebLogic Server 9.0, controls whether read-only entity EJBs can
be cached at the query level. Caching read-only entity EJBs at the query level improves
performance because it enables the EJBs to be accessed in cache by any finder, thereby
avoiding the need to access the database. If you set this value to True, you can specify the
maximum number of queries to cache at the application or bean level. To specify the maximum
number of queries to cache, set max-queries-in-cache in the weblogic-ejb-jar.xml
deployment descriptor. For information, see max-queries-in-cache.

Example
The following XML sample demonstrates use of the enable-query-caching element:

<enable-query-caching>True</enable-query-caching>

field-group
Range of values: n/a

Default value: A special group named default is used for finders and relationships that have
no field-group specified. The default group contains all of a bean's cmp-fields, but none of its
cmr-fields.

Parent elements:

weblogic-rdbms-relation

• Function

• Example

Function
The field-group element represents a subset of the cmp-fields and cmr-fields of a bean.
Related fields in a bean can be put into groups that are faulted into memory together as a unit.
A group can be associated with a finder or relationship, so that when a bean is loaded as the
result of executing a finder or following a relationship, only the fields specified in the group are
loaded.

A field may belong to multiple groups. In this case, the getXXX method for the field faults in the
first group that contains the field.

Example
The field-group element can contain the elements shown here:

<weblogic-rdbms-bean>
 <ejb-name>XXXBean</ejb-name>
 <field-group>
 <group-name>medical-data</group-name>
 <cmp-field>insurance</cmp-field>
 <cmr-field>doctors</cmr-fields>

Appendix C
field-group

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-23 of C-56

 </field-group>
</weblogic-rdbms-bean>

field-map
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-bean

• Function

• Example

Function
The field-map element represents a mapping between a particular column in a database and
a cmp-field in the bean instance.

The optional group-name element specifies a field group that is to be loaded when the getXXX
method for the cmp-field is called and the EJB container needs to read the value from the
DBMS because it is not in memory. If group-name is omitted, the default group, which contains
all cmp-fields, is used when the cmp-field is not explicitly listed in any field groups, otherwise
a field group that contains the cmp-field is chosen. Thus, developers should specify a group-
name if the cmp-field is listed in multiple field groups or the container will pick one of the
groups arbitrarily.

The dbms-column-type element is optional.

Example
The field-map element can contain the elements shown here:

<field-map>
 <cmp-field>....</cmp-field>
 <dbms-column>...</dbms-column>
 <dbms-column-type>...</dbms-column-type>
 <group-name>...</group name>
</field-map>

finders-return-nulls
Range of values: True | False

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 compatibility
 weblogic-query

• Function

• Example

Appendix C
field-map

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-24 of C-56

Function
This element, introduced in WebLogic Server 9.0, is a compatibility flag. It is used to specify
whether finders can return null results.

By default

Example
<compatibility>
 <finders-return-nulls>True</finders-return-value>
</compatibility>

foreign-key-column
Range of values: Valid foreign key database column name

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 column-map

• Function

• Example

Function
The foreign-key-column element represents a column of a foreign key in the database.

Example
See column-map.

foreign-key-table
Range of values: Valid database table name

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-relation
 weblogic-relationship-role
 relationship-role-map

• Function

• Example

Appendix C
foreign-key-column

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-25 of C-56

Function
The foreign-key-table element specifies the name of a DBMS table that contains a foreign
key.

Example
See relationship-role-map.

generator-name
Range of values:

Default value:

Parent elements:

weblogic-rdbms-bean
 automatic-key-generation

• Function

• Example

Function
The generator-name element is used to specify the name of the primary key generator.

• If the generator-type element is Oracle, and WebLogic Server is running in development
mode, then the EJB container constructs the Oracle database SEQUENCE name by
appending "_WL" to the generator-name as part of the container's automatic SEQUENCE
generation feature.

For more information on automatic Oracle database SEQUENCE generation, see Support
for Oracle Database SEQUENCE .

• If the generator-type element is Oracle, and WebLogic Server is running in production
mode, then the EJB container sets the name of the Oracle database SEQUENCE to the
value of generator-name.

• If the generator-type element is NamedSequenceTable, then the generator-name element
would be the name of the SEQUENCE_TABLE to be used.

Example
See automatic-key-generation.

generator-type
Range of values: Identity | Sequence | SequenceTable

Default value:

Parent elements:

Appendix C
generator-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-26 of C-56

weblogic-rdbms-bean
 automatic-key-generation

• Function

• Example

Function
The generator-type element specifies the primary key generation method to use.

Note

You must set the database-type element when using automatic-key-generation.

In addition, generator-type is used in conjunction with automatic Oracle database
SEQUENCE generation. See Support for Oracle Database SEQUENCE .

The following databases are supported for each generator-type:

• Identity: Oracle databases are not supported.

• Sequence: Oracle, DB2, and Informix (version 9.2 and greater) databases are supported.

• SequenceTable: All databases are supported.

Example
See automatic-key-generation.

group-name
Range of values: n/a

Default value:

field-group

and

caching-element

and

weblogic-query

and

field-map

and

weblogic-relationship-role

Parent elements:

weblogic-rdbms-relation
 field-group

Appendix C
group-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-27 of C-56

• Function

• Example

Function
Specifies the name of a field group.

Example
See field-group.

include-updates
Range of values: True | False

Default value: False for beans that use optimistic concurrency. True for beans that use other
concurrency types.

Parent elements:

weblogic-rdbms-bean
 weblogic-query

• Function

• Example

Function
Specifies whether updates made during the current transaction must be reflected in the result
of a query. If this element is set to True, the container will flush all changes made by the
current transaction to disk before executing the query. A value of False provides best
performance.

Example
<weblogic-query>
 <query-method>
 <method-name>findBigAccounts</method-name>
 <method-params>
 <method-param>double</method-param>
 </method-params>
 </query-method>
 <ejb-ql-query>
 <weblogic-ql>WHERE BALANCE>10000 ORDER BY NAME</weblogic-ql>
 </ejb-ql-query>
 <include-updates>True</include-updates>
</weblogic-query>

instance-lock-order
Range of values: AccessOrder | ValueOrder

Default value: AccessOrder

Parent elements:

Appendix C
include-updates

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-28 of C-56

weblogic-rdbms-bean

• Function

• Example

Function
Specifies a locking or processing order for instances of a particular EJB. This element can be
used to prevent deadlocks in an application that would otherwise experience deadlocks.
instance-lock-order is used whenever database operations (update, for example) that apply
to multiple instances of the same EJB are performed by the container. It specifies an order for
operations that can cause a database lock to be acquired for a bean instance.

For example, instance-lock-order could be used to specify the order in which the EJB
container calls ejbStore for instances of a particular EJB that uses database concurrency;
ejbStore may acquire an exclusive lock when a database update is done. instance-lock-
order also controls the order in which beans using optimistic concurrency are locked when
optimistic checking is performed.

• AccessOrder—The container will process beans so that locks are acquired (or upgraded)
in the order in which the application originally accessed the beans during the transaction.
This is the recommended value when all transactions in the system access instances of
the bean, and ultimately rows in a database table, in the same order.

• ValueOrder—Beans are processed in order based on the value of their primary key.
ValueOrder should be specified to avoid deadlocks when concurrent transactions access
instances of the same EJB in different orders.

Note

The EJB's primary key class is not required to implement the
java.lang.Comparable interface when ValueOrder is specified, although this will
result in a total ordering. Beans are ordered partially using the hash code value of
the primary key when the primary key does not implement
java.lang.Comparable.

Example
<instance-lock-order>ValueOrder</instance-lock-order>

key-cache-size
Range of values:

Default value: 1

Parent elements:

weblogic-rdbms-bean
 automatic-key-generation

• Function

• Example

Appendix C
key-cache-size

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-29 of C-56

Function
Specifies the optional size of the primary key cache available in the automatic primary key
generation feature. In addition, the EJB container uses this value to calculate the increment
value for an Oracle database SEQUENCE when automatic SEQUENCE generation is enabled.
See Support for Oracle Database SEQUENCE .

If generator-type is:

• Oracle—key-cache-size must match the Oracle database SEQUENCE INCREMENT
value. If there is a mismatch between this value and the Oracle database SEQUENCE
INCREMENT value, then there will likely be duplicate key problems.

• NamedSequenceTable—key-cache-size specifies how many keys the container will fetch in
a single DBMS call.

• SQLServer—key-cache-size is ignored.

Example
See automatic-key-generation.

key-column
Range of values: Valid primary key column name

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 column-map

• Function

• Example

Function
The key-column element represents a column of a primary key in the database.

Example
See column-map.

lock-order
Range of values: All positive integers

Default value: 0

Parent elements:

weblogic-rdbms-bean

• Function

Appendix C
key-column

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-30 of C-56

• Example

Function
Use this flag to specify the database locking order of an entity bean when a transaction
involves multiple beans and exclusive concurrency. The bean with the lowest number is locked
first.

This flag should only be used to prevent a deadlock situation and, currently, only applies when
a transaction performs cascade deletes.

Example
An example of the lock-order element is:

<lock-order>1</lock-order>
 <!ELEMENT lock-order (PCDATA)>

max-elements
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 weblogic-query

• Function

• Example

Function
max-elements specifies the maximum number of elements that should be returned by a multi-
valued query. This element is similar to the maxRows feature in JDBC.

Example
An example of the max-elements element is shown here:

<max-elements>100</max-elements>
 <!ELEMENT max-element (PCDATA)>

method-name
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 query-method

• Function

Appendix C
max-elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-31 of C-56

• Example

Function
The method-name element specifies the name of a finder or ejbSelect method.

Note

The '*' character cannot be used as a wildcard.

Example
See weblogic-query.

method-param
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 method-params

• Function

• Example

Function
The method-param element contains the fully qualified Java type name of a method parameter.

Example
<method-param>java.lang.String</method-param>

method-params
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 query-method

• Function

• Example

Appendix C
method-param

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-32 of C-56

Function
The method-params element contains an ordered list of the fully-qualified Java type names of
the method parameters.

Example
See weblogic-query.

optimistic-column
Range of values: Valid database column name

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 table-map

• Function

• Example

Function
The optimistic-column element denotes a database column that contains a version or
timestamp value used to implement optimistic concurrency. For more information on optimistic
concurrency, see Choosing a Concurrency Strategy.

Note

Although not all databases are case sensitive, this element is case maintaining.

Example
The following sample XML shows the use of the optimistic-column element.

<optimistic-column>ROW_VERSION</optimistic-column>

where ROW_VERSION is the name of a database column that contains the value used for
concurrency checking.

order-database-operations
Range of values: True | False

Default value: True

Parent elements:

weblogic-rdbms-jar

Appendix C
optimistic-column

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-33 of C-56

• Function

• Example

Function
This element, introduced in WebLogic Server 8.1, determines whether the EJB container
delays all database operations in a transaction until commit time, automatically sorts the
database dependency between the operations, and sends these operations to the database in
such a way to avoid any database constraint errors.

If enable-batch-operations is set to True, the container automatically sets order-database-
operations to True. To turn off order-database-operations, set both order-database-
operations and enable-batch-operations to False.

See also ejb-ql-query and delay-database-insert-until.

Example
<order-database-operations>True</order-database-operations>

pass-through-columns
Range of values: Any positive integer

Default value:

Parent elements:

weblogic-rdbms-bean
 sql-shape

• Function

• Example

Function
This element, introduced in WebLogic Server 9.0, specifies the number of aggregate columns
that should be passed through to a SQL query result set without being mapped to anything.

Example
See sql-shape.

primary-key-table
Range of values: Valid database table name

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-relation
 weblogic-relationship-role
 relationship-role-map

Appendix C
pass-through-columns

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-34 of C-56

• Function

• Example

Function
The primary-key-table element specifies the name of a DBMS table that contains a primary
key. For more information about primary keys, see Using Primary Keys.

Note

Although not all databases are case sensitive, this element is case maintaining.

Example
For examples, see relationship-role-map and Mapping a Bean on Primary Key Side of a
Relationship to Multiple Tables.

query-method
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-bean

• Function

• Example

Function
Specifies the method that is associated with a weblogic-query. It also uses the same format
as the ejb-jar.xml descriptor.

Example
See weblogic-query.

relation-name
Range of values: Must match the ejb-relation-name of an ejb-relation in the associated
ejb-jar.xml deployment descriptor file. The ejb-relation-name is optional, but is required for
each relationship defined in the associated ejb-jar.xml deployment descriptor file.

Default value: n/a

Parent elements:

weblogic-rdbms-relation

• Function

Appendix C
query-method

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-35 of C-56

• Example

Function
The relation-name element specifies the name of a relation.

For more information about container-managed relationships, see Using Container-Managed
Relationships (CMRs).

Example
An example of the relationship-name element is shown here:

<weblogic-rdbms-jar>
 <weblogic-rdbms-relation>
 <relation-name>stocks-holders</relation-name>
 <table-name>stocks</table-name>
 </weblogic-rdbms-relation>
</weblogic-rdbms-jar>

relationship-caching
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean

• Function

• Example

Function
The relationship-caching element specifies relationship caching. For more information
about relationship caching, see Relationship Caching.

Example
The relationship-caching element can contain the elements shown here:

<relationship-caching>
 <caching-name>cacheMoreBeans</caching-name>
 <caching-element>
 <cmr-field>accounts<</cmr-field>
 <group-name>acct_group</group-name>
 <caching-element>
 <cmr-field>address</cmr-field>
 <group-name>addr_group</group-name>
 </caching-element>
 </caching-element>
 <caching-element>
 <cmr-field>phone</cmr-field>
 <group-name>phone_group</group-name>

Appendix C
relationship-caching

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-36 of C-56

 </caching-element>
</relationship-caching>

relationship-role-map
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-relation
 weblogic-relationship-role

• Function

• Example

• Mapping a Bean on Foreign Key Side of a Relationship to Multiple Tables

• Mapping a Bean on Primary Key Side of a Relationship to Multiple Tables

Function
The relationship-role-map element specifies foreign key column to key column mapping for
beans involved in a relationship.

A CMP bean that is involved in a relationship may be mapped to multiple DBMS tables (see
the table-map element for more details). If the bean on the foreign key side of a one-to-one or
one-to-many relationship is mapped to multiple tables, then the name of the table containing
the foreign-key columns must be specified using the foreign-key-table element.

Conversely, if the bean on the primary key side of a one-to-one or one-to-many relationship or
a bean participating in a m-n relationship is mapped to multiple tables, then the name of the
table containing the primary key must be specified using the primary-key-table element.

If neither of the beans in a relationship is mapped to multiple tables, then the foreign-key-
table and primary-key-table elements can be omitted because the tables being used are
implicit.

For more information about container-managed relationships, see Using Container-Managed
Relationships (CMRs).

Example

Mapping a Bean on Foreign Key Side of a Relationship to Multiple Tables
The bean on the foreign-key side of a one-to-one relationship, Fk_Bean, is mapped to multiple
tables. The table that holds the foreign key columns must be specified in the foreign-key-
table element.

Fk_Bean is mapped to two tables: Fk_BeanTable_1 and Fk_BeanTable_2. The foreign key
columns for the relationship are located in table Fk_BeanTable_2. The foreign key columns are
named Fk_column_1 and Fk_column_2. The bean on the primary key side, Pk_Bean, is mapped
to a single table with primary key columns Pk_table_pkColumn_1 and Pk_table_pkColumn_2:

<relationship-role-map
 <foreign-key-table>Fk_BeanTable_2</foreign-key-table>

Appendix C
relationship-role-map

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-37 of C-56

 <column-map>
 <foreign-key-column>Fk_column_1</foreign-key-column>
 <key-column>Pk_table_pkColumn_1</key-column>
 </column-map>
 <column-map>
 <foreign-key-column>Fk_column_2</foreign-key-column>
 <key-column>Pk_table_pkColumn_2</key-column>
 </column-map>
</relationship-role-map>

The foreign-key-table element must be specified so that the container can know which table
contains the foreign key columns.

Mapping a Bean on Primary Key Side of a Relationship to Multiple Tables
The bean on the primary key side of a one-to-one relationship, Pk_bean, is mapped to multiple
tables, but the bean on the foreign key side of the relationship, Fk_Bean, is mapped to one
table, Fk_BeanTable. The foreign key columns are named Fk_column_1 and Fk_column_2.

Pk_bean is mapped to tables:

• Pk_BeanTable_1 with primary key columns Pk_table1_pkColumn_1 and
Pk_table1_pkColumn_2 and

• Pk_BeanTable_2 with primary key columns Pk_table2_pkColumn_1 and
Pk_table2_pkColumn_2.

