Oracle® Fusion Middleware
Oracle Fusion Middleware Developing JDBC
Applications for Oracle WebLogic Server

15¢ (15.1.1.0.0)
G31979-01
October 2025

ORACLE"

Oracle Fusion Middleware Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server, 15c
(15.1.1.0.0)

G31979-01
Copyright © 2007, 2025, Oracle and/or its affiliates.
Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience i
Documentation Accessibility i
Diversity and Inclusion i
Related Documentation i
Conventions ii

1 Using WebLogic JDBC in an Application

Getting a Database Connection from a DataSource Object
Importing Packages to Access DataSource Objects
Obtaining a Client Connection Using a DataSource
Possible Exceptions When a Connection Request Fails

Pooled Connection Limitation

Getting a Connection from an Application-Scoped Data Source

W W N PP

2 Using DataSource Resource Definitions

Using Jakarta EE DataSource Resource Definitions
Creating DataSource Resource Definitions Using Annotations
Creating DataSource Resource Definitions Using Deployment Descriptors
Using WebLogic Configuration Attributes
Implementation Considerations When Using DataSource Resource Definitions
Naming Conventions
WebLogic Data Source Naming Conventions

oD O O 01 W W - -

Jakarta EE Data Source Naming Conventions

Mapping the Jakarta EE DataSource Resource Definition to WebLogic Data Source
Resources

Configuring Active GridLink DataSource Resource Definitions

Using an Encrypted Password in a DataSourceDefinition

Additional Considerations 10
Using Data Sources in Clients 10
Additional Resources 10

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of iv

3 Performance Tuning Your JDBC Application

WebLogic Performance-Enhancing Features 1
How Pooled Connections Enhance Performance 1
Caching Statements and Data 1

Designing Your Application for Best Performance 1
Process as Much Data as Possible Inside the Database 1
Use Built-in DBMS Set-based Processing 2
Make Your Queries Smart 2
Make Transactions Single-batch 3
Never Have a DBMS Transaction Span User Input 4
Use In-place Updates 4
Keep Operational Data Sets Small 4
Use Pipelining and Parallelism 4

4 Using WebLogic-branded DataDirect Drivers

Using DataDirect Documentation 1

JDBC Specification Compliance 1

Installation 1

Supported Drivers and Databases 2

Connecting Through WebLogic JDBC Data Sources 2

Developing Your Own JDBC Code 2

Specifying Connection Properties 2

Using IP Addresses 3

Required Permissions for the Java Security Manager 3

For MS SQLServer Users 3
Installing MS SQLServer XA DLLs 3
Using instjdbc.sqgl with MS SQLServer 4

5 Using WebLogic Wrapper Drivers

Using the WebLogic RMI Driver (Deprecated) 1
RMI Driver Client Interoperability 1
Security Considerations for WebLogic RMI Drivers 1
Setting Up WebLogic Server to Use the WebLogic RMI Driver 2
Sample Client Code for Using the RMI Driver 2

Import the Required Packages 2
Get the Database Connection 3
Using a JNDI Lookup to Obtain the Connection 3
Using Only the WebLogic RMI Driver to Obtain a Database Connection 4
Row Caching with the WebLogic RMI Driver 4

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page ii of iv

Important Limitations for Row Caching with the WebLogic RMI Driver
Limitations When Using Global Transactions
Using the WebLogic JTS Driver (Deprecated)
Sample Client Code for Using the JTS Driver

6 Using API Extensions in JDBC Drivers

N O o O

Using API Extensions to JDBC Interfaces
Sample Code for Accessing API Extensions to JDBC Interfaces
Import Packages to Access API Extensions
Get a Connection
Cast the Connection as a Vendor Connection
Use API Extensions
Using API Extensions for Oracle JDBC Types
Sample Code for Accessing Oracle Thin Driver Extensions to JDBC Interfaces
Programming with Arrays
Import Packages to Access Oracle Extensions
Establish the Connection
Creating an Array in the Database
Getting an Array
Updating an Array in the Database
Using Oracle Array Extension Methods
Programming with Structs
Creating Objects in the Database
Getting Struct Attributes
Using OracleStruct Extension Methods
Using a Struct to Update Objects in the Database
Programming with Refs
Creating a Ref in the Database
Getting a Ref
Using WebLogic OracleRef Extension Methods
Updating Ref Values
Programming with Large Objects
Creating Blobs in the Database
Updating Blobs in the Database
Using OracleBlob Extension Methods
Programming with Clob Values
Transaction Boundaries Using LOBs
Recovering LOB Space
Programming with Opaque Objects
Using Batching with the Oracle Thin Driver

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

© © © © 0 0 N N o o oo oo o A BN DNDNDPEFE P PP P

[e o o = = i i e = =
Ww N DNDNPRFP PP PP OO

October 8, 2025
Page iii of iv

Using the Java Security Manager with the Oracle Thin Driver 13

7 Getting a Physical Connection from a Data Source

Opening a Connection

Closing a Connection
Remove Infected Connections Enabled is True
Remove Infected Connections Enabled is False

A W W DN P

Limitations for Using a Physical Connection

8 Troubleshooting JDBC

Problems with Oracle Database on UNIX

Closing JDBC Objects
Abandoning JDBC Objects

Using Microsoft SQL Server with Nested Triggers
Exceeding the Nesting Level

W NN DN PP

Using Triggers and EJBs

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page iv of iv

ORACLE’

Preface

Audience

This document describes about developing JDBC Applications for Oracle WebLogic Server
and evaluating WebLogic Server.

This document is a resource for software developers and system administrators who develop
and support applications that use the Java Database Connectivity (JDBC) API. It also contains
information that is useful for business analysts and system architects who are evaluating
WebLogic Server. The topics in this document are relevant during the evaluation, design,
development, pre-production, and production phases of a software project.

It is assumed that the reader is familiar with Jakarta EE and JDBC concepts. This document
emphasizes the value-added features provided by WebLogic Server JDBC and key information
about how to use WebLogic Server features and facilities to get an JDBC application up and
running.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation

This document contains JDBC-specific programming information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE

Preface

e Administering JDBC Data Sources for Oracle WebLogic Server is a guide to JDBC
configuration and management for WebLogic Server.

* Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic
Server applications.

« Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications in development and production
environments.

JDBC Samples and Tutorials

In addition to this document, Oracle provides a variety of JDBC code samples that show JDBC
configuration and API use, and provide practical instructions on how to perform key JDBC
development tasks.

Samples and Tutorials

Oracle provides a variety of code examples and tutorials that show WebLogic Server
configuration and API use, and provide practical instructions on how to perform key
development tasks. For more information, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

JDBC Examples in the WebLogic Server Distribution

WebLogic Server optionally installs APl code examples in the

ORACLE_HOVE\ W server\ sanpl es\ server directory, where ORACLE_HOME represents the
directory where you installed WebLogic Server. See Sample Applications and Code Examples
in Understanding Oracle WebLogic Server.

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page ii of ii

Using WebLogic JDBC in an Application

Learn how to use the WebLogic Remote Console to enable, configure, and monitor features of
WebLogic Server, including JDBC generic data sources, multi data sources, or Active GridLink
data sources.You can do the same tasks programmatically using the JMX API and the
WebLogic Scripting Tool (WLST). After configuring JDBC connectivity components, you can
use them in your applications.

See Configuring JDBC Data Sources in Administering JDBC Data Sources for Oracle
WebLogic Server.

Getting a Database Connection from a DataSource Object

Learn how to request a database connection from a DataSource object.

Importing Packages to Access DataSource Objects

To use the DataSource objects in your applications, import the following classes in your client
code:

import java.sql.*;
import java.util.*;
i mport javax.nam ng.*;

Obtaining a Client Connection Using a DataSource

To obtain a connection for a JDBC client, use a Java Naming and Directory Interface (JNDI)
lookup to locate the DataSource object, as shown in this code fragment.

@® Note

When using a JDBC connection in a client-side application, the exact same JDBC
driver classes must be in the CLASSPATH on both the server and the client. If the driver
classes do not match, you may see j ava. r ni . Unmar shal Except i on exceptions.

Context ctx = null;
Hasht abl e ht = new Hashtabl e();
ht . put (Cont ext. | NI TI AL_CONTEXT_FACTORY,
"webl ogi c.j ndi.W.Initial ContextFactory");
ht . put (Cont ext . PROVI DER_URL,
"t3://hostnane: port");
Connection conn = nul | ;
Statenment stnt = null;
ResultSet rs = null;
try {
ctx = new Initial Context(ht);
j avax. sql . Dat aSour ce ds
= (javax.sql . DataSource) ctx.lookup ("myDataSource");
conn = ds. get Connection();
/1 You can now use the conn object to create

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 3

ORACLE

|/l Statenents and retrieve result sets:

stnt = conn.createStatenment();

stnt.execute("select * from soneTable");

rs = stnt.getResultSet();

/1 C ose JDBC objects as soon as possible

stnt.close();
stnt=null;
conn. cl ose();
conn=nul | ;

}

catch (Exception e) {
/1 a failure occurred
| og nessage;

}
finally {
try {
ctx.close();
} catch (Exception e) {
| og message; }
try {
if (rs!=null) rs.close();
} catch (Exception e) {
| og message; }
try {

if (stmt !'=null) stnt.close();

} catch (Exception e) {
| og message; }
try {

if (conn !'=null) conn.close();

} catch (Exception e) {
| og message; }
}

Chapter 1
Getting a Database Connection from a DataSource Object

(Substitute the correct hostname and port number for your WebLogic Server.)

® Note

The code above uses one of several available procedures for obtaining a JNDI
context. For more information on JNDI, see WebLogic Server JNDI in Developing
JNDI Applications for Oracle WebLogic Server.

Possible Exceptions When a Connection Request Fails

The weblogic.jdbc.extensions package includes the following exceptions that can be thrown
when an application request fails. Each exception extends j ava. sql . SQLExcept i on.

e Connecti onDeadSQLExcept i on—generated when an application request to get a
connection fails because the connection test on the reserved connection failed. This
typically happens when the database server is unavailable.

e ConnectionUnavai | abl eSQLExcept i on—generated when an application request to get a
connection fails because there are currently no connections available in the pool to be
allocated. This is a transient failure, and is generated if all connections in the pool are
currently in use. It can also be thrown when connections are unavailable because they are

being tested.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

ORACLE

Chapter 1
Pooled Connection Limitation

» Pool Di sabl edSQLExcept i on—generated when an application request to get a connection
fails because the JDBC Data Source has been administratively disabled.

* Pool Li m t SQLExcept i on—generated when an application request to get a connection fails
due to a configured threshold of the data source, such as Hi ghest Numi ters,
Connect i onReser veTi neout Seconds, and so forth.

e Pool Permi ssi onsSQLExcept i on—generated when an application request to get a
connection fails a (security) authentication or authorization check.

Pooled Connection Limitation

When using pooled connections in a data source, it is possible to execute DBMS-specific SQL
code that will alter the database connection properties in a way which WebLogic Server and
the JDBC driver will be unaware of. When the connection is returned to the pool, the
characteristics of the connection may not be set back to a valid state.

® Note

For example, with a Sybase DBMS, if you use a statement such as "set rowcount 3
select * from y", the connection will only ever return a maximum of 3 rows from any
subsequent query on this connection. When the connection is returned to the pool and
then reused, the next user of the connection will still only get 3 rows returned, even if
the table being selected from has 500 rows.

When using pooled connections in a data source, it is possible to execute DBMS-specific SQL
code that will alter the database connection properties and that WebLogic Server and the
JDBC driver will be unaware of. When the connection is returned to the pool, the
characteristics of the connection may not be set back to a valid state. For example, with a
Sybase DBMS, if you use a statement such as "set rowcount 3 select * fromy", the
connection will only ever return a maximum of 3 rows from any subsequent query on this
connection. When the connection is returned to the pool and then reused, the next user of the
connection will still only get 3 rows returned, even if the table being selected from has 500
rows.

In most cases, there is standard JDBC code that can accomplish the same result. In this
example, you could use set MaxRows() instead of set rowcount . Oracle recommends that you
use the standard JDBC code instead of the DBMS-specific SQL code. When you use standard
JDBC calls to alter the connection, WebLogic Server returns the connection to a standard state
when the connection is returned to the data source.

If you use vendor-specific SQL code that alters the connection, you must set the connection
back to an acceptable state before returning the connection to the pool.

Getting a Connection from an Application-Scoped Data Source

To get a connection from JDBC module packaged with an enterprise application, you look up
the data source defined in the JDBC module in the local environment or in the JNDI tree and
then request a connection from the data source or multi data source.

To get a connection from an application-scoped data source, see Getting a Database
Connection from a Packaged JDBC Module in Administering JDBC Data Sources for Oracle
WebLogic Server.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 3

Using DataSource Resource Definitions

Data source resources are used to define a set of properties required to identify and access a
database through the JDBC API. Learn how to create and use Jakarta EE DataSource
resource definitions.

Using Jakarta EE DataSource Resource Definitions

Data source resources are used to define a set of properties required to identify and access a
database through the JDBC API. These properties include information such as the URL of the
database server, the name of the database, and the network protocol to use to communicate
with the server. You can declare data source definitions by creating data source resource
definitions using annotations or deployment descriptor.

Dat aSour ce objects are registered with the Java Naming and Directory Interface (JNDI) naming
service so that applications can use the JNDI API to access a Dat aSour ce object to make a
connection with a database.

Prior to Jakarta EE 7, DataSource resources were created administratively as described in
Configuring WebLogic JDBC Resources in Administering JDBC Data Sources for Oracle
WebLogic Server. Jakarta EE 9 provides the option to programmatically define DataSource
resources for a more flexible and portable method of database connectivity.

The name element uniquely identifies a Dat aSour ce and is registered with JNDI. The value
specified in the name element begins with a namespace scope. Jakarta EE 9 includes the
following scopes:

e java: conp—Names in this namespace have per-component visibility.

e java: modul e—Names in this namespace are shared by all components in a module, for
example, the EJB components defined in an a ejb-jar.xml file.

e java: app—Names in this namespace are shared by all components and modules in an
application, for example, the application-client, web, and EJB components in an .ear file.

e java: gl obal —Names in this namespace are shared by all the applications in the server.

You can programmatically declare data source definitions using one of the following methods:

Creating DataSource Resource Definitions Using Annotations

The j avax. annot ati on. sql package provides @at aSour ceDef i ni tion and
@at aSour ceDef i ni tions for defining DataSource resource definitions in application
component classes such as application clients, servlets, or Jakarta Enterprise Beans (EJBS).

When the DataSource resource is injected, a Dat aSour ce object is created and registered with

JNDI. Use annotation elements to configure the Dat aSour ce object. You can specify additional

Jakarta EE and WebLogic configuration attributes in the properti es element of the annotation.
See Using WeblL ogic Configuration Attributes.

