
Oracle® Fusion Middleware
Developing JMS Applications for Oracle
WebLogic Server

15c (15.1.1.0.0)
G31651-01
October 2025

Oracle Fusion Middleware Developing JMS Applications for Oracle WebLogic Server, 15c (15.1.1.0.0)

G31651-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation i

Conventions ii

1 Understanding WebLogic JMS

Overview of the Java Message Service and WebLogic JMS 1

What Is the Java Message Service? 1

Implementation of Java Specifications 2

WebLogic JMS Architecture 2

Understanding the Messaging Models 3

Point-to-Point Messaging 4

Publish/Subscribe Messaging 4

Message Persistence 5

Understanding the JMS API 6

ConnectionFactory 7

Using the Default Connection Factories 7

Configuring and Deploying Connection Factories 8

The ConnectionFactory Class 8

JMSContext 9

Connection 9

Session 10

WebLogic JMS Session Guidelines 10

Session Subclasses 10

Non-Transacted Sessions 11

Transacted Sessions 11

Destination 12

Distributed Destinations 13

MessageProducer and MessageConsumer 13

Messages 14

Message Header Fields 15

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of xiii

Message Property Fields 17

Message Body 18

ServerSessionPoolFactory 19

ServerSessionPool 19

ServerSession 19

ConnectionConsumer 19

Value-Added Public JMS API Extensions 20

WebLogic Server Value-Added JMS Features 20

2 Best Practices for Application Design

Message Design 1

Serializing Application Objects 1

Serializing Strings 1

Server-side Serialization 1

Selection 1

Message Compression 1

Message Properties and Message Header Fields 2

Message Ordering 2

Topics Vs. Queues 2

Asynchronous Vs. Synchronous Consumers 3

Persistent Vs. Non Persistent Messages 3

Deferring Acknowledges and Commits 5

Using AUTO_ACK for Non Durable Subscribers 5

Alternative Qualities of Service, Multicast and No-Acknowledge 5

Using MULTICAST_NO_ACKNOWLEDGE 5

Using NO_ACKNOWLEDGE 6

Avoid Multi threading 6

Using the JMSXUserID Property 6

Performance and Tuning 7

3 Enhanced Support for Using WebLogic JMS with EJBs and Servlets

Enabling WebLogic JMS Wrappers 1

Declaring a JMSContext Object Using @Inject Annotation 1

Specifying a Lookup Name in JMSContext Injection 2

Determining the Authentication Type for JMSContext Injection 2

Declaring JMS Objects as Resources In the EJB or Servlet Deployment Descriptors 3

