
Oracle® Fusion Middleware
Developing JMS .NET Client Applications for
Oracle WebLogic Server

15c (15.1.1.0.0)
G31902-01
October 2025

Oracle Fusion Middleware Developing JMS .NET Client Applications for Oracle WebLogic Server, 15c (15.1.1.0.0)

G31902-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation ii

Conventions ii

1 Overview of the WebLogic JMS .NET Client

What is the WebLogic JMS .NET Client? 1

Supported JMS Features 1

Messaging Models 1

Message Types 2

How the WebLogic JMS .NET Client Works 2

Configuring WebLogic Server 4

Configuring the Listen Port 4

Configuring JMS Resources for the JMS .NET Client 4

Interoperating with Pre-12.1.3 JMS .NET Clients 4

Interoperating with Previous WebLogic Server Releases 5

Understanding the WebLogic JMS .NET API 5

2 Installing and Copying the WebLogic JMS .NET Client Libraries

Installing the WebLogic JMS .NET Client 1

Location of Installed Components 1

Choosing an Installation Version 2

Copying the Library to the Client Machine 3

3 Developing a Basic JMS Application Using the WebLogic JMS .NET API

Creating a JMS .NET Client Application 1

Example: Writing a Basic PTP JMS .NET Client Application 3

Prerequisites 3

Basic Steps 3

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of iii

Step 1. Create a context 3

Step 2. Look up JMS connection factory 4

Step 3. Look up JMS destinations 4

Step 4. Create a connection using the connection factory 4

Step 5. Start the connection 4

Step 6. Create a session using the connection 5

Step 7. Create a message producer and send a message 5

Step 8. Create a message consumer and receive a message 5

Step 9. Close the connection 5

Step 10. Close the context 5

Using Advanced Concepts in JMS .NET Client Applications 6

4 Programming Considerations

Using WebLogic JMS Extensions 1

Message Compression 3

Unit-of-Order 4

Message Delivery Time 4

One-Way Message Sends 4

Include user-id as JMSXUserId 4

Message Delivery Attempts 4

Limitations of Using the WebLogic JMS .NET Client 5

Unsupported JMS 2.0 Standard Features 5

Unsupported JMS 1.1 Standard Features 5

Unsupported JMS 1.1 Optional Features 5

Unsupported WebLogic JMS Extensions 5

Transactions 6

Exchanging Messages Between Different Language Environments 6

Specifying the URL Format 7

Using DNS Alias Host Names 7

Implementing Security With the JMS .NET Client 7

Configuring Logging and Debugging 9

Server Side 9

Client Side 9

Message Output 9

Log Categories and Levels 9

Understanding Socket and Threading Behavior 12

Data Conversion Between Java and .NET 12

Endian Conversions 13

Signed and Unsigned Byte Conversions 13

Byte Array Transfers 14

Time Conversions 14

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of iii

Best Practices 15

A JMS .NET Client Sample Application

Index

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iii of iii

Preface

This document is written for application developers who want to develop JMS .NET client
applications that access WebLogic JMS resources.

Audience
This document is a resource for software developers who want to develop and configure
applications that include WebLogic Server JMS. It also contains information that is useful for
business analysts and system architects who are evaluating WebLogic Server or considering
the use of WebLogic Server JMS for a particular application

The topics in this document are relevant during the design and development phases of a
software project. The document also includes topics that are useful in solving application
problems that are discovered during test and pre-production phases of a project.

This document does not address production phase administration, monitoring, or performance
tuning JMS topics. For links to WebLogic Server documentation and resources for these topics,
see Related Documentation.

It is assumed that the reader is familiar with Jakarta EE and JMS concepts. This document
emphasizes the value-added features provided by WebLogic Server JMS and key information
about how to use WebLogic Server features and facilities to get a JMS application up and
running.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://support.oracle.com/portal/ or visit Oracle
Accessibility Learning and Support if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of ii

https://www.oracle.com/corporate/accessibility/
https://support.oracle.com/portal/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Related Documentation
This document contains JMS-specific design and development information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

• Administering JMS Resources for Oracle WebLogic Server for information about
configuring and managing JMS resources.

• Developing JMS Applications for Oracle WebLogic Server is a guide to JMS API
programming with WebLogic Server.

• Administering the Store-and-Forward Service for Oracle WebLogic Server for information
about the benefits and usage of the Store-and-Forward service with WebLogic JMS.

• Administering the WebLogic Persistent Store for information about the benefits and usage
of the system-wide WebLogic Persistent Store.

• Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications.

Samples and Tutorials

Oracle provides a variety of code examples and tutorials that show WebLogic Server
configuration and API use, and provide practical instructions on how to perform key
development tasks. For more information, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

Oracle recommends that you run some or all of the JMS examples before developing your own
JMS applications.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of ii

1
Overview of the WebLogic JMS .NET Client

This chapter provides an overview of the WebLogic JMS .NET client, illustrates how a
JMS .NET client application accesses WebLogic JMS resources, and provides a brief summary
of the WebLogic JMS .NET API.
It is assumed that the reader is familiar with .NET programming and JMS 1.1 concepts and
features.

This chapter includes the following sections:

What is the WebLogic JMS .NET Client?
The WebLogic JMS .NET client is a fully-managed .NET runtime library and application
programming interface (API). It enables programmers to create client applications using .NET
C# or any other supported .NET programming languages to access WebLogic JMS
applications and resources.

WebLogic JMS is an enterprise-level messaging system that fully supports the JMS 3.0
Specification (see https://jakarta.ee/specifications/messaging/3.0/) and also provides
numerous WebLogic JMS Extensions to the standard JMS APIs. For a summary of the
WebLogic Server value-added JMS features, see WebLogic Server Value-Added JMS
Features in Administering JMS Resources for Oracle WebLogic Server.

For complete details about all the classes and interfaces in the JMS .NET API, see the
Microsoft .NET Messaging API for Oracle WebLogic Server documentation.

The WebLogic JMS .NET client, which is bundled with Oracle WebLogic Server, is supported
on the Microsoft .NET Framework and the .Net Core environment using the V1 version and V2
version of the libraries, respectively. Installation details are provided in Installing and Copying
the WebLogic JMS .NET Client Libraries.

Supported JMS Features
For this release, the WebLogic JMS .NET client supports the major standard features of the
JMS Version 3.0 Specification (see https://jakarta.ee/specifications/messaging/3.0/).
For a list of the JMS standard features that are not supported, see Limitations of Using the
WebLogic JMS .NET Client .

In addition to the standard JMS Specification support, the WebLogic JMS .NET client also
supports several WebLogic JMS extensions. For more information about the features
supported and how they can be used with the JMS .NET client, see Using WebLogic JMS
Extensions.

Messaging Models
The WebLogic JMS .NET client supports the following messaging models:

• The point-to-point (PTP) messaging model, which enables one application to send a
message to exactly one recipient.

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

https://jakarta.ee/specifications/messaging/3.0/
https://jakarta.ee/specifications/messaging/3.0/

• The publish/subscribe (pub/sub) messaging model, which enables an application to send a
message to multiple recipients.

Messages can be specified as persistent or non-persistent:

• Persistent messages are guaranteed to be delivered once-and-only-once. The message
will not be lost due to JMS server failure and it will not be redelivered once it is
acknowledged by an application. It is not considered sent until it has been safely written to
a file or database.

• Non-persistent messages are not stored. They are guaranteed to be delivered at-most-
once. Messages may be lost when there is a JMS provider failure and will not be
redelivered.

For more information, see Understanding the Messaging Models in Developing JMS
Applications for Oracle WebLogic Server.

Message Types
The WebLogic JMS .NET client supports the following message types, as defined in the JMS
Specification (see https://jakarta.ee/specifications/messaging/3.0/):

• Message

• BytesMessage

• MapMessage

• ObjectMessage (between producers and consumers written in the same language only)

• StreamMessage

• TextMessage

The XMLMessage type extension provided by WebLogic JMS is not supported in this release.
Such messages are automatically converted to a TextMessage type when received by a .NET
client.

For more information about using the supported message types, see Exchanging Messages
Between Different Language Environments.

How the WebLogic JMS .NET Client Works
The following graphic illustrates how a JMS .NET client application running in a .NET
environment can access JMS resources deployed on Oracle WebLogic Server.

Chapter 1
How the WebLogic JMS .NET Client Works

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

https://jakarta.ee/specifications/messaging/3.0/

Figure 1-1 JMS .NET Client Architecture

Note

All of the WebLogic components shown in Figure 1-1 are hosted on a single instance
of WebLogic Server 10g Release 3 or later. In a multi-server or cluster configuration,
each of the WebLogic Server components can run on a separate instance of
WebLogic Server. However, the JMS .NET client host must run on WebLogic Server
10g Release 3 or later, and the connection host and the JMS server must run in the
same WebLogic Server 9.x or later cluster.

The major components depicted in the illustration consist of the following:

• A JMS .NET client written in C# or any supported .NET programming language, running in
a .NET environment, that either produces messages to destinations or consumes
messages from destinations.

• A JMS .NET client host running on WebLogic Server 10g Release 3 or later that provides
the interface between the JMS .NET client and WebLogic JMS.

• A standard T3 protocol listen port configured on the .NET client host.

• One or more connection hosts (i.e., connection factories).

• One or more JMS servers that define a set of JMS destinations.

Traffic to the JMS servers is always routed from the .NET client through the JMS .NET client
host to the connection host to the JMS servers. Traffic to the JMS .NET client is always routed
from the JMS servers to the connection host and through the JMS .NET client host to the .NET
client.

A brief summary of the process used to exchange messages between the JMS .NET client and
a JMS server, as illustrated in Figure 1-1, is summarized in the following steps:

1. The JMS .NET client establishes an initial T3 network connection with the JMS .NET client
host running on WebLogic Server 10g Release 3 or later.