Use @at aSour ceDefinition to create a single datasource definition. For example:

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 10

http://docs.oracle.com/javaee/7/api/javax/annotation/sql/package-summary.html

ORACLE Chapter 2
Using Jakarta EE DataSource Resource Definitions

@at aSour ceDef i ni tion(

nane = "java: nodul e/ Exanpl eDS",
cl assName = "org. apache. derby. j dbc. O i ent Dat aSour ce",
port Nunber = 1527,

serverNane = "l ocal host",
dat abaseNane = "exanpl eDB",
user = "exanpl es",

password = "exanpl es”,
properties={"create=true", "webl ogic. Test Tabl eName=SQ. SELECT 1 FROM
SYS. SYSTABLES'})

@ebServl et ("/ dat aSour ceServl et")
public class DataSourceServlet extends HttpServlet {

@Resour ce(l ookup = "java: nodul e/ Exanpl eDS")

Use the @at aSour ceDef i ni tions to create multiple datasource definitions. For example:

@at aSour ceDef i ni tions(
value = {

@at aSour ceDefinition(name = "java: app/ env/ DS1",

m nPool Si ze = 0,

initialPool Size = 0,

className = "org. apache. derby. j dbc. C i ent XADat aSour ce",

port Nunber = 1527,

serverNane = "l ocal host",

user = "exanpl es",

password = "exanpl es",

dat abaseNane = "exanpl eDB",

properties={"create=true", "webl ogic. Test Tabl eName=SQ. SELECT 1 FROM
SYS. SYSTABLES'}

)

@at aSour ceDefi ni tion(name = "java: conp/ env/ DS2",
m nPool Si ze = 0,
initialPool Size = 0,
cl assName = "org. apache. derby. jdbc. Cient Dat aSour ce",
port Nunber = 1527,
serverNane = "l ocal host",
user = "exanpl es",
password = "exanpl es",
dat abaseNane = "exanpl esDB",
properties={"create=true", "webl ogic. Test Tabl eName=SQ. SELECT 1 FROM

SYS. SYSTABLES'}
)
}

For a complete example, see Sample Applications and Code Examples in Understanding
Oracle WebLogic Server.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 10

ORACLE Chapter 2
Using WebLogic Configuration Attributes

Creating DataSource Resource Definitions Using Deployment Descriptors

You can create DataSource resource definitions using deployment descriptors in
application.xm ,application-client.xm,web.xn,andejb-jar.xn files. For example:

<dat a- sour ce>
<name>j ava: nodul e/ Exanpl eDS</ nane>
<cl ass- name>or g. apache. der by. j dbc. O i ent Dat aSour ce</ cl ass- name>
<server - name>| ocal host </ server - nane>
<port - nunber >1527</ port - nunber >
<dat abase- nane>exanpl eDB</ dat abase- name>
<user >exanpl es</ user >
<passwor d>exanpl es</ passwor d>
<property>
<nanme>cr eat e</ name>
<val ue>true</val ue>
</ property>
<property>
<nanme>webl ogi c. Test Tabl eNarme</ name>
<val ue>SQL SELECT 1 FROM SYS. SYSTABLES</ val ue>
</ property>
</ dat a- sour ce>

Using WebLogic Configuration Attributes

The Jakarta EE 9 Definition annotation @at aSour ceDef i ni ti on provides a basic standard set
of configuration attributes. Oracle extends support for WebLogic Server's rich set of
configuration attributes by supporting proprietary attributes using the property element.

@® Note

Consider the following limitations when using WebLogic Server proprietary attributes
in the property element. WebLogic Server proprietary attributes:

» Cannot be used to configure a Multi data source. It is not possible to embed a
Multi data source in a EAR or WAR file.

* Do not overlap @at aSour ceDef i ni ti on annotation elements.

Do not include the data source level attributes nane and ver si on.

Table 2-1 summarizes WebLogic Server's extended support for Data Source configuration
attributes by mapping Wbl ogi c. Attri but e Name property values to WebLogic configuration
elements. For an example of a DataSource resource definition using WebLogic configuration
elements, see Configuring Active GridLink DataSource Resource Definitions.

Table 2-1 WebLogic Configuration Attributes

. ___|
Weblogic.Attribute Name WebLogic Element

AffinityPolicy JDBCOr acl eParans. set AffinityPolicy()

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 10

ORACLE

Chapter 2
Using WebLogic Configuration Attributes

Table 2-1 (Cont.) WebLogic Configuration Attributes
|

Weblogic.Attribute Name

WebLogic Element

Al gorithniType
Capaci tyl ncrenent

ConnectionCreationRetryF
requencySeconds

Connect i onPool Fai | over Ca
| | backHandl er

Connect i onReser veTi meout
Seconds

Credent i al Mappi ngEnabl e
Dat aSour ceLi st
Driverlnterceptor

Fai | over Request | f Busy
FanEnabl ed

d obal Transacti onsPr ot oc
ol

H ghest NunMi ters

| dentit yBasedConnecti onP
ool i ngEnabl ed

I gnor el nUseConnect i onsEn
abl ed

I nacti veConnect i onTi meou
t Seconds

I nitSql
JDBCXADebugLevel
KeepConnAf t er Local Tx

KeepLogi cal ConnCQpenOnRel
ease

KeepXaConnTi | | TxConpl et e
Logi nDel aySeconds
NeedTxCt xOnCl ose
NewXaConnFor Conmmi t
OnsNodeli st

OnsVal letFile

Ons\l | et Passwor d

Oracl eOpti ni zelt f 8Conver
sion

Passwor dEncrypt ed
Pi nnedToThr ead

Profil eHarvest FrequencyS
econds

JDBCDat aSour cePar ans. set Al gori t hniType()
JDBCConnect i onPool Par ans. set Capaci tyl ncrement ()

JDBCConnect i onPool Par anms. set Connect i onCreati onRet ryFreq
uencySeconds()

JDBCDat aSour cePar ans. set Connect i onPool Fai | over Cal | backH
andl er ()

JDBCConnect i onPool Par ans. set Connect i onReser veTi neout Sec
onds()

JDBCConnect i onPool Par ans. set Cr edent i al Mappi ngEnabl ed()
JDBCDat aSour cePar ans. set Dat aSour celLi st ()

JDBCConnect i onPool Par ans. set Dri verlnterceptor()
JDBCDat aSour cePar ans. set Fai | over Request | f Busy()

JDBCOr acl ePar ans. set FanEnabl ed()

JDBCDat aSour cePar ans. set @ obal Transact i onsPr ot ocol ()

JDBCConnect i onPool Par ans. set H ghest NumMi t er s()

JDBCConnect i onPool Par ans. set | dentit yBasedConnect i onPool
i ngEnabl ed()

JDBCConnect i onPool Par ans. set | gnor el nUseConnect i onsEnabl
ed()

JDBCConnect i onPool Par ans. set | nact i veConnect i onTi meout Se
conds()

JDBCConnect i onPool Par ans. set | nit Sql ()

JDBCConnect i onPool Par ans. set JDBCXADebugLevel ()
JDBCDat aSour cePar ans. set KeepConnAf t er Local Tx()
JDBCXAPar ans. set KeepLogi cal ConnCpenOnRel ease()

JDBCXAPar ans. set KeepXaConnTi | | TxConpl et e()
JDBCConnect i onPool Par ans. set Logi nDel aySeconds()
JDBCXAPar ans. set NeedTxCt xOnCl ose()

JDBCXAPar ans. set NewXaConnFor Conmi t ()

JDBCOr acl ePar ans. set OnsNodeLi st ()

JDBCOr acl ePar ans. set Ons\l | et Fi | e()

JDBCOr acl ePar ans. set Ons\l | et Passwor d()

JDBCOr acl ePar ans. set Oracl eOpti mi zelt f 8Conver si on()

JDBCDx i ver Par ans. set Password
JDBCConnect i onPool Par ans. set Pi nnedToThr ead()

JDBCConnect i onPool Par ans. set Profi | eHar vest FrequencySeco
nds()

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 10

ORACLE’

Chapter 2
Implementation Considerations When Using DataSource Resource Definitions

Table 2-1 (Cont.) WebLogic Configuration Attributes
|

Weblogic.Attribute Name

WebLogic Element

ProfileType
Recover Onl yOnce

Renmovel nf ect edConnect i on
S

Resour ceHeal t hMoni t oring

Rol | backLocal TxUponConnC
| ose

RowPr ef et ch
RowPr ef et chSi ze

SecondsToTr ust Anl dl ePool
Connection

Shri nkFrequencySeconds
St at ement CacheSi ze

St at ement CacheType

St at ement Ti meout
StreanChunkSi ze

Test Connecti onsOnReserve
Test FrequencySeconds
Test Tabl eName
UsePasswor dl ndi rection
UseXaDat aSour cel nterface
WapTypes

XaEndOnl yOnce

XaRet ryDur at i onSeconds
XaRet ryl nt erval Seconds
XaSet Transact i onTi meout
XaTransacti onTi meout

JDBCConnect i onPool Par ans. set Profil eType()
JDBCXAPar ans. set Recover Onl yOnce()
JDBCConnect i onPool Par ans. set Renovel nf ect edConnecti ons()

JDBCXAPar anms. set Resour ceHeal t hMoni t ori ng()
JDBCXAPar ans. set Rol | backLocal TxUponConnCl ose()

JDBCDat aSour cePar anms. set RowPr ef et ch()
JDBCDat aSour cePar ans. set RowPr ef et chSi ze()

JDBCConnect i onPool Par ans. set SecondsToTr ust Anl dl ePool Con
nection()

JDBCConnect i onPool Par ans. set Shri nkFrequencySeconds()
JDBCConnect i onPool Par ans. set St at enent CacheSi ze()
JDBCConnect i onPool Par ans. set St at enent CacheType()
JDBCConnect i onPool Par ans. set St at enent Ti neout ()
JDBCDat aSour cePar ans. set St r eanChunkSi ze()
JDBCConnect i onPool Par ans. set Test Connect i onsOnReser ve()
JDBCConnect i onPool Par ans. set Test FrequencySeconds()
JDBCConnect i onPool Par ans. set Test Tabl eNang()

JDBCDx i ver Par ans. set UsePasswor dI ndi recti on()

JDBCDr i ver Par ans. set UseXaDat aSour cel nt er face()
JDBCConnect i onPool Par ans. set WapTypes()

JDBCXAPar ans. set XaEndOnl yOnce()

JDBCXAPar ans. set XaRet r yDur at i onSeconds()

JDBCXAPar ans. set XaRet ryl nt er val Seconds()

JDBCXAPar ans. set XaSet Transact i onTi neout ()

JDBCXAPar ans. set XaTr ansact i onTi meout ()

Implementation Considerations When Using DataSource

Resource Definitions

Learn about the implementation details to consider when creating and using DataSource

resource definitions.

Naming Conventions

This section provides information on Data Source haming conventions:

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 10

ORACLE Chapter 2
Implementation Considerations When Using DataSource Resource Definitions

@® Note

Pre-WebLogic Server 12.1.1 and Jakarta EE Data Source naming conventions are
compatible. Existing applications do not need to change naming conventions to
upgrade from previous releases.

WebLogic Data Source Naming Conventions

The following conventions are used when naming Data Sources in releases prior to WebLogic
Server 12.1.1:

e dsnane - The system resource JDBC descriptor (confi g/j dbc/ *-j dbc. xm)

e application@ull @snane - deprecated (pre-9.x), application-scoped JDBC descriptor in
EAR

e application@modul e@snane - application-scoped, packaged JDBC descriptor in EAR

Jakarta EE Data Source Naming Conventions

The following conventions are used to name Jakarta EE Data Sources:
e appnanme@odul ename@onponent name@snane - Component level

e appnanme@modul ename@snane - Module level

e appnanme@snane - Application level

e dsnane — Global

These names are compatible with earlier names because the Jakarta EE names begin with
java:

Mapping the Jakarta EE DataSource Resource Definition to WebLogic Data
Source Resources

Table 2-2 provides information on how to map Jakarta EE DataSource Resource definition
elements to WebLogic Server resources.

Table 2-2 Mapping a DataSource Resource Definition to WebLogic Server Resources

DataSourceBean Default Value WebLogic Resource

String nane() Required JDBCDat aSour cePar anmsBean. se
t IJndi Name

String classNane() Required JDBCDrx i ver Par ansBean. set Dri
ver Nane

String description() Not Used

String url () JDBCDr i ver Par ansBean. set Ur |

String user() Added to
JDBCDrx i ver Par ansBean. get Pro
perties()

String password() JDBCDr i ver Par ansBean. set Pas
swor d

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 10

ORACLE Chapter 2
Implementation Considerations When Using DataSource Resource Definitions

Table 2-2 (Cont.) Mapping a DataSource Resource Definition to WebLogic Server

Resources

]

DataSourceBean Default Value WebLogic Resource

String databaseNang() Used to generate URL; added to
properties

i nt portNurber () -1 Used to generate URL; added to
properties

String serverNang() "localhost" Used to generate URL; added to
properties

int isolationLevel () -1 Sets desi redt xi sol evel
property which WebLogic Server
uses to call
Connection. set Transactionl s
olation()

bool ean transactional () true Used to generate URL

int initial Pool Size() -1 JDBCConnect i onPool Par ansBea
n.setlnitial Capacity

i nt maxPool Si ze() -1 JDBCConnect i onPool Par ansBea
n. set MaxCapacity

i nt ninPool Size() -1 JDBCConnect i onPool Par ansBea
n.set M nCapacity (new)

int maxldleTine() -1 JDBCConnect i onPool Par ansBea
n. set Shri nkFrequencySeconds

int maxStatements() -1 JDBCConnect i onPool Par ansBea
n. set St at ement CacheSi ze

String[] properties() {} JDBCPr operti esBean

int [oginTineout() 0 Not Used

Configuring Active GridLink DataSource Resource Definitions

An Active GridLink Data Source is defined by using the following name/value pair within the
DataSource resource definition:

 FanEnabl ed is setto true

e (nsNodeli st is a non-null value. A comma-separated list of ONS daemon listen addresses
and ports for receiving ONS-based FAN events. See ONS Client Configuration in
Administering JDBC Data Sources for Oracle WebLogic Server.

The following example shows a DataSource resource definition for an Active GridLink Data
Source using deployment descriptors:

<dat a- sour ce>
<nane>j ava: gl obal / DSD2</ name>
<cl ass-nane>or acl e. j dbc. Oracl eDri ver </ cl ass- nane>
<url >j dbc: oracl e: t hi n: @ DESCRI PTI ON=(ADDRESS_L| ST=(ADDRESS=(PROTOCOL=TCP)
(HOST=I cr 01155-r) (PORT=1521))) (CONNECT_DATA=(SERVI CE_NAME=nydb))) </ url >
<user>| ef t y123</ user >
<passwor d>passwor d</ passwor d>
<proper t y><nanme>webl ogi c. Capaci t yl ncr ement </ name><val ue>2</ val ue></ pr operty>

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 10

ORACLE

Chapter 2
Implementation Considerations When Using DataSource Resource Definitions

<property><name>webl ogi c. H ghest Num4i t er s</ nane><val ue>2147483647</ val ue></ property>

<pr oper t y><nane>webl ogi c.
val ue></ property>

<pr oper t y><nane>webl ogi c.
property>

<pr oper t y><nane>webl ogi c.