<relationship-role-map>
 <primary-key-table>Pk_BeanTable_1</primary-key-table>
 <column-map>
 <foreign-key-column>Fk_column_1</foreign-key-column>
 <key-column>Pk_table1_pkColumn_1</key-column>
 </column-map>
 <column-map>
 <foreign-key-column>Fk_column_2</foreign-key-column>
 <key-column>Pk_table1_pkColumn_2</key-column>
 </column-map>
</relationship-role-map>

relationship-role-name
Range of values: Must match the ejb-relationship-role-name of an ejb-relationship-
role in the associated ejb-jar.xml.

Default value: n/a

Parent elements:

weblogic-rdbms-relation
 weblogic-relationship-role

• Function

• Example

Function
The relationship-role-name element specifies the name of a relationship role.

Appendix C
relationship-role-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-38 of C-56

For more information about container-managed relationships, see Using Container-Managed
Relationships (CMRs).

Example
See the examples for weblogic-relationship-role.

serialize-byte-array-to-oracle-blob
Range of values: True | False

Default value: False

Parent elements:

weblogic-rdbms-jar
 compatibility

• Function

• Example

Function
This element, introduced in WebLogic Server 8.1 SP02, is a compatibility flag. It is used to
specify whether a cmp-field of type byte[] mapped to a Blob in an Oracle database should
be serialized. By default, the value of the tag is false, which means that the container will
persist the byte[] directly and not serialize it.

In versions prior to WebLogic Server 8.1 SP02, the default behavior was to serialize a cmp-
field of type byte[] mapped to a Blob in an Oracle database. To revert to the old behavior,
set the value of serialize-byte-array-to-oracle-blob to true.

Example
<compatibility>
 <serialize-byte-array-to-oracle-blob>true</serialize-byte-array-to-oracle-blob>
</compatibility>

serialize-char-array-to-bytes
Range of values: True | False

Default value: False

Parent elements:

weblogic-rdbms-jar
 compatibility

• Function

• Example

Appendix C
serialize-byte-array-to-oracle-blob

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-39 of C-56

Function
This element, introduced in WebLogic Server 9.0, is a compatibility flag. It is used to specify
whether a cmp-field of type char[] mapped to a byte should be serialized. By default, the
value of the tag is False, which causes the EJB container to persist the char[] directly and not
serialize it; If you want the EJB container to serialize the char[], set this value to True.

Example
<compatibility>
 <serialize-char-array-to-bytes>true</serialize-char-array-to-bytes>
</compatibility>

sql
Range of values: Valid SQL

Default value: n/a

Requirements: To use database-specific SQL, you must specify the database against which to
execute the SQL in the in database-type element.

Parent elements:

weblogic-rdbms-bean
 weblogic-query
 sql-query

and

weblogic-rdbms-bean
 weblogic-query
 sql-query
 database-specific-query

• Function

• Example

Function
The sql element contains a standard or database-specific SQL query. You should specify
queries that use only standard EJB-QL language features in the ejb-jar.xml deployment
descriptor. Specify queries that contain standard SQL, database-specific SQL, or WebLogic
extensions to EJB-QL in the weblogic-cmp-jar.xml deployment descriptor.

Example
...
<weblogic-rdbms-bean>
 <weblogic-query>
 <sql-query>
 <sql>SELECT date_prescribed, dosage, drug, id, frequency,
 instructions, pat_id, issuing_phys_id, record_id,
 refills_remaining FROM medrecappPrescription
 WHERE testid = ?1</sql>
 </sql-query>

Appendix C
sql

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-40 of C-56

 </weblogic-query>
...
</weblogic-rdbms-bean>

sql-query
Range of values:

Default value: n/a

Requirements: To use database-specific SQL, you must specify the database against which
to execute the SQL in database-type.

Parent elements:

weblogic-rdbms-bean
 weblogic-query

• Function

• Example

Function
The sql-query element allows you to specify standard and database-specific SQL queries.
EJB-QL queries that do not take advantage of WebLogic extensions to EJB-QL should be
specified in the ejb-jar.xml deployment descriptor.

Prior to WebLogic Server 9.0, only EJB-QL queries (with or without WebLogic extensions)
were supported; in this release of WebLogic Server, SQL queries, EJB-QL queries (with or
without WebLogic extensions), or a combination of the two are supported.

Example
<sql-query>
 <sql-shape-name>...</sql-shape-name>
 <sql>...</sql>
 <database-specific-sql>...</database-specific-sql>
 <database-type>...</database-type>
 <sql>...</sql>
 <unknown-primary-key-field>...</unknown-primary-key-field>
 <cmp-field>...</cmp-field>
</sql-query>

sql-select-distinct
Range of values: True | False

Default value: False

Parent elements:

weblogic-query

Appendix C
sql-query

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-41 of C-56

Note

This element is deprecated in this release of WebLogic Server. To achieve the same
functionality, use the SELECT DISTINCT clause directly in finder queries.

• Function

• Example

Function
The sql-select-distinct element controls whether the generated SQL SELECT statement
will contain a a DISTINCT qualifier. Using the DISTINCT qualifier causes the database to
return unique rows.

Oracle database does not allow use of a SELECT DISTINCT with a FOR UPDATE clause.
Therefore, you cannot use the sql-select-distinct element if any bean in the calling chain
has a method with isolation-level of TransactionReadCommittedForUpdate. You specify the
transaction-isolation element in the weblogic-ejb-jar.xml.

Example
The XML example contains the element shown here:

<sql-select-distinct>True</sql-select-distinct>

sql-shape
Range of values:

Default value:

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 sql-query

• Function

• Example

Function
The sql-shape element describes the data that is returned by a SQL query. Specifying sql-
shape is necessary because databases do not always provide this information. Usually the sql-
shape element should simply specify the database tables and columns that are being returned.
For more complex queries, sql-shape should also specify the relationships that are present in
the data that is returned by the database, and whether there are aggregate columns that
should be passed through (should not be mapped to anything).

Example
sql-shape
 description

Appendix C
sql-shape

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-42 of C-56

 sql-shape-name
 table
 pass-through-columns
 ejb-relation-name

sql-shape-name
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 weblogic-query
 sql-query
 sql-shape

• Function

• Example

Function
The sql-shape-name element can be used to associate a sql-shape with multiple queries. If
you have multiple queries that use the same sql-shape, you can define the shape once and
use it multiple times by referencing sql-shape-name.

Example
See sql-shape.

table-map
Range of values: n/a

Default value: n/a

Requirements: Each table-map element must contain a mapping for the bean's primary key
fields.

Parent elements:

weblogic-rdbms-bean

• Function

• Example

Function
A CMP bean can be mapped to one or more DBMS tables. The table-map element specifies a
mapping between the cmp-fields of a bean and the columns of a table for all of the cmp-
fields mapped to that table. If you map a CMP bean to multiple DBMS tables, then you must
specify a table-map element for each of the tables.

Appendix C
sql-shape-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-43 of C-56

When you map a CMP bean to multiple tables, each table contains a row that maps to a
particular bean instance. Consequently, all tables will contain the same number of rows at any
point in time. In addition, each table contains the same set of homogeneous primary key
values. Therefore, each table must have the same number of primary key columns and
corresponding primary key columns in different tables must have the same type, although they
may have different names.

Each table-map element must specify a mapping from the primary key column(s) for a
particular table to the primary key field(s) of the bean. You can only map non-primary key fields
to a single table.

For information about using the verify-rows, verify-columns, and optimistic-column
elements, see Check Data for Validity with Optimistic Concurrency.

Example
The table-map element can contain the elements shown here:

<table-map>
 <table-name>DeptTable</table-name>
 <field-map>
 <cmp-field>deptId1</cmp-field>
 <dbms-column>t1_deptId1_column</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>deptId2</cmp-field>
 <dbms-column>t1_deptId2_column</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>location</cmp-field>
 <dbms-column>location_column</dbms-column>
 </field-map>
 <cmp-field>budget</cmp-field>
 <dbms-column>budget</dbms-column>
 </field-map>
 <verify-rows>Read</verify-rows>
 <verify-columns>Version</verify-columns>
 <optimistic-column>ROW_VERSION</optimistic-column>
 <trigger-updates-optimistic-column>False
 </trigger-updates-optimistic-column>
 <version-column-initial-value>0</version-column-initial-value>
</table-map>

table-name
Range of values: Valid, fully qualified SQL name of the source table in the database.

Default value:

Requirements: table-name must be set in all cases.

Parent elements:

weblogic-rdbms-bean
 weblogic-rdbms-relation

• Function

• Example

Appendix C
table-name

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-44 of C-56

Function
The fully-qualified SQL name of the table. The user defined for the data-source for this bean
must have read and write privileges for this table, but does not necessarily need schema
modification privileges.

Example
<weblogic-rdbms-jar>
 <weblogic-rdbms-bean>
 <ejb-name>containerManaged</ejb-name>
 <data-source-jndi-name>examples-dataSource-demoPool</data-source-jndi-name>
 <table-name>ejbAccounts</table-name>
 </weblogic-rdbms-bean>
</weblogic-rdbms-jar>

trigger-updates-optimistic-column
Range of values: True | False

Default value: False

Parent elements:

weblogic-rdbms-bean
 table-map

• Function

• Example

Function
The trigger-updates-optimistic-column element, introduced in WebLogic Server 9.0,
indicates whether you want the EJB container to automatically update the database column
value specified in optimistic-column that is used for concurrency checking. By default, the
value of trigger-updates-optimistic-column is False, and the EJB container automatically
updates the database column specified in optimistic-column whenever it sends SQL UPDATE
statements to JDBC. If you have legacy applications that use database triggers to update the
version values whenever the legacy application updates a database row and you do not want
the EJB container to automatically update version values, set the value of this element to True.

Note

If you set trigger-updates-optimistic-column to True, you must also ensure that your
database triggers initialize the version column in the database when the bean is
created.

Example
See table-map.

Appendix C
trigger-updates-optimistic-column

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-45 of C-56

unknown-primary-key-field
Range of values: A valid datatype

Default value: n/a

Parent elements:

weblogic-rdbms-bean

• Function

• Example

Function
The unknown-primary-key-field element allows you to specify which of your cmp fields
should be used as the primary key when the primary key is not specified in the ejb-jar.xml
descriptor. The specified primary key field must be mapped to a database column using the
field-map element. If the specified primary key field was not declared as a cmp field in the
ejb-jar.xml descriptor, automatic key generation must be enabled and the primary key type
will be java.lang.Long.

Example
See weblogic-rdbms-bean.

use-select-for-update
Range of values: True | False

Default value: False

Parent elements:

weblogic-rdbms-bean

• Function

• Example

Function
Enforces pessimistic concurrency on a per-bean basis. Specifying True causes SELECT ...
FOR UPDATE to be used whenever the bean is loaded from the database. This is different from
the transaction isolation level of TransactionReadCommittedForUpdate in that this is set at the
bean level rather than the transaction level.

Note

When using a pessimistic locking strategy (for example, HOLDLOCK) with Sybase
JConnect drivers, you must specify SELECT_OPENS_CURSOR=true to generate a cursor
when the query contains a FOR UPDATE clause.

Appendix C
unknown-primary-key-field

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-46 of C-56

Example
<weblogic-rdbms.jar>
 <weblogic-rdbms-bean>
 <ejb-name>containerManaged</ejb-name>
 <use-select-for-update>True</use-select-for-update>
 /weblogic-rdbms-bean>
</weblogic-rdbms-jar>

validate-db-schema-with
Range of values: MetaData | TableQuery

Default value: TableQuery

Parent elements:

weblogic-rdbms-jar

• Function

• Example

Function
The validate-db-schema-with element specifies that container-managed persistence checks
that beans have been mapped to a valid database schema during deployment.

If you specify MetaData WebLogic Server uses the JDBC metadata to validate the schema.

If you specify TableQuery, the default setting, WebLogic Server queries the tables directly to
verify that they have the schema expected by CMP runtime.

Example
An example of the validate-db-schema-with element is shown here:

<validate-db-schema-with>TableQuery</validate-db-schema-with>

verify-columns
Range of values: Read | Modified | Version | Timestamp

Default value: none

Requirements: table-name must be set in all cases.

Parent elements:

weblogic-rdbms-bean
 table-map

• Function

• Example

Appendix C
validate-db-schema-with

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-47 of C-56

Function
The verify-columns element specifies the columns in a table that you want WebLogic Server
to check for validity when you use the optimistic concurrency strategy. WebLogic Server
checks columns at the end of a transaction, before committing it to the database, to make sure
that no other transaction has modified the data.

See Choosing a Concurrency Strategy for more information.

Example
<verify-columns>Modified</verify-columns>

verify-rows
Range of values: Read | Modified

Default value: Modified

Requirements: table-name must be set in all cases.

Parent elements:

weblogic-rdbms-bean
 table-map

• Function

• Example

Function
The verify-rows element specifies the rows in a table that the EJB container should check
when optimistic concurrency is used.

• Modified— only rows that are updated or deleted by a transaction are checked. This value
ensures that two transactions do not update the same row concurrently, resulting in a lost
update, but allows reads and updates of different transactions to be interleaved. This
results in a level of consistency that falls between the ANSI READ_COMMITTED and
REPEATABLE_READ levels of consistency.

• Read—specifies that any row that is read by the transaction should be checked. This
includes both rows that are simply read and rows that are read and then updated or
deleted by the transaction. Specifying a value of Read results in additional overhead since it
generally increases the amount of optimistic checking the EJB container must perform.
With the Read option, committed transactions read a set of rows that are guaranteed not to
be modified by another transaction until after the transaction commits.This results in a high
level of consistency which is very close to the ANSI definition of SERIALIZABLE consistency.

Note

If verify-rows is set to Read then the verify-columns element cannot have a
value of Modified, as this combination would result in the EJB container checking
only the modified rows.

Appendix C
verify-rows

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-48 of C-56

See Choosing a Concurrency Strategy for more information.

Example
<verify-rows>Modified</verify-rows>

version-column-initial-value
Range of values: 0 or any positive integer

Default value: n/a

Parent elements:

weblogic-rdbms-bean
 table-map

• Function

• Example

Function
The version-column-initial-value element, introduced in WebLogic Server 9.0, specifies
the initial value of the version column used to implement optimistic concurrency. The version
column is the database column you specify in the optimistic-column element. For more
information, see optimistic-column.

Example
See table-map.

weblogic-ql
Range of values:

Default value:

Parent elements:

weblogic-rdbms-bean
 weblogic-query

• Function

• Example

Function
The weblogic-ql element specifies a query that contains a WebLogic specific extension to the
ejb-ql language. You should specify queries that only use standard EJB-QL language features
in the ejb-jar.xml deployment descriptor.

Example
See weblogic-query.

Appendix C
version-column-initial-value

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-49 of C-56

weblogic-query
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-bean

• Function

• Example

Function
The weblogic-query element allows you to specify queries that use standard or database-
specific SQL or WebLogic-specific extensions to EJB-QL. Queries that do not take advantage
of SQL or WebLogic extensions to EJB-QL should be specified in the ejb-jar.xml deployment
descriptor.

The weblogic-query element is also used to associate a field-group with the query if the
query retrieves an entity bean that should be pre-loaded into the cache by the query.

Example
The weblogic-query element can contain the elements shown here:

<weblogic-query>
 <description>...</description>
 <query-method>
 <method-name>findBigAccounts</method-name>
 <method-params>
 <method-param>double</method-param>
 </method-params>
 </query-method>
 <ejb-ql-query>
 <weblogic-ql>WHERE BALANCE>10000 ORDER BY NAME
 </weblogic-ql>
 <group-name>...</group-name>
 <caching-name>...</caching-name>
 </ejb-ql-query>
 <sql-query>
 <sql-shape>...</sql-shape>
 <sql>SELECT date_prescribed, dosage, drug, id, frequency, instructions,
 pat_id, issuing_phys_id, record_id, refills_remaining FROM
 medrecappPrescription WHERE testid = ?1</sql>
 <database-specific-sql>
 <database-type>SQLServer</database-type>
 <sql>SELECT name, phone, location, testid FROM medrecappPharmacyBeanTable
 WHERE testid = ?1 AND
 SUBSTRING(testid, 1,5) = 'local' ORDER BY name</sql>
 </database-specific-sql>
 </sql-query>
 <max-elements>...</max-elements>
 <include-updates>...</include-updates>
 <sql-select-distinct>...</sql-select-distinct>
</weblogic-query>

Appendix C
weblogic-query

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-50 of C-56

weblogic-rdbms-bean
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar

• Function

• Example

Function
The weblogic-rdbms-bean specifies an entity bean that is managed by the WebLogic RDBMS
CMP persistence type.

Example
weblogic-rdbms-bean
 ejb-name
 data-source-jndi-name
 unkonown-primary-key-field
 table-map
 field-group
 relationship-caching
 weblogic-query
 dalay-database-insert-until
 automatic-key-generation
 check-exists-on-method

weblogic-rdbms-jar
This section describes and provides an example of the weblogic-rdbms-jar element.

