
Oracle® Fusion Middleware
Oracle Fusion Middleware Administering JMS
Resources for Oracle WebLogic Server

15c (15.1.1.0.0)
G31588-01
October 2025

Oracle Fusion Middleware Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server, 15c
(15.1.1.0.0)

G31588-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation i

Conventions ii

1 WebLogic Server Value-Added JMS Features

Enterprise-Grade Reliability 1

Enterprise-Level Features 2

Performance 3

Tight Integration with WebLogic Server 4

Interoperability with Other Messaging Services 5

2 Understanding JMS Resource Configuration

Overview of JMS and Oracle WebLogic Server 1

What Is the Jakarta Messaging? 1

WebLogic JMS Architecture and Environment 1

Domain Configuration 3

What are JMS Configuration Resources? 3

Overview of JMS Servers 3

Overview of JMS Modules 4

JMS System Modules 4

JMS Application Modules (Deprecated) 5

Comparing JMS System Modules and Application Modules 6

Configurable JMS Resources in Modules 6

JMS Schema 7

JMS Interop Modules (Deprecated) 7

Other Environment-Related System Resources for WebLogic JMS 8

Persistent Stores 8

JMS Store-and-Forward 8

Path Service 9

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of ix

Messaging Bridges 9

3 Configuring Basic JMS System Resources

Methods for Configuring JMS System Resources 1

Main Steps for Configuring Basic JMS System Resources 2

Advanced Resources in JMS System Modules 3

JMS Configuration Naming Requirements 3

JMS Server Configuration 4

JMS Server Configuration Parameters 4

JMS Server Targeting 5

JMS Server Monitoring Parameters 5

Session Pools and Connection Consumers 6

JMS System Module Configuration 6

JMS System Module and Resource Subdeployment Targeting 7

Default Targeting 7

Advanced (Subdeployment) Targeting 7

Specifying the Unmapped Resource Reference Mode for Connection Factories 9

Connection Factory Configuration 10

Using the Default JMS Connection Factory Defined by Jakarta EE 9.1 10

Using Default Connection Factories Defined by WebLogic Server 11

Connection Factory Configuration Parameters 11

Connection Factory Targeting 12

Queue and Topic Destination Configuration 13

Queue and Topic Configuration Parameters 13

Creating Error Destinations 14

Creating Distributed Destinations 14

Queue and Topic Targeting 14

Destination Monitoring and Management Parameters 15

JMS Template Configuration 15

JMS Template Configuration Parameters 15

Destination Key Configuration 16

Quota Configuration 16

Message Limit in a Subscription 16

Foreign Server Configuration 16

Distributed Destination Configuration 17

JMS Store-and-Forward (SAF) Configuration 17

4 Configuring Advanced JMS System Resources

Configuring WebLogic JMS Clustering 1

Advantages of JMS Clustering 1

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of ix

How JMS Clustering Works 2

JMS Clustering Naming Requirements 3

Distributed Destination Within a Cluster 3

JMS Services As a Migratable Service Within a Cluster 3

Configuration Guidelines for JMS Clustering 3

What About Failover? 4

Migration of JMS-Related Services 5

Automatic Migration of JMS Services 5

Manual Migration of JMS Services 5

Persistent Store High Availability 6

Using the WebLogic Path Service 6

Path Service High Availability 6

Implementing Message UOO with a Path Service 7

Configuring Foreign Server Resources to Access Third-Party JMS Providers 8

How WebLogic JMS Accesses Foreign JMS Providers 8

Creating Foreign Server Resources 8

Creating Foreign Connection Factory Resources 9

Creating a Foreign Destination Resources 9

Sample Configuration for MQSeries JNDI 9

Configuring Distributed Destination Resources 10

Uniform Distributed Destinations vs. Weighted Distributed Destinations 10

Creating Uniform Distributed Destinations 11

Targeting Uniform Distributed Queues and Topics 11

Pausing and Resuming Message Operations on UDD Members 12

Monitoring UDD Members 13

Configuring Partitioned Distributed Topics 13

Creating Weighted Distributed Destinations 14

Load Balancing Messages Across a Distributed Destination 14

Load-Balancing Options 14

Consumer Load Balancing 15

Producer Load Balancing 15

Load-Balancing Heuristics 15

Defeating Load Balancing 17

Distributed Destination Load Balancing When Server Affinity Is Enabled 18

Distributed Destination Migration 19

Distributed Destination Failover 20

Configure an Unrestricted ClientID 20

Configure Shared Subscriptions 21

5 Simplified JMS Cluster and High Availability Configuration

What Are the WebLogic Clustering Options for JMS? 1

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iii of ix

Understanding the Simplified JMS Cluster Configuration 1

Using Persistent Stores with Cluster Targeted JMS Servers 3

Targeting JMS Modules Resources 3

Simplified JMS Configuration and High Availability Enhancements 3

Defining the Distribution Policy for JMS Services 4

Defining the Migration Policy for JMS Services 5

Additional Configuration Options for JMS Services 5

Considerations and Limitations of Clustered JMS 7

Interoperability and Upgrade Considerations of Cluster Targeted JMS Servers 8

Best Practices for Using Cluster Targeted JMS Services 9

Runtime MBean Instance Naming Syntax 10

Instance Naming Syntax for .DAT File 10

Instance Naming Syntax for .RGN File 10

JDBC Store Table Name Syntax 10

6 Using WLST to Manage JMS Servers and JMS System Module
Resources

Understanding JMS System Modules and Subdeployments 1

How to Create JMS Servers and JMS System Module Resources 2

How to Modify and Monitor JMS Servers and JMS System Module Resources 4

Best Practices When Using WLST to Configure JMS Resources 5

7 Interoperating with Oracle AQ JMS

Overview 1

Using AQ Destinations as Foreign Destinations 1

Driver Support 2

Transaction Support 2

Oracle Real Application Clusters 2

MBean and Console Support 3

Configuring WebLogic Server to Interoperate with AQ JMS 3

Configure Oracle AQ in the Database 3

Create Users and Grant Permissions 3

Create AQ Queue Tables 4

Create a JMS Queue or Topic 4

Start the JMS Queue or Topic 5

Configure WebLogic Server for AQ JMS 5

Configure a WebLogic Data Source for AQ JMS 5

Configure a JMS System Module 6

Configure a JMS Foreign Server 6

Configure JMS Foreign Server Connection Factories 7

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iv of ix

Configure AQ JMS Foreign Server Destinations 8

Additional Configuration for Interoperation with Oracle 12c Database 8

Programming Considerations 9

Settings for Message Driven Beans to Interoperate with AQ JMS 9

Scalability for Clustered WebLogic MDBs Listening on AQ Topics 10

AQ JMS Extensions 10

Using AdtMessage 11

Resource References 11

JDBC Connection Utilization 11

Oracle RAC Support 12

Debugging 12

Performance Considerations 12

Advanced Topics 12

Advanced Message Recovery for MDBs 12

Security Considerations 13

Configuring AQ Destination Security 13

Access to JNDI Advertised Destinations and Connection Factories 14

Controlling Access to Destinations that are Looked Up using the JMS API 14

WebLogic Messaging Bridge 16

Create a Messaging Bridge Instance 16

Standalone WebLogic AQ JMS Clients 16

Configure a Foreign Server using the Database's JDBC URL 17

Limitations when using Standalone WebLogic AQ JMS Clients 17

8 Monitoring JMS Statistics and Managing Messages

Monitoring JMS Statistics 1

Monitoring JMS Servers 1

Monitor Cluster Targeted JMS Servers 2

Monitoring Active JMS Destinations 2

Monitoring Active JMS Transactions 2

Monitoring Active JMS Connections, Sessions, Consumers, and Producers 2

Monitoring Active JMS Session Pools 2

Monitoring Queues 3

Monitoring Topics 3

Monitoring Durable Subscribers for Topics 3

Monitoring Uniform Distributed Queues 3

Monitoring Uniform Distributed Topics 4

Monitoring Pooled JMS Connections 4

Managing JMS Messages 4

JMS Message Management Using Jakarta APIs 4

JMS Message Management Using WebLogic Remote Console 4

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page v of ix

Monitoring Message Runtime Information 5

Querying Messages 5

Moving Messages 5

Deleting Messages 6

Creating New Messages 6

Importing Messages 7

Exporting Messages 8

Managing Transactions 8

Managing Durable Topic Subscribers 9

9 Best Practices for JMS Beginners and Advanced Users

Configuration Best Practices 1

Configure JMS Servers and Persistent Stores 1

Configure JMS Quotas and Paging 2

Configure a JMS Module 3

Configure JMS Resources 4

Configure SAF Agents, Stores, and Imported Destination 4

Targeting Best Practices 4

High Availability Best Practices 5

Develop Applications on a Cluster 5

Leverage WebLogic HA Features 5

Ensure Your Data is Persisted Safely 6

Client Resiliency Best Practices 6

Distributed Destination Best Practices 8

Distributed Queues 8

Distributed Topics 9

Weighted Distributed Destinations 9

Understanding WebLogic JMS Client Options 9

Understanding WebLogic URLs 9

URL syntax 10

Strict Message Ordering Best Practices 11

Integrating Remote JMS Destinations 11

JMS Performance and Tuning 11

10

Troubleshooting WebLogic JMS

Configuring Notifications for JMS 1

Debugging JMS 1

Enabling Debugging 1

Enable Debugging Using the Command Line 1

Enable Debugging Using the WebLogic Remote Console 1

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page vi of ix

Enable Debugging Using the WebLogic Scripting Tool 2

Changes to the config.xml File 3

JMS Debugging Scopes 3

Messaging Kernel and Path Service Debugging Scopes 4

Request Dyeing 4

Message Life Cycle Logging 4

Events in the JMS Message Life Cycle 5

Message Log Location 5

Enabling JMS Message Logging 5

JMS Message Log Content 6

JMS Message Log Record Format 6

Sample Log File Records 7

Consumer Created Event 8

Consumer Destroyed Event 8

Message Produced Event 8

Message Consumed Event 8

Message Expired Event 9

Retry Exceeded Event 9

Message Removed Event 9

Managing JMS Server Log Files 10

Rotating Message Log Files 10

Renaming Message Log Files 10

Limiting the Number of Retained Message Log Files 10

Controlling Message Operations on Destinations 10

Definition of Message Production, Insertion, and Consumption 11

Pause and Resume Logging 11

Production Pause and Production Resume 11

Pausing and Resuming Production at Boot Time 11

Pausing and Resuming Production at Runtime 12

Production Pause and Resume and Distributed Destinations 12

Production Pause and Resume and JMS Connection Stop/Start 12

Insertion Pause and Insertion Resume 12

Pausing and Resuming Insertion at Boot Time 12

Pausing and Resuming Insertion at Runtime 13

Insertion Pause and Resume and Distributed Destination 13

Insertion Pause and Resume and JMS Connection Stop/Start 13

Consumption Pause and Consumption Resume 13

Pausing and Resuming Consumption at Boot-time 13

Pausing and Resuming Consumption at Runtime 14

Consumption Pause and Resume and Queue Browsers 14

Consumption Pause and Resume and Distributed Destination 14

Consumption Pause and Resume and Message-Driven Beans 14

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page vii of ix

Consumption Pause and Resume and JMS Connection Stop/Start 14

Definition of In-Flight Work 14

In-flight Work Associated with Producers 14

In-flight Work Associated with Consumers 15

Order of Precedence for Boot Time Pause and Resume of Message Operations 16

Security 16

A JMS Resource Definition Elements Reference

Defining JMS Resources Using Jakarta EE Resource Definitions A-1

Resource Definitions Using Annotations A-1

Resource Definitions in the Deployment Descriptor A-2

Considerations and Best Practices for Using JMS Resource Definitions A-3

JMS Connection Factory Definition Elements and Properties A-3

JMS Destination Definition Elements and Properties A-10

B Configuring JMS Application Modules for Deployment (Deprecated)

Methods for Configuring JMS Application Modules B-1

JMS Schema B-2

Packaging JMS Application Modules In an Enterprise Application B-2

Creating Packaged JMS Application Modules B-2

Packaged JMS Application Module Requirements B-2

Main Steps for Creating Packaged JMS Application Modules B-2

Sample of a Packaged JMS Application Module in an EJB Application B-3

Packaged JMS Application Module References In weblogic-application.xml B-4

Packaged JMS Application Module References In ejb-jar.xml B-5

Packaged JMS Application Module References In weblogic-ejb-jar.xml B-5

Packaging an Enterprise Application With a JMS Application Module B-6

Deploying a Packaged JMS Application Module B-6

Deploying Standalone JMS Application Modules B-6

About Standalone JMS Modules B-6

Creating Standalone JMS Application Modules B-6

Standalone JMS Application Module Requirements B-7

Main Steps for Creating Standalone JMS Application Modules B-7

Sample of a Simple Standalone JMS Application Module B-7

Deploying Standalone JMS Application Modules B-7

Tuning Standalone JMS Application Modules B-8

Generating Unique Runtime JNDI Names for JMS Resources B-8

Unique Runtime JNDI Name for Local Applications B-9

Unique Runtime JNDI Name for Application Libraries B-9

Unique Runtime JNDI Name for Standalone JMS Modules B-9

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page viii of ix

Where to Use the ${APPNAME} String B-10

Example Use-Case B-10

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ix of ix

Preface

This guide is a resource for system administrators who configure, manage, and monitor Oracle
WebLogic JMS resources, including JMS servers, standalone destinations (queues and
topics), distributed destinations, and connection factories.

Audience
The information in this document is relevant to production-phase administration, monitoring,
and performance tuning. It does not address the pre-production development or testing phases
of a software project.

It is assumed that the reader is familiar with WebLogic Server system administration. This
document emphasizes the value-added features provided by WebLogic Server JMS and key
information about how to use WebLogic Server features and components to maintain
WebLogic JMS in a production environment.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
Samples and Tutorials

Oracle provides a variety of code examples and tutorials that show WebLogic Server
configuration and API use, and provide practical instructions on how to perform key
development tasks. For more information, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of ii

1
WebLogic Server Value-Added JMS Features

WebLogic JMS provides numerous WebLogic JMS Extension APIs that go beyond the
standard JMS APIs specified by the JMS 1.1 and 2.0 Specification. These are available at
http://www.oracle.com/technetwork/java/jms/index.html. Moreover, WebLogic JMS is
tightly integrated into the WebLogic Server platform, allowing you to build secure Jakarta EE
applications that can be easily monitored and administered through the WebLogic Remote
Console. In addition to fully supporting XA transactions, WebLogic JMS also features high
availability through its clustering and service migration features, while also providing
interoperability with other releases of WebLogic Server and third-party messaging providers.

The following sections provide an overview of the unique features and powerful capabilities of
WebLogic JMS.

Enterprise-Grade Reliability
WebLogic JMS includes the following reliability features:

• Out of the box transaction support:

– Fully supported transactions, including distributed transactions, between JMS
applications and other transaction-capable resources using the Jakarta Transaction
(JTA), as described in Using Transactions with WebLogic JMS in Developing JMS
Applications for Oracle WebLogic Server.

– Fully integrated Transaction Manager, as described in Introducing Transactions in
Developing JTA Applications for Oracle WebLogic Server.

• File or database-persistent message storage (both fully XA transaction capable). See
Using the WebLogic Persistent Store in Administering the WebLogic Persistent Store.

• Message Store-and-Forward (SAF) that is clusterable and improves reliability by locally
storing messages sent to unavailable remote destinations. See Understanding the Store-
and-Forward Service in Administering the Store-and-Forward Service for Oracle WebLogic
Server.

• If a server or network failure occurs then, JMS producer and consumer objects attempts to
transparently fail-over to another server instance, if one is available. See Automatic JMS
Client Failover in Developing JMS Applications for Oracle WebLogic Server.

• Supports connection clustering using connection factories targeted on multiple WebLogic
Servers, as described in Configuring WebLogic JMS Clustering.

• System-assisted configuration of Uniform Distributed Queues, Replicated Distributed
Topics, and Partitioned Distributed Topics that provide high availability, load balancing, and
failover support in a cluster, as described in Using Distributed Destinations and Developing
Advanced Pug/Sub Applications in Developing JMS Applications for Oracle WebLogic
Server.

• Automatic whole server migration provides improved cluster reliability and server migration
WebLogic Server now supports automatic and manual migration of a clustered server
instance and all the services it hosts from one machine to another, as described in
Configuring WebLogic JMS Clustering.

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 5

http://www.oracle.com/technetwork/java/jms/index.html

• WebLogic JMS provides complete in-place restart support to provide the retry mechanism
to auto-restart a failed file-based or JDBC-based store and its upper services without any
server conflicts. See Restart In Placein Administering the WebLogic Persistent Store.

• Redirection of failed or expired messages to error destinations, as described in Managing
Rolled Back, Recovered, Redelivered, or Expired Messages in Developing JMS
Applications for Oracle WebLogic Server.

• Supports the JMS Delivery Count message property JMSXDeliveryCount, which specifies
the number of message delivery attempts, where the first attempt is 1, the second is 2, and
so on. WebLogic Server makes a best effort for a persistent delivery count, so that the
delivery count does not reset back to one after a server restart. See Message in
Developing JMS Applications for Oracle WebLogic Server.

• Provides three levels of load balancing: network-level, JMS connections, and distributed
destinations.

Enterprise-Level Features
WebLogic JMS includes the following enterprise-level features:

• WebLogic Server fully supports the JMS 1.1 and JMS 2.0 specifications (available at
http://www.oracle.com/technetwork/java/jms/index.html), in compliance with the
Jakarta EE 9.1 platform specification, and provides numerous WebLogic JMS Extensions
that go beyond the standard JMS APIs.

• Robust message and destination management capabilities:

– Administrators can manipulate most messages in a running JMS Server, using either
the WebLogic Remote Console or runtime APIs. See Managing JMS Messages.

– Administrators can pause and resume message production, message insertion (in-
flight messages), and message consumption operations on a given JMS destination,
or on all the destinations hosted by a single JMS server, using either the WebLogic
Remote Console or runtime APIs. See Controlling Message Operations on
Destinations.

– Message-Driven Beans (MDBs), EJBs also supply message pause and resume
functionality, and can even automatically and temporarily pause during error
conditions. See Programming and Configuring MDBs: Details in Developing Message-
Driven Beans for Oracle WebLogic Server.

• Modular deployment of JMS resources, which are defined by an Extensible Markup
Language (XML) file so that you can migrate your application and the required JMS
configuration from environment to environment without opening an enterprise application
file, and without extensive manual JMS reconfiguration. See Overview of JMS Modules.

• JMS message producers can group ordered messages into a single Unit-of-Order, which
guarantees that all such messages are processed serially in the order in which they were
created. See Using Message Unit-of-Order in Developing JMS Applications for Oracle
WebLogic Server.

• To provide an even more restricted notion of a group than the Message Unit-of-Order
feature, the Message Unit-of-Work (UOW) feature allows JMS producers to identify certain
messages as components of a UOW message group, and allows a JMS consumer to
process them as such. For example, a JMS producer can designate a set of messages
that must be delivered to a single client without interruption, so that the messages can be
processed as a unit. See Using Unit-of-Work Message Groups in Developing JMS
Applications for Oracle WebLogic Server.

Chapter 1
Enterprise-Level Features

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 5

http://www.oracle.com/technetwork/java/jms/index.html

• Message life cycle logging provides an administrator with better transparency about the
existence of JMS messages from the JMS server viewpoint, in particular basic life cycle
events, such as message production, consumption, and removal. See Message Life Cycle
Logging.

• Timer services available for scheduled message delivery, as described in Setting Message
Delivery Times in Developing JMS Applications for Oracle WebLogic Server.

• Flexible expired message policies to handle expired messages, as described in Handling
Expired Messages in Tuning Performance of Oracle WebLogic Server.

• Support messages containing XML. See Defining XML Message Selectors Using the XML
Selector Method in Developing JMS Applications for Oracle WebLogic Server.

• The WebLogic Thin T3 Client JAR (wlthint3client.jar) is a light-weight, performant
alternative to the wlfullclient.jar and wlclient.jar, which are (IIOP) remote client
jars. The Thin T3 client has a minimal footprint while providing access to a rich set of APIs
that are appropriate for client usage. See Developing a WebLogic Thin T3 Client in
Developing Standalone Clients for Oracle WebLogic Server.

• The JMS Store-and-Forward client enables standalone JMS clients to reliably send
messages to server-side JMS destinations, even when the JMS client cannot temporarily
reach a destination (for example, due to a network connection failure). While disconnected
from the server, messages sent by the JMS SAF client are stored locally on the client and
are forwarded to server-side JMS destinations when the client reconnects. See Reliably
Sending Messages Using the JMS SAF Client in Developing Stand alone Clients for
Oracle WebLogic Server.

• Automatic pooling of JMS client resources in server-side applications via JMS resource-
reference pooling. Server-side applications use standard JMS APIs, but get automatic
resource pooling. See Enhanced Jakarta EE Support for Using WebLogic JMS With EJBs
and Servlets in Developing JMS Applications for Oracle WebLogic Server.

Performance
WebLogic JMS includes enterprise-class performance features, such as automatic message
paging, message compression, and Document Object Model (DOM) support for XML
messages:

• WebLogic Server uses highly optimized disk access algorithms and other internal
enhancements to provide a unified messaging kernel that improves both JMS-based and
Web Services messaging performance. See Using the WebLogic Persistent Store in
Administering Server Environments for Oracle WebLogic Server.

• You may greatly improve the performance of typical non-persistent messaging with One-
Way Message Sends. When configured on a connection factory, associated producers can
send messages without internally waiting for a response from the target destination's host
JMS server. You can choose to allow queue senders and topic publishers to do one-way
sends, or to limit this capability to topic publishers only. You can also specify a "One-Way
Window Size" to determine when a two-way message is required to regulate the producer
before it can continue making additional one-way sends.

• Message paging automatically begins during peak load periods to free up virtual memory.
See Paging Out Messages To Free Up Memory in Tuning Performance of Oracle
WebLogic Server.

• Administrators can enable the compression of messages that exceed a specified threshold
size to improve the performance of sending messages travelling across Java Virtual
Machine (JVM) boundaries using either the WebLogic Remote Console or runtime APIs.
See Compressing Messages in Tuning Performance of Oracle WebLogic Server.

Chapter 1
Performance

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 5

• Synchronous consumers can also use the same efficient behavior as asynchronous
consumers by enabling the Prefetch Mode for Synchronous Consumers option on the
consumer's JMS connection factory, using either the WebLogic Remote Console or
runtime APIs. See Using the Prefetch Mode to Create a Synchronous Message Pipeline in
Developing JMS Applications for Oracle WebLogic Server.

• There are a wide variety of performance tuning options for JMS messages. See Tuning
WebLogic JMS in Tuning Performance of Oracle WebLogic Server.

• There is MDB transaction batching supported by processing multiple messages in a single
transaction. See Using Batching with Message-Driven Beans in Developing Message-
Driven Beans for Oracle WebLogic Server.

• JMS SAF provides better performance than the WebLogic Messaging Bridge across
clusters. See Tuning WebLogic JMS Store-and-Forward in Tuning Performance of Oracle
WebLogic Server.

• DOM (Document Object Model) support for sending XML messages greatly improves
performance for implementations that already use a DOM, because those applications do
not have to flatten the DOM before sending XML messages. See Sending XML Messages
in Developing JMS Applications for Oracle WebLogic Server.

• Message flow control during peak load periods, including blocking overactive senders, as
described in Controlling the Flow of Messages on JMS Servers and Destinations and
Defining Quota in Tuning Performance of Oracle WebLogic Server.

• The automatic pooling of connections and other objects by the JMS wrappers using JMS
resource-reference pooling. See Enhanced Jakarta EE Support for Using WebLogic JMS
With EJBs and Servlets in Developing JMS Applications for Oracle WebLogic Server.

• Multicasting of messages for simultaneous delivery to many clients using IP multicast, as
described in Using Multicasting with WebLogic JMS in Developing JMS Applications for
Oracle WebLogic Server.

Tight Integration with WebLogic Server
WebLogic JMS includes the following features to enable tight integration with WebLogic
Server:

• JMS can be accessed locally by server-side applications without a network call because
the destinations can exist on the same server as the application.

• Uses same ports, protocols, and user identities as WebLogic Server (T3, IIOP, and HTTP
tunnelling protocols, optionally with Secure Socket Layer (SSL)).

• Web Services, Jakarta Enterprise Beans (including MDBs), and servlets supplied by
WebLogic Server can work in close concert with JMS.

• Can be configured and monitored by using the same WebLogic Remote Console, or by
using the JMS API.

• Supports WebLogic Scripting Tool (WLST) to initiate, manage, and make persistent
configuration changes interactively or by using an executable script. See Using WLST to
Manage JMS Servers and JMS System Module Resources.

• Provides complete Java Management Extensions (JMX) administrative and monitoring
APIs, as described in Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server.

• Fully-integrated Transaction Manager, as described in Introducing Transactions in
Developing JTA Applications for Oracle WebLogic Server.

Chapter 1
Tight Integration with WebLogic Server

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 5

• Leverages sophisticated security model built into WebLogic Server (policy engine), as
described in Understanding WebLogic Security and Resource Types You Can Secure with
Policies in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Interoperability with Other Messaging Services
WebLogic JMS includes the following features for interoperability with other messaging
services:

• Fully supports direct interoperability with prior WebLogic Server releases as described in
WebLogic Server Compatibility in Information Roadmap for Oracle WebLogic Server .

• Forwards messages transactionally by the WebLogic Messaging Bridge to other JMS
providers — as well as to other instances and releases of WebLogic JMS, as described in
Administering the WebLogic Messaging Bridge for Oracle WebLogic Server.

• Supports mapping of other JMS providers so their objects appear in the WebLogic JNDI
tree as local JMS objects. Also references remote instances of WebLogic Server in
another cluster or domain in the local Java Naming and Directory Interface (JNDI) tree.
See Foreign Server Configuration.

• Uses MDBs to transactionally receive messages from multiple JMS providers. See
Programming and Configuring MDBs: Details in Developing Message-Driven Beans for
Oracle WebLogic Server.

• Provides automatic transaction enlistment of non-WebLogic JMS client resources in
server-side applications using JMS resource-reference pooling. See Enhanced Jakarta EE
Support for Using WebLogic JMS With EJBs and Servlets in Developing JMS Applications
for Oracle WebLogic Server.

• Provides integration with Oracle Tuxedo messaging provided by WebLogic Tuxedo
Connector. See How to Configure the Oracle Tuxedo Queuing Bridge in the Administering
WebLogic Tuxedo Connector for Oracle WebLogic Server.

• The WebLogic JMS C API enables programs written in 'C' to participate in JMS
applications. This implementation of the JMS C API uses JNI in order to access a Java
Virtual Machine (JVM). See WebLogic JMS C API in Developing JMS Applications for
Oracle WebLogic Server.

• Uses Oracle Streams Advanced Queuing (AQ) to provide database-integrated message
queuing functionality that leverages the functions of Oracle Database to manage
messages. WebLogic Server interoperates with Oracle AQ using a Foreign JMS and JDBC
data source configuration in a WebLogic Server domain. Both local and remote JMS
clients can use Oracle AQ destinations from WebLogic JNDI. See Interoperating with
Oracle AQ JMS.

Chapter 1
Interoperability with Other Messaging Services

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 5

2
Understanding JMS Resource Configuration

Learn about basic WebLogic JMS concepts and features, and how they work with other
application components and Oracle WebLogic Server.

This chapter includes the following sections:

Overview of JMS and Oracle WebLogic Server
The WebLogic Server implementation of JMS is an enterprise-class messaging system that is
tightly integrated into the WebLogic Server platform.

It fully supports the JMS 2.0 Specification, available at http://www.oracle.com/technetwork/
java/jms/index.html, and also provides numerous WebLogic JMS Extensions that go beyond
the standard JMS APIs.

What Is the Jakarta Messaging?
An enterprise messaging system enables applications to asynchronously communicate with
one another through the exchange of messages. A message is a request, report, and/or event
that contains information needed to coordinate communication between different applications.
A message provides a level of abstraction, allowing you to separate the details about the
destination system from the application code.

JMS is a standard API for accessing enterprise messaging systems that is implemented by
industry messaging providers. Specifically, JMS:

• Enables Jakarta applications that share a messaging system to exchange messages

• Simplifies application development by providing a standard interface for creating, sending,
and receiving messages

WebLogic JMS accepts messages from producer applications and delivers them to consumer
applications. For more information about JMS API programming with WebLogic Server, see
Understanding the Simplified API Programming Model in Developing JMS Applications for
Oracle WebLogic Server.

WebLogic JMS Architecture and Environment
Figure 2-1 illustrates the WebLogic JMS architecture.

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 9

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Figure 2-1 WebLogic JMS Architecture

The major components of the WebLogic JMS architecture include:

• A JMS server is an environment-related configuration entity that acts as a management
container for JMS queue and topic resources defined within JMS modules that are targeted
to specific JMS servers. A JMS server's primary responsibility for its targeted destinations
is to maintain information on what persistent store is used for any persistent messages that
arrive on the destinations, and to maintain the states of durable subscribers created on the
destinations. You can configure one or more JMS servers per domain, and a JMS server
can manage one or more JMS modules. See Overview of JMS Servers.

• JMS modules contain configuration resources, such as standalone queue and topic
destinations, distributed destinations, and connection factories, and are defined by XML
documents that conform to the weblogic-jms.xsd schema. See What Are JMS
Configuration Resources?

• Client JMS applications either produce messages to destinations or consume messages
from destinations.

• JNDI (Java Naming and Directory Interface) provides a server lookup facility.

• WebLogic persistent storage (a server instance's default store, a user-defined file store, or
a user-defined JDBC-accessible store) for storing persistent message data.

Chapter 2
Overview of JMS and Oracle WebLogic Server

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 9

Domain Configuration
In general, the WebLogic Server domain configuration file (config.xml) contains the
configuration information required for a domain. This configuration information can be further
classified into environment-related information and application-related information. Examples
of environment-related information are the identification and definition of JMS servers, JDBC
data sources, WebLogic persistent stores, and server network addresses. These system
resources are usually unique from domain to domain.

The configuration and management of these system resources are the responsibility of a
WebLogic administrator, who usually receives this information from an organization's system
administrator or MIS department. To accomplish these tasks, an administrator can use the
WebLogic Remote Console, various command-line tools, such as WebLogic Scripting Tool
(WLST), or JMX APIs for programmatic administration.

Examples of application-related definitions that are independent of the domain environment are
the various Jakarta EE application components configurations, such as EAR, WAR, JAR, RAR
files, and JMS and JDBC modules. The application components are originally developed and
packaged by an application development team, and may contain optional programs (compiled
Java code) and respective configuration information (also called descriptors, which are mostly
stored as XML files). In the case of JMS and JDBC modules, however, there are no compiled
Java programs involved. These pre-packaged applications are given to WebLogic Server
administrators for deployment in a WebLogic domain.

The process of deploying an application links the application components to the environment-
specific resource definitions, such as which server instances should host a given application
component (targeting), and the WebLogic persistent store to use for persisting JMS messages.

After the initial deployment is completed, an administrator has only limited control over
deployed applications. For example, administrators are only allowed to ensure the proper life
cycle of these applications (deploy, undeploy, redeploy, remove, so on.) and to tune the
parameters, such as increasing or decreasing the number of instances of any given application
to satisfy the client needs. Other than life cycle and tuning, any other modification to these
applications must be completed by the application development team.

What are JMS Configuration Resources?
JMS configuration resources, such as destinations and connections factories, are stored
outside of the WebLogic domain as module descriptor files. These files are defined by XML
documents that conform to the weblogic-jms.xsd schema.

JMS modules do not include JMS server definitions, which are stored in the WebLogic domain
configuration file, as described in Overview of JMS Servers.

You create and manage JMS resources either as system modules, similar to the way they were
managed prior to this release, or as application modules. JMS application modules are a
WebLogic-specific extension of Jakarta EE modules and can be deployed either with a Jakarta
EE application (as a packaged resource) or as standalone modules that can be made globally
available. See Overview of JMS Modules.

Overview of JMS Servers
JMS servers are environment-related configuration entities that act as management containers
for destination resources within JMS modules that are targeted to specific JMS servers.

Chapter 2
What are JMS Configuration Resources?

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 9

A JMS server's primary responsibility for its targeted destinations is to maintain information on
what persistent store is used for any persistent messages that arrive on the destinations, and
to maintain the states of durable subscribers created on the destinations. As a container for
targeted destinations, any configuration or runtime changes to a JMS server can affect all of its
destinations.

JMS servers persist in the domain's config.xml file and multiple JMS servers can be
configured on the various WebLogic Server instances in a cluster, as long as they are uniquely
named. Client applications use either the JNDI tree or the java:/comp/env naming context to
look up a connection factory and create a connection to establish communication with a JMS
server. Each JMS server handles requests for all targeted module destinations. Requests for
destinations not handled by a JMS server are forwarded to the appropriate server instance.

Overview of JMS Modules
JMS modules are application-related definitions that are independent of the domain
environment. You create and manage JMS resources either as system modules or as
application modules.

JMS system modules are typically configured using the WebLogic Remote Console or
WebLogic Scripting Tool (WLST), which adds a reference to the module in the domain's
config.xml file. JMS application modules are a WebLogic-specific extension of Jakarta EE
modules and can be deployed either with a Jakarta EE application (as a packaged resource) or
as stand-alone modules that can be made globally available.

The main difference between system modules and application modules is in the ownership.
System modules are owned and modified by the WebLogic administrator and are available to
all applications. Application modules are owned and modified by the WebLogic developers,
who package the JMS resource modules with the application's EAR file.

With modular deployment of JMS resources, you can migrate your application and the required
JMS configuration from environment to environment, such as from a testing environment to a
production environment, without opening an enterprise application file (such as an EAR file) or
a standalone JMS module, and without extensive manual JMS reconfiguration.

These sections describe the different types of JMS modules and the resources that they can
contain:

JMS System Modules
WebLogic Administrators typically use the WebLogic Remote Console or the WebLogic
Scripting Tool (WLST) to create and deploy (target) JMS modules, and to configure the
module's configuration resources, such as queues, and topic connection factories.

JMS modules that you configure this way are considered system modules. JMS system
modules are owned by the administrator, who can at any time add, modify, or delete resources.
System modules are globally available for targeting to servers and clusters configured in the
domain, and therefore are available to all applications deployed on the same targets and to
client applications.

When you create a JMS system module WebLogic Server creates a JMS module file in the
config\jms subdirectory of the domain directory, and adds a reference to the module in the
domain's config.xml file as a JMSSystemResource element. This reference includes the path to
the JMS system module file and a list of target servers and clusters on which the module is
deployed.

Chapter 2
Overview of JMS Modules

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 9

The JMS module conforms to the weblogic-jms.xsd schema, as described in JMS Schema.
System modules are also accessible through WebLogic Management Extension (JMX) utilities,
as a JMSSystemResourceMBean. The naming convention for JMS system modules is
MyJMSModule-jms.xml.

Figure 2-2 shows an example of a JMS system module listing in the domain's config.xml file
and the module that it maps to in the config\jms directory.

Figure 2-2 Reference from config.xml to a JMS System Module

For more information about configuring JMS system modules, see Configuring Basic JMS
System Resources.

JMS Application Modules (Deprecated)
JMS configuration resources can also be managed as deployable application modules, similar
to standard Jakarta EE descriptor-based modules. JMS Application modules can be deployed
either with a Jakarta EE application as a packaged module, where the resources in the module
are optionally made available to only the enclosing application (i.e., application-scoped), or as
a standalone module that provides global access to the resources defined in that module.

Application developers typically create application modules in an enterprise-level IDE or
another development tool that supports editing XML descriptor files, then package the JMS
modules with an application and pass the application to a WebLogic Administrator to deploy,
manage, and tune.

As discussed in Domain Configuration, JMS application modules do not contain compiled Java
programs as part of the package, enabling administrators or application developers to create
and manage JMS resources on demand.

Chapter 2
Overview of JMS Modules

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 9

For more information about configuring JMS application modules, see Configuring JMS
Application Modules for Deployment.

Note

WebLogic JMS Application Modules for Deployment are deprecated, including
packaged and standalone modules. Support for JMS Application Modules will be
removed in a future release. Oracle recommends creating required JMS configuration
using system modules.

Comparing JMS System Modules and Application Modules
A key to understanding WebLogic JMS configuration and management is that who creates a
JMS resource and how a JMS resource is created determine how a resource is deployed and
modified. Both WebLogic administrators and programmers can configure JMS modules.

In contrast to system modules, deployed application modules are owned by the developer who
created and packaged the module, rather than the administrator who deploys the module,
which means that the administrator has more limited control over deployed resources. When
deploying an application module, an administrator can change resource properties that were
specified in the module, but the administrator cannot add or delete resources. As with other
Jakarta EE modules, deployment configuration changes for a application module are stored in
a deployment plan for the module, leaving the original module untouched.

Table 2-1 lists the JMS module types and how they can be configured and modified.

Table 2-1 JMS Module Types and Configuration and Management Options

Module Type Created
with

Dynamically
Add/Remove
Modules

Modify
with JMX
Remotely

Modify with
Deployment
Tuning Plan
(non-remote)

Modify with
Remote
Console

Scoping Default Sub
module
Targeting

System Remote
Console or
WLST

Yes Yes No Yes using JMX Global and
local

No

Application IDE or XML
editor

No must be
redeployed

No Yes using
deployment plan

Yes using
deployment
plan

Global, local,
and
application

Yes

For more information about preparing JMS application modules for deployment, see
Configuring JMS Application Modules for Deployment and Deploying Applications and Modules
with weblogic.deployer in Deploying Applications to Oracle WebLogic Server.

Configurable JMS Resources in Modules
The following configuration resources are defined as part of a system module or an application
module:

• Queue and topic destinations, as described in Queue and Topic Destination Configuration.

• Connection factories, as described in Connection Factory Configuration.

• Templates, as described in JMS Template Configuration.

• Destination keys, as described in Destination Key Configuration.

Chapter 2
Overview of JMS Modules

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 9

• Quota, as described in Quota Configuration.

• Distributed destinations, as described in Configuring Distributed Destination Resources.

• Foreign servers, as described in Configuring Foreign Server Resources to Access Third-
Party JMS Providers.

• JMS store-and-forward (SAF) configuration items, as described in JMS Store-and-Forward
(SAF).

All other JMS environment-related resources must be configured by the administrator as
domain configuration resources. This includes:

• JMS servers (required), as described in Overview of JMS Servers.

• Store-and-Forward agents (optional), as described in JMS Store-and-Forward (SAF).

• Path service (optional), as described in Path Service.

• Messaging bridges (optional), as described in Messaging Bridges.

• Persistent stores (optional), as described in Persistent Stores.

For more information about configuring JMS system modules, see Configuring Basic JMS
System Resources.

JMS Schema
In support of the modular configuration model for JMS resources, Oracle provides a schema
for WebLogic JMS objects: weblogic-jms.xsd. When you create JMS resource modules
(descriptors), the modules must conform to the schema. IDEs and other tools can validate JMS
resource modules based on this schema.

The weblogic-jms.xsd schema is available online at http://xmlns.oracle.com/weblogic/
weblogic-jms/1.4/weblogic-jms.xsd.

JMS Interop Modules (Deprecated)

Note

JMS Interop Modules are deprecated in WebLogic Server 12.1.1. If you have a
module named interop-jms.xml in your config.xml, convert it to a regular system
module. See JMS System Module Configuration.

A JMS interop module is a special type of JMS system resource module. It is created and
managed as a result of a JMS configuration upgrade for this release, and/or through the use of
WebLogic JMX MBean APIs from prior releases.

JMS interop modules differ in many ways from JMS system resource modules, as follows.

• The JMS module descriptor is always named interop-jms.xml and the file exists in the
domain's config\jms directory.

• Interop modules are owned by the system, as opposed to other JMS system resource
modules, which are owned mainly by an administrator.

• Interop modules are targeted everywhere in the domain.

• The JMS resources that exist in a JMS interop module can be accessed and managed
using deprecated JMX (MBean) APIs.

Chapter 2
Overview of JMS Modules

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 9

http://xmlns.oracle.com/weblogic/weblogic-jms/1.4/weblogic-jms.xsd
http://xmlns.oracle.com/weblogic/weblogic-jms/1.4/weblogic-jms.xsd

• The MBean of a JMS interop module is JMSInteropModuleMBean, which is a child MBean of
DomainMBean, and can be looked up from DomainMBean like any other child MBean in a
domain.