Declaring a Wrapped JMS Factory using Deployment Descriptors 3

Declaring JMS Destinations using Deployment Descriptors 4

Referencing a Packaged JMS Application Module In Deployment Descriptor Files 5

Referencing Application Modules in a weblogic-application.xml Descriptor 5

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of xiii

Referencing JMS Resources in a WebLogic Application 6

Referencing JMS Resources in a Jakarta EE Application 6

Declaring JMS Destinations and Connection Factories Using Annotations 6

Injecting Resource Dependency into a Class 6

Non-Injected EJB 3.0 Resource Reference Annotations 7

Avoid Transactional XA Interfaces 8

Disabling Wrapping and Pooling 8

What's Happening Under the JMS Wrapper Covers 8

Automatically Enlisting Transactions 8

Container-Managed Security 9

Connection Testing 9

Jakarta EE Compliance 9

Pooled JMS Connection Objects 10

Improving Performance Through Pooling 10

Speeding Up JNDI Lookups by Pooling Session Objects 10

Speeding Up Object Creation Through Caching 11

Enlisting the Proper Transaction Mode 11

Simplified Access to Foreign JMS Providers 11

Examples of JMS Wrapper Functions 12

Examples of JMS Wrapper Functions 12

ejb-jar.xml 12

weblogic-ejb-jar.xml 13

PoolTest.java 14

PoolTestHome.java 14

PoolTestBean.java 14

Sending a JMS Message in a Jakarta EE Container 16

Using comp/env 16

Dependency Injection 17

EJB 3.0 Wrapper Without Injection 18

4 Understanding the Simplified API Programming Model

About JMS 2.0 Simplified API 1

New Interfaces in the Simplified JMS API 2

JMSContext 2

JMSProducer 2

JMSConsumer 2

New Methods to Simplify Messaging in JMS 2.0 2

Method to Extract the Body Directly from a Message 3

Method to Receive a Message Body Directly 3

Method to Create a Session 3

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iii of xiii

5 Developing a Basic JMS Application

Importing Required Packages 1

Setting Up a JMS Application 1

Using a Simplified API to Set Up a JMS Application 2

Look Up a Connection Factory in JNDI 2

Look Up a Queue or Topic 3

Create a JMSContext Object 3

Create JMSProducer and JMSConsumer Objects 4

Sending and Receiving Messages using the Simplified API 4

Using the Classic API to Set Up a JMS Application 4

Step 1: Look Up a Connection Factory in JNDI 5

Step 2: Create a Connection Using the Connection Factory 6

Step 3: Create a Session Using the Connection 7

Step 4: Look Up a Destination (Queue or Topic) 8

Step 5: Create Message Producers and Message Consumers 9

Step 6a: Create the Message Object (Message Producers) 12

Step 6b: Optionally Register an Asynchronous Message Listener 13

Step 7: Start the Connection 14

Example: Setting Up a Point-to-Point JMS Application Using the Classic API 14

Example: Setting Up a Publish-Subscribe JMS Application Using the Classic API 17

Sending Messages 19

Sending Messages Using the Simplified JMS API 19

Sending Messages Using the Classic JMS API 20

Create a Message Object 20

Define a Message 20

Send the Message to a Destination Using MessageProducer 21

Sending a Message Asynchronously 22

Setting JMSProducer and MessageProducer Attributes 22

Example: Sending Messages Within a Point-toPoint Application 23

Example: Sending Messages Within a Publish/Subscribe Application 24

Receiving Messages 24

Receive Messages Asynchronously Using the Simplified API 25

Receiving Messages Asynchronously using the Classic API 25

Asynchronous Message Pipeline 25

Configuring a Message Pipeline 25

Behavior of Pipelined Messages 25

Receive Messages Synchronously Using the Simplified API 26

Receiving Messages Synchronously Using the Classic API 26

Example: Receiving Messages Synchronously Within a PTP Application 27

Example: Receiving Messages Synchronously Within a Pub/Sub Application 27

Use Prefetch Mode to Create a Synchronous Message Pipeline 27

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iv of xiii

Recovering Received Messages 28

Acknowledging Received Messages 28

Releasing Object Resources 29

6 Managing Your Applications

Managing Rolled Back, Recovered, Redelivered, or Expired Messages 1

Setting a Redelivery Delay for Messages 1

Setting a Redelivery Delay 1

Overriding the Redelivery Delay on a Destination 2

Setting a Redelivery Limit for Messages 2

Ordered Redelivery of Messages 2

Required Message Pipeline Setting for the Messaging Bridge and MDBs 3

Performance Limitations 3

Handling Expired Messages 3

Setting Message Delivery Times 4

Setting a Delivery Time on Producers 4

Setting a Delivery Time on Messages 4

Overriding a Delivery Time 5

Interaction with the Time-to-Live Value 5

Setting a Scheduled Time-to-Deliver Override 5

JMS Schedule Interface 7

Managing Connections 8

Defining a Connection Exception Listener 8

Accessing Connection Metadata 8

Starting, Stopping, and Closing a Connection 9

Managing Sessions 10

Defining a Session Exception Listener 10

Closing a Session 11

Managing Destinations 11

Dynamically Creating Destinations 12

Dynamically Deleting Destinations 12

Required Conditions for Deleting Destinations 12

What Happens when a Destination Is Deleted 12

Message Timestamps for Troubleshooting Deleted Destinations 13

Deleted Destination Statistics 14

Using Temporary Destinations 14

Creating a Temporary Queue 14

Creating a Temporary Topic 14

Deleting a Temporary Destination 15

Setting Up Durable Subscriptions 15

Defining the Persistent Store 15

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page v of xiii

Setting the Client ID Policy 15

Defining the Client ID 16

Creating a Sharable Subscription Policy 17

Creating Subscribers for a Durable Subscription 18

Using JMS 2.0 API 18

Using JMS 1.1 API 18

Best Practice: Always Close Failed JMS ClientIDs 19

Deleting Durable Subscriptions 19

Modifying Durable Subscriptions 19

Managing Durable Subscriptions 20

Setting and Browsing Message Header and Property Fields 20

Setting Message Header Fields 20

Setting Message Property Fields 22

Browsing Header and Property Fields 24

Filtering Messages 26

Defining Message Selectors Using SQL Statements 26

Defining XML Message Selectors Using XML Selector Method 27

Displaying Message Selectors 28

Indexing Topic Subscriber Message Selectors to Optimize Performance 28

Sending XML Messages 29

WebLogic XML APIs 29

Using a String Representation 29

Using a DOM Representation 30

7 Using JMS Module Helper to Manage Applications

Configuring JMS System Resources Using JMSModuleHelper 1

Configuring JMS Servers and Store-and-Forward Agents 1

JMSModuleHelper Sample Code 2

Creating a JMS System Resource 2

Deleting a JMS System Resource 3

Security Considerations for Anonymous Users 4

Best Practices When Using JMSModuleHelper 4

8 Using Multicasting with WebLogic JMS

Benefits of Using Multicasting 1

Limitations of Using Multicasting 1

Using WebLogic Server Unicast 1

Configuring Multicasting for WebLogic Server 2

Prerequisites for Multicasting 2

Step 1: Set Up the JMS Application, Multicast Session and Topic Subscriber 3

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page vi of xiii

Step 2: Set Up the Message Listener 3