<pr oper t y><nane>webl ogi c.
property>

<pr oper t y><nane>webl ogi c.
property>

<pr oper t y><nane>webl ogi c.
property>

<pr oper t y><nane>webl ogi c.
property>

<pr oper t y><nane>webl ogi c.

<pr oper t y><nane>webl ogi c.

<pr oper t y><nane>webl ogi c.

<pr oper t y><nane>webl ogi c.

<pr oper t y><nane>webl ogi c.
property>

<pr oper t y><nane>webl ogi c.
property>

<pr oper t y><nane>webl ogi c.

<pr oper t y><nane>webl ogi c.

<pr oper t y><nane>webl ogi c.

<pr oper t y><nane>webl ogi c.
property>

<pr oper t y><nane>webl ogi c.

<pr oper t y><nane>webl ogi c.

<pr oper t y><nane>webl ogi c.
val ue></ property>

<pr oper t y><nane>webl ogi c.

<pr oper t y><nane>webl ogi c.

<pr oper t y><nane>webl ogi c.

<pr oper t y><nane>webl ogi c.

<pr oper t y><nane>webl ogi c.

<pr oper t y><nane>webl ogi c.

<pr oper t y><nanme>webl ogi c.

<pr oper t y><nane>webl ogi c.

<pr oper t y><nane>webl ogi c.
val ue></ property>

<pr oper t y><nanme>webl ogi c.

<pr oper t y><nane>webl ogi c.
val ue></ property>

<pr oper t y><nanme>webl ogi c.

<pr oper t y><nane>webl ogi c.

<pr oper t y><nanme>webl ogi c.
property>

<pr oper t y><nanme>webl ogi c.

<pr oper t y><nanme>webl ogi c.

<pr oper t y><nanme>webl ogi c.

<pr oper t y><nanme>webl ogi c.

<pr oper t y><nane>webl ogi c.

<pr oper t y><nanme>webl ogi c.
property>

<pr oper t y><nane>webl ogi c.
property>

<pr oper t y><nanme>webl ogi c.

<pr oper t y><nane>webl ogi c.

<pr oper t y><nanme>webl ogi c.
property>

<pr oper t y><nane>webl ogi c.

Connecti onCr eat i onRet r yFr equencySeconds</ nane><val ue>0</
Connect i onReser veTi meout Seconds</ nane><val ue>10</ val ue></

Test FrequencySeconds</ nane><val ue>120</ val ue></ property>
Test Connect i onsOnReser ve</ nane><val ue>f al se</ val ue></

Prof i | eHar vest FrequencySeconds</ name><val ue>300</ val ue></
I gnor el nUseConnect i onsEnabl ed</ nane><val ue>t rue</ val ue></
I nacti veConnecti onTi meout Seconds</ name><val ue>0</ val ue></

Test Tabl eNanme</ name><val ue></ val ue></ property>

Logi nDel aySeconds</ nane><val ue>0</ val ue></ property>

I ni t Sgl </ nane><val ue></val ue></ property>

St at ement CacheType</ name><val ue>LRUL/ val ue></ pr operty>
Renovel nf ect edConnect i ons</ nane><val ue>t r ue</ val ue></

SecondsToTr ust Anl dl ePool Connect i on</ name><val ue>10</ val ue></

St at ement Ti meout </ name><val ue>- 1</ val ue></ property>
Profil eType</ nane><val ue>0</ val ue></ property>
JDBCXADehugLevel </ nane><val ue>10</ val ue></ pr operty>
Credent i al Mappi ngEnabl ed</ name><val ue>f al se</ val ue></

Driverl nterceptor</nane><val ue></ val ue></ property>
Pi nnedToThr ead</ name><val ue>f al se</ val ue></ property>
| dent it yBasedConnect i onPool i ngEnabl ed</ name><val ue>f al se</

W apTypes</ nane><val ue>t r ue</ val ue></ property>

Connecti onLabel i ngCal | back</ name><val ue></ val ue></ property>
Fat al Er r or Codes</ nane><val ue></ val ue></ property>

Scope</ name><val ue>d obal </ val ue></ property>

RowPr ef et ch</ nane><val ue>f al se</ val ue></ property>

RowPr ef et chSi ze</ name><val ue>48</ val ue></ property>

St reanChunkSi ze</ name><val ue>256</ val ue></ pr operty>

Al gori t hnType</ name><val ue>Fai | over </ val ue></ property>
Connect i onPool Fai | over Cal | backHandl er </ nane><val ue></

Fai | over Request | f Busy</ nane><val ue>f al se</ val ue></ property>
d obal Transact i onsProt ocol </ name><val ue>OnePhaseConmi t </

KeepConnAf t er Local Tx</ name><val ue>t r ue</ val ue></ property>
KeepConnAf t er @ obal Tx</ nane><val ue>f al se</ val ue></ property>
UseXaDat aSour cel nt er f ace</ name><val ue>t r ue</ val ue></

UsePasswor dl ndi rect i on</ name><val ue>f al se</ val ue></ property>
FanEnabl ed</ name><val ue>t r ue</ val ue></ property>

nsNodeLi st </ name><val ue>l cr 01155-r: 6200</ val ue></ property>
OnsWal | et Fi | e</ name><val ue></ val ue></ property>

OnsWal | et Passwor d</ nane><val ue></ val ue></ property>

O acl eOpt i mi zeUt f 8Conver si on</ name><val ue>f al se</ val ue></

ConnectionlnitializationCallback</ name><val ue></val ue></
Af finityPolicy</ nane><val ue>Sessi on</ val ue></ property>
O acl eProxySessi on</ nane><val ue>f al se</ val ue></ property>

KeepXaConnTi | | TxConpl et e</ name><val ue>t r ue</ val ue></

NeedTxCt xOnCl ose</ name><val ue>f al se</ val ue></ property>

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 10

ORACLE

Chapter 2
Implementation Considerations When Using DataSource Resource Definitions

<proper t y><nanme>webl ogi ¢. XaEndOnl yOnce</ name><val ue>f al se</ val ue></ property>

<proper t y><nanme>webl ogi ¢. NewXaConnFor Commi t </ nane><val ue>f al se</ val ue></ property>

<proper t y><nane>webl ogi c. KeepLogi cal ConnOpenOnRel ease</ nane><val ue>f al se</ val ue></
property>

<proper t y><nanme>webl ogi ¢. Resour ceHeal t hMoni t or i ng</ nane><val ue>t r ue</ val ue></
property>

<proper t y><nane>webl ogi ¢c. Recover Onl yOnce</ name><val ue>f al se</ val ue></ property>

<proper t y><nanme>webl ogi ¢. XaSet Transact i onTi neout </ name><val ue>f al se</ val ue></
property>

<proper t y><nane>webl ogi ¢. XaTr ansact i onTi meout </ nane><val ue>0</ val ue></ property>

<proper t y><nanme>webl ogi c. Rol | backLocal TxUponConnCl ose</ nane><val ue>f al se</ val ue></
property>

<proper t y><nanme>webl ogi ¢. XaRet r yDur at i onSeconds</ nane><val ue>0</ val ue></ property>

<propert y><nane>webl ogi c. XaRet ryl nt er val Seconds</ nane><val ue>60</ val ue></ pr operty>

</ dat a- sour ce>

For additional information, see Using Active GridLink Data Sources in Administering JDBC
Data Sources for Oracle WebLogic Server.

Using an Encrypted Password in a DataSourceDefinition

You can provide an encrypted password in the Dat aSour ceDef i ni ti on. To do so you need to
generate the password as shown in the following example, and then copy it into the
Dat aSour ceDef i ni ti on:

needs to be run in the domain hone directory

java webl ogi c. security. Encrypt

Password: user_password

{ AES} OQLCnXWS g TVQs xr HypxMT7i Zwt 7wBBI r kLP5SNVeAv Nk ="

This val ue needs to be pasted into the DataSourceDefinition

The encrypted password is domain specific. If you use an encrypted password that does not
match the domain, it will generate an error such as:

webl ogi c. appl i cati on. Modul eException: com rsa.jsafe. JSAFE_Paddi ngExcepti on:
Invalid paddi ng.:comrsa.|safe. JSAFE_Paddi ngException: I nvalid paddi ng

The following code fragment defines a data source using an encrypted password in an
annotation in a Java servlet.

@at aSour ceDef i nition(

name="j ava: conp/ ds",

cl assName="or acl e. j dbc. Oracl eDri ver",

por t Nunber =1521,

server Nanme="nyhost ",

user="nyuser",

dat abaseNanme="nydbnange",

initial Pool Size = 0,

m nPool Si ze = 0,

maxPool Si ze = 15,

maxSt at ements = 0,

transacti onal =f al se,

properties = {"webl ogi c. Test Tabl eName=SQL | SVALI D",
"webl ogi c. Passwor dEncr ypt ed={ AES} OQLCnXWgTVQs xr HgpxMT7i Zwt 7wBBI r kLPSNVeAvNK="}

)

@ebServl et (urlPatterns = "/ Get Version")

public class GetVersion extends javax.servlet.http.HtpServlet
i npl ements javax.servlet. Servlet {
@Resour ce(l ookup = "java: conp/ ds")
private DataSource ds;

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 10

ORACLE’

Chapter 2
Using Data Sources in Clients

Additional Considerations

Consider the following when using a Jakarta EE DataSource resource definition with WebLogic
Server:

If an annotation and a descriptor have the same Dat aSour ce hame in the same scope, the
attributes are merged with values specified in the deployment descriptor. The deployment
descriptor value takes precedence over values specified in a annotation.

A Dat aSour ce is not a module, it is a resource created as part of a module.

A Dat aSour ce is not a JDBCSyst enResour ces object associated with a domain and is not in
the WebLogic Server configuration bean tree.

You can use the JSR88 API's to view applications that include Jakarta EE 9 Data Sources.

There is one runtime MBean created for each datasource definition. The name of the
MBean is the decorated name.

WLS has a limited set of known class names for which it can generate a URL. For the non-
XA case, the JDBC driver and not the datasource class is often known. An error occurs
when an unknown class name is specified with a dat abaseNang, port Nunber, and/or
server Nane. In this case, remove dat abaseNane, port Nunber, server Nane, and specify the
URL.

URL generation is not supported for AGL data sources.

URL generation in general is a problem for all Oracle drivers because of the service,
database, and Oracle RAC instance formats. The best practice is to provide the URL for
Oracle drivers

Using Data Sources in Clients

WebLogic Server allows you to implement Jakarta EE data sources in a Jakarta EE client with
some limitations.

The limitations are as follows:

Transacti onal =t r ue is not supported. The transaction protocol is set to NONE.

Data Sources that are global or application in scope are visible (created) both on the client
and the server. This has the downside of using more connections.

No permission checking is performed on a Data Source. Operations such as reserve and
shrink can be used on a local Data Source.

Additional Resources

Learn about additional resources for review when implementing data source resource
definitions.

Jakarta EE 9.1 Specification at https://jakarta.ee/specifications/platform/9.1/jakarta-
platform-spec-9.1.

The Jakarta EE 9.1 Tutorial at https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/
index.html.

JDBC™ 4.3 Specification

WebLogic Server Code Examples.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 10

https://jakarta.ee/specifications/platform/8/platform-spec-8
https://jakarta.ee/specifications/platform/8/platform-spec-8
https://jakarta.ee/learn/docs/jakartaee-tutorial/current/index.html
https://jakarta.ee/learn/docs/jakartaee-tutorial/current/index.html
https://jcp.org/en/jsr/detail?id=221

Performance Tuning Your JDBC Application

Learn how to design and configure WebLogic Server to get the best performance from JDBC
applications.

WebLogic Performance-Enhancing Features

WebLogic has several features that enhance performance for JDBC applications including
pooled connections and caching statements.

How Pooled Connections Enhance Performance

Establishing a JDBC connection with a DBMS can be very slow. If your application requires
database connections that are repeatedly opened and closed, this can become a significant
performance issue. Connection pools in WebLogic data sources offer an efficient solution to
this problem.

When WebLogic Server starts, connections in the data sources are opened and are available
to all clients. When a client closes a connection from a data source, the connection is returned
to the pool and becomes available for other clients; the connection itself is not closed. There is
little cost to opening and closing pooled connections.

Caching Statements and Data

DBMS access uses considerable resources. If your program reuses prepared or callable
statements or accesses frequently used data that can be shared among applications or can
persist between connections, you can cache prepared statements or data by using the
following:

» Statement Cache for a data source
* Read-Only Entity Beans

e JNDI in a Clustered Environment

Designing Your Application for Best Performance

Most performance gained or lost in a database application are not determined by the
application language, but by how the application is designed. The number and location of
clients, size and structure of DBMS tables and indexes, and the number and types of queries
all affect application performance.

The following are general hints that apply to all DBMSs. It is also important to be familiar with
the performance documentation of the specific DBMS that you use in your application.

Process as Much Data as Possible Inside the Database

Most serious performance problems in DBMS applications come from moving raw data around
needlessly, whether it is across the network or just in and out of cache in the DBMS. A good
method for minimizing this waste is to put your logic where the data is—in the DBMS, not in the

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE

Chapter 3
Designing Your Application for Best Performance

client —even if the client is running on the same box as the DBMS. In fact, for some DBMSs a
fat client and a fat DBMS sharing one CPU is a performance disaster.

Most DBMSs provide stored procedures, an ideal tool for putting your logic where your data is.
There is a significant difference in performance between a client that calls a stored procedure
to update 10 rows, and another client that fetches those rows, alters them, and sends update
statements to save the changes to the DBMS.

Also review the DBMS documentation on managing cache memory in the DBMS. Some
DBMSs (Sybase, for example) provide the means to partition the virtual memory allotted to the
DBMS, and to guarantee certain objects exclusive use of some fixed areas of cache. This
means that an important table or index can be read once from disk and remain available to all
clients without having to access the disk again.

Use Built-in DBMS Set-based Processing

SQL is a set processing language. DBMSs are designed from the ground up to do set-based
processing. Accessing a database one row at a time is, without exception, slower than set-
based processing and, on some DBMSs is poorly implemented. For example, it will always be
faster to update each of four tables one at a time for all the 100 employees represented in the
tables than to alter each table 100 times, once for each employee.

Many complicated processes that were originally thought too complex to do any other way but
row-at-a-time have been rewritten using set-based processing, resulting in improved
performance. For example, a major payroll application was converted from a huge slow
COBOL application to four stored procedures running in series, and what took hours on a
multi-CPU machine now takes fifteen minutes with many fewer resources used.