A JMS interop module can also implement many of the WebLogic Server 9.x or later features,
such as Message Unit-of-Order and destination quota. However, it cannot implement the
following WebLogic Server 9.x or later features:

• Uniform distributed destination resources

• JMS Store-and Forward resources

Note

Use of any new features in the current release in a JMS interop module may
possibly break compatibility with JMX clients prior to WebLogic Server 9.x.

Other Environment-Related System Resources for WebLogic
JMS

In addition to JMS Servers and System Modules, an administrator may also need to configure
one of the following artifacts.

Persistent Stores
The WebLogic persistent store provides a built-in, high-performance storage solution for all
subsystems and services that require persistence. For example, it can store persistent JMS
messages or temporarily store messages sent using the Store-and-Forward feature. Each
WebLogic Server instance in a domain has a default persistent store that requires no
configuration and can be simultaneously used by subsystems that prefer to use the system's
default storage. However, you can also configure a dedicated file-based store or JDBC
database-accessible store to suit your JMS implementation. For more information about
configuring a persistent store for JMS, see Using the WebLogic Persistent Store in
Administering Server Environments for Oracle WebLogic Server.

JMS Store-and-Forward
The SAF service enables WebLogic Server to deliver messages reliably between applications
that are distributed across WebLogic Server instances. For example, with the SAF service, an
application that runs on or connects to a local WebLogic Server instance can reliably send
messages to a destination that resides on a remote server. If the destination is not available at
the moment that the messages are sent, either because of network problems or system
failures, then the messages are saved on a local server instance, and are forwarded to the
remote destination as soon as it becomes available.

JMS modules use the SAF service to enable local JMS message producers to reliably send
messages to remote JMS queues or topics. See Configuring SAF for JMS Messages in
Administering the Store-and-Forward Service for Oracle WebLogic Server.

Chapter 2
Other Environment-Related System Resources for WebLogic JMS

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 9

Path Service
The WebLogic Server path service is a persistent map that can be used to store the mapping
of a group of messages to a messaging resource by pinning messages to a distributed queue
member or store-and-forward path. For more information about configuring a path service, see
Using the WebLogic Path Service.

Messaging Bridges
The Messaging Bridge lets you to configure a forwarding mechanism between any two
messaging products, providing interoperability between separate implementations of WebLogic
JMS, or between WebLogic JMS and another messaging product. The messaging bridge
instances and bridge source and target destination instances persist in the domain's
config.xml file. See Understanding the Messaging Bridge in Administering the WebLogic
Messaging Bridge for Oracle WebLogic Server.

Chapter 2
Other Environment-Related System Resources for WebLogic JMS

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 9

3
Configuring Basic JMS System Resources

Learn how to configure and manage basic JMS system resources for Oracle WebLogic Server,
such as JMS servers and JMS system modules.

This chapter includes the following sections:

Methods for Configuring JMS System Resources
WebLogic Administrators can use multiple methods to configure and deploy (target) JMS
resources. Methods include the WebLogic Remote Console, the WebLogic Scripting Tool
(WLST), and so on.

You can use the following tools to configure JMS system resources:

• The WebLogic Remote Console lets you to configure, modify, and target JMS-related
resources:

– JMS servers, as described in JMS Server Configuration.

– JMS system modules, as described in JMS System Module Configuration.

– Store-and-Forward services for JMS, as described in Configuring SAF for JMS
Messages in Administering the Store-and-Forward Service for Oracle WebLogic
Server.

– Persistent stores, as described in Using the WebLogic Persistent Store in
Administering Server Environments for Oracle WebLogic Server.

• WebLogic Scripting Tool (WLST) is a command-line scripting interface that allows system
administrators and operators to initiate, manage, and make persistent WebLogic Server
configuration changes interactively or by using an executable script. See Using WLST to
Manage JMS Servers and JMS System Module Resources.

• Java Management Extensions (JMX) is the solution for monitoring and managing
resources on a network. See Overview of WebLogic Server Subsystem MBeans in
Developing Custom Management Utilities Using JMX for Oracle WebLogic Server.

• The JMSModuleHelper extension class contains methods to create and manage JMS
module configuration resources in a given module. See Using JMS Module Helper to
Manage Applications in Developing JMS Applications for Oracle WebLogic Server or the
JMSModuleHelper Class Javadoc.

Note

For information about configuring and deploying JMS application modules in an
enterprise application, see Configuring JMS Application Modules for Deployment.

• WebLogic Server REST APIs let you to create and deploy new JMS system resource and
link it up to the cluster. See Configuring System Resources in Administering Oracle
WebLogic Server with RESTful Management Services.

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 17

Main Steps for Configuring Basic JMS System Resources
Use the WebLogic Remote Console to configure a persistent store, a JMS server, and a basic
JMS system module.

For a high level overview, see Messaging in the Oracle WebLogic Remote Console Online
Help. For instructions about using the WebLogic Remote Console to manage a WebLogic
Server domain, see Domain Configuration.

WebLogic JMS provides default values for some configuration options; you must provide
values for all others. After WebLogic JMS is configured, applications can send and receive
messages using the JMS API. For information on tuning the default configuration parameters,
see Tuning WebLogic JMS in Tuning Performance of Oracle WebLogic Server or JMSBean in
the MBean Reference for Oracle WebLogic Server.

1. If you require persistent messaging, then use one of the following storage options:

• To store persistent messages in a file-based store, you can simply use the server's
default persistent store, which requires no configuration on your part. However, you
can also create a dedicated file store for JMS. See Creating a Custom (User-Defined)
File Store in the Administering the WebLogic Persistent Store.

• To store persistent messages in a JDBC-accessible database, you must create a
JDBC store. See Using a JDBC Store in Administering the WebLogic Persistent Store.

2. Configure a JMS server to manage the messages that arrive in the queue and topic
destinations in a JMS system module. See Overview of JMS Servers.

3. Configure a JMS system module to contain your destinations, as well as other resources,
such as quotas, templates, destination keys, distributed destinations, and connection
factories. See JMS System Modules.

4. Before creating any queues or topics in your system module, you can optionally create
other JMS resources in the module that can be referenced from within a queue or topic,
such as JMS templates, quota settings, and destination sort keys:

• Define quota resources for your destinations. Destinations can be assigned their own
quotas; multiple destinations can share a quota; or destinations can share the JMS
server's quota. See Quota Configuration.

• Create JMS templates, which let you define multiple destinations with similar option
settings. See JMS Template Configuration.

• Configure destination keys to create custom sort orders of messages as they arrive in
a destination. See Destination Key Configuration.

After these resources are configured, you can select them when you configure your queue
or topic resources.

5. Configure a queue or topic destination or both in your system module:

• Configure a standalone topic for the delivery of messages to multiple recipients
(publish/subscribe). See Queue and Topic Destination Configuration.

• Configure a standalone queue for the delivery of messages to exactly one recipient
(point-to-point). See Queue and Topic Destination Configuration.

6. If the default connection factories provided by WebLogic Server are not suitable for your
application, then create a connection factory to enable your JMS clients to create JMS
connections.

Chapter 3
Main Steps for Configuring Basic JMS System Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 17

For more information about using the default connection factories, see Using the Default
Connection Factories Defined by WebLogic Server. For more information about configuring
a Connection Factory, see Connection Factory Configuration Parameters.

WebLogic JMS provides default values for some configuration options; you must provide
values for all others. After WebLogic JMS is configured, applications can send and receive
messages using the JMS API.

Advanced Resources in JMS System Modules
Beyond basic JMS resource configuration, you can add these advanced resources to a JMS
system module:

• Create a Uniform Distributed Destination resource to configure a set of queues or topics
that distributed across the cluster, with each member belonging to a separate JMS server
in the cluster. See Configuring Distributed Destination Resources.

• Create a JMS Store-and-Forward resource to reliably forward messages to remote
destinations, even when a destination is unavailable at the time that message is sent, as
described in Configuring SAF for JMS Messages in Administering the Store-and-Forward
Service for Oracle WebLogic Server.

• Create a Foreign Server resource to reference third-party JMS providers within a local
WebLogic Server JNDI tree. See Configuring Foreign Server Resources to Access Third-
Party JMS Providers.

JMS Configuration Naming Requirements
Within a domain, each server, machine, cluster, virtual host, and any other resource type must
have a unique name and cannot use the same name as the domain. This unique naming rule
also applies to all configuration objects, including configurable JMS objects that can be
configured as JMS servers, JMS system modules, and JMS application modules.

The resource names inside JMS modules must be unique per resource type (for example,
queues, topics, and connection factories). However, two different JMS modules can have a
resource of the same type that can share the same name.

The JNDI name of any bindable JMS resource (excluding quotas, destination keys, and JMS
templates) across JMS modules must use the following naming requirements:

• Global names must be unique across the cluster.

• Local names must be unique across the server.

• If there is a naming conflict, then the JMS resource is not bound into the JNDI tree. If there
is any doubt, then make the JNDI name globally unique.

Note

WebLogic Domain, WebLogic Server, and WebLogic JMS Server names have
additional unique naming requirements when two different WebLogic domains
interoperate with each other, or when a client communicates with more than one
WebLogic domain. Minimally, the two associated domains must have different domain
names, and, if global transactions span the domains, then stores should not share the
same name even if they are in different domains.

Chapter 3
JMS Configuration Naming Requirements

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 17

JMS Server Configuration
JMS destinations are configured in JMS modules and are targeted to JMS servers which are
configured separately.

A JMS server's primary responsibility for its targeted destinations is to maintain information
about what persistent store is used for any persistent messages that arrive on the destinations,
and to maintain the states of durable subscribers created on the destinations. As a container
for targeted destinations, any configuration or run-time changes to a JMS server can affect all
of its destinations.

Note

A sample examplesJMSServer configuration is provided with the product in the
Examples Server. For more information about developing basic WebLogic JMS
applications, refer to Developing a Basic JMS Application in Developing JMS
Applications for Oracle WebLogic Server.

JMS server configuration covers the following information:

JMS Server Configuration Parameters
The WebLogic Remote Console lets you configure, modify, target, and delete JMS server
resources in a system module. See Create a JMS Server in the Oracle WebLogic Remote
Console Online Help.

You can configure the following parameters for JMS servers:

• General configuration parameters, including persistent storage, message paging defaults,
a template to use when your applications create temporary destinations, and expired
message scanning.

• Threshold and quota parameters for destinations in JMS system modules targeted to a
particular JMS server.

For more information about configuring messages and bytes quota for JMS servers and
destinations, see Defining Quota in Tuning Performance of Oracle WebLogic Server.

• Message logging parameters for a JMS server's log file, which contains the basic events
that a JMS message traverses, such as message production, consumption, and removal.

For more information about configuring message life cycle logging on JMS servers, see
Message Life Cycle Logging.

• Destination pause and resume controls that lets you pause message production, message
insertion (in-flight messages), and message consumption operations on all the destinations
hosted by a single JMS Server.

For more information about pausing message operations on destinations, see Controlling
Message Operations on Destinations.

Some JMS server options can be dynamically configured. When options are modified at
runtime, only incoming messages are affected; stored messages are not affected. For more
information about the default values for all JMS server options, see JMSServerBean and
JMSServerRuntimeMBean in MBean Reference for Oracle WebLogic Server.

Chapter 3
JMS Server Configuration

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 17

JMS Server Targeting
You can target a JMS server to either an independent WebLogic Server instance or to a cluster
(dynamic or mixed), or to a migratable target server where it will be deployed.

• Weblogic Server instance — The server target where you want to deploy the JMS server.
When a target WebLogic Server starts, the JMS server starts as well. If no target
WebLogic Server is specified, then the JMS server does not start.

• Cluster-Targeted JMS — You can target JMS service artifacts such as JMS Server, SAF
Agents, Persistent Stores, and Path Service to a cluster.

Note

Oracle recommends using Cluster targeting with new Store configuration that
supports Automatic Service Migration, instead of using Migratable Targets. See
Simplified JMS Cluster and High Availability Enhancements.

• Migratable Target — Migratable targets define a set of WebLogic Server instances in a
cluster that can potentially host an exactly-once service, such as a JMS server. When a
migratable target server starts, the JMS server boots as well on the specified user-
preferred server in the cluster. However, a JMS server and all of its destinations can be
migrated to another server within the cluster in response to a server failure or due to a
scheduled migration for system maintenance. For more information about configuring a
migratable target for JMS services, see Migration of JMS-related Services.

For JMS Server targeting best practices, see Targeting Best Practices.

JMS Server Monitoring Parameters
You can monitor runtime statistics for active JMS servers, destinations, and server session
pools. See Monitor a JMS Server in the Oracle WebLogic Remote Console Online Help.

• Monitor all active JMS servers — A table shows all instances of the JMS server deployed
across the WebLogic Server domain.

• Monitor all active JMS destinations — A table displays showing all active JMS destinations
for the current domain.

• Monitor all active JMS session pool runtimes — A table displays showing all active JMS
session pools for the current domain.

For more information about monitoring JMS objects, see Monitoring JMS Statistics and
Managing Messages.

Chapter 3
JMS Server Configuration

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 17

Session Pools and Connection Consumers

Note

Session pool and connection consumer configuration objects were deprecated in
WebLogic Server 9.x. They are not a required part of the Jakarta EE specification, do
not support JTA user transactions, and are largely superseded by Message-Driven
Beans (MDBs), which are a required part of Jakarta EE. For more information on
designing MDBs, see Developing Message-Driven Beans for Oracle WebLogic Server.

Server session pools enable an application to process messages concurrently. After you define
a JMS server, you can configure one or more session pools for each JMS server. Some
session pool options can be dynamically configured, but the new values do not take effect until
the JMS server is restarted. See Defining Server Session Pools in Developing JMS
Applications for Oracle WebLogic Server.

Connection consumers are queues (point-to-point) or topics (publish/subscribe) that retrieve
server sessions and process messages. After you define a session pool, configure one or
more connection consumers for each session pool. See Defining Server Session Pools in
Developing JMS Applications for Oracle WebLogic Server.

JMS System Module Configuration
JMS system modules are owned by the administrator, who can delete, modify, or add JMS
system resources at any time. The configuration resources described as part of a JMS system
module are queue and topic destinations, connection factories, templates, destination keys,
and quotas.

With the exception of standalone queue and topic resources that must be targeted to a single
JMS server, the connection factory, distributed destination, foreign server, and JMS SAF
destination resources in system modules can be made globally available by targeting them to
server instances and clusters configured in the WebLogic domain. These resources are
therefore available to all applications deployed on the same targets and to client applications.
The naming convention for JMS system modules is MyJMSModule-jms.xml.

The WebLogic Remote Console lets you configure, modify, target, monitor, and delete JMS
system modules in your environment. For information about JMS system module
configuration , see Configure Resources for JMS System Modules in the Oracle WebLogic
Remote Console Online Help.

You define the following "basic" configuration resources as part of a JMS system module:

• Queue and topic destinations, as described in Queue and Topic Destination Configuration.

• Connection factories, as described in Connection Factory Configuration.

• Templates, as described in JMS Template Configuration.

• Destination keys, as described in Destination Key Configuration.

• Quota, as described in Quota Configuration.

You can also define the following "advanced" clustering configuration resources as part of a
JMS system module:

Chapter 3
JMS System Module Configuration

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 17

• Foreign servers, as described in Configuring Foreign Server Resources to Access Third-
Party JMS Providers.

• Distributed destinations, as described in Configuring Distributed Destination Resources.

• JMS Store-and-Forward configurations, as described in Configuring SAF for JMS
Messages in Administering the Store-and-Forward Service for Oracle WebLogic Server.

A sample examples-jms module is provided with the WLS Code Examples. For more
information about starting the Examples server, see Starting Instances of WebLogic Server in
Administering Server Startup and Shutdown for Oracle WebLogic Server.

For information about alternative methods for configuring JMS system modules, such as using
the WebLogic Scripting Tool (WLST), see Methods for Configuring JMS System Resources.

JMS System Module and Resource Subdeployment Targeting
JMS system modules must be targeted to one or more WebLogic Server instances or to a
cluster. JMS resources that can be targeted and are defined in a system module must also be
targeted to JMS server or WebLogic Server instances within the scope of a parent module's
targets. Additionally, JMS resources that can be targeted and are inside a system module can
be further grouped into subdeployments during the configuration or targeting process to
provide further loose coupling of JMS resources in a WebLogic domain.

Default Targeting
When using the WebLogic Remote Console to configure resources in a JMS system module,
you can choose whether to simply accept the parent module's default targets or to proceed to
an advanced targeting page where you can use the subdeployment mechanism for targeting
the resource. However, standalone queue and topic resource types cannot use default targets
and must be targeted to a subdeployment that is targeted to a single JMS server and it is a
best practice to use subdeployment targeting instead of default targeting for all destination
types regardless.

When you select the default targeting mechanism, in the WebLogic Remote Console, its target
status is reflected by the Default Targeting Enabled option on the resource type's General
page.

For more information about configuring JMS system resources, see Configure Resources for
JMS System Modules in the Oracle WebLogic Remote Console Online Help.

Note

Default targeting is not recommended for any type of destination. Instead, use
subdeployment targeting. See Targeting Best Practices.

Advanced (Subdeployment) Targeting
When targeting standalone queue and topic resources, or when bypassing the default targeting
mechanism for other resource types, you must use advanced targeting (also known as
subdeployment targeting). A subdeployment is a mechanism by which system module
resources that can be targeted (such as standalone destinations, distributed destinations, and
connection factories) are grouped and targeted to specific server resources within a system
module's targeting scope.

Chapter 3
JMS System Module Configuration

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 17

Although a JMS system module can be targeted to a wide array of WebLogic Server instances
in a domain, a module's standalone queues or topics can be targeted only to a single JMS
server. Connection factories, uniform distributed destinations (UDDs), and foreign servers can
be targeted to one or more JMS servers, one or more WebLogic Server instances, or to a
cluster.

Therefore, standalone queues or topics cannot be associated with a subdeployment if other
members of the subdeployment are targeted to multiple JMS servers, which would be the
case, for example, if a connection factory is targeted to a cluster that is hosting JMS servers in
a domain. UDDs, however, can be associated with such subdeployments because the purpose
of UDDs is to distribute its members to multiple JMS servers in a domain.

Table 3-1 shows the valid targeting options for JMS system resource subdeployments:

Table 3-1 JMS System Resource Subdeployment Targeting

JMS Resource Valid Targets

Queue JMS server

Topic JMS server

Connection factory JMS server(s) | server instance(s) | cluster

Uniform distributed queue JMS server(s) | server instance(s) | cluster

Uniform distributed topic JMS server(s) | server instance(s) | cluster

Foreign server JMS server(s) | server instance(s) | cluster

SAF imported destinations SAF Agent(s) | server instance(s) | cluster

Note

Connection factory, uniform distributed destination, foreign server, and SAF imported
destination resources can also be configured to default to their parent module's
targets, as explained in Default Targeting.

Default targeting, server instance targeting, and cluster targeting is not recommended
for any type of destination (including non-distributed destinations, distributed
destinations, or SAF imported destinations). Instead, use a subdeployment target that
contains JMS servers, or, for SAF imported destinations, that contains contains SAF
agent(s). See Targeting Best Practices.

An example of a simple subdeployment for standalone queues or topics would be to group
them with a connection factory so that these resources are collocated on a specific JMS
server, which can help reduce network traffic. Also, if the targeted JMS server should be
migrated to another WebLogic Server instance, the connection factory and all its connections
also migrate along with the JMS server's destinations.

For example, if a system module named jmssysmod-jms.xml, is targeted to a WebLogic Server
instance that has two configured JMS servers: jmsserver1 and jmsserver2, and you want to
collocate two queues and a connection factory on only jmsserver1, then you can group the
queues and connection factory in the same subdeployment, named jmsserver1group, to
ensure that these resources are always linked to jmsserver1, provided the connection factory
is not already targeted to multiple JMS servers.

<weblogic-jms xmlns="http://xmlns.oracle.com/weblogic/weblogic-jms">
 <connection-factory name="connfactory1">

Chapter 3
JMS System Module Configuration

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 17

 <sub-deployment-name>jmsserver1group</sub-deployment-name>
 <jndi-name>cf1</jndi-name>
 </connection-factory>
 <queue name="queue1">
 <sub-deployment-name>jmsserver1group</sub-deployment-name>
 <jndi-name>q1</jndi-name>
 </queue>
 <queue name="queue2">
 <sub-deployment-name>jmsserver1group</sub-deployment-name>
 <jndi-name>q2</jndi-name>
 </queue>
</weblogic-jms>

And the following is how the jmsserver1group subdeployment targeting would look in the
domain's configuration file:

 <jms-system-resource>
 <name>jmssysmod-jms</name>
 <target>wlsserver1</target>
 <sub-deployment>
 <name>jmsserver1group</name>
 <target>jmsserver1</target>
 </sub-deployment>
 <descriptor-file-name>jms/jmssysmod-jms.xml</descriptor-file-name>
 </jms-system-resource>

For information about deploying standalone JMS modules, see Deploying JDBC, JMS, and
WLDF Application Modules in Deploying Applications to Oracle WebLogic Server.

Specifying the Unmapped Resource Reference Mode for
Connection Factories

When you declare a JMS connection factory in the EJB or Servlet using the @Resource
annotation or the resource-ref element in the deployment descriptors, and if this resource
reference is not mapped to a JNDI name directly by a lookup attribute, a mappedName attribute,
or a jndi-name, then WebLogic Server allows you to specify the behavior of such unmapped
resource references to JMS connection factories.

If a JNDI name is mapped to the resource reference, then the unmapped resource reference
mode does not take effect and the resource reference either resolves to the specified object in
the JNDI or generates an exception, javax.naming.NameNotFoundException.

For more information about resource references, see Enhanced Support for Using WebLogic
JMS with EJBs and Servlets in Developing JMS Applications for Oracle WebLogic Server

The value that you specify for the Connection Factory Unmapped Resource Reference Mode
parameter for a server determines the behavior of resource references to JMS connection
factories. Possible values are:

• ReturnDefault: If the resource reference does not match the local JNDI name of a
configured foreign JMS provider or if it does not match with an object bound to the JNDI
tree, then it returns java:comp/DefaultJMSConnectionFactory, which is the default JMS
connection factory defined by the Jakarta EE 9.1 specification. See Using the Default JMS
Connection Factory Defined by Jakarta EE 9.1.

• FailSafe: The resource reference resolves to an object bound to the JNDI tree with the
same name as the resource reference name, if one can be found in JNDI. Otherwise, it
throws an exception, javax.naming.NameNotFoundException.

Chapter 3
Specifying the Unmapped Resource Reference Mode for Connection Factories

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 17

Note

Oracle recommends configuring the reference mode to FailSafe. See Configure JMS
Resources.

For more information about the values for the unmapped resource reference mode, see the
definition of the JMSConnectionFactoryUnmappedResRefMode attribute in MBean Reference for
Oracle WebLogic Server.

Connection Factory Configuration
Connection factories are resources that enable JMS clients to create JMS connections.

A connection factory supports concurrent use, enabling multiple threads to access the object
simultaneously. WebLogic JMS provides pre-configured default connection factories that can
be enabled or disabled on a per-server basis, as described in Using the Default Connection
Factories Defined by WebLogic Server.

Otherwise, you can configure one or more connection factories to create connections with
predefined options that better suit your application. Within each JMS module, connection
factory resource names must be unique. And, all connection factory JNDI names in any JMS
module must be unique across an entire WebLogic domain, as defined in JMS Configuration
Naming Requirements. WebLogic Server adds them to the JNDI space during startup, and the
application then retrieves a connection factory using the WebLogic JNDI APIs.

You can establish cluster-wide, transparent access to JMS destinations from any server in the
cluster, either by using the default connection factories for each server instance, or by
configuring one or more connection factories and targeting them to one or more server
instances in the cluster. This way, each connection factory can be deployed on multiple
WebLogic Server instances. For more information on configuring JMS clustering, see
Configuring WebLogic JMS Clustering.

Using the Default JMS Connection Factory Defined by Jakarta EE 9.1
WebLogic Server supports the default JMS connection factory defined by the Jakarta EE 9.1
platform specification. This default connection factory can be looked up using the java:comp/
DefaultJMSConnectionFactory JNDI name or it can be accessed using the @Resource
annotation. The java:comp/DefaultJMSConnectionFactory JNDI name resolves to the
equivalent of the default weblogic.jms.XAConnectionFactory.

Note

The lookup of DefaultJMSConnectionFactory using @Resource and
Context.lookup() always returns pooled and wrapped connection factory, to ensure
that the resource provides adequate performance and also to ensure that the Jakarta
EE restriction on a server-side JMS API usage is properly enforced.

The Jakarta EE 9.1 default connection factory can be accessed only from within a Jakarta EE
9.1 application unlike the default connection factories defined by WebLogic Server. The
Jakarta EE 9.1 connection factory cannot be accessed from standalone clients except by using
the application client container facility.

Chapter 3
Connection Factory Configuration

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 17

Note

• Oracle recommends using custom connection factories instead of using default
connection factories because the default connection factories cannot be tuned.
Custom connection factories that can be tuned often prove useful for tuning
applications even after the application is in production

• A WebLogic Server administrator cannot disable the Default JMS Connection
Factory per WebLogic Server.

See Look Up a Connection Factory in JNDI in Developing JMS Applications for Oracle
WebLogic Server.

Using Default Connection Factories Defined by WebLogic Server
WebLogic Server defines two default connection factories, which can be looked up using the
following JNDI names:

• weblogic.jms.ConnectionFactory

• weblogic.jms.XAConnectionFactory

You only need to configure a new connection factory if the pre-configured settings of the
default factories are not suitable for your application. For more information on using the default
connection factories, see Understanding WebLogic JMS in Developing JMS Applications for
Oracle WebLogic Server.

The main difference between the pre-configured settings for the default connection factories
and a user-defined connection factory is the default value for the "XA Connection Factory
Enabled" option to enable JTA transactions. For more information about the XA Connection
Factory Enabled option, and to see the default values for the other connection factory options,
see JMSConnectionFactoryBean in the MBean Reference for Oracle WebLogic Server.

Also, using default connection factories means that you have no control over targeting the
WebLogic Server instances where the connection factory may be deployed. However, you can
enable and or disable the default connection factories on a per-WebLogic Server basis.

Note

Oracle recommends using custom connection factories instead of default connection
factories because default connection factories are not tunable. Custom connection
factory tunables often prove useful for tuning applications even after the application is
in production.

Connection Factory Configuration Parameters
The WebLogic Remote Console lets you to configure, modify, target, and delete connection
factory resources in a system module.

1. In the Edit Tree, go to Services, then JMS System Resources, then
myJMSSystemResource.

2. From the Navigation Tree, as children of myJMSSystemResource, select the Connection
Factories you want to configure.

Chapter 3
Connection Factory Configuration

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 17

You can modify the following parameters for connection factories:

• General configuration parameters, including modifying the default client parameters,
default message delivery parameters, load balancing parameters, unit-of-order
parameters, and security parameters.

• Transaction parameters, which enable you to define a value for the transaction time-out
option and to indicate whether an XA queue or XA topic connection factory is returned, and
whether the connection factory creates sessions that are JTA aware.

Note

When selecting the XA Connection Factory Enabled option to enable JTA
transactions with JDBC stores, you must verify that the configured JDBC data
source uses a non-XA JDBC driver. This limitation does not remove the XA
capabilities of layered subsystems that use JDBC stores. For example, WebLogic
JMS is fully XA-capable regardless of whether it uses a file store or any JDBC
store.

• Flow control parameters, which enable you to tell a JMS server or destination to slow down
message producers when it determines that it is becoming overloaded.

Some connection factory options can be dynamically configured. When options are modified at
runtime, only incoming messages are affected; stored messages are not affected. For more
information about the default values for all connection factory options, see
JMSConnectionFactoryBean in MBean Reference for Oracle WebLogic Server.

Connection Factory Targeting
You can target connection factories to one or more JMS server, to one or more WebLogic
Server instances, or to a cluster.

• JMS server(s) — You can target connection factories to one or more JMS servers along
with destinations. You can also group a connection factory with standalone queues or
topics in a subdeployment targeted to a specific JMS server, which guarantees that all
these resources are collocated to avoid extra network traffic. Another advantage of such a
configuration would be if the targeted JMS server needs to be migrated to another
WebLogic Server instance, then the connection factory and all its connections also migrate
along with the JMS server destinations. However, when standalone queues or topics are
members of a subdeployment, a connection factory can be targeted only to the same JMS
server.

• WebLogic Server instance(s) — To establish transparent access to JMS destinations from
any server in a domain, you can target a connection factory to multiple WebLogic Server
instances simultaneously.

• Cluster — To establish cluster wide, transparent access to JMS destinations from any
server in a cluster, you can target a connection factory to all server instances in the cluster,
or even to specific servers within the cluster.

For more information about JMS system module subdeployment targeting, see JMS System
Module and Resource Subdeployment Targeting. For information on connection factory
targeting best practices, see Targeting Best Practices.

Chapter 3
Connection Factory Configuration

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 17

Queue and Topic Destination Configuration
A JMS destination identifies a queue (point-to-point) or topic (publish/subscribe) resource
within a JMS module. Each queue and topic resource is targeted to a specific JMS server.

A JMS server's primary responsibility for its targeted destinations is to maintain information on
what persistent store is used for any persistent messages that arrive on the destinations, and
to maintain the states of durable subscribers created on the destinations.

You can optionally create other JMS resources in a module that can be referenced from within
a queue or topic, such as JMS templates, quota settings, and destination sort keys:

• Quota : Assign quotas to destinations; multiple destinations can share a quota; or
destinations can share the JMS server's quota. See Defining Quota in Tuning Performance
of Oracle WebLogic Server.

• JMS Template : Define multiple destinations with similar option settings. You also need a
JMS template to create temporary queues. See JMS Template Configuration.

• Destination Key : Create custom sort orders of messages as they arrive on a destination.
See Destination Key Configuration.

See the following sections:

Queue and Topic Configuration Parameters
A JMS queue defines a point-to-point destination type for a JMS server. A message delivered
to a queue is distributed to a single consumer. A JMS topic identifies a publish/subscribe
destination type for a JMS server. Topics are used for asynchronous peer communications. A
message delivered to a topic is distributed to all consumers that are subscribed to that topic.

The WebLogic Remote Console lets you configure, modify, target, and delete queue and topic
resources in a system module. Within each JMS module, queue and topic resource names
must be unique. And, all queue and topic JNDI names in any JMS module must be unique
across an entire WebLogic domain, as defined in JMS Configuration Naming Requirements.

1. In the Edit Tree, go to Services, then JMS System Resources, then
myJMSSystemResource.

2. From the Navigation Tree, as children of myJMSSystemResource, select the Queues and
Topics you want to configure.

You can configure the following parameters for a queue or a topic:

• General configuration parameters, including a JNDI name, a destination key for sorting
messages as they arrive at the destination, or selecting a JMS template if you are using
one to configure properties for multiple destinations.

Note

Although queue and topic JNDI names can be dynamically changed, there may be
long-lived producers or consumers, such as MDBs, that continue trying to produce
or consume messages to and from the original queue or topic JNDI name.

• Threshold and quota parameters, which define the upper and lower message and byte
threshold and maximum quota options for the destination. See Quota Configuration.

Chapter 3
Queue and Topic Destination Configuration

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 17

• Message logging parameters, such as message type and user properties, and logging
message life cycle information into a JMS log file.

See Message Life Cycle Logging. Pause and resume controls for message production,
message insertion (in-flight messages), and message consumption operations on a
destination. See Controlling Message Operations on Destinations.

• Message Delivery override parameters, such as message priority and time-to-deliver
values, which can override those values specified by a message producer or connection
factory.

• Message Delivery failure parameters, such as defining a message redelivery limit,
selecting a message Expiration Policy, and specifying an error destination for expired
messages.

• For topics only, multicast parameters, including a multicast address, time-to-live (TTL), and
port.

Some options can be dynamically configured. When options are modified at run time, only
incoming messages are affected; stored messages are not affected. For more information
about the default values for all options, see QueueBean and TopicBean in MBean Reference
for Oracle WebLogic Server.

Creating Error Destinations
To help manage recovered or rolled back messages, you can also configure a target error
destination for messages that have reached their redelivery limit. The error destination can be
either a topic or a queue, but it must be a destination that is targeted to the same JMS server
as the destinations it is associated with. See Configuring an Error Destination for Undelivered
Messages in Developing JMS Applications for Oracle WebLogic Server.

Creating Distributed Destinations
A distributed destination resource is a group of destinations (queues or topics) that are
accessible as a single, logical unit to a client (for example, a distributed topic has its own JNDI
name). The members of the set are typically distributed across multiple servers within a cluster,
with each member belonging to a separate JMS server. See Distributed Destination
Configuration.

Queue and Topic Targeting
Stand alone queues and topics can be deployed only to a specific JMS server in a domain
because they depend on the JMS servers they are targeted to for the management of
persistent messages, durable subscribers, and message paging.

If you want to associate a group of queues or topics with a connection factory on a specific
JMS server, then you can target the destinations and connection factory to the same
subdeployment, which links these resources to the JMS server targeted by the subdeployment.
However, when standalone destinations are members of a subdeployment, a connection
factory can be targeted only to the same JMS server.

For more information on JMS system module subdeployment targeting, see JMS System
Module and Resource Subdeployment Targeting. For Queue and Topic targeting best
practices, see Targeting Best Practices.

Chapter 3
Queue and Topic Destination Configuration

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 17

Destination Monitoring and Management Parameters
You can monitor runtime statistics for queues and topics in system modules, as well as
manage the messages on queues and durable subscribers on topics.

• For information about managing messages on queues, as described in Managing JMS
Messages.

• For information about managing durable subscriber on topics, as described in Managing
JMS Messages.

JMS Template Configuration
A JMS template provides a way to centrally specify settings that are shared across multiple
destinations.

• You do not need to reenter every option setting each time you define a new destination;
you can use the JMS template and override any setting to which you want to assign a new
value.

• You can modify shared option settings dynamically simply by modifying the template.

• You can specify subdeployments for error destinations so that any number of destination
subdeployments (groups of queue or topics) use only the error destinations specified in the
corresponding template subdeployments.

JMS Template Configuration Parameters
The WebLogic Remote Console lets you configure, modify, target, and delete JMS template
resources in a system module.

1. In the Edit Tree, go to Services, then JMS System Resources, then
myJMSSystemResource.

2. From the Navigation Tree, as children of myJMSSystemResource, select the Templates
that you want to configure.

The options that can be configured for a JMS template are the same as those configured for a
destination. See Queue and Topic Configuration Parameters. These configuration options are
inherited by the destinations that use them, with the following exceptions:

• If the destination that is using a JMS template specifies an override value for an option,
then the override value is used.

• If the destination that is using a JMS template specifies a message redelivery value for an
option, then that redelivery value is used.

• The Name option is not inherited by the destination. This name is valid for the JMS
template only. You must explicitly define a unique name for all destinations. See JMS
Configuration Naming Requirements.

• The JNDI Name, Enable Store, and Template options are not defined for JMS templates.

• You can configure subdeployments for error destinations, so that any number of
destination subdeployments (groups of queue or topics) use only the error destinations
specified in the corresponding template subdeployments.

Any options that are not explicitly defined for a destination are assigned default values. If no
default value exists, then specify a value within the JMS template or as a destination option
override.

Chapter 3
JMS Template Configuration

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 17

Some template options can be dynamically configured. When options are modified at runtime,
only incoming messages are affected; stored messages are not affected. For more information
about the default values for all topic options, see TemplateBean in MBean Reference for Oracle
WebLogic Server.

Destination Key Configuration
As messages arrive on a specific destination, by default they are sorted in FIFO (first-in, first-
out) order, which sorts ascending based on each message's unique JMSMessageID. However,
you can use a destination key to configure a different sorting scheme for a destination, such as
LIFO (last-in, first-out).

The WebLogic Remote Console lets you configure, modify, target, and delete destination key
resources in a system module.

1. In the Edit Tree, go to Services, then JMS System Resources, then
myJMSSystemResource.

2. From the Navigation Tree, as children of myJMSSystemResource, select the Destination
Keys that you want to configure.

For more information about the default values for all destination key options, see
DestinationKeyBean in the MBean Reference for Oracle WebLogic Server.

Quota Configuration
A quota resource defines a maximum number of messages and bytes, and is responsible for
enforcing the defined maximums. It is then associated with one or more destinations.

See Defining Quota in Tuning Performance of Oracle WebLogic Server.

Message Limit in a Subscription
WebLogic JMS provides an option to set a limit on the messages in a topic subscription. If a
subscription reaches its configured limit, then by default, the oldest messages in the
subscription are ejected to make room for newer messages.

See Subscription Message Limits in Tuning Performance of Oracle WebLogic Server.

Foreign Server Configuration
A foreign server resource lets you to reference third-party JMS providers within a local
WebLogic Server JNDI tree.

With a foreign server resource, you can quickly map a foreign JMS provider so that its
associated connection factories and destinations appear in the WebLogic JNDI tree as local
JMS objects. A foreign server resource can also be used to reference remote instances of
WebLogic Server in another cluster or domain in the local WebLogic JNDI tree.

See Configuring Foreign Server Resources to Access Third-Party JMS Providers.

Chapter 3
Destination Key Configuration

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 17

Distributed Destination Configuration
A distributed destination resource is a single set of destinations (queues or topics) that is
accessible as a single, logical destination to a client. For example, a distributed topic has its
own JNDI name.

The members of the set are typically distributed across multiple servers within a cluster, with
each member belonging to a separate JMS server. Applications that use a distributed
destination are more highly available than applications that use standalone destinations
because WebLogic JMS provides load balancing and failover for the members of a distributed
destination in a cluster.

See Configuring Distributed Destination Resources.

JMS Store-and-Forward (SAF) Configuration
JMS SAF resources build on the WebLogic Store-and-Forward (SAF) service to provide highly
available JMS message production.

For example, a JMS message producer connected to a local server instance can reliably
forward messages to a remote JMS destination, even though that remote destination may be
temporarily unavailable when the message was sent. JMS Store-and-forward is transparent to
JMS applications; therefore, JMS client code still uses the existing JMS APIs to access remote
destinations.

See Configuring SAF for JMS Messages in Administering the Store-and-Forward Service for
Oracle WebLogic Server.

Chapter 3
Distributed Destination Configuration

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 17

4
Configuring Advanced JMS System
Resources

You can learn how to configure advanced WebLogic JMS resources for Oracle WebLogic
Server, such as a distributed destination in a clustered environment.
This chapter includes the following sections:

Configuring WebLogic JMS Clustering
A WebLogic Server cluster is a group of servers in a domain that work together to provide a
more scalable, more reliable application platform than a single server. A cluster appears to its
clients as a single server but it is a group of servers acting as one.

Advantages of JMS Clustering
The advantages of clustering for JMS include the following:

• Load balancing of destinations across multiple servers in a cluster

An administrator can establish load balancing of destinations across multiple servers in the
cluster by:

– Configuring a JMS server and targeting a WebLogic cluster. See Simplified JMS
Cluster and High Availability Configuration.

– Configuring multiple JMS servers and targeting them to the configured WebLogic
Servers.

– Configuring multiple JMS servers and targeting them to a set of migratable targets.

Each JMS server is deployed on exactly one WebLogic Server instance and handles
requests for a set of destinations.

• High availability of destinations

– Distributed destinations : The queue and topic members of a distributed destination
are usually distributed across multiple servers within a cluster, with each member
belonging to a separate JMS server. Applications that use distributed destinations are
more highly available than applications that use simple destinations because
WebLogic JMS provides load balancing and failover for member destinations of a
distributed destination within a cluster. For more information on distributed
destinations, see Configuring Distributed Destination Resources.

– Store-and-Forward : JMS modules use the SAF service to enable local JMS message
producers to reliably send messages to remote queues or topics. If the destination is
not available at the moment the messages are sent, either because of network
problems or system failures, then the messages are saved on a local server instance,
and are forwarded to the remote destination as soon as it becomes available. See
Understanding the Store-and-Forward Service in Administering the Store-and-Forward
Service for Oracle WebLogic Server.

– For automatic failover, WebLogic Server supports migration at the server level—a
complete server instance, and all of the services it hosts can be migrated to another

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 21

machine, either automatically or manually. See Whole Server Migration in
Administering Clusters for Oracle WebLogic Server.

WebLogic Server also supports automatic migration at the service level for JMS, where
a failed service instance can be restarted in place on its current WebLogic Server JVM
or migrated to another running JVM in the same cluster. This is termed 'service
migration' and there are two approaches for configuring it based on how JMS is
configured and targeted. For more information, see Migratable Target and Simplified
JMS Configuration and High Availability Enhancements. The latter is recommended for
new configurations.