• Function

• Example

Function
The weblogic-rdbms-jar element is the root level element of a WebLogic RDBMS CMP
deployment descriptor. This element contains the deployment information for one or more
entity beans and an optional set of relations.

Example
The XML structure of weblogic-rdbms-jar is:

weblogic-rdbms-jar
 weblogic-rdbms-bean
 weblogic-rdbms-relation
 create-default-dbms-tables

Appendix C
weblogic-rdbms-bean

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-51 of C-56

 validate-db-schema-with
 database-type

weblogic-rdbms-relation
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar

• Function

• Examples

• Defining a One-to-One Relationship

• Defining a One-to-Many Relationship

• Defining a Many-to-Many Relationship

Function
The weblogic-rdbms-relation element represents a single relationship that is managed by
the WebLogic CMP persistence type. deployment descriptor. WebLogic Server supports the
following three relationship mappings:

• For one-to-one relationships, the mapping is from a foreign key in one bean to the primary
key of the other bean.

• For one-to-many relationships, the mapping is also from a foreign key in one bean to the
primary key of another bean.

• For many-to-many relationships, the mapping involves a join table. Each row in the join
table contains two foreign keys that map to the primary keys of the entities involved in the
relationship.

For more information on container managed relationships, see Using Container-Managed
Relationships (CMRs).

Examples
See the following sections for examples of how one-to-one, one-to-many, and many-to-many
relationships are configured.

Defining a One-to-One Relationship
Example C-6 shows the weblogic-rdbms-bean element that defines a one-to-one relationship
between the entities defined in Example C-4 and Example C-5. The weblogic-rdbms-relation
element is in the weblogic-cmp-jar.xml file, after the weblogic-rdbms-bean elements.

Appendix C
weblogic-rdbms-relation

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-52 of C-56

Note

NAME is the column name for the primary key located in the Capital table.

<relationship-role-name> contains the relation field specified in <cmr-field> in the
<ejb-relationship-role> element in ejb-jar.xml.

Example C-4 Bean 1

<weblogic-rdbms-bean>
 <ejb-name>CountryEJB</ejb-name>
 <data-source-jndi-name>wlsd21-datasource</data-source-jndi-name>
 <table-map>
 <table-name>EXAMPLE07_COUNTRY</table-name>
 <field-map>
 <cmp-field>name</cmp-field>
 <dbms-column>NAME</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>continent</cmp-field>
 <dbms-column>CONTINENT</dbms-column>
 </field-map>
 </table-map>
</weblogic-rdbms-bean>

Example C-5 Bean 2

<weblogic-rdbms-bean>
 <ejb-name>CapitalEJB</ejb-name>
 <data-source-jndi-name>wlsd21-datasource</data-source-jndi-name>
 <table-map>
 <table-name>EXAMPLE07_CAPITAL</table-name>
 <field-map>
 <cmp-field>CAPITAL_NAME</cmp-field>
 <dbms-column>NAME</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>continent</cmp-field>
 <dbms-column>CONTINENT</dbms-column>
 </field-map>
 </table-map>
</weblogic-rdbms-bean>

Example C-6 <weblogic-rdbms-relation> Element for a One-to-One Relationship

<weblogic-rdbms-relation>
 <relation-name>CountryCapitalRel</relation-name>
 <weblogic-relationship-role>
 <relationship-role-name>CountryRole</relationship-role-name>
 <relationship-role-map>
 <column-map>
 <foreign-key-column>CAPITAL_NAME</foreign-key-column>
 <key-column>NAME</key-column>
 </column-map>
 </relationship-role-map>
 </weblogic-relationship-role>
</weblogic-rdbms-relation>

Appendix C
weblogic-rdbms-relation

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-53 of C-56

Defining a One-to-Many Relationship
Example C-7 contains a sample <weblogic-rdbms-relation> element that defines a one-to-
many relationship:

Note

<relationship-role-name> contains the relation field specified in <cmr-field> in the
<ejb-relationship-role> element in ejb-jar.xml.

<foreign-key-column> must specify the column in the table on the "many" side of the
relationship.

Example C-7 <weblogic-rdbms-relation> Element for a One-to-Many Relationship

<weblogic-rdbms-relation>
 <relation-name>OwnerDogRel</relation-name>
 <weblogic-relationship-role>
 <relationship-role-name>DogRole</relationship-role-name>
 <relationship-role-map>
 <column-map>
 <foreign-key-column>OWNER_NAME</foreign-<key-column>
 <key-column>NAME</key-column>
 </column-map>
 <relationship-role-map>
 </weblogic-relationship-role>
</weblogic-rdbms-relation>

Defining a Many-to-Many Relationship
A WebLogic Server many-to-many relationship involves the physical mapping of a join table.
Each row in the join table contains two foreign keys that maps to the primary keys of the
entities involved in the relationship.

The following example shows a many-to-many relationship between the FRIENDS bean and the
EMPLOYEES bean.

Example C-8 <weblogic-rdbms-relation> Element for a Many-to-Many Relationship

<weblogic-rdbms-relation>
 <relation-name>friends</relation-name>
 <table-name>FRIENDS</table-name>
 <weblogic-relationship-role>
 <relationship-role-name>friend</relationship-role-name>
 <relationship-role-map>
 <column-map>
 <foreign-key-column>first-friend-id</foreign-key-column>
 <key-column>id</key-column>
 </column-map
 </relationship-role-map>
 </weblogic-relationship-role>
 <weblogic-relationship-role>
 <relationship-role-name>second-friend</relationship-role-name>
 <relationship-role-map>
 <column-map>
 <foreign-key-column>second-friend-id</foreign-key-column>

Appendix C
weblogic-rdbms-relation

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-54 of C-56

 <key-column>id</key-column>
 </column-map>
 </relationship-role-map>
 </weblogic-relationship-role>
</weblogic-rdbms-relation>

In Example C-7, the FRIENDS join table has two columns, called first-friend-id and second-
friend-id. Each column contains a foreign key that designates a particular employee who is
a friend of another employee. The primary key column (key-column) of the EMPLOYEES table is
id. For this example, assume that the EMPLOYEES bean is mapped to a single table. If the
EMPLOYEES bean is mapped to multiple tables, then the table containing the primary key column
(key-column) must be specified in the relationship-role-map. For more information, see
relationship-role-map.

weblogic-relationship-role
Range of values: n/a

Default value: n/a

Parent elements:

weblogic-rdbms-jar
 weblogic-rdbms-relation

• Function

• Example

Function
The weblogic-relationship-role element specifies the following DBMS schema information
for an ejb-relationship-role specified in ejb-jar.xml:

• The relationship-role-map sub-element specifies the mapping between a foreign key
and a primary key, for one side of a relationship. For a 1-1 or 1-n relationship, only the role
on the foreign-key side of the relationship specifies a mapping. Both roles specify a
mapping for a m-m relationship. For details and examples, see relationship-role-map.

• A group-name can be used to indicate the field-group to be loaded when the bean
corresponding to the role is loaded as a result of traversing the relationship, i.e. calling a
cmr getXXX method.

• The db-cascade-delete tag can to used to specify that cascade deletes use the built-in
cascade delete facilities of the underlying DBMS. For more information, see db-cascade-
delete.

For more information about container-managed relationships, see Using Container-Managed
Relationships (CMRs).

Example
<weblogic-relationship-role>
 <relationship-role-name>...</relationship-role-name>
 <group-name></group-name>
 <relationship-role-map>...

 </relationship-role-map>

Appendix C
weblogic-relationship-role

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-55 of C-56

 <db-cascade-delete/>
</weblogic-relationship-role>

Appendix C
weblogic-relationship-role

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix C-56 of C-56

D
appc Reference

Examine the WebLogic Server appc tool for compiling, validating, and generating EJB code.
This appendix includes the following topic:

• appc

appc
The appc compiler generates and compiles the classes needed to deploy EJBs and JSPs to
WebLogic Server. It also validates the deployment descriptors for compliance with the current
specifications at both the individual module level and the application level. The application-
level checks include checks between the application-level deployment descriptors and the
individual modules as well as validation checks across the modules.

• Advantages of Using appc

• appc Syntax

• Designating Alternative Deployment Descriptors

• appc Options

• appc and EJBs

Advantages of Using appc
The appc tool offers the following benefits:

• The flexibility of compiling an entire application, rather than compiling individual modules
separately and combining them into an EAR after the fact.

• Validation checks across all modules and validation of application-level deployment
descriptors against the various modules, because WebLogic Server has access to all
modules during EAR compilation.

Without appc, a user wanting to compile all modules within an EAR file had to extract the
individual components of an EAR and manually execute the appropriate compiler (jspc or
ejbc) to prepare the module for deployment. appc automates this process and makes
additional pre-deployment validation checks not previously possible.

• It is easy to identify and correct errors appc produces.

If an error occurs while running appc from the command line, appc exits with an error
message.

By contrast, if you defer compilation to the time of deployment and a compilation error
occurs, the server fails the deployment and goes on with its work. To determine why
deployment failed, you must examine the server output, fix the problem and then redeploy.

• By running appc prior to deployment, you potentially reduce the number of time a bean is
compiled.

For example, if you deploy a JAR file to a cluster of 3 servers, the JAR file is copied to
each of the three servers for deployment. If the JAR file wasn't precompiled, each of the
three servers will have to compile the file during deployment.

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix D-1 of D-4

appc Syntax
Use the following syntax to run appc:

prompt>java weblogic.appc [options] <ear, jar, or war file or directory>

Designating Alternative Deployment Descriptors
Jakarta EE allows you to designate an alternative Jakarta EE deployment descriptor for an
EJB or Web application module, using the <alt-dd> element in the <module> element of
application.xml.

You can use <alt-dd> to specify an alternate deployment descriptor only for the Jakarta EE
deployment descriptors, web.xml and ejb-jar.xml. As of WebLogic Server 8.1 SP01, if you
specify an alternative deployment descriptor for a module in alt-dd, appc will compile the EJB
using the alternative descriptor file.

For more information about the <alt-dd> element, see "module" in Enterprise Application
Deployment Descriptor Elements in Developing Applications for Oracle WebLogic Server.

In WebLogic Server 8.1 SP01and later, you can use appc command line options to designate
alternative Jakarta EE and WebLogic Server deployment descriptors for an application, as
shown below:

• -altappdd <file>—Use this option to specify the full path and file name of an alternative
Jakarta EE deployment descriptor file, application.xml.

• -altwlsappdd <file>—Use this option to specify the full path and file name of an
alternative WebLogic application deployment descriptor, weblogic-application.xml.

appc Options
Table D-1 lists appc command line options.

Table D-1 appc Command Line Options

Option Description

-advanced Prints advanced usage options.

-altappdd Designates an alternative Jakarta EE application deployment
descriptor.

-altwlsappdd Designates an alternative WebLogic Server application
deployment descriptor.

-basicClientJar Does not include deployment descriptors in client JARs generated
for EJBs.

-classpath <path> Selects the classpath to use during compilation.

-clientJarOutputDir <dir> Specifies a directory to place generated client jar files. If not set,
generated jar files are placed into the same directory location
where the JVM is running.

-compiler <javac> Selects the Java compiler to use.

-deprecation Warns about deprecated calls.

Appendix D
appc

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix D-2 of D-4

Table D-1 (Cont.) appc Command Line Options

Option Description

-forceGeneration Forces generation of EJB and JSP classes. Without this flag, the
classes will not be regenerated unless a checksum indicates that
it is necessary.

-g Compiles debugging information into a class file.

-help Prints the standard usage message.

-idl Generates IDL for EJB remote interfaces.

-idlDirectory <dir> Specifies the directory where IDL files will be created (default:
target directory or JAR)

-idlFactories Generates factory methods for valuetypes.

-idlMethodSignatures <> Specifies the method signatures used to trigger IDL code
generation.

-idlNoAbstractInterfaces Does not generate abstract interfaces and methods/attributes that
contain them.

-idlNoValueTypes Does not generate valuetypes and the methods/attributes that
contain them.

-idlOrbix Generates IDL somewhat compatible with Orbix C++.

-idlOverwrite Always overwrites existing IDL files.

-idlVerbose Displays verbose information for IDL generation.

-idlVisibroker Generates IDL somewhat compatible with Visibroker C++.

-iiop Generates CORBA stubs for EJBs.

-iiopDirectory <dir> Specifies the directory where IIOP stub files will be written
(default: target directory or JAR)

-J<option> Passes flags through to Java runtime.

-keepgenerated Keeps the generated .java files.

-library <file> Comma-separated list of libraries. Each library may optionally set
its name and versions, if not already set in its manifest, with the
syntax:

<file>[@name=<string>@libspecver=<version>

@libimplver=<version|string>]

-librarydir <dir> Registers all files in the specified directory as libraries.

-lineNumbers Adds line numbers to generated class files to aid in debugging.

-normi Passes flags through to Symantec's sj.

-nowarn Compiles without warnings.

-O Compiles with optimization on.

-output <file> Specifies an alternate output archive or directory. If not set, the
output is placed in the source archive or directory.

-plan <file> Specifies an optional deployment plan.

-verbose Compiles with verbose output.

-version Prints appc version information.

Appendix D
appc

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix D-3 of D-4

appc and EJBs
weblogic.appc performs the following EJB-related functions:

• Generates WebLogic Server container classes for the EJBs.

• Checks all EJB classes and interfaces for compliance with the EJB specification.

• Checks deployment descriptors for potential configuration problems. For example, if there
is a cmp field declared in ejb-jar.xml, appc verifies that the column is mapped in the
weblogic-cmp-rdbms.xml deployment descriptor.

• Runs each EJB container class through the RMI compiler to create RMI descriptors
necessary to dynamically generate stubs and skeletons.

By default, appc uses javac as a compiler. For faster performance, specify a different compiler
(such as Symantec's sj) using the command-line -compiler flag.

For the location of the public version of weblogic-ejb-jar.xml, see weblogic-ejb-jar.xml
Deployment Descriptor Reference. For the location of the public version of weblogic-cmp-
jar.xml, see weblogic-cmp-jar.xml Deployment Descriptor Reference.

Appendix D
appc

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix D-4 of D-4

E
Important Information for EJB 1.1 Users

Examine some of the important information for EJB 1.1. users and the detailed reference to
EJB 1.1 deployment descriptors. Oracle strongly recommends that new users implement their
distributed business applications using EJB 4.0 beans.
However, if your existing application implements EJB 1.1 beans, read the following sections,
which contain important design and implementation information specific to EJB 1.1.

This appendix includes the following topics:

• Writing for RDBMS Persistence for EJB 1.1 CMP
Learn how to write finders for WebLogic-specific 1.1 EJBs that use RDBMS persistence.
As of EJB 2.0, you can use EJB QL, a portable query language, to define finder queries for
EJBs with container-managed persistence.

• Using WebLogic Query Language (WLQL) for EJB 1.1 CMP
WebLogic Query Language (WLQL) for EJB 1.1 CMP allows you to query 1.1 entity EJBs
with container-managed persistence. In the weblogic-cmp-jar.xml file, each finder-
query element must include a WLQL string that defines the query used to return EJBs.

• Using SQL for CMP 1.1 Finder Queries
WebLogic Server allows you to use a SQL string instead of the standard WLQL query
language to write SQL for a CMP 1.1 finder query. The SQL statement retrieves the values
from the database for the CMP 1.1 finder query. Use SQL to write a CMP 1.1 finder query
when a more complicated finder query is required and you cannot use WLQL.

• Tuned EJB 1.1 CMP Updates in WebLogic Server
EJB container-managed persistence (CMP) automatically support tuned updates because
the container receives get and set callbacks when container-managed EJBs are read or
written. Tuning EJB 1.1 CMP beans helps improve their performance.

• Using is-modified-method-name to Limit Calls to ejbStore()
The is-modified-method-name deployment descriptor element applies to EJB 1.1
container-managed-persistence (CMP) beans only. This element is found in the weblogic-
ejb-jar.xml file. WebLogic Server CMP implementation automatically detects
modifications of CMP fields and writes only those changes to the underlying datastore.

• 5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure
The WebLogic Server 5.1 weblogic-ejb-jar.xml file defines the EJB document type
definitions (DTD) you use with EJB 1.1 beans. These deployment descriptor elements are
WebLogic-specific.

• 5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
Examine the deployment descriptor elements in weblogic-ejb-jar.xml.

• 1.1 weblogic-cmp-jar.xml Deployment Descriptor File Structure
weblogic-cmp-jar.xml defines deployment elements for a single entity EJB that uses
WebLogic Server RDBMS-based persistence services.

• 1.1 weblogic-cmp-jar.xml Deployment Descriptor Elements
Examine the weblogic-cmp-jar.xml deployment descriptor elements.

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-1 of E-23

Writing for RDBMS Persistence for EJB 1.1 CMP
Learn how to write finders for WebLogic-specific 1.1 EJBs that use RDBMS persistence. As of
EJB 2.0, you can use EJB QL, a portable query language, to define finder queries for EJBs
with container-managed persistence.