Make Your Queries Smart

Frequently customers ask how to tell how many rows will be coming back in a given result set.
The only way to find out without fetching all the rows is by issuing the same query using the
count keyword:

SELECT count (*) from nyTabl e, yourTable where ...

This returns the number of rows the original query would have returned, assuming no change
in relevant data. The actual count may change when the query is issued if other DBMS activity
has occurred that alters the relevant data.

Be aware, however, that this is a resource-intensive operation. Depending on the original
guery, the DBMS may perform nearly as much work to count the rows as it will to send them.

Make your application queries as specific as possible about what data it actually wants. For
example, tailor your application to select into temporary tables, returning only the count, and
then sending a refined second query to return only a subset of the rows in the temporary table.

Learning to select only the data you really want at the client is crucial. Some applications
ported from ISAM (a pre-relational database architecture) will unnecessarily send a query
selecting all the rows in a table when only the first few rows are required. Some applications
use a 'sort by' clause to get the rows they want to come back first. Database queries like this
cause unnecessary degradation of performance.

Proper use of SQL can avoid these performance problems. For example, if you only want data
about the top three earners on the payroll, the proper way to make this query is with a
correlated subquery. Table 3-1 shows the entire table returned by the SQL statement

select * from payroll

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE’

Chapter 3
Designing Your Application for Best Performance

Table 3-1 Full Results Returned

Name Salary
Joe 10
Mike 20
Sam 30
Tom 40
Jan 50
Ann 60
Sue 70
Hal 80
May 80

A correlated subquery

sel ect p.name, p.salary frompayroll p
where 3 >= (select count(*) from payroll pp
where pp.salary >= p.salary);

returns a much smaller result, shown in Table 3-2.

Table 3-2 Results from Subquery
]

Name Salary
Sue 70
Hal 80
May 80

This query returns only three rows, with the name and salary of the top three earners. It scans
through the payroll table, and for every row, it goes through the whole payroll table again in an
inner loop to see how many salaries are higher than the current row of the outer scan. This
may look complicated, but DBMSs are designed to use SQL efficiently for this type of
operation.

Make Transactions Single-batch

Whenever possible, collect a set of data operations and submit an update transaction in one
statement in the form:

BEG N TRANSACTI ON
UPDATE TABLEL. .
I NSERT | NTO TABLE2
DELETE TABLE3
COWM T

This approach results in better performance than using separate statements and commits.
Even with conditional logic and temporary tables in the batch, it is preferable because the
DBMS obtains all the locks necessary on the various rows and tables, and uses and releases
them in one step. Using separate statements and commits results in many more client-to-
DBMS transmissions and holds the locks in the DBMS for much longer. These locks will block

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE

Chapter 3
Designing Your Application for Best Performance

out other clients from accessing this data, and, depending on whether different updates can
alter tables in different orders, may cause deadlocks.

Caution: If any individual statement in the preceding transaction fails, due, for instance, to
violating a unique key constraint, you should put in conditional SQL logic to detect statement
failure and to roll back the transaction rather than commit. If, in the preceding example, the
insert failed, most DBMSs return an error message about the failed insert, but behave as if you
got the message between the second and third statement, and decided to commit anyway!
Microsoft SQL Server offers a connection option enabled by executing the SQL set

xact _abort on, which automatically rolls back the transaction if any statement fails.

Never Have a DBMS Transaction Span User Input

If an application sends a' BEG N TRAN and some SQL that locks rows or tables for an update,
do not write your application so that it must wait on the user to press a key before committing
the transaction. That user may go to lunch first and lock up a whole DBMS table until the user
returns.

If you require user input to form or complete a transaction, use optimistic locking. Briefly,
optimistic locking employs timestamps and triggers in queries and updates. Queries select
data with timestamp values and prepare a transaction based on that data, without locking the
data in a transaction.

When an update transaction is finally defined by the user input, it is sent as a single
submission that includes time-stamped safeguards to make sure the data is the same as
originally fetched. A successful transaction automatically updates the relevant timestamps for
changed data. If an interceding update from another client has altered data on which the
current transaction is based, the timestamps change, and the current transaction is rejected.
Most of the time, no relevant data has been changed so transactions usually succeed. When a
transaction fails, the application can fetch the updated data again to present to the user to
reform the transaction if desired.

Use In-place Updates

Changing a data row in place is much faster than moving a row, which may be required if the
update requires more space than the table design can accommodate. If you design your rows
to have the space they need initially, updates will be faster, although the table may require
more disk space. Because disk space is cheap, using a little more of it can be a worthwhile
investment to improve performance.

Keep Operational Data Sets Small

Some applications store operational data in the same table as historical data. Over time and
with accumulation of this historical data, all operational queries have to read through lots of
useless (on a day-to-day basis) data to get to the more current data. Move non-current data to
other tables and do joins to these tables for the rarer historical queries. If this can't be done,
index and cluster your table so that the most frequently used data is logically and physically
localized.

Use Pipelining and Parallelism

DBMSs are designed to work best when very busy with lots of different things to do. The worst
way to use a DBMS is as dumb file storage for one big single-threaded application. If you can
design your application and data to support lots of parallel processes working on easily
distinguished subsets of the work, your application will be much faster. If there are multiple

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE Chapter 3
Designing Your Application for Best Performance

steps to processing, try to design your application so that subsequent steps can start working
on the portion of data that any prior process has finished, instead of having to wait until the
prior process is complete. This may not always be possible, but you can dramatically improve
performance by designing your program with this in mind.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 5

Using WebLogic-branded DataDirect Drivers

Learn about the WebLogic-branded DataDirect drivers that are included in the WebLogic
Server distribution.

Using DataDirect Documentation

Oracle provides WebLogic-branded versions of DataDirect drivers for DB2, Informix, MS SQL
Server, and Sybase. Learn how WebLogic-branded DataDirect drivers are configured and used
in a WebLogic Server environment.

For detailed information on these drivers, see Progress DataDirect Connect Series for JDBC
Documentation. and Progress DataDirect for IDBC Drivers Reference at https://
docs.progress.com/bundle/datadirect-documentation-archive/page/DataDirect-Connectors-for-
JDBC-Documentation-Archive.html. You must make the following adaptations where
appropriate when using DataDirect documentation:

* URLs: substitute "weblogic" for "datadirect”

* Install directory: the fully qualified installation directory for WebLogic-branded DataDirect
drivers is ORACLE_HOME\ or acl e_common\ nodul es\ dat adi r ect .

JDBC Specification Compliance

WebLogic-branded Data Direct drivers are compliant with the JDBC 4.0 specification.

@® Note

When comparing WebLogic Server behavior when using drivers from different
vendors, it is important to remember that even though the drivers are JDBC
specification compliant, a vendor may interpret the specification differently or provide
different implementations for a given situation.

For example: When using the WebLogic-branded SQL Server driver, if you enter a
negative value (-100) into a TI NYI NT column where the schema defines the range as 0
to 256, the driver throws an exception, whereas the Microsoft SQL Server driver
ignores the minus sign.

Installation

Learn about the installation of DataDirect drivers with WebLogic Server.

WebLogic-branded DataDirect drivers are installed with WebLogic Server in the
ORACLE_HOME\ or acl e_conmon\ nodul es\ dat adi r ect folder, where ORACLE_HOME is the
directory in which you installed WebLogic Server. Driver jar files are included in the manifest
classpath in webl ogi c. j ar, so the drivers are automatically added to your classpath on the
server.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 4

ORACLE’

Chapter 4
Supported Drivers and Databases

@® Note

WebLogic-branded DataDirect drivers are installed by default when you perform a
complete installation of WebLogic Server. If you choose a custom installation, ensure
that the WebLogic JDBC Drivers option is selected (checked). If this option is
unchecked, the drivers are not installed.

WebLogic-branded DataDirect drivers are not included in the manifest classpath of the
WebLogic client jar files (for example: Wl cl i ent . j ar). To use the drivers with a WebLogic
client, you must copy the following files to the client and add them to the classpath on the
client:

e For DB2:w db2.j ar

e For Informix: W i nform x.j ar

e For MS SQL Server: W sql server.jar
e For Sybase: w sybase. j ar

Supported Drivers and Databases

Learn about supported drivers and databases.

For information on driver and database support, see htt p: / / www. or acl e. cont t echnet wor k/
m ddl ewar e/ i as/ downl oads/ f usi on-certification.htn .

Connecting Through WebLogic JDBC Data Sources

To create a physical database connection in the data source, create a JDBC data source in
your WebLogic Server configuration and select the JDBC driver.

Applications can then look up the data source on the JNDI tree and request a connection.
See the following related information:

* For information about JDBC and data sources in WebLogic Server, see Configuring JDBC
Data Sources in Administering JDBC Data Sources for Oracle WebLogic Server.

* For information about requesting a connection from a data source, see Obtaining a Client
Connection Using a DataSource.

Developing Your Own JDBC Code

You can develop JDBC code that uses the WebLogic-branded DataDirect drivers as long as
the code is included in the WebLogic Server CLASSPATH.

Specifying Connection Properties

You specify connection properties for connections in a data source using the WebLogic
Remote Console, command-line interface, or JIMX API. Connection properties vary by DBMS.

For the list of the connection properties specific to each of the WebLogic-branded DataDirect
drivers, see the Connection Properties section for your driver in Progress DataDirect for
JDBC User's Guide.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 4

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://documentation.progress.com/output/DataDirect/jdbcarchive/jdbcconnecthelp510/wwhelp/wwhimpl/js/html/wwhelp.htm#href=userguide/jdbconlinecopyright.html
https://documentation.progress.com/output/DataDirect/jdbcarchive/jdbcconnecthelp510/wwhelp/wwhimpl/js/html/wwhelp.htm#href=userguide/jdbconlinecopyright.html

ORACLE Chapter 4
Using IP Addresses

Using IP Addresses

WebLogic-branded DataDirect drivers support Internet Protocol (IP) addresses in IPv4 and
IPv6 format.

See Progress DataDirect for IDBC User's Guide Release 5.1 for more details. In a WebLogic
environment, simply convert the j dbc: dat adi rect portion of the URL to j dbc: webl ogi c. For
example, the following connection URL specifies the server using IPv4 format:

j dbc: webl ogi c: db2://123. 456. 78. 90: 50000; Dat abaseNane=j dbc; User =t est ;
Passwor d=secr et

Required Permissions for the Java Security Manager

Using WebLogic-branded DataDirect drivers with the Java Security Manager enabled requires
certain permissions to be set in the security policy file of the domain. WebLogic Server
provides a sample security policy file that you can edit and use.

The file is located at ORACLE_HOVE\ W server\server\lib. The webl ogi c. pol i cy file includes
all necessary permissions for the drivers.

If you use the webl ogi c. pol i cy file without changes, you may not need to grant any further
permissions. If you use another security policy file or if you use driver features that require
additional permissions, see Progress DataDirect for IDBC User's Guide Release 5.1 for
details. Use ORACLE_HOME\ or acl e_comon\ nodul es\ dat adi rect astheinstall_dir where
ORACLE_HOME is the directory in which you installed WebLogic Server.

For more information about using the Java Security Manager with WebLogic Server, see Using
Java Security to Protect WebLogic Resources in Developing Applications with the WebLogic
Security Service.

For MS SQLServer Users

Learn about configuring MS SQLServer for use with DataDirect MS SQL Server driver.

Installing MS SQLServer XA DLLs

WebLogic Server provides the following XA dlls for MS SQL Server:
e sqljdbc.dll: for 32-bit Windows
e 64sqljdbc.dll: for 64-bit Windows
e X64sqljdbc. dl|: for the X64 processors
To install, do the following:
1. cd to the ORACLE _HOME\ or acl e_conmon\ modul es\ dat adi r ect directory
2. For:
e 32-bit Windows systems, install the sql j dbc. dI | file.

e 64-bit Windows systems, copy the 64sql j dbc. dl | file, rename as sql j dbc. dl |, and
then install the sql j dbc. dI | file.

e X64 processors, copy the X64sql j dbc. dl | file, rename as sql j dbc. dl |, and then
install the sql j dbc. dI | file.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 4

https://documentation.progress.com/output/DataDirect/jdbcarchive/jdbcconnecthelp510/wwhelp/wwhimpl/js/html/wwhelp.htm#href=userguide/jdbconlinecopyright.html
https://documentation.progress.com/output/DataDirect/jdbcarchive/jdbcconnecthelp510/wwhelp/wwhimpl/js/html/wwhelp.htm#href=userguide/jdbconlinecopyright.html

ORACLE Chapter 4
For MS SQLServer Users

Using instjdbc.sgl with MS SQLServer

There is a known error in some versions of the DataDirect i nstj dbc. sql script that installs
stored procedures into MS SQLServer versions 2008 and newer. The workaround is to replace
all instances of dunp tran master with no_|l ogintheinstjdbc.sql scriptwith DBCC

SHRI NKFI LE(mast | og, 1).

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 4

Using WebLogic Wrapper Drivers

Learn how to use deprecated WebLogic wrapper drivers with WebLogic Server.

@® Note

Oracle recommends that you use DataSource objects to get database connections in
new applications. DataSource objects, along with the JNDI tree, provide access to
pooled connections in a data source for database connectivity. The WebLogic wrapper
drivers are deprecated. For existing or legacy applications that use the JDBC 1.x API,
you can use the WebLogic wrapper drivers to get database connectivity.

This chapter includes the following sections:

Using the WebLogic RMI Driver (Deprecated)

An RMI driver client makes connections to the DBMS by looking up the DataSource object.
This lookup is accomplished by using a Java Naming and Directory Service (JNDI) lookup, or
by directly calling WebLogic Server which performs the JNDI lookup on behalf of the client.

@® Note

RMI driver client functionality is deprecated and will be removed in future release.
None of the features exposed in W.Connect i on and W.Dat aSour ce are supported by
RMI driver clients.

The RMI driver replaces the functionality of both the WebLogic t3 driver (deprecated) and the
Pool driver (deprecated), and uses the Java standard Remote Method Invocation (RMI) to
connect to WebLogic Server rather than the proprietary t3 protocol.

Because the details of the RMI implementation are taken care of automatically by the driver, a
knowledge of RMI is not required to use the WebLogic JDBC/RMI driver.

RMI Driver Client Interoperability

Interoperability with earlier WebLogic Server releases is limited. Participants (client/server or
servers-to-server) must be from the same major release. Early 10.x clients can be updated to
interoperate with later point and patch set releases by adding the ucp. j ar to the CLASSPATH.

Security Considerations for WebLogic RMI Drivers

Applications that use JDBC over RMI allow unauthorized RMI access to a DataSource object,
which is a potential security vulnerability as it can provide a client with uncontrolled access to a

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 8

ORACLE Chapter 5
Using the WebLogic RMI Driver (Deprecated)

database. Oracle recommends replacing JDBC over RMI with local WebLogic data sources in
these environments.

You can control JDBC over RMI communications by setting the RMI JDBC Security parameter
in the DataSource object at the server level.