Dynamically Configuring Multicasting Configuration Attributes 4

Example: Multicast Time-to-Live 5

9 Using Distributed Destinations

What Is a Distributed Destination? 1

Why Use a Distributed Destination 1

Creating a Distributed Destination 1

Types of Distributed Destinations 1

Uniform Distributed Destinations 1

Weighted Distributed Destinations 2

Using Distributed Destinations 2

Using Distributed Queues 2

QueueSenders 3

QueueReceivers 3

QueueBrowsers 4

Using Replicated Distributed Topics 4

TopicPublishers 4

TopicSubscribers 5

Deploying Message-Driven Beans on a Distributed Topic 6

Using Partitioned Distributed Topics 6

Accessing Distributed Destination Members 7

Distributed Destination Failover 7

Using Message-Driven Beans with Distributed Destinations 7

Common Use Cases for Distributed Destinations 7

Maximizing Production 8

Maximizing Availability 8

Using Queues 8

Using Topics 9

Stuck Messages 10

10

Using the Message Unit-of-Order

What is Message Unit-Of-Order? 1

Understanding Message Processing with Unit-of-Order 1

Message Processing According to the JMS Specification 1

Message Processing with Unit-of-Order 1

Message Delivery with Unit-of-Order 2

Message Unit-of-Order Case Study 3

Joe Orders a Book 3

What Happened to Joe's Order 3

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page vii of xiii

How Message Unit-of-Order Solves the Problem 4

How to Create a Unit-of-Order 5

Creating a Unit-of-Order Programmatically 5

Unit-of-Order Naming Rules 6

Getting the Current Unit-of-Order 6

Message Unit-of-Order Advanced Topics 7

What Happens When a Message Is Delayed During Processing? 7

What Happens When a Filter Makes a Message Undeliverable 7

What Happens When Destination Sort Keys Are Used 7

Using Unit-of-Order with Distributed Destinations 8

Using the Path Service 8

Using Hash-Based Routing 8

Using Unit-of-Order with Topics 8

Unit-of-Order and Distributed Topics 8

Unit-of-Order, Topics, and Message Driven Beans 9

Using Unit-of-Order with JMS Message Management 9

Using Unit-of-Order with WebLogic Store-and-Forward 10

Using Unit-of-Order with WebLogic Messaging Bridge 10

Limitations of Message Unit-of-Order 10

11

Using Unit-of-Work Message Groups

What Are Unit-of-Work Message Groups? 1

Understanding Message Processing with Unit-of-Work 1

Basic UOW Terminology 1

Rules For Processing UOW Messages 2

Message Unit-of-Work Case Study 3

How to Create a Unit-of-Work Message Group 4

How to Write a Producer to Set UOW Message Properties 5

Example UOW Producer Code 5

UOW Exceptions 6

How to Write a UOW Consumer/Producer For an Intermediate Destination 6

Configuring Terminal Destinations 7

UOW Message Routing for Terminal Distributed Destinations 7

How to Write a UOW Consumer for a Terminal Destination 8

Message Unit-of-Work Advanced Topics 8

Message Property Handling 8

System-Generated Properties 8

Final Component Message Properties 9

Component Message Heterogeneity 9

ReplyTo Message Property 9

UOW and Uniform Distributed Destinations 9

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page viii of xiii

UOW and Store-and-Forward Destinations 9

Limitations of UOW Message Groups 10

12

Using Transactions with WebLogic JMS

Overview of Transactions 1

Using JMS Transacted Sessions 2

Step 1: Set Up JMS Application, Creating Transacted Session 2

Step 2: Perform Desired Operations 3

Step 3: Commit or Roll Back the JMS Transacted Session 3

Using JTA User Transactions 3

Step 1: Set Up JMS Application, Creating Non-Transacted Session 5

Step 2: Look Up the User Transaction in JNDI 5

Step 3: Start the JTA User Transaction 5

Step 4: Perform Desired Operations 5

Step 5: Commit or Roll Back the JTA User Transaction 5

JTA User Transactions Using Message Driven Beans 6

Example: JMS and EJB in a JTA User Transaction 6

Step 1 Set Up the JMS Application 7

Step 2 Look Up the User Transaction 7

Step 3 Start the JTA User Transaction 7

Step 4 Perform the Desired Operations 7

Step 5 Commit the JTA User Transaction 7

Using Cross-Domain Security 7

13

Developing Advanced Pub/Sub Applications

Overview of Advanced High Availability Concepts 1

WebLogic Messaging High Availability Features 1

Application Design Limitations When Using Replicated Distributed Topics 2

Advanced Topic Features 2

Advanced Topic Messaging Features for High Availability 3

Shared Subscriptions and Client ID Policy 3

What is the Subscription Key 3

Configuring a Shared Subscription 3

How Sharing a Non Durable Subscription Works 3

How a Shared Subscription Policy for a Non durable Subscription Is Determined 4

How a Non durable Subscription Is Closed 4

How Sharing a Durable Subscription Works 4

How a Shared Subscription Policy for a Durable Subscription is Determined 5

How to Unsubscribe a Durable Subscription 5

Considerations When Unsubscribing a Durable Subscriber 6

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ix of xiii

Managing Durable Subscriptions 6

Design Strategies When Using Topics 7

One-Copy-Per-Instance Design Strategy 7

One-Copy-Per-Application Design Strategy 7

Considerations When Using JMS 2.0 Shared Subscriptions 8

Replacing a Replicated Distributed Topic 8

Reasons for Replacing a Replicated Distributed Topic 8

Important Prerequisites Before Replacing an RDT 9

Replacing an RDT with a Standalone Topic 9

Replacing an RDT with a PDT 9

Best Practices for Distributed Topics 10

14

Recovering from a Server Failure

Automatic JMS Client Failover 1

Automatic Reconnect Limitations 1

Automatic Failover for JMS Producers 2

Sample Producer Code 3

Re usable ConnectionFactory Objects 3

Re usable Destination Objects 3

Reconnected Connection Objects 4

Reconnected Session Objects 5

Reconnected MessageProducer Objects 6

Configuring Automatic Failover for JMS Consumers 6

Sample Consumer Client Code 6

Configuring Automatic Client Refresh Options 7

Common Cases for Reconnected Consumers 7

Special Cases for Reconnected Consumers 8

Explicitly Disabling Automatic Failover on JMS Clients 10

Programmatically 10

Administratively 10

Best Practices for JMS Clients Using Automatic Failover 10

Always Catch exceptions 10

Use Transactions to Group Message Work 10

JMS Clients Should Always Call the close() Method 11

Manually Migrating JMS Data to a New Server 11

15

Understanding WebLogic JMS Security

Securing WebLogic JMS Resources 1

Understanding Thread-Based Security on Clients and Servers 1

Thread-Based Security for Server Applications 2

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page x of xiii

Thread-Based Security for Client Applications 2

Understanding Object-Based Security 3

Enabling Object-Based Security on Clients 3

Object-Based Security Limitations on Clients 4

Enabling Object-Based Security on Server Applications 4

Object-Based Security for Inbound JMS Applications 4

Object-Based Security for Outbound JMS Applications 5

Understanding Cross-Domain Security 5

Cross-Domain Security Guidelines 6

Programming Pattern for a Single JMS Client Communicating With Two WebLogic
Domains 7

Programming Patterns for Using a Foreign JMS Server Between Two WebLogic
Domains 9