Clients use finder methods to query and receive references to entity beans that fulfill query
conditions.

WebLogic Server provides an easy way to write finders.

1. Write the method signature of a finder in the EJBHome interface.

2. Define the finder's query expressions in the ejb-jar.xml deployment file.

appc creates implementations of the finder methods at deployment time, using the queries in
ejb-jar.xml.

The key components of a finder for RDBMS persistence are:

• The finder method signature in EJBHome.

• A query element defined within ejb-jar.xml.

• An optional finder-query element within weblogic-cmp-jar.xml.

The following sections explain how to write EJB finders using XML elements in WebLogic
Server deployment files.

• Finder Signature

• finder-list Element

• finder-query Element

Finder Signature
Specify finder method signatures using the form findMethodName(). Finder methods defined in
weblogic-cmp-jar.xml must return a Java collection of EJB objects or a single object.

Note

You can also define a findByPrimaryKey(primkey) method that returns a single object
of the associated EJB class.

finder-list Element
The finder-list element associates one or more finder method signatures in EJBHome with
the queries used to retrieve EJB objects. The following is an example of a simple finder-list
element using WebLogic Server RDBMS-based persistence:

<finder-list>
 <finder>
 <method-name>findBigAccounts</method-name>
 <method-params>
 <method-param>double</method-param>
 </method-params>

Appendix E
Writing for RDBMS Persistence for EJB 1.1 CMP

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-2 of E-23

 <finder-query><![CDATA[(> balance $0)]]></finder-query>
 </finder>
</finder-list>

Note

If you use a non-primitive data type in a method-param element, you must specify a
fully qualified name. For example, use java.sql.Timestamp rather than Timestamp. If
you do not use a qualified name, appc generates an error message when you compile
the deployment unit.

finder-query Element
The finder-query element defines the WebLogic Query Language (WLQL) expression you
use to query EJB objects from the RDBMS. WLQL uses a standard set of operators against
finder parameters, EJB attributes, and Java language expressions. See Using WebLogic
Query Language (WLQL) for EJB 1.1 CMP for more information on WLQL.

Note

Always define the text of the finder-query value using the XML CDATA attribute. Using
CDATA ensures that any special characters in the WLQL string do not cause errors
when the finder is compiled.

A CMP finder can load all beans using a single database query. So, 100 beans can be loaded
with a single database round trip. A bean-managed persistence (BMP) finder must do one
database round trip to get the primary key values of the beans selected by the finder. As each
bean is accessed, another database access is also typically required, assuming the bean was
not already cached. So, to access 100 beans, a BMP might do 101 database accesses.

Using WebLogic Query Language (WLQL) for EJB 1.1 CMP
WebLogic Query Language (WLQL) for EJB 1.1 CMP allows you to query 1.1 entity EJBs with
container-managed persistence. In the weblogic-cmp-jar.xml file, each finder-query
element must include a WLQL string that defines the query used to return EJBs.

Use WLQL for EJBs and their corresponding deployment files that are based on the EJB 1.1
specification.

• WLQL Syntax

• WLQL Operators

• WLQL Operands

• Examples of WLQL Expressions

WLQL Syntax
WLQL strings use the prefix notation for comparison operators, as follows:

(operator operand1 operand2)

Appendix E
Using WebLogic Query Language (WLQL) for EJB 1.1 CMP

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-3 of E-23

Additional WLQL operators accept a single operand, a text string, or a keyword.

WLQL Operators
The following are valid WLQL operators.

Table E-1 WLQL Operators

Operator Description Sample Syntax

= Equals (= operand1 operand2)

< Less than (< operand1 operand2)

> Greater than (> operand1 operand2)

<= Less than or equal to (<= operand1 operand2)

>= Greater than or equal to (>= operand1 operand2)

! Boolean not (! operand)

& Boolean and (& operand)

| Boolean or (| operand)

like Wildcard search based on % symbol in the
supplied text_string or an input
parameter

(like text_string%)

isNull Value of single operand is null (isNull operand)

isNotNull Value of single operand is not null (isNotNull operand)

orderBy Orders results using specified database
columns

Note: Always specify a database column
name in the orderBy clause, rather than a
persistent field name. WebLogic Server
does not translate field names specified in
orderBy.

(orderBy 'column_name')

desc Orders results in descending order. Used
only in combination with orderBy.

(orderBy 'column_name desc')

WLQL Operands
Valid WLQL operands include:

• Another WLQL expression

• A container-managed field defined elsewhere in the weblogic-cmp-jar.xml file

Note

You cannot use RDBMS column names as operands in WLQL. Instead, use the
EJB attribute (field) that maps to the RDBMS column, as defined in the
attribute-map in weblogic-cmp-jar.xml.

• A finder parameter or Java expression identified by $n, where n is the number of the
parameter or expression. By default, $n maps to the nth parameter in the signature of the

Appendix E
Using WebLogic Query Language (WLQL) for EJB 1.1 CMP

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-4 of E-23

finder method. To write more advanced WLQL expressions that embed Java expressions,
map $n to a Java expression.

Note

The $n notation is based on an array that begins with 0, not 1. For example, the
first three parameters of a finder correspond to $0, $1, and $2. Expressions need
not map to individual parameters. Advanced finders can define more expressions
than parameters.

Examples of WLQL Expressions
The following example code shows excerpts from the weblogic-cmp-jar.xml file that use
basic WLQL expressions.

• This example returns all EJBs that have the balance attribute greater than the
balanceGreaterThan parameter specified in the finder. The finder method signature in
EJBHome is:

public Enumeration findBigAccounts(double balanceGreaterThan)
 throws FinderException, RemoteException;

The sample <finder> element is:

<finder>
 <method-name>findBigAccounts</method-name>
 <method-params>
 <method-param>double</method-param>
 </method-params>
 <finder-query><![CDATA[(> balance $0)]]></finder-query>
</finder>

Note that you must define the balance field n the attribute map of the EJB's persistence
deployment file.

Note

Always define the text of the finder-query value using the XML CDATA attribute.
Using CDATA ensures that any special characters in the WLQL string do not cause
errors when the finder is compiled.

• The following example shows how to use compound WLQL expressions. Also note the use
of single quotes (') to distinguish strings:

<finder-query><![CDATA[(& (> balance $0) (! (= accountType 'checking')))]]></finder-
query>

• The following example finds all the EJBs in a table. It uses the sample finder method
signature:

public Enumeration findAllAccounts()
 throws FinderException, RemoteException

The sample <finder> element uses an empty WLQL string:

Appendix E
Using WebLogic Query Language (WLQL) for EJB 1.1 CMP

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-5 of E-23

<finder>
 <method-name>findAllAccounts</method-name>
 <finder-query></finder-query>
</finder>

• The following query finds all EJBs whose lastName field starts with "M":

<finder-query><![CDATA[(like lastName M%)]]></finder-query>

• This query returns all EJBs that have a null firstName field:

<finder-query><![CDATA[(isNull firstName)]]></finder-query>

• This query returns all EJBs whose balance field is greater than 5000, and orders the beans
by the database column, id:

<finder-query><![CDATA[WHERE >5000 (orderBy 'id' (> balance 5000))]]></finder-query>

• This query is similar to the previous example, except that the EJBs are returned in
descending order:

<finder-query><![CDATA[(orderBy 'id desc' (>))]]></finder-query>

Using SQL for CMP 1.1 Finder Queries
WebLogic Server allows you to use a SQL string instead of the standard WLQL query
language to write SQL for a CMP 1.1 finder query. The SQL statement retrieves the values
from the database for the CMP 1.1 finder query. Use SQL to write a CMP 1.1 finder query
when a more complicated finder query is required and you cannot use WLQL.

For more information on WLQL, see Using WebLogic Query Language (WLQL) for EJB 1.1
CMP.

To specify this SQL finder query:

1. In the weblogic-cmp-jar.xml file write a SQL query using the finder-sql element in the
weblogic-cmp-jar.xml file as follows.

findBigAccounts(double cutoff) as follows:

<finder-sql><![CDATA{balance >$0]]></finder-sql>

Use values such as $0 or $1 in the SQL string to reference the parameters to the finder
method. The WebLogic Server EJB container replaces the $ parameters but will not
interpret the SQL query.

2. The Container emits the following SQL:

SELECT <columns> FROM table WHERE balance > ?

The SQL should be the WHERE clause of an SQL statement. The Container prepends the
SELECT and FROM clauses. The WHERE clause may contain arbitrary SQL.

If you use characters in your SQL query that may confuse an XML parser, such as the greater
than (>) symbol and the less than (<) symbol, make sure that you declare the SQL query using
the CDATA format shown in the preceding sample SQL statement.

You can use any amount of vendor-specific SQL in the SQL query.

Appendix E
Using SQL for CMP 1.1 Finder Queries

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-6 of E-23

Tuned EJB 1.1 CMP Updates in WebLogic Server
EJB container-managed persistence (CMP) automatically support tuned updates because the
container receives get and set callbacks when container-managed EJBs are read or written.
Tuning EJB 1.1 CMP beans helps improve their performance.

WebLogic Server now supports tuned updates for EJB 1.1 CMP. When ejbStore is called, the
EJB container automatically determines which container-managed fields have been modified in
the transaction. Only modified fields are written back to the database. If no fields are modified,
no database updates occur.

With previous releases of WebLogic Server, you could to write an isModified method that
notified the container whether the EJB 1.1 CMP bean had been modified. isModified is still
supported in WebLogic Server, but Oracle recommends that you no longer use isModified
methods and instead allow the container to determine the update fields.

This feature is enabled for EJB 2.0 CMP, by default. To enable tuned EJB 1.1 CMP updates,
make sure that you set the following deployment descriptor element in the weblogic-cmp-
jar.xml file to true.

<enable-tuned-updates>true</enable-tuned-updates>

You can disable tuned CMP updates by setting this deployment descriptor element as follows:

<enable-tuned-updates>false</enable-tuned-updates>

In this case, ejbStore always writes all fields to the database.

Using is-modified-method-name to Limit Calls to ejbStore()
The is-modified-method-name deployment descriptor element applies to EJB 1.1 container-
managed-persistence (CMP) beans only. This element is found in the weblogic-ejb-jar.xml
file. WebLogic Server CMP implementation automatically detects modifications of CMP fields
and writes only those changes to the underlying datastore.

Oracle recommends that you not use is-modified-method-name with bean-managed-
persistence (BMP) because you would need to create both the is-modified-method-name
element and the ejbstore method.

By default, WebLogic Server calls the ejbStore() method at the successful completion
(commit) of each transaction. ejbStore() is called at commit time regardless of whether the
EJB's persistent fields were actually updated, and results in a DBMS update. WebLogic Server
provides the is-modified-method-name element for cases where unnecessary calls to
ejbStore() may result in poor performance.

To use is-modified-method-name, EJB providers must first develop an EJB method that
"cues" WebLogic Server when persistent data has been updated. The method must return
"false" to indicate that no EJB fields were updated, or "true" to indicate that some fields were
modified.

The EJB provider or EJB deployment descriptors then identify the name of this method by
using the value of the is-modified-method-name element. WebLogic Server calls the specified
method name when a transaction commits, and calls ejbStore() only if the method returns
"true." For more information on this element, see is-modified-method-name.

Appendix E
Tuned EJB 1.1 CMP Updates in WebLogic Server

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-7 of E-23

5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure
The WebLogic Server 5.1 weblogic-ejb-jar.xml file defines the EJB document type
definitions (DTD) you use with EJB 1.1 beans. These deployment descriptor elements are
WebLogic-specific.

The top level elements in the WebLogic Server 5.1 weblogic-ejb-jar.xml are:

• description

• weblogic-version

– weblogic-enterprise-bean

– ejb-name

– caching-descriptor

– persistence-descriptor

– clustering-descriptor

– transaction-descriptor

– reference-descriptor

– jndi-name

– transaction-isolation

• security-role-assignment

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
Examine the deployment descriptor elements in weblogic-ejb-jar.xml.

The following sections describe WebLogic-Server 5.1 weblogic-ejb-jar.xml deployment
descriptor elements.

• caching-descriptor

• max-beans-in-free-pool

• initial-beans-in-free-pool

• max-beans-in-cache

• idle-timeout-seconds

• cache-strategy

• read-timeout-seconds

• persistence-descriptor

• is-modified-method-name

• delay-updates-until-end-of-tx

• persistence-type

• db-is-shared

• stateful-session-persistent-store-dir

• persistence-use

Appendix E
5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-8 of E-23

• clustering-descriptor

• home-is-clusterable

• home-load-algorithm

• home-call-router-class-name

• stateless-bean-is-clusterable

• stateless-bean-load-algorithm

• stateless-bean-call-router-class-name

• stateless-bean-methods-are-idempotent

• transaction-descriptor

• trans-timeout-seconds

• reference-descriptor

• resource-description

• ejb-reference-description

• enable-call-by-reference

• jndi-name

• transaction-isolation

• isolation-level

• Oracle-Only Isolation Levels

• method

• security-role-assignment

caching-descriptor
The caching-descriptor element affects the number of EJBs in the WebLogic Server cache
as well as the length of time before EJBs are passivated or pooled. The entire element, as well
as each of its child elements, is optional. WebLogic Server uses default values where no
elements are defined.

The following is a sample caching-descriptor element that shows the caching elements
described in this section:

<caching-descriptor>
 <max-beans-in-free-pool>500</max-beans-in-free-pool>
 <initial-beans-in-free-pool>50</initial-beans-in-free-pool>
 <max-beans-in-cache>1000</max-beans-in-cache>
 <idle-timeout-seconds>20</idle-timeout-seconds>
 <cache-strategy>Read-Write</cache-strategy>
 <read-timeout-seconds>0</read-timeout-seconds>
</caching-descriptor>

Appendix E
5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-9 of E-23

max-beans-in-free-pool

Note

This element is valid only for stateless session EJBs.

WebLogic Server maintains a free pool of EJBs for every bean class. This optional element
defines the size of the pool. By default, max-beans-in-free-pool has no limit; the maximum
number of beans in the free pool is limited only by the available memory.

initial-beans-in-free-pool

Note

This element is valid only for stateless session EJBs.

If you specify a value for initial-bean-in-free-pool, WebLogic Server populates the free
pool with the specified number of bean instances at startup. Populating the free pool in this
way improves initial response time for the EJB, since initial requests for the bean can be
satisfied without generating a new instance.

initial-bean-in-free-pool defaults to 0 if the element is not defined.

max-beans-in-cache

Note

This element is valid only for stateful session EJBs and entity EJBs.

This element specifies the maximum number of objects of this class that are allowed in
memory. When max-beans-in-cache is reached, WebLogic Server passivates some EJBs that
have not been recently used by a client. max-beans-in-cache also affects when EJBs are
removed from the WebLogic Server cache.

The default value of max-beans-in-cache is 100.

idle-timeout-seconds
idle-timeout-seconds defines the maximum length of time a stateful EJB should remain in
the cache. After this time has elapsed, WebLogic Server may remove the bean instance if the
number of beans in cache approaches the limit of max-beans-in-cache.

idle-timeout-seconds defaults to 600 if you do not define the element.

Appendix E
5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-10 of E-23

cache-strategy
The cache-strategy element can be one of the following:

• Read-Write

• Read-Only

The default value is Read-Write.

read-timeout-seconds
The read-timeout-seconds element specifies the number of seconds between ejbLoad() calls
on a Read-Only entity bean. By default, read-timeout-seconds is set to 600 seconds. If you
set this value to 0, WebLogic Server calls ejbLoad only when the bean is brought into the
cache.

persistence-descriptor
The persistence-descriptor element specifies persistence options for entity EJBs. The
following shows all elements contained in the persistence-descriptor element:

<persistence-descriptor>
 <is-modified-method-name>. . .</is-modified-method-name>
 <delay-updates-until-end-of-tx>. . .</delay-updates-until-end-of-tx>
 <persistence-type>
 <type-identifier>. . .</type-identifier>
 <type-version>. . .</type-version>
 <type-storage>. . .</type-storage>
 </persistence-type>
 <db-is-shared>. . .</db-is-shared>
 <stateful-session-persistent-store-dir>
 . . .
 </stateful-session-persistent-store-dir>
 <persistence-use>. . .</persistence-use>
</persistence-descriptor>

is-modified-method-name
is-modified-method-name specifies a method that WebLogic Server calls when the EJB is
stored. The specified method must return a boolean value. If no method is specified, WebLogic
Server always assumes that the EJB has been modified and always saves it.

Providing a method and setting it as appropriate can improve performance. However, any
errors in the method's return value can cause data inconsistency problems.

delay-updates-until-end-of-tx
Set this property to true (the default), to update the persistent store of all beans in a
transaction at the completion of the transaction. This generally improves performance by
avoiding unnecessary updates. However, it does not preserve the ordering of database
updates within a database transaction.