Chapter 1
How the WebLogic JMS .NET Client Works

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

2. The JMS .NET client obtains a connection factory from the JMS .NET client host.

3. The JMS .NET client host, in turn, obtains the connection factory from JNDI.

4. The JMS .NET client creates a connection using the connection factory, which will
establish a connection from the JMS .NET client host to one of the connection hosts where
the connection factory resides.

5. When the JMS .NET client sends (produces) a message, the JMS .NET client host sends it
to the connection host, which in turn routes it to the JMS server hosting the destination.
Alternatively, when the JMS .NET client receives (consumes) a message, the connection
host routes it from the JMS server hosting the destination to the JMS .NET client host,
which passes the message to the JMS .NET client.

Instructions and examples for creating a JMS .NET client application are provided in
Developing a Basic JMS Application Using the WebLogic JMS .NET API.

Configuring WebLogic Server
The following sections describe the configuration that must occur before a JMS .NET client
application can access JMS resources.

Configuring the Listen Port
The JMS .NET client requires that a listen port configured for T3 protocol is enabled on the
WebLogic Server instance hosting the JMS .NET client host. When you install WebLogic
Server, a default port is configured for use with T3 protocol. Because the default port
configuration can be changed or disabled, the system administrator needs to ensure that the
T3 protocol is enabled on the server's default port, or add a network channel that supports the
T3 protocol. For configuration information, see the following topics:

• Configure Network Connections in the Oracle WebLogic Remote Console Online Help

• Understanding Network Channels in Administering Server Environments for Oracle
WebLogic Server

Configuring JMS Resources for the JMS .NET Client
Before a JMS .NET client application can access JMS resources deployed on WebLogic
Server, the WebLogic Server system administrator must configure the required JMS resources,
including the connection factories, JMS servers, and destinations. For instructions for
configuring JMS resources, see:

• Administering JMS Resources for Oracle WebLogic Server

• Messaging in the Oracle WebLogic Remote Console Online Help

Interoperating with Pre-12.1.3 JMS .NET Clients
To enable JMS .NET clients developed prior to WebLogic Server 12.1.3 to interoperate with
WebLogic Server 12.1.3 and later, set the following system property on your WebLogic Server
12.1.3 and later instances:

-Dweblogic.protocol.t3.login.replyWithRel10Content=true

The default value is false for interoperability with existing JMS .NET clients developed prior to
WebLogic Server 12.1.3.

Chapter 1
Configuring WebLogic Server

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

Interoperating with Previous WebLogic Server Releases
The JMS .NET client can communicate directly only with WebLogic Server 10g Release 3 and
later. As shown in Figure 1-2, the JMS .NET client host must run on WebLogic Server 10g
Release 3 or later, however, the connection host and the JMS server can run on WebLogic
Server 9.x or later. Both the connection host and the JMS server must be in the same cluster.

Figure 1-2 JMS .NET Client Interoperability

To access destinations on WebLogic Server 9.x or later that are not in the same cluster as
the .NET client host running on 10g Release 3 or later, you must configure the remote instance
of WebLogic Server as a Foreign Server. For more information, see Configuring Foreign Server
Resources to Access Third-Party JMS Providers in Administering JMS Resources for Oracle
WebLogic Server.

Note

Although you can also use Foreign Servers to connect to third-party JMS providers
using JMS Java clients, this feature is not supported in the WebLogic JMS .NET client.

Understanding the WebLogic JMS .NET API
The following table lists the primary JMS .NET API classes and interfaces used to create a
JMS .NET client application. For complete details about all the classes and interfaces in the
JMS .NET API, see the Microsoft .NET Messaging API for Oracle WebLogic
Serverdocumentation.

Chapter 1
Interoperating with Previous WebLogic Server Releases

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

Table 1-1 WebLogic JMS .NET Classes and Interfaces

Interface/Class Description

Constants The Constants family of classes is used to define commonly used constants/enumerations
for the API.

ContextFactory A ContextFactory is used to create contexts, which are network connections from
the .NET client to the client host.

IContext An IContext object represents a network connection from the .NET client to the client host.
It is used to lookup destinations and connection factories, and to close the network
connection when it is no longer needed.

IConnectionFactory An IConnectionFactory object encapsulates JMS connection configuration information. A
JMS .NET client looks up a connection factory using an IContext object, and then uses it to
create an IConnection with a JMS server.

IConnection An IConnection object is the active connection between the JMS .NET client host and the
JMS connection host. Authentication optionally takes place during the creation of the
connection. A connection is used to create sessions.

ISession An ISession object is a single-threaded entity for producing and consuming messages. A
session can create and service multiple message producers and consumers.

IDestination An IDestination object identifies a queue or topic. Queue and topic destinations manage
the messages delivered from the point-to-point and pub/sub messaging models, respectively.

ITopic An ITopic object is pub/sub IDestination that encapsulates a provider-specific topic
name. It is the way a client specifies the identity of a topic to JMS API methods. For those
methods that use an IDestination as a parameter, an ITopic object may be used as an
argument. For example, an ITopic can be used to create an IMessageConsumer and an
IMessageProducer by calling:

ISession.CreateConsumer(IDestination destination)
ISession.CreateProducer(IDestination destination)

IQueue An IQueue object is a point-to-point IDestination that encapsulates a provider-specific
queue name. It is the way a client specifies the identity of a queue to JMS API methods.

Since IQueue and ITopic both inherit from IDestination, for those methods that use an
IDestination as a parameter, an IQueue object can be used as the argument. For
example, an IQueue can be used to create an IMessageConsumer and an
IMessageProducer by calling:

ISession.CreateConsumer(IQueue queue) ISession.CreateProducer(IQueue
queue)

IMessageConsumer A JMS .NET client uses an IMessageConsumer object to receive messages from a
destination. An IMessageConsumer object is created by passing an IDestination object
to a message-consumer creation method supplied by a session.

IMessageProducer A JMS .NET client uses an IMessageProducer object to send messages to a destination.
An IMessageProducer object is created by passing an IDestination object to a
message-producer creation method supplied by a session.

IMessage The IMessage interface is the root interface of all JMS messages. It defines the message
header and the Acknowledge method used for all messages.

JMS messages are composed of the following parts:

Header - All messages support the same set of header fields. Header fields contain values
used by both clients and providers to identify and route messages.

Properties - Each message contains a built-in facility for supporting application-defined
property values. Properties provide an efficient mechanism for supporting application-
defined message filtering.

Body - The JMS API defines several types of message body, which cover the majority of
messaging styles currently in use.

Chapter 1
Understanding the WebLogic JMS .NET API

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

Table 1-1 (Cont.) WebLogic JMS .NET Classes and Interfaces

Interface/Class Description

IMapMessage An IMapMessage object is used to send a set of name-value pairs. The names are String
objects, and the values are primitive data types in the Java and C# programming languages.
The names must have a value that is not null, and not an empty string. The entries can be
accessed sequentially or randomly by name. The order of the entries is undefined.
IMapMessage inherits from the IMessage interface and adds a message body that contains
a map.

IObjectMessage An IObjectMessage object is used to send a message that contains a serializable object in
the Java and C# programming languages. It inherits from the IMessage interface and adds a
body containing a single reference to an object. C# objects cannot be read by Java
programs, and vice versa. For more information, see Exchanging Messages Between
Different Language Environments.

IStreamMessage An IStreamMessage object is used to send a stream of primitive types in the Java
programming language. It is filled and read sequentially. It inherits from the IMessage
interface and adds a stream message body. Its methods are based largely on those found in
java.io.DataInputStream and java.io.DataOutputStream.

ITextMessage An ITextMessage object is used to send a message containing a String. It inherits from
the IMessage interface and adds a text message body.

IBytesMessage An IBytesMessage object is used to send a message containing a stream of uninterpreted
bytes. It inherits from the IMessage interface and adds a bytes message body. The receiver
of the message supplies the interpretation of the bytes.

Chapter 1
Understanding the WebLogic JMS .NET API

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

2
Installing and Copying the WebLogic
JMS .NET Client Libraries

This chapter describes the JMS .NET client components installed on a WebLogic Server
platform, the location to which they are installed, and how to copy them to a .NET Framework
machine.
This chapter includes the following sections:

Installing the WebLogic JMS .NET Client
The WebLogic JMS .NET Client is bundled with WebLogic Server. When you perform a
Complete installation of WebLogic Server on a supported platform, including non-Windows
platforms, the WebLogic JMS .NET Client is installed by default. If you choose the Custom
installation option, ensure that the WebLogic Server Clients component of WebLogic Server is
selected. If you deselect this component, the WebLogic JMS .NET Client is not installed.

For a list of supported platforms for WebLogic Server, see Oracle Fusion Middleware
Supported System Configurations.

For details about installing WebLogic Server, see Installing and Configuring Oracle WebLogic
Server and Coherence.

Location of Installed Components
The WebLogic JMS .NET client is included in a Oracle WebLogic Server installation in the
following two directories, which contain the Version 1 and Version 2 of the libraries,
respectively:

ORACLE_HOME/wlserver/modules/com.bea.weblogic.jms.dotnetclient

ORACLE_HOME/wlserver/modules/com.bea.weblogic.jms.dotnetclient_v2

Here, ORACLE_HOME is the top-level installation directory that you selected during the
installation process. For information about the difference between the Version 1 and Version 2
directory, see Choosing an Installation Version.

A DLL and a PDB file are included in each of the two directories:

• WebLogic.Messaging.dll - The fully-managed JMS .NET client library used by the client
for the JMS client application.

• WebLogic.Messaging.pdb - The debug version of the JMS .NET client library that can be
used by the client, together with the WebLogic.Messaging.dll, to debug the JMS .NET
client application.