16

WebLogic JMS C API

What Is the WebLogic JMS C API? 1

System Requirements 1

Design Principles 2

Java Objects Map to Handles 2

Thread Utilization 2

Exception Handling 2

Type Conversions 3

Integer (int) 3

Long (long) 3

Character (char) 3

String 3

Memory Allocation and Garbage Collection 4

Closing Connections 4

Helper Functions 4

Security Considerations 4

Implementation Guidelines 5

Client Packaging Requirements 5

Workarounds for Client Failure Thread Detach Issue 6

A FAQs: Integrating Remote JMS Providers

Understanding JMS and JNDI Terminology A-1

Understanding Transactions A-2

How to Integrate with a Remote Provider A-3

Best Practices When Integrating with Remote Providers A-5

Using Foreign JMS Server Definitions A-6

Using EJB/Servlet JMS Resource References A-6

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page xi of xiii

Using WebLogic Store-and-Forward A-7

Using WebLogic JMS SAF Client A-8

Using a Messaging Bridge A-8

Using Messaging Beans A-9

Using AQ JMS A-10

B How to Look Up a Destination

Use a JNDI Name B-1

Use a Create Destination Identifier B-1

Default WebLogic CDI Syntax B-2

Custom WebLogic CDI Syntax B-2

Server Affinity When Looking Up Destinations B-2

Examples of Syntax Used to Look Up Destinations B-2

Non distributed Destinations B-3

JNDI Syntax for Non distributed Destinations B-3

CDI Syntax for Non distributed destinations B-3

Uniform Distributed Destinations B-3

JNDI Syntax for UDDs B-4

CDI Syntax for UDDs B-4

Weighted Distributed Destinations B-5

JNDI Syntax for WDDs B-5

CDI Syntax for WDDs B-5

C Advanced Programming with Distributed Destinations Using the JMS
Destination Availability Helper API

Introduction C-1

Controlling DD Producer Load Balancing C-1

Basic JMS C-1

Senders to Distributed Queues (DQs) and Partitioned Distributed Topics (PDTs) C-2

Senders to Replicated Distributed Topics (RDTs) C-2

Using the JMS Destination Availability Helper API C-2

Overview C-2

General Flow C-3

Handling the weblogic.jms.extensions.DestinationDetail C-4

Best Practices for Consumer Containers C-4

When to Register and Unregister C-4

URL Handling C-4

Failure Handling C-4

JNDI Context Handling C-5

JMS Connection Handling C-5

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page xii of xiii

Interoperability Guidelines C-5

API Availability C-5

Foreign Contexts C-5

Destination Type Support C-6

Unavailable Notifications C-6

Interoperating with WebLogic Server 9.0 and Earlier Distributed Queues C-6

Interoperating with WebLogic Server 10.3.4.0 and Earlier Distributed Topics C-6

DestinationDetail Fields C-7

Security Considerations C-7

WebLogic Server Security Model C-7

Passing Credentials Between Threads C-7

Managing Cross-Domain Security C-8

Authentication of Users C-8

Securing Destinations C-9

Securing Wire Data C-9

Transaction Considerations C-9

Strategies for Uniform Distributed Queue Consumers C-9

General Strategies C-10

Best Practice for Local Server Consumers C-10

Strategies for Subscribers on Uniform Distributed Topics C-11

One Copy Per Instance C-11

General Pattern Design Strategy for One Copy Per Instance C-11

Best Practice for Local Server Consumers using One Copy Per Instance C-12

One Copy Per Application C-12

General Pattern Design Strategy for One Copy Per Application C-12

Best Practice for Local Server Consumers Using One Copy Per Application C-13

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page xiii of xiii

Preface

This document is a resource for software developers who want to develop and configure
applications that include WebLogic Server Java Message Service (JMS).

Audience
This document contains information that is useful for business analysts and system architects
who are evaluating WebLogic Server or considering the use of WebLogic Server JMS for a
particular application.

The topics in this document are relevant during the design and development phases of a
software project. The document also includes topics that are useful in solving application
problems that are discovered during test and pre-production phases of a project.

This document does not address production phase administration, monitoring, or performance
tuning JMS topics.

You should be familiar with Jakarta EE and JMS concepts. This document emphasizes the
value-added features provided by WebLogic Server JMS and key information about how to use
WebLogic Server features and facilities to get a JMS application up and running.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
This document contains JMS-specific design and development information.

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

• Administering JMS Resources for Oracle WebLogic Server for information about
configuring and managing JMS resources.

• Administering the Store-and-Forward Service for Oracle WebLogic Server for information
about the benefits and usage of the Store-and-Forward service with WebLogic JMS.

• Administering the WebLogic Persistent Store for information about the benefits and usage
of the system-wide WebLogic Persistent Store.

• Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications.

Samples and Tutorials for the JMS Developer
In addition to this document, Oracle provides a variety of code samples and tutorials for JMS
developers. The samples and tutorials illustrate WebLogic Server JMS in action, and provide
practical instructions about how to perform key JMS development tasks.

Oracle recommends that you run some or all of the JMS examples before developing your own
JMS applications.

For more information, see Sample Applications and Code Examples

New and Changed WebLogic Server Features
For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of ii

1
Understanding WebLogic JMS

Learn about the different Java Message Service (JMS) concepts and features, and understand
how they work with other application objects and WebLogic Server.
It is assumed that you are familiar with Java programming and JMS 1.1 and JMS 2.0 concepts
and features.

Overview of the Java Message Service and WebLogic JMS
WebLogic JMS is an enterprise-class messaging system that is tightly integrated into the
WebLogic Server platform.

WebLogic JMS fully supports the JMS Specification, described at http://www.oracle.com/
technetwork/java/jms/index.html, and also provides numerous WebLogic JMS Extensions
that go above and beyond the standard JMS APIs.