If your datastore uses an isolation level of TransactionReadCommittedUncommitted, you may
want to allow other database users to view the intermediate results of in-progress transactions.

Appendix E
5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-11 of E-23

In this case, set delay-updates-until-end-of-tx to false to update the bean's persistent
store at the conclusion of each method invoke.

Note

Setting delay-updates-until-end-of-tx to false does not cause database updates to
be "committed" to the database after each method invoke; they are only sent to the
database. Updates are committed or rolled back in the database only at the conclusion
of the transaction.

persistence-type
A persistence-type defines a persistence service that can be used by an EJB. You can define
multiple persistence-type entries in weblogic-ejb-jar.xml for testing with multiple
persistence services. Only the persistence type defined in persistence-use is used during
deployment.

persistence-type includes several elements that define the properties of a service:

• type-identifier contains text that identifies the specified persistence type. For example,
WebLogic Server RDBMS persistence uses the identifier, WebLogic_CMP_RDBMS.

• type-version identifies the version of the specified persistence type.

Note

The specified version must exactly match the RDBMS persistence version for the
WebLogic Server release. Specifying an incorrect version results in the error:

weblogic.ejb.persistence.PersistenceSetupException: Error initializing
the CMP Persistence Type for your bean: No installed Persistence Type
matches the signature of (identifier 'Weblogic_CMP_RDBMS', version
'version_number').

• type-storage defines the full path of the file that stores data for this persistence type. The
path must specify the file's location relative to the top level of the EJB's JAR deployment
file or deployment directory.

WebLogic Server RDBMS-based persistence generally uses an XML file named weblogic-
cmp-jar.xml to store persistence data for a bean. This file is stored in the META-INF
subdirectory of the JAR file.

The following shows an example persistence-type element with values appropriate for
WebLogic Server RDBMS persistence:

<persistence-type>
 <type-identifier>WebLogic_CMP_RDBMS</type-identifier>
 <type-version>5.1.0</type-version>
 <type-storage>META-INF\weblogic-cmp-jar.xml</type-storage>
</persistence-type>

Appendix E
5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-12 of E-23

db-is-shared
The db-is-shared element applies only to entity beans. When set to true (the default value),
WebLogic Server assumes that EJB data could be modified between transactions and reloads
data at the beginning of each transaction. When set to false, WebLogic Server assumes that
it has exclusive access to the EJB data in the persistent store.

stateful-session-persistent-store-dir
stateful-session-persistent-store-dir specifies the file system directory where WebLogic
Server stores the state of passivated stateful session bean instances.

persistence-use
The persistence-use property is similar to persistence-type, but it defines the persistence
service actually used during deployment. persistence-use uses the type-identifier and
type-version elements defined in a persistence-type to identify the service.

For example, to actually deploy an EJB using the WebLogic Server RDBMS-based persistence
service defined in persistence-type, the persistence-use element would resemble:

<persistence-use>
 <type-identifier>WebLogic_CMP_RDBMS</type-identifier>
 <type-version>5.1.0</type-version>
</persistence-use>

clustering-descriptor
The clustering-descriptor element defines the replication properties and behavior for EJBs
deployed in a WebLogic Server cluster. The clustering-descriptor element and each of its
child elements are optional, and are not applicable to single-server systems.

The following shows all elements contained in the clustering-descriptor element:

<clustering-descriptor>
 <home-is-clusterable>. . .</home-is-clusterable>
 <home-load-algorithm>. . .</home-load-algorithm>
 <home-call-router-class-name>. . .</home-call-router-class-name>
 <stateless-bean-is-clusterable>. . .</stateless-bean-is-clusterable>
 <stateless-bean-load-algorithm>. . .</stateless-bean-load-algorithm>
 <stateless-bean-call-router-class-name>. . .
 </stateless-bean-call-router-class-name>
 <stateless-bean-methods-are-idempotent>. . .
 </stateless-bean-methods-are-idempotent>
</clustering-descriptor>

home-is-clusterable
You can set this element to either true or false. When home-is-clusterable is true, the EJB
can be deployed from multiple WebLogic Servers in a cluster. Calls to the home stub are load-
balanced between the servers on which this bean is deployed, and if a server hosting the bean
is unreachable, the call automatically fails over to another server hosting the bean.

Appendix E
5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-13 of E-23

home-load-algorithm
home-load-algorithm specifies the algorithm to use for load balancing between replicas of the
EJB home. If this property is not defined, WebLogic Server uses the algorithm specified by the
server property, weblogic.cluster.defaultLoadAlgorithm.

You can define home-load-algorithm as one of the following values:

• round-robin: Load balancing is performed in a sequential fashion among the servers
hosting the bean.

• random: Replicas of the EJB home are deployed randomly among the servers hosting the
bean.

• weight-based: Replicas of the EJB home are deployed on host servers according to the
servers' current workload.

home-call-router-class-name
home-call-router-class-name specifies the custom class to use for routing bean method
calls. This class must implement weblogic.rmi.extensions.CallRouter(). If specified, an
instance of this class is called before each method call. The router class has the opportunity to
choose a server to route to based on the method parameters. The class returns either a server
name or null, which indicates that the current load algorithm should select the server.

stateless-bean-is-clusterable
This property is similar to home-is-clusterable, but it is applicable only to stateless session
EJBs.

stateless-bean-load-algorithm
This property is similar to home-load-algorithm, but it is applicable only to stateless session
EJBs.

stateless-bean-call-router-class-name
This property is similar to home-call-router-class-name, but it is applicable only to stateless
session EJBs.

stateless-bean-methods-are-idempotent
You can set this element to either true or false. Set stateless-bean-methods-are-
idempotent to true only if the bean is written such that repeated calls to the same method with
the same arguments has exactly the same effect as a single call. This allows the failover
handler to retry a failed call without knowing whether the call actually completed on the failed
server. Setting this property to true makes it possible for the bean stub to automatically
recover from any failure as long as another server hosting the bean can be reached.

Appendix E
5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-14 of E-23

Note

This property is applicable only to stateless session EJBs.

transaction-descriptor
The transaction-descriptor element contains elements that define transaction behavior in
WebLogic Server. Currently, this element includes only one child element:

<transaction-descriptor>
 <trans-timeout-seconds>20</trans-timeout-seconds>
</transaction-descriptor>

trans-timeout-seconds
The trans-timeout-seconds element specifies the maximum duration for the EJB's container-
initiated transactions. If a transaction lasts longer than trans-timeout-seconds, WebLogic
Server rolls back the transaction.

If you specify no value for trans-timeout-seconds, container-initiated transactions timeout
after five minutes, by default.

reference-descriptor
The reference-descriptor element maps references in the ejb-jar.xml file to the JNDI
names of actual resource factories and EJBs available in WebLogic Server.

The reference-descriptor element contains one or more additional elements to define
resource factory references and EJB references. The following shows the organization of these
elements:

<reference-descriptor>
 <resource-description>
 <res-ref-name>. . .</res-ref-name>
 <jndi-name>. . .</jndi-name>
 </resource-description>
 <ejb-reference-description>
 <ejb-ref-name>. . .</ejb-ref-name>
 <jndi-name>. . .</jndi-name>
 </ejb-reference-description>
</reference-descriptor>

resource-description
The following elements define an individual resource-description:

• res-ref-name specifies a resource reference name. This is the reference that the EJB
provider places within the ejb-jar.xml deployment file.

• jndi-name specifies the JNDI name of an actual resource factory available in WebLogic
Server.

ejb-reference-description
The following elements define an individual ejb-reference-description:

Appendix E
5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-15 of E-23

• ejb-ref-name specifies an EJB reference name. This is the reference that the EJB
provider places within the ejb-jar.xml deployment file.

• jndi-name specifies the JNDI name of an actual EJB available in WebLogic Server.

enable-call-by-reference
By default, EJB methods called from within the same EAR pass arguments by reference. This
increases the performance of method invocation since parameters are not copied.

If you set enable-call-by-reference to false, parameters to EJB methods are copied (pass
by value) in accordance with the EJB 1.1 specification. Pass by value is always necessary
when the EJB is called remotely (not from within the same application).

jndi-name
The jndi-name element specifies a jndi-name for a bean, resource, or reference.

transaction-isolation
The transaction-isolation element specifies the transaction isolation level for EJB methods.
The element consists of one or more isolation-level elements that apply to a range of EJB
methods. For example:

<transaction-isolation>
 <isolation-level>Serializable</isolation-level>
 <method>
 <description>...</description>
 <ejb-name>...</ejb-name>
 <method-intf>...</method-intf>
 <method-name>...</method-name>
 <method-params>...</method-params>
 </method>
</transaction-isolation>

The following sections describe each element in transaction-isolation.

isolation-level
The transaction-isolation element defines method-level transaction isolation settings for an
EJB. Allowable values include:

• TransactionSerializable—Simultaneously executing this transaction multiple times has
the same effect as executing the transaction multiple times in a serial fashion.

Appendix E
5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-16 of E-23

Note

For Oracle databases, Oracle recommends that you use the
TransactionReadCommittedForUpdate isolation level instead of the
TransactionSerializable isolation level. This is because Oracle databases do
not lock read data at the TransactionSerializable isolation level. Additionally, at
the TransactionSerializable isolation level, it is possible for concurrent
transactions on Oracle databases to proceed without throwing the Oracle
exception ORA-08177 "can't serialize access for this transaction"). For
more information on the TransactionReadCommittedForUpdate isolation level, see
Oracle-Only Isolation Levels.

• TransactionReadCommitted—The transaction can view only committed updates from other
transactions

• TransactionReadUncommitted—The transaction can view uncommitted updates from other
transactions.

• TransactionRepeatableRead—Once the transaction reads a subset of data, repeated
reads of the same data return the same values, even if other transactions have
subsequently modified the data.

Oracle-Only Isolation Levels
These additional values are supported only for Oracle databases, and only for container-
managed persistence (CMP) EJBs:

• TransactionReadCommittedForUpdate—Supported only for Oracle databases, and only for
container-managed persistence (CMP) EJBs. This value sets the isolation level to
TransactionReadCommitted, and for the duration of the transaction, all SQL SELECT
statements executed in any method are executed with FOR UPDATE appended to them. This
causes the selected rows to be locked for update. If Oracle cannot lock the rows affected
by the query immediately, then it waits until the rows are free. This condition remains in
effect until the transaction does a COMMIT or ROLLBACK.

This isolation level can be used to avoid the error:

java.sql.SQLException: ORA-08177: can't serialize access for this transaction

which can (but does not always) occur when using the TransactionSerializable isolation
level with Oracle databases.

Note

For Oracle databases, Oracle recommends that you use this isolation level
(TransactionReadCommittedForUpdate) instead of the TransactionSerializable
isolation level. This is because Oracle databases do not lock read data at the
TransactionSerializable isolation level.

• TransactionReadCommittedNoWait—Supported only for Oracle databases, and only for
container-managed persistence (CMP) EJBs.

This value sets the isolation level to TransactionReadCommitted, and for the duration of
the transaction, all SQL SELECT statements executed in any method are executed with FOR
UPDATE NO WAIT appended to them. This causes the selected rows to be locked for update.

Appendix E
5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-17 of E-23

In contrast to the TransactionReadCommittedForUpdate setting,
TransactionReadCommittedForUpdateNoWait causes the Oracle DBMS to NOT WAIT if the
required locks cannot be acquired immediately—the affected SELECT query will fail and an
exception will be thrown by the Container.

Refer to your database documentation for more information support for different isolation
levels.

method
The method element defines the EJB methods to which an isolation level applies. method
defines a range of methods using the following elements:

• description is an optional element that describes the method.

• ejb-name identifies the EJB to which WebLogic Server applies isolation level properties.

• method-intf is an optional element that indicates whether the specified method(s) reside
in the EJB's home or remote interface. The value of this element must be "Home" or
"Remote". If you do not specify method-intf, you can apply an isolation to methods in both
interfaces.

• method-name specifies either the name of an EJB method or an asterisk (*) to designate all
EJB methods.

• method-params is an optional element that lists the Java types of each of the method's
parameters. The type of each parameter must be listed in order, using individual method-
param elements within the parent method-params element.

For example, the following method element designates all methods in the "AccountBean" EJB:

<method>
 <ejb-name>AccountBean</ejb-name>
 <method-name>*</method-name>
</method>

The following element designates all methods in the remote interface of "AccountBean:"

<method>
 <ejb-name>AccountBean</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
</method>

security-role-assignment
The security-role-assignment element maps application roles in the ejb-jar.xml file to the
names of security principals available in WebLogic Server.

security-role-assignment can contain one or more pairs of the following elements:

• role-name is the application role name that the EJB provider placed in the ejb-jar.xml
deployment file.

• principal-name specifies the name of an actual WebLogic Server principal.

1.1 weblogic-cmp-jar.xml Deployment Descriptor File Structure
weblogic-cmp-jar.xml defines deployment elements for a single entity EJB that uses
WebLogic Server RDBMS-based persistence services.

Appendix E
1.1 weblogic-cmp-jar.xml Deployment Descriptor File Structure

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-18 of E-23

The top-level element of the WebLogic Server 1.1 weblogic-cmp-jar.xml consists of a
weblogic-enterprise-bean element:

description
weblogic-version
<weblogic-enterprise-bean>
 <pool-name>finance_pool</pool-name>
 <schema-name>FINANCE_APP</schema-name>
 <table-name>ACCOUNT</table-name>
 <attribute-map>
 <object-link>
 <bean-field>accountID</bean-field>
 <dbms-column>ACCOUNT_NUMBER</dbms-column>
 </object-link>
 <object-link>
 <bean-field>balance</bean-field>
 <dbms-column>BALANCE</dbms-column>
 </object-link>
 </attribute-map>
 <finder-list>
 <finder>
 <method-name>findBigAccounts</method-name>
 <method-params>
 <method-param>double</method-param>
 </method-params>
 <finder-query><![CDATA[(> balance $0)]]></finder-query>
 <finder-expression>. . .</finder-expression>
 </finder>
 </finder-list>
</weblogic-enterprise-bean>

1.1 weblogic-cmp-jar.xml Deployment Descriptor Elements
Examine the weblogic-cmp-jar.xml deployment descriptor elements.

This section describes the deployment descriptor elements.

• RDBMS Definition Elements

• enable-tuned-updates

• pool-name

• schema-name

• table-name

• EJB Field-Mapping Elements

• attribute-map

• object-link

• bean-field

• dbms-column

• Finder Elements

• finder-list

• finder

• method-name

• method-params

Appendix E
1.1 weblogic-cmp-jar.xml Deployment Descriptor Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-19 of E-23

• method-param

• finder-query

• finder-expression

RDBMS Definition Elements
This section describes the RDBMS definition elements.

enable-tuned-updates
enable-tuned-updates specifies that when ejbStore is called the EJB container automatically
determines which container-managed fields have been modified and then writes only those
fields back to the database.

pool-name
pool-name specifies name of the WebLogic Server connection pool to use for this EJB's
database connectivity.

schema-name
schema-name specifies the schema where the source table is located in the database. This
element is required only if you want to use a schema that is not the default schema for the user
defined in the EJB's connection pool.

Note

This field is case sensitive, although many SQL implementations ignore case.

table-name
table-name specifies the source table in the database. This element is required in all cases.

Note

The user defined in the EJB's connection pool must have read and write privileges to
the specified table, though not necessarily schema modification privileges. This field is
case sensitive, although many SQL implementations ignore case.

EJB Field-Mapping Elements
This section describes the EJB field-mapping elements.

Appendix E
1.1 weblogic-cmp-jar.xml Deployment Descriptor Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-20 of E-23

attribute-map
The attribute-map element links a single field in the EJB instance to a particular column in the
database table. The attribute-map must have exactly one entry for each field of an EJB that
uses WebLogic Server RDBMS-based persistence.

object-link
Each attribute-map entry consists of an object-link element, which represents a link
between a column in the database and a field in the EJB instance.

bean-field
bean-field specifies the field in the EJB instance that should be populated from the database.
This element is case sensitive and must precisely match the name of the field in the bean
instance.

The field referenced in this tag must also have a cmp-field element defined in the ejb-
jar.xml file for the bean.

dbms-column
dbms-column specifies the database column to which the EJB field is mapped. This tag is case
sensitive, although many databases ignore the case.

Note

WebLogic Server does not support quoted RDBMS keywords as entries to dbms-
column. For example, you cannot create an attribute map for column names such as
"create" or "select" if those names are reserved in the underlying datastore.

Finder Elements
This section describes the finder elements.

finder-list
The finder-list element defines the set of all finders that are generated to locate sets of
beans.

finder-list must contain exactly one entry for each finder method defined in the home
interface, except for findByPrimaryKey. If an entry is not provided for findByPrimaryKey, one
is generated at compilation time.