• Cluster wide, transparent access to destinations from any server in a cluster

An administrator can establish cluster wide, transparent access to destinations from any
server in the cluster by either using the default connection factories for each server
instance in the cluster, or by configuring one or more connection factories and targeting
them to one or more server instances in the cluster, or to the entire cluster. This way, each
connection factory can be deployed on multiple WebLogic Server instances. Connection
factories are described in more detail in Connection Factory Configuration.

• Scalability

– Load balancing of destinations across multiple servers in the cluster.

– Distribution of the application load across multiple JMS servers through connection
factories, thus reducing the load on any single JMS server and enabling session
concentration by routing connections to specific servers.

• Server affinity for JMS Clients

When configured for the cluster, load-balancing algorithms (round-robin-affinity, weight-
based-affinity, or random-affinity), provide server affinity for JMS client connections. If a
JMS application has a connection to a given server instance, JMS attempts to establish
new JMS connections to the same server instance. For more information on server affinity,
see Load Balancing in a Cluster in Administering Clusters for Oracle WebLogic Server.

For more information about the features and benefits of using WebLogic clusters, see
Understanding WebLogic Server Clustering in Administering Clusters for Oracle WebLogic
Server.

How JMS Clustering Works
An administrator can establish cluster wide, transparent access to JMS destinations from any
server in a cluster, either by using the default connection factories for each server instance in a
cluster, or by configuring one or more connection factories and targeting them to one or more
server instances in a cluster, or to an entire cluster. This way, each connection factory can be
deployed on multiple WebLogic Servers. For information about configuring and deploying
connection factories, see Connection Factory Configuration Parameters.

A messaging application uses a Java Naming and Directory Interface (JNDI) context to look up
a connection factory and then uses the connection factory to create a connection from the
client into the cluster. If the client application is located outside of the connection factory's
cluster, the connection will implicitly connect to one of servers in the cluster that are among the
targets of the connection factory (this server may be different than the server the JNDI context
itself is using). If the application is running on a WebLogic Server, and the same server is
among the targets of the connection factory, then the client connection will simply connect to
the local WebLogic Server. Each JMS server handles requests for a set of destinations. If
requests for destinations are sent to a WebLogic Server connection host which is not hosting a
JMS server or destinations, or are load balanced to a different WebLogic Server, the requests

Chapter 4
Configuring WebLogic JMS Clustering

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 21

are forwarded by the connection host to the appropriate WebLogic Server instance in the same
cluster that is hosting the desired JMS server and its destinations.

The administrator can also configure multiple JMS servers on the various servers in the
cluster: as long as the JMS servers are uniquely named—and can then target JMS queue or
topic resources to the various JMS servers. Alternatively, an administrator can target a JMS
server in a cluster, and the cluster automatically creates an instance of a JMS server on each
server. The application uses the Java Naming and Directory Interface (JNDI) to look up a
connection factory and create a connection to establish communication with a JMS server.
Each JMS server handles requests for a set of destinations. Requests for destinations not
handled by a JMS server are forwarded to the appropriate WebLogic Server instance. For
information about configuring and deploying JMS servers, see JMS Server Configuration.

JMS Clustering Naming Requirements
There are naming requirements when configuring JMS objects and resources, such as JMS
servers, JMS modules, and JMS resources, to work in a clustered environment in a single
WebLogic domain or in a multi domain environment. See JMS Configuration Naming
Requirements.

Distributed Destination Within a Cluster
A distributed destination resource is a single set of destinations (queues or topics) that is
accessible as a single, logical destination to a client (for example, a distributed topic has its
own JNDI name). The members of the unit are usually distributed across multiple servers
within a cluster, with each member belonging to a separate JMS server. Applications that use
distributed destinations are more highly available than applications that use simple destinations
because WebLogic Server provides load balancing and failover for member destinations of a
distributed destination within a cluster. See Configuring Distributed Destination Resources.

JMS Services As a Migratable Service Within a Cluster
In addition to being part of a whole server migration, where all services hosted by a server can
be migrated to another machine, JMS services are also part of the singleton service migration
framework. This allows an administrator, for example, to migrate a JMS server and all of its
destinations to another WebLogic Server within a cluster in response to a server failure or for
scheduled maintenance. This includes both scheduled migrations as well as automatic
migrations. For more information about JMS service migration, see Migration of JMS-related
Services.

Configuration Guidelines for JMS Clustering
In order to use WebLogic JMS in a clustered environment, follow these guidelines:

1. Configure your clustered environment as described in Setting Up WebLogic Clusters in
Administering Clusters for Oracle WebLogic Server.

2. Identify targets for any user-defined JMS connection factories using the WebLogic Remote
Console. For connection factories, you can identify either a single-server, a cluster, or a
migratable target.

For more information about these connection factory configuration attributes, see
Connection Factory Configuration.

3. Optionally, identify migratable server targets or clusters for JMS services (JMSServers and
Persistent Stores) using the WebLogic Remote Console. For example, for JMS servers,
you can identify:

Chapter 4
Configuring WebLogic JMS Clustering

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 21

• A Configured server.

• A Cluster. See Simplified JMS Cluster and High Availability Configuration.

• A migratable target, which is a set of server instances in a cluster that can host an
"exactly-once" service like JMS in case of a server failure in the cluster. For more
information on migratable JMS server targets, see Migration of JMS-related Services.

For more information about JMS server configuration attributes, see JMS Server
Configuration.

4. Optionally, you can configure the physical JMS destinations in a cluster as part of a virtual
distributed destination set, as discussed in Distributed Destination Within a Cluster. Note
that it is a best practice to always target destinations using a subdeployment target that in
turn references one or more specific SAF Agents (for imported destinations) or JMS
Servers (for all other types of destinations).

See Best Practices for JMS Beginners and Advanced Users for more information.

What About Failover?

Note

The WebLogic JMS Automatic Reconnect feature is deprecated. The JMS Connection
Factory configuration, weblogic.jms.extension.WLConnection API, and
weblogic.jms.extension.JMSContext API for this feature will be removed or ignored
in a future release. Oracle recommends that client applications handle connection
exceptions as described in Client Resiliency Best Practices in Administering JMS
Resources for Oracle WebLogic Server.

The resiliency of a JMS system is fundamentally addressed at two levels. First at the JVM and
service level via migration as described later in this section and in the following section, and
second at the API level by ensuring clients reconnect and retry after a failure. For more
information about client reconnection and retry after a failure, see Client Resiliency Best
Practices in Administering JMS Resources for Oracle WebLogic Server.

In addition, implementing the automatic service migration feature ensures that exactly-once
services, like JMS, do not introduce a single point of failure for dependent applications in the
cluster. For dyamic-cluster targeted JMS server failover, failback and restart-in-place features
are available. See Migration of JMS-related Services. WebLogic Server also supports data
migration at the server level—a complete server instance, and all of the services it hosts can
be migrated to another machine, either automatically, or manually. See Whole Server Migration
in Administering Clusters for Oracle WebLogic Server.

In a clustered environment, WebLogic Server also offers service continuity in the event of a
single server failure by allowing you to configure distributed destinations, where the members
of the unit are usually distributed across multiple servers within a cluster, with each member
belonging to a separate JMS server. See Distributed Destination Within a Cluster.

Oracle also recommends implementing high-availability clustering software, which provides an
integrated, out-of-the-box solution for WebLogic Server-based applications.

Chapter 4
Configuring WebLogic JMS Clustering

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 21

Migration of JMS-Related Services
JMS-related services are singleton services; therefore, are not active on all server instances in
a cluster. Instead, the services are pinned to a single server in the cluster to preserve data
consistency.

To ensure that singleton JMS services do not introduce a single point of failure for dependent
applications in the cluster, you can configure JMS-related services for high availability by using
cluster-targeted JMS or migratable-target JMS. See Migratable Target and Simplified JMS
Configuration and High Availability Enhancements. The latter is recommended for new
configurations. JMS services can also be manually migrated before performing scheduled
server maintenance.

Migratable JMS-related services include:

• JMS Server : a management container for the queues and topics in JMS modules that are
targeted to them. See JMS Server Configuration.

• Store-and-Forward (SAF) Service : store-and-forward messages between local sending
and remote receiving endpoints, even when the remote endpoint is not available at the
moment the messages are sent. Only the sending SAF agents configured for JMS SAF
(sending capability only) are migratable. See Understanding the Store-and-Forward
Service in Administering the Store-and-Forward Service for Oracle WebLogic Server.

• Path Service: a persistent map that can be used to store the mapping of a group of
messages in a JMS Message Unit-of-Order to a messaging resource in a cluster. One path
service is configured per cluster. See Using the WebLogic Path Service.

• Custom Persistent Store : a user-defined, disk-based file store or JDBC-accessible
database for storing subsystem data, such as persistent JMS messages or store-and-
forward messages. See Using the WebLogic Persistent Store in Administering Server
Environments for Oracle WebLogic Server.

See Understanding the Service Migration Framework in Administering Clusters for Oracle
WebLogic Server.

Automatic Migration of JMS Services
An administrator can configure migratable targets so that hosted JMS services are
automatically migrated from the current unhealthy hosting server to a healthy active server with
the help of the Health Monitoring subsystem. For more information about configuring automatic
migration of JMS-related services, see Roadmap for Configuring Automatic Migration of JMS-
Related Services in Administering Clusters for Oracle WebLogic Server.

Manual Migration of JMS Services
An administrator can manually migrate JMS-related services to a healthy server if the host
server fails or before performing server maintenance. For more information about configuring
manual migration of JMS-related services, see Roadmap for Configuring Manual Migration of
JMS-Related Services in Administering Clusters for Oracle WebLogic Server.

Chapter 4
Migration of JMS-Related Services

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 21

Note

Manual migration requires migratable targets, and therefore is not an option when
taking advantage of Simplified JMS Cluster and High Availability Configuration in a
cluster targeted JMS configuration. This type of configuration has much less of a need
for manual migration as Simplified JMS Cluster and High Availability Configuration
supports automatic fail-back.

Persistent Store High Availability
As discussed in What About Failover?, a JMS service, including a custom persistent store, can
be migrated as part of the "whole server" migration feature, or as part of a "service-level"
migration for migratable JMS-related services.

File stores must use the same files throughout the lifetime regardless of where they run. This
means that it is the responsibility of the administrator to make sure that a migrated file store
can access the same files that it updated before it was migrated.

Migratable custom file stores can be configured on a shared disk that is available to the
migratable target servers in the cluster or, if using a migratable target HA configuration, can be
migrated to a backup server target by using pre/post-migration scripts. For more information
about migrating persistent stores, see Custom Store Availability for JMS Services in
Administering Clusters for Oracle WebLogic Server. See File Locations in Administering the
WebLogic Persistent Store.

Similarly, default file stores must be located in a shared directory location when setting up
whole server migration or JTA migration.

Finally, migrated JDBC Stores must still access the same database and schema as their
original location.

Using the WebLogic Path Service
The WebLogic Server path service is a persistent map used for storing the mapping between a
group of messages in a JMS Message Unit-of-Order and a messaging resource in a cluster.

The path service provides a way to enforce ordering by pinning messages to a member of a
cluster that is hosting servlets, distributed queue members, or Store-and-Forward agents. One
path service is configured per cluster. For more information about the Message Unit-of-Order
feature, see Using Message Unit-of-Order in Developing JMS Applications for Oracle
WebLogic Server.

In the Remote Console, to configure a path service in a cluster, in the Edit Tree, go to
Services: Path Services: myPathService.

Path Service High Availability
There are different ways to achieve high availability for the path service:

• You can use whole server migration to restart the WebLogic Server that runs the path
service. See Oracle Fusion Middleware Administering Clusters . See Whole Server
Migration in Administering Clusters for Oracle WebLogic Server.

• The path service can use a cluster targeted store with singleton distribution policy. See
Simplified JMS Cluster and High Availability Configuration.

Chapter 4
Using the WebLogic Path Service

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 21

• Path Service and its store can be configured to use a migratable target. However, a
migratable path service cannot use the default store, so a custom store must be configured
and targeted to the same migratable target. As an additional best practice, the path service
and its custom store should be the only users of that migratable target. See Understanding
the Service Migration Framework in Administering Clusters for Oracle WebLogic Server.

Implementing Message UOO with a Path Service
Consider the following when implementing Message Unit-of-Order in conjunction with path
service-based routing:

• Each path service mapping is stored in a persistent store. When configuring a path service,
select a persistent store that takes advantage of a high availability solution. See Persistent
Store High Availability.

• If one or more producers send messages using the same Unit-of-Order name then all
messages they produce will share the same path entry and have the same member queue
destination.

• If the required route for a Unit-of-Order name is unreachable, then the producer sending
the message will throw a JMSOrderException. The exception is thrown because the JMS
messaging system can not meet the quality-of-service required : only one distributed
destination member consumes messages for a particular Unit-of-Order name.

• A path entry is automatically deleted when the last producer and last message reference
are deleted.

• Depending on your system, using the path service may slow system throughput due to a
remote disk operations to create, read, and delete path entries.

• A distributed queue and its individual members each represent a unique destination. For
example:

DXQ1 is a distributed queue with queue members Q1 and Q2. DXQ1 also has a Unit-of-
Order name value of Fred mapped by the Path Service to the Q2 member.

– If message M1 is sent to DXQ1, then it uses the Path Service to define a route to Q2.

– If message M1 is sent directly to Q2, then, no routing by the Path Service is
performed. This is because the application selected Q2 directly and the system was
not asked to pick a member from a distributed destination.

– If you want the system to use the path service, send messages to the distributed
destination. If not, send directly to the member.

– You can have more than one destination that has the same Unit-of-Order names in a
distributed queue. For example:

Queue Q3 also has a Unit-of-Order name value of Fred. If Q3 is added to DXQ1, then
there are now two destinations that have the same Unit-of-Order name in a distributed
queue. Even though, Q3 and DXQ1 share the same Unit-of-Order name value Fred,
each has a unique route and destination that allows the server to continue to provide
the correct message ordering for each destination.

• Empty the queues before removing them from a distributed queue or adding them to a
distributed queue. Although the path service removes the path entry for the removed
member, there is a short transition period where a message produced may throw an
exception JMSOrderException when the queue has been removed but the path entry still
exists.

Chapter 4
Using the WebLogic Path Service

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 21

Configuring Foreign Server Resources to Access Third-Party
JMS Providers

WebLogic JMS allows you to reference third-party JMS providers within a local WebLogic
Server JNDI tree. With Foreign Server resources in JMS modules, you can quickly map a
foreign JMS provider so that its associated connection factories and destinations appear in the
WebLogic JNDI tree as local JMS objects.

Foreign Server resources can also be used to reference remote instances of WebLogic Server
in another cluster or domain in the local WebLogic JNDI tree. For more information about
integrating remote and foreign JMS providers, see Enhanced 2EE Support for Using WebLogic
JMS With EJBs and Servlets in Developing JMS Applications for Oracle WebLogic Server.

These sections provide more information about how a foreign server works and a sample
configuration for accessing a remote MQSeries JNDI provider.

How WebLogic JMS Accesses Foreign JMS Providers
When a foreign JMS server is deployed, it creates local connection factory and destination
objects in the WebLogic Server JNDI. Then when a foreign connection factory or destination
object is looked up on the local server, that object performs the actual lookup on the remote
JNDI directory, and the foreign object is returned from that directory.

This method makes it easier to configure multiple WebLogic Messaging Bridge destinations,
because the foreign server moves the JNDI initial context factory and connection URL
configuration details outside of your Messaging Bridge destination configurations. You need to
only provide the foreign Connection Factory and Destination JNDI name for each object.

For more information on configuring a messaging bridge, see Configuring and Managing a
Messaging Bridge in Administering the WebLogic Messaging Bridge for Oracle WebLogic
Server.

The ease-of-configuration concept also applies to configuring WebLogic Servlets, EJBs, and
Message-Driven Beans (MDBs) with WebLogic JMS. For example, the weblogic-ejb-jar.xml
file in the MDB can have a local JNDI name, and you can use the foreign JMS server to control
where the MDB receives messages from. For example, you can deploy the MDB in one
environment to talk to one JMS destination and server, and you can deploy the same
weblogic-ejb-jar.xml file to a different server and have it talk to a different JMS destination
without having to unpack and edit the weblogic-ejb-jar.xml file.

Creating Foreign Server Resources
A Foreign Server resource in a JMS module represents a JNDI provider that is outside the
WebLogic JMS server. It contains information that allows a local WebLogic Server instance to
reach a remote JNDI provider, thereby allowing a number of foreign connection factory and
destination objects to be defined on one JNDI directory.

The WebLogic Remote Console lets you to configure, modify, target, and delete foreign server
resources in a system module.

1. In the Edit Tree, go to Services, then JMS System Resources, then
myJMSSystemResource.

2. From the Navigation Tree, as children of myJMSSystemResource, select the Foreign
Servers you want to configure.

Chapter 4
Configuring Foreign Server Resources to Access Third-Party JMS Providers

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 21

Note

For information about configuring and deploying JMS application modules in an
enterprise application, see Configuring JMS Application Modules for Deployment.

Some foreign server options are dynamically configured. When options are modified at run
time, only incoming messages are affected; stored messages are not affected. For more
information about the default values for all foreign server options, see ForeignServerBean in
the MBean Reference for Oracle WebLogic Server.

After defining a foreign server, you can configure connection factory and destination objects.
You can configure one or more connection factories and destinations (queues or topics) for
each foreign server.

Creating Foreign Connection Factory Resources
A Foreign Connection Factory resource in a JMS module contains the JNDI name of the
connection factory in the remote JNDI provider, the JNDI name that the connection factory is
mapped to in the local WebLogic Server JNDI tree, and an optional user name and password.

The foreign connection factory creates non-replicated JNDI objects on each WebLogic Server
instance that the parent foreign server is targeted to. (To create the JNDI object on every node
in a cluster, target the foreign server to the cluster.)

Creating a Foreign Destination Resources
A Foreign Destination resource in a JMS module represents either a queue or a topic. It
contains the destination JNDI name that is looked up on the foreign JNDI provider and the
JNDI name that the destination is mapped to on the local WebLogic Server. When the foreign
destination is looked up on the local server, a lookup is performed on the remote JNDI
directory, and the destination object is returned from that directory.

Sample Configuration for MQSeries JNDI
Table 4-1 provides a possible a sample configuration when accessing a remote MQSeries
JNDI provider.

Table 4-1 Sample MQSeries Configuration

Foreign JMS Object Option Names Sample Configuration Data

Foreign Server Name

JNDI Initial Context Factory

JNDI Connection URL

JNDI Properties

MQJNDI

com.sun.jndi.fscontext.RefFSConte
xtFactory

file:/MQJNDI/

(If necessary, enter a comma-separated
name=value list of properties.)

Foreign Connection
Factory

Name

Local JNDI Name

Remote JNDI Name

Username

Password

MQ_QCF

mqseries.QCF

QCF

weblogic_jms

weblogic_jms

Chapter 4
Configuring Foreign Server Resources to Access Third-Party JMS Providers

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 21

Table 4-1 (Cont.) Sample MQSeries Configuration

Foreign JMS Object Option Names Sample Configuration Data

Foreign Destination 1 Name

Local JNDI Name

Remote JNDI Name

MQ_QUEUE1

mqseries.QUEUE1

QUEUE_1

Foreign Destination 2 Name

Local JNDI Name

Remote JNDI Name

MQ_QUEUE2

mqseries.QUEUE2

QUEUE_2

Configuring Distributed Destination Resources
A distributed destination resource in a JMS module represents a single set of destinations
(queues or topics) that are accessible as a single, logical destination to a client. For example, a
distributed topic has its own JNDI name. The members of the set are typically distributed
across multiple servers within a cluster, with each member belonging to a separate JMS
server.

Applications that use a distributed destination are more highly available than applications that
use standalone destinations because WebLogic JMS provides load balancing and failover for
the members of a distributed destination in a cluster.

These sections provide information on how to create, monitor, and load balance distributed
destinations:

Uniform Distributed Destinations vs. Weighted Distributed Destinations

Note

Weighted Distributed Destinations were deprecated in WebLogic Server 10.3.4.0.
Oracle recommends using Uniform Distributed Destinations.

WebLogic Server 9.x and later offers two types of distributed destination: uniform and
weighted. In releases prior to WebLogic Server 9.x, WebLogic Administrators often needed to
manually configure physical destinations to function as members of a distributed destination.
This method provided the flexibility to create members that were intended to carry extra
message load or have extra capacity; however, such differences often led to administrative and
application problems because such a weighted distributed destination was not deployed
consistently across a cluster. This type of distributed destination is officially referred to as a
weighted distributed destination (or WDD).

A uniform distributed destination (UDD) greatly simplifies the management and development of
distributed destination applications. Using uniform distributed destinations, you no longer need
to create or designate destination members, but you can instead rely on WebLogic Server to
uniformly create the necessary members on the JMS servers to which a JMS module is
targeted. This feature ensures the consistent configuration of all distributed destination
parameters, particular with in regard to weighting, security, persistence, paging, and quotas.

The weighted distributed destination feature is still available for users who prefer to manually
fine-tune distributed destination members. However, Oracle strongly recommends configuring

Chapter 4
Configuring Distributed Destination Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 21

uniform distributed destinations to avoid possible administrative and application problems due
to a weighted distributed destination not being deployed consistently across a cluster.

For more information about using a distributed destination with your applications, see Using
Distributed Destinations in Developing JMS Applications for Oracle WebLogic Server.

Creating Uniform Distributed Destinations
The WebLogic Remote Console enables you to configure, modify, target, and delete UDD
resources in a JMS system module.

1. In the Edit Tree, go to Services, then JMS System Resources, then
myJMSSystemResource.

2. From the Navigation Tree, as children of myJMSSystemResource, select the Uniformed
Distributed Queues and Uniformed Distributed Topics you want to configure.

Note

It is recommended that you create a single cluster targeted JMS Server and an
associated persistent store to host the UDD resource, with optional HA configuration
settings. This makes the UDD configuration simple, scalable, and highly available. See
Simplified JMS Cluster and High Availability Configuration. A Replicated Distributed
Topic is not supported by a cluster targeted JMS Server (use a Partitioned Distributed
Topic instead).

Some uniform distributed destination options can be dynamically configured. When options are
modified at run time, only incoming messages are affected; stored messages are not affected.
For more information about the default values for all uniform distributed destination options,
see the following entries in MBean Reference for Oracle WebLogic Server:

• UniformDistributedQueueBean

• UniformDistributedTopicBean

The following sections provide additional uniform distributed destination information:

Targeting Uniform Distributed Queues and Topics
Unlike a standalone queue and topics resources in a module, which can only target a
specific single-instance JMS server and only run on this one instance, a UDD can be targeted
to multiple JMS server instances within the same server or cluster.

There are multiple ways to target a UDD but Oracle strongly recommends only one of them:
configure UDDs to target a system module subdeployment that in turn directly references one
or more JMS Servers. All other targeting options are strongly discouraged; for example, Oracle
recommends against targeting a destination using ‘default targeting’ or targeting
a subdeployment that in turn references a cluster or server name. Failure to follow this best
practice can result in unintentional message loss.

For example, consider a system module named jmssysmod-jms.xml which is targeted to a
cluster with three WebLogic Server instances: wlserver1, wlserver2, and wlserver3, where
each server is in turn targeted by a configured JMS server, jmsserver1, jmsserver2,
and jmsserver3. If you want to setup a uniform distributed queue in the same cluster, you can
group the UDQ in a subdeployment named jmsservergroup to ensure that it is always linked
to the exact desired JMS Server instances. You can optionally use the same subdeployment

Chapter 4
Configuring Distributed Destination Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 21

for a connection factory. Here is how the servergroup sub-deployment resources would look
like in jmssysmod-jms.xml:

<weblogic-jms xmlns="http://xmlns.oracle.com/weblogic/weblogic-jms">
 <connection-factory name="MyCF">
 <sub-deployment-name>jmsservergroup</sub-deployment-name>
 <jndi-name>jms/MyCF</jndi-name>
 </connection-factory>
 <uniform-distributed-queue name="MyUDQ">
 <sub-deployment-name>jmsservergroup</sub-deployment-name>
 <jndi-name>jms/MyUDQ</jndi-name>
 </uniform-distributed-queue>
</weblogic-jms>

And here's how the corresponding subdeployment would be configured in the system module’s
corresponding stanza in the domain's config.xml file:

 <jms-system-resource>
 <name>jmssysmod-jms</name>
 <target>cluster1,</target>
 <sub-deployment>
 <name>jmsservergroup</name>
 <target>jmsserver1,jmsserver2,jmsserver3</target>
 </sub-deployment>
 <descriptor-file-name>jms/jmssysmod-jms.xml</descriptor-file-name>
 </jms-system-resource>

If you are using simplified JMS configuration that leverages a cluster targeted jms server
named MyClusteredJMSServer instead of individually configured and targeted jms servers
‘jmserver1’, ‘jmserver2’, and ‘jmserver3’, then the above subdeployment’s target simplifies to:

<target>MyClusteredJMSServer</target>

Instead of:

<target>jmsserver1,jmsserver2,jmsserver3</target>

Note

• Remember, Oracle strongly recommends that a destination should always be
configured to target subdeployments that in turn reference the exact desired JMS
Server(s) for the destination. Oracle strongly advises against other destination
targeting approaches, including default targeting. (Defaulting targeting a
connection factory is fine.)

• Changing the targets of a UDD can lead to the removal of a member destination
and the consequent unintentional loss of messages.

Pausing and Resuming Message Operations on UDD Members
You can pause and resume message production, insertion, and/or consumption operations on
a uniform distributed destinations, either programmatically (using JMX and the runtime MBean
API) or administratively (using the WebLogic Remote Console). In this way, you can control the
JMS subsystem behavior in the event of an external resource failure that would otherwise
cause the JMS subsystem to overload the system by continuously accepting and delivering
(and redelivering) messages.

Chapter 4
Configuring Distributed Destination Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 21

For more information on the "pause and resume" feature, see Controlling Message Operations
on Destinations.

Monitoring UDD Members
Runtime statistics for uniform distributed destination members can be monitored, as described
in Monitoring JMS Statistics.

Configuring Partitioned Distributed Topics

Note

Partitioned Distributed Topics are the only type of distributed topic that is supported
when using cluster targeted JMS Servers or dynamic clusters. Configuration errors will
be generated on an attempt to set up a Replicated Distributed Topic in these cases. If
you need to replace a Replicated Distributed Topic with a Partitioned Distributed Topic,
see Replacing a Replicated Distributed Topic in Developing JMS Applications for
Oracle WebLogic Server.

The uniform distributed topic message Forwarding Policy specifies whether a sent message
is forwarded to all members.

The valid values are:

• Replicated: The default. All physical topic members receive each sent message. If a
message arrives at one of the physical topic members, a copy of this message is
forwarded to the other members of that uniform distributed topic. A subscription on any one
particular member will get a copy of any message sent to the uniform distributed topic
logical name or to any particular uniform distributed topic member.

• Partitioned: The physical member receiving the message is the only member of the
uniform distributed topic that is aware of the message. When a message is published to
the logical name of a Partitioned uniform distributed topic, it will only arrive on one
particular physical topic member. Once a message arrives on a physical topic member, the
message is not forwarded to the rest of the members of the uniform distributed destination,
and subscribers on other physical topic members do not get a copy of that message.

Most new applications will use the Partitioned forwarding policy in combination with a logical
subscription topology on a uniform distributed topic that consists of:

• A same named physical subscription created directly on each physical member.

• A Client ID Policy of Unrestricted.

• A Subscription Sharing Policy of Sharable.

For more information on how to create and use the partitioned distributed topic, see:

• Configuring and Deploying MDBs Using Distributed Topics in Developing Message-Driven
Beans for Oracle WebLogic Server

• Developing Advanced Pub/Sub Applications in Developing JMS Applications for Oracle
WebLogic Server

Load Balancing Partitioned Distributed Topics

Chapter 4
Configuring Distributed Destination Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 21

Partitioned topic publishers have the option of load balancing their messages across multiple
members by tuning the connection factory Affinity and Load Balance attributes. The Unit of
Order messages are routed to the correct member based on the UOO routing policy and the
subscriber status.

Creating Weighted Distributed Destinations

Note

Weighted Distributed Destinations (WDDs) are deprecated in WebLogic Server
10.3.4.0. Oracle strongly recommends using Uniform Distributed Destinations.

You cannot use the WebLogic Remote Console to configure, modify, target, or delete
WDD resources in JMS system modules.

For more information about the default values for all weighted distributed destination options,
see the following entries in MBean Reference for Oracle WebLogic Server:

• DistributedQueueBean

• DistributedTopicBean

Unlike UDDs, WDD members cannot be monitored with the WebLogic Remote Console or
though runtime MBeans. Also, WDD members cannot be uniformly targeted to JMS server or
WebLogic Server instances in a domain. Instead, new WDD members must be manually
configured on such instances, and then manually added to the WDD.

Load Balancing Messages Across a Distributed Destination
By using distributed destinations, JMS can spread or balance the messaging load across
multiple destinations, which can result in better use of resources and improved response times.
The JMS load-balancing algorithm determines the physical destinations that messages are
sent to, as well as the physical destinations that consumers are assigned to.

Load-Balancing Options
WebLogic JMS supports two different algorithms for balancing the message load across
multiple physical destinations within a given distributed destination set. You select one of these
load balancing options when configuring a distributed topic or queue on the WebLogic Remote
Console.

Round-Robin Distribution
In the round-robin algorithm, WebLogic JMS maintains an order of physical destinations within
the distributed destination. The messaging load is distributed across the physical destinations
one at a time in the order that they are defined in the WebLogic Server configuration
(config.xml) file. Each WebLogic Server maintains an identical order, but may be at a different
point within the ordering. Multiple threads of execution within a single server using a given
distributed destination affect each other with respect to which physical destination a member is
assigned to each time the member produces a message. Round-robin is the default algorithm
and doesn't need to be configured.

Chapter 4
Configuring Distributed Destination Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 21

For weighted distributed destinations only, if weights are assigned to any of the physical
destinations in the set for a given distributed destination, then those physical destinations
appear multiple times in the order.

Random Distribution
The random distribution algorithm uses the weight assigned to the physical destinations to
compute a weighted distribution for the set of physical destinations. The messaging load is
distributed across the physical destinations by pseudo-randomly accessing the distribution. In
the short run, the load is not directly proportional to the weight. In the long run, the distribution
approaches the limit of the distribution. A pure random distribution can be achieved by setting
all the weights to the same value, which is typically 1.

Adding or removing a member (either administratively or as a result of a WebLogic Server
shutdown/restart event) requires a recomputation of the distribution. Such events should be
infrequent however, and the computation is generally simple, running in O(n) time.

Consumer Load Balancing
When an application creates a consumer, the application must provide a destination. If that
destination represents a distributed destination, then WebLogic JMS must find a physical
destination from which the consumer will receive messages from. The choice of which
destination member to use is made by using one of the load balancing algorithms described in
Load Balancing Options. The choice is made only once: when the consumer is created. From
that point on, the consumer gets messages from that member only.

Producer Load Balancing
When a producer sends a message, WebLogic JMS looks at the destination to which the
message is being sent. If the destination is a distributed destination, then the WebLogic JMS
makes a decision as to where the message will be sent. That is, the producer sends to one of
the destination members according to one of the load-balancing algorithms described in Load
Balancing Options.

The producer makes such a decision each time it sends a message. However, there is no
compromise of ordering guarantees between a consumer and producer, because consumers
are load balanced once, and are then pinned to a single destination member.

Note

If a producer attempts to send a persistent message to a distributed destination, every
effort is made to first forward the message to distributed members that utilize a
persistent store. However, if none of the distributed members utilize a persistent store,
then the message will still be sent to one of the members according to the selected
load-balancing algorithm.

Load-Balancing Heuristics
In addition to the algorithms described in Load Balancing Options, WebLogic JMS uses the
following heuristics when choosing an instance of a destination.

Chapter 4
Configuring Distributed Destination Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 21

Transaction Affinity
When producing multiple messages within a transacted session, an effort is made to send all
messages produced to the same WebLogic Server. Specifically, if a session sends multiple
messages to a single distributed destination, then all of the messages are routed to the same
physical destination. If a session sends multiple messages to multiple different distributed
destinations, then an effort is made to choose a set of physical destinations served by the
same WebLogic Server.

Server Affinity
The Server Affinity Enabled parameter on connection factories defines whether a WebLogic
Server that is load balancing consumers or producers across multiple member destinations in
a distributed destination set, first attempts to load balance across any other local destination
members that are also running on the same WebLogic Server.

Note

The Server Affinity Enabled attribute does not affect queue browsers. Therefore, a
queue browser created on a distributed queue can be pinned to a remote distributed
queue member even when Server Affinity is enabled.

To disable server affinity on a connection factory:

1. In the Edit Tree, go to Services, then JMS System Resources, then
myJMSSystemResource.

2. From the Navigation Tree, as children of myJMSSystemResource, select the Connection
Factory you want to configure.

3. On the Load Balancing page, define the Server Affinity Enabled field as follows:

• If the Server Affinity Enabled option is enabled (True), then a WebLogic Server that
is load balancing consumers or producers across multiple physical destinations in a
distributed destination set, will first attempt to load balance across any other physical
destinations that are also running on the same WebLogic Server.

• If the Server Affinity Enabled option is disabled (False), then a WebLogic Server will
load balance consumers or producers across physical destinations in a distributed
destination set and disregard any other physical destinations also running on the same
WebLogic Server.

4. Click Save.

For more information about how the Server Affinity Enabled setting affects the load balancing
among the members of a distributed destination, see Distributed Destination Load Balancing
When Server Affinity Is Enabled.

Queues with Zero Consumers
When load balancing consumers across multiple remote physical queues, if one or more of the
queues have zero consumers, then those queues alone are considered for balancing the load.
Once all the physical queues in the set have at least one consumer, the standard algorithms
apply.

Chapter 4
Configuring Distributed Destination Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 21

In addition, when producers are sending messages, queues with zero consumers are not
considered for message production, unless all instances of the given queue have zero
consumers.

Paused Distributed Destination Members
When distributed destinations are paused for message production or insertion, they are not
considered for message production. Similarly, when destinations are paused for consumption,
they are not considered for message production.

For more information about pausing message operations on destinations, see Controlling
Message Operations on Destinations.

Defeating Load Balancing
Applications can defeat load balancing by directly accessing the individual physical
destinations. That is, if the physical destination has no JNDI name, it can still be referenced
using the createQueue() or createTopic() methods.

For instructions on how to directly access uniform and weighted distributed destination
members, see Accessing Distributed Destination Members in Developing JMS Applications for
Oracle WebLogic Server.

Connection Factories
Applications that use distributed destinations to distribute or balance their producers and
consumers across multiple physical destinations, but do not want to make a load balancing
decision each time a message is produced, can use a connection factory with the Load
Balancing Enabled parameter disabled. To ensure a fair distribution of the messaging load
among a distributed destination, the initial physical destination (queue or topic) used by
producers is always chosen at random from among the distributed destination members.

To disable load balancing on a connection factory:

1. In the Edit Tree, go to Services, then JMS System Resources, then
myJMSSystemResource.

2. From the Navigation Tree, as children of myJMSSystemResource, select the Connection
Factory you want to configure.

3. On the Load Balancing page, define the setting of the Load Balancing Enabled field
using the following guidelines:

• Load Balancing Enabled = True

For Queue.sender.send() methods, non-anonymous producers are load balanced on
every invocation across the distributed queue members.

For TopicPublish.publish() methods, non-anonymous producers are always pinned
to the same physical topic for every call, irrespective of the Load Balancing Enabled
setting.

• Load Balancing Enabled = False

Producers always produce to the same physical destination until they fail. At that point, a
new physical destination is chosen.

4. Click Save.

Chapter 4
Configuring Distributed Destination Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 21

Note

Depending on your implementation, the setting of the Server Affinity Enabled
attribute can affect load-balancing preferences for distributed destinations. See
Distributed Destination Load Balancing When Server Affinity Is Enabled.

Anonymous producers (producers that do not designate a destination when created), are load-
balanced each time they switch destinations. If they continue to use the same destination, then
the rules for non-anonymous producers apply (as stated previously).

Distributed Destination Load Balancing When Server Affinity Is Enabled
Table 4-2 explains how the setting of a connection factory's Server Affinity Enabled parameter
affects the load-balancing preferences for distributed destination members. The order of
preference depends on the type of operation and whether or not durable subscriptions or
persistent messages are involved.

The Server Affinity Enabled parameter for distributed destinations is different from the server
affinity provided by the Default Load Algorithm attribute in the ClusterMBean, which is also
used by the JMS connection factory to create initial context affinity for client connections.

See the Load Balancing for EJBs and RMI Objects and Initial Context Affinity and Server
Affinity for Client Connections sections in Administering Clusters for Oracle WebLogic Server.

Table 4-2 Server Affinity Load Balancing Preferences

When the operation is And Server Affinity
Enabled is

Then load balancing preference is given to a

• createReceiver() for queues
• createSubscriber() for topics

True 1. local member without a consumer

2. local member

3. remote member without a consumer

4. remote member

createReceiver() for queues False 1. member without a consumer

2. member

createSubscriber() for topics

(Note: nondurable subscribers)

True or False 1. local member without a consumer

2. local member

• createSender() for queues
• createPublisher() for topics

True or False There is no separate machinery for load balancing a
created JMS producer. JMS producers are created on
the server on which your JMS connection is load
balanced or pinned.

For more information about load balancing JMS
connections created using a connection factory, refer to
the Load Balancing for EJBs and RMI Objects and Initial
Context Affinity and Server Affinity for Client
Connections sections in Administering Clusters for
Oracle WebLogic Server.

Chapter 4
Configuring Distributed Destination Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 21

Table 4-2 (Cont.) Server Affinity Load Balancing Preferences

When the operation is And Server Affinity
Enabled is

Then load balancing preference is given to a

For persistent messages using
QueueSender.send()

True 1. local member with a consumer and a store

2. remote member with a consumer and a store

3. local member with a store

4. remote member with a store

5. local member with a consumer

6. remote member with a consumer

7. local member

8. remote member

For persistent messages using
QueueSender.send()

False 1. member with a consumer and a store

2. member with a store

3. member with a consumer

4. member

For nonpersistent messages using
QueueSender.send()

True 1. local member with a consumer

2. remote member with a consumer

3. local member

4. remote member

For nonpersistent messages:

• QueueSender.send()
• TopicPublish.publish()

False 1. member with a consumer

2. member

createConnectionConsumer() for
session pool queues and topics

True or False local member only

Note: Session pools are now used rarely, as they are
not a required part of the Jakarta EE specification, do
not support JTA user transactions, and are largely
superseded by message-driven beans (MDBs), which
are simpler, easier to manage, and more capable.

Distributed Destination Migration
For clustered JMS implementations that take advantage of the service migration feature, a
JMS server and its distributed destination members can be migrated to another WebLogic
Server instance within the cluster. Service migrations can take place due to scheduled system
maintenance, as well as in response to a server failure within the cluster.

However, the target WebLogic Server may already be hosting a JMS server with all of its
physical destinations. This can lead to situations where the same WebLogic Server instance
hosts two physical destinations for a single distributed destination. This is permissible in the
short term, because a WebLogic Server instance can host multiple physical destinations for
that distributed destination. However, load balancing in this situation is less effective.

In such a situation, each JMS server on a target WebLogic Server instance operates
independently. This is necessary to avoid merging of the two destination instances, and/or

Chapter 4
Configuring Distributed Destination Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 19 of 21

disabling of one instance on both , which can make some messages unavailable for a
prolonged period of time. The long-term intent, however, is to eventually re-migrate the
migrated JMS server to yet another WebLogic Server instance in the cluster.

For more information about configuring JMS migratable targets, see Migration of JMS-related
Services.

Distributed Destination Failover
If the server instance that is hosting the JMS connections for the JMS producers and JMS
consumers should fail, then all the producers and consumers using these connections are
closed and are not re-created on another server instance in the cluster. Furthermore, if a
server instance that is hosting a JMS destination should fail, then all the JMS consumers for
that destination are closed and not re-created on another server instance in the cluster.

If the distributed queue member on which a queue producer is created should fail, yet the
WebLogic Server instance where the producer's JMS connection resides is still running, then
the producer remains active and WebLogic JMS will fail it over to another distributed queue
member, irrespective of whether the Load Balancing option is enabled.

For more information about procedures for recovering from a WebLogic Server failure, see
Recovering From a Server Failure in Developing JMS Applications for Oracle WebLogic
Server.

Configure an Unrestricted ClientID
The Client ID Policy specifies whether more than one JMS connection can use the same client
ID in a cluster.

Valid values for this policy are:

• RESTRICTED: This is the default. Only one connection that uses this policy can exist in a
cluster at any given time for a particular client ID (if a connection already exists with a
given client ID, then attempts to create new connections using this policy with the same
client ID fail with an exception).