See Enable RMI JDBC Security in Oracle WebLogic Remote Console Online Help.
The following are the valid values of the parameter ranging from least secure to most secure:

» Compatibility - Allows uncontrolled access to DataSource objects for all incoming JDBC
application calls over RMI. This setting should only be used when strong network security
is in place.

e Secure - Rejects all incoming application JDBC calls over RMI by remote clients and
servers. Internal interserver JDBC calls over RMI operations are allowed for the Logging
Last Resource, Emulate Two-Phase Commit and One-Phase Commit Global Transactions
Protocol options. The Secure option requires that all the servers are configured with an
SSL listen port. If not, all operations fail with an exception.

@® Note

For domains created with WebLogic Server 14.1.2.0.0 or later, the RMI JDBC
Security value defaults to Secure. However, for domains created prior to
WebLogic Server 14.1.2.0.0, Compatibility is the default value.

» Disabled — Disables all JDBC calls over RMI, including the internal RMI operations for
Logging Last Resource, Emulate Two-PhaseCommit and One-Phase Commit Global
Transactions Protocol options. This setting applies to domains created with WebLogic
Server 14.1.2.0.0 or later.

@® Note

In WebLogic Server 14.1.1.0.0 and earlier, you can completely disable RMI access
to DataSource objects by setting the webl ogi c. j dbc. r enot eEnabl ed (deprecated)
system property to f al se.

Setting Up WebLogic Server to Use the WebLogic RMI Driver

The RMI driver is accessible through DataSource objects, which are created in the WebLogic
Remote Console. You should create DataSource objects in your WebLogic Server
configuration before you use the RMI driver in your applications.

Sample Client Code for Using the RMI Driver

The following code samples show how to use the RMI driver to get and use a database
connection from a WebLogic Server data source.

Import the Required Packages

Before you can use the RMI driver to get and use a database connection, you must import the
following packages:

j avax. sql . Dat aSour ce
java.sql . *

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 8

ORACLE Chapter 5
Using the WebLogic RMI Driver (Deprecated)

java.util.*
j avax. nam ng. *

Get the Database Connection

The WebLogic JDBC/RMI client obtains its connection to a DBMS from the DataSource object
that you defined in the WebLogic Remote Console. There are two ways the client can obtain a
DataSource object:

e Using a JNDI lookup. This is the preferred and most direct procedure.

e Passing the DataSource name to the RMI driver with the Dri ver. connect () method. In this
case, WebLogic Server performs the JNDI look up on behalf of the client.

Using a JNDI Lookup to Obtain the Connection

To access the WebLogic RMI driver using JNDI, obtain a context from the JNDI tree by looking
up the name of your DataSource object. For example, to access a DataSource called
"myDat aSour ce" that is defined in the WebLogic Remote Console:

Context ctx = null;
Hasht abl e ht = new Hashtabl e();
ht . put (Cont ext . | NI TI AL_CONTEXT_FACTORY,
"webl ogi c.jndi.W.Initial ContextFactory");
ht . put (Cont ext . PROVI DER_URL,
"t3://hostnane: port");
try {
ctx = new Initial Context(ht);
j avax. sql . Dat aSour ce ds
= (javax.sql . DataSource) ctx.lookup ("myDataSource");
java. sql . Connection conn = ds. get Connection();
/1 You can now use the conn object to create
/1l a Statenent object to execute
/1 SQL statenents and process result sets:
Statement stnt = conn.createStatenent();
stnt.execute("select * fromsoneTable");
ResultSet rs = stnt.getResultSet();
/1 Do not forget to close the statenent and connection objects
/1 when you are finished:
}
catch (Exception e) {
/1 a failure occurred
| og nessage;
}
} finally {
try {
ctx. close();
} catch (Exception e) {
| og nessage; }
try {
if (rs!=null) rs.close();
} catch (Exception e) {
| og nessage; }
try {
if (stnmt !'=null) stnt.close();
} catch (Exception e) {
| og nessage; }
try {
if (conn !'=null) conn.close();
} catch (Exception e) {

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 8

ORACLE

Chapter 5
Using the WebLogic RMI Driver (Deprecated)

| og message; }

}

(Where host nane is the name of the machine running your WebLogic Server and port is the
port number where that machine is listening for connection requests.)

In this example a Hashtable object is used to pass the parameters required for the JNDI
lookup. There are other ways to perform a JNDI lookup. See WebLogic Server JNDI in
Developing JNDI Applications for Oracle WebLogic Server.

Notice that the JNDI lookup is wrapped in a try/ cat ch block in order to catch a failed look up
and also that the context is closed in a final | y block.

@® Note

It may be possible to access a vendor-specific interface. This is done without RMI by
casting to the vendor interface. For example:

Oracl eConnection oc = (Oracl eConnection) cconn;

This may not work if the vendor interface is not Seri al i zabl e. When a server is acting
as a client, set net wor kGl assLoadi ngEnabl ed to t r ue on the server so that the
generated RMI class is available (the default is t r ue for stand-alone clients).

Using Only the WebLogic RMI Driver to Obtain a Database Connection

Instead of looking up a DataSource object to get a database connection, you can access
WebLogic Server using the Dri ver. connect () method, in which case the JDBC/RMI driver
performs the JNDI lookup. To access the WebLogic Server, pass the parameters defining the
URL of your WebLogic Server and the name of the DataSource object to the

Driver. connect () method. For example, to access a DataSource called "myDataSource" as
defined in the WebLogic Remote Console:

java.sql.Driver nyDriver = (java.sql.Driver)
C ass. for Name("webl ogi c.jdbc.rni.Driver").new nstance();

String url = "jdbc:weblogic:rm";
java.util.Properties props = new java.util.Properties();
props. put ("webl ogi c. server.url", "t3://hostnane:port");

props. put ("webl ogi c. j dbc. dat asource", "nyDataSource");
java. sql . Connection conn = nyDriver.connect(url, props);

(Where host nane is the name of the machine running your WebLogic Server and port is the
port number where that machine is listening for connection requests.)

You can also define the following properties which will be used to set the JNDI user
information:

* webl ogi c. user —specifies a username

e webl ogi c. credenti al —specifies the password for the webl ogi c. user.

Row Caching with the WebLogic RMI Driver

Row caching is a WebLogic Server JDBC feature that improves the performance of your
application. Normally, when a client calls Resul t Set . next (), WebLogic Server fetches a single
row from the DBMS and transmits it to the client JVM. With row caching enabled, a single call

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 8

ORACLE

Chapter 5
Using the WebLogic RMI Driver (Deprecated)

to Resul t Set . next () retrieves multiple DBMS rows, and caches them in client memory. By
reducing the number of trips across the wire to retrieve data, row caching improves
performance.

@® Note

WebLogic Server will not perform row caching when the client and WebLogic Server
are in the same JVM.

You can enable and disable row caching and set the number of rows fetched per

Resul t Set . next () call with the data source attributes Row Prefetch Enabled and Row
Prefetch Size, respectively. You set data source attributes via the WebLogic Remote Console.
To enable row caching and to set the row prefetch size attribute for a data source, follow these

steps:
1. If you have not already done so, in the Change Center of the WebLogic Remote Console,
click Lock & Edit.
2. Inthe Domain Structure tree, expand Services > JDBC, then select Data Sources.
3. Onthe Summary of Data Sources page, click the data source name.
4. Select the Configuration: General tab and then do the following:.
a. Select the Row Prefetch Enabled check box.
b. In Row Prefetch Size, type the number of rows you want to cache for each
Resul t Set. next () call.
5. Click Save.
6. To activate these changes, in the Change Center of the WebLogic Remote Console, click

Activate Changes.

For more information, see Data Sources in Oracle WebLogic Remote Console Online Help.

Important Limitations for Row Caching with the WebLogic RMI Driver

Keep the following limitations in mind if you intend to implement row caching with the RMI
driver:

WebLogic Server only performs row caching if the result set type is both
TYPE_FORWARD_ONLY and CONCUR_READ_ONLY.

Certain data types in a result set may disable caching for that result set. These include the
following:

— LONGVARCHAR/LONGVARBINARY
— NULL

— BLOB/CLOB

— ARRAY

- REF

— STRUCT

— JAVA_OBJECT

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 8

ORACLE Chapter 5
Using the WebLogic JTS Driver (Deprecated)

« Certain ResultSet methods are not supported if row caching is enabled and active for that
result set. Most pertain to streaming data, scrollable result sets or data types not supported
for row caching. These include the following:

— getAsciiStream)

— getUni codeStrean)
— getBinaryStrean)

— getCharacterStrean)
— isBeforeLast()

— isAfterlast()

— isFirst()

— islLast()

- getRow()

— gethject (Map)

— getRef()

— getBlob()/getd ob()
— getArray()

— getDate()

— getTine()

— getTinmestanp()

Limitations When Using Global Transactions

Populating a RowSet in a global transaction may fail with Fetch Qut O Sequency exception.
For example:

1. When the RMI call returns, the global transaction is suspended automatically by the server
instance.

2. The JDBC driver invalidates the pending Resul t Set object to release the system
resources.

3. The client tries to read data from the invalidated Resul t Set .

4. AFetch Qut O Sequency exception is thrown if that data has not been prefetched. Since
the number of rows prefetched is vendor specific, you may or may not encounter this
issue, especially when working with one or two rows.

If you encounter this exception, make sure to populate the RowSet on the server side and then
serialize it back to the client.

Using the WebLogic JTS Driver (Deprecated)

The Java Transaction Services or JTS driver is a server-side JDBC driver that provides access
to both data sources and global transactions from applications running in WebLogic
Server.Connections to a database are made from a data source and use a JDBC driver in
WebLogic Server to connect to the Database Management System (DBMS) on behalf of your
application.

Your application uses the JTS driver to access a connection from the data source.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 8

ORACLE

Chapter 5
Using the WebLogic JTS Driver (Deprecated)

WebLogic Server also uses the JTS driver internally when a connection from a data source
that uses a non-XA JDBC driver participates in a global transaction (Logging Last Resource
and Emulate Two-Phase Commit). This behavior enables a non-XA resource to emulate XA
and participate in a two-phase commit transaction. See JDBC Data Source Transaction
Options in Administering JDBC Data Sources for Oracle WebLogic Server.

® Note

The WebLogic Server JTS driver only supports T3 protocol when participating
connections that use Logging Last Resource (LLR).

Once a transaction begins, all database operations in an execute thread that get their
connection from the same data source share the same connection from that data source.
These operations can be made through services such as Jakarta Enterprise Beans (EJBs) or
JMS services, or by directly sending SQL statements using standard JDBC calls. All of these
operations will, by default, share the same connection and participate in the same transaction.
When the transaction is committed or rolled back, the connection is returned to the pool.

Although Java clients may not register the JTS driver themselves, they may participate in
transactions via Remote Method Invocation (RMI). You can begin a transaction in a thread on a
client and then have the client call a remote RMI object. The database operations executed by
the remote object become part of the transaction that was begun on the client. When the
remote object is returned back to the calling client, you can then commit or roll back the
transaction. The database operations executed by the remote objects must all use the same
data source to be part of the same transaction.

For the JTS driver and your application to participate in a global transaction, the application
must call conn = nyDriver. connect ("j dbc: webl ogic:jts", props); within a global
transaction. After the transaction completes (gets committed or rolled back), WebLogic Server
puts the connection back in the data source. If you want to use a connection for another global
transaction, the application must call conn = nyDri ver. connect ("j dbc: webl ogi c:jts",
props); again within a new global transaction.

Sample Client Code for Using the JTS Driver

To use the JTS driver, you must first use the WebLogic Remote Console to create a data
source in WebLogic Server.

This explanation demonstrates creating and using a JTS transaction from a server-side
application and uses a data source named "nyDat aSour ce."

1. Import the following classes:

i mport jakarta.transaction. UserTransaction;
import java.sql.*;

i mport javax.nam ng.*;

import java.util.*;

i mport webl ogic.jndi.*;

2. Establish the transaction by using the User Transact i on class. You can look up this class
on the JNDI tree. The User Transact i on class controls the transaction on the current
execute thread. Note that this class does not represent the transaction itself. The actual
context for the transaction is associated with the current execute thread.

Context ctx = null;
Hasht abl e env = new Hashtabl e();

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 8

ORACLE

Chapter 5
Using the WebLogic JTS Driver (Deprecated)

env. put (Cont ext . | NI TI AL_CONTEXT_FACTORY,
"webl ogi c.jndi.W.Initial ContextFactory");

/1 Paraneters for the WeblLogic Server.

/] Substitute the correct hostname, port nunber

/'l user name, and password for your environment:

env. put (Cont ext. PROVIDER _URL, "t3://local host:7001");
env. put (Cont ext . SECURI TY_PRI NCI PAL, "Fred");

env. put (Cont ext . SECURI TY_CREDENTI ALS, "secret");

ctx = new Initial Context(env);

User Transaction tx = (UserTransaction)
ctx. | ookup("javax.transaction. User Transaction");

Start a transaction on the current thread:

/1 Start the global transaction before getting a connection
tx. begin();

Load the JTS driver:

Driver nyDriver = (Driver)
O ass. forNanme("webl ogic.jdbc.jts. Driver").new nstance();

Get a connection from the data source:

Properties props = new Properties();
props. put ("connecti onPool I D', "nyDat aSource");

conn = nyDriver.connect("jdbc: weblogic:jts", props);

Execute your database operations. These operations may be made by any service that
uses a database connection, including EJB, JMS, and standard JDBC statements. These
operations must use the JTS driver to access the same data source as the transaction
begun in step 3 in order to participate in that transaction.

If the additional database operations using the JTS driver use a different data source than
the one specified in step 5, an exception will be thrown when you try to commit or roll back
the transaction.

Close your connection objects. Note that closing the connections does not commit the
transaction nor return the connection to the pool:

conn. cl ose();

Complete the transaction by either committing the transaction or rolling it back. In the case
of a commit, the JTS driver commits all the transactions on all connection objects in the
current thread and returns the connection to the pool.

tx.commit();
/1 or:

tx.rol | back();

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 8

Using API Extensions in JDBC Drivers

Learn how to configure and use third-party JDBC drivers, including using API extensions and
batch processing, with Oracle Thin Drivers.

Using API Extensions to JDBC Interfaces

WebLogic Server has implemented new interfaces for Oracle JDBC Types. Learn about the
new interfaces and how they map to the deprecated Oracle concrete classes.

To use the extension methods exposed in the JDBC driver, you must include these steps in
your application code:

* Import the driver interfaces from the JDBC driver used to create connections in the data
source.

e Get a connection from the data source.
e Cast the connection object as the vendor's connection interface.
* Use the API extensions as described in the vendor's documentation.

e Wrap the JNDI lookup in atry/ cat ch block in order to catch a failed look up and ensure
the context is closed in a fi nal |'y block.

The following sections provide details on using APl extensions and supporting code examples.
For information about specific extension methods for a particular JDBC driver, refer to the
documentation from the JDBC driver vendor.