Appendix E
1.1 weblogic-cmp-jar.xml Deployment Descriptor Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-21 of E-23

Note

If you provide an entry for findByPrimaryKey, WebLogic Server uses that entry
without validating it for correctness. In most cases, you should omit an entry for
findByPrimaryKey and accept the default, generated method.

finder
The finder element describes a finder method defined in the home interface. The elements
contained in the finder element enable WebLogic Server to identify which method in the home
interface is being described, and to perform required database operations.

method-name
method-name defines the name of the finder method in the home interface. This tag must
contain the exact name of the method.

method-params
The method-params element defines the list of parameters to the finder method being specified
in method-name.

Note

WebLogic Server compares this list against the parameter types for the finder method
in the EJB's home interface; the order and type for the parameter list must exactly
match the order and type defined in the home interface.

method-param
method-param defines the fully-qualified name for the parameter's type. The type name is
evaluated into a java.lang.Class object, and the resultant object must precisely match the
respective parameter in the EJB's finder method.

You can specify primitive parameters using their primitive names (such as "double" or "int"). If
you use a non-primitive data type in a method-param element, you must specify a fully qualified
name. For example, use java.sql.Timestamp rather than Timestamp. If you do not use a
qualified name, appc generates an error message when you compile the deployment unit.

finder-query
finder-query specifies the WebLogic Query Language (WLQL) string that is used to retrieve
values from the database for this finder.

Appendix E
1.1 weblogic-cmp-jar.xml Deployment Descriptor Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-22 of E-23

Note

Always define the text of the finder-query value using the XML CDATA attribute. Using
CDATA ensures that any special characters in the WLQL string do not cause errors
when the finder is compiled.

finder-expression
finder-expression specifies a Java language expression to use as a variable in the database
query for this finder.

Future versions of the WebLogic Server EJB container will use the EJB QL query language (as
required by the EJB 2.0 specification at http://java.sun.com/products/ejb/docs.html). EJB
QL does not provide support for embedded Java expressions. Therefore, to ensure easier
upgrades to future EJB containers, create entity EJB finders without embedding Java
expressions in WLQL.

Appendix E
1.1 weblogic-cmp-jar.xml Deployment Descriptor Elements

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix E-23 of E-23

http://java.sun.com/products/ejb/docs.html

F
EJB Query Language (EJB-QL) and WebLogic
Server

EJB QL is a portable query language that defines finder methods for 2.0 entity EJBs with
container-managed persistence. Use this SQL-like language to select one or more entity EJB
objects or fields in your query. You can create queries in the deployment descriptor for any
finder method other than findByPrimaryKey(). findByPrimaryKey is automatically handled by
the EJB container.
This appendix includes the following topics:

• EJB QL Requirement for EJB 2.x Beans
The deployment descriptors must define each finder query for EJB 2.x entity beans by
using an EJB QL query string. You cannot use WebLogic Query Language (WLQL) with
EJB 2.x entity beans. WLQL is intended for use with EJB 1.1 container-managed
persistence.

• Using the EJB 2.x WebLogic QL Extension for EJB QL
WebLogic Server has an SQL-like language, called WebLogic QL, that extends the
standard EJB QL. You define the query in the weblogic-cmp-jar.xml deployment
descriptor using the weblogic-ql element.

• Properties-Based Methods of the Query Interface
The Query interface contains both find and execute methods. The find methods work like
standard EJB methods, in that they return EJBObjects. The execute methods work more
like Select statements in that you can select individual fields.

• Migrating from WLQL to EJB QL
If you have an existing application that uses EJB 1.1, your container-managed entity EJBs
can use WLQL for finder methods. You can map the WLQL syntax to EJB QL syntax.

• Known Issue with Implied Cross Products
The known issue when an EJB QL query contains an implied cross product—as opposed
to an explicit one—the EJB-QL query can return an empty result.

• EJB QL Error-Reporting
You can identify which part of the query is in error using the compiler error messages in
EJB QL.

EJB QL Requirement for EJB 2.x Beans
The deployment descriptors must define each finder query for EJB 2.x entity beans by using an
EJB QL query string. You cannot use WebLogic Query Language (WLQL) with EJB 2.x entity
beans. WLQL is intended for use with EJB 1.1 container-managed persistence.

For more information on WLQL and EJB 1.1 container-managed persistence, see Using
WebLogic Query Language (WLQL) for EJB 1.1 CMP.

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix F-1 of F-13

Using the EJB 2.x WebLogic QL Extension for EJB QL
WebLogic Server has an SQL-like language, called WebLogic QL, that extends the standard
EJB QL. You define the query in the weblogic-cmp-jar.xml deployment descriptor using the
weblogic-ql element.

There must be a query element in the ejb-jar.xml file that corresponds to the weblogic-ql
element in the weblogic-cmp-jar.xml file. However, the value of the weblogic-cmp-jar.xml
query element overrides the value of the ejb-jar.xml query element.

These topics provide guidelines for using the WebLogic QL extension to EJB 2.x QL:

• upper and lower Functions

• upper

• lower

• Using ORDER BY

• Using Subqueries

• Subquery Return Types

• Subqueries as Comparison Operands

• Correlated and Uncorrelated Subqueries

• Using Arithmetic Functions

• Using Aggregate Functions

• Using Queries that Return ResultSets

• Using Oracle SELECT HINTS

• "get" and "set" Method Restrictions

upper and lower Functions
The EJB WebLogic QL upper and lower extensions convert the case of arguments to allow
finder methods to return results that match the characters in a search expression but not the
case. The case change is transient, for the purpose of string matching, and is not persisted in
database. The underlying database must also support upper and lower functions.

upper
The upper function converts characters in its arguments from any case to upper case before
string matching is performed. Use the upper function with an upper-case expression in a query
to return all items that match the expression, regardless of case. For example:

select name from products where upper(name)='DETERGENT';

lower
The lower function converts characters in its arguments from any case to lower case before
string matching is performed. Use the lower function with a lower-case expression in a query
to return all items that match the expression, regardless of case.

select type from products where lower(name)='domestic';

Appendix F
Using the EJB 2.x WebLogic QL Extension for EJB QL

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix F-2 of F-13

Using ORDER BY
The EJB QL ORDER BY clause is a keyword that works with the Finder method to specify the
CMP field selection sequence for your selections.

Example F-1 ORDER BY Showing Order by id

ORDER BY
SELECT OBJECT(A) from A for Account.Bean
ORDER BY A.id

You can specify an ORDER BY with ascending [ASC] or descending [DESC] order for multiple fields
as follows. If you do not specify an order, ORDER BY defaults to ascending order.

Example F-2 ORDER BY Showing Order by id with ASC and DESC

ORDER BY <field> [ASC|DESC], <field> [ASC|DESC]
SELECT OBJECT(A) from A for Account.Bean, OBJECT(B) from B for Account.Bean
ORDER BY A.id ASC; B.salary DESC

Using Subqueries
WebLogic Server supports the use of the following features with subqueries in EJB QL:

• Subquery return type

– Single cmp-fields

– Aggregate functions

– Beans with simple primary keys

• Subqueries as comparison operands

• Correlated subqueries

• Uncorrelated subqueries

• DISTINCT clauses with subqueries

The relationship between WebLogic QL and subqueries is similar to the relationship between
SQL queries and subqueries. Use WebLogic QL subqueries in the WHERE clause of an outer
WebLogic QL query. With a few exceptions, the syntax for a subquery is the same as a
WebLogic QL query.

To specify WebLogic QL, see Using the EJB 2.x WebLogic QL Extension for EJB QL. Use
those instructions with a SELECT statement that specifies a subquery as shown the following
sample.

The following query selects all above average students as determined by the provided grade
number:

SELECT OBJECT(s) FROM studentBean AS s WHERE s.grade > (SELECT AVG(s2.grade) FROM
StudentBean AS s2)

Note

In the above query the subquery, (SELECT AVG(s2.grade) FROM StudentBean AS
s2), has the same syntax as an EJB QL query.

Appendix F
Using the EJB 2.x WebLogic QL Extension for EJB QL

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix F-3 of F-13

You can create nested subqueries.The depth is limited by the underlying database's nesting
capabilities.

In a WebLogic QL query, the identifiers declared in the FROM clauses of the main query and all
of its subqueries must be unique. This means that a subquery may not re-declare a previously
declared identifier for local use within that subquery.

For example, the following example is not legal because EmployeeBean is being declared as
emp in both the query and the subquery:

SELECT OBJECT(emp)
FROM EmployeeBean As emp
WHERE emp.salary=(SELECT MAX(emp.salary) FROM
EmployeeBean AS emp WHERE employee.state=MA)

Instead, this query should be written as follows:

SELECT OBJECT(emp)
FROM EmployeeBean As emp
WHERE emp.salary=(SELECT MAX(emp2.salary) FROM
EmployeeBean AS emp2 WHERE emp2.state=MA)

The above examples correctly declare the subquery's employee bean to have a different
identifier from the main query's employee bean.

Subquery Return Types
The return type of a WebLogic QL subquery can be one of a number of different types, such
as:

Single cmp-field Type Subqueries

WebLogic Server supports a return type consisting of a cmp-field. The results returned by the
subquery can consist of a single value or collection of values. An example of a subquery that
returns value(s) of the type cmp-field is as follows:

SELECT emp.salary FROM EmployeeBean AS emp WHERE emp.dept = 'finance'

This subquery selects all of the salaries of employees in the finance department.

Aggregate Functions

WebLogic Server supports a return type consisting of an aggregate of a cmp-field. As an
aggregate always consist of a single value, the value returned by the aggregate is always a
single value. An example of a subquery that return a value of the type aggregate (MAX) of a
cmp-field is as follows:

SELECT MAX(emp.salary) FROM EmployeeBean AS emp WHERE emp.state=MA

This subquery selects the single highest employee salary in Massachusetts.

For more information on aggregate functions, see Using Aggregate Functions.

Beans with Simple Primary Key

WebLogic Server supports a return type consisting of a cmp-bean with a simple primary key.

The following example illustrates a subquery that returns the value(s) of the type bean with a
simple primary key:

SELECT OBJECT(emp) FROM EMployeeBean As emp WHERE emp.department.budget>1,000,000

Appendix F
Using the EJB 2.x WebLogic QL Extension for EJB QL

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix F-4 of F-13

This subquery provides a list of all employee in departments with budgets greater
than $1,000,000.

Note

Beans with compound primary keys are NOT supported. Attempts to designate the
return type of a subquery to a bean with a compound primary key will fail when you
compile the query.

Subqueries as Comparison Operands
Use subqueries as the operands of comparison operators and arithmetic operators. WebLogic
QL supports subqueries as the operands of:

• these comparison operators: [NOT]IN, [NOT]EXISTS

and

• these arithmetic operators: <, >, <=, >=, =, <> with ANY and ALL

[NOT]IN

The [NOT]IN comparison operator tests whether the left-had operand is or is not a member of
the subquery operand on the right-hand side.

An example of a subquery which is the right-hand operand of the NOT IN operator is as follows:

SELECT OBJECT(item)
FROM ItemBean AS item
WHERE item.itemId NOT IN
(SELECT oItem2.item.itemID
FROM OrderBean AS orders2, IN(orders2.orderItems)oIttem2

The subquery selects all items from all orders.

The main query's NOT IN operator selects all the items that are not in the set returned by the
subquery. So the end result is that the main query selects all unordered items.

[NOT]EXISTS

The [NOT]EXISTS comparison operator tests whether the set returned by the subquery operand
is or is not empty.

An example of a subquery which is the operand of the NOT EXISTS operand is as follows:

SELECT (cust) FROM CustomerBean AS cust
WHERE NOT EXISTS
(SELECT order.cust_num FROM OrderBean AS order
WHERE cust.num=order_num)

This is an example of a query with a correlated subquery. See Correlated and Uncorrelated
Subqueries for more information. the following query returns all customers that have not placed
an order.

SELECT (cust) FROM CustomerBean AS cust
WHERE cust.num NOT IN
(SELECT order.cust_num FROM OrderBean AS order
WHERE cust.num=order_num)

Appendix F
Using the EJB 2.x WebLogic QL Extension for EJB QL

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix F-5 of F-13

Arithmetic Operators

Use arithmetic operators for comparison when the right-hand subquery operand returns a
single value. If the right hand subquery instead returns multiple values, then the qualifiers ANY
or ALL must precede the subquery.

An example of a subquery which uses the '=' operator is as follows:

SELECT OBJECT (order)
FROM OrderBean AS order, IN(order.orderItems)oItem
WHERE oItem.quantityOrdered =
(SELECT MAX (subOItem.quantityOrdered)
FROM Order ItemBean AS subOItem
WHERE subOItem,item itemID = ?1)
AND oItem.item.itemId = ?1

For a given itemId, the subquery returns the maximum quantity ordered of that item. Note that
this aggregate returned by the subquery is a single value as required by the '=' operator.

For the same given itemId, the main query's '=' comparison operator checks which order's
OrderItem.quantityOrdered equals the maximum quantity returned by the subquery. The end
result is that the query returns the OrderBean that contains the maximum quantity of a given
item that has been ordered.

Use arithmetic operators in conjunction with ANY or ALL, when the right-hand subquery operand
may return multiple values.

An example of a subquery which uses ANY and ALL is as follows:

SELECT OBJECT (order)
FROM OrderBean AS order, IN(order.orderItems)oItem
WHERE oItem.quantityOrdered > ALL
(SELECT subOItem.quantityOrdered
FROM OrderBean AS suborder IN (subOrder.orderItems)subOItem
WHERE subOrder,orderId = ?1)

For a given orderId, the subquery returns the set of orderItem.quantityOrdered of each item
ordered for that orderId. The main query's '>' ALL operator looks for all orders whose
orderItem.quantityOrdered exceeds all values in the set returned by the subquery. The end
result is that the main query returns all orders in which all orderItem.quantityOrdered
exceeds every orderItem.quantityOrdered of the input order.

Note

Since the subquery can return multi-valued results that they '>'ALL operator is used
rather then the '>' operator.

Correlated and Uncorrelated Subqueries
WebLogic Server supports both correlated and Uncorrelated subqueries.

Uncorrelated Subqueries

Uncorrelated subqueries may be evaluated independently of the outer query. An example of an
uncorrelated subquery is as follows:

Appendix F
Using the EJB 2.x WebLogic QL Extension for EJB QL

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix F-6 of F-13

SELECT OBJECT(emp) FROM EmployeeBean AS emp
WHERE emp.salary>
(SELECT AVG(emp2.salary) FROM EmployeeBean AS emp2)

This example of a uncorrelated subquery selects the employees whose salaries are above
average. This example uses the '>' arithmetic operator.

Correlated Subqueries

Correlated subqueries are subqueries in which values from the outer query are involved in the
evaluation of the subquery. An example of a correlated subquery is as follows:

SELECT OBJECT (mainOrder) FROM OrderBean AS mainOrder
WHERE 10>
(SELECT COUNT (DISTINCT subOrder.ship_date)
FROM OrderBean AS subOrder
WHERE subOrder.ship_date>mainOrder.ship_date
AND mainOrder.ship_date IS NOT NULL

This example of a correlated subquery selects the last 10 shipped orders. This example uses
the NOT IN operator.

Note

Keep in mind that correlated subqueries can involve more processing overhead the
uncorrelated subqueries.

• DISTINCT Clause with Subqueries

DISTINCT Clause with Subqueries
Use the DISTINCT clause in a subquery to enable an SQL SELECT DISTINCT in the subquery's
generated SQL. Using a DISTINCT clause in a subquery is different from using one in a main
query because the EJB container enforces the DISTINCT clause in a main query; whereas the
DISTINCT clause in the subquery is enforced by the generated SQL SELECT DISTINCT. The
following is an example of a DISTINCT clause in a subquery:

SELECT OBJECT (mainOrder) FROM OrderBean AS mainOrder
WHERE 10>
(SELECT COUNT (DISTINCT subOrder.ship_date)
FROM OrderBean AS subOrder
WHERE subOrder.ship_date>mainOrder.ship_date
AND mainOrder.ship_date IS NOT NULL

Using Arithmetic Functions
WebLogic Server supports arithmetic functions with WebLogic QL. To specify WebLogic QL,
see Using the EJB 2.x WebLogic QL Extension for EJB QL. Use those examples with a
SELECT statement that specifies an arithmetic function.

Table F-1 Arithmetic Functions

Arithmetic Function Description

ABS(number) Returns the absolute value of a (int, double, or float) number.

Appendix F
Using the EJB 2.x WebLogic QL Extension for EJB QL

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix F-7 of F-13

Table F-1 (Cont.) Arithmetic Functions

Arithmetic Function Description

MOD(int, int) Returns the value of x modulo y.

SQRT(double) Returns the square root.

Note

EJB QL arithmetic functions may not work with query parameters on DB2.