What Is the Java Message Service?
An enterprise messaging system enables applications to communicate with one another
through the exchange of messages. A message is a request, report, and/or event that contains
information needed to coordinate communication between different applications. A message
provides a level of abstraction, allowing you to separate the details nation system from the
application code.

The Java Message Service (JMS) is a standard API for accessing enterprise messaging
systems. Specifically, JMS:

• Enables Java applications sharing a messaging system to exchange messages

• Simplifies application development by providing a standard interface for creating, sending,
and receiving messages

Figure 2-1 illustrates WebLogic JMS messaging.

Figure 1-1 WebLogic JMS Messaging

As shown in the figure, WebLogic JMS accepts messages from producer applications and
delivers them to consumer applications.

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 21

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Implementation of Java Specifications
WebLogic Server is compliant with the following Java specifications.

• WebLogic Server is compliant with the Java Platform, Enterprise Edition (Jakarta EE)
specification, described at https://javaee.github.io/javaee-spec/javadocs/.

• WebLogic Server is fully compliant with the JMS 2.0 and JMS 1.1 specifications, at
http://www.oracle.com/technetwork/java/jms/index.html, and can be used in
production.

WebLogic JMS Architecture
Figure 2-2 illustrates the WebLogic JMS architecture.

Figure 1-2 WebLogic JMS Architecture

Chapter 1
Overview of the Java Message Service and WebLogic JMS

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 21

https://javaee.github.io/javaee-spec/javadocs/
http://www.oracle.com/technetwork/java/jms/index.html

The major components of the WebLogic JMS Server architecture include:

• JMS server: a managed message container for a set of JMS queues and topics.
Destination configuration is located in JMS XML modules that can target one or more JMS
servers, and a single logical destination can be distributed across multiple JMS servers. A
JMS server's primary responsibility for its targeted destinations is to maintain information
on what persistent store is used for any persistent messages that arrive on the
destinations, and to maintain the states of durable subscribers created on the destinations.
You can configure one or more JMS servers per domain, multiple JMS servers may run on
the same WebLogic server, and a JMS server can manage one or more JMS modules.

• JMS connection hosts and connection factories: any WebLogic server in a cluster can act
as a JMS connection host for JMS applications. A JMS application gains access to
WebLogic JMS by (a) obtaining a connection factory reference from JNDI, (b) obtaining a
connection from this factory, and finally (c) using the connection to send or receive
messages. JMS messages flow from an application, through its connection host, and then
to any destination on a JMS server that is in the same cluster as the connection host. An
application can use either default connection factories or custom connection factories that
are configured using a JMS module.

• JMS destinations: hold JMS messages and are hosted on JMS servers. WebLogic JMS
applications typically obtain JMS destination references via JNDI and then send and
receive messages to these destinations using their respective JMS connections. A single
logical WebLogic destination can be configured to be distributed across multiple JMS
servers within the same cluster. A WebLogic JMS client can transparently communicate
with any WebLogic JMS destination that is hosted in the same cluster as the client's
connection host.

• JMS modules: contain configuration resources, such as standalone queue and topic
destinations, distributed destinations, and connection factories, and are defined by XML
documents that conform to the http://xmlns.oracle.com/weblogic/weblogic-jms/1.8/
weblogic-jms.xsd schema.

• Client JMS applications: either produce messages to destinations or consume messages
from destinations.

• JNDI (Java Naming and Directory Interface): provides a lookup facility for JMS connection
factories and destinations.

• WebLogic persistent storage: a server instance's default store, a user-defined file store, or
a user-defined JDBC-accessible store for storing persistent message data.

Understanding the Messaging Models
JMS supports two messaging models: point-to-point (PTP) and publish/subscribe.

The messaging models are similar, except for the following differences:

• The PTP messaging model enables the delivery of a message to exact one recipient.

• The publish/subscribe messaging model enables the delivery of a message to multiple
recipients.

Each model is implemented with classes that extend common base classes. For example, the
PTP class jakarta.jms.Queue (described at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/Queue.html) and the publish/subscribe class
jakarta.jms.Topic (described at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/Topic.html) both extend the class
jakarta.jms.Destination (described at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/Destination.html).

Chapter 1
Understanding the Messaging Models

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 21

http://xmlns.oracle.com/weblogic/weblogic-jms/1.8/weblogic-jms.xsd
http://xmlns.oracle.com/weblogic/weblogic-jms/1.8/weblogic-jms.xsd
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Queue.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Queue.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Topic.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Topic.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Destination.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Destination.html

Note

The terms producer and consumer are used as generic descriptions of applications
that send and receive messages, respectively, in either messaging model. For each
specific messaging model, however, unique terms specific to that model are used
when referring to producers and consumers.

Point-to-Point Messaging
The point-to-point (PTP) messaging model enables one application to send a message to
another. PTP messaging applications send and receive messages using named queues. A
queue sender (producer) sends a message to a specific queue. A queue receiver (consumer)
receives messages from a specific queue.

Figure 2-3 illustrates PTP messaging.

Figure 1-3 Point-to-Point (PTP) Messaging

Multiple queue senders and queue receivers can be associated with a single queue, but an
individual message can be delivered to only one queue receiver.

If multiple queue receivers are listening for messages on a queue, then WebLogic JMS
determines which one will receive the next message on a first come, first serve basis. If no
queue receivers are listening on the queue, then messages remain in the queue until a queue
receiver attaches to the queue.

Publish/Subscribe Messaging
The publish/subscribe messaging model enables an application to send a message to multiple
applications. Publish/subscribe messaging applications send and receive messages by

Chapter 1
Understanding the Messaging Models

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 21

subscribing to a topic. A topic publisher (producer) sends messages to a specific topic. A topic
subscriber (consumer) retrieves messages from a specific topic.

Figure 2-4 illustrates publish/subscribe messaging.