Sample Code for Accessing API Extensions to JDBC Interfaces

The following code examples use extension methods available in the Oracle Thin driver to
illustrate how to use API extensions to JDBC. You can adapt these examples to fit methods
exposed in your JDBC driver.

Import Packages to Access API Extensions

Import the interfaces from the JDBC driver used to create the connection in the data source.
This example uses interfaces from the Oracle Thin Driver.

i mport java.sql.*;

import java.util.*;

i nport javax.nam ng. Cont ext;

inport javax.nam ng.!nitial Context;

inport javax.sql.DataSource;

i mport oracle.jdbc.*;

/1 lmport driver interfaces. The driver nust be the sane driver
/1 used to create the database connection in the data source.

Get a Connection

Establish the database connection using JNDI, Dat aSour ce, and data source objects.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 13

ORACLE’

Chapter 6
Using API Extensions for Oracle JDBC Types

/] Get a valid DataSource object for a data source.

/1 Here we assune that getDataSource() takes

/I care of those details.

javax. sql . Dat aSource ds = get Dat aSource(args);

/1 get a java.sql.Connection object fromthe DataSource
java. sql . Connection conn = ds. get Connection();

Cast the Connection as a Vendor Connection

Now that you have the connection, you can cast it as a vendor connection. This example uses
the Or acl eConnecti on interface from the Oracle Thin Driver.

Oracl eConnection = (oracle.jdbc. Oracl eConnection)conn;

Use API Extensions

The following code fragment shows how to use the Oracle Row Pr ef et ch method available
from the Oracle Thin driver.

Example 6-1 Using an API Extension

/1 Cast to OracleConnection and retrieve the
/1 default row prefetch value for this connection.
int default_prefetch =

((oracle.jdbc. Oracl eConnection)conn). get Def aul t RowPr ef et ch() ;
/1 Cast to OracleStatement and set the row prefetch
/1 value for this statement. Note that this
/'l prefetch value applies to the connection between
/1 WebLogi ¢ Server and the database.

((oracle.jdbc. Oracl eStatenment)stnt).set RowPref et ch(20);

/1 Performa normal sgl query and process the results...
String query = "select enpno, ename from enp";
java.sql .ResultSet rs = stnt.executeQuery(query);
while(rs.next()) {

java. mat h. Bi gDeci mal enpno = rs. get Bi gDeci mal (1);

String ename = rs.getString(2);

Systemout. println(enpno + "\t" + enane);

rs.close();
stnt.close();
conn. cl ose();
conn = null;

1

Using API Extensions for Oracle JDBC Types

WebLogic Server has implemented new interfaces for Oracle JDBC Types. Learn about the
new interfaces and how they map to the deprecated Oracle concrete classes.

When Oracle implemented JDBC, concrete classes were used instead of using interfaces for
Oracle JDBC Types. There are many of drawbacks in using concrete classes and in the
11.2.0.3 driver there are new interfaces corresponding to the Oracle types. The concrete
classes now implement a public interface from the package or acl e. j dbc. Programmers should
use methods exposed in j ava. sql whenever possible and for Oracle extension methods use
oracle.jdbc.

In the mean time, WebLogic Server implemented corresponding interfaces that could be used
to work around the limitations of the concrete classes. These are now deprecated and should
be replaced with the corresponding or acl e. j dbc interfaces.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 13

ORACLE Chapter 6
Using API Extensions for Oracle JDBC Types

In Database version 11.2.0.3 the following types have interfaces.

Old Oracle types Deprecated WLS Interface New interfaces

oracle.sql.ARRAY weblogic.jdbc.vendor.oracle.Oracl oracle.jdbc.OracleArray
eArray

oracle.sql.STRUCT weblogic.jdbc.vendor.oracle.Oracl oracle.jdbc.OracleStruct
eStruct

oracle.sql.CLOB weblogic.jdbc.vendor.oracle.Oracl oracle.jdbc.OracleClob
eThinClob

oracle.sql.BLOB weblogic.jdbc.vendor.oracle.Oracl oracle.jdbc.OracleBlob
eThinBlob

oracle.sql.REF weblogic.jdbc.vendor.oracle.Oracl oracle.jdbc.OracleRef
eRef

Changing the code to use new interfaces is not difficult, but should be handled with care. The
below examples use or acl e. sgl . ARRAY and similar changes apply to other types as well. A list
of suggested changes is mentioned below:

e I nport: Modify import statements to use the new interfaces (or acl e. j dbc) instead of old
interfaces (or acl e. sql or webl ogi c. j dbc. vendor. or acl e).

« Decl aration: Use standard Java interfaces for declaration whenever possible. If there is a
need to use Oracle extension, use the new Oracle interfaces under or acl e. j dbc.

* Methods: Use standard Java interfaces whenever possible:

— (Oracle Types): Use methods in standard Java interfaces whenever possible. If
required use methods from Oracle interfaces under or acl e. j dbc.

— (Defines): Refrain from using Oracle specific methods such as get ARRAY; instead use
standard Java methods such as get Array or get Obj ect for those that do have
standard Java interfaces.

— (Binds): Refrain from using Oracle specific methods such as set ARRAY; instead use
standard Java methods such as set Array or set Obj ect for the ones that do have
standard Java interfaces.

Replacing import statements can be done by a script that uses fi nd and sed. For example:

find . -name "*.java" -exec egrep ... > files.list

for f in “cat files.list™; do
cat $f |sed 's@inport oracle\.sql\. ARRAY@racl e\.jdbc. Oracl eArray@' > /tnp/tenp.txt
mv /tnp/tenp. txt $f

done

Programmers should use factory methods on or acl e. j dbc. Oracl eConnect i on to create an
instance of the types. For example:

int[] intArray = { 5 7, 9};

oracle.sql . ArrayDescriptor aDescriptor = new oracle.sql.ArrayDescriptor("SCOIT. TYPEL",
connection);

oracl e.sql . ARRAY array = new oracl e. sql . ARRAY(aDescriptor, connection, intArray);

should be changed to:

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 13

ORACLE’

Chapter 6
Using API Extensions for Oracle JDBC Types

int[] intArray = { 5, 7, 9};
java.sql . Array array = connection. createQ acl eArray("SCOIT. TYPEL", intArray);

® Note

Oracle does not support anonymous array types and so does not support the standard
Connection. creat eArraydf method. Instead, use cr eat eOr acl eArray as shown in the
sample above.

There are some methods that are no longer available because:

e There is a way to accomplish the same end using standard or already public
methods.

e The method refers to a deprecated type.
e The method does not add significant value.

In these cases, the code needs to be modified to use standard API's.

Sample Code for Accessing Oracle Thin Driver Extensions to JDBC

Interfaces

The following code examples show how to access the interfaces for Oracle extensions,
including interfaces for:

* Arrays—See Programming with Arrays.

e Structs—See Programming with Structs.

» Refs—See Programming with Refs.

* Blobs and Clobs—See Programming with Large Obijects.

If you selected the option to install server examples with WebLogic Server, see the JDBC
examples for more code examples, see JDBC Samples and Tutorials.

@® Note

You can use Arrays, Structs, and Ref s in server-side applications only. You cannot
access them in remote clients using the deprecated JDBC over RMI interface.

Programming with Arrays

In your WebLogic Server server-side applications, you can materialize an Oracle Collection (a
SQ Array) in a result set or from a callable statement as a Java array.

To use an Array in WebLogic Server applications:
1. Import the required classes.

2. Get a connection and then create a statement for the connection.

3. Create the Array type, a table that uses that type, and create some rows in the table with
arrays.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 13

ORACLE Chapter 6
Using API Extensions for Oracle JDBC Types

4. Getthe Array using a result set or a callable statement.

5. Use the standard Java methods (when used as aj ava. sql . Array) or Oracle extension
methods (when cast as j ava. j dbc. O acl eArray) to work with the data.

The following sections provide more details for these actions:

Import Packages to Access Oracle Extensions

Import the SQ. and Or acl e interfaces used in this example.

inport java. math. Bi gDeci mal ;

i mport java.sql.*;

inport java.util.*;

i nport javax.nam ng. Cont ext;

inport javax.nam ng.lnitial Context;
i mport javax.sql . DataSource;

i mport oracle.jdbc.*;

Establish the Connection

Establish the database connection using JNDI and Dat aSour ce objects.

/] Get a valid DataSource object.

/1 Here we assune that getDataSource() takes

/I care of those details.

javax. sql . Dat aSource ds = get Dat aSource(args);

/1 get a java.sql.Connection object fromthe DataSource
java. sqgl . Connection conn = ds. get Connection();

Creating an Array in the Database

You must first create the array type and a table that uses the type. For example:

Statement stnt = conn.createStatenent();

stnt . execut e(" CREATE TYPE TEST_SCORES AS VARRAY(10)OF INT");

stnt . execut e(" CREATE TABLE STUDENTS (STUDENT [D I NT, NAME VARCHAR2(100), SCORES
TEST_SCORES) ") ;

The following example creates an array of up to 10 test scores to be associated with a student:

e Create a row with an Array. You can use a St at enent or create the Array using
Oracl eConnecti on. creat eOracl eArray for use in a Prepar edSt at ement .

@® Note

You cannot use Connecti on. creat eArrayOdd because Oracle does not support
anonymous array types

* Insert two rows. The first one uses a SQL statement. The second creates an Array and
binds it into a Pr epar edSt at enent .

stnt. execut e(" 1 NSERT | NTO STUDENTS VALUES 1,' John Doe', TEST SCORES(100, 99))");
PreparedSt at enent pstnt = conn. prepareSt at ement ("1 NSERT | NTO STUDENTS VALUES (?,?,?)");
pstnt.setint(1,2);

pstnt.setString(2,"Jane Doe");

int scores[] = {94, 95};

Array array = ((OracleConnection)conn).createQ acl eArray(" TEST_SCORES', scores);

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 13

ORACLE Chapter 6
Using API Extensions for Oracle JDBC Types

pstnt.setArray(3,array);
pstnt.execute();

Getting an Array

You can use the get Array() methods for a callable statement or a result set to get a Java
array. You can then use the array as a j ava. sql . array to use standard methods, or you can
cast the array as a oracl e. j dbc. Oracl eArray to use the Oracle extension methods for an
array.

The following example shows how to get a j ava. sgl . Array from a result set that contains an
Array. In the example, the query returns a result set that contains an object column—an Array
of test scores for a student.

ResultSet rs = null;

rs = stnt.executeQuery("SELECT * FROM STUDENTS");

while (rs.next()) {
Systemout. print("Nane="+rs.getString(2)+": ");
array = rs.getArray(3);
Bi gDeci mal scoresBD{] = (BigDecimal[])array.getArray();
OracleArray oracleArray = (Oracl eArray)rs. get Array(3);
scores = oracleArray.getintArray();

for (int i =0; i < scores.length; i++) {
Systemout.print(""+scores[i]+" ");
}
Systemout.println("");
}
@ Note

The default return type for an integer is a Bi gDeci mal . We can cast the Array to an
Oracl eArray and use the Oracle extension method get I nt Array() to get back integer
values.

Updating an Array in the Database

To update an Array in a database, use the following steps:

1. Create an array in the database, see Creating an Array in the Database.

2. Update the array in the database using the set Array() method for a prepared statement
or a callable statement. For example:

String sql Update = "UPDATE STUDENTS SET SCORES = ? WHERE STUDENT_ID = ?";
int newscores[] = {94, 95, 96};

pstnt = conn. prepareSt at enent (sql Update) ;

array = ((Oracl eConnection)conn).createQO acl eArray(" TEST_SCORES', newscores);
pstnt.setArray(1, array);

pstnt.setlnt(2, 1);

pstnt . execut eUpdat e();

Using Oracle Array Extension Methods

To use the Oracle Thin driver extension methods for an Arr ay, you must first cast the array as
anoracle.jdbc. Oracl eArray. You can then make calls to the Oracle Thin driver extension
methods for an Array in addition to the standard methods. For example:

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 13

ORACLE Chapter 6
Using API Extensions for Oracle JDBC Types

OracleArray oracleArray = (Oracl eArray)rs. get Array(3);
String sqltype = oracl eArray. get SQLTypeNane();

Programming with Structs

In your WebLogic Server applications, you can access and manipulate objects from an Oracle
database. When you retrieve objects from an Oracle database, you can cast them as either
custom Java objects oras a Struct (j ava. sql. Struct ororacle.jdbc. OracleStruct). A
Struct is aloosely typed data type for structured data that takes the place of custom classes in
your applications. The Struct interface in the JDBC API includes several methods for
manipulating the attribute values in a St ruct . Oracle extends the Struct interface with
additional methods.

To use a Struct in WebLogic Server applications:

Import the required classes. (See Import Packages to Access Oracle Extensions.)

Get a connection. (See Establish the Connection.)

1
2
3. Create the Struct object type, a table that uses the object, and rows with St ruct objects.
4

Cast the object as a Struct, either j ava. sql . Struct (to use standard methods) or
oracle.jdbc. Oracl eStruct (to use standard and Oracle extension methods).

5. Use the standard or Oracle Thin driver extension methods to work with the data.

The following sections provide more details for steps 3 through 5:

Creating Objects in the Database

A Struct is typically used to materialize database objects in your Java application in place of
custom Java classes that map to the database objects. You must first create the type and table
that uses the type. For example (this snippet is poorly designed and used for demonstration
purposes only):

conn = ds. get Connection();

Statement stnt = conn.createStatenent();

stnt. execut e(" CREATE TYPE EMP_STRUCT AS OBJECT (DEPT INT, NAME VARCHAR2(100))");
stnt. execut e(" CREATE TABLE EMP (1D I NT, EMPLOYEE EMP_STRUCT)");

To create a row with a Struct object, you can use a SQL Statement or create the Struct using
Connection. createStruct and use it in a Prepar edSt at enent .

Insert two rows. The first one row uses a SQL statement. The second creates a Struct and
binds it into a Pr epar edSt at enent .

stnt. execute("I NSERT | NTO EMP VALUES (1001, EMP_STRUCT(10, ' John Doe'))");
PreparedSt at enent pstnmt = conn. prepareSt at ement ("1 NSERT | NTO EMP VALUES (?,?)");
Qbject attrs[] = { new Integer(20), "Jane Doe"};

Struct struct = conn.createStruct("EMP_STRUCT", attrs);

pstnt.setint(1,1002);

pstnt.set Cbj ect (2, struct);

pstnt.execute();

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 13

ORACLE

Chapter 6
Using API Extensions for Oracle JDBC Types

@® Note

When creating a SQL structure using Connecti on. createStruct (), itis necessary to
unwrap all data types (C ob, Bl ob, Struct, Ref, Array, NCl ob, and SQLXM.). Once the
structure is created, there is no way to re-wrap them before returning the structure to
the application. The structure returned to the application has unwrapped values for the
data types.