Using Aggregate Functions
WebLogic Server supports aggregate functions with WebLogic QL. You only use these
functions as SELECT clause targets, not as other parts of a query, such as a WHERE clause. The
aggregate functions behave like SQL functions. They are evaluated over the range of the
beans returned by the WHERE conditions of the query

To specify WebLogic QL, see Using the EJB 2.x WebLogic QL Extension for EJB QL. Use
those instructions with a SELECT statement that specifies an aggregate function as shown in
the samples shown in the following table.

A list of the supported functions and sample statements follows:

Table F-2 Aggregate Functions

Aggregate
Function

Valid Argument
Data Types

Description Sample Statement

MIN(x) • character
• date
• numeric
• string

Returns the
minimum value of
this field.

SELECT MIN(t.price) FROM TireBean
AS t WHERE t.size=?1

This statement selects the lowest price for a
tire of a given input size.

MAX(x) • character
• date
• numeric
• string

Returns the
maximum value of
this field.

SELECT MAX(s.customer_count) FROM
SalesRepBean AS s WHERE
s.city='Los Angeles'

This statement selects the maximum
number of customers served by any single
sales representative in Los Angeles.

AVG([DISTINC
T] x)

numeric Returns the average
value of this field

SELECT AVG(b.price) FROM BookBean
AS b WHERE
b.category='computer_science'

This statement selects the Average Price of
a book in the Computer Science category.

SUM([DISTINC
T] x)

numeric Returns the sum of
this field.

SELECT SUM(s.customer_count) FROM
SalesRepBean AS s WHERE
s.city='Los Angeles'

This statement retrieves the total number of
customers served by sales representatives
in Los Angeles.

Appendix F
Using the EJB 2.x WebLogic QL Extension for EJB QL

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix F-8 of F-13

Table F-2 (Cont.) Aggregate Functions

Aggregate
Function

Valid Argument
Data Types

Description Sample Statement

COUNT([DISTI
NCT] x)

numeric Returns the number
of occurrences of a
field.

SELECT COUNT(s.deal.amount) FROM
SalesRepBean AS s, IN(deal)s WHERE
s.deal.status='closed' AND
s.deal.amount>=1000000

This statement retrieves the number of
closed deals for at least 1 million dollars.

Note

In this release of WebLogic Server, you receive an ObjectNotFoundException if all of
the following are true:

• your aggregate query uses the SUM, AVG, MAX, or MIN operator

• the result type of the select method is a primitive

• there are no values to which the aggregate function can be applied

In pre-9.0 releases of WebLogic Server, you received a return value of 0 when the
above conditions were all true.

The SQL Specification requires queries that select individual fields along with aggregates to
include a GROUP BY clause.

You can return aggregate functions in ResultSets as described below.

Using Queries that Return ResultSets
WebLogic Server supports ejbSelect() queries that return the results of multi-column queries
in the form of a java.sql.ResultSet. To support this feature, WebLogic Server allows you to
use the SELECT clause to specify a comma delimited list of target fields as shown in the
following query:

SELECT emmp.name, emp.zip FROM EmployeeBean AS emp

This query returns a java.sqlResultSet with rows whose columns are the values Employee's
Name and Employee's Zip.

To specify WebLogic QL, see Using the EJB 2.x WebLogic QL Extension for EJB QL. Use
those instructions with a query specifying a ResultSet as shown in the above query. Use those
instructions with a SELECT statement that specifies an aggregate query like the samples
shown in the following table.

ResultSets created in EJB QL can return cmp-field values or aggregates of cmp-field
values, they cannot return beans.

In addition, you can create powerful queries, as described in the following example, when you
combine cmp-fields and aggregate functions.

The following rows (beans) show the salaries of employees in different locations:

Appendix F
Using the EJB 2.x WebLogic QL Extension for EJB QL

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix F-9 of F-13

Table F-3 CMP Fields Showing Salaries of Employees in California

Name Location Salary

Matt CA 110,000

Rob CA 100,000

Table F-4 CMP Fields Showing Salaries of Employees in Arizona

Name Location Salary

Dan AZ 120,000

Dave AZ 80,000

Table F-5 CMP Fields Showing Salaries of Employees in Texas

Name Location Salary

Curly TX 70,000

Larry TX 180,000

Moe TX 80,00

Note

Each row represents a bean.

The following SELECT statement shows a query that uses ResultSets and the aggregate
function (AVG) along with a GROUP BY statement and an ORDER BY statement using a descending
sort to retrieve results from a multi-column query.

SELECT e.location, AVG(e.salary)
 FROM Finder EmployeeBean AS e
 GROUP BY e.location
 ORDER BY 2 DESC

The query shows the average salary of employees at each location in descending order. The
number, 2, means that the ORDER BY sort is on the second item in the SELECT statement. The
GROUP BY clause specifies the AVERAGE salary of employees with a matching e.location
attribute.

The ResultSet, in descending order is as follows:

Location Average

AZ 100,000

CA 105,000

TX 110,000

Appendix F
Using the EJB 2.x WebLogic QL Extension for EJB QL

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix F-10 of F-13

Note

You can only use integers as ORDER BY arguments in queries that return ResultSets.
WebLogic Server does not support the use of integers as ORDER BY arguments in any
Finder or ejbselect() that returns beans.

Using Oracle SELECT HINTS
WebLogic Server supports an EJB QL extension that allows you to pass INDEX usage hints to
the Oracle Query optimizer. With this extension, you can provide a hint to the database engine.
For example, if you know that the database you are searching can benefit from an
ORACLE_SELECT_HINT, you can define an ORACLE_SELECT_HINT clause that will take
ANY string value and then insert that String value after the SQL SELECT statement as a hint
to the database.

To use this option, declare a query that uses this feature in the weblogic-ql element in
weblogic-cmp-jar.xml. The weblogic-ql element specifies a query that contains a WebLogic
specific extension to the EJB-QL language.

The WebLogic QL keyword and usage is as follows:

SELECT OBJECT(a) FROM BeanA AS a WHERE a.field > 2 ORDER BY a.field SELECT_HINT '/*+
INDEX_ASC(myindex) */'

This statement generates the following SQL with the optimizer hint for Oracle:

SELECT /*+ INDEX_ASC(myindex) */ column1 FROM

In the WebLogic QL ORACLE_SELECT_HINT clause, whatever is between the single quotes ('
') is what gets inserted after the SQL SELECT. It is the query writer's responsibility to make
sure that the data within the quotes makes sense to the Oracle database.

"get" and "set" Method Restrictions
WebLogic Server uses a series of accessor methods. The names of these methods begin with
set and get. WebLogic Server uses these methods to read and modify container-managed
fields. These container-generated classes must begin with "get" or "set" and use the actual
name of a persistent field defined in ejb-jar.xml. The methods are also declared as public,
protected, and abstract.

Properties-Based Methods of the Query Interface
The Query interface contains both find and execute methods. The find methods work like
standard EJB methods, in that they return EJBObjects. The execute methods work more like
Select statements in that you can select individual fields.

The Query interface return type is a disconnected ResultSet, meaning you access the
information from the returned object the same way you would access it from a ResultSet,
except that the ResultSet does not hold open a database connection.

The Query interface's properties-based methods offer an alternate way of specifying settings
particular to a query. The QueryProperties interface holds standard EJB query settings while
the WLQueryProperties interface holds WebLogic-specific query settings.

Appendix F
Properties-Based Methods of the Query Interface

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix F-11 of F-13

Although the Query interface extends QueryProperties, the actual Query implementation
extends WLQueryProperties so it can be safely cast, as in the example in Example F-3, which
sets field group settings:

Example F-3 Setting Field Group Settings with WLQueryProperties

Query query=qh.createQuery(); ((WLQueryProperties) query).setFieldGroupName("myGroup");
Collection results=query.find(ejbql);

or

Query query=qh.createQuery(); Properties props = new Properties();
props.setProperty(WLQueryProperties.GROUP_NAME, "myGroup"); Collection
results=query.find(ejbql, props);

Migrating from WLQL to EJB QL
If you have an existing application that uses EJB 1.1, your container-managed entity EJBs can
use WLQL for finder methods. You can map the WLQL syntax to EJB QL syntax.

This section provides a quick reference to common WLQL operations. Use this table to map
the WLQL syntax to EJB QL syntax.

Table F-6 Migrating from WLQL to EJB QL

Sample WLQL Syntax Equivalent EJB QL Syntax

(= operand1 operand2) WHERE operand1 = operand2

(< operand1 operand2) WHERE operand1 < operand2

(> operand1 operand2) WHERE operand1 > operand2

(<= operand1 operand2) WHERE operand1 <= operand2

(>= operand1 operand2) WHERE operand1 >= operand2

(! operand) WHERE NOT operand

(& expression1 expression2) WHERE expression1 AND expression2

(| expression1 expression2) WHERE expression1 OR expression2

(like text_string%) WHERE operand LIKE 'text_string%'

(isNull operand) WHERE operand IS NULL

(isNotNull operand) WHERE operand IS NOT NULL

Known Issue with Implied Cross Products
The known issue when an EJB QL query contains an implied cross product—as opposed to an
explicit one—the EJB-QL query can return an empty result.

Consider this example query:

SELECT OBJECT(e) FROM EmployeeBean AS e WHERE e.name LIKE 'Joe' OR e.acct.balance < 100

This query references AccountEJB, but AccountEJB is not listed in the FROM clause. The result
of this query is identical to that of a query with AccountEJB explicitly listed in the FROM clause.

Appendix F
Migrating from WLQL to EJB QL

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix F-12 of F-13

EJB QL Error-Reporting
You can identify which part of the query is in error using the compiler error messages in EJB
QL.

Compiler error messages in EJB QL provide a visual aid to identify which part of the query is in
error and allow the reporting of more than one error per compilation.

• Visual Indicator of Error in Query

• Multiple Errors Reported after a Single Compilation

Visual Indicator of Error in Query
When an error is reported, EJB QL indicates the location of the problem within these symbols:
=>> <<=. These symbols are highlighted in red in the following sample compiler error report.

ERROR: Error from appc: Error while reading 'META-INF/FinderEmployeeBeanRDBMS.xml'. The error was:
Query:
EJB Name: FinderEmployeeEJB
Method Name: findThreeLowestSalaryEmployees
Parameter Types: (java.lang.String)
Input EJB Query: SELECT OBJECT(e) FROM FinderEmployeeBean e WHERE f.badField = '2' O
R (e.testId = ?1) ORDER BY e.salary
SELECT OBJECT(e) FROM FinderEmployeeBean e
WHERE =>> f.badField <<= = '2' OR (e.testId = ?1) ORDER BY e.salary
Invalid Identifier in EJB QL expression:
Problem, the path expression/Identifier 'f.badField' starts with an identifier: 'f'.
The identifier 'f', which can be either a range variable identifier or a collection member identifier,
is required to be declared in the FROM clause of its query or in the FROM clause of a parent query.
'f' is not defined in the FROM clause of either its query or in any parent query.
Action, rewrite the query paying attention to the usage of 'f.badField'.

Multiple Errors Reported after a Single Compilation
If a query contains multiple errors, EJB QL is now capable of reporting more than one of these
after a single compilation. Previously, the compiler could only report one error per compilation.
Reporting of subsequent errors required recompilation.

The compiler is not guaranteed to report all errors after a single compilation.

Appendix F
EJB QL Error-Reporting

Developing Jakarta Enterprise Beans Using Deployment Descriptors
G41771-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix F-13 of F-13

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Understanding Jakarta Enterprise Beans
	How Do Applications Use EJBs?
	Session EJBs Implement Business Logic
	Stateless Session Beans
	Stateful Session Beans

	Entity EJBs Maintain Persistent Data
	Message-Driven Beans Implement Loosely Coupled Business Logic

	EJB Anatomy and Environment
	EJB Components
	The EJB Container
	EJB Deployment Descriptors
	Key Deployment Element Mappings
	Bean and Resource References
	Security Roles

	EJBs, Clients, and Application Objects
	EJB Communications

	EJBs and Message Destination References
	WebLogic Server Value-Added EJB Features
	Performance-Enhancing Features for WebLogic Server EJBs
	Pooling Improves EJB Response Time
	Caching Improves EJB Performance
	Additional Caching Capabilities for CMP Entities
	Field Groups for Efficient Queries (CMP Entities)
	Configurable Write Behaviors
	Operation Ordering and Batching (CMP Entities)
	Optimized Database Updates (CMP Entities)
	Read-Only Pattern and Read-Only Invalidation (CMP Entities)
	CMP Beans Increase Developer Productivity
	Automatic Primary Key Generation (CMP Entities)
	Automatic Table Creation (CMP Entities)
	Dynamic Queries (CMP Entities)
	Reliability and Availability Features
	Load Balancing Among Clustered EJBs Increases Scalability
	Failover for Clustered EJBs Increases Reliability

	Securing EJBs

	2 Designing EJBs
	Choosing the Right Bean Type
	Session Bean Features
	Stateful Session Beans
	Stateless Session Beans
	Stateless Beans Offer Performance and Scalability Advantages
	Exposing Stateless Session Beans as Web Services

	Entity Bean Features
	Key Features of Entity Beans
	Read-Write versus Read-Only Entity Beans
	Entity Bean Performance and Data Consistency Characteristics
	Use Read-Only Beans to Improve Performance If Stale Data Is Tolerable
	Use Read-Write Beans for Higher Data Consistency
	Combine Read-Only and Read-Write Beans to Optimize Performance
	Use Session Facades to Optimize Performance for Remote Entity Beans
	Avoid the Use of Transfer Objects

	Message-Driven Beans

	Persistence Management Alternatives
	Use Container-Managed Persistence (CMP) for Productivity and Portability
	Use Bean-Managed Persistence (BMP) Only When Necessary

	Transaction Design and Management Options
	Understanding Transaction Demarcation Strategies and Performance
	Demarcating Transactions at the Server Level is Most Efficient
	Container-Managed Transactions Are Simpler to Develop and Perform Well
	Rollback
	Transaction Boundaries
	Distributing Transactions Across Beans
	Costly Option: Distributing Transactions Across Databases

	Bean-Level Transaction Management
	When to Use Bean-Managed Transactions
	Keep Bean-Managed Transactions Short

	Client-Level Transaction Management is Costly
	Transaction Isolation: A Performance vs. Data Consistency Choice

	Satisfying Application Requirements with WebLogic Server EJBs

	3 Implementing EJBs
	Overview of the EJB Development Process
	Create a Source Directory
	Create EJB Classes and Interfaces
	Using WebLogic Server Generic Bean Templates
	Programming Client Access to EJBs
	Programming Client to Obtain Initial Context
	Programming Client to Look Up a Home Interface
	Using EJB Links

	Configuring EJBs to Send Requests to a URL
	Specifying an HTTP Resource by URL
	Specifying an HTTP Resource by Its JNDI Name
	Accessing HTTP Resources from Bean Code
	Configuring Network Communications for an EJB
	Programming and Configuring Transactions
	Programming Container-Managed Transactions
	Configuring Automatic Retry of Container-Managed Transactions
	Programming Bean-Managed Transactions
	Programming Transactions That Are Distributed Across EJBs
	Calling multiple EJBs from a client's transaction context
	Using an EJB "Wrapper" to Encapsulate a Cross-EJB Transaction

	Programming the EJB Timer Service
	Clustered Versus Local EJB Timer Services
	Clustered EJB Timer Services
	Local EJB Timer Services
	Using Java Programming Interfaces to Program Timer Objects
	EJB Timer-related Programming Interfaces
	WebLogic Server-specific Timer-related Programming Interfaces
	Timer Deployment Descriptors
	Configuring Clustered EJB Timers

	Declare Web Service References
	Compile Java Source
	Edit Deployment Descriptors
	Security Elements
	Resource Mapping Elements
	Persistence Elements
	Clustering Elements
	Data Consistency Elements
	Container-Managed Transactions Elements
	Performance Elements
	Network Communications Elements

	Generate EJB Wrapper Classes, and Stub and Skeleton Files
	appc and Generated Class Name Collisions

	Package
	Packaging Considerations for EJBs with Clients in Other Applications

	Deploy
	Solving Problems During Development
	Adding Line Numbers to Class Files
	Creating Debug Messages

	WebLogic Server Tools for Developing EJBs
	Oracle JDeveloper
	Oracle Enterprise Pack for Eclipse
	javac
	DDInit
	WebLogic Server Ant Utilities
	weblogic.Deployer
	appc
	DDConverter
	Comparison of EJB Tool Features

	4 Session EJBs
	Comparing Stateless and Stateful Session Beans
	Pooling for Stateless Session EJBs
	Caching and Passivating Stateful Session EJBs
	Stateful Session EJB Creation
	Stateful Session EJB Passivation
	Controlling Passivation
	Eager Passivation (LRU)
	Lazy Passivation (NRU)

	Specifying the Persistent Store Directory for Passivated Beans
	Configuring Concurrent Access to Stateful Session Beans