In addition, the Version 1 directory also contains a jms.dotnet.api.zip file. This file
contains HTML and Windows help-style documentation for the WebLogic JMS .NET API that is
applicable to both Version 1 and Version 2. See Microsoft .NET Messaging API for Oracle
WebLogic Server.

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 4

Choosing an Installation Version
The following table illustrates the applications, .Net environments, and OS platforms that are
supported for each .Net JMS Client version.

Library Version Libraries Location Applications .Net Versions OS Platforms

Version 1 ORACLE_HOME/
wlserver/
modules/
com.bea.weblo
gic.jms.dotne
tclient

.Net Framework .Net Framework 2.0
to .Net Framework
3.5

.Net framework 4.8

Windows

Version 1* ORACLE_HOME/
wlserver/
modules/
com.bea.weblo
gic.jms.dotne
tclient

.Net Core .Net Core 3.1
and .Net 5.0

Windows and Linux

Version 2** ORACLE_HOME/
wlserver/
modules/
com.bea.weblo
gic.jms.dotne
tclient_v2

.Net Core .Net Core 3.1
and .Net 5.0

Windows and Linux

Chapter 2
Installing the WebLogic JMS .NET Client

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 4

Note

• A WebLogic JMS .Net Client DLL's version number is embedded in the DLL as a
file property and has a value format of 'N.N.N.N'. '1.N.N.N' corresponds with
Version 1 and '2.N.N.N' corresponds with Version 2 in the above table. One way to
obtain a DLL's file properties is to right-click on the file from within the Windows
File Explorer.

• (*) Although you can use the Version 1 libraries in a .Net Core application, Oracle
recommends that .Net Core applications use the Version 2 libraries. But, if for any
reason you need to use Version 1 for a .Net Core application, you should note the
following:

– The client side logging and debugging settings in app.config are not
honored because the <system.diagnostics> part of the application config file
is not supported in .Net Core. See Configuring Logging and Debugging.

– You may encounter runtime errors about
System.Configuration.ConfigurationManager. For example:

WebLogic.Messaging.MessageException: Problem creating context

System.IO.FileNotFoundException: Could not load file or assembly
'System.Configuration.ConfigurationManager, Version=4.0.3.0,
Culture=neutral, PublicKeyToken=cc7b13ffcd2ddd51'. The system cannot
find the file specified.

Such errors can be resolved by installing the
System.Configuration.ConfigurationManager package in the project using
Visual Studio Manage NuGet packages or by directly adding the package to
the .csproj file, as shown in the following example:

<ItemGroup>

 <PackageReference
Include="System.Configuration.ConfigurationManager" Version="6.0.0-
preview.5.21301.5" />

 </ItemGroup>

• (**) When using the Version 2 libraries, your applications may need to install
additional packages such as:

– System.Configuration.ConfigurationManager

– Microsoft.Extensions.Configuration

– Microsoft.Extensions.Configuration.Binder

– Microsoft.Extensions.Configuration.Json

Copying the Library to the Client Machine
After installing WebLogic Server on a supported platform, you need to copy the
WebLogic.Messaging.dll library from the installation directory specified in Location of Installed
Components to your development directory on a supported .NET client machine, and you need
to ensure that your .NET application references the library. The JMS .NET client is a fully-
managed runtime library that is supported on Windows platforms running the Microsoft .NET
Framework:

Chapter 2
Copying the Library to the Client Machine

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 4

If you are using Visual Studio, you can add the WebLogic.Messaging.dll as a reference
assembly in your project as follows:

1. Select Project , then select References.

2. Select Add Reference and specify the WebLogic.Messaging.dll from the directory into
which you copied it on the .NET machine.

Optionally, you can also copy the debug version of the JMS .NET client library,
WebLogic.Messaging.pdb, and the API documentation to your client machine, but it is not
required.

Chapter 2
Copying the Library to the Client Machine

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 4

3
Developing a Basic JMS Application Using the
WebLogic JMS .NET API

This chapter describes the steps required to develop a basic JMS application in C# using the
JMS .NET API. The process for developing a JMS application using the WebLogic JMS .NET
client is very similar to the process used to develop a Java client.
This chapter includes the following sections:

Creating a JMS .NET Client Application
The following flowchart illustrates the steps in a basic JMS .NET application.

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 6

Figure 3-1 Basic Steps in a JMS .NET Client Application

Note

Creating and closing resources has relatively higher overhead in comparison to
sending and receiving messages. Oracle recommends that contexts be shared
between threads, and that other resources be cached for reuse. For more information,
see Best Practices.

Chapter 3
Creating a JMS .NET Client Application

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 6

Example: Writing a Basic PTP JMS .NET Client Application
The following example shows how to create a basic PTP JMS .NET client application, written
in C#. It uses synchronous receive on a queue configured using auto acknowledge mode. A
complete copy of the example is provided in JMS .NET Client Sample Application.

For more information about the .NET API classes and methods used in this example, see
Understanding the WebLogic JMS .NET API, or the WebLogic Messaging API Reference
for .NET Clients documentation.

Prerequisites
Before proceeding, ensure that the system administrator responsible for configuring WebLogic
Server has configured the following:

• Listen port configured for T3 protocol on the server hosting the JMS .NET client host. For
more information, see Configuring the Listen Port.

• The required JMS resources, including the connection factories, JMS servers, and
destinations. For more information, see Configuring JMS Resources for the JMS .NET
Client.

Basic Steps
The following steps assume you have defined the required variables, including the WebLogic
Server host, the connection factory, and the queue and topic names at the beginning of your
program.

using System;
using System.Collections;
using System.Collections.Generic;
using System.Threading;

using WebLogic.Messaging;

public class MessagingSample
{
 private string host = "localhost";
 private int port = 7001;
 private string cfName = "weblogic.jms.ConnectionFactory";
 private string queueName = "jms.queue.TestQueue1";

Step 1. Create a context
To create a context to establish a network connection to the WebLogic Server host and
optionally log in:

IDictionary<string, Object> paramMap = new Dictionary<string, Object>();

paramMap[Constants.Context.PROVIDER_URL] =
 "t3://" + this.host + ":" + this.port;

IContext context = ContextFactory.CreateContext(paramMap);

Chapter 3
Example: Writing a Basic PTP JMS .NET Client Application

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 6

Note

The Provider_URL may contain multiple addresses, separated by commas. For details
about specifying multiple addresses, see Specifying the URL Format.

When multiple addresses are specified, the context tries each address in turn until one
succeeds or they all fail, starting at a random location within the list of addresses, and
rotating through all addresses. Starting at a random location facilitates load balancing
of multiple clients, as different client contexts will randomly load balance their network
connection to different .NET client host servers.

Note

You also have the option of supplying a username and password with the initial
context, as follows:

paramMap[Constants.Context.SECURITY_PRINCIPAL] = username;
paramMap[Constants.Context.SECURITY_CREDENTIALS] = password;

Step 2. Look up JMS connection factory
To look up the JMS connection factory:

IConnectionFactory cf = context.LookupConnectionFactory(this.cfName);

Step 3. Look up JMS destinations
To look up JMS destination resources in the context using their configured JNDI names:

IQueue queue = (IQueue)context.LookupDestination(this.queueName);

Step 4. Create a connection using the connection factory
This establishes a JMS connection from the .NET client host to the JMS connection host. The
connection host will be one of the servers that is in the configured target list for the connection
factory, and which can be the same as the .NET client host.

To create a connection using the connection factory:

IConnection connection = cf.CreateConnection();

Step 5. Start the connection
To start the connection to allow consumers to get messages:

connection.Start();

Chapter 3
Example: Writing a Basic PTP JMS .NET Client Application

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 6

Step 6. Create a session using the connection

Note

Sessions are not thread safe. Use multiple sessions if you need to run producers
and/or consumers concurrently. For an example using multiple sessions, see the
asynchronous example in JMS .NET Client Sample Application.

To create a session using the AUTO_ACKNOWLEDGE acknowledge mode:

ISession session = connection.CreateSession(
Constants.SessionMode.AUTO_ACKNOWLEDGE);

Step 7. Create a message producer and send a message
To create a message producer and send a persistent message:

IMessageProducer producer = session.CreateProducer(queue);

producer.DeliveryMode = Constants.DeliveryMode.PERSISTENT;

ITextMessage sendMessage = session.CreateTextMessage("My q message");

producer.Send(sendMessage);

Step 8. Create a message consumer and receive a message
Note that the message is automatically deleted from the server because the session was
created in AUTO_ACKNOWLEDGE mode, as shown in Step 6. Create a session using the
connection.

To create a message consumer and receive a message:

IMessageConsumer consumer = session.CreateConsumer(queue);

IMessage recvMessage = consumer.Receive(500);

Step 9. Close the connection
Note that closing a connection also closes its child sessions, consumers, and producers.

To close the connection:

connection.Close();

Step 10. Close the context
To close the context:

context.CloseAll();

Chapter 3
Example: Writing a Basic PTP JMS .NET Client Application

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 6

Note

context.Close() does not terminate the network connection until all the IConnections
have been closed. context.CloseAll() closes the network connection and all open
IConnections.

Using Advanced Concepts in JMS .NET Client Applications
JMS .NET Client Sample Application, provides a complete example of a JMS .NET client
application, written in C#, that demonstrates some of the following advanced concepts:

• The use of local transactions instead of acknowledge modes.

• Message persistence. For more information, see Persistent vs. Non-Persistent Messages
in Developing JMS Applications for Oracle WebLogic Server.

• Acknowledge modes. For more information, see Non-Transacted Session in Developing
JMS Applications for Oracle WebLogic Server.

• Exception listeners. For more information, see Best Practices.

• Durable Subscriptions. For more information, see Setting Up Durable Subscriptions in
Developing JMS Applications for Oracle WebLogic Server.

For guidelines in the use of other advanced concepts in the JMS .NET client such as
interoperability, security, and best practices, see Programming Considerations.