Getting Struct Attributes

To get the value for an individual attribute in a Struct , you can use the standard JDBC API
methods get Attributes() and get Attributes(java.util.Dictionary map).

You can create a result set, get a St ruct from the result set, and then use the

get Attri but es() method. The method returns an array of ordered attributes. You can assign
the attributes from the St ruct (object in the database) to an object in the application, including
Java language types. You can then manipulate the attributes individually. For example:

conn = ds. get Connection();
stnt = conn.createStatenent();
rs = stnt.executeQuery("SELECT * FROM EMP WHERE | D = 1002");
/1 The second col urm uses an object data type.
if (rs.next()) {
struct = (Struct)rs. get Chject(2);
attrs = struct.getAttributes();
String name = attrs[1];

}

In the preceding example, the second column in the enp table uses an object data type. The
example shows how to assign the results from the get Obj ect method to a Java object that
contains an array of values, and then use individual values in the array as necessary. Note that
the type of the first integer attribute is actually a j ava. mat h. Bi gDeci nal .

You can also use the get Attributes(java.util.Di ctionary map) method to get the
attributes from a St ruct . When you use this method, you must provide a hash table to map the
data types in the Oracle object to Java language data types. For example:

java.util.Hashtable map = new java. util.Hashtable();
map. put ("I NT*, C ass.forName("java.lang.Integer"));
map. put (" VARCHAR2", O ass.forNane("java.lang.String"));
(bject[] attrs = struct.getAttributes(mp);

String name = (String)attrs[1];

In this example, the value is returned as an | nt eger instead of a Bi gDeci mal .

Using OracleStruct Extension Methods

To use the Oracle Thin driver extension methods for a St r uct , you must cast the

java. sqgl . Struct (or the original get Gbj ect result) as a oracl e.jdbc. Oracl eStruct. When
you casta Struct as an Oracl eStruct, you can use both the standard and extension methods.
For example:

Oracl eStruct oracleStruct =

(Oracl eStruct)rs. get Object(2);
String n = oracleStruct. get SQLTypeName(); // Standard
oracle.jdbc. Oracl eTypeMet aData otmd =

oracl eStruct. get Oracl eMet aDat a(); /1 Extension

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 13

ORACLE Chapter 6
Using API Extensions for Oracle JDBC Types

Using a Struct to Update Objects in the Database

To update an object in the database using a St ruct, you can use the set Chj ect method in a
prepared statement. For example:

pstnt = conn. prepar eSt at enent (" UPDATE EMP SET EMPLOYEE = ? WHERE I D =?");
attrs[0] = new Integer(30);

struct = conn.createStruct ("EMP_STRUCT", attrs);

pstnt.set Chject (1, struct);

pstnt.setint (2, 1002);

pstnt . execut eUpdat e();

Programming with Refs

A Ref is a logical pointer to a row object. When you retrieve a Ref , you are actually getting a
pointer to a value in another table (or recursively to the same table). The Ref target must be a
row in an object table. You can use a Ref to examine or update the object it refers to. You can
also change a Ref so that it points to a different object of the same object type or assign it a
null value.

To use a Ref in WebLogic Server applications, use the following steps:

Import the required classes. (See Import Packages to Access Oracle Extensions.)

Get a database connection. (See Establish the Connection.)

Create a Ref using a SQL Statement.

1.
2
3
4. Getthe Ref using a result set or a callable statement.
5. Use the extended Oracle methods by casting to Or acl eRef .
6

Update a Ref in the database.

The following sections describe steps 3 through 6 in greater detail:

Creating a Ref in the Database

You cannot create Ref objects in your JDBC application—you can only retrieve existing Ref
objects from the database. However, you can create a Ref in the database using statements or
prepared statements. For example:

conn = ds. get Connection();

stmt = conn.createStatenment();

stnt. execut e(" CREATE TYPE OB AS OBJECT (OBl INT, OB2 INT)");

stnt. execut e(" CREATE TABLE T1 OF OB");

stnt.execute("I NSERT I NTO T1 VALUES (5, 5)");

stnt. execut e(" CREATE TABLE T2 (COL REF OB)");

stnt. execute("I NSERT INTO T2 SELECT REF(P) FROM T1 P WHERE P. OB1=5");

The preceding example creates an object type (OB), a table (T1) of that object type, a table (T2)
with a Ref column that can point to instances of OB objects, and inserts a Ref into the Ref
column. The Ref points to a row in T1 where the value in the first column is 5.

Getting a Ref

To get a Ref in an application, you can use a query to create a result set and then use the
get Ref method to get the Ref from the result set. For example:

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 13

ORACLE

Chapter 6
Using API Extensions for Oracle JDBC Types

rs = stnt.executeQuery("SELECT REF (S) FROM T1 S WHERE S. OB1=5");
rs.next();

Ref ref = rs.getRef(1);

String name = ref.get BaseTypeNane();

The WHERE clause in the preceding example uses dot notation to specify the attribute in the
referenced object. After you get the Ref, you can use the Java APl method get BaseTypeNane.

Using WebLogic OracleRef Extension Methods

In order to use the Oracle Thin driver extension methods for Ref s, you must cast the Ref as an
O acl eRef . For example:

Oracl eTypeMet aData ndata = ((Oracl eRef)ref). getOracl eMetaData();

Updating Ref Values

To update a Ref , you change the location to which the Ref points with a Pr epar edSt at enent or
a Cal | abl eSt at ement .

To update the location to which a Ref points using a prepared statement, you can follow these
basic steps:

1. Geta Ref that points to the new location. You use this Ref to replace the value of another
Ref .

2. Create a string for the SQL command to replace the location of an existing Ref with the
value of the new Ref .

3. Create and execute a prepared statement.
For example:

/1Get the Ref

rs = stnt.executeQuery("SELECT REF (S) FROM T1 S WHERE S. OB1=5");
rs.next();

ref = rs.getRef(1);

/I Create and execute the prepared statenent.

String sql Update = "UPDATE T2 S2 SET COL = ? WHERE S2. COL. OB1 = 20";
pstnt = conn. prepareSt at enent (sql Update) ;

pstnt.setRef (1, ref);

pstnt . execut eUpdate();

To use a callable statement to update the location to which a REF points, you prepare the
stored procedure, set any | N parameters and register any OQUT parameters, and then execute
the statement. The stored procedure updates the REF value, which is actually a location. For
example:

rs = stnt.executeQuery("SELECT REF (S) FROM T1 S where S. OB1=5");
rs.next();

ref = rs.getRef(1);

/1 Prepare the stored procedure

String sql = "{call SP1 (?,?2)}";

Cal | abl eStat ement cstnt = conn. prepareCal | (sql);
/1 Set IN and register OUT params

cstnt.setRef (1, ref);

cstnt.regi sterCQutParanmeter(2, Types.STRUCT, "OB');
/] Execute

cstnt.execute();

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 13

ORACLE Chapter 6
Using API Extensions for Oracle JDBC Types

Programming with Large Objects

This section contains information, including sample code, on how to work with Blob and Clob
objects. For additional information, refer to Working with LOBs in Database SecureFiles and
Large Objects Developer's Guide.

Creating Blobs in the Database

The following code presumes the Connect i on is already established. It creates a table with a
Bl ob as the second column.

ResultSet rs = null;

Statement stnt = null;

java.sql.Blob blob = null;

java.io.lnputStreamis = null;

stnt = conn.createStatement();

stnt. execut e(" CREATE TABLE TESTBLOB (I D INT, COL2 BLOB)");

The following code inserts a Bl ob value using a string converted to a byte array as the data.

String insertsql2 = "I NSERT | NTO TESTBLOB VALUES (?,?)";

PreparedSt at enent pstnmt = conn. prepareSt at enent ("1 NSERT | NTO TESTBLOB VALUES (?,?)");
pstnt.setint(1, 1);

pstnt.setBytes(2, "initialvalue".getBytes());

pstnt . execut eUpdate();

Updating Blobs in the Database

The following code updates the Bl ob value.

rs = stnt.executeQuery("SELECT COL2 FROM TESTBLOB WHERE ID = 1 FOR UPDATE");
rs.next();

Bl ob blob = rs.getBlob(1);

bl ob. setBytes(1, "newdata".getBytes());

Note that you need the FOR UPDATE to be able to update the Bl ob value.

Using OracleBlob Extension Methods

The following code casts the Bl ob to an O acl eBl ob so that you can use an extension method.

rs = stnt.executeQuery("SELECT COL1, COL2 FROM TESTBLOB");

rs.next();

Bl ob bl ob = rs.getBlob(2);

is = blob.getBinaryStrean(); /1 Standard
is.close();

is = ((Oracl eBl ob) bl ob) . get Bi naryStrean(0); // Extended

Once you cast to the Or acl eBl ob interface, you can access the Oracle supported methods in
addition to the standard methods. BLOB#f r eeTenpor ar y should be replaced with
O acl eBl ob#free.

Programming with Clob Values

Using d ob values is similar to using Bl ob values except that the data is a string instead of a
binary array (use set String instead of set Byt es, get O ob instead of get Bl ob, and
get Char act er St r eaminstead of get Bi naryStr ean).

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 13

ORACLE

Chapter 6
Using API Extensions for Oracle JDBC Types

If you use a prepared statement to update a C ob and the new value is shorter than the
previous value, the O ob retains the characters that were not specifically replaced during the
update. For example, if the current value of a O ob is abcdef ghi j and you update the O ob
using a prepared statement with zxyw, the value in the d ob is updated to zxywef ghi j . To
correct values updated with a prepared statement, you should use the dbrs_| ob. trim
procedure to remove the excess characters left after the update. See DBMS_LOB in Oracle
Database PL/SQL Packages and Types Reference for more information about the

dbns_| ob. tri mprocedure. CLOB#f r eeTenpor ary must be replaced with Or acl eCl ob#f r ee.

Transaction Boundaries Using LOBs

When using LOBSs, you must take transaction boundaries into account; for example, direct all
read/writes to a particular LOB within a transaction.

Recovering LOB Space

To free up space used by a LOB, it's necessary to call | ob. cl ose() . This is not automatically
done when a Resul t Set, St at ement, or Connecti on is closed. For Oracle data bases only, it is
also necessary to execute al t er session set events '60025 trace name context
forever'; on the session so that other sessions can use the freed memory.

Programming with Opaque Objects

This topic describes the use case of working with Opaque Objects.

The new Oracle type interfaces have only methods that are considered significant or not
available with standard JDBC API's. Here the or acl e. sql . OPAQUE has been replaced with
oracl e.jdbc. O acl eQpaque. The new interface only has a method to get the value as an
Object and two meta information methods to get meta data and type name. Unlike the other
Oracle type interfaces (or acl e. j dbc. Oracl eStruct extends j ava. sql . Struct and
oracle.jdbc. Oracl eArray extends j ava. sql . Array), oracle.jdbc. Oracl eOpaque does not
extend a JDBC interface.

Since XMLType doesn't work with the replay datasource and the oracle.xdb package uses
XMLType extensively, this package is no longer usable for Application Continuity replay.

There is one related very common use case that needs to be changed to work with Application
Continuity (AC). Early uses of SQLXML made use of the following XDB API.

SQXM. sql Xm = oracl e. xdb. XMLType. cr eat eXM(

((oracle.jdbc. Oracl eResul t Set)resul t Set). get OPAQUE("i ssue"));

oracl e. xdb. XM.Type extends or acl e. sql . OPAQUE and its use will disable AC replay. This must
be replaced with the standard JDBC API

SQLXML sql Xm = resul t Set. get SQLXM.("i ssue");

The JDeveloper JPublisher feature has been deprecated and removed starting in Release
12.2.1. Code generated by this feature includes concrete classes, requiring the re-write of the
code as described above. Here are several additional hints on doing that re-write.

Mit abl eAr r ay#t oDat umshould be replaced with Or acl eDat aMut abl eArray. t 0JDBCObj ect .

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 13

ORACLE’

Chapter 6
Using Batching with the Oracle Thin Driver

Mt abl eSt r uct #t oDat um should be replaced with Or acl eDat aMut abl eSt ruct . t 0JDBCObj ect .
The following are the additional classes that have new interfaces. They do not have
corresponding WLS interfaces and they do not map to JDBC types.

oracl e. sql . ORADat a oracl e.jdbc. Oracl ebData

oracl e. sql . ORADat aFact ory oracle.jdbc. O acl eDat aFactory

oracl e. sql . OPAQUE oracl e. jdbc. Oacl eQpaque

oracle.sql.NCLOB oracle.jdbc. Oacl eNd ob

oracle.sql.BFILE oracle.jdbc. OracleBfile

oracl e.sql . Datum j ava. | ang. Qbj ect and then use i nst ance for
other interface types

oracl e.jpub. runtinme. Mit abl eSt ruct oracle.jpub. runtime. O acl eDat aMut abl eSt
ruct

oracl e.jpub. runtinme. Mit abl eArray oracle.jpub. runtime. O acl ebDat aMut abl eAr
ray

Using Batching with the Oracle Thin Driver

In some situations, the Oracle Thin driver may not send updates to the DBMS if a batch size
has not been reached and waits until the statement is closed. When a Prepared St at enent is
closed, WebLogic Server returns the statement to a standard JDBC state rather than closing it.
It is then put back into the pool for the connection so it can be re-delivered the next time it is
needed.

To make sure all your updates are delivered, you need to call
O acl ePrepar edSt at enent . sendBat ch() explicitly after the last use of the statement, before
closing it or closing the connection.

Using the Java Security Manager with the Oracle Thin Driver

Learn how to use Java Security Manager with Oracle Thin Driver to create a security policy for
an application.

When using the Oracle Thin Driver with the Java Security Manager enabled, it is necessary to
update privileges in your j ava. pol i cy file.

1. Download the Deno jar file for the Oracle JDBC driver from the Oracle Technology Network.

2. Review the oj dbc. pol i cy file, it specifies the permissions required for the driver.

3. Add these privileges to the policy file used to run the server. For example,
java.util.PropertyPernission "oracle.jdbc.*", "read"; is required for the
oj dbc. j ar file.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 13

http://www.oracle.com/pls/topic/lookup?ctx=fmw122140&id=wlsjdbcotn

Getting a Physical Connection from a Data

Source

To directly access a physical connection from a data source, standard practice is to cast a
connection to the generic JDBC connection (a wrapped physical connection) provided by
WebLogic Server. Oracle strongly discourages directly accessing a physical JDBC connection
except for when it is absolutely required.

The standard practice of casting a connection to the generic JDBC connection allows the
server instance to manage the connection for the connection pool, enable connection pool
features, and maintain the quality of connections provided to applications. Occasionally, a
DBMS provides extra non-standard JDBC-related classes that require direct access of the
physical connection (the actual vendor JDBC connection). To directly access a physical
connection in a connection pool, you must cast the connection using get Vendor Connect i on.