• UNRESTRICTED: Connections created using this policy can specify any client ID, even when
other restricted or unrestricted connections already use the same Client ID. When a
durable subscription is created using an Unrestricted client ID, it can only be cleaned up
using weblogic.jms.extensions.WLSession.unsubscribe(Topic topic, String name).
See Managing Subscriptions in Developing JMS Applications for Oracle WebLogic Server.

Oracle recommends setting the client ID policy to Unrestricted for new applications (unless
your application architecture requires exclusive client IDs), especially if sharing a subscription
(durable or non-durable). Subscriptions created with different client ID policies are always
treated as independent subscriptions. See ClientIdPolicy in the MBean Reference for Oracle
WebLogic Server.

To set the Client ID Policy on the connection factory using the Remote Console, go to the
Client page in the Edit Tree, under Services: JMS System Resources:
myJMSSystemResource of the Connection Factory you want to configure. The connection
factory setting can be overridden programmatically using the setClientIDPolicy method of
the WLConnection interface in the Java API Reference for Oracle WebLogic Server.

Chapter 4
Configure an Unrestricted ClientID

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 20 of 21

Note

Programmatically changing (overriding) the client ID policy settings on a JMS
connection runtime object is valid only for that particular connection instance and for
the life of that connection. Any changes made to the connection runtime object are not
persisted/reflected by the corresponding JMS connection factory configuration defined
in the underlying JMS module descriptor.

For more information on how to use the client ID policy, see Developing Advanced Pub/Sub
Applications in Developing JMS Applications for Oracle WebLogic Server.

Configure Shared Subscriptions
The Subscription Sharing Policy specifies whether subscribers can share subscriptions with
other subscribers on the same connection.

Valid values for this policy are:

• Exclusive: This is the default. All subscribers created using this connection factory cannot
share subscriptions with any other subscribers.

• Sharable: Subscribers created using this connection factory can share their subscriptions
with other subscribers, regardless of whether those subscribers are created using the
same connection factory or a different connection factory. Consumers can share a non
durable subscription only if they have the same client ID and client ID policy; consumers
can share a durable subscription only if they have the same client ID, client ID policy, and
Subscription Name.

WebLogic JMS applications can override the Subscription Sharing Policy specified on the
connection factory configuration by casting a jakarta.jms.Connection instance to
weblogic.jms.extension.WLConnection and calling
setSubscriptionSharingPolicy(String).

Most applications with a Subscription Sharing Policy will use an Unrestricted client ID policy to
ensure that multiple connections with the same client ID can exist.

Two durable subscriptions with the same client ID and Subscription Name are treated as two
different independent subscriptions if they have a different client ID policy. Similarly, two
Sharable non-durable subscriptions with the same client ID are treated as two different
independent subscriptions if they have a different client ID policy.

For more information abut how to use the Subscription Sharing Policy, see Developing
Advanced Pub/Sub Applications in Developing JMS Applications for Oracle WebLogic Server.

Chapter 4
Configure Shared Subscriptions

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 21 of 21

5
Simplified JMS Cluster and High Availability
Configuration

Learn about new cluster-targeting enhancements and how they simplify JMS configuration.
These enhancements make the JMS service dynamically scalable and highly available without
the need for an extensive configuration process in a cluster.

This chapter includes the following sections:

What Are the WebLogic Clustering Options for JMS?
A WebLogic Cluster can contain individually configured servers, dynamically generated
servers, or a mix of both.

WebLogic Server has the following cluster types:

• Configured: A cluster where each member server is individually configured and individually
targeted to the cluster. The value of the Dynamic Cluster Size attribute for the cluster
configuration is 0. This type of cluster is also known as a Static Cluster.

• Dynamic: A cluster where all the member servers are created using a server template.
These servers are referred to as dynamic servers. The value of the Dynamic Cluster Size
attribute for the cluster configuration is greater than 0.

• Mixed: A cluster where some member servers are created using a server template
(dynamic servers) and the remaining servers are manually configured (configured servers).
Because a mixed cluster contains dynamic servers, the value of the Dynamic Cluster
Size attribute for the cluster configuration is greater than 0.

For more information about using dynamic servers, see Dynamic Clusters.

Understanding the Simplified JMS Cluster Configuration
A cluster targeted JMS service configuration directly targets JMS service artifacts such as a
JMS Server, SAF Agent, or Path Service and their associated persistent stores to the same
cluster. A Messaging Bridge is also a JMS artifact that can be cluster targeted. Cluster
targeting JMS artifacts is simpler and provides more HA capability than individually configuring
and targeting a JMS artifact for each WebLogic server in the cluster.

Cluster targeted JMS service artifacts can be distributed across the cluster or singletons
depending on their configured Distribution Policy. When distributed, the cluster will
automatically start a new instance of the artifact (and associated store if applicable) on each
new cluster member and that member becomes the preferred server for that instance. For
artifacts that are not distributed, e.g. they have a singleton Distribution Policy, the system will
select a single server in the cluster to start a single instance of that artifact. See Simplified JMS
Configuration and High Availability Enhancements.

In the case of a dynamic or a mixed cluster, the number of instances automatically grow when
the cluster size grows. To dynamically scale the size of the dynamic or mixed cluster or the
dynamic servers of the mixed cluster, adjust the dynamic cluster Size attribute of your cluster
configuration.

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 11

Figure 1 shows the relationship between the JMS and a dynamic cluster configuration in the
config.xml file.

Figure 5-1 Dynamic Clustered JMS

Using Custom Persistent Stores with Cluster-Targeted JMS Service Artifacts

The custom persistent store used by the JMS service artifacts must be targeted to the same
cluster with appropriate attribute values configured to take advantage of cluster enhancements.
However, cluster-targeted SAF Agents and JMS Servers can also continue to use the default
store available on each cluster member, which does not offer any of the new enhancements
discussed in this chapter. See Simplified JMS Configuration and High Availability
Enhancements.

Targeting JMS Modules Resources

JMS system modules continue to support two types of targeting, either of which can be used to
take advantage of simplified cluster configuration.

• Any default targeted JMS resource in a module (a JMS resource that is not associated with
a subdeployment), inherits the targeting of its parent module, and the parent module can
be targeted to any type of cluster.

Chapter 5
Understanding the Simplified JMS Cluster Configuration

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 11

• Module subdeployment targets can reference clustered JMS Servers or SAF Agents for
hosting regular destinations or imported destinations respectively. Using a cluster-targeted
JMS Server or a SAF Agent in a subdeployment eliminates the need to individually create
and enumerate the JMS Servers or SAF Agents in the subdeployment, which is particularly
useful for Uniform Distributed Destination and imported destination deployment.

See Targeting Best Practices.

Note

A module or its subdeployments cannot be directly targeted to a Dynamic cluster
member server.

Using Persistent Stores with Cluster Targeted JMS Servers
The persistent store associated with a Cluster Targeted JMS server can be a custom persistent
store that is targeted to the same cluster as the JMS server or, in limited circumstances, can be
a default store. It is strongly recommended to always use a custom persistent store instead of
a default store as this provides more high availability capabilities (such as a service migration),
and this will work in all topologies including dynamic clusters and multi-tenant.

Targeting JMS Modules Resources
JMS system modules support default and deployment targeting, either of these can be used to
take advantage of simplified cluster configuration.

• Any default targeted JMS resource in a module (a JMS resource that is not associated with
a subdeployment) inherits the targeting of its parent module, and the parent module can be
targeted to any type of cluster. Note that Oracle strongly recommends using
subdeployment targeting instead of default targeting for destinations.

• Module subdeployment targets can reference clustered JMS servers. Using a cluster
targeted JMS server in a subdeployment eliminates the need to individually enumerate
individual JMS servers in the subdeployment, which is particularly useful for uniform
distributed destination deployment.

See Targeting Best Practices.

Note

A module or its subdeployments cannot be directly targeted to a Dynamic cluster
member.

Simplified JMS Configuration and High Availability
Enhancements

WebLogic Server supports high availability for JMS service artifacts deployed in a cluster. Both
server and service failure scenarios are handled by automatically migrating an artifact's
instance to other running servers. During this process, the system evaluates the overall server
load and availability and moves the instances accordingly.

Chapter 5
Using Persistent Stores with Cluster Targeted JMS Servers

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 11

Cluster-targeting enhancements in this release of WebLogic Server eliminate many of the
limitations that existed in the previous releases:

• In releases before 12.2.1.0, only JMS servers, persistent stores, and SAF Agents (partially)
were allowed to target to a cluster. In 12.2.1.0 and later, the support is extended for all of
the JMS service artifacts including SAF Agents, path services, and messaging bridges and
for all types of clusters (Configured, Mixed, and Dynamic).

• Enhancements in 12.2.1.0 and later lets you easily configure and control the distribution
behavior, as well as the JMS high availability (also known as JMS automatic service
migration) behavior for all cluster targeted JMS Service artifacts. All of these configurations
now exist in a single location, which is a Persistent Store for all the artifacts that depend on
that store, or on the messaging bridge (which does not use the Store). This eliminates the
need for migratable targets that were used in the previous releases.

• Because the logical JMS artifacts are targeted to clusters, the system automatically
creates any "physical" instances required on a cluster member when it joins the cluster.
This allows the JMS Service to automatically scale up when the cluster size grows. With
optional high availability configuration, the "physical" instances can restart or migrate in the
event of service failure or server failure or shutdown, making the JMS Service highly
available with minimal configuration.

The primary attributes that control the scalability and high availability behavior of cluster
targeted JMS services are Distribution policy and Migration policy. In addition to these policies,
there are a few additional attributes that can be used for fine-tuning the high availability
behavior such as restarting the instance in place (on the same server) before attempting to
migrate elsewhere. These policies and attributes are described in the following sections:

Defining the Distribution Policy for JMS Services
The Distribution Policy setting for a custom persistent store or messaging bridge determines
how the associated JMS Service artifacts (JMS Server, SAF Agent, and Path Service) are
distributed in a cluster and the same setting on the Messaging Bridge determines its
distribution behavior.

The following are the options that control the distribution behavior of the JMS service artifact:

• Distributed: In this mode, the cluster automatically ensures that there is a minimum of one
instance per server. When the cluster starts, the system ensures that all the messaging
service instances are up if possible, and when applicable it will attempt an even distribution
of the instances. In addition, all the instances will automatically try to start on their home/
preferred server first. Depending on the Migration Policy, instances can automatically
migrate or even fail-back as needed to ensure high availability and even load balancing
across the cluster.

Note

The default value for the store Distribution Policy attribute is Distributed.
Distributed is the required value for SAF Agents, and is also required for cluster-
targeted JMS Servers that host Uniform Distributed Destinations.

• Singleton: In this mode, a JMS server or a path service has one instance per cluster.

Chapter 5
Simplified JMS Configuration and High Availability Enhancements

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 11

Note

This option is required for a path service and for cluster-targeted JMS servers that
host singleton or standalone (non-distributed) destinations.

Defining the Migration Policy for JMS Services
The store Migration Policy setting controls service migration and restart behavior of cluster-
targeted JMS service artifact instances.

For high availability and service migration, set the migration policy as follows on the associated
store:

• Off: This option disables migration. By default, Restart In Place is also disabled when the
Migration Policy is Off.

• Always: This option enables the system to automatically migrate instances in all situations.
This includes administrative shutdown, crashes or bad health of the hosting server or
subsystem service. This option also enables service restart-in-place, which automatically
tries to restart a failing store on the current hosting server JVM before trying to migrate it to
another server JVM in the same cluster.

• On-Failure: This option enables the system to automatically migrate the instances only in
case of failure or a crash (bad health) of its hosting server. The instances will not migrate
when there is an administrative shutdown, instead they will restart when the server is
restarted. This option also enables service restart-in-place, which automatically tries to
restart a failing store on the current hosting server JVM before trying to migrate it to
another server JVM in the same cluster.

Note

• WebLogic Server provides complete in-place restart support for the JMS services
regardless of targeting type, deployment scope and migration policy setting. See
Service Restart In Place in Administering the WebLogic Persistent Store.

• JMS Service Migration and JTA Migration work independently based on their
respective Migration Policy settings and are configured independently. For
information on Dynamic Clusters and JTA migration policies, see Understanding
the Service Migration Framework.

• To enable support for cluster-targeted JMS Service artifacts with the Always or
On-Failure migration policy, you must configure Cluster Leasing. See Leasing in
Administering Clusters for Oracle WebLogic Server.

• Note: It is a best practice to use the Database Leasing option instead of
Consensus Leasing.

• When a distributed instance is migrated from its preferred server, it will try to fail
back when the preferred server is restarted.

Additional Configuration Options for JMS Services
There are different store configuration options available for automatic migration and high
availability of JMS services. The configuration options apply when the JMS artifact is cluster-
targeted and the Migration Policy is set to On-Failure or Always, or when the Migration Policy

Chapter 5
Simplified JMS Configuration and High Availability Enhancements

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 11

is Off and Restart In Place is explicitly configured to True.The following table describes the
different configuration properties for JMS service migration:

Table 5-1 Configuration Properties for JMS Service Migration

Property Default Value Description

Restart In Place False when
Migration
Policy=Off, True
otherwise

Defines how the system responds on a JMS
Service failure within a healthy Oracle WebLogic
Server. If a service fails and if this property is
enabled, then the system first attempts to restart
that store and associated service artifact on the
same server before migrating to another server.

Note: This attribute does not apply when an entire
server fails.

See Service Restart In Place in Administering the
WebLogic Persistent Store.

Seconds Between Restarts 30 If Restart In Place is enabled, then this
property specifies the delay, in seconds, between
restarts on the same server.

Number of Restart
Attempts

6 If Restart In Place is enabled, then this
number determines the restart attempts the system
should make before trying to migrate the artifact
instance to another server.

Initial Boot Delay
Seconds

60 Controls how fast subsequent instances are started
on a server after the first instance is started. This
prevents the system from getting overloaded during
startup.

A value of 0 indicates that the system does not
need to wait, which may lead to overload situations.
The system’s default value is 60 seconds.

Failback Delay Seconds -1 Specifies the time to wait before failing back an
artifact's instance to its preferred server.

A value > 0 specifies that the time, in seconds, to
delay before failing a JMS artifact back to its
preferred server.

A value of 0 indicates that the instance would never
failback.

A value of -1 indicates that there is no delay and
the instance would failback immediately.

Partial Cluster Stability
Seconds

240 Specifies the amount of time, in seconds, to delay
before a partially started cluster starts all cluster-
targeted JMS artifact instances that are configured
with a Migration Policy of Always or On-Failure.

This delay ensures that services are balanced
across a cluster even if the servers are started
sequentially.

A value > 0 specifies the time, in seconds, to delay
before a partially started cluster starts dynamically
configured services.

A value of 0 specifies no delay in starting all the
instances on available servers.

The default delay value is 240 seconds.

Chapter 5
Simplified JMS Configuration and High Availability Enhancements

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 11

Table 5-1 (Cont.) Configuration Properties for JMS Service Migration

Property Default Value Description

Fail Over Limit -1 Specify a limit for the number of cluster-targeted
JMS artifact instances that can fail over to a
particular JVM.

A value of -1 means there is no failover limit
(unlimited).

A value of 0 prevents any failovers of cluster-
targeted JMS artifact instances, so no more than 1
instance will run per server (this is an instance that
has not failed over).

A value of 1 allows one failover instance on each
server, so no more than two instances will run per
server (one failed over instance plus an instance
that has not failed over).

RebalanceEnabled False Set to True to periodically rebalance the running
cluster-targeted instances with a Migration Policy of
Always or On-Failure when the system is idle
and the instances are unevenly distributed.

The system is considered idle when the Partial
Cluster Stability Delay and the Initial
Boot Delay have passed, and no instances have
moved plus no server status has changed within
the last two system check periods (typically 10
seconds between each check). Two is the default
value. You can tune this value higher using the
Rebalance Delay Periods on the cluster bean.

The system is considered unbalanced if any
running server has an instance count that is more
than one higher than the instance count on any
other running server. For example, when Server A
has 3 instances and Server B has 1 instance.

The rebalance heuristic forces all running instances
that are not on their preferred server to move to
their preferred server if the preferred server is
running. It then finds the alphanumerically highest
failed-over instance on the running server with the
most instances, moves this instance to the
alphanumerically least most running server with the
fewest failed-over instances, and repeats this
pattern until the system is no longer unbalanced.

Note: You can override this setting for all related
instances on an Oracle WebLogic Server to true
or false using the
weblogic.jms.ha.RebalanceEnabledOverrid
e system property. For example, -
Dweblogic.jms.ha.RebalanceEnabledOverri
de=true.

Considerations and Limitations of Clustered JMS
Before developing applications using dynamic clusters and cluster targeted JMS servers, you
must consider the limitations posed by Clustered JMS.

Chapter 5
Considerations and Limitations of Clustered JMS

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 11

The following are the limitations and other behaviors for consideration:

• There are special considerations when a SAF agent-imported destination with an Exactly-
Once QoS Level forwards messages to a distributed destination that is hosted on a mixed
or dynamic cluster. See Best Practices for Using Clustered JMS Services.

• WLST Offline does not support the assign command to target JMS servers to a dynamic
cluster. Use the get and set command.

• Weighted distributed destinations (a deprecated type of distributed destination composed
of a group of singleton destinations), are not supported on cluster-targeted JMS Servers.

• Replicated distributed topics (RDTs) are not supported when any member destination is
hosted on a cluster-targeted JMS server. Configure a partitioned distributed topic (PDT) or
a singleton topic instead. If you are converting a configuration that already has RDTs
configured, see Replacing an RDT with a PDT in Developing JMS Applications for Oracle
WebLogic Server.

• A custom persistent store with a Singleton Distribution Policy, and an Always (Or On-
Failure) Migration Policy is required for a cluster targeted JMS Server to allow Standalone
destinations.

• There is no support for manually (administratively) forcing the migration or fail-back of a
service instance that is generated from a cluster-targeted JMS artifact.

• A path service must be configured if there are any distributed or imported destinations that
are used to host Unit-of-Order (UOO) messages. In addition, such destinations need to be
configured with a path service UOO routing policy instead of the default hashed UOO
routing policy because hash based UOO routing is not supported in cluster-targeted JMS.
Attempts to send UOO messages to a distributed or imported destination that does not
configure a path service routing policy and that is hosted on a cluster targeted JMS Service
will fail with an exception.

• A Fail Over Limit setting only applies when the JMS artifact is cluster-targeted and the
Migration Policy is set to On-Failure or Always.

Note that a cluster targeted path service must be configured to reference a Store that has a
Singleton Distribution Policy and an Always Migration Policy.

Interoperability and Upgrade Considerations of Cluster Targeted JMS
Servers

The following section provides information about interoperability and upgrade considerations
when using cluster targeted JMS servers:

• JMS clients, bridges, MDBs, SAF clients, and SAF agents from previous releases can
communicate with cluster targeted JMS servers.

• There are special considerations when a SAF agent-imported destination with an Exactly-
Once QOS Level forwards messages to a distributed destination that is hosted on a Mixed
or Dynamic cluster. See Best Practices for Using Clustered JMS Services.

• No conversion path is available for moving data (messages) or configurations from non-
cluster targeted JMS servers to cluster targeted JMS servers, or vice versa.

The migratable target-based service migration of JMS services is supported on a Configured
Cluster.

For example, a messaging configuration for JMS servers and persistent stores can target a
single manually configured WebLogic Server or to a single migratable target. Similarly, SAF

Chapter 5
Considerations and Limitations of Clustered JMS

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 11

Agents an target a single manually configured WebLogic Server or to a single migratable target
or to a Cluster.

See Automatic Migration of JMS Services.

Best Practices for Using Cluster Targeted JMS Services
Learn about the recommended best practices and design patterns for using cluster targeted
JMS services.

• Prior to decreasing the dynamic-cluster-size setting of a dynamic cluster or deleting a
configure server in a configured or mixed cluster, process the messages and delete the
stores that are associated with a retired cluster targeted JMS server before shutting down
its WebLogic Server instance. For example:

– Pause the retiring destination instances for production.

– Let consumer applications process the remaining messages on the paused
destinations.

– Shut down the server instance.

– Delete any persistent store files or database tables that are associated with the retired
instance.

Alternatively, a much simpler solution is to setup the system to automatically migrate
destinations on retired servers to the remaining servers:

– Configure the stores to have a Migration Policy of On-Failure or Always (not Off).

– Never reduce the configured dynamic-cluster-size of a dynamic cluster or delete a
configured server from a configured/mixed cluster. Instead, simply don't boot the
retired servers. The On-Failure or Always stores will migrate to running servers. Note
that the WLST scaleDown command should be used only when its
updateConfiguration option is disabled, otherwise it will reduce the cluster dynamic
cluster size setting.

• Use cluster targeted stores instead of default stores for clustered targeted JMS servers
and SAF Agents.

• When enabling high availability (that is, when the Migration Policy on the store is set to
either On-Failure or Always), ensure that cluster leasing is configured. As a best practice,
database leasing is preferred over consensus leasing. See Leasing in Administering
Clusters for Oracle WebLogic Server.

• When configuring destinations in a module, use a subdeployment that targets a specific
clustered JMS server or SAF agent instead of using default targeting. This ensures that the
destination creates members on exactly the desired JMS server instances.

• When using Exactly-Once QOS Level SAF agents and SAF clients, as a best practice,
ensure that Stores associated with the SAF Agents are configured with the migration-policy
set to Always.

Also, in the event of change in the cluster size (particularly when shrinking), ensure that the
backing tables (in case of JDBC store) or files (in case of FILE store) are not deleted or
destroyed, so that they can be migrated over to any available cluster members for continuous
availability of the SAF service.

Chapter 5
Best Practices for Using Cluster Targeted JMS Services

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 11

Runtime MBean Instance Naming Syntax
The runtime MBean associated with each of the JMS artifacts, such as Persistent store, JMS
server, SAFAgent, MessagingBridge and PathService distributed in a cluster are named based
on the distribution policy set. This is enforced by a MBean check.

The types of Distribution Policies are:

• Distributed — Instances are automatically created and named uniquely by naming them
after their home or preferred host WebLogic Server the first time when the WebLogic
Server boots . The format is <configured-name>@<server-name>.

• Singleton — Instances will be named with its configured name along with “01”. The format
is <configured-name>–01. No server name is added to this instance name.

The following sections brief about the Instance Naming Syntax for persistent store:

Instance Naming Syntax for .DAT File
In case of file stores (.DAT files) that are targeted to a cluster, an instance’s data files are
uniquely named based on the corresponding store instance name. For example, in Distributed
mode, an instance's files will be names as <Store name>@<Server instance name>
NNNNNN.DAT, where <NNNNNN> is a number ranging from 000000–999999.

Note

A single file instance may create one or more .DAT files.

Instance Naming Syntax for .RGN File
A replicated store’s instance regions targeted to a cluster, are uniquely named based on the
corresponding store instance name. For example, in distributed mode, a replicated store’s
instance will contain the syntax of <configured Replicated Store name>@<Server instance
name> NNNNNN.RGN, where <NNNNNN> is a number ranging from 000000–999999.

JDBC Store Table Name Syntax
The prefix of a JDBC Store's table name is configurable via its Prefix Name attribute. The suffix
of a JDBC Store's table name is automatically generated and differs based on whether the
store is cluster targeted. The table name must often be changed using the JDBC store
PrefixName setting to ensure different JDBC stores use different tables. No two different
instances of JDBC store can share the same backing table. See Table 5-2 and Table 5-3.

Table 5-2 JDBC Store Table Name Syntax for Cluster Targeted Case

PrefixName Distribution
Policy

Instance Name Store Table Name

myPrefix Distributed myStore@mySer
ver

myPrefix_myServer_WLStore

myPrefix.
(ends with ‘.’)

Distributed myStore@mySer
ver

myPrefix._myServer_WLStore

Chapter 5
Runtime MBean Instance Naming Syntax

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 11

Table 5-2 (Cont.) JDBC Store Table Name Syntax for Cluster Targeted Case

PrefixName Distribution
Policy

Instance Name Store Table Name

Not set Distributed myStore@mySer
ver

myServer_WLStore

myPrefix Singleton myStore-01 myPrefix_01_WLStore

myPrefix.
(ends with ‘.’)

Singleton myStore-01 myPrefix.S_01_WLStore

Not set Singleton myStore-01 S_01_WLStore

Table 5-3 Non-Cluster (single-server) Targeted Case

Prefix Name Distribution
Policy

Instance Name Store Table Name

myprefix NA myStore myPrefixWLStore

NA NA myStore WLStore

Chapter 5
Runtime MBean Instance Naming Syntax

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 11

6
Using WLST to Manage JMS Servers and
JMS System Module Resources

Similar to most other WebLogic artifacts, the WebLogic Scripting Tool (WLST), a command-line
scripting interface, can also be used to create and manage JMS servers and JMS system
module resources for Oracle WebLogic Server.See Using the WebLogic Scripting Tool and
WLST Sample Scripts in Understanding the WebLogic Scripting Tool for more information
about the scripting tool.
This chapter includes the following sections:

Understanding JMS System Modules and Subdeployments
A JMS system module is described by the jms-system-resource MBean in the config.xml
file.

Basic components of a jms-system-resource MBean are:

• name: Name of the module.

• target: Server, cluster, or migratable target the module is targeted to.

• sub-deployment: A mechanism by which JMS system module resources (such as queues,
topics, and connection factories) are grouped and targeted to a server resource (such as a
JMS server instance, WebLogic Server instance, or cluster).

• descriptor-file-name: Path and file-name of the system module file.

The JMS resources of a system module are located in a module descriptor file that conforms to
the weblogic-jmsmd.xml schema. In Figure 6-1, the module is named myModule-jms.xml and it
contains JMS system resource definitions for a connection factory and a queue. The sub-
deployment-name element is used to group and target JMS resources in the myModule-jms.xml
file to targets in the config.xml. You have to provide a value for the sub-deployment-name
element when using WLST. For more information on subdeployments, see JMS System
Module and Resource Subdeployment Targeting. In Figure 6-1, the sub-deployment-name
DeployToJMSServer1 is used to group and target the connection factory CConfac and the
queue CQueue in the myModule-jms module.

For more information about how to use JMS resources, see What Are JMS Configuration
Resources?.

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 5

http://xmlns.oracle.com/weblogic/weblogic-jms/1.0/weblogic-jms.xsd

Figure 6-1 Subdeployment Architecture

How to Create JMS Servers and JMS System Module Resources
Creating JMS servers and JMS system module resources using WLST include the basic tasks
of starting an edit session, creating a JMS system module, and creating a JMS server
resource.

After you have established an edit session, use the following steps to configure JMS servers
and system module resources:

1. Get the WebLogic Server MBean object for the server that you want to configure
resources. For example:

servermb=getMBean("Servers/examplesServer")
 if servermb is None:
 print '@@@ No server MBean found'

2. Create your system resource. For example:

jmsMySystemResource = create(myJmsSystemResource,"JMSSystemResource")

3. Target your system resource to a WebLogic Server instance. For example:

jmsMySystemResource.addTarget(servermb)

Chapter 6
How to Create JMS Servers and JMS System Module Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 5

4. Get your system resource object. For example:

theJMSResource = jmsMySystemResource.getJMSResource()

5. Create resources for the module, such as queues, topics, and connection factories. For
example:

connfact1 = theJMSResource.createConnectionFactory(factoryName)
jmsqueue1 = theJMSResource.createQueue(queueName)

6. Configure resource attributes. For example:

connfact1.setJNDIName(factoryName)
jmsqueue1.setJNDIName(queueName)

7. Create a subdeployment name for system resources. See Understanding JMS System
Modules and Subdeployments. For example:

connfact1.setSubDeploymentName('DeployToJMSServer1')
jmsqueue1.setSubDeploymentName('DeployToJMSServer1')

8. Create a JMS server. For example:

jmsserver1mb = create(jmsServerName,'JMSServer')

9. Target your JMS server to a WebLogic Server instance or cluster. For example:

jmsserver1mb.addTarget(servermb)

10. Create a subdeployment object using the value you provided for the sub-deployment-
name element. This step groups the system resources in module to a sub-deployment
element in the config.xml. For example:

subDep1mb = jmsMySystemResource.createSubDeployment('DeployToJMSServer1')

11. Target the subdeployment to a server resource such as a JMS server instance, WebLogic
Server instance, or cluster. For example:

subDep1mb.addTarget(jmsserver1mb)

Example 6-1 WLST Script to Create JMS System Resources

"""
This script starts an edit session, creates a JMS Server,
targets the jms server to the server WLST is connected to and creates
a JMS System module with a jms queue and connection factory. The
jms queues and topics are targeted using sub-deployments.
"""

import sys
from java.lang import System

print "@@@ Starting the script ..."

myJmsSystemResource = "CapiQueue-jms"
factoryName = "CConFac"
jmsServerName = "myJMSServer"
queueName = "CQueue"

url = sys.argv[1]
usr = sys.argv[2]
password = sys.argv[3]

connect(usr,password, url)
edit()
startEdit()

Chapter 6
How to Create JMS Servers and JMS System Module Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 5

//Step 1
servermb=getMBean("Servers/examplesServer")
 if servermb is None:
 print '@@@ No server MBean found'

else:
 //Step 2
 jmsMySystemResource = create(myJmsSystemResource,"JMSSystemResource")

 //Step 3
 jmsMySystemResource.addTarget(servermb)

 //Step 4
 theJMSResource = jmsMySystemResource.getJMSResource()

 //Step 5
 connfact1 = theJMSResource.createConnectionFactory(factoryName)
 jmsqueue1 = theJMSResource.createQueue(queueName)

 //Step 6
 connfact1.setJNDIName(factoryName)
 jmsqueue1.setJNDIName(queueName)

 //Step 7
 jmsqueue1.setSubDeploymentName('DeployToJMSServer1')
 connfact1.setSubDeploymentName('DeployToJMSServer1')

 //Step 8
 jmsserver1mb = create(jmsServerName,'JMSServer')

 //Step 9
 jmsserver1mb.addTarget(servermb)

 //Step 10
 subDep1mb = jmsMySystemResource.createSubDeployment('DeployToJMSServer1')

 //Step 11
 subDep1mb.addTarget(jmsserver1mb)
.
.
.

How to Modify and Monitor JMS Servers and JMS System
Module Resources

You can modify or monitor JMS objects and attributes by using the appropriate method
available from the MBean.

• Modify JMS objects and attributes using the set, target, untarget, and delete methods.

• Monitor JMS runtime objects using get methods.

Example 7-2 shows a sample WLST script to modify JMS objects.

See Navigating MBeans (WLST Online) in Understanding the WebLogic Scripting Tool.

Example 6-2 WLST Script to Modify JMS Objects

.

.
print '@@@ delete system resource'

Chapter 6
How to Modify and Monitor JMS Servers and JMS System Module Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 5

jmsMySystemResource = delete("CapiQueue-jms","JMSSystemResource")
print '@@@ delete server'
jmsserver1mb = delete(jmsServerName,'JMSServer')
.
.
.

Best Practices When Using WLST to Configure JMS Resources
Learn about best practices when using WLST to configure JMS servers and JMS system
module resources.

• Trap for Null MBean objects (such as servers, JMS servers, modules) before trying to
manipulate the MBean object.

• Use a meaningful name when providing a subdeployment name. For example, the
subdeployment name DeployToJMSServer1 tells you that all subdeployments with this
name are deployed to JMSServer1.

Chapter 6
Best Practices When Using WLST to Configure JMS Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 5

7
Interoperating with Oracle AQ JMS

Oracle WebLogic Server applications interoperate with Oracle Streams Advanced Queuing
(AQ) through the JMS API using either WebLogic Server resources (Web Apps, EJBs, MDBs)
or stand-alone clients.
See Introduction to Oracle Database Advanced Queuing in Oracle Streams Advanced Queuing
User's Guide.

Note

AQ-JMS integration is not supported in a mixed or dynamic cluster. No exception is
thrown when this is attempted.

This chapter includes the following sections:

Overview
AQ JMS uses a database connection and stores JMS messages in a database accessible to
an entire WebLogic Server cluster. This connection enables the use of database features and
tooling for data manipulation and backup. Your WebLogic Server installation includes all the
necessary classes, and no additional files are required in the WebLogic Server classpath to
interoperate with Oracle AQ JMS.

WebLogic AQ JMS uses the WebLogic JMS foreign server framework to allow WebLogic
Server applications and stand-alone clients to lookup AQ JMS connection factories and
destinations using a standard WebLogic JNDI context, and to allow applications and clients to
load and invoke AQ JMS using standard Jakarta EE APIs. The required references to the
database, JDBC driver, and data source are configured as part of this framework.

For applications running within the WebLogic Server's JVM:

• A configured WebLogic data source references a particular JDBC driver, pools JDBC
connections, and provides connectivity to the Oracle Database hosting AQ JMS.

• A configured WebLogic foreign server references the data source.

• Local JNDI names are defined for AQ JMS connection factories and destinations as part of
the WebLogic JMS foreign server configuration. These JNDI names are configured to map
to existing AQ connection factories and destinations.

• In turn, WebLogic Server applications, such as MDBs, reference the local JNDI names.

Using AQ Destinations as Foreign Destinations
AQ foreign destinations must be local to the server running the application or MDBs sending or
receiving messages.

An application that is running on one WebLogic Server instance cannot look up and use an AQ
JMS foreign server and data source that is registered on another WebLogic Server instance.

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 18

WebLogic AQ JMS uses a data source or DB connection that does not support remote
connectivity. An alternative is to use a messaging bridge between AQ destinations in one
domain and applications or MDBs running in another domain. See WebLogic Messaging
Bridge.

Driver Support
WebLogic AQ JMS requires the Oracle thin driver to communicate with the Oracle database.
Oracle OCI JDBC Driver and non-Oracle JDBC Drivers are not supported. See Supported
Configurations in What's New in Oracle WebLogic Server.

Transaction Support
WebLogic AQ JMS supports both Global XA (JTA) transactions and local JMS transacted
session transactions.Global transactions require use of XA based connection factories, while
local transactions may use non-XA based JMS connection factories:

• If you select a non-XA JDBC driver, then you can only use WebLogic AQ JMS in local
transactions.

• If you select an XA JDBC driver, then you can use WebLogic AQ JMS in both local and
global transactions.

• This release does not support non-XA JDBC driver data sources with any of the global
transaction options such as Logging Last Resource (LLR), One-Phase Commit (JTS), and
Emulated Two-Phase Commit. If Supports Global Transactions is selected, then
WebLogic Server logs a warning message.

• Global transactions are supported only with an XA JDBC driver One-Phase commit
optimization. If you use the same XA capable data source for both AQ JMS and JDBC
operations, then the XA transactional behavior is equivalent to having two connections in a
single data source that is treated as a single resource by the transaction manager.
Therefore, if the AQ JMS and JDBC operations are called under the same JTA transaction,
and no other resources are involved in the transaction, the transaction uses One-Phase
Commit optimization instead of Two-Phase Commit; otherwise read-only optimization is
used.

See Understanding Transactions in Developing JMS Applications for Oracle WebLogic Server

Oracle Real Application Clusters
WebLogic AQ JMS supports Oracle Real Application Clusters (Oracle RAC) with the use of
WebLogic Multi Data Sources to provide failover in an Oracle RAC environment.

See Using WebLogic Server with Oracle RAC in Administering JDBC Data Sources for Oracle
WebLogic Server.

Note

Oracle does not recommend configuring multi data sources for Load balancing with
AQ JMS. AQ JMS and AQ usage scenarios have natural hot spots that can cause
over synchronization when the load is spread among Oracle RAC instances. Under
the right circumstances, it can cause significant performance degradation

Chapter 7
Driver Support

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 18

MBean and Console Support
Use SQL scripts or other tools for AQ administration and monitoring, such as AQ queue table
creation/removal, destination creation/removal, and statistics queries.

Except for purposes of interoperating with AQ JMS using a JMS Foreign Server, there are no
AQ JMX specific MBeans and no support for configuring AQ JMS in the WebLogic Remote
Console.

Configuring WebLogic Server to Interoperate with AQ JMS
You can configure AQ JMS queues and topics in an Oracle Database and configure a JMS
foreign server in WebLogic Server so that applications can lookup AQ JMS connection
factories and destinations in the WebLogic JNDI context.
After you have prepared your AQ JMS queues and topics, you can perform the remaining
configuration tasks using either the Remote Console or the WLST command line interface.

The following sections describe the preferred method for configuring WebLogic Server to
interoperate with AQ JMS:

Configure Oracle AQ in the Database
You might find it helpful to set up your AQ JMS queues and topics in your Oracle Database
before you configure WebLogic Server to integrate with AQ JMS.

For more detailed information on using and configuring AQ, see Introduction to Oracle
Database Advanced Queuing in Oracle Streams Advanced Queuing User's Guide.

The following sections describe one configuration method:

Create Users and Grant Permissions
Create users in the database and grant them AQ JMS permissions. Use a database user with
administrator privileges to perform the following task:

• Using the Oracle SQL*Plus environment, log in with an administrator login.

connect / as sysdba;

• Create the JMS user schema. For the following example, the user name is jmsuser and the
password is jmsuserpwd.

Grant connect, resource TO jmsuser IDENTIFIED BY jmsuserpwd;

• Grant the AQ user role to jmsuser.

Grant aq_user_role TO jmsuser;

• Grant execute privileges to AQ packages.

Grant execute ON sys.dbms_aqadm TO jmsuser;

Grant execute ON sys.dbms_aq TO jmsuser;

Grant execute ON sys.dbms_aqin TO jmsuser;

Grant execute ON sys.dbms_aqjms TO jmsuser;

Chapter 7
MBean and Console Support

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 18

Create AQ Queue Tables
Each JMS queue or topic for AQ JMS is backed by an AQ queue table. Each queue table
serves as a repository for JMS messages. A JMS queue or topic (see Create AQ Queue
Tables) is a logical reference to the underlying AQ queue table.

AQ queue tables are created within individual JMS user schemas and can be defined using
Oracle SQL*PLUS. For example:

connect jmsuser / jmsuserpwd;

Configuring an AQ queue table requires a minimum of three parameters: the name of the
queue table, the payload type, and a flag for whether the AQ queue table accepts multiple
consumers. For example:

dbms_aqadm.create_queue_table(
 queue_table=>"myQueueTable",
 queue_payload_type=>'sys.aq$_jms_text_message',
 multiple_consumers=>false
);

Where:

• queue_table: The queue table name. Mixed case is supported in Oracle Database but the
name must be enclosed in double quotes. Queue table names must not be longer than 24
characters.

• queue_payload_type: The message type. Use sys.aq$_jms_message to support all JMS
message interface types.

• multiple_consumers: Set to false for queues; set to true for topics.

For more information on creating queue tables, see CREATE_QUEUE_TABLE Procedure in
Oracle Database PL/SQL Packages and Types Reference.

Create a JMS Queue or Topic
AQ JMS queues are the JMS administrative resource for both queues and topics. After the AQ
queue table is created, you can create an AQ JMS queue within individual JMS user schemas
using Oracle SQL*PLUS. For example:

connect jmsuser/jmsuserpwd;

The PL/SQL procedure for creating a queue or topic has the following form:

dbms_aqadm.create_queue(
 queue_name=>'userQueue',
 queue_table=>'myQueueTable'
);

Where:

• queue_name is the user-defined name for the JMS queue.

• queue_table must point to an existing AQ queue table.

For more information about creating queue tables, see CREATE_QUEUE Procedure in Oracle
Database PL/SQL Packages and Types Reference.

Chapter 7
Configuring WebLogic Server to Interoperate with AQ JMS

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 18

Start the JMS Queue or Topic
Before first use, an AQ JMS queue must be started. Using the JMS user schema, execute the
following PL/SQL procedure where queue_name represents the AQ JMS queue name.

connect jmsuser / jmsuserpwd
dbms_aqadm.start_queue(queue_name=>'userQueue'

For more information about starting queues, see START_QUEUE Procedure in Oracle
Database PL/SQL Packages and Types Reference.

Configure WebLogic Server for AQ JMS
The following sections provide information about how to configure WebLogic Server to
interoperate with AQ JMS:

Configure a WebLogic Data Source for AQ JMS
WebLogic Server applications (such as MDBs, EJBs, and Web apps) that use, AQ JMS
configure a data source for the Oracle Database that provides the AQ JMS service. In most
situations, this data source is dedicated to AQ JMS usage because it uses the JMS user and
password to connect to the schema in the database. It does support multiple queues and
topics if they are created in the schema used in the database connection. You can use a
generic or Active GridLink (AGL) data source:

Configuring a Generic Data Source for AQ JMS
When configuring your data source:

• Select the appropriate Oracle Thin Driver.