Figure 1-4 Publish/Subscribe Messaging

Unlike with the PTP messaging model, the publish/subscribe messaging model allows multiple
topic subscribers to receive the same message. JMS retains the message until all topic
subscribers have received it.

The publish/subscribe messaging model supports durable subscribers, enabling you to assign
a name to a topic subscriber and associate it with a user or application. For more information
about durable subscribers, see Setting Up Durable Subscriptions.

Message Persistence
The "Message Delivery Mode" section of the JMS Specification, described at http://
www.oracle.com/technetwork/java/jms/index.html, messages can be specified as
persistent or non persistent:

• A persistent message is guaranteed to be delivered once. The message cannot be lost
due to a JMS provider failure, and it must not be delivered twice. It is not considered sent
until it has been safely written to a file or database. WebLogic JMS writes persistent
messages to a WebLogic persistent store (disk-base file or JDBC-accessible database)
that is optionally targeted by each JMS server during configuration.

• Non persistent messages are not stored. They are guaranteed to be delivered once-at-
most-after, unless there is a JMS provider failure, in which case messages may be lost,
and must not be delivered twice. If a connection is closed or recovered, then all non
persistent messages that have not yet been acknowledged will be redelivered. Once a non
persistent message is acknowledged, it will not be redelivered.

For information about using the system-wide, WebLogic Persistent Store, see Administering
the WebLogic Persistent Store.

Chapter 1
Understanding the Messaging Models

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 21

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Understanding the JMS API
The jakarta.jms API enables you to create the class objects necessary to connect to the
JMS, and to send and receive messages.

To create a JMS application, use the jakarta.jms API at https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/package-summary.html.
JMS class interfaces are created as subclasses to provide queue specific and topic specific
versions of the common parent classes.

The Table 2-2 lists the JMS classes described in more detail in subsequent sections. For a
complete description of all JMS classes, see jakarta.jms, at https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/package-summary.html, or
in the weblogic.jms.extensions Javadoc.

Table 1-1 WebLogic JMS Classes

JMS Class Description

ConnectionFactory Encapsulates connection configuration information. A
connection factory is used to create connections. You look
up a connection factory using JNDI.

JMSContext Encapsulates the functionality of two objects, Connection
and Session, in a single object.

Connection Represents an open communication channel to the
messaging system. A connection is used to create
sessions.

Session Defines a serial order for the messages produced and
consumed.

Destination Identifies a queue or topic, encapsulating the address of a
specific provider. Queue and topic destinations manage
the messages delivered from the PTP and publish/
subscribe messaging models, respectively.

MessageProducer and MessageConsumer Provides the interface for sending and receiving
messages. Message producers send messages to a
queue or topic. Message consumers receive messages
from a queue or topic.

Messages Encapsulates information to be sent or received.

ServerSessionPoolFactory1 Encapsulates configuration information for a server-
managed pool of message consumers. The server
session pool factory is used to create server session
pools.

ServerSessionPool2 Provides a pool of server sessions that can be used to
process messages concurrently for connection
consumers.

ServerSession3 Associates a thread with a JMS session.

ConnectionConsumer4 Specifies a consumer that retrieves server sessions to
process messages concurrently.

1 Supports an optional JMS interface for processing multiple messages concurrently.
2 Supports an optional JMS interface for processing multiple messages concurrently.
3 Supports an optional JMS interface for processing multiple messages concurrently.
4 Supports an optional JMS interface for processing multiple messages concurrently.

Chapter 1
Understanding the JMS API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 21

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/package-summary.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/package-summary.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/package-summary.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/package-summary.html

For information about configuring JMS resources, see Configuring Basic JMS System
Resources in Administering JMS Resources for Oracle WebLogic Server. The procedure for
setting up a JMS application is presented in Setting Up a JMS Application.

ConnectionFactory
ConnectionFactory encapsulates connection configuration information, and enables JMS
applications to create a Connection (see Connection). A connection factory supports
concurrent use, enabling multiple threads to access the object simultaneously. You can use the
pre configured default connection factories provided by WebLogic JMS, or you can configure
one or more connection factories to create connections with predefined attributes that suit your
application.

Using the Default Connection Factories
WebLogic Server supports the default connection factory as defined by the Jakartaa EE 9.1
specification. See Using the Default JMS Connection Factory Defined by Jakarta EE 9.1 in
Administering JMS Resources for Oracle WebLogic Server.

WebLogic JMS defines two default connection factories, which you can look up using the
following JNDI names:

• weblogic.jms.ConnectionFactory

• weblogic.jms.XAConnectionFactory

You only need to create a user-defined a connection factory if the settings of the default
factories are not suitable for your application. The main difference between the preconfigured
settings for the default connection factories is the default value for the "XA Connection Factory
Enabled" attribute which is used to enable JTA transactions, as shown in the following table.

Table 1-2 XA Transaction Settings for Default Connection Factories

Default Connection Factory XA Connection Factory Enabled setting is

weblogic.jms.ConnectionFactory False

weblogic.jms.XAConnectionFactory True

An XA factory is required for JMS applications to use JTA user transactions, but is not required
for transacted sessions. For more information about using transactions with WebLogic JMS,
see Using Transactions with WebLogic JMS.

All other default factory configuration attributes are set to the same default values as a user-
defined connection factory.

Another distinction when using the default connection factories is that you have no control over
targeting the WebLogic Server instances where the connection factory may be deployed.
However, you can disable the default connection factories on a per-server basis.

To deploy a connection factory on specific independent servers, on specific servers within a
cluster, or on an entire cluster, you must configure a new connection factory and specify the
appropriate target, as explained in Connection Factory Configuration in Administering JMS
Resources for Oracle WebLogic Server.