@ Note

Oracle also provides another mechanism to access a physical connection

get Vendor Connect i onSaf e. This mechanism also returns the underlying physical
connection (the vendor connection) from a pooled database connection (a logical
connection). However, when the connection is closed, it is returned to the pool,
independent of the setting of Renove | nfected Connections Enabl ed. See

get Vendor Connect i onSaf e.

This chapter includes the following sections:

® Note

Oracle strongly discourages directly accessing a physical JDBC connection except for
when it is absolutely required.

Opening a Connection

To get a physical connection, you first need to get a connection from a connection pool and
then implicitly pass the physical connection or cast the connection.

After obtaining a connection from a connection pool, do one of the following:

< Implicitly pass the physical connection (using get Vendor Connect i on) within a method that
requires the physical connection.

» Cast the connection as a W.Connect i on and call get Vendor Connect i on.

Always limit direct access of physical database connections to vendor-specific calls. For all
other situations, use the generic JDBC connection provided by WebLogic Server. Sample code
to open a connection for vendor-specific calls is provided below.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 4

ORACLE

Chapter 7
Closing a Connection

Example 7-1 Code Sample to Open a Connection for Vendor-specific Calls

//lnport this additional class and any vendor packages
//you may need.
i mport webl ogi c. j dbc. ext ensi ons. W.Connecti on

nmyJdbcMet hod()

{

/'l Connections froma connection pool should al ways be
/1 method-|evel variables, never class or instance nethods.
Connection conn = nul |;

try {

ctx = new Initial Context(ht);
/'l Look up the data source on the JNDI tree and request
/1 a connection.
j avax. sql . Dat aSour ce ds

= (javax.sql.DataSource) ctx.lookup ("nyDataSource");
/1 Always get a pool ed connection in a try block where it is
/'l used conpletely and is closed if necessary in the finally
/'l bl ock.
conn = ds. get Connection();
/'l You can now cast the conn object to a W.Connection
/'l interface and then get the underlying physical connection.
j ava. sql . Connection vendor Conn =

((W.Connecti on) conn) . get Vendor Connecti on();
/1 do not close vendorConn
/1 You could also cast the vendorConn object to a vendor
Il interface, such as:
/'l oracle.jdbc. Oracl eConnection vendor Conn = (Oracl eConnecti on)
/1 ((W.Connection)conn). get Vendor Connecti on()
/'l 1f you have a vendor-specific method that requires the
/'l physical connection, it is best not to obtain or retain
/'l the physical connection, but sinply pass it inplicitly
/'l where needed, eg: [/

vendor . speci al . met hodNeedi ngConnect i on(((W.Connect i on) conn)). get Vendor Connection());

Closing a Connection

Once you have completed the JDBC work, you should close the logical connection in order to
return the connection to the pool.

When you are done with the physical connection:

Close any objects you have obtained from the connection.
Do not close the physical connection. Set the physical connection to null.

You determine how a connection closes by setting the value of the Renove | nfected
Connections Enabl ed property in the WebLogic Remote Console. See Create a UCP Data
Source in the Oracle WebLogic Remote Console Online Help or see
JDBCConnectionPoolParamsBean in the MBean Reference for Oracle WebLogic Server
for more details about these options.

@® Note

The Renove I nfected Connections Enabl ed property applies only to applications
that explicitly call get Vendor Connect i on.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server

G31979-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 4

ORACLE Chapter 7
Closing a Connection

Example 7-2 Sample Code to Close a Connection for Vendor-specific Calls

/1 As soon as you are finished with vendor-specific calls,
/1 nullify the reference to the connection.
/1 Do not keep it or close it.
/1 Never use the vendor connection for generic JDBC.
/1 Use the |ogical (pooled) connection for standard JDBC.
vendor Conn = null;
. do all the JDBC needed for the whole nethod. ..
/1 close the |ogical (pooled) connection to returnit to
/1 the connection pool, and nullify the reference.
conn. cl ose();
conn = null;

}
catch (Exception e)

/1 Handl e the exception.

1
finally
{
/1 For safety, check whether the |ogical (pooled) connection
/'l was cl osed.
/1 Always close the logical (pooled) connection as the
/1 first step in the finally block.
if (conn !'=null) try {conn.close();} catch (Exception ignore){}
1
}

Remove Infected Connections Enabled is True

When Renove infected Connections Enabl ed=true (default value) and you close the logical
connection, the server instance discards the underlying physical connection and creates a new
connection to replace it. This action ensures that the pool can guarantee to the next user that
they are the sole user of the physical connection. This configuration provides a simple and safe
way to close a connection. However, there is a performance loss because:

* The physical connection is replaced with a new database connection in the connection
pool, which uses resources on both the application server and the database server.

* The statement cache for the original connection is closed and a new cache is opened for
the new connection. Therefore, the performance gains from using the statement cache are
lost.

Remove Infected Connections Enabled is False

Use Renove infected Connections Enabl ed=f al se only if you are sure that the exposed
physical connection will never be retained or reused after the logical connection is closed.

When Renove infected Connections Enabl ed=f al se and you close the logical connection,
the server instance simply returns the physical connection to the connection pool for reuse.
Although this configuration minimizes performance losses, the server instance does not
guarantee the quality of the connection or to effectively manage the connection after the logical
connection is closed. You must make sure that the connection is suitable for reuse by other
applications before it is returned to the connection pool.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 4

ORACLE Chapter 7
Limitations for Using a Physical Connection

Limitations for Using a Physical Connection

Learn about the limitations of using a physical connection instead of a logical connection from
a connection pool.

Oracle strongly discourages using a physical connection instead of a logical connection from a
connection pool. However, if you must use a physical connection, for example, to create a
STRUCT, consider the following costs and limitations:

* The physical connection can only be used in server-side code.

* When you use a physical connection, you lose all of the connection management benefits
that WebLogic Server offer, such as error handling and statement caching.

* You should use the physical connection only for the vendor-specific methods or classes
that require it. Do not use the physical connection for generic JDBC, such as creating
statements or transactional calls.

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 4

Troubleshooting JDBC

Learn about common issues such as problems with Oracle Database on UNIX, thread-related
problems on UNIX and so on.

Problems with Oracle Database on UNIX

If you have problems with an Oracle database running on Unix, check the threading model
being used. When using Oracle drivers, WebLogic recommends that you use native threads.
You can specify this by adding the - nat i ve flag when you start Java.

Closing JDBC Objects

Oracle recommends—and good programming practice dictates—that you always close JDBC
objects, such as Connecti ons, St at enent s, and Resul t Set s, in afinal | y block to make sure
that your program executes efficiently.

Here is a general example:
Example 8-1 Closing a JDBC Object
try {

Driver d =
(Driver)d ass. forName("oracle.jdbc. Oracl eDriver").new nstance();

Connection conn = d.connect ("j dbc: webl ogi c: oracl e: myserver"”,
"scott", "tiger");

Statement stmt = conn.createStatenent();
stnt.execute("select * fromenmp");
ResultSet rs = stnt.getResultSet();

/1 do work

}

catch (Exception e) {

/1 handl e any exceptions as appropriate

}
finally {

try {rs.close();}

catch (Exception rse) {}
try {stmt.close();}
catch (Exception sse) {}
try {conn.close();
catch (Exception cse) {}

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 3

ORACLE Chapter 8
Using Microsoft SQL Server with Nested Triggers

Abandoning JDBC Objects

You should also avoid the following practice, which creates abandoned JDBC objects:

/Do not do this.
stnt. executeQuery();
rs = stnt.getResultSet();

//Do this instead
rs = stnt.executeQuery();

The first line in this example creates a result set that is lost and can be garbage collected
immediately.

Using Microsoft SQL Server with Nested Triggers

Learn about the troubleshooting information when using nested triggers with some Microsoft
SQL Server databases.

For information on supported data bases and data base drivers, see the Oracle Fusion
Middleware Supported System Configurations page at htt p: // www. or acl e. com t echnet wor k/
m ddl ewar e/ i as/ downl oads/ f usi on-certification-100350.htm .

Exceeding the Nesting Level

You may encounter a SQL Server error indicating that the nesting level has been exceeded on
some SQL Server databases.

For example:

CREATE TABLE Enpl oyeeEJBTabl e (nane varchar(50) not null,salary int, card
varchar (50), prinmary key (nane))

CREATE TABLE Car dEJBTabl e (cardno varchar(50) not null, enployee
varchar (50), primary key (cardno), foreign key (enployee) references
Enpl oyeeEJB Tabl e(name) on del ete cascade)

CREATE TRIGGER card on Enpl oyeeEJBTable for delete as delete Car dEJBTabl e
where enpl oyee in (select nane from del et ed)

CREATE TRIGGER enp on CardEJBTable for delete as del ete Enpl oyeeEJBTabl e
where card in (select cardno from del et ed)

insert into Enpl oyeeEJBTabl e values ('1',1000,'1")
insert into CardEJBTable values ('1','1")
DELETE FROM Car dEJBTabl e WHERE cardno = 1

Results in the following error message:
Maxi mum stored procedure, function, trigger, or view nesting |level exceeded (limt 32).
To work around this issue, do the following:

1. Run the following script to reset the nested trigger level to O:

- Start batch
exec sp_configure 'nested triggers', 0 -- This set's the new val ue.
reconfigure with override -- This makes the change permanent

- End batch

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 3

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

ORACLE Chapter 8
Using Microsoft SQL Server with Nested Triggers

2. Verify the current value the SQL server by running the following script:

exec sp_configure 'nested triggers'

Using Triggers and EJBs

Applications using EJBs with a Microsoft driver may encounter situations when the return code
from the execut e() method is 0, when the expected value is 1 (1 record deleted).

For example:

CREATE TABLE Enpl oyeeEJBTabl e (name varchar(50) not null,salary int, card
varchar (50), primry key (nanme))

CREATE TABLE Car dEJBTabl e (cardno varchar(50) not null, enployee
varchar (50), primry key (cardno), foreign key (enployee) references
Enpl oyeeEJB Tabl e(name) on del ete cascade)

CREATE TRIGGER enp on CardEJBTable for delete as del ete Enpl oyeeEJBTabl e
where card in (select cardno from del et ed)

insert into Enpl oyeeEJBTabl e values ('1',1000,'1")

insert into CardEJBTable values ('1','1")

DELETE FROM Car dEJBTabl e WHERE cardno = 1
The EJB code assumes that the record is not found and throws an appropriate error
message.
To work around this issue, run the follow ng script:

exec sp_configure 'show advanced options', 1

reconfigure with override

exec sp_configure "disallowresults fromtriggers',1

reconfigure with override

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server
G31979-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 3

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Using WebLogic JDBC in an Application
	Getting a Database Connection from a DataSource Object
	Importing Packages to Access DataSource Objects
	Obtaining a Client Connection Using a DataSource
	Possible Exceptions When a Connection Request Fails

	Pooled Connection Limitation
	Getting a Connection from an Application-Scoped Data Source

	2 Using DataSource Resource Definitions
	Using Jakarta EE DataSource Resource Definitions
	Creating DataSource Resource Definitions Using Annotations
	Creating DataSource Resource Definitions Using Deployment Descriptors

	Using WebLogic Configuration Attributes
	Implementation Considerations When Using DataSource Resource Definitions
	Naming Conventions
	WebLogic Data Source Naming Conventions
	Jakarta EE Data Source Naming Conventions

	Mapping the Jakarta EE DataSource Resource Definition to WebLogic Data Source Resources
	Configuring Active GridLink DataSource Resource Definitions
	Using an Encrypted Password in a DataSourceDefinition
	Additional Considerations

	Using Data Sources in Clients
	Additional Resources

	3 Performance Tuning Your JDBC Application
	WebLogic Performance-Enhancing Features
	How Pooled Connections Enhance Performance
	Caching Statements and Data

	Designing Your Application for Best Performance
	Process as Much Data as Possible Inside the Database
	Use Built-in DBMS Set-based Processing
	Make Your Queries Smart
	Make Transactions Single-batch
	Never Have a DBMS Transaction Span User Input
	Use In-place Updates
	Keep Operational Data Sets Small
	Use Pipelining and Parallelism

	4 Using WebLogic-branded DataDirect Drivers
	Using DataDirect Documentation
	JDBC Specification Compliance
	Installation
	Supported Drivers and Databases
	Connecting Through WebLogic JDBC Data Sources
	Developing Your Own JDBC Code
	Specifying Connection Properties
	Using IP Addresses
	Required Permissions for the Java Security Manager
	For MS SQLServer Users
	Installing MS SQLServer XA DLLs
	Using instjdbc.sql with MS SQLServer

	5 Using WebLogic Wrapper Drivers
	Using the WebLogic RMI Driver (Deprecated)
	RMI Driver Client Interoperability
	Security Considerations for WebLogic RMI Drivers
	Setting Up WebLogic Server to Use the WebLogic RMI Driver
	Sample Client Code for Using the RMI Driver
	Import the Required Packages
	Get the Database Connection
	Using a JNDI Lookup to Obtain the Connection
	Using Only the WebLogic RMI Driver to Obtain a Database Connection

	Row Caching with the WebLogic RMI Driver
	Important Limitations for Row Caching with the WebLogic RMI Driver

	Limitations When Using Global Transactions

	Using the WebLogic JTS Driver (Deprecated)
	Sample Client Code for Using the JTS Driver

	6 Using API Extensions in JDBC Drivers
	Using API Extensions to JDBC Interfaces
	Sample Code for Accessing API Extensions to JDBC Interfaces
	Import Packages to Access API Extensions
	Get a Connection
	Cast the Connection as a Vendor Connection
	Use API Extensions

	Using API Extensions for Oracle JDBC Types
	Sample Code for Accessing Oracle Thin Driver Extensions to JDBC Interfaces
	Programming with Arrays
	Import Packages to Access Oracle Extensions
	Establish the Connection
	Creating an Array in the Database
	Getting an Array
	Updating an Array in the Database
	Using Oracle Array Extension Methods

	Programming with Structs
	Creating Objects in the Database
	Getting Struct Attributes
	Using OracleStruct Extension Methods
	Using a Struct to Update Objects in the Database

	Programming with Refs
	Creating a Ref in the Database
	Getting a Ref
	Using WebLogic OracleRef Extension Methods
	Updating Ref Values

	Programming with Large Objects
	Creating Blobs in the Database
	Updating Blobs in the Database
	Using OracleBlob Extension Methods
	Programming with Clob Values
	Transaction Boundaries Using LOBs
	Recovering LOB Space

	Programming with Opaque Objects

	Using Batching with the Oracle Thin Driver
	Using the Java Security Manager with the Oracle Thin Driver

	7 Getting a Physical Connection from a Data Source
	Opening a Connection
	Closing a Connection
	Remove Infected Connections Enabled is True
	Remove Infected Connections Enabled is False

	Limitations for Using a Physical Connection

	8 Troubleshooting JDBC
	Problems with Oracle Database on UNIX
	Closing JDBC Objects
	Abandoning JDBC Objects

	Using Microsoft SQL Server with Nested Triggers
	Exceeding the Nesting Level
	Using Triggers and EJBs