Chapter 3
Using Advanced Concepts in JMS .NET Client Applications

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 6

4
Programming Considerations

This chapter provides programming considerations and best practices to use when creating a
JMS .NET client application.
This chapter includes the following sections:

Using WebLogic JMS Extensions
Table 4-1 lists the WebLogic JMS extensions that are supported in this release of the
JMS .NET client. There are several ways that messaging can be configured:

• On the connection factory—This method often defines default configuration settings.

• Programmatically in the application using the API—Certain programming constructs may
override the connection factory configuration.

• On the server—Certain settings may override both the connection factory and
programmatic constructs.

In some cases, there are differences in the way that an extension is configured, or in the
behavior, between a JMS .NET client and a Java client. For example, some extensions cannot
be enabled programmatically using the JMS .NET API, and can only be enabled via
configuration. The following table summarizes the differences. Additional details, if required,
are provided in the subsequent sections.

Table 4-1 WebLogic JMS Extensions Supported in the JMS .NET Client

Feature Configu
rable on
Connect
ion
Factory

Configu
rable on
the
Server

Java
API

JMS .NE
T
API

Comments

Distributed Destinations (Uniform and
Weighted)

For more information, see:

• Using Distributed Destinations in
Developing JMS Applications for
Oracle WebLogic Server

• Configuring Distributed Destination
Resources in Administering JMS
Resources for Oracle WebLogic
Server

Yes Yes No No

Flow Control Producers

For more information, see: Controlling
the Flow of Messages on JMS Servers
and Destinations in Tuning Performance
of Oracle WebLogic Server

Yes Yes No No

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 15

Table 4-1 (Cont.) WebLogic JMS Extensions Supported in the JMS .NET Client

Feature Configu
rable on
Connect
ion
Factory

Configu
rable on
the
Server

Java
API

JMS .NE
T
API

Comments

Blocking producers during quota
conditions

For more information, see Defining a
Send Timeout on Connection Factories
in Tuning Performance of Oracle
WebLogic Server

Yes Yes No No

Foreign destinations for remote
instances of WebLogic Server

For more information, see Configuring
Foreign Server Resources to Access
Third-Party JMS Providers in
Administering JMS Resources for Oracle
WebLogic Server

No Yes No No See Interoperating
with Previous
WebLogic Server
Releases.

Imported store-and-forward (SAF)
destinations

For more information, see Imported SAF
Destinations in Administering the Store-
and-Forward Service for Oracle
WebLogic Server

No Yes No No

Redelivery limit

For more information, see Setting a
Redelivery Limit for Messages in
Developing JMS Applications for Oracle
WebLogic Server

No Yes Yes No

Redelivery delay

For more information, see Setting a
Redelivery Delay for Messages in
Developing JMS Applications for Oracle
WebLogic Server

Yes No Yes No

Error destinations

For more information, see Configuring
an Error Destination for Undelivered
Messages in Developing JMS
Applications for Oracle WebLogic Server

No Yes No No

WLDestination.getCreateDestinationArg
ument

No No Yes Yes

No Acknowledge Mode

For more information, see Using
NO_ACKNOWLEDGE in Developing
JMS Applications for Oracle WebLogic
Server

No No Yes Yes

Chapter 4
Using WebLogic JMS Extensions

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 15

Table 4-1 (Cont.) WebLogic JMS Extensions Supported in the JMS .NET Client

Feature Configu
rable on
Connect
ion
Factory

Configu
rable on
the
Server

Java
API

JMS .NE
T
API

Comments

Unit-of-Order

For more information, see:

• Using Message Unit-of-Order in
Developing JMS Applications for
Oracle WebLogic Server

• Tuning Applications Using Unit-of-
Order in Tuning Performance of
Oracle WebLogic Server

Yes Yes Yes Yes See Unit-of-Order.

Scheduled message delivery

For more information, see Setting
Message Delivery Times in Developing
JMS Applications for Oracle WebLogic
Server

Yes Yes Yes Yes See Message
Delivery Time.

Asynchronous consumer messages
maximum pipeline

• For more information, see:
Asynchronous Message Pipeline in
Developing JMS Applications for
Oracle WebLogic Server

• Tuning MessageMaximum in Tuning
Performance of Oracle WebLogic
Server

Yes No Yes No

Message Compression

For more information, see Message
Compression in Developing JMS
Applications for Oracle WebLogic Server

Yes No Yes No See Message
Compression.

Quotas

For more information, see Defining
Quota in Tuning Performance of Oracle
WebLogic Server

No Yes No No

One-way message sends

For more information, see Using One-
Way Message Sends in Tuning
Performance of Oracle WebLogic Server

Yes No No No See One-Way
Message Sends.

Acknowledge policy Yes No No No

Automatically include user-id as
message property JMSXUserID

Yes Yes No No See Include user-id
as JMSXUserId.

Get number of delivery attempts as
message property JMSXDeliveryCount

No No No No See Message
Delivery Attempts.

Message Compression
In this release, automatic message compression is not supported for client sends between the
JMS .NET client and the JMS .NET client host running on WebLogic Server. However, if the
compression settings are set on the connection factory, message compression behavior

Chapter 4
Using WebLogic JMS Extensions

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 15

between the .NET client host and the destination is the same as that of the Java client. The
behavior is as follows:

• If the client host and destination run on different instances of WebLogic Server, then a sent
message is automatically compressed on the client host.

• If the client host and destination run on the same instance of WebLogic Server, then no
sent message compression will occur.

Compressed messages are decompressed by the JMS .NET client host on the server side
when they are received by the .NET client.

For more information, see Message Compression in Developing JMS Applications for Oracle
WebLogic Server

Unit-of-Order
The method used to specify Unit-of-Order (UOO) in the JMS .NET API differs from the Java
API. To set Unit-of-Order in the JMS .NET API, add a string property named
Constants.MessagePropertyNames.UNIT_OF_ORDER_PROPERTY_NAME to the message with the
desired UOO.

For more information, see Using Message Unit-of-Order in Developing JMS Applications for
Oracle WebLogic Server

Message Delivery Time
The method used to specify message delivery times in the JMS .NET API differs from the Java
API. To set message delivery times in the JMS .NET API, add a property of type long named
Constants.MessagePropertyNames.DELIVERY_TIME_PROPERTY_NAME to the message, where the
value is the number of milliseconds in the future in which the message will be delivered.

One-Way Message Sends
Although you can configure one-way message sends on the connection factory, this behavior
is not fully supported in the JMS .NET client. Messages sent as one-way sends will actually be
two-way sends between the .NET client and the .NET client host, and one-way sends between
the .NET client host and the JMS connection host.

Include user-id as JMSXUserId
The optional JMSXUserId system-generated message property on received messages specifies
the credential of the original sender. To enable this property, configure the Attach Sender
Credential attribute on destinations, distributed destinations, or templates, and configure the
Attach JMSXUserId attribute on connection factories. To retrieve, call
msg.GetStringProperty(Constants.MessagePropertyNames.USER_ID_PROPERTY_NAME).

Message Delivery Attempts
The JMSXDeliveryCount system-generated message property on received messages specifies
the number of message delivery attempts. The first attempt is 1. To retrieve the value, call
msg.GetIntProperty(Constants.MessagePropertyNames.DELIVERY_COUNT_PROPERTY_NAME.

Chapter 4
Using WebLogic JMS Extensions

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 15

Limitations of Using the WebLogic JMS .NET Client
The following sections describe the JMS features that are not supported in the JMS .NET
client.

Unsupported JMS 2.0 Standard Features

In this release, the JMS 2.0 standard feature 'shared topic subscriptions' is not supported. The
workaround is to use the shared subscription feature in Oracle JMS by configuring a custom
connection factory and setting the Subscription Sharing Policy attribute on the connection
factory as Sharable and Client ID Policy as Unrestricted.

For more information, see Shared Subscriptions and Client ID Policy in Developing JMS
Applications for Oracle WebLogic Server.

Unsupported JMS 1.1 Standard Features
In this release, the following JMS 1.1 standard features are not supported:

• Creating and closing temporary destinations (javax.jms.TemporaryQueue and
javax.jms.TemporaryTopic). The JMS .NET client can still produce messages to
temporary destinations created by a Java client if the destination objects are obtained from
the JMSReplyTo header of received messages.

• javax.jms.QueueRequester and javax.jms.TopicRequester. (These helper classes are
related to temporary destinations.)

• Queue browsers: javax.jms.QueueBrowser.

• Queue and Topic interfaces (QueueConnectionFactory, TopicConnectionFactory,
QueueConnection, TopicConnection, QueueSession, TopicSession). These queue and
topic interfaces are legacy JMS 1.0.2 interfaces that have been superseded by the JMS
1.1 common interfaces.

Unsupported JMS 1.1 Optional Features
In this release, the following JMS 1.1 optional features are not supported:

• XA interfaces (XAConnectionFactory, XAConnection, and XASession).

• Participation in global XA transactions (See Transactions).

• Connection Consumer and Server session pools (javax.jms.ConnectionConsumer,
ServerSessionPool, and ServerSession). These are optional capabilities that have been
superseded by Java EE MDBs, and are not supported by the WebLogic Java JMS client.

• MessageProducer.setDisableMessageTimestamp method. Note that the WebLogic JMS
client ignores this method.