• Select the driver type based on the type of transactions required for AQ JMS:

– Select a non-XA based JDBC driver for use with AQ JMS in local transactions.

– Select a XA based JDBC driver for use with AQ JMS in either in global transactions or
in local transactions.

• When configuring a data source for non-XA drivers, do not select the Supports Global
Transactions option. This release does not support non-XA JDBC driver data sources
with any of the global transaction options such as LLR, JTS, and Emulate Two-Phase
Commit. If the global transaction option is selected, the server instance logs a warning
message. Global transactions are supported with XA-based JDBC drivers.

• Configure the database user name and password in the data source connection pool
configuration. Identity-based connection pools are not supported.

See:

• Configuring JDBC Data Sources in Administering JDBC Data Sources for Oracle
WebLogic Server.

• Create a Generic Data Source in the Oracle WebLogic Remote Console Online Help.

Configuring an AGL Data Source for AQ JMS
When configuring your data source:

• Select the Oracle Thin XA Driver for Connections.

Chapter 7
Configuring WebLogic Server to Interoperate with AQ JMS

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 18

• Configure the database user name and password in the data source connection pool
configuration.

See:

• Using Active GridLink Data Sources in Administering JDBC Data Sources for Oracle
WebLogic Server.

• Create an Active GridLink Data Source in the Oracle WebLogic Remote Console Online
Help.

Configure a JMS System Module
Configure a dedicated JMS system module to host a JMS foreign server for AQ resources.
Target the module at the WebLogic Server instances or the cluster that needs to host the
foreign JNDI names. See:

• Overview of JMS Modules.

• Configure Resources for JMS System Modules in the Oracle WebLogic Remote Console
Online Help.

Configure a JMS Foreign Server
In your JMS foreign server configuration:

• Specify oracle.jakarta.jms.AQjmsInitialContextFactory" as the JNDI initial context
factory.

• Configure the JDBC data sources needed for your application environment.

See:

• Configuring Foreign Server Resources to Access Third-Party JMS Providers

• Configure Resources for JMS System Modules in the Oracle WebLogic Remote Console
Online Help.

Reference a Data Source
Specify the datasource JNDI property which is the JNDI location of a locally bound WLS data
source.

For example:

<foreign-server>
<initial-context-factory>oracle.jakarta.jms.AQjmsInitialContextFactory</initial-context-
factory>
<jndi-property>
<key>datasource</key>
<value>jdbc/aqjmsds</value>
</jndi-property>
</foreign-server>

The value of the datasource JNDI property is the name of the data source configured to
access the AQ JMS Oracle Database. No other configuration information, such as security
principal or credentials, is required. However, if you provide a database url, then
java.naming.security.principal and java.naming.security.credentials are required.

See Configure a WebLogic Data Source for AQ JMS.

Chapter 7
Configuring WebLogic Server to Interoperate with AQ JMS

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 18

Configure JMS Foreign Server Connection Factories
After you have created a JMS foreign server, you can create JNDI mappings for the AQ JMS
connection factories in the WebLogic Server JNDI tree. Unlike destinations, AQ JMS does not
require connection factories to be redefined in the Oracle Database. Instead, a predefined
JNDI name is specified when identifying the remote JNDI name for a connection factory. The
remote JNDI name for the AQ JMS connection factory is one of those in Table 1.

Table 7-1 Remote JNDI names for AQ JMS Connection Factories

<AQ JMS Prefix Value> JMS Interface

QueueConnectionFactory jakarta.jms.QueueConnectionFactory

TopicConnectionFactory jakarta.jms.TopicConnectionFactory

ConnectionFactory jakarta.jms.ConnectionFactory

XAQueueConnectionFactory jakarta.jms.XAQueueConnectionFactory

XATopicConnectionFactory jakarta.jms.XATopicConnectionFactory

XAConnectionFactory jakarta.jms.XAConnectionFactory

For example, consider two connection factories configured for an AQ JMS Foreign Server:

Table 7-2 AQ JMS Foreign Server Example Connection Factories

Local JNDI Name RemoteJNDI Name

jms/aq/myCF ConnectionFactory

aqjms/orderXaTopicFactory XATopicConnectionFactory

When a WebLogic application looks up a JMS factory at jms/aq/myCF, the application gets the
AQ JMS object that implements the JMS jakarta.jms.ConnectionFactory interface. When a
WebLogic application looks up a JMS factory at aq/orderXaTopicFactory, the application gets
the AQ JMS object that implements the JMS jakarta.jms.XATopicConnectionFactory
interface.

To configure a AQ JMS foreign server connection factory, you need to:

• Specify Local and Remote JNDI names

– The local JNDI name is the name that WebLogic uses to bind the connection factory
into the WebLogic JNDI tree. The local JNDI name must be unique so that it doesn't
conflict with an other JNDI name advertised on the local WebLogic Server.

– The Remote JNDI name is the name that WebLogic passes to AQ JMS to lookup AQ
JMS connection factories.

When configuring AQ JMS for use in global transactions, use an XA based connection
factory; otherwise configure a non-XA based connection factory.

• No other configuration parameters are required.

See:

• Creating Foreign Connection Factory Resources

• Configure Resources for JMS System Modules in the Oracle WebLogic Remote Console
Online Help.

Chapter 7
Configuring WebLogic Server to Interoperate with AQ JMS

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 18

Configure AQ JMS Foreign Server Destinations
When configuring an AQ JMS foreign destination, you need to configure the following:

• Local JNDI name : The name that WLS uses to bind the destination into the WebLogic
JNDI tree. The local JNDI name must be unique so that it doesn't conflict with any other
JNDI names advertised on the local WebLogic Server instance.

• Remote JNDI name : The name that WLS passes to AQ JMS to do a lookup. AQ JMS
requires the Remote JNDI name to be in the following syntax:

– If the destination is a queue, then the remote JNDI name must be Queues/<queue
name>.

– If the destination is a topic, then the remote JNDI name must be Topics/<topic name>

Similar to connection factories, AQ JMS destinations require a remote JNDI name with a prefix
to identify the JMS object type. There are two values for destinations:

Table 7-3 AQ JMS Prefix Value of the JMS Interface

AQ JMS Prefix Value JMS Interface

Queues jakarta.jms.Queue

Topics jakarta.jms.Topic

Unlike AQ JMS connection factory JNDI names, the value for the destination name represents
the AQ JMS destination defined in the database. See Create a JMS Queue or Topic. For
example, consider the two destinations configured for an AQ JMS Foreign Server in the
following table:

Table 7-4 Example AQ JMS Foreign Server Destinations

Local JNDI Name Remote JNDI Name

jms/myQueue Queues/userQueue

AqTopic Topics/myTopic

A WebLogic application looking up the location jms/myQueue references the AQ JMS queue
defined by userQueue. Looking up the location AqTopic references the AQ JMS topic defined
by myTopic.

See:

• Creating Foreign Connection Factory Resources

• Configure Resources for JMS System Modules in the Oracle WebLogic Remote Console
Online Help.

Additional Configuration for Interoperation with Oracle 12c Database
The following section provides additional configuration that may be required when
interoperating AQ JMS on a Oracle 12c Database:

• The AQ asynchronous notification feature is enabled by default with sharded queues in
Oracle 12c database.

Chapter 7
Configuring WebLogic Server to Interoperate with AQ JMS

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 18

When using the AQ sharded queues, an asynchronous receive from a Message Listener or
from a Message Driven Bean (MDB) may create more JDBC connections internally based
on the load. If the number of JDBC connections is restricted in the system, the client
application should disable the asynchronous notification by setting the value of the system
property oracle.jms.useJmsNotification to false.

For transactional MDBs or when -Dweblogic.mdb.message.MinimizeAQSessions is set to
true, the MDB container will internally use synchronous receivers, not an asynchronous
consumer.

• To use the notification service (-Doracle.jms.useJmsNotification=true), set the
database service name in place of SID for the JDBC URL. For example:

jdbc:oracle:thin:@//DB_HOST:DB_PORT/Database ServiceName

• Specify a local listener by setting the init parameter in the init.ora file and restart the
database. For example:

LOCAL_LISTENER="(ADDRESS=(PROTOCOL=tcp)(host=DB_HOST)(port=DB_PORT)).

• Set the WebLogic Server properties to minimize the number of JMS sessions used and to
control the MDB polling interval: See Settings for Message Driven Beans to Interoperate
with AQ JMS

Note

As of WebLogic Server 12.2.1.2, the WebLogic Server Java system properties
weblogic.mdb.message.MimizeAQSessions and
weblogic.ejb.container.MDBDestinationPollIntervalMillis are obsolete. Use the
corresponding activation-config-property instead. The two activation-config-property
overrides the respective Java system properties.

Programming Considerations
Learn about some of the programming considerations for managing WebLogic AQ JMS.
The following sections include information about advanced WebLogic AQ JMS topics:

Settings for Message Driven Beans to Interoperate with AQ JMS
Message Driven Beans (MDBs) interoperate with AQ JMS by using a configured foreign
server. See Overview.

The following are the considerations for MDBs when interoperating with AQ JMS:

• Set the following WebLogic Server properties to minimize the number of JMS sessions
used and to control the MDB polling interval:

• —Dweblogic.mdb.message.MinimizeAQSessions=true

This property reduces the number of AQ JMS sessions in the MDB layer and there by
reduce the number of JDBC connections held by the MDB. Also, the value true for this
property will be effective only when
weblogic.ejb.container.MDBDestinationPollIntervalMillis is set to a value more
than 5000 milliseconds.

-Dweblogic.ejb.container.MDBDestinationPollIntervalMillis=6000

Chapter 7
Programming Considerations

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 18

• The message driven parameters initial-context-factory and provider-url are not
supported as these parameters are supplied as part of the JMS Foreign Server
configuration

• The destination type for the MDB destination in the ejb-jar.xml file should be configured
to either: jakarta.jms.Queue or jakarta.jms.Topic

• Additional MDB configuration is required to enable container managed transactions,
durable topic subscriptions, and other MDB features.

See Understanding Message-driven Beans in Developing Message-Driven Beans for Oracle
WebLogic Server.

Scalability for Clustered WebLogic MDBs Listening on AQ Topics
Use a shared subscription to implement a one-copy-per-application messaging strategy when
a clustered MDB listens to an AQ topic.

The subscribers that share a subscription need to:

• Be on different VMs.

• Use the same data source (or a data source that uses the same database user-name and
password).

• Use the same subscription name.

The database username acts as the client ID for the subscription. When the client ID is the
same for a same-named subscription, the subscription in AQ is shared. For more information
about shared subscriptions, see Advanced Messaging Features for High Availability in
Developing JMS Applications for Oracle WebLogic Server.

AQ JMS Extensions
AQ JMS extension APIs are supported by AQ JMS-specific classes. You can invoke the AQ
JMS extensions, after casting the standard JMS objects (such as connection factories and
destinations) to proprietary AQ JMS classes. For example:

. . .
import oracle.jakarta.jms.AQjmsInitialFactory;
. . .
ConnectionFactory myCF = (ConnectionFactory) jndiCtx.lookup("aqjms/testCF");
AQjmsFactory myCF = (AQjmsFactory) myCF;
myCF.someProprietaryAQJMSmethod(..);
. . .

When you use resource references for an AQ JMS connection factory, WebLogic Server wraps
the underlying AQ JMS connection factory with a wrapper object. This wrapper object
implements the JMS standard API, but it cannot cast it to an AQ JMS class that provides AQ
JMS extension APIs. For example:

. . .
// Implements wrapping and cannot cast to AQ JMS
<resource-ref>
 <res-ref-name>aqjms/testCF</res-ref-name>
 <res-type>jakarta.jms.ConnectionFactory</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>
. . .

Chapter 7
Programming Considerations

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 18

To avoid the wrapping, users can specify the java.lang.Object as the resource type of the
resource reference instead of jakarta.jms.XXXConnectionFactory in the deployment
descriptor. This limitation is specific to AQ JMS, as resource references support only
extensions that are exposed using Jakarta interfaces. For example:

. . .
// Use for AQ JMS extensions
<resource-ref>
 <res-ref-name>aqjms/testCF</res-ref-name>
 <res-type>java.lang.Object</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>
. . .

AQ JMS does not define Jakarta interfaces for its extensions. With AQ JMS, avoiding wrapping
does not disable automatic JTA transaction enlistment, nor does it prevent pooling, because
AQ JMS obtains these capabilities implicitly through its embedded use of WebLogic data
sources.

Using AdtMessage
An AdtMessage is a special type of AQ JMS extension that supports Abstract Data Types
(ADTs). ADTs consists of a data structure and subprograms that manipulate data in an Oracle
Database.

Note

This is not supported with Message-Driven Beans (MDBs).

See:

• Using Oracle Java Message Service (OJMS) to Access Oracle Streams Advanced
Queuing and Object Type Support in Oracle Streams Advanced Queuing User's Guide

• Data Abstraction in Oracle Database PL/SQL Language Reference

Resource References
If you use the resource references and the resource type is
jakarta.jms.XXXConnectionFactory, then the WebLogic wraps the AQ JMS objects passed
to a user application. If you also use the AQ JMS extension APIs, then they must be
unwrapped as described in AQ JMS Extensions.

WebLogic resource reference wrappers do not automatically pool AQ JMS connections.
Instead, AQ JMS server-side integration depends on data source connection pooling to
mitigate the overhead of opening and closing JMS connections and sessions. WebLogic
resource references disable pooling because the AQ JMS provider JMS connection factory is
always pre-configured with a client identifier, which in turn, causes WebLogic resource
references to disable its pooling feature.

JDBC Connection Utilization
An AQ JMS session holds a JDBC connection until the JMS session is closed, regardless of
whether the connection uses a data source or a JDBC URL. Oracle recommends that you
close an AQ JMS session if the session becomes idle for an extended period of time. Closing

Chapter 7
Programming Considerations

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 18

the JMS session releases the JDBC connection back to the WebLogic data source pool or
releases the database and network resources for a JDBC URL.

Oracle RAC Support
The following section provides information about limitations in Oracle RAC environments:

• Oracle RAC environments require the configuration of WebLogic Multi data sources to
provide AQ JMS Oracle RAC failover. See Using WebLogic Server with Oracle RAC in
Administering JDBC Data Sources for Oracle WebLogic Server.

• Oracle RAC failover is not supported when using a WebLogic AQ JMS stand alone client
for this release.

Debugging
To use AQ JMS tracing and debugging, set the following system property:
oracle.jms.traceLevel.

The value of this property is an integer ranging from 1 to 6 where a setting of 6 provides the
finest level of detail. The trace output is directed to the standard output of the running JVM.

Performance Considerations
In releases prior to Oracle RDBMS 11.2.0.2, statistics on the queue table are locked by default
which causes a full table scan for each dequeue operation. To work around this issue, unlock
the queue tables and collect the statistics. For example:

exec DBMS_STATS.UNLOCK_TABLE_STATS ('<schema>','<queue table>');

exec DBMS_STATS.gather_table_stats('<schema>','<queue table>');

exec DBMS_STATS.LOCK_TABLE_STATS ('<schema>','<queue table>');

Advanced Topics
Learn about advanced interoperability information when WebLogic Server applications
interoperate with AQ JMS.

This section includes the following topics:

Advanced Message Recovery for MDBs
For applications that cannot use Container-Managed transactions with MDBs to process
messages in an AQJMS queue, WebLogic Server Message-Driven Beans (MDBs) container
provides an advanced message recovery capability to help the applications recover from a
situation where the underlying AQ sessions may be closed due to database maintenance,
while the MDBs are in the middle of completing a long running message processing task. The
advanced message recovery capability prevents the same message from being picked up and
processed by two different MDB threads concurrently and therefore lead to unpredictable
behavior (for example, unique index constraint violations, duplicate rows created, and so on).

This functionality is automatically enabled for applications that meet the following criteria.
Examples of such applications are Oracle Fusion Applications Async Web Services.

• The JMS provider is AQ JMS and the version of the aqapi_jakarta.jar supports the new
behavior.

Chapter 7
Advanced Topics

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 18

• MDBs listen to a classic AQ JMS queue (not an AQ queue with multiple-consumers=true
or a sharded queue).

• The retry_delay is set on the AQ queue (the default is zero).

• The max_retries is set to a non-zero value on the AQ queue (the default is 5).

• MDBs are configured to use Bean managed transactions.

• MDBs configured with weblogic.mdb.message.MinimizeAQSessions=true and
weblogic.ejb.container.MDBDestinationPollIntervalMillis are set to a value more
than 5000 milliseconds.

For users who prefer not to enable this capability, a system property -
Dweblogic.mdb.message.disableAdvancedAQJMSRecovery can be used to disable the new
behavior on a per server basis.

Security Considerations
Stand alone clients and server-side applications have different security semantics and
configuration. If security is a concern, read this section carefully and also reference the
WebLogic lock-down document for general information about how to secure a WebLogic
Server or Cluster (see Lock Down WebLogic Server in Securing a Production Environment for
Oracle WebLogic Server). The following sections outlines security considerations for this
release:

Configuring AQ Destination Security
ENQUEUE and/or DEQUEUE permission must be configured for the database user in AQ to
allow destination lookups as well as to allow enqueues and dequeues.

The following usernames must be given enqueue and/or dequeue permission:

• For stand-alone clients:

– The configured JMS Foreign Server username, as specified using the
java.naming.security.principal property.

– For Java code that passes a username using the JMS ConnectionFactory API
createConnection() method, this username requires permission.

• For server-side applications:

– The Database User Name is configured on the WebLogic Data Source.

– Do not give permission for a username specified for JDBC Data Source clients that
pass a username using the JMS ConnectionFactory API createConnection() method:
this username is a WebLogic username, not a database username.

To understand which JDBC connection credentials and permissions that are used for AQ
lookups, enqueues, and dequeues, see Queue Security and Access Control in Oracle Streams
Advanced Queuing User's Guide.

Note

A permission failure while looking up a destination will manifest as a "name not found"
exception thrown back to application caller, not a security exception.

Chapter 7
Advanced Topics

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 18

https://docs.oracle.com/database/121/ADQUE/toc.htm

Access to JNDI Advertised Destinations and Connection Factories
As described earlier, local JNDI names for connection factories and destinations must be
configured as part of the JMS Foreign Server configuration task. You can optionally configure
security policies on these JNDI names, so access checks occur during JNDI lookup based on
the current WebLogic credentials. The current WebLogic credentials depend on the client type.

Once an application's WebLogic JNDI lookup security policy credential check passes for a
destination, a JMS Foreign Server destination automatically looks up the destination resources
in Oracle AQ using a JDBC connection.

For stand-alone clients, the credential used for the second part of a destination lookup process
are based on the username and password that is configured on the JMS Foreign Server.

For server-side application JDBC Data Source clients, the credential used for this second
destination lookup is based on the database username and password configured as part of the
data source. Note that the credential used to gain access to this data source is the current
WebLogic credential. It is possible to configure a WebLogic security policies on the data
source. The WebLogic data source Identity Based Connection Pooling feature is not supported
for this purpose.

As previously mentioned, the database credential must have AQ JMS enqueue or dequeue
permission on a destination to be able to successfully look-up the destination. See Configuring
AQ Destination Security.

Controlling Access to Destinations that are Looked Up using the JMS API
The JMS QueueSession and TopicSession APIs provide an alternative to JNDI for looking up
destinations, named createQueue() and createTopic() respectively. See How to Lookup a
Destination in Developing JMS Applications for Oracle WebLogic Server.

The createQueue() and createTopic() calls use the database credential associated with the
JMS connection. The following sections describe how to set this credential.

Additional Security Configuration for Standalone Clients
The following section is security configuration information for standalone clients:

• Network communication from a client into WebLogic occurs when establishing a JNDI
initial context and when performing any subsequent JNDI lookups. To ensure secure
communication and avoid plain text on the wire, use an SSL capable protocol (such as t3s
or HTTPS). The credentials used for WebLogic login, as well as the JMS Foreign Server
credentials that are configured for database login, are passed plain-text on the wire unless
SSL is configured.

• Network communication is direct from the client to the database when communicating with
AQ. This communication is controlled by the JDBC URL configuration, and is in plain text
unless the JDBC URL is configured to use SSL. Stand-alone clients communicate directly
with the database over a database connection when using the AQ JMS APIs, their JMS
requests do not route through a WebLogic server.

• WebLogic Server user name and password: The network login from a client into WebLogic
is performed as part of establishing the JNDI initial context. The user name and password
properties that are optionally supplied when creating the context become the WebLogic
identity (the property names are Context.SECURITY_PRINCIPAL =
"java.naming.security.principal" and Context.SECURITY_CREDENTIALS =
"java.naming.security.credentials" respectively). This becomes the credential that is

Chapter 7
Advanced Topics

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 18

checked for subsequent JNDI lookups. The credential is also implicitly associated with
current thread, and so becomes the credential used for subsequent WebLogic operations
on the same thread, but this is not the credential used for AQ JMS operations.

• The jakarta.jms.ConnectionFactory createConnection() method has an optional user
name and password. For stand-alone clients, these override the context credentials that
were configured as part of the JMS foreign server configuration. AQ JMS creates a
database connection with the specified user identity. If createConnection() is called
without a user-name and password, then the database connection is created using the
user-name and password that was configured as part of the JMS foreign server
configuration.

• Do not include a user name/password directly in the JDBC URL. Instead use the JMS
Foreign Server user name and password.

• Do not configure a user name and password on the JMS Foreign Server connection
factory. The resulting behavior is unsupported.

Additional Security Configurations for Server-Side Applications

The following section provides security configuration information for server-side applications.

• Do not configure a java.naming.security.principal or a credential on the JMS foreign
server unless the same JMS foreign server is also being used to support stand-alone
clients.

• Do not configure a user-name and password on the JMS foreign server connection factory.
The resulting behavior is unsupported.

• Network communication from the server to the database (server-side applications) is
controlled by data source configuration, and is in plain text unless the data source is
configured to use SSL.

• The jakarta.jms.ConnectionFactory createConnection() method has an optional user
name and password. For server-side JMS AQ applications, the method assumes the user-
name is for a WebLogic user and authenticates it with the WebLogic server. This behavior
deviates from other kinds of JMS AQ clients, where the user-name is instead treated as a
database user. When configured with a WebLogic data source, AQ JMS delegates the
authentication to the WebLogic data source and AQ JMS inherits the WebLogic user
semantics.

• When an AQ JMS foreign server is configured with a WebLogic data source, the data
source is exposed to general-purpose JDBC usage. Oracle recommends that you secure
the data source as described in Using Roles and Policies to Secure JDBC Data Sources in
Administering JDBC Data Sources for Oracle WebLogic Server.

• WebLogic Server user name and password: WebLogic credentials are checked when
accessing secured names in JNDI, and accessing secured data sources. Server side
applications automatically assume the same WebLogic credentials as the caller that called
the application, or, in the case of MDBs, this credential can be configured as part of the
MDB configuration.

• The WebLogic data source identity based connection pooling feature is not supported.

• JNDI context credentials: Specifying credentials as part of setting up a JNDI context within
a server-side application is usually not necessary, and is not typically recommended. This
creates a new credential that overrides the application's current credentials. In other
words, the user-name and password properties that are optionally supplied when creating
the context become the WebLogic identity and replace any current identity (the property
names are Context.SECURITY_PRINCIPAL = "java.naming.security.principal" and
Context.SECURITY_CREDENTIALS = "java.naming.security.credentials" respectively).

Chapter 7
Advanced Topics

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 18

The optional new credential is implicitly associated with the current thread, and so
becomes the credential used for subsequent WebLogic operations on the same thread,
such as JNDI lookups. The new credential is not the credential used for AQ JMS
operations.

WebLogic Messaging Bridge
A WebLogic Messaging Bridge communicates with the configured source and target bridge
destinations. For each mapping of a source destination to a target destination, you must
configure a messaging bridge instance. Each messaging bridge instance defines the source
and target destination for the mapping, a message filtering selector, a QOS, transaction
semantics, and various reconnection parameters.

If you have AQ foreign destinations that are not local to the server running the application or
MDBs sending and receiving messages, you must configure a messaging bridge instance on
the server that is local to the AQ foreign destinations. A local database connection is used in
the process of sending and receiving messages from AQ destinations.

For more information on the WebLogic Messaging Bridge, see Understanding the Messaging
Bridge in Administering the WebLogic Messaging Bridge for Oracle WebLogic Server.

Create a Messaging Bridge Instance
The following are the major steps in creating a messaging bridge between AQ destinations are
configured as foreign destinations in one domain and applications or MDBs running in another
domain:

1. Create the bridge instance on the server where AQ destinations configured as foreign
destinations.

2. Create source and target bridge destinations.

Select Other JMS in the default Messaging Provider drop down when a Foreign AQ JMS
destination is specified for a source or target destination.

3. Deploy a resource adapter.

4. Create a messaging bridge instance.

The Messaging Bridge Exactly-Once quality of service requires a data source configured
with the XA based JDBC driver and must use an AQ JMS connection factory that
implements an XA-JMS connection factory interface. See Configure a WebLogic Data
Source for AQ JMS and Configure JMS Foreign Server Connection Factories.

5. Target the messaging bridge.

The WebLogic Remote Console helps you in create a messaging bridge by deploying an
appropriate resource adapter and setting the values of some attributes. Consider changing
messaging bridge settings to better suit your environment. See Create a Messaging Bridge
Instance in the Oracle WebLogic Remote Console Online Help.

Standalone WebLogic AQ JMS Clients
You can create WebLogic AQ JMS standalone clients that can look up AQ JMS connection
factories and destinations defined by a JMS foreign server using a JDBC URL. The client must
have the following JARs on the client-side classpath: $MW_HOME/oracle_common/modules/
oracle.jdbc/aqapi_jakarta.jar, $MW_HOME/oracle_common/modules/oracle.jdbc/
ojdbc11.jar, and the following WebLogic client JAR wlthint3client.jar If you have
weblogic.jar on the client-side classpath, then you do not need any additional JARs.

Chapter 7
Advanced Topics

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 18

For applications running outside the WebLogic Server's JVM:

• A configured WebLogic JMS foreign server references the database's URL, as well as
other JDBC driver configurations. See Configure a Foreign Server using a Database's
JDBC URL.

• Local JNDI names are defined for AQ JMS connection factories and destinations as part of
the WebLogic JMS Foreign Server configuration. These JNDI names are configured to
map to existing AQ connection factories and destinations.

• Standalone clients reference local JNDI names. Unlike applications that run on WebLogic
Server, standalone clients need to ensure that the driver and AQ client are on the
classpath.

Configure a Foreign Server using the Database's JDBC URL
Specify the db_url, java.naming.security.principal JNDI properties and a password in
jndi-properties-credentials.

For example:

<foreign-server>

<initial-context-factory>oracle.jakarta.jms.AQjmsInitialContextFactory</initial-context-
factory>

<jndi-properties-credential-encrypted>{3DES}g8yFFu1AhP8=</jndi-properties-credential-
encrypted>

<jndi-property>
<key>java.naming.security.principal</key>
<value>j2ee</value>
</jndi-property>

<jndi-property>
<key>db_url</key>
<value>jdbc:oracle:thin:@{hostname}:{port}:{sid}</value>
</jndi-property>

</foreign-server>

• The value of db_url JNDI property is the JDBC URL used to connect to the AQ JMS
Oracle Database.

• The value of the java.naming.security.principal is the database user-name that AQ
JMS uses to connect to the database.

• jndi-properties-credentials contains the database password.

No other configuration properties are required.

Limitations when using Standalone WebLogic AQ JMS Clients
The following are limitations to consider when creating and using standalone WebLogic JMS
clients. This release does not support:

• Use of a WebLogic AQ JMS standalone client to automatically participate in global
transactions managed by WLS.

• Connection pooling for WebLogic AQ JMS standalone clients.

• Looking up JMS objects defined by an AQ JMS foreign server using a data source.

Chapter 7
Advanced Topics

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 18

• Standalone AQ JMS Client does not support JMS2.0 API; it throws
oracle.jakarta.jms.AQjmsException: JMS-102: Feature not supported.

Chapter 7
Advanced Topics

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 18

8
Monitoring JMS Statistics and Managing
Messages

You can monitor and manage JMS statistics in Oracle WebLogic Server. You can create,
collect, analyze, archive, and access diagnostic data generated by a running server and the
applications deployed within its containers.
For WebLogic JMS, you can use the enhanced runtime statistics to monitor the JMS servers
and destination resources in your WebLogic domain to see if there is a problem. If there is a
problem, you can use profiling to determine which application is the source of the problem.
Once you've narrowed it down to the application, you can then use JMS debugging features to
find the problem within the application.

For more information on configuring JMS diagnostic notifications, debugging options, message
life cycle logging, and controlling message operations on JMS destinations, see
Troubleshooting WebLogic JMS.

Message administration tools in this release enhance your ability to view and browse all
messages, and to manipulate most messages in a running JMS Server, using either the
WebLogic Remote Console or through new public runtime APIs. These message management
enhancements include message browsing (for sorting), message manipulation (such as create,
move, and delete), message import and export, as well as transaction management, durable
subscriber management, and JMS client connection management.

For more information about the WebLogic Diagnostic Service, see Configuring and Using the
Diagnostics Framework for Oracle WebLogic Server.

This chapter includes the following sections:

Monitoring JMS Statistics
Once WebLogic JMS has been configured, applications can begin sending and receiving
messages through the JMS API.
See Developing a Basic JMS Application in Developing JMS Applications for Oracle WebLogic
Server.

You can monitor statistics for the following JMS resources: JMS servers, connections, queue
and topic destinations, JMS server session pools, pooled connections, active sessions,
message producers, message consumers, and durable subscriptions on JMS topics.

JMS statistics continue to increment as long as the server is running. Statistics are reset only
when the server is restarted.

Monitoring JMS Servers
You can monitor statistics on active JMS servers defined in your domain using the WebLogic
Remote Console or through the JMSServerRuntimeMBean. JMS servers act as management
containers for JMS queue and topic resources within JMS modules that are specifically
targeted to JMS servers.

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 9

To monitor JMS servers using the Remote Console, in the Monitoring Tree, go to Services,
then Messaging, then JMS Servers. Select the JMS Server for which you want to see
statistics.

When monitoring JMS servers with the WebLogic Remote Console, you can also monitor
statistics for active destinations, transactions, connections, and session pools.

Monitor Cluster Targeted JMS Servers
Cluster targeted JMS services such as JMS Servers, SAF agents, path service, and persistent
stores have multiple instances of the associated RuntimeMbeans to monitor the statistics for
each respective instance in a dynamic cluster. The runtime MBeans for a JMS server and
persistent store are automatically named according to the corresponding server instance name
using the following pattern:

configured_JMS_service_Artifact_name@server-name

server-name is the configured server name concatenated with dynamic server instance
number.

Monitoring Active JMS Destinations
You can monitor statistics on all the active destinations currently targeted to a JMS server. JMS
destinations identify queue or topic destination types within JMS modules that are specifically
targeted to JMS servers.

In the Remote Console, go to the Monitoring Tree: Services: Messaging: JMS Servers.
Select the JMS Server for which you want to see the active destinations.

Monitoring Active JMS Transactions
You can monitor active transactions running on a JMS server.

In the Remote Console, go to the Monitoring Tree: Services: Messaging: JMS Servers.
Select the JMS Server for which you want to see the active transactions.

Monitoring Active JMS Connections, Sessions, Consumers, and Producers
You can monitor statistics on all the active JMS connections to a JMS server. A JMS
connection is an open communication channel to the messaging system.

In the Remote Console, go to the Monitoring Tree: Services: Messaging: JMS Servers.
Select the JMS Server for which you want to see the active JMS server connections.

Using the JMS server's monitoring page, you can also monitor statistics on all the active JMS
sessions, consumers, and producers on your server. A session defines a serial order for both
the messages produced and the messages consumed, and can create multiple message
producers and message consumers. The same thread can be used for producing and
consuming messages.

Monitoring Active JMS Session Pools
You can monitor statistics on all the active JMS session pools defined for a JMS server.
Session pools enable an application to process messages concurrently.

Chapter 8
Monitoring JMS Statistics

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 9

In the Remote Console, in the Monitoring Tree, go to Services: Messaging: JMS Servers:
myJMSServer. Select Session Pool Runtimes to monitor the runtime statistics provided for
active JMS session pools.

Monitoring Queues
You can monitor statistics on queue resources in JMS modules using the WebLogic Remote
Console or through the JMSDestinationRuntimeMBean. A JMS queue defines a point-to-point
destination type for a JMS server. Queues are used for synchronous peer communications. A
message delivered to a queue will be distributed to one consumer.

In the Remote Console, in the Monitoring Tree, go to Services: Messaging: JMS Servers:
myJMSServer. Select Destinations: myDestinationResource to monitor queue resources.

You can also use the WebLogic Remote Console to manage messages on queues, as
described in Managing JMS Messages.

Monitoring Topics
You can monitor statistics on topic resources in JMS modules using the WebLogic Remote
Console or through the JMSDestinationRuntimeMBean. A JMS topic identifies a publish/
subscribe destination type for a JMS server. Topics are used for asynchronous peer
communications. A message delivered to a topic will be distributed to all topic consumers.

In the Remote Console, in the Monitoring Tree, go to Services: Messaging: JMS Servers:
myJMSServer. Select Destinations: myDestinationResource to monitor topic resources.

Monitoring Durable Subscribers for Topics
You can monitor statistics on all the durable subscribers that are running on your JMS topics
using the WebLogic Remote Console or through the JMSDurableSubscriberRuntimeMBean.
Durable subscribers allow you to assign a name to a topic subscriber and associate it with a
user or application. WebLogic stores durable subscribers in a persistent file-base store or
JDBC-accessible database until the message has been delivered to the subscribers or has
expired, even if those subscribers are not active at the time that the message is delivered.

You can manage durable subscribers running on topics, as described in Managing JMS
Messages.

Monitoring Uniform Distributed Queues
You can monitor statistics on uniform distributed queue resources in JMS modules using the
WebLogic Remote Console or through the JMSDestinationRuntimeMBean. A distributed queue
resource is a single set of queues that are accessible as a single, logical destination to a client
(for example, a distributed topic has its own JNDI name). The members of the unit are usually
distributed across multiple servers within a cluster, with each member belonging to a separate
JMS server.

In the Remote Console, in the Monitoring Tree, go to Services: Messaging: JMS Servers:
myJMSServer. Select Destinations: myDestinationResource to monitor uniform distributed
queue resources.

You can also use the WebLogic Remote Console to manage messages on distributed queues,
as described in Managing JMS Messages.

Chapter 8
Monitoring JMS Statistics

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 9

Monitoring Uniform Distributed Topics
You can monitor statistics on uniform distributed topic resources in JMS modules using the
WebLogic Remote Console or through the JMSDestinationRuntimeMBean. A distributed topic
resource is a single set of topics that is accessible as a single, logical destination to a client (for
example, a distributed topic has its own JNDI name). The members of the unit are usually
distributed across multiple servers within a cluster, with each member belonging to a separate
JMS server.

In the Remote Console, in the Monitoring Tree, go to Services: Messaging: JMS Servers:
myJMSServer. Select Destinations: myDestinationResource to monitor uniform distributed
topic resources.

Monitoring Pooled JMS Connections
You can monitor statistics on all the active pooled JMS connections on your server. A pooled
JMS connection is a session pool used by EJBs and servlets that use a resource-reference
element in their EJB or servlet deployment descriptor to define their JMS connection factories.

Managing JMS Messages
WebLogic JMS message monitoring and management features let you create new messages,
delete selected messages, move messages to another queue, export message contents to
another file, import message contents from another file, or delete all the messages from a
queue.

JMS Message Management Using Jakarta APIs
WebLogic Java Management Extensions (JMX) enables you to access the
JMSDestinationRuntimeMBean and JMSDurableSubscriberRuntimeMBean to manage messages
on JMS queues and topic durable subscribers. See Accessing WebLogic Server MBeans with
JMX in Developing Custom Management Utilities Using JMX for Oracle WebLogic Server.

In WebLogic JMS, there are various states for messages. You can use these states to help
manage your messages as described in the following sections. For information on valid
message states, see weblogic.jms.extensions.JMSMessageInfo in Java API Reference for
Oracle WebLogic Server.

JMS Message Management Using WebLogic Remote Console
You can use WebLogic Remote Console to manage JMS messages that are available on the
standalone queue, distributed queue, or durable topic subscriber that you are monitoring. You
can review all messages or specify filtering criteria to retrieve a specific set of messages. You
can also customize the message tables to show only the information you need.

You can select a message to view its contents, move messages, import and export messages,
and delete one or more messages.

For more information about using WebLogic Remote Console to manage messages on
standalone queues, distributed queues, and durable subscribers, see Manage JMS Messages
in Oracle WebLogic Remote Console Online Help.

Chapter 8
Managing JMS Messages

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 9

Monitoring Message Runtime Information
By default, the JMS Message Management page displays the information about each message
on a queue or durable subscriber in a table with the following columns.

• JMSMessageID: A unique identifier for the message.

• JMSCorrelationID: A correlation ID is a user-defined identifier for the message, often used
to correlate messages about the same subject

• JMSTimestamp: The time the message arrived on the queue. WebLogic JMS writes the
time stamp in the message when it accepts the message for delivery, not when the
application sends the message.

• State: The current state of a message, which could be one of DELAYED, EXPIRED,
ORDERED, PAUSED, RECEIVE, REDELIVERY_COUNT_EXCEEDED, SEND,
TRANSACTION, or VISIBLE.

• JMSDeliveryMode: The delivery mode is either Persistent or Non-Persistent.

• MessageSize: The size of a message in bytes.

You can choose which of the columns are visible.

By default, messages are displayed in the order in which they arrived at the destination. You
can sort messages by JMSMessageID, in either ascending or descending order. To reload the
default sort order (by message arrival), click View tab and return to Messages again.

Querying Messages
The Message Selector field at the top of the JMS Message Management page lets you to filter
the messages on the queue based on any valid JMS message header or property with the
exception of JMSXDeliveryCount. A message selector is a boolean expression. It consists of a
string with a syntax similar to the where clause of an SQL select statement.

The following are examples of selector expressions.

salary > 64000 and dept in ('eng','qa')
(product like 'WebLogic%' or product like '%T3')
 and version > 3.0
hireyear between 1990 and 1992
 or fireyear is not null
fireyear - hireyear > 4

For more information about the message selector syntax, see the jakarta.jms.Message
Javadoc, available at https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/
latest/jakarta/jms/Message.html.

Moving Messages
You can forward a message from a source destination to a target destination under the
following conditions:

• The source destination is either a queue or a topic durable subscriber in the consumption-
paused state.

Chapter 8
Managing JMS Messages

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 9

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html

Note

For more information about consumption-paused states, see Consumption Pause
and Consumption Resume.

• The message state is either visible, delayed, or ordered.

• The target destination is:

– In the same cluster as the source destination

– Either a queue, a topic, or a topic durable subscriber

– Not in the production-paused state

Note

For more information about production-paused states, see Production Pause
and Production Resume.

The message identifier does not change when you move a message. If the message being
moved already exists on the target destination, then a duplicate message with the same
identifier is added to the destination.

Deleting Messages
You can delete a specific message or delete all messages from a queue or topic durable
subscriber under the following conditions:

• The destination is in the consumption-paused state.

Note

For more information about consumption-paused states, see Consumption Pause
and Consumption Resume.

• The message state is either visible, delayed, or ordered.

The destination is locked while the delete operation occurs. If there is a failure during the
delete operation, it is possible that only a portion of the messages selected will be deleted.

Creating New Messages
You can create new messages to be sent to a destination. To produce a new message, provide
the following information:

• Message type : Such as BytesMessage, TextMessage, StreamMessage, ObjectMessage,
MapMessage, or XMLMessage.

• Correlation ID : A user-defined identifier for the message, often used to correlate
messages about the same subject.

• Expiration : Specifies the expiration, or time-to-live value, for a message.

Chapter 8
Managing JMS Messages

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 9

• Priority : An indicator of the level of importance or urgency of the message, with 0 as the
lowest priority and 9 as the highest. Usually, 0-4 are gradients of normal priority and 5-9
are gradients of expedited priority. Priority is set to 4 by default.

• Delivery Mode : Specifies PERSISTENT or NON_PERSISTENT messaging.

• Delivery Time : Defines the earliest absolute time at which a message can be delivered to
a consumer.

• Redelivery Limit : The number of redelivery tries a message can have before it is moved to
an error destination.

• Header : Every JMS message contains a standard set of header fields that is included by
default and available to message consumers. Some fields can be set by the message
producers.

• Body : The message content.