Chapter 1
Understanding the JMS API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 21

Note

For backward compatibility, WebLogic JMS still supports two deprecated default
connection factories. The JNDI names for these factories are
jakarta.jms.QueueConnectionFactory and jakarta.jms.TopicConnectionFactory.

Configuring and Deploying Connection Factories
A system administrator can define and configure one or more connection factories to create
connections with predefined attributes and WebLogic Server will add them to the JNDI space
during startup. The application then retrieves a connection factory using WebLogic JNDI. Any
user-defined connection factories must be uniquely named.

For information about configuring connection factories, see Configure Resources for JMS
System Modules in the Oracle WebLogic Remote Console Online Help.

A system administrator establishes cluster-wide, transparent access to JMS destinations from
any server in the cluster by targeting to the cluster or by targeting to one or more server
instances in the cluster. This way, each connection factory can be deployed on multiple
WebLogic Server instances. For more information about JMS clustering, refer to Configuring
Advanced WebLogic JMS Resources in Administering JMS Resources for Oracle WebLogic
Server.

The ConnectionFactory Class
The ConnectionFactory class does not define methods; however, its subclasses define
methods for the respective messaging models. A connection factory supports concurrent use,
enabling multiple threads to access the object simultaneously.

Note

For this release, you can use the JMS version 1.1 specification connection factories or
you can choose to use the subclasses.

Table 2-4 describes the ConnectionFactory subclasses.

Table 1-3 ConnectionFactory Subclasses

Subclass In Messaging Model Is Used to Create

QueueConnectionFactory PTP QueueConnection to a JMS PTP
provider.

TopicConnectionFactory Publish/Subscribe TopicConnection to a JMS Publish/
Subscribe provider.

To learn how to use the ConnectionFactory class within an application, see Developing a
Basic JMS Application, or the jakarta.jms.ConnectionFactory Javadoc at https://
javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/
ConnectionFactory.html.

Chapter 1
Understanding the JMS API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 21

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ConnectionFactory.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ConnectionFactory.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ConnectionFactory.html

JMSContext
JMSContext is the main interface introduced in the simplified API for JMS 2.0. For more
information about this interface, see New Interfaces in the Simplified JMS API.

Connection
A Connection represents an open communication channel between an application and the
messaging system, and is used to create a Session (see Session) for producing and
consuming messages. A connection creates server-side and client-side objects that manage
the messaging activity between an application and JMS. A connection may also provide user
authentication.

A Connection is created by ConnectionFactory (see ConnectionFactory), obtained through a
JNDI lookup.

Due to the resource overhead associated with authenticating users and setting up
communications, most applications establish a single connection for all messaging. In the
WebLogic Server, JMS traffic is multiplexed with other WebLogic services on the client
connection to the server. No additional TCP/IP connections are created for JMS. Servlets and
other server-side objects can also obtain JMS Connections.

By default, a connection is created in stopped mode. For information about how and when to
start a stopped connection, see Starting, Stopping, and Closing a Connection.

Connections support concurrent use, enabling multiple threads to access the object
simultaneously.

Note

For this release, you can use the JMS Version 1.1 specification connection objects or
you can choose to use the subclasses.

Table 2-5 describes the Connection subclasses.

Table 1-4 Connection Subclasses

Subclass In Messaging
Model

Is Used to Create

QueueConnection PTP QueueSessions, and consists of a connection to a JMS
PTP provider created by QueueConnectionFactory.

TopicConnection Pub/sub TopicSessions, and consists of a connection to a JMS
publish/subscribe provider created by
TopicConnectionFactory.

To learn how to use the Connection class within an application, see Developing a Basic JMS
Application, or the jakarta.jms.Connection Javadoc at https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Connection.html.

Chapter 1
Understanding the JMS API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 21

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Connection.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Connection.html

Session
A Session object defines a serial order for the messages produced and consumed, and can
create multiple message producers and message consumers. The same thread can be used
for producing and consuming messages. If you want an application to have a separate thread
for producing and consuming messages, then the application should create a separate session
for each function.

A Session is created by Connection (see Connection).

WebLogic JMS Session Guidelines
The JMS 1.1 Specification, at http://www.oracle.com/technetwork/java/jms/index.html,
allows for a generic session to have a MessageConsumer for any type of Destination object.
However, WebLogic JMS does not support having both types of MessageConsumer
(QueueConsumer and TopicSubscriber) for a single session. In addition, having multiple
consumers for a single session is not a common practice. The following commonly used
scenarios are supported:

• Using a single session with both a QueueSender and a TopicSubscriber or:
QueueConsumer and TopicPublisher.

• Multiple MessageProducers of any type.

Note

A session and its message producers and consumers can only be accessed by
one thread at a time. Their behavior is undefined if multiple threads access them
simultaneously.

Session Subclasses
Table 2-6 describes the Session subclasses.

Table 1-5 Session Subclasses

Subclass In Messaging Model Provides a Context for

QueueSession PTP Producing and consuming messages for a JMS PTP
provider. Created by QueueConnection.

TopicSession Pub/sub Producing and consuming messages for a JMS
publish/subscribe provider. Created by
TopicConnection.

To learn how to use the Session class within an application, see Developing a Basic JMS
Application, or the jakarta.jms.Session at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/Session.html, and the
weblogic.jms.extensions.WLSession Javadoc.

Chapter 1
Understanding the JMS API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 21

http://www.oracle.com/technetwork/java/jms/index.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Session.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Session.html

Non-Transacted Sessions
In a non-transacted session, the application creating the session selects one of the five
acknowledge modes defined in Table 2-7.

Table 1-6 Acknowledge Modes Used for Non-Transacted Sessions

Acknowledge Mode Description

AUTO_ACKNOWLEDGE The Session object acknowledges receipt of a message after
receiving application method has returned from processing it.

CLIENT_ACKNOWLEDGE The Session object relies on the application to call an acknowledge
method on a received message. After the method is called, the
session acknowledges all messages received since the last
acknowledge.