Unsupported WebLogic JMS Extensions
In this release, the following WebLogic JMS extensions are not supported:

• SSL

• HTTP tunneling

Chapter 4
Limitations of Using the WebLogic JMS .NET Client

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 15

• SAF Client—See Reliably Sending Messages Using the JMS SAF Client in Developing
Standalone Clients for Oracle WebLogic Server

• Multicast Subscribers—See Using Multicasting with WebLogic JMS in Developing JMS
Applications for Oracle WebLogic Server

• Automatic Reconnect—See Automatic JMS Client Failoverin Developing JMS Applications
for Oracle WebLogic Server

• Unit-of-Work—If a .NET client attempts to set a UOW property on a message, a
Weblogic.Messaging.MessageException is generated. In addition, a .NET consumer
cannot receive UOW messages with deserializable content that are sent by a Jakarta
client. In this case, the consumer gets a MessageFormatException if it calls the
ObjectMessage.getObject() method on the ObjectMessage. Note that while Unit-of-Work
is not supported, the more commonly used Unit-of-Order extension is fully supported. For
more information about Unit-of-Order, see Unit-of-Order.

Note

The JMS .NET API does not provide extensions for programmatically configuring
JMS resources (for example, topics and queues). In Java, programmatic
configuration is accomplished using JMX MBeans or the
weblogic.jms.extensions.JMSModuleHelper helper class. Alternative ways to
configure JMS include WLST scripting and the WebLogic Remote Console.

Transactions
In this release, the JMS .NET client supports transacted sessions as defined in the JMS
Specification only. Transacted sessions provide a standard local transaction capability. As with
the Jakarta client, one or more WebLogic JMS destinations from within the same cluster may
participate in a transacted session local transaction, but no other resources may participate
(such as JMS servers in other clusters, databases, or foreign JMS providers).

Global XA transactions are not supported, therefore JMS cannot participate in a .NET
transaction. The XA setting of the connection factory is ignored by the .NET client. The JMS
NET client operations cannot participant in any .NET transactions.

Exchanging Messages Between Different Language
Environments

The following Java JMS message types can be exchanged between a .NET producer and a
Java or C consumer, and vice versa:

• Message

• BytesMessage

• StreamMessage

• MapMessage

• TextMessage

An ObjectMessage type, however, can be sent from one language and received by another, but
the message cannot be interpreted unless it is written in the same language. The producer and
consumer of an OBJECTMESSAGE type must be written in the same language, either C# or Java.

Chapter 4
Exchanging Messages Between Different Language Environments

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 15

If a mismatch occurs; that is, if a .NET ObjectMessage is received by a Java consumer, or a
Java ObjectMessage is received by a .NET consumer, then message.getObject() throws a
MessageFormatException.

Specifying the URL Format
The Provider_URL may contain multiple addresses, separated by commas, using the following
format:

t3://address [,address]...

where a particular address may specify multiple port ranges.

The syntax for specifying multiple addresses is as follows:

address = hostlist : portlist

where

hostlist = hostname [, hostname]...
portlist = portrange [+ portrange]...
portrange = port [- port]

Use port -port to indicate a port range, and + (plus sign) to separate multiple port ranges.

Table 4-2 provides sample URL formats.

Table 4-2 URL Format Examples

This format . . . Can also be specified as . . .

t3://hostA:7001 t3://
hostA,hostB:7001,hostC:7002

t3://hostA:7001,hostB:7001,hostC:7002

t3://hostA:7001+7005+7007,hostB:7001 t3://hostA:7001,hostA:7005,hostA:7007,
hostB:7001

t3://hostA:7001-7003+7005+7007,hostB:8001 t3://hostA:7001,hostA:7002,hostA:7003,
hostA:7005,hostA:7007,hostB:8001

Using DNS Alias Host Names
You can also specify DNS alias host names, which are expanded into multiple hosts. For
example, if a DNS alias mycluster resolves to host1,host2, then the URL t3://
mycluster:7001 expands into the address list: t3://host1:7001,host2:7001. Contexts that
are created with the URL will always retry with host2 if host1 is unreachable. DNS aliases are
typically configured by network administrators.

Implementing Security With the JMS .NET Client
You need to be aware of the following security considerations when creating a JMS .NET
client:

• To access secure JNDI and JMS resources on the server, the JMS .NET client application
can supply a user name and password as follows:

Chapter 4
Specifying the URL Format

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 15

– When establishing the initial context to the server using
ContextFactory.CreateContext(). The credentials supplied when creating the initial
context are used for authentication to gain access to secure JNDI and JMS resources
on the server.

– When creating a connection using the IConnectionFactory.createConnection()
method. In this case, the credentials supplied when creating a connection override the
credentials supplied during the initial context. That is, if user Fred is supplied during
initial context, and user Tony is supplied when the connection is created, the user Tony
credential is used for authentication to gain access to secure JMS resources.

Note

* In both instances, the password is encrypted.

* If the resources are not secured, a user name and password is optional.
But if your application encounters an exception with the error message
The Microsoft .NET client is required to provide
credential info, you need to either provide a user name and
password (see Example 4-1), or enable anonymous access using -
Dweblogic.security.remoteAnonymousRMIT3Enabled=true on the server
startup command. See Disable Remote Anonymous RMI T3 and IIOP
Requests in Securing a Production Environment for Oracle WebLogic
Server.

* Although user names and passwords are protected, and passwords are
encrypted, a sophisticated user or intruder might be able to defeat the
protection mechanisms. Be sure to secure any network connections when
user names and passwords are provided.

• Authentication for the .NET client is associated with the JMS object that invokes the
secured resource. That is, the credential for a JMS object is inherited from the parent JMS
context, or from the connection override if credentials are supplied when creating the
connection. This differs from Java client security where credentials are associated with the
current thread.

• SSL is not supported for the JMS .NET client in this release. Therefore, it is important that
you secure the networking services that the operating system provides, as well as any
networking connections. For more information, see Secure the Network in Securing a
Production Environment for Oracle WebLogic Server.

• Similar to the Java client, the JMS.NET client does not support message level encryption.

• Due to the use of non-encrypted communication, sniffing of application traffic (see http://
www.owasp.org/index.php/Sniffing_application_traffic_attack) is possible. You
need to either accept these risks, or take remediation such as using a firewall to protect
against these attacks.

• The administration port, if configured, accepts only SSL traffic, and all connections via the
port require administrator privileges. In addition, once an administration port is configured,
all other ports will refuse connections that have administrator privileges. Because SSL is
not supported for the JMS .NET client in this release, it cannot support users with
administrative privileges if an administration port is configured.

Example 4-1 Create a Context With a User Name and a Password

IDictionary<string, Object> paramMap = new Dictionary<string, Object>();
paramMap[Constants.Context.PROVIDER_URL] = "t3://host:port";

Chapter 4
Implementing Security With the JMS .NET Client

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 15

http://www.owasp.org/index.php/Sniffing_application_traffic_attack
http://www.owasp.org/index.php/Sniffing_application_traffic_attack

paramMap[Constants.Context.SECURITY_PRINCIPAL] = "fred";
paramMap[Constants.Context.SECURITY_CREDENTIALS] = "fredpassword";
IContext context = ContextFactory.CreateContext(paramMap);

Configuring Logging and Debugging
Basic logging and debugging is available for the server-side transport and .NET client host
running on WebLogic Server.

Server Side
To enable debugging on the server side, use the following commands:

-Dweblogic.debug.DebugJMSDotNetT3Server=true
-Dweblogic.debug.Debug.JMSDotNetProxy=true

Client Side
Client-side logging and debugging are enabled and controlled by various configuration settings
in two categories:

Message Output
You should specify whether log messages are output to the console or saved to a file as shown
in Table 4-3.

Table 4-3 Message Output Settings

Key Value Setting

weblogic.debug.JMSD
otNet.config.LogFil
eName

String Indicates the full path and file name for the log file. For
example c:\test\MyLogFile.log.

Note: The default log file size limit is 500KB. Each time the
log file reaches this size, the server renames the log file and
creates a new MyLogFile.log to store new messages. By
default, the rotated log files are numbered in the order of
creation. For example MyLogFile.log.0,
MyLogFile.log.1, MyLogFile.log.2, ..., with
MyLogFile.log.0 containing the latest log messages.

weblogic.debug.JMSD
otNet.config.IsLogT
oConsole

Boolean • True - Displays log messages to the console.
• False - Does not display log messages to the console.

Log Categories and Levels
Client-side logging is grouped into the following categories:

• Socket

• T3

• Transport

• PhysicalMsg

• LogicalMsg

Chapter 4
Configuring Logging and Debugging

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 15

• All (represents all individual categories listed above)

For each of the categories, you can specify any of these logging levels:

• Off(0)

• Error(1)

• Warning(2)

• Info(3)

• Verbose(4)

Note

The severity level on the All category overrides the setting on each individual
category.

When using Version 1 libraries with a .Net Framework application

The client side logging and debugging are configured and controlled using an application
configuration file. For generated build files, the application configuration file is named
yourapplicationname.exe.config, while yourapplicationname is the name of the
application that runs the messaging client.

Example 4-2 provides the XML content that needs to be added to your application
configuration file to configure logging and debugging. The subsequent sections provide
additional details about each of the different settings. If you have an existing
yourapplicationname.exe.config file, add the XML content shown in the following
listing to the file. Otherwise, you can create one and locate it in the same directory that
contains the yourapplicationname.exe file.

Note

If you are using Visual Studio, the logging and debugging settings shown in
Example 4-2 need to be added to the App.config file. For instructions to add an
App.config file to your C# project inside a Visual Studio environment, see the
Microsoft website.