For more information about JMS message properties, see Understanding WebLogic JMS in
Developing JMS Applications for Oracle WebLogic Server.

Importing Messages
Importing a message in XML format results in the creation or replacement of a message on the
specified destination. The target destination for an imported message can be either a queue or
a topic durable subscriber. The destination must be in a production-paused state.

Note

For more information about production-paused states, see Production Pause and
Production Resume.

If a message being replaced with an imported file is associated with a JMS transaction, the
imported replacement will still be associated with the transaction.

When a new message is created or an existing message is replaced with an imported file, the
following rules apply:

• Quota limits are enforced for both new messages and replacement messages.

• The delivery count of the imported message is set to zero.

• A new message ID is generated for each imported message.

• If the imported message specifies a delivery mode of PERSISTENT and the target
destination has no store, the delivery mode is changed to NON-PERSISTENT.

Note

While importing a JMS message is similar in result to creating or publishing a new
JMS message, messages with a defined (non-zero) ExpirationTime behave
differently when imported, but since the message management API's
ExpirationTime is absolute for imported messages. Whereas, the message send
API's ExpirationTime is relative to the time the message is sent.

Chapter 8
Managing JMS Messages

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 9

Exporting Messages
Exporting a message results in a JMS message that is converted to either XML or serialized
format. The source destination must be in a production-paused state.

Note

For more information about production-paused states, see Production Pause and
Production Resume.

Temporary destinations enable an application to create a destination, as required, without the
system administration overhead associated with configuring and creating a server-defined
destination.

Note

Generally, JMS applications can use the JMSReplyTo header field to return a response
to a request. However, the information in the JMSReplyTo field is not a usable
destination object and will not be valid following export or import.

Managing Transactions
When a message is produced or consumed as part of a global transaction, the message is
essentially locked by the transaction and remains locked until the transaction coordinator either
commits or aborts the JMS branch. If the coordinator is not able to communicate the outcome
of the transaction to the JMS server due to a failure, the message(s) associated with the
transaction may remain pending for a long time.

The JMS server transaction management features available through the WebLogic Remote
Console allow you to:

• Identify in-progress transactions for which a JMS server is a participant.

• Identify messages associated with a JMS transaction branch.

• Force the outcome of pending JMS transaction branches, either by committing them or
rolling them back.

• Manage JMS client connections.

You can view all the JMS connections on a particular WebLogic Server instance and get
address and port information for each process that is holding a connection. You can also
terminate a connection. In the Remote Console, go to the Monitoring Tree: Services:
Messaging: JMS Servers. Select the JMS Server for which you want to manage transactions.

For more information about JMS transactions, see Using Transactions with WebLogic JMS in
Developing JMS Applications for Oracle WebLogic Server.

Chapter 8
Managing JMS Messages

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 9

Managing Durable Topic Subscribers
You can view a list of durable subscribers for a given topic, browse messages associated with
a subscriber, create and delete subscribers, and delete selected messages or delete all
messages for a subscription.

Chapter 8
Managing JMS Messages

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 9

9
Best Practices for JMS Beginners and
Advanced Users

Learn about the recommended and best practices for JMS beginners and advanced JMS users
of Oracle WebLogic Server.
The following topics include targeting, integration options, understanding URLs, high
availability (HA), and tuning for WebLogic Server:

Configuration Best Practices
Configuring a JMS application includes configuring persistent stores, JMS servers, JMS
modules, and JMS resources within JMS modules. JMS resources within modules include JMS
connection factories, JMS standalone destinations, or JMS distributed destinations.
Configuring a SAF application is very similar except that it substitutes SAF Agents for JMS
Servers and imported destinations for distributed destinations.
The following sections outline the basic procedure:

Configure JMS Servers and Persistent Stores
Before you start configuring JMS servers and persistent stores, consider the following:

• Destinations, connection factories, and other JMS resources are configured separately
from their host JMS servers and persistent stores. The best practice steps for configuring
JMS resources will be described later.

• WebLogic JMS distributed destination features require a working WebLogic cluster.

• There are two types of clustered JMS configuration:

– Cluster-targeted JMS servers and stores provide simplified configuration, simplified
HA, and the ability to dynamically scale resources. JMS servers, stores, and
distributed destination members are automatically added as the cluster size increases
without any configuration change required.

Note

Cluster-targeted JMS is the only available JMS option if you want to leverage
WebLogic dynamic clusters instead of a configured cluster. See Simplified
JMS Cluster and High Availability Configuration.

– Individually configured JMS HA consists of a set of individually configured JMS servers
and stores that are in turn targeted to migratable targets within a cluster. This option
primarily exists for compatibility with earlier versions.

• If you are not using a cluster, then you may want to reconsider and use a cluster of at least
size one and use distributed destinations instead of standalone destinations. This helps
“future-proof" your application for future HA and scaling support, as it ensures
configuration and applications are easily capable of expanding to multiple servers.
Leveraging a cluster is best done in very early configuration and application design stages

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 11

as it is a difficult process to convert a non-clustered application and configuration into a
clustered topology.

Note

For high availability and scaling, Oracle recommends targeting the JMS artifacts to a
cluster along with appropriate high availability configuration settings instead of using
migratable targets.

Use the following steps to configure JMS servers and persistent stores in a cluster.

Steps for setting up cluster-targeted JMS:

1. Create a custom store and target it to the cluster. See Simplified JMS Cluster and High
Availability Configuration. Ensure the store is configured to persist your data safely as
described in Ensure Your Data is Persisted Safely.

2. Configure a JMS server and target it to the same cluster, plus configure the JMS server to
reference the store that was created in step 1. Multiple JMS servers can reference the
same store.

Steps for setting up individual-configured JMS in a cluster:

1. Create a custom store on each WebLogic server in the cluster. Target each store to the
default migratable target on its server or to a custom migratable target. See Service
Migration in Administering Clusters for Oracle WebLogic Server. Ensure the store is
configured to persist your data safely as described in Ensure Your Data is Persisted
Safely.

Note

It is recommended to use custom stores that provide more flexibility in tuning and
administration. In addition, the default file store is not migratable between JVMs.
Only custom stores are migratable.

2. Configure a JMS server on each WebLogic server. Configure the JMS server to reference
the store for the server that was created in step 1. Target the JMS server to the same
target that was used for the store. Multiple JMS servers can reference the same store.

Configure JMS Quotas and Paging

Configure a message and/or byte quota on the JMS server. There is no default quota, so
configuring one helps protect against out-of-memory conditions. Rule of thumb: conservatively
assume that each message consumes at least 512 bytes of memory even if it is paged out.

Note

Persistent JDBC store messages, persistent file store messages, and non-persistent
messages are all fully cached in JVM memory until they page out. And any type of
message has a header that remains in JVM memory even after the message is paged
out.

Chapter 9
Configuration Best Practices

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 11

Although JMS paging is enabled by default, verify that the default behavior is valid for your
environment. See Paging Out Messages To Free Up Memory in Tuning Performance of Oracle
WebLogic Server.

Configure a JMS Module
A JMS module encapsulates JMS connection factory and destination configuration. It is a best
practice to configure a system module and system module subdeployment for each
homogenous set of JMS servers within a cluster. This maintains a simple one to one
correspondence between JMS module resource configuration, JMS module subdeployment,
and JMS server configuration.

A homogenous set of JMS servers is either:

• A single cluster-targeted JMS server with its store’s distribution-policy set to Distributed.

• A single cluster-targeted JMS server with its store’s distribution-policy set to Singleton.

• A set of one or more individually configured JMS servers.

Different JMS configurations can co-exist in the same cluster scope as long as they use
different configuration names and different JNDI names.

Specifically:

1. Create a system module. Target it to a single cluster (if using clusters) or a single
WebLogic Server instance. You must always target the module even when leveraging
subdeployments.

Note

System modules are the preferred way to configure JMS resources. The
alternatives, deployable modules and JMS resource definitions, are not
recommended. Deployable modules are a deprecated feature. System modules
are strongly preferred over JMS resource definitions because specifying
connection factories and destinations using a configurable system module is
generally much more flexible, maintainable, and portable than hard coding
configuration in an application.

2. Create exactly one subdeployment per module. Subdeployments are sometimes referred
to as "advanced targeting" on the WebLogic Remote Console. A single subdeployment
aids simplicity - it is much easier for third parties to understand the targeting, and it
reduces the chances of making configuration errors. If a single subdeployment is not
sufficient, create two modules.

3. Populate the subdeployment only with the JMS servers contained in the ‘homogenous set
of JMS Servers` above (this will be a single JMS Server in a simplified cluster-targeted
JMS configuration). Do not reference WebLogic Servers or a cluster in the subdeployment.
Only include the JMS servers that you wish to host destinations. This ensures that when
the JMS resources are configured in the next step below, they are targeted to the correct
JMS servers. For modules that support non-distributed destinations, the subdeployment
must only reference a single individually-configured JMS server, or a single cluster-
targeted JMS server that references a store with its distribution-policy set to Singleton.
For modules that support distributed destinations, always choose a single cluster-targeted
JMS server with its distribution-policy set to Distributed, or a homogenous set of
individually-configured JMS servers.

Chapter 9
Configuration Best Practices

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 11

If you have a mix of distributed and non-distributed destinations, use two modules each
with its own subdeployment.

Configure JMS Resources
Configure your JMS resources and target them properly.

1. Create destinations and target them to a single subdeployment (called "advanced
targeting" on the Remote Console). Do not use default targeting instead of a
subdeployment. Note that only distributed destinations can be targeted to a subdeployment
target that resolves to multiple JMS servers. If you have a mix of distributed destinations,
stand alone destinations, and imported destinations, then use two modules each with its
own subdeployment. See Targeting Best Practices.

2. Create and use custom connection factories instead of using default connection factories.
Default connection factories are not tunable.

In most cases, you can use default targeting with connection factories as default targeting
causes the resource to inherit the module's target. For connection factories that are only
used by remote clients, use the module's subdeployment target.

3. Set the connection factory unmapped resource reference mode to FailSafe instead of
leaving it as its default value ReturnDefault. The value FailSafe ensures that applications
do not use unmapped resource references. See Change in Behavior of Unmapped
Connection Factory Resources in Release Notes for Oracle WebLogic Server.

For more information about setting the unmapped resource reference mode, see
Specifying the Unmapped Resource Reference Mode for Connection Factories.

Configure SAF Agents, Stores, and Imported Destination
SAF agents, their stores, and their imported destinations should follow the same best practices
as JMS servers, their stores, and JMS destinations.

Targeting Best Practices
Oracle recommends certain targeting guidelines for JMS resources.

They are:

• Avoid default targeting, WebLogic server targeting, and cluster targeting with destinations.
Instead use advanced targeting (subdeployment targeting) for destinations and ensure that
the subdeployment references only JMS servers or SAF agents. This applies to all
destination types, including non-distributed, distributed, and imported.

Even if the current JMS Servers or SAF Agents in your domain are only used for your
specific application, this is a best practice because:

– New JMS Servers or SAF Agents that are unrelated to your current application can be
introduced by other applications, web services, or 3rd-party products.

– In the future, your application may require different destinations and different JMS
Servers or SAF Agents for scalability or management purposes.

• Always use advanced targeting when configuring Web Services deployments and error
queues, this includes both development and production environments.

• To use an error destination within a distributed queue, it must be targeted to the same
subdeployment as its parent destination.

Chapter 9
Targeting Best Practices

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 11

• In most cases, you can use default targeting with connection factories as default targeting
causes the resource to inherit the module's target. For connection factories that are only
used by remote clients, use the module's subdeployment target.

High Availability Best Practices
Learn some of the best practices to achieve and leverage high availability features in
WebLogic Server.

This section includes the following topics:

Develop Applications on a Cluster

To achieve High Availability (HA), develop applications that leverage clustered WebLogic
features and use a cluster during development. This approach is best taken in the early
configuration and application design stage as it is a difficult process to change a non-clustered
application into a clustered application.

Leverage WebLogic HA Features

In WebLogic JMS, a sent message is only available to consumers if the message’s host JMS
server instance is running. Even if a message is stored on a shared file system or database, or
in a distributed destination, the only JMS server instance that can recover a message is the
same instance that originally stored the message. For example, if a message is sent to a
distributed queue hosted on multiple JMS server instances, then the message will be internally
load balanced to exactly one of these instances and stored in that particular instance, and, if
that instance later crashes, the message will not be available to consumers until the instance is
restarted.

To restore message availability after a failure, WebLogic includes features for automatically
restarting and/or migrating an entire WebLogic Server JVM. It also includes features for
restarting a JMS server and store instance within a JVM or migrating the instance to a different
JVM within the same cluster after a failure. Finally, it includes features for clustering
(distributing) a destination across multiple JMS servers within the same cluster. A distributed
destination helps high availability because even if some of the destination’s stored messages
are unavailable while they wait for their failed JMS server and store to restart or migrate, other
messages for the logical destination can still be produced and consumed via a running JMS
server.

HA is normally accomplished using a combination of:

• WebLogic Clustering (Dynamic or Configured Clusters). See Understanding WebLogic
Server Clustering in Administering Clusters for Oracle WebLogic Server.

• Whole server migration and/or restart. See Whole Server Migration in Administering
Clusters for Oracle WebLogic Server.

• WebLogic JMS server and store Restart In Place. See Service Restart In Place in
Administering the WebLogic Persistent Store.

• JTA Service Migration between JVMs in a cluster (since JMS applications often leverage
transactions). See Service Migration in Administering Clusters for Oracle WebLogic
Server.

• JMS Service Migration between JVMs in a cluster. See Service Migration in Administering
Clusters for Oracle WebLogic Server.

Chapter 9
High Availability Best Practices

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 11

• Cluster leasing. Automatic service migration and automatic whole server migration both
required setting up cluster leasing. It is a best practice to configure database leasing
instead of cluster leasing. See Leasing in Administering Clusters for Oracle WebLogic
Server.

• Distributed destinations. See Using Distributed Destinations in Developing JMS
Applications for Oracle WebLogic Server.

Ensure Your Data is Persisted Safely

• If you are using file stores, ensure the files are located on highly available storage (such as
RAID), and are centrally accessible from any machine in a cluster (via SAN, etc) or from
any machine that might host a WebLogic Server after a whole server migration, so that file
data can be recovered after a failure. Default file stores similarly also need to be highly
available and centrally accessible if JTA is not using a JDBC TLog Store since transaction
logs are stored in default file stores by default. See File Locations and Additional
Requirement for High Availability File Stores in Administering the WebLogic Persistent
Store.

Note

It is important to explicitly configure the directory of a custom or default file store
when ensuring the file store uses a central directory location. Otherwise, the file
store may recover its data using a directory location based on the current
WebLogic Server name, and so could recover from an incorrect directory if it
moves between WebLogic Servers.

• Note that paging and cache files do not need high availability and should be located on
local file systems for performance reasons.

• If you are using custom database stores, transaction log JDBC stores, or cluster database
leasing, then ensure their database tables are located on a highly available database
solution such as Oracle RAC.

• If you have a Disaster Recovery solution that leverages async replication of data, then file
base storage is not usually recommended. Instead, Oracle strongly recommends that all
JMS and JTA data be stored on the same database as any applications that perform a
combination of messaging and database operations. This ensures that your recovered
messages and data stay synchronized even after a disaster recovery. See Using a JDBC
Store and Using a JDBC TLog Store in Administering the WebLogic Persistent Store.

Client Resiliency Best Practices
Ensuring JMS resiliency generally requires attention in two main areas: infrastructure level
resilience and JMS application resilience.

The first area is infrastructure level resilience, which is generally addressed via configuration
and encompasses persistence, leveraging clusters, JVM Migration, and Service Migration as
described above in High Availability Best Practices. The second area is JMS application
resilience, which is generally addressed via coding best practices that apply to any JMS
Provider (not just WebLogic JMS) and is described below.

On any unrecoverable client API level messaging failure with any JMS provider, it is the
responsibility of the programmer to make sure that the related JMS resources are closed and
recreated, and, if it’s desirable, that the failed operation be retried. The recommended steps for

Chapter 9
Client Resiliency Best Practices

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 11

recreating a JMS resource mirror the steps for creating one. For example, if a JMS produce or
JMS consume call throws an exception, close the parent JMS Connection or JMS Context,
close the initial JNDI Context (if it is still open), and finally recreate the Initial Context, re-obtain
the JMS Connection Factory and Destination from JNDI, and recreate the connection or
JMSContext, session, and producer or consumer.

Exception handling in server-side applications is usually simplified by taking advantage of JMS
asynchronous containers or pooling:

• Error handling for synchronous applications in server side messaging can take advantage
of built-in-pooling to handle the problem simply by, for example, creating a connection,
session, and producer, and then closing the connection for each sent message. The pools
will in turn retrieve objects from a cache or recreate them as needed. Pooling is activated
transparently by using a resource reference to access a JMS connection factory, or JMS
2.0 Java EE 7 JMS Context injection. Note that even when objects are pooled via
resource-reference, it is still usually a good idea to retrieve new JMS Connection Factory
or Destination objects after an error (in case these objects have somehow changed). See
Enhanced Support for Using WebLogic JMS with EJBs and Servlets in Developing JMS
Applications for Oracle WebLogic Server.

• Error handling for asynchronous ‘onMessage’ server side messaging is generally best
handled by leveraging WebLogic MDB containers, or a JMS JCA Adapter from your
framework if MDBs are not options. These containers will automatically handle failures and
retry as needed. See Developing Message-Driven Beans for Oracle WebLogic Server for
more information.

If an asynchronous messaging application cannot take advantage of a container, Oracle
strongly recommends that the application register an ‘onException’ exception listener on their
Connection to detect and handle failures. See the javadoc for
jakarta.jms.Connection.setExceptionListener() or, if using JMS 2.0, see
jakarta.jms.JMSContext.setExceptionListener().

Chapter 9
Client Resiliency Best Practices

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 11

Note

• There is one exception type that does not require recreating JMS client objects: a
jakarta.jms.ResourceAllocationException thrown by a message producer. This
exception indicates a message quota failure where the server is unable to accept
a message because a quota condition has been reached.

• Applications should avoid retrying operations in a tight loop in order to avoid
performing relatively expensive create operations too frequently. This is because
almost all failures do not resolve immediately, and frequently destroying and
creating JMS client objects such as JNDI contexts, connections, sessions,
producer, and consumers in the interim can be relatively far more expensive in
comparison to normal runtime operations like sending or receiving a message. In
short, tight-loop-retries can consume far more resources than other operations.
Oracle recommends a single immediate retry attempt, and then progressively
longer intervals between retries of up to a maximum of at least a few seconds.

• It is a highly recommended best practice to pool or cache JMS resources. To
simplify error handling, it is tempting to ignore this advice and write applications
that always create a new JMS connection, session, etc for each JMS message.
But if these items are not pooled or cached, then this approach is not
recommended for the same costly reasons that are described above for a tight
loop retry. Some messaging applications may see a 5X or more performance hit. If
pooling is not available, Oracle recommends caching JMS objects in your
application for re-use.

• One can always assume an operation succeeded if it returns success, but one
cannot always assume that an operation failed if it throws an exception. For
example, a message send failure can occur even if the produced message
successfully made it to the server destination, but the server was unable to send
an internal success response back to the sender client. Another example is that a
failed commit call does not necessarily indicate that the transaction did not commit
(for similar reasons as the producer example).

• The configurable WebLogic JMS Reconnect settings on JMS Connection
Factories and the corresponding reconnection
weblogic.jms.extension.WLConnection and
weblogic.jms.extension.JMSContext APIs are deprecated. They do not handle
all possible failures and so are not an effective substitute for the above resiliency
best practices. They will be removed or ignored in a future release.

Distributed Destination Best Practices
Applications that use distributed destinations are more highly available than applications that
use simple destinations because WebLogic JMS provides load balancing and failover for
member destinations of a distributed destination within a cluster.

Distributed Queues

Distributed queues are fairly easy to apply to an arbitrary clustered queueing use case, and
easiest to apply when using MDBs, the SOA JMS Adapter, or OSA Adapter to consume from
them. The MDB and adapter options automatically ensure that all distributed destination
members are serviced by consumers. In addition, these containers are resilient to failures, and

Chapter 9
Distributed Destination Best Practices

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 11

generally provide a proven and simple way for securing and multi-threading consumer
applications regardless of destination type.

Distributed Topics

Distributed Topics are best applied when you use MDBs, the SOA JMS adapter, or the OSA
JMS adapter to subscribe since direct subscribers have limitations and may require use of
sophisticated extensions. The MDB and adapter containers automatically setup subscriptions
and consumers for you.

Distributed Topics are recommended to be setup up as “Partitioned Distributed Topics” (a type
of Uniform Distributed Topic) instead of “Replicated Distributed Topics”. This is because PDTs
tend to be more scalable and fully supported in all advanced features, while RDTs are not
supported in a dynamic cluster, WebLogic Multi-Tenant, or cluster-targeted JMS configuration.
A PDT is a Uniform Distributed Topic that has its forwarding-policy configured to be partitioned
instead of replicated. If you are already using RDTs, consider replacing them with PDTs.

See Configuring and Deploying MDBs Using JMS Topics in Developing Message-Driven
Beans for Oracle WebLogic Server, Using Distributed Destinations, and Replacing an RDT
with a PDT in Developing JMS Applications for Oracle WebLogic Server.

Weighted Distributed Destinations

Oracle strongly recommends using Uniform Distributed Destinations in place of Weighted
Distributed Destinations. Weighted Distributed Destinations are deprecated and were
superseded by Uniform Distributed Destinations as of WebLogic Server 9.0. Weighted
Distributed Destinations are not supported in dynamic cluster, WebLogic Multi-Tenant, or
cluster-targeted-JMS configurations.

Understanding WebLogic JMS Client Options
For client applications that have a runtime environment independent of WebLogic Server, there
are multiple JMS client options, including: Java, .NET, and C clients. See JMS Clients in
Developing Stand-alone Clients for Oracle WebLogic Server.

Note

WebLogic JMS clients do not directly support foreign transaction managers. Use the
WebLogic TM if possible. For advanced users, the transaction subsystem Interposed
Transaction Manager feature may be used as an XA resource. See Participating in
Transactions Managed by a Third-Party Transaction Manager in Developing JTA
Applications for Oracle WebLogic Server.

Understanding WebLogic URLs
Applications that are communicating with a remote WebLogic Server instance or cluster must
specify a URL when creating their JNDI InitialContext objects and/or setting application
attributes in order to connect to a server or a cluster.

Chapter 9
Understanding WebLogic JMS Client Options

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 11

• Do not specify URLs for applications that run on the same server or cluster as their JMS
resources. When an initial context is created without specifying URLs, it automatically
references the local server or cluster JNDI.

• If a URL resolves to multiple addresses, WebLogic Server clients will randomly select an
address in the list to start with and then automatically try each address in turn until one
succeeds.

• In production systems, consider using DNS round robin or a hardware load balancer for
initial hostname resolution rather than using the multiple host/port URL notation shown in
URL syntax.

Note

JMS connection factories are obtained from JNDI; however, by default, they load
balance their connections independently of the JNDI context address. A JMS
connection factory normally load balances across the servers included in the JMS
connection factory's configured target. Similar to an EJB reference, a JMS connection
factory is a 'smart stub' that contains a list of server addresses implicitly obtained from
domain configuration and implicitly updated as a cluster grows and shrinks. This
means that even if a JNDI context's URL only references a single server in a cluster,
and a cluster-targeted or default targeted connection factory is obtained from this JNDI
context, the JMS connections will still load balance across the entire cluster.

URL syntax
Learn about the WebLogic URL syntax and how it must be used to construct a URL for an
application.

The WebLogic URL syntax is:

[t3|t3s|http|https|iiop|iiops]://address[,address]...

Where

• address = hostlist : portlist

• hostlist = hostname [,hostname]...

• portlist = portrange [+portrange]...

• portrange = port [-port]

Use port-port to indicate a port range, and + to separate multiple port ranges. For example, a
simple address is typically something like t3://hostA:7001; the address t3://
hostA,hostB:7001-7002 is equivalent to the following addresses.

• t3://hostA,hostB:7001+7002

• t3://hostA:7001-7002,hostB:7001-7002

• t3://hostA:7001+7002,hostB:7001+7002

• t3://hostA:7001,hostA:7002,hostB:7001,hostB:7002

Chapter 9
Understanding WebLogic URLs

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 11

Strict Message Ordering Best Practices
Oracle recommends using the WebLogic JMS Unit-of-Order feature when strict message
delivery ordering is required. UOO is the simplest and most capable strict delivery ordering
option, and it supports parallel consumption of different orderings within the same destination.
Normally it requires minimal or even no changes to applications, and it is resilient to any type
of failure. In addition, it works with distributed destinations, scheduled messages, delayed
messages, transactions, and store-and-forward.
Note that when using JMS Unit-of-Order in combination with a distributed destination or SAF
imported destination, Oracle recommends configuring the destination’s unit-of-order routing
policy to the Path Service option and configuring a Path Service for the cluster. The Path
Service option preserves orderings even when new members are configured for the distributed
destination, and is the only supported policy in a cluster-targeted JMS configuration.

See Using Message Unit-of-Order in Developing JMS Applications for Oracle WebLogic
Server.

If strict messaging ordering is needed and the Unit-of-Order feature cannot be leveraged, see
Ordered Redelivery of Messages in Developing JMS Applications for Oracle WebLogic Server.

Integrating Remote JMS Destinations
To integrate remote JMS destinations into a local WebLogic Server or WebLogic Cluster, it is a
best practice to configure a Foreign JMS Server mapping in order to map remote JMS
destination and connection factory JNDI names into the local standalone server JNDI or local
cluster JNDI namespace. The destinations that can be mapped include remote WebLogic JMS
destinations, Oracle AQ JMS destinations, and non-Oracle JMS destinations.
Furthermore, another best practice is to use Foreign JMS Server mappings in combination with
MDBs, res-ref or context injection JMS pools, or Messaging Bridges. These components use
the mapping plus any security credentials configured in the Foreign JMS Server to access
remote JMS resources.

Alternatively, consider using WL JMS SAF agents to forward remote WebLogic JMS messages
into a local server or cluster.

See FAQs: Integrating Remote JMS Providers in Developing JMS Applications for Oracle
WebLogic Server.

JMS Performance and Tuning
See the following checklist of items to consider when tuning WebLogic JMS.

JMS Performance & Tuning Check List in Tuning Performance of Oracle WebLogic Server.

Chapter 9
Strict Message Ordering Best Practices

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 11

10
Troubleshooting WebLogic JMS

Learn how to troubleshoot WebLogic JMS messages and configurations in Oracle WebLogic
Server.
For more information on monitoring JMS statistics and managing JMS messages, see
Monitoring JMS Statistics and Managing Messages.

This chapter includes the following sections:

Configuring Notifications for JMS
A notification is an action that is triggered when a watch rule evaluates to true. JMS
notifications are used to post messages to JMS topics and/or queues in response to the
triggering of an associated watch.

In the system resource configuration file, the elements <destination-jndi-name> and
<connection-factory-jndi-name> define how the message is to be delivered.

See Configuring Notifications in Configuring and Using the Diagnostics Framework for Oracle
WebLogic Server.

Debugging JMS
After you have narrowed the problem down to a specific application, you can activate the
WebLogic Server debugging features to track down the specific problem within the application.

The following sections describe how to enable and use the debugging features:

Enabling Debugging
You can enable debugging by setting the appropriate ServerDebug configuration attribute to
true. Optionally, you can also set the server StdoutSeverity to Debug.

You can modify the configuration attribute in any of the following ways.

Enable Debugging Using the Command Line
Set the appropriate properties on the command line. For example,

-Dweblogic.debug.DebugJMSBackEnd=true
-Dweblogic.log.StdoutSeverity="Debug"

This method is static and can only be used at server startup.

Enable Debugging Using the WebLogic Remote Console
Use the WebLogic Remote Console to set the debugging values:

1. In the Edit Tree, go to Environment, then Servers.

2. Select the server on which you want to enable or disable debugging.

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 16

3. Click the Debug tab, then the All subtab.

4. Select the check boxes for the debug scopes or attributes you want to enable.

See JMS Debugging Scopes.

5. Deselect check boxes for the debug scopes or attributes you want to disable.

6. Click Save.

Not all changes take effect immediately—some require a restart.

This method is dynamic and can be used to enable debugging while the server is running.

Enable Debugging Using the WebLogic Scripting Tool
Use the WebLogic Scripting Tool (WLST) to set the debugging values. For example, the
following command runs a program for setting debugging values called debug.py:

java weblogic.WLST debug.py

The main scope, weblogic, does not appear in the graphic; jms is a sub-scope within weblogic.
Note that the fully-qualified DebugScope for DebugJMSBackEnd is weblogic.jms.backend.

The debug.py program contains the following code:

user='user1'
password='password'
url='t3://localhost:7001'
connect(user, password, url)
edit()
cd('Servers/myserver/ServerDebug/myserver')
startEdit()
set('DebugJMSBackEnd','true')
save()
activate()

Note that you can also use WLST from Java. The following example shows a Java file used to
set debugging values:

import weblogic.management.scripting.utils.WLSTInterpreter;
import java.io.*;
import weblogic.jndi.Environment;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

public class test {
 public static void main(String args[]) {
 try {
 WLSTInterpreter interpreter = null;
 String user="user1";
 String pass="pw12ab";
 String url ="t3://localhost:7001";
 Environment env = new Environment();
 env.setProviderUrl(url);
 env.setSecurityPrincipal(user);
 env.setSecurityCredentials(pass);
 Context ctx = env.getInitialContext();

 interpreter = new WLSTInterpreter();
 interpreter.exec
 ("connect('"+user+"','"+pass+"','"+url+"')");
 interpreter.exec("edit()");

Chapter 10
Debugging JMS

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 16

 interpreter.exec("startEdit()");
 interpreter.exec
 ("cd('Servers/myserver/ServerDebug/myserver')");
 interpreter.exec("set('DebugJMSBackEnd','true')");
 interpreter.exec("save()");
 interpreter.exec("activate()");

 } catch (Exception e) {
 System.out.println("Exception "+e);
 }
 }
}

Using the WLST is a dynamic method and can be used to enable debugging while the server is
running.

Changes to the config.xml File
Changes in debugging characteristics, through the Remote Console, WLST, or the command
line are persisted in the config.xml file.

This sample config.xml fragment shows a transaction debug scope (set of debug attributes)
and a single JMS attribute.

Example 10-1 Example Debugging Stanza for JMS

<server>
<name>myserver</name>
<server-debug>
<debug-scope>
<name>weblogic.transaction</name>
<enabled>true</enabled>
</debug-scope>
<debug-jms-back-end>true</debug-jms-back-end>
</server-debug>
</server>

JMS Debugging Scopes
The following are registered debugging scopes for JMS:

• DebugJMSBackEnd (scope weblogic.jms.backend) – prints information for debugging the
JMS Back End (including some information used for distributed destinations and JMS
SAF).

• DebugJMSFrontEnd (scope weblogic.jms.frontend) – prints information for debugging the
JMS Front End (including some information used for multicast).

• DebugJMSCommon (scope weblogic.jms.common) – prints information for debugging JMS
common methods (including some information from the client JMS producer).

• DebugJMSConfig (scope weblogic.jms.config) – prints information related to JMS
configuration (backend, distributed destinations, and foreign servers).

• DebugJMSBoot (scope weblogic.jms.boot) – prints some messages at boot time regarding
what store the JMS server is using and its configured destinations.

• DebugJMSDispatcher (scope weblogic.jms.dispatcher) – prints information related to
PeerGone() occurrences.

• DebugJMSDistTopic (scope weblogic.jms.config) – prints information about distributed
topics, and primary bind and unbind information.

Chapter 10
Debugging JMS

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 16

• DebugJMSPauseResume (scope weblogic.jms.pauseresume) – prints information about
(backend) pause/resume destination operations.

• DebugJMSModule (scope weblogic.jms.module) – prints a lot of information about JMS
module operations and message life cycle.

• DebugJMSMessagePath (scope weblogic.jms.messagePath) – prints information following a
message through the message path (client, frontend, backend), including the message
identifier.

• DebugJMSSAF (scope weblogic.jms.saf) – prints information about JMS SAF (store-and-
forward) destinations.

• DebugJMSCDS (scope weblogic.jms.CDS) – prints detailed information about JMS
"Configuration Directory Service" (used by various sub-systems to get the notification of
configuration changes to the JMS resources configured in the server from within a cluster
as well as across the clusters and domains).

• DebugJMSWrappers (scope weblogic.jms.wrappers) – prints information pooling and
wrapping of JMS connections, sessions, and other objects, used inside an EJB or servlet
using the resource-reference element in the deployment descriptor.

Messaging Kernel and Path Service Debugging Scopes
The following are registered debugging scopes for the messaging kernel and the Path service.

• DebugMessagingKernel (scope weblogic.messaging.kernel) : Prints information about the
messaging kernel.

• DebugMessagingKernelBoot (scope weblogic.messaging.kernelboot) : Prints information
about booting the messaging kernel (processing messages).

• DebugPathSvc (scope weblogic.messaging.pathsvc) : Prints limited information about
some unusual conditions in the path service.

• DebugPathSvcVerbose (scope weblogic.messaging.pathsvcverbose) : Prints limited
information about unusual conditions in the path service.

Request Dyeing
Another option for debugging is to trace the flow of an individual (typically "dyed") application
request through the JMS subsystem. See Configuring the Dye Vector via the DyeInjection
Monitor in Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

Message Life Cycle Logging
JMS logging is enabled by default when you create a JMS server, however, you must
specifically enable it on message destinations in the JMS modules targeted to this JMS server
(or on the JMS template used by destinations).For more information on WebLogic logging
services, see Understanding WebLogic Logging Services in Configuring Log Files and Filtering
Log Messages for Oracle WebLogic Server.
The message life cycle is an external view of the events that a JMS message traverses
through once it has been accepted by the JMS server, either through the JMS APIs or the JMS
Message Management APIs. Message life cycle logging provides an administrator with easy
access to information about the existence and status of JMS messages from the JMS server
viewpoint. In particular, each message log contains information about basic life cycle events
such as message production, consumption, and removal.

Chapter 10
Message Life Cycle Logging

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 16

Logging can occur on a continuous basis and over a long period of time. It can be also be used
in real-time mode while the JMS server is running, or in an off-line fashion when the JMS
server is down. For information about configuring message logging, see Log Messages in the
Oracle WebLogic Remote Console Online Help.

Events in the JMS Message Life Cycle
When message life cycle logging is enabled for a JMS destination, a record is added to the
JMS server's message log file each time a message meets the conditions that correspond to a
basic message life cycle event. The life cycle events that trigger a JMS message log entry are
as follows:

• Produced : This event is logged when a message enters a JMS server using the WebLogic
Server JMS API or the JMS Management API.

• Consumed: This event is logged when a message leaves a JMS server using the
WebLogic Server JMS API or the JMS Management API.

• Removed : This event is logged when a message is manually deleted from a JMS server
using the WebLogic Server JMS API or the JMS Management API.

• Expired : This event is logged when a message reaches the expiration time stored on the
JMS server. This event is logged only once per message even though a separate
expiration event occurs for each topic subscriber who received the message.

• Retry exceeded : This event is logged when a message has exceeded its redelivery retry
limit. This event may be logged more than one time per message, as each topic subscriber
has its own redelivery count.

• Consumer created : This event is logged when a JMS consumer is created for a queue or
a JMS durable subscriber is created for a topic.

• Consumer destroyed : This event is logged when a JMS consumer is closed or a JMS
durable subscriber is unsubscribed.

Message Log Location
The message log is stored under your domain directory, as follows:

$DOMAIN_HOME\servers\server_name\logs\jmsservers\jms_server_name\jms_server_name-
jms.messages.log

where $DOMAIN_HOME is the root directory of your domain, typically
c:\Oracle\Middleware\user_projects\domains\domain_name.

Note

JMS server name is prefixed to JMS server log location in your domain directory. For
example, when you create a JMS Server JMSServer-0, the following log file and
location are set in your domain directory:
\logs\jmsservers\JMSServer-0\JMSServer-0-jms.messages.log

Enabling JMS Message Logging
You can enable or disable JMS message logging for a queue, topic, JMS template, uniform
distributed queue, and uniform distributed topic using the WebLogic Remote Console.

Chapter 10
Message Life Cycle Logging

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 16

1. In the Edit Tree, go to Services, then JMS Servers or JMS System Resources.

2. Select the JMS Server or JMS System Resource (queue, topic, JMS template, uniform
distributed queue, and uniform distributed topic) for which you want to configure logging.

3. Click the Logging tab and configure the logging options as needed.

4. Click Save.

WebLogic Java Management Extensions (JMX) lets you access the
JMSSystemResourceMBean and JMSRuntimeMBean MBeans to manage JMS message logs.
See Overview of WebLogic Server Subsystem MBeans in Developing Custom Management
Utilities Using JMX for Oracle WebLogic Server.

Note

Logging JMS messages for non durable subscribers is not enabled in the default
configuration. To enable, set the following system property:
weblogic.jms.message.logging.logNonDurableSubscriber=true.

You can also use the WebLogic Scripting Tool to configure JMS message logging for a JMS
servers and JMS system resources. See Using WLST to Manage JMS Servers and JMS
System Module Resources.

When you enable message logging, you can specify whether the log entry will include all the
message header fields or a subset of them; all system-defined message properties or a subset
of them; all user-defined properties or a subset of them. You may also include or exclude the
body of the message. For more information about message headers and properties see
Developing a Basic JMS Application in Developing JMS Applications for Oracle WebLogic
Server.

JMS Message Log Content
Each record added to the JMS Message log includes basic information such as the message
ID and correlation ID for the subject message.

You can also configure the JMS server to include additional information such as the message
type and user properties.

JMS Message Log Record Format
Except where noted, all records added to the JMS Message Life Cycle Log contain the
following pieces of information in the order in which they are listed:

• Date : The date and time the message log record is generated.

• Transaction identifier : The transaction identifier for the transaction with which the message
is associated

• WLS diagnostic context : A unique identifier for a request or unit of work flowing through
the system. It is included in the JMS message log to provide a correlation between events
belonging to the same request.

• Raw millisecond value for "Date" : To aid in troubleshooting high-traffic applications, the
date and time the message log record is generated is displayed in milliseconds.

• Raw nanosecond value for "Date" : To aid in troubleshooting high-traffic applications, the
date and time the message log record is generated is displayed in nanoseconds.

Chapter 10
JMS Message Log Content

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 16

• JMS message ID : The unique identifier assigned to the message.

• JMS correlation ID : A user-defined identifier for the message, often used to correlate
messages about the same subject.

• JMS destination name : The fully-qualified name of the destination server for the message.

• JMS message life cycle event name : The name of the message life cycle event that
triggered the log entry.

• JMS user name : The name of the user who (produced? consumed? received?) the
message.

• JMS message consumer identifier – This information is included in the log only when the
message life cycle event being logged is the "Consumed" event, the "Consumer Created"
event, or the "Consumer Destroyed" event. If the message consumed was on a queue, the
log will include information about the origin of the consumer and the OAM identifier for the
consumer known to the JMS server. If the consumer is a durable subscriber, the log will
also include the client ID for the connection and the subscription name.

The syntax for the message consumer identifier is as follows:

MC:CA(…):OAMI(wls_server_name.jms.connection#.session#.consumer#)

Where:

– MC stands for message consumer

– CA stands for client address

– OAMI stands for OA&M identifier

– And, when applicable, CC stands for connection consumer

If the consumer is a durable subscriber, then the additional information will be shown using
the following syntax:

DS:client_id.subscription_name[message consumer identifier]

where DS stands for durable subscriber.

• JMS message content : This field can be customized on a per destination basis. However,
the message body will not be available.

• JMS message selector : This information is included in the log only when the message life
cycle event being logged is the "Consumer Created" event. The log will show the
"Selector" argument from the JMS API.

Sample Log File Records
The sample log file records that follow show the type of information that is provided in the log
file for each of the message life cycle events. Each record is a fixed length, but the information
included will vary depending upon relevance to the event and on whether a valid value exists
for each field in the record. The log file records use the following syntax:

####<date_and_time_stamp> <transaction_id> <WLS_diagnostic_context>
<date_in_milliseconds> <date_in_nanoseconds> <JMS_message_id>
<JMS_correlation_id> <JMS_destination_name> <life_cycle_event_name>
<JMS_user_name> <consumer_identifier> <JMS_message_content>
<JMS_message_selector>

Chapter 10
JMS Message Log Content

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 16

Note

If you choose to include the JMS message content in the log file, note that any
occurrences of the left-pointing angle bracket (<) and the right-pointing angle bracket
(>) within the contents of the message will be escaped. In place of a left-pointing angle
bracket you will see the string "<" and in place of the right-pointing angle bracket you
will see ">" in the log file.