	Design Decisions for Session Beans
	Choosing Between Stateless and Stateful Beans
	Choosing the Optimal Free Pool Setting for Stateless Session Beans

	Implementing Session Beans
	WebLogic-Specific Configurable Behaviors for Session Beans

	5 Entity EJBs
	Managing Entity Bean Pooling and Caching
	Understanding Entity Pooling
	Understanding Entity Caching
	Understanding Passivation of Entity Beans
	Understanding ejbLoad() and ejbStore() Behavior
	Controlling the Behavior of ejbLoad() and ejbStore()
	Disabling Cache Flushing
	Configuring Application-Level Caching

	Using Primary Keys
	Specifying Primary Keys and Primary Key Classes
	Guidelines for Primary Keys
	Automatically Generating Primary Keys
	Specifying Automatic Key Generation for Oracle Databases
	Specifying Automatic Key Generation for Microsoft SQL Server
	Generating Primary Keys with a Named Sequence Table
	Declaring Primary Key Field Type
	Support for Oracle Database SEQUENCE
	String-Valued CMP Field Trimming
	Benefits of String Trimming
	Disabling String Trimming

	Configuring Entity EJBs for Database Operations
	Configuring Table Mapping
	Automatic Table Creation (Development Only)
	Delaying Database Inserts
	Why Delay Database Inserts?
	Configuring Delayed Database Inserts
	Limiting Database Reads with cache-between-transactions
	Updating the Database Before Transaction Ends
	Dynamic Queries
	Enabling Dynamic Queries
	Executing Dynamic Queries
	Enabling BLOB and CLOB Column Support for Oracle or DB2 Databases
	Specifying a BLOB Column Using the Deployment Descriptor
	Serialization for cmp-fields of Type byte[] Mapped to an Oracle Blob
	Specifying a CLOB Column Using the Deployment Descriptor
	Optimized CLOB Column Insertion on Oracle 10g
	Specifying Field Groups
	Ordering and Batching Operations
	Operation Ordering
	Batch Operations Guidelines and Limitations
	Using Query Caching (Read-Only Entity Beans)

	Using SQL in Entity Beans
	Using Container-Managed Relationships (CMRs)
	CMR Requirements and Limitations
	CMR Cardinality
	CMR Direction
	Removing CMRs
	Defining Container-Managed Relationships (CMRs)
	Specifying Relationships in ejb-jar.xml
	Specifying Relationship Cardinality
	Specifying Relationship Directionality

	Specifying Relationships in weblogic-cmp-jar.xml
	One-to-One and One-to-Many Relationships
	Many-to-Many Relationships
	Specifying CMRs for EJBs that Map to Multiple Tables

	About CMR Fields and CMR Field Accessor Methods
	Using Cascade Delete for Entities in CMRs
	Relationship Caching
	Enabling Relationship Caching

	Choosing a Concurrency Strategy
	Exclusive Concurrency
	Database Concurrency
	Optimistic Concurrency
	Preventing Stale Optimistic Bean Data
	Explicit Invalidation of Optimistic Beans
	Invalidation Options for Optimistic Concurrency in Clusters
	Check Data for Validity with Optimistic Concurrency
	Optimistic Concurrency and Oracle Databases
	Read Only Concurrency
	Concurrency Strategy Trade-Offs
	Configuring Concurrency Strategy
	Deadlock Prevention for Exclusive Concurrency and Cascade Deletes
	Using the Read-Mostly Pattern
	Configuring Entity Beans for Read-Mostly Pattern
	Invalidating Read-Only Entity EJBs Implicitly
	Invalidating Entity EJBs Explicitly

	CMP Entity Bean Descriptors Element by Feature
	Container-Managed Relationship Elements
	Primary Key Elements

	6 Message-Driven EJBs
	7 Deployment Guidelines for EJBs
	Before You Deploy an EJB
	Understanding and Performing Deployment Tasks
	Deployment Guidelines for EJBs
	Deploy EJBs as Part of an Enterprise Application
	Deploy EJBs That Call Each Other in the Same Application
	Switching Protocol Limitation

	Deploying EJBs that Use Dependency Injection
	Deploy Homogeneously to a Cluster
	Deploying Pinned EJBs to a Cluster
	Redeploying an EJB
	Using FastSwap Deployment to Minimize Deployment
	Understanding Warning Messages
	Disabling EJB Deployment Warning Messages

	A Deployment Descriptor Schema and Document Type Definitions Reference
	XML Schema Definitions and Namespace Declarations
	weblogic-ejb-jar.xml Namespace Declaration and Schema Location
	weblogic-cmp-jar.xml Namespace Declaration and Schema Location
	ejb-jar.xml Namespace Declaration and Schema Location

	Document Type Definitions and DOCTYPE Header Information

	B weblogic-ejb-jar.xml Deployment Descriptor Reference
	2.1 weblogic-ejb-jar.xml File Structure
	2.1 weblogic-ejb-jar.xml Elements
	allow-concurrent-calls
	Function
	Example

	allow-remove-during-transaction
	Function
	Example

	cache-between-transactions
	Function
	Example

	cache-type
	Function
	Example

	client-authentication
	Function
	Example

	client-cert-authentication
	Function
	Example

	clients-on-same-server
	Function
	Example

	component-factory-class-name
	Function

	concurrency-strategy
	Function
	Example

	confidentiality
	Function
	Example

	connection-factory-jndi-name
	Function
	Example

	connection-factory-resource-link
	Function

	create-as-principal-name
	Function

	delay-updates-until-end-of-tx
	Function
	Example

	description
	Function
	Example

	destination-jndi-name
	Function
	Example

	destination-resource-link
	Function

	disable-warning
	Function
	Example

	dispatch-policy
	Function
	Example

	distributed-destination-connection
	Function
	Example

	durable-subscription-deletion
	Function
	Example

	ejb-name
	Function
	Example

	ejb-reference-description
	Function
	Example

	ejb-ref-name
	Function
	Example

	enable-bean-class-redeploy
	Function
	Example

	enable-call-by-reference
	Function
	Example

	enable-dynamic-queries
	Function
	Example

	entity-always-uses-transaction
	Function

	entity-cache
	Function
	Example

	entity-cache-name
	Function
	Example

	entity-cache-ref
	Function
	Example

	entity-clustering
	Function
	Example

	entity-descriptor
	Function
	Example

	estimated-bean-size
	Function
	Example

	externally-defined
	Function

	finders-load-bean
	Function
	Example

	generate-unique-jms-client-id
	Function

	global-role
	home-call-router-class-name
	Function
	Example

	home-is-clusterable
	Function
	Example

	home-load-algorithm
	Function
	Example

	idempotent-methods
	Function
	Example

	identity-assertion
	Function
	Example

	idle-timeout-seconds
	Function
	Example

	iiop-security-descriptor
	Function
	Example

	init-suspend-seconds
	Function

	initial-beans-in-free-pool
	Function
	Example

	initial-context-factory
	Function
	Example

	integrity
	Function
	Example

	invalidation-target
	Function
	Example

	is-modified-method-name
	Function
	Example

	isolation-level
	Function
	Oracle Database-Only Isolation Levels
	Example

	jms-client-id
	Function
	Example

	jms-polling-interval-seconds
	Function
	Example

	jndi-binding
	Function
	Example

	jndi-name
	Function
	Example

	local-jndi-name
	Function
	Example

	max-beans-in-cache
	Function
	Example

	max-beans-in-free-pool
	Function
	Example

	max-messages-in-transaction
	Function

	max-queries-in-cache
	Function

	max-suspend-seconds
	Function

	message-destination-descriptor
	Function
	Example

	message-destination-name
	Function
	Example

	message-driven-descriptor
	Function
	Example

	method
	Function
	Example

	method-intf
	Function
	Example

	method-name
	Function
	Example

	method-param
	Function
	Example

	method-params
	Function
	Example

	network-access-point
	Function
	Example

	passivate-as-principal-name
	Function

	persistence
	Function
	Example

	persistence-use
	Function
	Example

	persistent-store-dir
	Function
	Example

	persistent-store-logical-name
	Function

	pool
	Function
	Example

	principal-name
	Function
	Example

	provider-url
	Function
	Example

	read-timeout-seconds
	Function
	Example

	remote-client-timeout
	Function
	Example

	remove-as-principal-name
	Function

	replication-type
	Function
	Example

	resource-env-ref-name
	Function
	Example

	res-ref-name
	Function
	Example

	resource-adapter-jndi-name
	Function

	resource-description
	Function
	Example

	resource-env-description
	Function
	Example

	resource-link
	Function
	Example

	retry-count
	Function

	retry-methods-on-rollback
	Function

	role-name
	Function
	Example

	run-as-identity-principal
	Function
	Example

	run-as-principal-name
	Function
	Example

	run-as-role-assignment
	Function
	Example
	A_EJB_with_runAs_role_X
	B_EJB_with_runAs_role_X
	C_EJB_with_runAs_role_Y

	security-permission
	Function
	Example

	security-permission-spec
	Function
	Example

	security-role-assignment
	Function
	Example

	service-reference-description
	Function
	Example

	session-timeout-seconds
	Function
	Example

	singleton-bean-call-router-class-name
	Function
	Example

	singleton-bean-is-clusterable
	Function
	Example

	singleton-bean-load-algorithm
	Function
	Example

	singleton-clustering
	Function
	Example

	singleton-session-descriptor
	Function
	Example

	stateful-session-cache
	Function
	Example

	stateful-session-clustering
	Function
	Example

	stateful-session-descriptor
	Function
	Example

	stateless-bean-call-router-class-name
	Function
	Example

	stateless-bean-is-clusterable
	Function
	Example

	stateless-bean-load-algorithm
	Function
	Example

	stateless-clustering
	Function
	Example

	stateless-session-descriptor
	Function
	Example

	stick-to-first-server
	Function
	Example

	timer-descriptor
	Function

	timer-implementation
	Function
	Example

	transaction-descriptor
	Function
	Example

	transaction-isolation
	Function
	Example

	transport-requirements
	Function
	Example

	trans-timeout-seconds
	Function
	Example

	type-identifier
	Function
	Example

	type-storage
	Function
	Example

	type-version
	Function
	Example

	use-serverside-stubs
	Function
	Example

	use81-style-polling
	Function
	Example

	weblogic-compatibility
	Function

	weblogic-ejb-jar
	Function

	weblogic-enterprise-bean
	Function

	work-manager
	Function

	C weblogic-cmp-jar.xml Deployment Descriptor Reference
	2.1 weblogic-cmp-jar.xml Deployment Descriptor File Structure
	2.1 weblogic-cmp-jar.xml Deployment Descriptor Elements
	allow-readonly-create-and-remove
	Function
	Example

	automatic-key-generation
	Function
	Example

	caching-element
	Function
	Example

	caching-name
	Function
	Example

	check-exists-on-method
	Function
	Example

	cluster-invalidation-disabled
	Function
	Example

	cmp-field
	Function
	Example

	cmr-field
	Function
	Example

	column-map
	Function
	Example

	compatibility
	Function
	Example

	create-default-dbms-table
	Function
	Automatic Table Creation
	Automatic Oracle Database SEQUENCE Generation
	Example

	database-specific-sql
	Function
	Example

	database-type
	Function
	Example

	data-source-jndi-name
	Function
	Example

	db-cascade-delete
	Function
	Setting up Oracle Database for Cascade Delete
	Example

	dbms-column
	Function
	Example

	dbms-column-type
	Function
	Example

	dbms-default-value
	Function
	Example

	default-dbms-tables-ddl
	Function

	delay-database-insert-until
	Function
	Example

	description
	Function
	Example

	disable-string-trimming
	Function
	Example

	ejb-name
	Function
	Example

	ejb-ql-query
	Function
	Example

	enable-batch-operations
	Function
	Example

	enable-query-caching
	Function
	Example

	field-group
	Function
	Example

	field-map
	Function
	Example

	finders-return-nulls
	Function
	Example

	foreign-key-column
	Function
	Example

	foreign-key-table
	Function
	Example

	generator-name
	Function
	Example

	generator-type
	Function
	Example

	group-name
	Function
	Example

	include-updates
	Function
	Example

	instance-lock-order
	Function
	Example

	key-cache-size
	Function
	Example

	key-column
	Function
	Example

	lock-order
	Function
	Example

	max-elements
	Function
	Example

	method-name
	Function
	Example

	method-param
	Function
	Example

	method-params
	Function
	Example

	optimistic-column
	Function
	Example

	order-database-operations
	Function
	Example

	pass-through-columns
	Function
	Example

	primary-key-table
	Function
	Example

	query-method
	Function
	Example

	relation-name
	Function
	Example

	relationship-caching
	Function
	Example

	relationship-role-map
	Function
	Example
	Mapping a Bean on Foreign Key Side of a Relationship to Multiple Tables
	Mapping a Bean on Primary Key Side of a Relationship to Multiple Tables

	relationship-role-name
	Function
	Example

	serialize-byte-array-to-oracle-blob
	Function
	Example

	serialize-char-array-to-bytes
	Function
	Example

	sql
	Function
	Example

	sql-query
	Function
	Example

	sql-select-distinct
	Function
	Example

	sql-shape
	Function
	Example

	sql-shape-name
	Function
	Example

	table-map
	Function
	Example

	table-name
	Function
	Example

	trigger-updates-optimistic-column
	Function
	Example

	unknown-primary-key-field
	Function
	Example

	use-select-for-update
	Function
	Example

	validate-db-schema-with
	Function
	Example

	verify-columns
	Function
	Example

	verify-rows
	Function
	Example

	version-column-initial-value
	Function
	Example

	weblogic-ql
	Function
	Example

	weblogic-query
	Function
	Example

	weblogic-rdbms-bean
	Function
	Example

	weblogic-rdbms-jar
	Function
	Example

	weblogic-rdbms-relation
	Function
	Examples
	Defining a One-to-One Relationship
	Defining a One-to-Many Relationship
	Defining a Many-to-Many Relationship

	weblogic-relationship-role
	Function
	Example

	D appc Reference
	appc
	Advantages of Using appc
	appc Syntax
	Designating Alternative Deployment Descriptors
	appc Options
	appc and EJBs

	E Important Information for EJB 1.1 Users
	Writing for RDBMS Persistence for EJB 1.1 CMP
	Finder Signature
	finder-list Element
	finder-query Element

	Using WebLogic Query Language (WLQL) for EJB 1.1 CMP
	WLQL Syntax
	WLQL Operators
	WLQL Operands
	Examples of WLQL Expressions

	Using SQL for CMP 1.1 Finder Queries
	Tuned EJB 1.1 CMP Updates in WebLogic Server
	Using is-modified-method-name to Limit Calls to ejbStore()
	5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure
	5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
	caching-descriptor
	max-beans-in-free-pool
	initial-beans-in-free-pool
	max-beans-in-cache
	idle-timeout-seconds
	cache-strategy
	read-timeout-seconds
	persistence-descriptor
	is-modified-method-name
	delay-updates-until-end-of-tx
	persistence-type
	db-is-shared
	stateful-session-persistent-store-dir
	persistence-use
	clustering-descriptor
	home-is-clusterable
	home-load-algorithm
	home-call-router-class-name
	stateless-bean-is-clusterable
	stateless-bean-load-algorithm
	stateless-bean-call-router-class-name
	stateless-bean-methods-are-idempotent
	transaction-descriptor
	trans-timeout-seconds
	reference-descriptor
	resource-description
	ejb-reference-description
	enable-call-by-reference
	jndi-name
	transaction-isolation
	isolation-level
	Oracle-Only Isolation Levels
	method
	security-role-assignment

	1.1 weblogic-cmp-jar.xml Deployment Descriptor File Structure
	1.1 weblogic-cmp-jar.xml Deployment Descriptor Elements
	RDBMS Definition Elements
	enable-tuned-updates
	pool-name
	schema-name
	table-name
	EJB Field-Mapping Elements
	attribute-map
	object-link
	bean-field
	dbms-column
	Finder Elements
	finder-list
	finder
	method-name
	method-params
	method-param
	finder-query
	finder-expression

	F EJB Query Language (EJB-QL) and WebLogic Server
	EJB QL Requirement for EJB 2.x Beans
	Using the EJB 2.x WebLogic QL Extension for EJB QL
	upper and lower Functions
	upper
	lower
	Using ORDER BY
	Using Subqueries
	Subquery Return Types
	Subqueries as Comparison Operands
	Correlated and Uncorrelated Subqueries
	DISTINCT Clause with Subqueries

	Using Arithmetic Functions
	Using Aggregate Functions
	Using Queries that Return ResultSets
	Using Oracle SELECT HINTS
	"get" and "set" Method Restrictions

	Properties-Based Methods of the Query Interface
	Migrating from WLQL to EJB QL
	Known Issue with Implied Cross Products
	EJB QL Error-Reporting
	Visual Indicator of Error in Query
	Multiple Errors Reported after a Single Compilation