Example 4-2 XML File Content for yourapplicationname.exe.config File

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <!-- To forward log output to a file, please uncomment the following
line, and replace the file name with the desired one -->
 <!--- <add key="weblogic.debug.JMSDotNet.config.LogFileName"
value="c:\test\MyLogFile.log" /> -->

 <!-- To prevent log messages from displaying to the console, use the
value 'false' -->
 <!-- <add key="weblogic.debug.JMSDotNet.config.IsLogToConsole"
value="false" /> -->
 </appSettings>
 <system.diagnostics>

Chapter 4
Configuring Logging and Debugging

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 15

http://msdn.microsoft.com/en-us/library/ms184658.aspx

 <switches>
 <!-- Please set the switch value as desired for logging to each
Category -->
 <!-- value for Off=0, Error=1, Warning=2, Info=3, Verbose=4 -->

 <!-- if "AllLogger" is enabled (no zero for the value), every
individual category is set to the same level as the AllLogger,
 no matter how individual category's value is set -->
 <add name="weblogic.debug.JMSDotNet.All" value="0" />
 <add name="weblogic.debug.JMSDotNet.Socket" value="0" />
 <add name="weblogic.debug.JMSDotNet.T3" value="0" />
 <add name="weblogic.debug.JMSDotNet.Transport" value="0" />
 <add name="weblogic.debug.JMSDotNet.PhysicalMsg" value="0" />
 <add name="weblogic.debug.JMSDotNet.LogicalMsg" value="0" />
 </switches>
 </system.diagnostics>
</configuration>

Note

In a .Net Core environment, the XML application config file settings are not honored
anymore; instead, consider using the latest version of the libraries with the
appsettings.json file. See Example 4-3.

When using Version 2 libraries with a .Net Core application

The client side logging and debugging is configured and controlled in the application's
appsettings.json file in a .Net Core (2.1 and later) environment.

Example 4-3 JSON File Content for the appsettings.json File

{
 "weblogic.debug.JMSDotNet.ALL": {
 "Level": "0"
 },
 "weblogic.debug.JMSDotNet.Socket": {
 "Level": "0"
 },
 "weblogic.debug.JMSDotNet.T3": {
 "Level": "0"
 },
 "weblogic.debug.JMSDotNet.Transport": {
 "Level": "0"
 },
 "weblogic.debug.JMSDotNet.PhysicalMsg": {
 "Level": "0"
 },
 "weblogic.debug.JMSDotNet.LogicalMsg": {
 "Level": "0"
 },
 "weblogic.debug.JMSDotNet.config.LogFileName": "c:\\test\\MyLogFile.log",
 "weblogic.debug.JMSDotNet.config.IsLogToConsole": "false"
}

Chapter 4
Configuring Logging and Debugging

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 15

Understanding Socket and Threading Behavior
WebLogic JMS .NET clients share the same WebLogic Server T3 port as other types of
WebLogic clients. When an IContext initial context is created by a .NET client using the
ContextFactory class, the client specifies a URL that references a T3 capable port on the
server, and a socket pair is implicitly created to service the requested network connection. The
socket pair consists of one socket on the client and another socket on the WebLogic Server
JMS .NET client host. All JMS operations on JMS objects obtained from the .NET context route
through the implicit network connection of the context.

If two concurrent IContext initial context instances on the same .NET environment connect to
the same WebLogic Server JMS .NET client host, then two network connections are created.
Each network connection has its own pair of sockets: a server-side socket and a client-side
socket. Therefore, when two network connections are created, two sockets are created on the
CLR client and two sockets are created on the WebLogic Server acting as the JMS .NET client
host. This contrasts with WebLogic Java clients, which automatically detect and close duplicate
network connections to a remote JVM and, instead, implicitly multiplex all traffic to and from a
particular remote JVM over a single network connection.

A server-side socket for a JMS .NET client is serviced by the same WebLogic Server socket-
reader muxer thread pool as other types of WebLogic clients. When working on behalf of
JMS .NET client requests, the socket-reader muxer thread pool reads the incoming requests
from the socket and dispatches work into the WebLogic Server default thread pool which, in
turn, processes the requests and sends the responses back to the client.

On a JMS .NET client, a new internal thread is automatically created for each network
connection (that is, per IContext initial context instance). This dedicated thread reads all
incoming data on the client socket and dispatches the related work into the CLR thread pool.
This means that asynchronous message event handlers in the .NET client application run in
the CLR thread pool.

Note

The CLR thread pool is supplied by the .NET Framework
System.Threading.ThreadPool class. There is one thread pool per process. The
thread pool has a default size of 25 threads per available processor, however, you can
change the number of threads in the thread pool using the
ThreadPool.SetMaxThreads method. Each thread in the thread pool uses the default
stack size and runs at the default priority. For more information, refer to the
Microsoft .NET Framework documentation for the System.Threading.ThreadPool
class.

For JMS .NET applications that create many concurrent initial contexts that all connect to the
same WebLogic Server .NET client host, you may obtain performance improvements by
modifying the application so that it uses a single, shared initial context. A shared context
ensures that the client only creates a single network connection.

Data Conversion Between Java and .NET
See the following sections:

Chapter 4
Understanding Socket and Threading Behavior

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 15

Endian Conversions
Java and .NET use different byte order formats for storing primitive types:

• Microsoft Windows .NET uses the Little-Endian (low-order) format

• Java uses the Big-Endian (high-order) format

To support interoperability between Java and .NET, data is transferred over the network using
the Big-Endian format. When a .NET application uses the JMS .NET API to read and write
primitives, data is automatically converted between Big-Endian and Little-Endian, as needed.
For example, if you use BytesMessage.WriteInt in the JMS .NET API, the data is always
stored as Big Endian and can be read using both the Java API and the JMS .NET API bytes
message read integer methods.

For specialized applications that do not use the JMS .NET API to pass primitives, but instead
transfer primitive data using raw byte arrays, you need to manually convert the byte format to
Big Endian when communicating with Java. If you need to perform a manual Endian
conversion in your application, you can use the following helper methods from the utility class
WebLogic.Messaging.Transport.Util.EndianConvertor provided in the JMS .NET client
library:

public static char SwitchEndian(char x)
public static short SwitchEndian(short x)
public static int SwitchEndian(int x)
public static long SwitchEndian(long x)
public static ushort SwitchEndian(ushort x)
public static uint SwitchEndian(uint x)
public static ulong SwitchEndian(ulong x)
public static double SwitchEndian(double x)
public static float SwitchEndian(float x)
public static byte[] SwitchEndian(byte[] x)

For example, the standard .NET classes System.IO.BinaryReader and
System.IO.BinaryWriter for reading and writing primitives to raw byte arrays use Little
Endian. The following code snippet illustrates how to store and retrieve an integer to/from
a .NET byte array:

binaryWriter.WriteInt(EndianConverter.SwitchEndian(i))
i=EndianConverter.SwitchEndian(binaryReader.ReadInt())

Signed and Unsigned Byte Conversions
With the exception of the byte data type, there is an equivalent C# data type, with the same
name and definition, for every Java primitive data type. The following table lists the different
names used for signed and unsigned bytes in C# and Java.

Table 4-4 Byte Primitive Data Type in C# and Java

C# Java Description

byte N/A Unsigned byte

sbyte byte Signed byte

As shown in Table 4-4, Microsoft .NET supports both byte (unsigned byte) and sbyte (signed
byte) as primitive data types, but Java supports only byte (signed byte) as a direct primitive

Chapter 4
Data Conversion Between Java and .NET

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 15

type. The standard convention in both languages is to use the byte data type; however,
in .NET this represents an unsigned byte and in Java this represents a signed byte.

For interoperability between .NET and Java, the JMS .NET client allows only the use of the
signed byte for reading and writing bytes. There is no difference between signed bytes and
unsigned bytes when the byte value is 127 or less. An unsigned byte with a value of 127 or
less is stored as an sbyte. However, if a .NET client needs to store an unsigned byte with a
value greater than 127 in a signed byte, it needs to be converted from a signed byte to an
unsigned byte. The following samples illustrate conversion methods that you can use to read
and write an unsigned byte as a signed byte:

• Byte Conversion in C#

An unsigned byte value of 255 can be passed as a signed byte as follows:

– byte unsignedByteValue = 255;

– sbyte signedByteValue = unchecked ((sbyte)unsignedByteValue); //
converted signed value=-1

Similarly, you can use the following method to convert a signed byte value to an unsigned
byte value:

– sbyte signedByteValue = -1;

– byte unsignedByteValue = unchecked ((byte)signedByteValue); // converted
unsigned value=255

• Byte Conversion in Java

The unsigned value can be read as a signed byte and converted to an unsigned byte value
as follows:

– byte signedByteValue = -1;

– int unsignedByteValue = 0xFF & signedByteValue; //converted signed value =
255

An unsigned value can be written as follows:

– Int unsignedByteValue = 255;

– byte signedByteValue = 0xFF & unsignedByteValue; // converted signed
value=-1

The JMS .NET API only allows for storing single bytes as signed bytes. When the JMS .NET
API is used to retrieve sbyte values as short, int, long, or string, the value is treated as an
sbyte, not an unsigned byte. For example, if the unsigned byte value 255 is stored using
message.SetByteProperty("myvalue", unchecked((sbyte)((byte)255))), a call to
message.GetByteProperty("myvalue")or message.GetShortProperty("myvalue") returns
"-1".

Byte Array Transfers
When transferring byte arrays from the JMS .NET client to WebLogic JMS, all byte arrays
(byte[]) are passed as is (that is, there is no conversion from unsigned to signed.) Therefore,
no data is lost in the translation.

Time Conversions
The WebLogic JMS .NET API represents dates and times using Java rather than .NET
conventions. The JMSTimestamp and JMSExpiration attributes of the

Chapter 4
Data Conversion Between Java and .NET

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 15

WebLogic.Messaging.IMessage message interface are type long and contain a millisecond
absolute time value as specified in the Java programming language. The Java millisecond
absolute time value is the difference, measured in milliseconds, between a given time and
midnight, January 1, 1970 UTC.

The following examples demonstrate how to convert between .NET times and Java millisecond
absolute time values.