Consumer Created Event
####<May 13, 2005 4:06:33 PM EDT> <> <> <1116014793818> <345063> <> <>
 <jmsfunc!TestQueueLogging> <ConsumerCreate> <system> <MC:CA(/
10.61.6.56):OAMI(myserver.jms.connection456.session460.consumer462)> <> <>

Consumer Destroyed Event
####<May 13, 2005 4:06:33 PM EDT> <> <> <1116014793844> <40852> <> <>
<jmsfunc!TestQueueLogging> <ConsumerDestroy> <system> <MC:CA(/
10.61.6.56):OAMI(myserver.jms.connection456.session460.consumer462)> <> <>

Message Produced Event
####<May 13, 2005 4:06:43 PM EDT> <> <> <1116014803018> <693671>
<ID:<327315.1116014803000.0>> <testSendRecord> <jmsfunc!TestQueueLoggingMarker>
 <Produced> <system> <> <<?xml version="1.0" encoding="UTF-8"?>
<mes:WLJMSMessage
 xmlns:mes="http://www.bea.com/WLS/JMS/Message"><mes:Header><mes:JMSCor
relationID>testSendRecord</mes:JMSCorrelationID><mes:JMSDeliveryMode
>NON_PERSISTENT</mes:JMSDeliveryMode><mes:JMSExpiration>0<
/mes:JMSExpiration><mes:JMSPriority>4</mes:JMSPriority><
mes:JMSRedelivered>false</mes:JMSRedelivered><mes:JMSTimestamp>
1116014803000</mes:JMSTimestamp><mes:Properties><mes:property
name="JMSXDeliveryCount"><mes:Int>0</mes:Int></mes:property
></mes:Properties></mes:Header><mes:Body><mes:Text/>
</mes:Body></mes:WLJMSMessage>> <>

Message Consumed Event
####<May 13, 2005 4:06:45 PM EDT> <> <> <1116014805137> <268791>
<ID:<327315.1116014804578.0>> <hello> <jmsfunc!TestQueueLogging> <Consumed> <system>
<MC:CA(/10.61.6.56):OAMI(myserver.jms.connection456.session475.consumer477)> <<?xml
version="1.0" encoding="UTF-8"?>
<mes:WLJMSMessage
 xmlns:mes="http://www.bea.com/WLS/JMS/Message"><mes:Header><mes:
JMSCorrelationID>hello</mes:JMSCorrelationID><mes:JMSDeliveryMode
>PERSISTENT</mes:JMSDeliveryMode><mes:JMSExpiration>0</mes:
JMSExpiration><mes:JMSPriority>4</mes:JMSPriority><mes:
JMSRedelivered>false</mes:JMSRedelivered><mes:JMSTimestamp>
1116014804578</mes:JMSTimestamp><mes:JMSType>SendRecord</mes:
JMSType><mes:Properties><mes:property
name="JMS_BEA_RedeliveryLimit"><mes:Int>1</mes:Int></
mes:property><mes:
property name="JMSXDeliveryCount"><mes:Int>1</mes:Int></
mes:property>
</mes:Properties></mes:Header><mes:Body><mes:Text/></
mes:Body></mes:WLJMSMessage>> <>

Chapter 10
JMS Message Log Content

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 16

Message Expired Event
####<May 13, 2005 4:06:47 PM EDT> <> <> <1116014807258> <445317>
<ID:<327315.1116014807234.0>> <bar> <jmsfunc!TestQueueLogging> <Expired> <<WLS
 Kernel>> <> <<?xml version="1.0" encoding="UTF-8"?>
<mes:WLJMSMessage
 xmlns:mes="http://www.bea.com/WLS/JMS/Message"><mes:Header><mes:
JMSCorrelationID>bar</mes:JMSCorrelationID><mes:JMSDeliveryMode>
PERSISTENT</mes:JMSDeliveryMode><mes:JMSExpiration>1116014806234
</mes:JMSExpiration><mes:JMSPriority>4</mes:JMSPriority><
mes:JMSRedelivered>false</mes:JMSRedelivered><mes:JMSTimestamp>
1116014807234</mes:JMSTimestamp><mes:JMSType>ExpireRecord</mes:
JMSType><mes:Properties><mes:property
name="JMS_BEA_RedeliveryLimit"><mes:Int>1</mes:Int></
mes:property><mes:
property name="JMSXDeliveryCount"><mes:Int>0</mes:Int></
mes:property>
</mes:Properties></mes:Header><mes:Body><mes:Text/></
mes:Body></mes:WLJMSMessage>> <>

Retry Exceeded Event
####<May 13, 2005 4:06:53 PM EDT> <> <> <1116014813491> <394206>
<ID:<327315.1116014813453.0>> <bar> <jmsfunc!TestQueueLogging> <Retry exceeded>
<<WLS Kernel>> <> <<?xml version="1.0" encoding="UTF-8"?>
<mes:WLJMSMessage xmlns:mes="http://www.bea.com/WLS/JMS/
Message"><mes:Header><mes:
JMSCorrelationID>bar</mes:JMSCorrelationID><mes:JMSDeliveryMode>
PERSISTENT</mes:JMSDeliveryMode><mes:JMSExpiration>0</mes:
JMSExpiration><mes:JMSPriority>4</mes:JMSPriority><mes:
JMSRedelivered>true</mes:JMSRedelivered><mes:JMSTimestamp>
1116014813453</mes:JMSTimestamp><mes:JMSType>RetryRecord</mes:
JMSType><mes:Properties><mes:property
name="JMS_BEA_RedeliveryLimit"><mes:Int>1</mes:Int></
mes:property><mes:
property name="JMSXDeliveryCount"><mes:Int>2</mes:Int></mes:property
></mes:Properties></mes:Header><mes:Body><mes:Text/>
</mes:Body></mes:WLJMSMessage>> <>

Message Removed Event
####<May 13, 2005 4:06:45 PM EDT> <> <> <1116014805071> <169809>
<ID:<327315.1116014804859.0>> <hello> <jmsfunc!TestTopicLogging> <Removed>
 <system> <DS:messagelogging_client.foo.SendRecordSubscriber> <<?xml version="1.0"
encoding="UTF-8"?>
<mes:WLJMSMessage xmlns:mes="http://www.bea.com/WLS/JMS/Message"><mes:
Header><mes:JMSCorrelationID>hello</mes:JMSCorrelationID><mes:
JMSDeliveryMode>PERSISTENT</mes:JMSDeliveryMode><mes:JMSExpiration
>0</mes:JMSExpiration><mes:JMSPriority>4</mes:JMSPriority>
<mes:JMSRedelivered>false</mes:JMSRedelivered><mes:JMSTimestamp
>1116014804859</mes:JMSTimestamp><mes:JMSType>
SendRecordSubscriber</mes:JMSType><mes:Properties><mes:property
 name="JMSXDeliveryCount"><mes:Int>0</mes:Int></mes:property
></mes:Properties></mes:Header><mes:Body><mes:Text/></
mes:Body></mes:WLJMSMessage>> <>

Chapter 10
JMS Message Log Content

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 16

Managing JMS Server Log Files
After you create a JMS server, you can configure criteria for moving (rotating) old log
messages to a separate file. You can also change the default name of the log file.

Rotating Message Log Files
You can rotate old log messages to a new file based on a specific file size or at specified
intervals of time. Alternately, you can choose not to rotate old log messages; in this case, all
messages will accumulate in a single file and you will have to erase the contents of the file
when it becomes too large.

If you rotate old messages whenever the log file reaches a particular size you must specify a
minimum file size. After the log file reaches the specified minimum size, the next time the
server checks the file size it will rename the current log file and create a new one for storing
subsequent messages.

If you rotate old messages at a regular interval, you must specify the time at which the first new
message log file is to be created, and then specify the time interval that should pass before
that file is renamed and replaced.

For more information about setting up log file rotation for JMS servers, see Rotate Log Files in
the Oracle WebLogic Remote Console Online Help.

Renaming Message Log Files
Rotated log files are numbered in order of creation. For example, the seventh rotated file would
be named myserver.log00007. For troubleshooting purposes, it may be useful to change the
name of the log file or to include the time and date when the log file is rotated. To do this, you
add java.text.SimpleDateFormat variables to the file name. Surround each variable with
percentage (%) characters. If you specify a relative pathname when you change the name of
the log file, it is interpreted as relative to the server's root directory.

Limiting the Number of Retained Message Log Files
If you rotate old message log files based on either file size or time interval, you may also wish
to limit the number of log files, then this JMS server creates for storing old messages. After the
server reaches this limit, it deletes the oldest log file and creates a new log file with the latest
suffix. If you do not enable this option, the server will create new files indefinitely and you have
to manually clean up these files.

For more information, see Configure Logs in the Oracle WebLogic Remote Console Online
Help.

Controlling Message Operations on Destinations
WebLogic JMS configuration and runtime APIs enable you to pause and resume message
production, insertion, and/or consumption operations on a JMS destination or temporary
destination, on a group of destinations configured using the same template, or on all the
destinations hosted by a single JMS Server, either programmatically (using JMX and the
runtime MBean API) or administratively (using the WebLogic Remote Console).In this way, you
can control the JMS subsystem behavior in the event of an external resource failure that would
otherwise cause the JMS subsystem to overload the system by continuously accepting and
delivering (and redelivering) messages.

Chapter 10
Controlling Message Operations on Destinations

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 16

You can boot a JMS server and its destinations in a "paused" state which prevents any
message production, insertion, or consumption on those destinations immediately after boot.
To resume message operation activity, the administrator can later change the state of the
paused destination to "resume" normal message production, insertion, or consumption
operations. In addition, new runtime options allow an administrator to change the current state
of a running destination to either allow or disallow new message production, insertion, or
consumption.

Definition of Message Production, Insertion, and Consumption
There are several operations performed on messages on a destination:

• Messages are produced when a producer creates and sends a new message to that
destination.

• Messages are inserted as a result of in-flight work completion, as when a message is
made available upon commitment of a transaction or when a message scheduled to be
made available after a delay is made available on a destination.

• Messages are consumed when they are removed from the destination.

You can pause and resume any or all of these operations either at start time or during runtime,
as described in the sections that follow.

Pause and Resume Logging
When message production, insertion, or consumption on a destination is successfully "paused"
or "resumed" either at start time or at runtime, a message is added to the server log to indicate
the same. In the event of failure to pause or resume message production, insertion, or
consumption on a destination, the appropriate error/exceptions are logged.

Production Pause and Production Resume
When a JMS destination is "paused for production", new and existing producers attached to
that destination are unable to produce new messages for that destination. A producer that
attempts to send a message to a paused destination receives an exception that indicates that
the destination is paused. When a destination is "resumed from production pause", production
of new messages is allowed again. Pausing message production does not prevent the
insertion of messages that are the result in-flight work.

Note

For an explanation of what constitutes in-flight work, see Definition of In-Flight Work.

Pausing and Resuming Production at Boot Time
You can pause or resume production effective at boot-time for all the destinations on a JMS
server, for a group of destinations that point to the same JMS template, or for individual
destinations. If you configure production-paused-at-startup, the next time you boot the
server, message production activities will be disallowed for the specified destination(s) until you
explicitly change the state to "production enabled" for that destination. If you configure
production to resume, the next time you boot the server, message production activities will be
allowed on the specified destination(s) until the state is explicitly changed to "production
paused" for that destination.

Chapter 10
Controlling Message Operations on Destinations

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 16

Pausing and Resuming Production at Runtime
You can pause or resume production during runtime for all the destinations targeted on a JMS
server, for a group of destinations that point to the same JMS template, or for individual
destinations. The most recent configuration change always take precedence, regardless of the
level at which it is made (JMS server level, JMS template level, or destination level).

Production Pause and Resume and Distributed Destinations
If a member destination is paused for production, that member destination is not considered for
production by the producer. Messages are steered away to other member destinations that are
available for production.

Production Pause and Resume and JMS Connection Stop/Start
Stopping or starting a JMS connection has no effect on the production pause or production
resume state of a destination.

Insertion Pause and Insertion Resume
When a JMS destination is paused for "insertion", both messages inserted as a result of in-
flight work and new messages sent by producers are prevented from appearing on the
destination. Use insertion pause to stop all messages from appearing on a destination.

You can determine whether there is any in-flight work pending by looking at the statistics on the
WebLogic Remote Console. When you pause the destination for message "insertion",
messages related to in-flight work completion are made "not deliverable" and new message
production operations fail. All of those messages become "invisible" to the consumers and the
statistics are adjusted to reflect that the messages are no longer pending.

The "insertion" pause operation supersedes the "production" pause operation. In other words,
if the destination is currently in the "production paused" state, then you can change it to the
"insertion paused" state.

You must explicitly "resume" a destination for message insertion to allow in-flight messages to
appear on that destination. Successful completion of the insertion "resume" operation will
change the state of the destination to "insertion enabled" and all the "invisible" in-flight
messages are made available.

Pausing and Resuming Insertion at Boot Time
You can pause or resume insertion effective at boot-time for all the destinations on a JMS
server, for a group of destinations that point to the same JMS template, or for individual
destinations. If you configure insertion-paused-at-startup, the next time you boot the
server, message insertion and production activities will be disallowed on the specified
destination(s) until you explicitly change the state to "insertion enabled" for that destination. If
you configure insertion to resume, the next time you boot the server, message insertion
activities will be allowed on the specified destination(s) until the state is explicitly changed to
"insertion paused" for that destination.

Chapter 10
Controlling Message Operations on Destinations

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 16

Note

Because it is possible that this operation may be configured differently at each level
(for example, the JMS Server level, the JMS template level, and the destination level),
there is an established order of precedence. See Order of Precedence for Boot-time
Pause and Resume of Message Operations.

Pausing and Resuming Insertion at Runtime
You can pause or resume insertion during runtime for all the destinations on a JMS server, for
a group of destinations that point to the same JMS template, or for individual destinations. The
most recent configuration change always take precedence, regardless of the level at which it is
made (JMS Server level, JMS Template level, or destination level).

Insertion Pause and Resume and Distributed Destination
If a member destination is paused for insertion, that member destination will not be considered
for message forwarding. Messages will be steered away to other member destinations that are
available for insertion.

Insertion Pause and Resume and JMS Connection Stop/Start
Stopping or starting a JMS Connection has no effect on the insertion pause or insertion resume
state of a destination.

Consumption Pause and Consumption Resume
When a JMS destination is "paused for consumption", messages on that destination are not
available for consumption. When the destination is "resumed from consumption pause", both
new and existing consumers attached to that destination are allowed to consume messages on
the destination again.

When the destination is paused for consumption, the destination's state is marked as
"consumption paused" and all new, synchronous receive operations will block until
consumption is resumed and there are messages available for consumption. All synchronous
receive with blocking time-out operations will block for the specified length of time. Messages
will not be delivered to synchronous consumers attached to that destination while the
destination is paused for consumption.

After a successful consumption "pause" operation, the user has to explicitly "resume" the
destination to allow consume operations on that destination.

Pausing and Resuming Consumption at Boot-time
You can pause or resume consumption effective at boot-time for all the destinations on a JMS
server, for a group of destinations that point to the same JMS template, or for individual
destinations. If you configure consumption-paused-at-startup, the next time you boot the
server, message consumption activities will be disallowed on the specified destination(s) until
you explicitly change the state to "consumption enabled" for that destination. If you configure
consumption to resume, the next time you boot the server, message consumption activities will
be allowed on the specified destination(s) until the state is explicitly changed to "consumption
paused" for that destination.

Chapter 10
Controlling Message Operations on Destinations

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 16

Pausing and Resuming Consumption at Runtime
You can pause or resume consumption during runtime for all the destinations on a JMS server,
for a group of destinations that point to the same JMS template, or for individual destinations.
The most recent configuration change always take precedence, regardless of the level at
which it is made (JMS Server level, JMS Template level, or destination level).

Consumption Pause and Resume and Queue Browsers
Queue Browsers are special type of consumers that are only allowed to "peek" into queue
destinations. A browse operation on a destination paused for consumption is perfectly
legitimate and is allowed.

Consumption Pause and Resume and Distributed Destination
Member destinations that are currently paused for consumption are not considered by the
consumer load balancing algorithm.

Consumption Pause and Resume and Message-Driven Beans
Pausing a destination for consumption prevents a message-driven bean (MDB) from getting
any messages from its associated destination. This feature gives you more flexible control over
the delivery of messages delivery to MDBs from the individual destination level as opposed to
using connection start/stop. In other words, if you use the consumption pause/resume feature,
then you can share the JMS connection among the multiple MDBs and still be able to prevent
message delivery to selected MDBs by pausing the associated destination for consumption.

For more information about using MDBs, see Configuring Suspension of Message Delivery
During JMS Resource Outages in Developing Message-Driven Beans for Oracle WebLogic
Server.

Consumption Pause and Resume and JMS Connection Stop/Start
The JMS connection stop/start feature determines whether a consumer can successfully call
the receiving APIs or not. The consumption pause/resume feature on a destination determines
whether or not the receive call gets any messages from the destination or not. Stopping or
starting a consumer's connection does not have any effect on the destination's consumption
pause state.

If the consumer's connection is "started" from the "stopped" state, synchronous receive
operations might block or time-out if the destination is currently paused for consumption.
Asynchronous consumers do not receive any messages if the associated destination is in a
"consumption paused" state.

Definition of In-Flight Work

In-flight Work Associated with Producers
The following types of messages are inserted on a destination as a result of in-flight work
associated with message producers:

• Unborn Messages : Messages that are created by the producer with "birth time"
(TimeToDeliver) set in the future. Until delivered, unborn messages are counted as
"pending" messages in the destination statistics and are not available for consumption.

Chapter 10
Controlling Message Operations on Destinations

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 16

• Uncommitted Messages : Messages that are produced as part of a transaction (using
either user transaction or transacted session) and have not yet been either committed or
rolled back. Until the transaction has been completed, uncommitted messages are counted
as "pending" messages in the destination statistics and are not available for consumption.

• Quota Blocking Send : Messages that, if initially prevented from reaching a destination due
to a quota limit, will block for a specific period of time while waiting for the destination to
become available. The message may exceed the message quota limit, the byte quota limit,
or both quota limits on the destination. While blocking, these messages are invisible to the
system and are not counted against any of the destination statistics.

In-flight Work Associated with Consumers
The following types of messages are inserted on a destination as a result of in-flight work
associated with message consumers.

• Unacknowledged (CLIENT ACK PENDING) Messages : Messages that have been
received by a client and are awaiting acknowledgement from the client. These are
"pending messages" which are removed from the destination or system when the
acknowledgement is received.

• Uncommitted Messages : Messages that have been received by a client within a
transaction which has not yet been committed or rolled back. When the client successfully
commits the transaction, the messages are removed from the system.

• Rolled-back Messages : Messages that are put back on a destination because of the
successful rollback of a transaction.

These messages might or might not be ready for redelivery to the clients immediately,
depending on the redelivery parameters (that is, RedeliveryDelay and/or
RedeliveryDelayOverride and RedeliveryLimit) configured on the associated connection
factory and destination, or whether rollback requests are internally processed
asynchronously. Consequently, a message that is involved in consumption operation
subject to a rollback request may not be visible to a consumer receiveNoWait() call if the
call is made immediately after the rollback request.

If there is a redelivery delay configured, then, for the duration of that delay, the messages
are not available for redelivery and the messages are counted as "pending" in the
destination statistics. After the delay period, if the redelivery limit has not been exceeded,
then they are delivered and are counted as "current" messages in the destination statistics.
If the redelivery limit has been exceeded, then the messages are moved to the error
destination, if one has been configured, or are deleted, if no error destination has been
configured.

Rollbacks can affect the order in which messages are processed. A rolled back message
can be redelivered after subsequent messages in the same queue or subscription are
processed. If strict message ordering is required, see Using Message Unit-of-Order in
Developing JMS Applications for Oracle WebLogic Server.

• Recovered Messages : Messages that appear on the queue because of an explicit call to
session "recover" by the client. These messages are similar to the Rolled-back Messages
discussed above.

• Redelivered Messages : Messages that reappear on the destination because of an
unsuccessful delivery attempt to the client. These messages are similar to the Rolled-back
Messages discussed previously.

Chapter 10
Controlling Message Operations on Destinations

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 16

Order of Precedence for Boot Time Pause and Resume of Message
Operations

You can pause and resume destinations at boot time by setting attributes at several different
levels:

• If you are using a JMS server to host a group of destinations, you can pause or resume
message operations on the entire group of destinations.

• If you are using a JMS template to define the attribute values of groups of destinations, you
can pause or resume message operations on all of the destinations in a group.

• You can pause and resume message operations on a single destination.

If the values at each of these levels are not in agreement at boot-time, the following order of
precedence is used to determine the behavior of the message operations on the specified
destination(s). For each of the attributes used to configure pausing and resumption of message
operations:

1. If the hosting JMS server for the destination has the attribute set with a valid value, then
that value determines the state of the destination at boot time. Server-level settings have
first precedence.

2. If the hosting JMS server does not have the attribute set with a valid value, then the value
of the attribute on the destination level has second highest precedence and determines the
state of the destination at boot time.

3. If neither the hosting JMS server nor the destination has the attribute set with a valid value,
then the value of the attribute on the JMS template determines the state of the destination
at boot time.

4. If the attribute has not been set at any of the three levels, then the value is assumed to be
"false".

Security
The administrative user or group can override the current state of a destination irrespective of
whether the destination's state is currently being controlled by other users.

If two non-administrative users are trying to control the state of the destination, then the
following rules apply.

1. Only a user who belongs to the same group as the user who changed the state of the
destination to "paused" is allowed to "resume" the destination to the normal operation.

2. If the state change is attempted by two different users who belong to two different

Chapter 10
Controlling Message Operations on Destinations

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 16

A
JMS Resource Definition Elements Reference

Oracle WebLogic Server lets you configure JMS resources using the elements for destinations
and connections factories. These JMS resource definitions allow an application to be deployed
into a Jakarta EE environment with minimal administrative configuration.

Note

Oracle generally recommends using system modules instead of definitions to define
JMS resources. System module configured resources can be added, removed, and
modified without requiring a change, rebuild, and redeploy of an application. See
Configure a JMS System Module.

The following sections describe the Jakarta Messaging resource definition elements and
properties:

Defining JMS Resources Using Jakarta EE Resource Definitions
You can define the JMS resources using the @JMSConnectionFactoryDefinition and
@JMSDestinationDefinition annotations, or the <jms-destination> and <jms-connection-
factory> elements as defined in the Java EE 7 Platform Specification.These JMS resource
definitions allow an application to be deployed into a Jakarta EE environment with minimal
administrative configuration.

Note

JMS resources that are configured within the scope of an application cannot be
modified after the application is deployed. In addition, there is no direct option to
delete destinations that are created in the application module. Undeploying the
application does not delete the destination. For these reasons, it is recommended that
you configure connection factories and destinations using a JMS system module
instead. See JMS System Module Configuration.

Resource Definitions Using Annotations
You can define the annotations @JMSConnectionFactoryDefinition and
@JMSDestinationDefinitions inside the web module, EJB module, or an application client
module. You can also define resources using the annotations inside these classes:

• Classes defined in the libraries defined by the <library-directory> element of the
application.xml deployment descriptor

• Classes in a .jar file referenced by the Class-path entry of a EJB jar file or a .war file

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-1 of A-16

After it is defined, a resource can be referenced by a component using the lookup element of
the @Resource annotation or using the look-up element of the resource-ref deployment
descriptor element..

Example A-1 Example: JMS Connection Factory Definition

@JMSConnectionFactoryDefinition(name="java:app/MyJMSConnectionFactory",
interfaceName="jakarta.jms.QueueConnectionFactory").

Example A-2 Example: JMS Destination Definition

@JMSDestinationDefinition(name="java:app/MyJMSQueue",
interfaceName="jakarta.jms.Queue", destinationName="myQueue1")

For more information about the elements and properties that you can use with the resource
definitions, see JMS Resource Definition Elements Reference

Resource Definitions in the Deployment Descriptor
Instead of using annotations, you can define resources using the <jms-destination> and
<jms-connection-factory> elements in the deployment descriptor.

JMS Connection Factory Definition

You can define a JMS destination resource using the jms-connection-factory element in the
ejb-jar.xml or web.xml deployment descriptors. It creates the connection factory and binds it
to the appropriate naming context based on the namespace specified.

The following example defines a connection factory that is bound to JNDI at the location
java:app/MyJMSConnectionFactory:

<jms-connection-factory> <description>Sample JMS ConnectionFactory
definition</description> <name>java:app/MyJMSConnectionFactory</name>
<interface-name>jakarta.jms.QueueConnectionFactory</interface-name>
<user>scott</user> <password>tiger</password> <client-id>MyClientId</
client-id> <property> <name>Property1</name> <value>10</value> </
property> <property> <name>Property2</name> <value>20</value> </
property> <transactional>false</transactional> <max-pool-size>30</max-
pool-size> <min-pool-size>20</min-pool-size> </jms-connection-factory>

For more information about the jms-connection-factory element and its attributes, see the
schema at http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/javaee_8.xsd

JMS Destination Definition

You can define a JMS destination resource using the jms-destination element in the ejb-
jar.xml or web.xml deployment descriptors. It creates the destination and binds it to the
appropriate naming context based on the namespace specified.

The following example defines a queue destination myQueue1 that is bound to JNDI at the
location java:app/MyJMSDestination:

<jms-destination> <description>JMS Destination definition</description>
<name>java:app/MyJMSDestination</name> <interface-name>jakarta.jms.Queue</
interface-name> <destination-name>myQueue1</destination-name>

Appendix A
Defining JMS Resources Using Jakarta EE Resource Definitions

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-2 of A-16

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/javaee_8.xsd

<property> <name>Property1</name> <value>10</value> </property>
<property> <name>Property2</name> <value>20</value> </property> </
jms-destination>

For more information about the jms-destination element and its attributes, see the schema at
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/javaee_8.xsd

Considerations and Best Practices for Using JMS Resource Definitions
The following are the considerations for resources that are defined using the new annotations:

• Define a JMS resource in any of the following allowed JNDI namespaces:

– java:comp

– java:module

– java:app

– java:global

• When the JNDI name starts with java: but does not start with any of the prior namespace
prefixes, that results in an exception during deployment.

• When the JNDI name does not start with java:, the destination or the connection factory is
defined in the java:comp/env namespace. For example, a JNDI name of the format jms/
myDestination is considered to be the same as java:comp/env/jms/myDestination.

• WebLogic Server allows an application to define a destination in java:app and
java:global namespaces in the application.xml deployment descriptor or by using an
annotation on a class in the application package other than a class within a web module,
an EJB module, or an application client module.

• The destination defined using @JMSDestinationDefinition is internally created as uniform
distributed destinations (queues or topics). By default, the value of the Forwarding Policy
option for a uniform distributed topic that is created using @JMSDestinationDefinition
with interfaceName of type jakarta.jms.Topic is 'Partitioned'. You can specify the value
as 'Replicated' in the application deployment. See Best Practices for Distributed Topics in
Developing JMS Applications for Oracle WebLogic Server.

• When an application that defines a queue using @JMSDestinationDefinition is
undeployed, the persistent store preserves the messages that are not received or
consumed, and those messages are available for consumers of the destination when you
redeploy the application.

For more information, see Annotation Type JMSConnectionFactoryDefinition and Annotation
Type JMSDestinationDefinition in Java(TM) EE7 Specification APIs..

JMS Connection Factory Definition Elements and Properties
You can configure the connection factory in an application module using a JMS resource
definition.

This section explains the elements of the resource definition as mentioned in Java(TM) EE7
Specification APIs document. See Annotation Type JMSConnectionFactoryDefinition.

Appendix A
JMS Connection Factory Definition Elements and Properties

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-3 of A-16

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/javaee_8.xsd
https://javaee.github.io/javaee-spec/javadocs/javax/jms/JMSConnectionFactoryDefinition.html
https://javaee.github.io/javaee-spec/javadocs/javax/jms/JMSDestinationDefinition.html
https://javaee.github.io/javaee-spec/javadocs/javax/jms/JMSDestinationDefinition.html
https://javaee.github.io/javaee-spec/javadocs/javax/jms/JMSConnectionFactoryDefinition.html

The following example defines a connection factory using the
@JMSConnectionFactoryDefinition annotation:

@JMSConnectionFactoryDefinition(
 name="java:global/jms/demoConnectionFactory",
 className= "jakarta.jms.ConnectionFactory",
 description="Sample description for Connection Factory",
 clientId="client_Id01",
 transactional=true,
 properties= {"UserName=myuser", "delivery-mode=Persistent", "load-
balancing-enabled=true"}

For the element definitions in the JMS application module, see the weblogic-jms.xsd schema
available at http://xmlns.oracle.com/weblogic/weblogic-jms/1.8/weblogic-jms.xsd .

Table A-1 @JMSConnectionFactoryDefinition Elements

Element in
@JMSConnectionFact
oryDefinition Elements

Equivalent Element in
the JMS Application
Module

Type Description

name jndi-name String The JNDI name of the JMS
connection factory that is being
defined.

NOTE: This is a mandatory
element.

description notes String A description of the connection
factory.

clientId clientId String The client ID to be used for the
connection.

transactional transaction-
paramsxa-
connection-factory-
enabled

Boolean Specifies whether the
connections participate in
transactions. Set this property to

false
if connections should not
participate in transactions.

. The default is True.

resourceAdapter None String The name of the resource
adapter.

className None String The value is ignored.

InterfaceName None String The value is ignored.

maxPoolSize None integer The value is ignored.

minPoolSize None integer The value is ignored.

user None String The value is ignored.

password None String The value is ignored.

Appendix A
JMS Connection Factory Definition Elements and Properties

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-4 of A-16

http://xmlns.oracle.com/weblogic/weblogic-jms/1.8/weblogic-jms.xsd

JMS Connection Factory Properties

Note

The properties defined in this section apply only when the connection factory definition
does not specify an adapter. When an adapter is specified, properties that are unique
to the adapter are considered.

Table A-2 @JMSConnectionFactoryDefinition Properties

@JMSConnectionFact
oryDefinition Property

Equivalent Element in
the JMS Application
Module

Type Description

name name Sting A name for the connection
factory. When not specified, the
name is <module_name>_cf,
where
<module_name>represents the
name of the JMS application
module where the resource is
defined.

jms-server-name sub-deployment-name Sting The JMS server to which the
resource is targeted. If the jms-
server-name specified by the
application does not exist in the
scope of the deployment, then
the deployment fails with an
exception indicating the reason
for the failure.

default-targeting-
enabled

default-targeting-
enabled

boolean Set this property to true when
jms-server-name is not
specified. This value is ignored
when jms-server-name is
specified.

Table A-3 @JMSConnectionFactoryDefinition Properties for Default Message Delivery

@JMSConnectionFactoryD
efinition Property

Equivalent default-delivery-
params Element in the JMS
Application Module

Type Description

default-delivery-mode default-delivery-mode String The delivery mode assigned to all
messages sent by a producer using the
connection factory that is being defined.
Accepted values: Persistent or Non-
persistent

default-time-to-deliver default-time-to-deliver String The delay time, in milliseconds,
between when a message is produced
and when it is made visible on its
destination

Appendix A
JMS Connection Factory Definition Elements and Properties

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-5 of A-16

Table A-3 (Cont.) @JMSConnectionFactoryDefinition Properties for Default Message Delivery

@JMSConnectionFactoryD
efinition Property

Equivalent default-delivery-
params Element in the JMS
Application Module

Type Description

default-time-to-live default-time-to-live Long The maximum length of time, in
milliseconds, that a message exists.
This value is used for messages when
a priority is not explicitly defined.

default-priority default-priority integer The default priority used for messages
when a priority is not explicitly defined.

default-redelivery-
delay

default-redelivery-
delay

Long The delay time, in milliseconds, before
rolled back or recovered messages are
redelivered.

default-compression-
threshold

default-compression-
threshold

integer The number of bytes for a serialized
message body so any message that
exceeds this limit triggers message
compression when the message is sent
or received by the JMS message
producer or consumer

default-unit-of-order default-unit-of-order String The default Unit-of-Order producer for
this connection factory.

Options are: System-generated and
User-Generated.

send-timeoutr send-timeoutr Long The maximum length of time, in
milliseconds, that a sender waits when
there is not enough available space (no
quota) on a destination to
accommodate the message being sent.

Table A-4 @JMSConnectionFactoryDefinition Client Properties

@JMSConnectionFact
oryDefinition Property

Equivalent client-
params element in the
JMS Application
Module

Type Description

client-id-policy client-id-policy String Whether more than one JMS
connection can use the same
client ID. Valid options are
Restricted and
Unrestricted.

subscription-
sharing-policy

subscription-
sharing-policy

String The Subscription Sharing Policy
on the connection.

Valid options are Exclusive and
Sharable.

acknowledge-policy acknowledge-policy String The client acknowledge policy for
non transacted sessions that use
the CLIENT_ACKNOWLEDGE
mode.Valid options are All and
Previous.

Appendix A
JMS Connection Factory Definition Elements and Properties

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-6 of A-16

Table A-4 (Cont.) @JMSConnectionFactoryDefinition Client Properties

@JMSConnectionFact
oryDefinition Property

Equivalent client-
params element in the
JMS Application
Module

Type Description

allow-close-in-
onMessage

allow-close-in-
onMessage

Boolean Whether the connection factory
creates message consumers that
allow a close() method to be
issued within its onMessage()
method call.

NOTE: The default value of this
property is false for a
connection factory that is created
by using the JMS Connection
Factory Definition. If connection
factory is created in a JMS
system module or in a
application-scoped module, the
default value of allow-close-
in-onMessage will be true.

messages-maximum messages-maximum int The maximum number of
messages that can exist for an
asynchronous session and that
have not yet been passed to the
message listener

multicast-overrun-
policy

multicast-overrun-
policy

String The policy to be used when the
number of outstanding multicast
messages reaches the value
specified in messages-maximum
and some messages must be
deleted.

Valid options are KeepOld and
KeepNew.

synchronous-
prefetch-mode

synchronous-
prefetch-mode

String Whether a synchronous
consumer will prefetch messages
(that is, messages sent from the
server to the client) in one server
access.

Valid options are enabled,
disabled or
topicSubscriberOnly..

reconnect-policy reconnect-policy String Which types of JMS clients are
explicitly and implicitly refreshed
after a lost network connection
with a server or upon a server
restart.

Valid options are none,
producer or all.

reconnect-blocking-
millis

reconnect-blocking-
millis

Long The maximum length of time, in
milliseconds, that any
synchronous JMS calls block the
calling thread before giving up on
a JMS client reconnect in
progress.

Appendix A
JMS Connection Factory Definition Elements and Properties

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-7 of A-16

Table A-4 (Cont.) @JMSConnectionFactoryDefinition Client Properties

@JMSConnectionFact
oryDefinition Property

Equivalent client-
params element in the
JMS Application
Module

Type Description

total-reconnect-
period-millis

total-reconnect-
period-millis

Long The maximum length of time, in
milliseconds, that JMS clients
(particularly asynchronous
consumers) continue to try to
reconnect to the server after
either the initial network
disconnect or the last
synchronous call attempt,
whichever occurred most
recently, before giving up
retrying.

Table A-5 @JMSConnectionFactoryDefinition Transaction Properties

@JMSConnectionFact
oryDefinition Property

Equivalent
transaction-params
element in the JMS
Application Module

Type Description

transaction-timeout transaction-timeout Long The timeout value (in seconds)
for all transactions on
connections created with the
connection factory.

Set this property only when the
transactional element is set
to true.

Table A-6 @JMSConnectionFactoryDefinition Flow Control Properties

@JMSConnectionFact
oryDefinition Property

Equivalent flow-
control-params
Element in the JMS
Application Module

Type Description

flow-minimum flow-minimum integer The maximum number of
messages-per-second allowed
for a producer that is
experiencing a threshold
condition. When a producer is
flow controlled it is never be
allowed to go faster than the
FlowMaximum messages per
second.

Appendix A
JMS Connection Factory Definition Elements and Properties

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-8 of A-16

Table A-6 (Cont.) @JMSConnectionFactoryDefinition Flow Control Properties

@JMSConnectionFact
oryDefinition Property

Equivalent flow-
control-params
Element in the JMS
Application Module

Type Description

flow-maximum flow-maximum integer The minimum number of
messages-per-second allowed
for a producer that is
experiencing a threshold
condition. This is the lower
boundary of a producer's flow
limit. That is, WebLogic JMS
does not further slow down a
producer whose message flow
limit is at its FlowMinimum.

flow-interval flow-interval integer The adjustment period of time, in
seconds, when a producer
adjusts its flow from the
FlowMaximum number of
messages to the FlowMinimum
amount, or reverse.

flow-steps flow-steps integer The number of steps used when
a producer is adjusting its flow
from the Flow Maximum amount
of messages to the Flow
Minimum amount, or vice versa.

flow-control-
enabled

flow-control-
enabled

Boolean Whether a producer created
using a connection factory allows
flow control.

one-way-send-mode one-way-send-mode String Whether message producers
created using this connection
factory are allowed to do one-
way message sends to improve
typical non-persistent, non-
transactional messaging
performance.

Valid options are enabled,
disabled, or topicOnly.

one-way-send-
window-size

one-way-send-
window-size

integer The maximum number of sent
messages per window when
One-Way Send Mode is set to
allow queue senders and/or topic
publishers to make one-way
sends. The window size
determines when a two-way
message is required to regulate
the producer before it can
continue making additional one-
way sends.

Appendix A
JMS Connection Factory Definition Elements and Properties

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-9 of A-16

Table A-7 @JMSConnectionFactoryDefinition Load Balancing Properties

@JMSConnectionFact
oryDefinition Property

Equivalent load-
balancing-params
Element in the JMS
Application Module

Type Description

load-balancing-
enabled

load-balancing-
enabled

Boolean Whether non-anonymous
producers created through a
connection factory are load
balanced within a distributed
destination on a per-call basis.

server-affinity-
enabled

server-affinity-
enabled

Boolean Whether a server instance that is
load balancing consumers or
producers across multiple
members destinations of a
distributed destination, first
attempts to load balance across
any other physical destinations
that are also running on the
same server instance.

Table A-8 @JMSConnectionFactoryDefinition Load Balancing Properties

@JMSConnectionFact
oryDefinition Property

Equivalent security-
params Element in the
JMS Application
Module

Type Description

attach-jmsx-user-id attach-jmsx-user-id Boolean Whether non-anonymous
producers created through a
connection factory are load
balanced within a distributed
destination on a per-call basis.

JMS Destination Definition Elements and Properties
You can configure a JMS destination resource in an application module by using a JMS
resource definition.

This section describes the elements of the resource definition as mentioned in Defining JMS
Resources Using Jakarta EE Resource Definitions.

The following example defines a destination using the @JMSDestinationDefinition
annotation:

@JMSDestinationDefinition(
name="java:global/jms/demoDestination",
interfaceName="jakarta.jms.Queue",
className= "jakarta.jms.Queue",
description="Sample description for Queue",
destinationName="myQueue",
properties= {"default-unit-of-order=true", "time-to-deliver=Persistent",
"attach-sender=always"}

For more information, see Annotation Type JMSDestinationDefinition.

Appendix A
JMS Destination Definition Elements and Properties

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-10 of A-16

https://javaee.github.io/javaee-spec/javadocs/javax/jms/JMSDestinationDefinition.html

For the element definitions in the JMS application module, see the http://xmlns.oracle.com/
weblogic/weblogic-jms/1.8/weblogic-jms.xsd

Table A-9 @JMSDestinationDefinition Elements

Element in
@JMSDestinationDefin
ition

Equivalent Element in
the JMS Application
Module

Type Description

name jndi-name String The JNDI name of the JMS
destination resource that is being
defined.

NOTE: This is a mandatory
element.

interfaceName uniform-
distributed-queue
or uniform-
distributed-topic.

String The fully qualified name of the
JMS destination interface. Valid
options are
jakarta.jms.Queue or
jakarta.jms.Topic.

The JMS destination definition is
converted to a JMS module with
entity of type uniform-
distributed-queue or
uniform-distributed-topic
based on the value specified for
interfaceName.

NOTE: This is a mandatory
element.

description notes String A description for the JMS
destination that is being defined.

destination name name String The runtime MBean name of the
queue or topic. When not
specified, the destination name is
<module_name>_<queue/
topic>, where
<module_name> represents the
name of the JMS application
module where the resource is
defined.

className None - This value is ignored.

resourceAdapter None - This value is ignored.

Table A-10 @JMSDestinationDefinition Properties

@JMSDestinationDefin
ition Property

Equivalent Element in
the JMS Application
Module

Type Description

jms-server-name sub-deployment-name String The JMS server to which the
resource is targeted. If the jms-
server-name specified by the
application does not exist in the
scope of the deployment, then
the deployment will fail with an
exception indicating the reason
for the failure.

Appendix A
JMS Destination Definition Elements and Properties

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-11 of A-16

http://xmlns.oracle.com/weblogic/weblogic-jms/1.8/weblogic-jms.xsd
http://xmlns.oracle.com/weblogic/weblogic-jms/1.8/weblogic-jms.xsd

Table A-10 (Cont.) @JMSDestinationDefinition Properties

@JMSDestinationDefin
ition Property

Equivalent Element in
the JMS Application
Module

Type Description

default-targeting-
enabled

default-targeting-
enabled

Boolean Set this property to true when
jms-server-name is not
specified.

This value is ignored when jms-
server-name is specified.

Table A-11 @JMSDestinationDefiition Threshold Properties

@JMSDestinationDefin
ition Property

Equivalent thresholds
Element in the JMS
Applicaton Module

Type Description

bytes-high bytes-high Long The upper threshold (total
number of bytes in this
destination) that triggers logging
or flow control events.

bytes-low bytes-low Long The lower threshold (total
number of bytes in this
destination) that triggers logging
or flow control events.

messages-high messages-high Long The upper threshold (total
number of messages in this
destination) that triggers logging
or flow control events.

messages-low messages-low Long The lower threshold (total
number of messages in this
destination) that triggers logging
or flow control events.

Table A-12 @JMSDestinationDefinition Message Delivery Override Properties

@JMSDestinationDefin
ition Property

Equivalent delivery-
params-overrides
Element in the JMS
Application Module

Type Description

delivery-mode delivery-mode String The delivery mode assigned to
all messages that arrive at the
destination regardless of the
DeliveryMode specified by the
message producer.

Valid options are Persistent or
Non-Persistent.

time-to-deliver time-to-deliver String The delivery delay, either in
milliseconds or as a schedule,
between when a message is
produced and when it is made
visible on its target distributed
destination.

Appendix A
JMS Destination Definition Elements and Properties

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-12 of A-16

Table A-12 (Cont.) @JMSDestinationDefinition Message Delivery Override Properties

@JMSDestinationDefin
ition Property

Equivalent delivery-
params-overrides
Element in the JMS
Application Module

Type Description

time-to-live time-to-live Long The time-to-live assigned to all
messages that arrive at the
destination, regardless of the
TimeToLive value specified by
the message producer.

priority priority Integer The priority assigned to all
messages that arrive at the
destination, regardless of the
Priority specified by the message
producer.

redelivery-delay redelivery-delay Long The delay, in milliseconds, before
rolled back or recovered
messages are redelivered,
regardless of the
RedeliveryDelay specified by the
consumer and/or connection
factory.

Table A-13 @JMSDestinationDefinition Message Delivery Failure Properties

@JMSDestinationDefin
ition Property

Equivalent delivery-
failure params Element
in the JMS Application
Module

Type Description

redelivery-limit redelivery-limit Integer The number of redelivery tries a
message can have before it is
moved to the error destination.

expiration-policy expiration-policy String The message Expiration Policy to
be used when an expired
message is encountered on a
destination.

Valid options are Discard or Log
or Redirect.

expiration-logging-
policy

expiration-logging-
policy

String The information about the
message is logged when the
Expiration Policy is set to Log.

Table A-14 @JMSDestinationDefinition Message Logging Properties

@JMSDestinationDefin
ition Property

Equivalent message-
logging-params
Element in the JMS
Application Module

Type Description

message-logging-
enabled

message-logging-
enabled

Boolean Whether the module logs
information about the message
life cycle.

Appendix A
JMS Destination Definition Elements and Properties

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-13 of A-16

Table A-14 (Cont.) @JMSDestinationDefinition Message Logging Properties

@JMSDestinationDefin
ition Property

Equivalent message-
logging-params
Element in the JMS
Application Module

Type Description

message-logging-
format

message-logging-
format

String The information about the
message is logged.

This property is defined as
shown in the following example:

For more information about the
valid values for this property, see
the description for the
MessageLoggingFormat
attribute of
MessageLoggingParamsBean
in MBean Reference for Oracle
WebLogic Server.

Table A-15 @JMSDestinationDefinition Advanced Configuration Properties

@JMSDestinationDefin
ition Property

Equivalent Element in
the JMS Application
Module

Type Description

load-balancing-
policy

load-balancing-
policy

String How messages are distributed to
the members of this destination

Valid options are Round-Robin
and Random

production-paused-
at-startup

production-paused-
at-startup

Boolean Whether new message
production is paused on a
destination at startup

insertion-paused-
at-startup

insertion-paused-
at-startup

Boolean Whether new message insertion
is paused on a destination at
startup.

consumption-paused-
at-startup

consumption-paused-
at-startup

Boolean Whether consumption is paused
on a destination at startup.

default-unit-of-
order

default-unit-of-
order

Boolean Specifies whether WebLogic
Server creates a system-
generated unit-of-order name
based on the domain, JMS
server, and destination name.

unit-of-order-
routing

unit-of-order-
routing

String Determines how a distributed
destination member is selected
as the destination for a message
that is part of a unit-of-order.

Valid options are Hash and
PathService.

attach-sender attach-sender String Whether messages landing on
this destination should attach the
credential of the sending user.
Valid options are supports,
always, and never.

Appendix A
JMS Destination Definition Elements and Properties

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-14 of A-16

Table A-15 (Cont.) @JMSDestinationDefinition Advanced Configuration Properties

@JMSDestinationDefin
ition Property

Equivalent Element in
the JMS Application
Module

Type Description

jms-create-
destination-
identifier

jms-create-
destination-
identifier

String A reference name for a
destination or a member of a
distributed destination that
provides a way to look-up that
destination without JNDI using
jakarta.jms.Session
createQueue or
createTopic.

saf-export-policy saf-export-policy String Whether a user can send
messages to a destination using
Store-and-Forward. Valid options
are All and None.

messaging-
performance-
preferenc

messaging-
performance-
preferenc

Integer How long destinations are willing
to wait to create full batches of
available messages (if at all) for
delivery to consumers.

unit-of-work-
handling-policy

unit-of-work-
handling-policy

String Whether the Unit-of-Work (UOW)
feature is enabled for this
destination.

Valid options are PassThrough
and SingleMessageDelivery.

incomplete-work-
expiration-time

incomplete-work-
expiration-time

Integer The maximum length of time, in
milliseconds, before undelivered
messages in an incomplete UOW
are expired.

Note

These properties are applicable only when the interfaceName element of
@JMSDestinationDefinition is set to jakarta.jms.Queue.

Table A-16 @JMSDestinationDefinition Properties for Queue Destinations

@JMSDestinationDefin
ition Property

Equivalent Element in
the JMS Application
Module

Type Description

forward-delay forward-delay Integer The number of seconds after
which a uniform distributed
queue member with no
consumers wait before
forwarding its messages to other
uniform distributed queue
members that do have
consumers.

Appendix A
JMS Destination Definition Elements and Properties

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-15 of A-16

Table A-16 (Cont.) @JMSDestinationDefinition Properties for Queue Destinations

@JMSDestinationDefin
ition Property

Equivalent Element in
the JMS Application
Module

Type Description

reset-delivery-
count-on-forward

reset-delivery-
count-on-forward

Boolean Whether or not the delivery count
is reset during message
forwarding between distributed
queue members.

Note

These properties are applicable only when the interfaceName element of
@JMSDestinationDefinition is set to jakarta.jms.Topic.

Table A-17 @JMSDestinationDefinition Properties for Topic Destinations

@JMSDestinationDefin
ition Property

Equivalent Element in
the JMS Application
Module

Type Description

forwarding-policy forwarding-policy String The uniform distributed topic
message Forwarding Policy
specifies whether or not a sent
message is forwarded to all
members.

Valid options are Partitioned
and Replicated.

When a destination is created by
using JMS destination definition,
the default value of this property
is Partitioned. The default
value is Replicated if the
destination is created otherwise.

multicast-address multicast-address String The address used by the topic to
transmit messages to multicast
consumers.

multicast-time-to-
live

multicast-time-to-
live

Integer The Time-To-Live value used for
multicasting, which specifies the
number of routers that the
message can traverse en route to
the consumers.

multicast-port multicast-port Integer The port used by the topic to
transmit messages to multicast
consumers.

Appendix A
JMS Destination Definition Elements and Properties

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-16 of A-16

B
Configuring JMS Application Modules for
Deployment (Deprecated)

Learn how to configure JMS application modules for deployment in Oracle WebLogic Server.
This includes JMS application modules packaged with a Jakarta EE enterprise application and
globally-available, standalone application modules.

Note

WebLogic JMS Application Modules for Deployment are deprecated, including
packaged and standalone modules. Support for JMS Application Modules will be
removed in a future release. Oracle recommends creating required JMS configuration
using system modules.

This chapter includes the following sections:

Methods for Configuring JMS Application Modules
All JMS resources that can be configured in a JMS system module can be configured and
managed as deployable application modules, similar to standard Jakarta EE modules.

Note

JMS resources that are configured within the scope of an application cannot be
modified after the application is deployed. In addition, there is no direct option to
delete destinations that are created in the application module. Undeploying the
application does not delete the destination. For these reasons, it is recommended that
you configure connection factories and destinations using a JMS system module
instead. See JMS System Module Configuration.

Deployed JMS application modules are owned by the developer who created and packaged
the module, rather than the administrator who deploys the module; therefore, the administrator
has more limited control over deployed resources.

For example, administrators can modify (override) only certain properties of the resources
specified in the module using the deployment plan (JSR-88) at the time of deployment, but
they cannot dynamically add or delete resources. As with other Jakarta EE modules,
configuration changes for an application module are stored in a deployment plan for the
module, leaving the original module untouched.

Application developers can use these tools to create and deploy (target) system resources:

• Create a JMS system module, as described in JMS System Module Configuration and then
copy the resulting XML file to another directory and rename it, using -jms.xml as the file
suffix.

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-1 of B-10

• Create application modules in an enterprise-level IDE or another development tool that
supports editing of XML files, then package the JMS modules with an application and pass
the application to a WebLogic Administrator to deploy.

• Use Jakarta EE connection factory and destination definitions which implicitly create an
application module based on the source code annotations. See Defining JMS Resources
Using Jakarta EE Resource Definitions.

JMS Schema
In support of the modular deployment model for JMS resources in WebLogic Server 9.x or
higher, Oracle provides a schema for defining WebLogic JMS resources: weblogic-jms.xsd.
When you create JMS modules (descriptors), the modules must conform to this schema. IDEs
and other tools can validate JMS modules based on the schema. The weblogic-jms.xsd
schema is available online at http://xmlns.oracle.com/weblogic/weblogic-jms/1.7/
weblogic-jms.xsd .
For an explanation of the JMS resource definitions in the schema, see the corresponding
system module beans in the System Module MBeans folder of the MBean Reference for
Oracle WebLogic Server. The root bean in the JMS module that represents an entire JMS
module is named JMSBean.

Packaging JMS Application Modules In an Enterprise Application
JMS application modules can be packaged as part of an Enterprise Application Archive (EAR),
as a packaged module. Packaged modules are bundled with an EAR or exploded EAR
directory, and are referenced in the weblogic-application.xml descriptor.

The packaged JMS module is deployed along with the Enterprise Application, and the
resources defined in this module can optionally be made available only to the enclosing
application (i.e., as an application-scoped resource). Such modules are particularly useful
when packaged with EJBs (especially MDBs) or Web Applications that use JMS resources.
Using packaged modules ensures that an application always has the required resources and
simplifies the process of moving the application into new environments.

Creating Packaged JMS Application Modules
You create packaged JMS modules using an enterprise-level IDE or another development tool
that supports editing of XML descriptor files. You then deploy and manage standalone modules
using JSR 88-based tools, such as the weblogic.Deployer utility.

Packaged JMS Application Module Requirements
Inside the EAR file, a JMS module must meet the following criteria:

• Conforms to the http://xmlns.oracle.com/weblogic/weblogic-jms/1.7/weblogic-
jms.xsd schema

• Uses -jms.xml as the file suffix (for example, MyJMSDescriptor-jms.xml)

• Uses a name that is unique within the WebLogic domain and a path that is relative to the
root of the Jakarta EE application

Main Steps for Creating Packaged JMS Application Modules
To configure a packaged JMS module:

Appendix B
JMS Schema

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-2 of B-10

http://xmlns.oracle.com/weblogic/weblogic-jms/1.7/weblogic-jms.xsd
http://xmlns.oracle.com/weblogic/weblogic-jms/1.7/weblogic-jms.xsd
http://xmlns.oracle.com/weblogic/weblogic-jms/1.7/weblogic-jms.xsd
http://xmlns.oracle.com/weblogic/weblogic-jms/1.7/weblogic-jms.xsd

1. If necessary, create a JMS server to target the JMS module to.

2. Create a JMS system module and configure the necessary resources, such as queues or
topics.

3. The system module is saved in the config\jms sub-directory of the domain directory, with
a "-jms.xml" suffix.

4. Copy the system module to a new location, and then:

a. Give the module a unique name within the domain namespace.

b. Delete the JNDI-Name attribute to make the module application-scoped to only the
application.

5. Add references to the JMS resources in the module to all applicable Jakarta EE application
component's descriptor files, as described in Referencing a Packaged JMS Application
Module In Deployment Descriptor Files in Developing JMS Applications for Oracle
WebLogic Server.

6. Package all application modules in an EAR, as described in Packaging an Enterprise
Application With a JMS Application Module.

7. Deploy the EAR, as described in Deploying a Packaged JMS Application Module.

Sample of a Packaged JMS Application Module in an EJB Application
The following code snippet is an example of the packaged JMS module, appscopedejbs-
jms.xml, referenced by the descriptor files in Figure B-1 below.

<weblogic-jms xmlns="http://xmlns.oracle.com/weblogic/weblogic-jms">
 <connection-factory name="ACF">
 </connection-factory>
 <queue name="AppscopeQueue">
 </queue>
</weblogic-jms>

Figure B-1 illustrates how a JMS connection factory and queue resources in a packaged JMS
module are referenced in an EJB EAR file.

Appendix B
Packaging JMS Application Modules In an Enterprise Application

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-3 of B-10

Figure B-1 Relationship Between a JMS Application Module and Descriptors in an EJB
Application

Packaged JMS Application Module References In weblogic-application.xml
When including JMS modules in an enterprise application, you must list each JMS module as a
module element of type JMS in the weblogic-application.xml descriptor file packaged with
the application, and a path that is relative to the root of the application. For example:

<module>
 <name>AppScopedEJBs</name>
 <type>JMS</type>

Appendix B
Packaging JMS Application Modules In an Enterprise Application

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-4 of B-10

 <path>jms/appscopedejbs-jms.xml</path>
</module>

Packaged JMS Application Module References In ejb-jar.xml
If EJBs in your application use connection factories through a JMS module packaged with the
application, you must list the JMS module as a res-ref element and include the res-ref-name
and res-type parameters in the ejb-jar.xml descriptor file packaged with the EJB. This way,
the EJB can lookup the JMS Connection Factory in the application's local context. For
example:

<resource-ref>
 <res-ref-name>jms/QueueFactory</res-ref-name>
 <res-type>jakarta.jms.QueueConnectionFactory</res-type>
</resource-ref>

The res-ref-name element maps the resource name (used by java:comp/env) to a module
referenced by an EJB. The res-type element specifies the module type, which in this case, is
jakarta.jms.QueueConnectionFactory.

If EJBs in your application use Queues or Topics through a JMS module packaged with the
application, you must list the JMS module as a resource-env-ref element and include the
resource-env-ref-name and resource-env-ref-type parameters in the ejb-jar.xml
descriptor file packaged with the EJB. This way, the EJB can lookup the JMS Queue or Topic in
the application's the local context. For example:

<resource-env-ref>
 <resource-env-ref-name>jms/Queue</resource-env-ref-name>
 <resource-env-ref-type>jakarta.jms.Queue</resource-env-ref-type>
</resource-env-ref>

The resource-env-ref-name element maps the destination name to a module referenced by
an EJB. The res-type element specifies the name of the Queue, which in this case, is
jakarta.jms.Queue.

Packaged JMS Application Module References In weblogic-ejb-jar.xml
You must list the referenced JMS module as a res-ref-name element and include the
resource-link parameter in the weblogic-ejb-jar.xml descriptor file packaged with the EJB.

<resource-description>
 <res-ref-name>jms/QueueFactory</res-ref-name>
 <resource-link>AppScopedEJBs#ACF</resource-link>
</resource-description>

The res-ref-name element maps the connection factory name to a module referenced by an
EJB. In the resource-link element, the JMS module name is followed by a pound (#)
separator character, which is followed by the name of the resource inside the module. So for
this example, the JMS module AppScopedEJBs containing the connection factory ACF, would
have a name AppScopedEJBs#ACF.

Continuing the example above, the res-ref-name element also maps the Queue name to a
module referenced by an EJB. And in the resource-link element, the queue
AppScopedQueue, would have a name AppScopedEJBs#AppScopedQueue, as follows:

<resource-env-description>
 <resource-env-ref-name>jms/Queue</resource-env-ref-name>
 <resource-link>AppScopedEJBs#AppScopedQueue</resource-link>
</resource-env-description>

Appendix B
Packaging JMS Application Modules In an Enterprise Application

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-5 of B-10

Packaging an Enterprise Application With a JMS Application Module
You package an application with a JDBC module as you would any other enterprise
application. See Packaging Applications Using wlpackage in Developing Applications for
Oracle WebLogic Server.

Deploying a Packaged JMS Application Module
The deployment of packaged JMS modules follows the same model as all other components of
an application: individual modules can be deployed to a single server, a cluster, or individual
members of a cluster.

A recommended best practice for other application components is to use the java:comp/env
JNDI environment to retrieve references to JMS entities, as described in Referencing a
Packaged JMS Application Module in Deployment Descriptor Files in Developing JMS
Applications for Oracle WebLogic Server. (However, this practice is not required.)

By definition, packaged JMS modules are included in an enterprise application, and therefore
are deployed when you deploy the enterprise application. For more information about
deploying applications with packaged JMS modules, see Deploying Applications Using
wldeploy in Developing Applications for Oracle WebLogic Server.

Deploying Standalone JMS Application Modules
You can deploy and manage the standalone JMS application modules using the
weblogic.Deployer utility.This section describes how to create, deploy, and manage
standalone JMS application modules:

About Standalone JMS Modules
A JMS application module can be deployed by itself as a standalone module, in which case the
module is available to the server or cluster targeted during the deployment process. JMS
modules deployed in this manner can be reconfigured using the weblogic.Deployer utility but
are not available through JMX or WLST.

However, standalone JMS modules are available using the basic JSR-88 deployment tool
provided with WebLogic Server plug-ins (without using WebLogic Server extensions to the API)
to configure, deploy, and redeploy Jakarta EE applications and modules to WebLogic Server.
For information about WebLogic Server deployment, see Understanding WebLogic Server
Deployment in Deploying Applications to Oracle WebLogic Server.

JMS modules deployed in this manner are called standalone modules. Depending on how they
are targeted, the resources inside standalone JMS modules are globally available in a cluster
or locally on a server instance. Standalone JMS modules promote sharing and portability of
JMS resources. You can create a JMS module and distribute it to other developers. Standalone
JMS modules can also be used to move JMS information between domains, such as between
the development domain and the production domain, without extensive manual JMS
reconfiguration.

Creating Standalone JMS Application Modules
You can create JMS standalone modules using an enterprise-level IDE or another
development tool that supports editing XML descriptor files. You then deploy and manage
standalone modules using WebLogic Server tools, such as the weblogic.Deployer utility.

Appendix B
Deploying Standalone JMS Application Modules

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-6 of B-10

Standalone JMS Application Module Requirements
A standalone JMS module must meet the following criteria:

• Conforms to the http://xmlns.oracle.com/weblogic/weblogic-jms/1.7/weblogic-
jms.xsd schema

• Uses "-jms.xml" as the file suffix (for example, MyJMSDescriptor-jms.xml)

• Uses a name that is unique within the WebLogic domain (cannot conflict with JMS system
modules)

Main Steps for Creating Standalone JMS Application Modules
To configure a standalone JMS module:

1. If necessary, create a JMS server to which to target the JMS module.

2. Create a JMS system module and configure the necessary resources, such as queues or
topics.

3. The system module is saved in the config\jms subdirectory of the domain directory, with a
-jms.xml suffix.

4. Copy the system module to a new location and then:

a. Give the module a unique name within the domain namespace.

b. To make the module globally available, uniquely rename the JNDI-Name attributes of
the resources in the module.

c. If necessary, modify any other values that can be tuned , such as destination
thresholds or connection factory flow control parameters.

5. Deploy the module, as described in Deploying Standalone JMS Application Modules.

Sample of a Simple Standalone JMS Application Module
The following code snippet is an example of simple standalone JMS module.

<weblogic-jms xmlns="http://xmlns.oracle.com/weblogic/weblogic-jms">
 <connection-factory name="exampleStandAloneCF">
 <jndi-name>exampleStandAloneCF</jndi-name>
 </connection-factory>
 <queue name="ExampleStandAloneQueue">
 <jndi-name>exampleStandAloneQueue</jndi-name>
 </queue>
</weblogic-jms>

Deploying Standalone JMS Application Modules
The command line for using the weblogic.Deployer utility to deploy a standalone JMS module
(using the example above) would be:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
-password weblogic \
-name ExampleStandAloneJMS \
-targets examplesServer \
-submoduletargets
ExampleStandaloneQueue@examplesJMSServer,ExampleStandaloneCF@examplesServer \
-deploy ExampleStandAloneJMSModule-jms.xml

Appendix B
Deploying Standalone JMS Application Modules

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-7 of B-10

http://xmlns.oracle.com/weblogic/weblogic-jms/1.7/weblogic-jms.xsd
http://xmlns.oracle.com/weblogic/weblogic-jms/1.7/weblogic-jms.xsd

For information about deploying standalone JMS modules, see Deploying JDBC, JMS, and
WLDF Application Modules in Deploying Applications to Oracle WebLogic Server.

When you deploy a standalone JMS module, an app-deployment entry is added to the
config.xml file for the domain. For example:

<app-deployment>
 <name>standalone-examples-jms</name>
 <target>MedRecServer</target>
 <module-type>jms</module-type>
 <source-path>C:\modules\standalone-examples-jms.xml</source-path>
 <sub-deployment>
 ...
 </sub-deployment>
 <sub-deployment>
 ...
 </sub-deployment>
</app-deployment>

Note that the source-path for the module can be an absolute path or it can be a relative path
from the domain directory. This differs from the descriptor-file-name path for a system
resource module, which is relative to the domain\config directory.

Tuning Standalone JMS Application Modules
JMS resources deployed within standalone modules can be reconfigured using the
weblogic.Deployer utility, as long as the resources are considered bindable (such as JNDI
names), or tunable (such as destination thresholds). However, standalone resources are not
available through WebLogic JMX APIs or WebLogic Scripting Tool (WLST).

However, standalone JMS modules are available using the basic JSR-88 deployment tool
provided with WebLogic Server plug-ins (without using WebLogic Server extensions to the API)
to configure, deploy, and redeploy Jakarta EE applications and modules to WebLogic Server.
For information about WebLogic Server deployment, see Understanding WebLogic Server
Deployment in Deploying Applications to Oracle WebLogic Server.

Additionally, standalone resources cannot be dynamically added or deleted with any WebLogic
Server utility and must be redeployed.

Generating Unique Runtime JNDI Names for JMS Resources
JMS resources, such as connection factories and destinations, are configured with a JNDI
name. The runtime implementations of these resources are then bound into JNDI using the
given names. WebLogic Server facilitates to generate the JNDI name dynamically instead of
using a static JNDI name for these resources.

In some cases, it is impossible or inconvenient to provide a static JNDI name for these
resources. An example of such a situation is when JMS resources are defined in a JMS
module within an application library. In this case, the library can be referenced from multiple
applications, each of which receives a copy of the application library (and the JMS module it
contains) when they are deployed. If you were to use static JNDI names for the JMS resources
in this case, then all applications that refer to the library would attempt to bind the same set of
JNDI resources at the same static JNDI name.

Therefore, the first application to deploy successfully binds the JMS resources into JNDI, but
subsequent application deployments fail with exceptions indicating that the JNDI names are
already bound.

Appendix B
Generating Unique Runtime JNDI Names for JMS Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-8 of B-10

To avoid this problem, WebLogic Server provides a facility to dynamically generate a JNDI
name for the following types of JMS resources:

• Connection factory

• Destination (queue and topic)

• Weighted distributed destination (deprecated)

• Weighted distributed destination members

• Uniform distributed destination

The facility to generate unique names is based on placing a special character sequence
called ${APPNAME} in the JNDI name of the previously mentioned JMS resources. If you
include ${APPNAME} in the JNDI name element of a JMS resource (either in the JMS module
descriptor, or the weblogic-ejb-jar.xml descriptor), then the actual JNDI name used at
runtime will have the ${APPNAME} string replaced with the effective application ID (name and
possibly version) of the application hosting the JMS resource.

Note

The ${APPNAME} facility does not imply that you can define your own variables and
substitute their values into the JNDI name at runtime. The string ${APPNAME} is treated
specially by the JMS implementation, and no other strings of the form ${<some name>}
have any special meaning.

Unique Runtime JNDI Name for Local Applications
In the case of JMS modules in a local application, at runtime ${APPNAME} becomes the name or
ID of the application. For example:

<jndi-name>${APPNAME}/jms/MyConnectionFactory</jndi-name>

When deployed within an application called MyApp, it would result in a runtime JNDI name of:

MyApp/jms/MyConnectionFactory

Unique Runtime JNDI Name for Application Libraries
In the case of JMS modules in an application library, at runtime ${APPNAME} becomes the
name/ID of the application which refers to the library (not the name of the library). For example:

<jndi-name>${APPNAME}/jms/MyConnectionFactory</jndi-name>

When deployed within an application library called MyAppLib, and referenced from an
application called MyApp, it would result in a runtime JNDI name of:

MyApp/jms/MyConnectionFactory

Unique Runtime JNDI Name for Standalone JMS Modules
In the case of JMS modules deployed as stand-alone modules, at runtime ${APPNAME}
becomes the name/ID of the stand-alone module. For example:

<jndi-name>${APPNAME}/jms/MyConnectionFactory</jndi-name>

Appendix B
Generating Unique Runtime JNDI Names for JMS Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-9 of B-10

When deployed within a stand-alone JMS module MyJMSModule, it would result in a runtime
JNDI name of:

MyJMSModule/jms/MyConnectionFactory

Where to Use the ${APPNAME} String
The ${APPNAME} string can be used anywhere you refer to the JNDI name of a JMS
resource. For example, in the:

• jndi-name or local-jndi-name element of connection-factory elements in the JMS
module descriptor.

• jndi-name or local-jndi-name element of queue or topic elements in the JMS module
descriptor.

• jndi-name element of distributed-queue or distributed-topic elements in the JMS
module descriptor.

• jndi-name element of uniform-distributed-queue or uniform-distributed-topic
elements in the JMS module descriptor.

• destination-jndi-name element of message-destination-descriptor elements in the
weblogic-ejb-jar.xml descriptor.

Note

WebLogic EJB also supports the use of the ${APPNAME} string.

• jndi-name element of weblogic-enterprise-bean elements in the weblogic-ejb-jar.xml
descriptor.

Example Use-Case
In a single-server environment, WebLogic Integration Worklist uses application-scoped JMS
resources (For example, queues and connection factories) to support its modular deployment
goals. Application-scoped JMS allows WebLogic Integration to have an application library
define the EJBs, JMS resources, and so on needed by worklist, and then have users simply
include worklist into their application by adding a library-ref to their application. However,
this prevents the worklist user from scaling those destinations to the cluster from an application
library.

In a clustered environment, users can now substitute the ${APPNAME} string for the queue's
JNDI name at runtime to make the global JNDI names for the queues unique. This way, the
JMS ${APPNAME} parameter is replaced at runtime with the application name of the host
application being merged to the application library.

Appendix B
Generating Unique Runtime JNDI Names for JMS Resources

Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server
G31588-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-10 of B-10

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 WebLogic Server Value-Added JMS Features
	Enterprise-Grade Reliability
	Enterprise-Level Features
	Performance
	Tight Integration with WebLogic Server
	Interoperability with Other Messaging Services

	2 Understanding JMS Resource Configuration
	Overview of JMS and Oracle WebLogic Server
	What Is the Jakarta Messaging?
	WebLogic JMS Architecture and Environment
	Domain Configuration

	What are JMS Configuration Resources?
	Overview of JMS Servers
	Overview of JMS Modules
	JMS System Modules
	JMS Application Modules (Deprecated)
	Comparing JMS System Modules and Application Modules
	Configurable JMS Resources in Modules
	JMS Schema
	JMS Interop Modules (Deprecated)

	Other Environment-Related System Resources for WebLogic JMS
	Persistent Stores
	JMS Store-and-Forward
	Path Service
	Messaging Bridges

	3 Configuring Basic JMS System Resources
	Methods for Configuring JMS System Resources
	Main Steps for Configuring Basic JMS System Resources
	Advanced Resources in JMS System Modules

	JMS Configuration Naming Requirements
	JMS Server Configuration
	JMS Server Configuration Parameters
	JMS Server Targeting
	JMS Server Monitoring Parameters
	Session Pools and Connection Consumers

	JMS System Module Configuration
	JMS System Module and Resource Subdeployment Targeting
	Default Targeting
	Advanced (Subdeployment) Targeting

	Specifying the Unmapped Resource Reference Mode for Connection Factories
	Connection Factory Configuration
	Using the Default JMS Connection Factory Defined by Jakarta EE 9.1
	Using Default Connection Factories Defined by WebLogic Server
	Connection Factory Configuration Parameters
	Connection Factory Targeting

	Queue and Topic Destination Configuration
	Queue and Topic Configuration Parameters
	Creating Error Destinations
	Creating Distributed Destinations

	Queue and Topic Targeting
	Destination Monitoring and Management Parameters

	JMS Template Configuration
	JMS Template Configuration Parameters

	Destination Key Configuration
	Quota Configuration
	Message Limit in a Subscription
	Foreign Server Configuration
	Distributed Destination Configuration
	JMS Store-and-Forward (SAF) Configuration

	4 Configuring Advanced JMS System Resources
	Configuring WebLogic JMS Clustering
	Advantages of JMS Clustering
	How JMS Clustering Works
	JMS Clustering Naming Requirements
	Distributed Destination Within a Cluster
	JMS Services As a Migratable Service Within a Cluster

	Configuration Guidelines for JMS Clustering
	What About Failover?

	Migration of JMS-Related Services
	Automatic Migration of JMS Services
	Manual Migration of JMS Services
	Persistent Store High Availability

	Using the WebLogic Path Service
	Path Service High Availability
	Implementing Message UOO with a Path Service

	Configuring Foreign Server Resources to Access Third-Party JMS Providers
	How WebLogic JMS Accesses Foreign JMS Providers
	Creating Foreign Server Resources
	Creating Foreign Connection Factory Resources
	Creating a Foreign Destination Resources

	Sample Configuration for MQSeries JNDI

	Configuring Distributed Destination Resources
	Uniform Distributed Destinations vs. Weighted Distributed Destinations
	Creating Uniform Distributed Destinations
	Targeting Uniform Distributed Queues and Topics
	Pausing and Resuming Message Operations on UDD Members
	Monitoring UDD Members
	Configuring Partitioned Distributed Topics
	Load Balancing Partitioned Distributed Topics

	Creating Weighted Distributed Destinations
	Load Balancing Messages Across a Distributed Destination
	Load-Balancing Options
	Round-Robin Distribution
	Random Distribution

	Consumer Load Balancing
	Producer Load Balancing
	Load-Balancing Heuristics
	Transaction Affinity
	Server Affinity
	Queues with Zero Consumers
	Paused Distributed Destination Members

	Defeating Load Balancing
	Connection Factories

	Distributed Destination Load Balancing When Server Affinity Is Enabled

	Distributed Destination Migration
	Distributed Destination Failover

	Configure an Unrestricted ClientID
	Configure Shared Subscriptions

	5 Simplified JMS Cluster and High Availability Configuration
	What Are the WebLogic Clustering Options for JMS?
	Understanding the Simplified JMS Cluster Configuration
	Using Persistent Stores with Cluster Targeted JMS Servers
	Targeting JMS Modules Resources
	Simplified JMS Configuration and High Availability Enhancements
	Defining the Distribution Policy for JMS Services
	Defining the Migration Policy for JMS Services
	Additional Configuration Options for JMS Services

	Considerations and Limitations of Clustered JMS
	Interoperability and Upgrade Considerations of Cluster Targeted JMS Servers

	Best Practices for Using Cluster Targeted JMS Services
	Runtime MBean Instance Naming Syntax
	Instance Naming Syntax for .DAT File
	Instance Naming Syntax for .RGN File
	JDBC Store Table Name Syntax

	6 Using WLST to Manage JMS Servers and JMS System Module Resources
	Understanding JMS System Modules and Subdeployments
	How to Create JMS Servers and JMS System Module Resources
	How to Modify and Monitor JMS Servers and JMS System Module Resources
	Best Practices When Using WLST to Configure JMS Resources

	7 Interoperating with Oracle AQ JMS
	Overview
	Using AQ Destinations as Foreign Destinations
	Driver Support
	Transaction Support
	Oracle Real Application Clusters
	MBean and Console Support
	Configuring WebLogic Server to Interoperate with AQ JMS
	Configure Oracle AQ in the Database
	Create Users and Grant Permissions
	Create AQ Queue Tables
	Create a JMS Queue or Topic
	Start the JMS Queue or Topic

	Configure WebLogic Server for AQ JMS
	Configure a WebLogic Data Source for AQ JMS
	Configuring a Generic Data Source for AQ JMS
	Configuring an AGL Data Source for AQ JMS

	Configure a JMS System Module
	Configure a JMS Foreign Server
	Reference a Data Source

	Configure JMS Foreign Server Connection Factories
	Configure AQ JMS Foreign Server Destinations

	Additional Configuration for Interoperation with Oracle 12c Database

	Programming Considerations
	Settings for Message Driven Beans to Interoperate with AQ JMS
	Scalability for Clustered WebLogic MDBs Listening on AQ Topics
	AQ JMS Extensions
	Using AdtMessage

	Resource References
	JDBC Connection Utilization
	Oracle RAC Support
	Debugging
	Performance Considerations

	Advanced Topics
	Advanced Message Recovery for MDBs
	Security Considerations
	Configuring AQ Destination Security
	Access to JNDI Advertised Destinations and Connection Factories
	Controlling Access to Destinations that are Looked Up using the JMS API
	Additional Security Configuration for Standalone Clients
	Additional Security Configurations for Server-Side Applications

	WebLogic Messaging Bridge
	Create a Messaging Bridge Instance

	Standalone WebLogic AQ JMS Clients
	Configure a Foreign Server using the Database's JDBC URL
	Limitations when using Standalone WebLogic AQ JMS Clients

	8 Monitoring JMS Statistics and Managing Messages
	Monitoring JMS Statistics
	Monitoring JMS Servers
	Monitor Cluster Targeted JMS Servers
	Monitoring Active JMS Destinations
	Monitoring Active JMS Transactions
	Monitoring Active JMS Connections, Sessions, Consumers, and Producers
	Monitoring Active JMS Session Pools

	Monitoring Queues
	Monitoring Topics
	Monitoring Durable Subscribers for Topics
	Monitoring Uniform Distributed Queues
	Monitoring Uniform Distributed Topics
	Monitoring Pooled JMS Connections

	Managing JMS Messages
	JMS Message Management Using Jakarta APIs
	JMS Message Management Using WebLogic Remote Console
	Monitoring Message Runtime Information
	Querying Messages
	Moving Messages
	Deleting Messages
	Creating New Messages
	Importing Messages
	Exporting Messages

	Managing Transactions
	Managing Durable Topic Subscribers

	9 Best Practices for JMS Beginners and Advanced Users
	Configuration Best Practices
	Configure JMS Servers and Persistent Stores
	Configure JMS Quotas and Paging
	Configure a JMS Module
	Configure JMS Resources
	Configure SAF Agents, Stores, and Imported Destination

	Targeting Best Practices
	High Availability Best Practices
	Develop Applications on a Cluster
	Leverage WebLogic HA Features
	Ensure Your Data is Persisted Safely

	Client Resiliency Best Practices
	Distributed Destination Best Practices
	Distributed Queues
	Distributed Topics
	Weighted Distributed Destinations

	Understanding WebLogic JMS Client Options
	Understanding WebLogic URLs
	URL syntax

	Strict Message Ordering Best Practices
	Integrating Remote JMS Destinations
	JMS Performance and Tuning

	10 Troubleshooting WebLogic JMS
	Configuring Notifications for JMS
	Debugging JMS
	Enabling Debugging
	Enable Debugging Using the Command Line
	Enable Debugging Using the WebLogic Remote Console
	Enable Debugging Using the WebLogic Scripting Tool
	Changes to the config.xml File

	JMS Debugging Scopes
	Messaging Kernel and Path Service Debugging Scopes
	Request Dyeing

	Message Life Cycle Logging
	Events in the JMS Message Life Cycle
	Message Log Location

	Enabling JMS Message Logging

	JMS Message Log Content
	JMS Message Log Record Format
	Sample Log File Records
	Consumer Created Event
	Consumer Destroyed Event
	Message Produced Event
	Message Consumed Event
	Message Expired Event
	Retry Exceeded Event
	Message Removed Event

	Managing JMS Server Log Files
	Rotating Message Log Files
	Renaming Message Log Files
	Limiting the Number of Retained Message Log Files

	Controlling Message Operations on Destinations
	Definition of Message Production, Insertion, and Consumption
	Pause and Resume Logging

	Production Pause and Production Resume
	Pausing and Resuming Production at Boot Time
	Pausing and Resuming Production at Runtime
	Production Pause and Resume and Distributed Destinations
	Production Pause and Resume and JMS Connection Stop/Start

	Insertion Pause and Insertion Resume
	Pausing and Resuming Insertion at Boot Time
	Pausing and Resuming Insertion at Runtime
	Insertion Pause and Resume and Distributed Destination
	Insertion Pause and Resume and JMS Connection Stop/Start

	Consumption Pause and Consumption Resume
	Pausing and Resuming Consumption at Boot-time
	Pausing and Resuming Consumption at Runtime
	Consumption Pause and Resume and Queue Browsers
	Consumption Pause and Resume and Distributed Destination
	Consumption Pause and Resume and Message-Driven Beans
	Consumption Pause and Resume and JMS Connection Stop/Start

	Definition of In-Flight Work
	In-flight Work Associated with Producers
	In-flight Work Associated with Consumers

	Order of Precedence for Boot Time Pause and Resume of Message Operations
	Security

	A JMS Resource Definition Elements Reference
	Defining JMS Resources Using Jakarta EE Resource Definitions
	Resource Definitions Using Annotations
	Resource Definitions in the Deployment Descriptor
	Considerations and Best Practices for Using JMS Resource Definitions

	JMS Connection Factory Definition Elements and Properties
	JMS Destination Definition Elements and Properties

	B Configuring JMS Application Modules for Deployment (Deprecated)
	Methods for Configuring JMS Application Modules
	JMS Schema
	Packaging JMS Application Modules In an Enterprise Application
	Creating Packaged JMS Application Modules
	Packaged JMS Application Module Requirements
	Main Steps for Creating Packaged JMS Application Modules

	Sample of a Packaged JMS Application Module in an EJB Application
	Packaged JMS Application Module References In weblogic-application.xml
	Packaged JMS Application Module References In ejb-jar.xml
	Packaged JMS Application Module References In weblogic-ejb-jar.xml

	Packaging an Enterprise Application With a JMS Application Module
	Deploying a Packaged JMS Application Module

	Deploying Standalone JMS Application Modules
	About Standalone JMS Modules
	Creating Standalone JMS Application Modules
	Standalone JMS Application Module Requirements
	Main Steps for Creating Standalone JMS Application Modules

	Sample of a Simple Standalone JMS Application Module
	Deploying Standalone JMS Application Modules
	Tuning Standalone JMS Application Modules

	Generating Unique Runtime JNDI Names for JMS Resources
	Unique Runtime JNDI Name for Local Applications
	Unique Runtime JNDI Name for Application Libraries
	Unique Runtime JNDI Name for Standalone JMS Modules
	Where to Use the ⁠${APPNAME} String
	Example Use-Case