Example 4-4 Example C# Code for Converting the Current .NET Time to Java Millisecond Time

// Example: C# code for converting the current .NET time to Java millisecond time
DateTime baseTime = new DateTime(1970, 1, 1, 0, 0, 0);
DateTime utcNow = DateTime.UtcNow;
long timeInMillis = (utcNow.Ticks - baseTime.Ticks)/10000;
Console.WriteLine(timeInMillis);

Example 4-5 Example C# Code for Converting Java Millisecond Time to .NET Time

// Example: C# code for converting Java millisecond time to .NET time
DateTime baseTime = new DateTime(1970, 1, 1, 0, 0, 0);
long utcTimeTicks = (timeInMillis * 10000) + baseTime.Ticks;
DateTime utcTime = new DateTime(utcTimeTicks, DateTimeKind.Utc);
Console.WriteLine(utcTime);
Console.WriteLine(utcTime.ToLocalTime());

Best Practices
The following list identifies best practices to use when creating a JMS .NET client application:

• Always register a connection exception listener using an IConnection if the application
needs to take action when an idle connection fails. The connection exception listener is
asynchronously notified when there is a communications failure between the .NET client
and the .NET client WebLogic host, or between the WebLogic host and the JMS
connection host. Applications may choose to implement the connection exceptions listener
callback to close all open resources and then periodically attempt a reconnect.

• To obtain performance improvements, have multiple .NET client threads share a single
context to ensure that they use a single socket. See Understanding Socket and Threading
Behavior. It is important to note that a context creates a socket and that closing the context
closes the socket.

• Cache and reuse frequently accessed JMS resources, such as contexts, connections,
sessions, producers, destinations, and connection factories. Creating and closing these
resources consumes significant CPU and network bandwidth.

• With the exception of close() methods, JMS sessions and their child resources are not
thread safe. For example, do not call a producer send() in one thread, and a consumer
receive() in parallel in another thread, if the producer and consumer were created using
the same session. As another example, do not call any method other than close() in an
arbitrary thread for sessions that have asynchronous consumers because a message may
arrive and invoke the callback at the same time.

• Use DNS aliases or comma separated addresses for load balancing JMS .NET clients
across multiple JMS .NET client host servers in a cluster. In this release, the JMS .NET
client does not support automatic cluster load balancing as is implicitly supplied with the
Java client.

Chapter 4
Best Practices

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 15

A
JMS .NET Client Sample Application

This chapter provides a .NET client sample program written in C# which includes basic
features of the WebLogic JMS .NET API.

For details about the API, see Microsoft .NET Messaging API for Oracle WebLogic Server.

Example A-1 MessagingSample.cs

using System;
using System.Collections;
using System.Collections.Generic;
using System.Threading;

using WebLogic.Messaging;

/// <summary> Demonstrate the WebLogic JMS .NET API.
/// <para>
/// This command line program connects to WebLogic JMS and performs
/// queue and topic messaging operations. It is supported with
/// versions 10g Release 3 and later. To compile the program,
/// link it with "WebLogic.Messaging.dll". For usage information,
/// run the program with "-help" as a parameter.
/// </para>
/// <para>
/// Copyright 1996,2008, Oracle and/or its affiliates.
/// </para>
/// </summary>

public class MessagingSample
{
 private static string NL = Environment.NewLine;

 private string host = "localhost";
 private int port = 7001;

 private string cfName = "weblogic.jms.ConnectionFactory";
 private string queueName = "jms.queue.TestQueue1";
 private string topicName = "jms.topic.TestTopic1";

 private static string USAGE =
 "Usage: " + Environment.GetCommandLineArgs()[0] + NL +
 " [-host <hostname>] [-port <portnum>] " + NL +
 " [-cf <connection factory JNDI name>] " + NL +
 " [-queue <queue JNDI name>] [-topic <topic JNDI name>]";

 public static void Main(string[] args)
 {
 try {
 MessagingSample ms = new MessagingSample();

 // override defaults with command line arguments
 if (!ms.ParseCommandLine(args)) return;

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-1 of A-9

https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr

 ms.DemoSyncQueueReceiveWithAutoAcknowledge();

 ms.DemoAsyncNondurableTopicConsumerAutoAcknowledge();

 ms.DemoSyncTopicDurableSubscriberClientAcknowledge();

 } catch (Exception e) {
 Console.WriteLine(e);
 }
 }

 private void DemoSyncQueueReceiveWithAutoAcknowledge()
 {
 Console.WriteLine(
 NL + "-- DemoSyncQueueReceiveWithAutoAcknowledge -- " + NL);

 // --
 // Make a network connection to WebLogic and login:
 // --

 IDictionary<string, Object> paramMap = new Dictionary<string, Object>();

 paramMap[Constants.Context.PROVIDER_URL] =
 "t3://" + this.host + ":" + this.port;

 IContext context = ContextFactory.CreateContext(paramMap);

 try {
 // -------------------------------------
 // Look up our resources in the context:
 // -------------------------------------

 IConnectionFactory cf = context.LookupConnectionFactory(this.cfName);

 IQueue queue = (IQueue)context.LookupDestination(this.queueName);

 // ---
 // Create a connection using the connection factory:
 // ---

 IConnection connection = cf.CreateConnection();

 // ---
 // Start the connection in order to allow receivers to get messages:
 // ---

 connection.Start();

 // -----------------
 // Create a session:
 // -----------------
 // IMPORTANT: Sessions are not thread-safe. Use multiple sessions
 // if you need to run producers and/or consumers concurrently. For
 // more information, see the asynchronous consumer example below.
 //

 ISession session = connection.CreateSession(
 Constants.SessionMode.AUTO_ACKNOWLEDGE);

 // --
 // Create a producer and send a persistent message:

Appendix A

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-2 of A-9

 // --

 IMessageProducer producer = session.CreateProducer(queue);

 producer.DeliveryMode = Constants.DeliveryMode.PERSISTENT;

 ITextMessage sendMessage = session.CreateTextMessage("My q message");

 producer.Send(sendMessage);

 PrintMessage("Sent Message:", sendMessage);

 // --
 // Create a consumer and receive a message:
 // --
 // The message will automatically be deleted from the server as the
 // consumer's session was created in AUTO_ACKNOWLEDGE mode.
 //

 IMessageConsumer consumer = session.CreateConsumer(queue);

 IMessage recvMessage = consumer.Receive(500);

 PrintMessage("Received Message:", recvMessage);

 // --
 // Close the connection. Note that closing a connection also closes
 // its child sessions, consumers, and producers.
 // --

 connection.Close();

 } finally {

 // --
 // Close the context. The CloseAll method closes the network
 // connection and all related open connections, sessions, producers,
 // and consumers.
 // --

 context.CloseAll();
 }
 }

 // Implement a MessageEventHandler delegate. It will receive
 // asynchronously delivered messages.

 public void OnMessage(IMessageConsumer consumer, MessageEventArgs args) {
 PrintMessage("Received Message Asynchronously:", args.Message);

 // ---
 // If the consumer's session is CLIENT_ACKNOWLEDGE, remember to
 // call args.Message.Acknowledge() to prevent the message from
 // getting redelivered, or consumer.Session.Recover() to force redelivery.
 // Similarly, if the consumer's session is TRANSACTED, remember to
 // call consumer.Session.Commit() to prevent the message from
 // getting redeliverd, or consumer.Session.Rollback() to force redeivery.
 }

 private void DemoAsyncNondurableTopicConsumerAutoAcknowledge()
 {
 Console.WriteLine(

Appendix A

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-3 of A-9

 NL + "-- DemoAsyncNondurableTopicConsumerAutoAcknowledge -- " + NL);

 // --
 // Make a network connection to WebLogic and login:
 // --

 IDictionary<string, Object> paramMap = new Dictionary<string, Object>();

 paramMap[Constants.Context.PROVIDER_URL] =
 "t3://" + this.host + ":" + this.port;

 IContext context = ContextFactory.CreateContext(paramMap);

 try {
 // -------------------------------------
 // Look up our resources in the context:
 // -------------------------------------

 IConnectionFactory cf = context.LookupConnectionFactory(this.cfName);

 ITopic topic = (ITopic)context.LookupDestination(this.topicName);

 // --
 // Create a connection using the connection factory and start it:
 // --

 IConnection connection = cf.CreateConnection();

 // ---
 // Start the connection in order to allow receivers to get messages:
 // ---

 connection.Start();

 // --
 // Create the asynchronous consumer delegate.
 // --
 // Create a session and a consumer; also designate a delegate
 // that listens for messages that arrive asynchronously.
 //
 // Unlike queue consumers, topic consumers must be created
 // *before* a message is sent in order to receive the message!
 //
 // IMPORTANT: Sessions are not thread-safe. We use multiple sessions
 // in order to run the producer and async consumer concurrently. The
 // consumer session and any of its producers and consumers
 // can no longer be used outside of the OnMessage
 // callback once OnMessage is designated as its event handler, as
 // messages for the event handler may arrive in another thread.
 //

 ISession consumerSession = connection.CreateSession(
 Constants.SessionMode.AUTO_ACKNOWLEDGE);

 IMessageConsumer consumer = consumerSession.CreateConsumer(topic);

 consumer.Message += new MessageEventHandler(this.OnMessage);

 // -------------
 // Send Message:
 // -------------
 // Create a producer and send a non-persistent message. Note

Appendix A

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-4 of A-9

 // that even if the message were sent as persistent, it would be
 // automatically downgraded to non-persistent, as there are only
 // non-durable consumers subscribing to the topic.
 //

 ISession producerSession = connection.CreateSession(
 Constants.SessionMode.AUTO_ACKNOWLEDGE);

 IMessageProducer producer = producerSession.CreateProducer(topic);

 producer.DeliveryMode = Constants.DeliveryMode.NON_PERSISTENT;

 ITextMessage sendMessage = producerSession.CreateTextMessage(
 "My topic message");

 producer.Send(sendMessage);

 PrintMessage("Sent Message:", sendMessage);

 // -----------------
 // Wait for Message:
 // -----------------
 // Sleep for one second to allow the delegate time to receive and
 // automatically acknowledge the message. The delegate will print
 // to the console when it receives the message.
 //

 Thread.Sleep(1000);

 // ---------
 // Clean Up:
 // ---------
 // We could just call connection.Close(), which would close
 // the connection's sessions, etc, or we could even just
 // call context.CloseAll(), but we want to demonstrate closing each
 // individual resource.
 //

 producer.Close();
 consumer.Close();
 producerSession.Close();
 consumerSession.Close();
 connection.Close();

 } finally {

 // ---
 // Close the context. The CloseAll method closes the network
 // connection and any open JMS connections, sessions, producers,
 // or consumers.
 // ---

 context.CloseAll();
 }
 }

 private void DemoSyncTopicDurableSubscriberClientAcknowledge() {

 Console.WriteLine(
 NL + "-- DemoSyncTopicDurableSubscriberClientAcknowledge -- " + NL);

Appendix A

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-5 of A-9

 // --
 // Make a network connection to WebLogic and login:
 // --

 IDictionary<string, Object> paramMap = new Dictionary<string, Object>();

 paramMap[Constants.Context.PROVIDER_URL] =
 "t3://" + this.host + ":" + this.port;

 IContext context = ContextFactory.CreateContext(paramMap);

 try {
 // -------------------------------------
 // Look up our resources in the context:
 // -------------------------------------

 IConnectionFactory cf = context.LookupConnectionFactory(this.cfName);

 ITopic topic = (ITopic)context.LookupDestination(this.topicName);

 // ---
 // Create a connection using the connection factory:
 // ---

 IConnection connection = cf.CreateConnection();

 // --
 // Assign a unique client-id to the connection:
 // --
 // Durable subscribers must use a connection with an assigned
 // client-id. Only one connection with a given client-id
 // can exist in a cluster at the same time. An alternative
 // to using the API is to configure a client-id via connection
 // factory configuration.

 connection.ClientID = "MyConnectionID";

 // ---
 // Start the connection in order to allow consumers to get messages:
 // ---

 connection.Start();

 // -----------------
 // Create a session:
 // -----------------
 // IMPORTANT: Sessions are not thread-safe. Use multiple sessions
 // if you need to run producers and/or consumers concurrently. For
 // more information, see the asynchronous consumer example above.
 //

 ISession session = connection.CreateSession(
 Constants.SessionMode.CLIENT_ACKNOWLEDGE);

 // ---
 // Create a durable subscription and its consumer.
 // ---
 // Only one consumer at a time can attach to the durable
 // subscription for connection ID "MyConnectionID" and
 // subscription ID "MySubscriberID.
 //
 // Unlike queue consumers, topic consumers must be created

Appendix A

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-6 of A-9

 // *before* a message is sent in order to receive the message!
 //

 IMessageConsumer consumer = session.CreateDurableSubscriber(
 topic, "MySubscriberID");

 // --
 // Create a producer and send a persistent message:
 // --

 IMessageProducer producer = session.CreateProducer(topic);

 producer.DeliveryMode = Constants.DeliveryMode.PERSISTENT;

 ITextMessage sendMessage = session.CreateTextMessage("My durable message");

 producer.Send(sendMessage);

 PrintMessage("Sent Message To Durable Subscriber:", sendMessage);

 // --
 // Demonstrate closing and re-creating the consumer.
 //
 // The new consumer will implicitly connect to the durable
 // subscription created above, as we specify the same
 // connection id and subscription id.
 //
 // A durable subscription continues to exist and accumulate
 // new messages when it has no consumer, and even keeps
 // its persistent messages in the event of a client or server
 // crash and restart.
 //
 // Non-durable subscriptions and their messages cease to
 // exist when they are closed, or when their host server
 // shuts down or crashes.
 // --

 consumer.Close();

 consumer = session.CreateDurableSubscriber(
 topic, "MySubscriberID");

 // ---
 // Demonstrate client acknowledge. Get the message, force
 // it to redeliver, get it again, and then finally delete the message.
 // ---
 // In client ack mode "recover()" forces message redelivery, while
 // "acknowledge()" deletes the message. If the client application
 // crashes or closes without acknowledging a message, it will be
 // redelivered.

 ITextMessage recvMessage = (ITextMessage)consumer.Receive(500);

 PrintMessage("Durable Subscriber Received Message:", recvMessage);

 session.Recover();

 recvMessage = (ITextMessage)consumer.Receive(500);

 PrintMessage("Durable Subscriber Received Message Again:", recvMessage);

 recvMessage.Acknowledge();

Appendix A

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-7 of A-9

 // --
 // Delete the durable subscription, otherwise it would continue
 // to exist after the demo exits.
 // --
 //

 consumer.Close(); // closes consumer, but doesn't delete subscription

 session.Unsubscribe("MySubscriberID"); // deletes subscription

 // --
 // Close the connection. Note that closing a connection also closes
 // its child sessions, consumers, and producers.
 // --

 connection.Close();

 } finally {

 // --
 // Close the context. The CloseAll method closes the network
 // connection and all related open connections, sessions, producers,
 // and consumers.
 // --

 context.CloseAll();
 }
 }

 private void PrintMessage(String header, IMessage msg) {
 string msgtext;

 if (msg is ITextMessage)
 msgtext = " Text=" + ((ITextMessage)msg).Text + NL;
 else
 msgtext = " The message is not an ITextMessage";

 string dcProp =
 Constants.MessagePropertyNames.DELIVERY_COUNT_PROPERTY_NAME;

 System.Console.WriteLine(
 header + NL +
 " JMSMessageID=" + msg.JMSMessageID + NL +
 " JMSRedelivered=" + msg.JMSRedelivered + NL +
 " " + dcProp + "=" + msg.GetObjectProperty(dcProp) + NL +
 msgtext);
 }

 private bool ParseCommandLine(string[] args)
 {
 int i = 0;
 try {
 for(i = 0; i < args.Length; i++) {
 if (args[i].Equals("-host")) {
 host = args[++i];
 continue;
 }
 if (args[i].Equals("-port")) {
 port = Convert.ToInt32(args[++i]);
 continue;
 }

Appendix A

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-8 of A-9

 if (args[i].Equals("-cf")) {
 cfName = args[++i];
 continue;
 }
 if (args[i].Equals("-queue")) {
 queueName = args[++i];
 continue;
 }
 if (args[i].Equals("-topic")) {
 topicName = args[++i];
 continue;
 }
 if (args[i].Equals("-help") || args[i].Equals("-?")) {
 Console.WriteLine(USAGE);
 return false;
 }
 Console.WriteLine("Unrecognized parameter '" + args[i] + "'.");
 Console.WriteLine(USAGE);
 return false;
 }
 } catch (System.IndexOutOfRangeException) {
 Console.WriteLine(
 "Missing argument for " + args[i - 1] + "."
);
 Console.WriteLine(USAGE);
 return false;
 } catch (FormatException) {
 Console.WriteLine(
 "Invalid argument '" + args[i] + "' for " + args[i - 1] + "."
);
 Console.WriteLine(USAGE);
 return false;
 }
 Console.WriteLine(
 "WebLogic JMS .NET Client Demo " + NL +
 NL +
 "Settings: " + NL +
 " host = " + host + NL +
 " port = " + port + NL +
 " cf = " + cfName + NL +
 " queue = " + queueName + NL +
 " topic = " + topicName + NL
);
 return true;
 }
}

Appendix A

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-9 of A-9

Index

Developing JMS .NET Client Applications for Oracle WebLogic Server
G31902-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Index-1 of Index-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Overview of the WebLogic JMS .NET Client
	What is the WebLogic JMS .NET Client?
	Supported JMS Features
	Messaging Models
	Message Types

	How the WebLogic JMS .NET Client Works
	Configuring WebLogic Server
	Configuring the Listen Port
	Configuring JMS Resources for the JMS .NET Client
	Interoperating with Pre-12.1.3 JMS .NET Clients

	Interoperating with Previous WebLogic Server Releases
	Understanding the WebLogic JMS .NET API

	2 Installing and Copying the WebLogic JMS .NET Client Libraries
	Installing the WebLogic JMS .NET Client
	Location of Installed Components
	Choosing an Installation Version

	Copying the Library to the Client Machine

	3 Developing a Basic JMS Application Using the WebLogic JMS .NET API
	Creating a JMS .NET Client Application
	Example: Writing a Basic PTP JMS .NET Client Application
	Prerequisites
	Basic Steps
	Step 1. Create a context
	Step 2. Look up JMS connection factory
	Step 3. Look up JMS destinations
	Step 4. Create a connection using the connection factory
	Step 5. Start the connection
	Step 6. Create a session using the connection
	Step 7. Create a message producer and send a message
	Step 8. Create a message consumer and receive a message
	Step 9. Close the connection
	Step 10. Close the context

	Using Advanced Concepts in JMS .NET Client Applications

	4 Programming Considerations
	Using WebLogic JMS Extensions
	Message Compression
	Unit-of-Order
	Message Delivery Time
	One-Way Message Sends
	Include user-id as JMSXUserId
	Message Delivery Attempts

	Limitations of Using the WebLogic JMS .NET Client
	Unsupported JMS 2.0 Standard Features
	Unsupported JMS 1.1 Standard Features
	Unsupported JMS 1.1 Optional Features
	Unsupported WebLogic JMS Extensions
	Transactions

	Exchanging Messages Between Different Language Environments
	Specifying the URL Format
	Using DNS Alias Host Names

	Implementing Security With the JMS .NET Client
	Configuring Logging and Debugging
	Server Side
	Client Side
	Message Output
	Log Categories and Levels

	Understanding Socket and Threading Behavior
	Data Conversion Between Java and .NET
	Endian Conversions
	Signed and Unsigned Byte Conversions
	Byte Array Transfers
	Time Conversions

	Best Practices

	A JMS .NET Client Sample Application
	Index