This mode allows an application to receive, process, and
acknowledge a batch of messages with one call.

DUPS_OK_ACKNOWLEDGE The Session object acknowledges receipt of a message after the
receiving application method has returned from processing it;
duplicate acknowledges are permitted.

This mode is most efficient in terms of resource usage.

Note: You should avoid using this mode if your application cannot
handle duplicate messages. Duplicate messages may be sent if an
initial attempt to deliver a message fails.

NO_ACKNOWLEDGE No acknowledgement is required. Messages sent to a
NO_ACKNOWLEDGE session are immediately deleted from the server.
Messages received in this mode are not recovered, and as a result
messages may be lost and/or duplicate message may be delivered
if an initial attempt to deliver a message fails.

This mode is supported for applications that do not require the
quality of service provided by session acknowledge, and that do not
want to incur the associated overhead.

Note: You should avoid using this mode if your application cannot
handle lost or duplicate messages. Duplicate messages may be
sent if an initial attempt to deliver a message fails.

MULTICAST_NO_ACKNOWLEDGE Multicast mode with no acknowledge required.

Messages sent to a MULTICAST_NO_ACKNOWLEDGE session share
the same characteristics as NO_ACKNOWLEDGE mode, described
previously.

This mode is supported for applications that want to support
multicasting, and that do not require the quality of service provided
by session acknowledge. For more information on multicasting, see
Using Multicasting with WebLogic JMS.

Note: Use only with topics. You should avoid using this mode if your
application cannot handle lost or duplicate messages. Duplicate
messages may be sent if an initial attempt to deliver a message
fails.

Transacted Sessions
In a transacted session, only one transaction is active at any time. Any number of messages
sent or received during a transaction are treated as an atomic unit.

Chapter 1
Understanding the JMS API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 21

When you create a transacted session, the acknowledge mode is ignored. When an
application commits a transaction, all the messages that the application received during the
transaction are acknowledged by the messaging system and messages it sent are accepted
for delivery. If an application rolls back a transaction, then the messages that the application
received during the transaction are not acknowledged and messages it sent are discarded.

JMS can participate in distributed transactions with other Java services, such as EJB, that use
the Java Transaction API (JTA). Transacted sessions do not support this capability because
the transaction is restricted to accessing the messages associated with that session. For more
information about using JMS with JTA, see Using JTA User Transactions.

Destination
A Destination object can be either a queue or topic, encapsulating the address syntax for a
specific provider. The JMS specification does not define a standard address syntax due to the
variations in syntax between providers.

Similar to a connection factory, an administrator defines and configures the destination, and
WebLogic Server adds it to the JNDI space during startup. Applications can also create
temporary destinations that exist only for the duration of the JMS connection in which they are
created.

Note

Administrators can also configure a distributed destination, which is a single set of
destinations (queues or topics) that are accessible as a single, logical destination to a
client. For more information, see Distributed Destinations.

On the client side, Queue and Topic objects are handles to the object on the server. Their
methods only return their names. To access them for messaging, you create message
producers and consumers that attach to them.

A destination supports concurrent use, enabling multiple threads to access the object
simultaneously. JMS Queue and Topic objects extend jakarta.jms.Destination method
described at https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/
jakarta/jms/Destination.html.

Note

For this release, you can use the JMS version 1.1 specification destination objects or
you can choose to use the subclasses.

Table 2-8 describes the Destination subclasses.

Table 1-7 Destination Subclasses

Subclass Messaging
Model

Manages Messages for

Queue PTP JMS point-to-point provider.

Chapter 1
Understanding the JMS API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 21

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Destination.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Destination.html

Table 1-7 (Cont.) Destination Subclasses

Subclass Messaging
Model

Manages Messages for

TemporaryQueue PTP JMS point-to-point provider, and exists for the duration of the
JMS connection in which the messages are created. A
temporary queue can be consumed only by the queue
connection that created it

Topic Pub/sub JMS publish/subscribe provider

TemporaryTopic Pub/sub JMS publish/subscribe provider, and exists for the duration
of the JMS connection in which the messages are created. A
temporary topic can be consumed only by the topic
connection that created it

Note

An application has the option of browsing queues by creating a QueueBrowser object in
its queue session. This object produces a snapshot of the messages in the queue at
the time the queue browser is created. The application can view the messages in the
queue, but the messages are not considered read and are not removed from the
queue. For more information about browsing queues, see Setting and Browsing
Message Header and Property Fields .

To learn how to use the Destination class within an application, see Developing a Basic JMS
Application, or the jakarta.jms.Destination Javadoc at https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Destination.html.

Distributed Destinations
A distributed destination resource is a single set of destinations (queues or topics) that are
accessible as a single, logical destination to a client (for example, a distributed topic has its
own JNDI name). The members of the set are typically distributed across multiple servers
within a cluster, with each member belonging to a separate JMS server. Applications that use a
distributed destination are more highly available than applications that use standalone
destinations because WebLogic JMS provides load balancing and failover for the members of
a distributed destination in a cluster.

• For more information about using a distributed destination with your applications, see
Using Distributed Destinations.

MessageProducer and MessageConsumer
A MessageProducer sends messages to a queue or topic. A MessageConsumer receives
messages from a queue or topic. Message producers and consumers operate independently of
one another. Message producers generate and send messages regardless of whether a
message consumer has been created and is waiting for a message, and vice versa.

A Session (see Session) creates the MessageProducers and MessageConsumers that are
attached to queues and topics.

Chapter 1
Understanding the JMS API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 21

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Destination.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Destination.html

The message sender and receiver objects are created as subclasses of the MessageProducer
and MessageConsumer classes.

Note

For this release, you can use the JMS version 1.1 specification message producer and
consumer objects or you can use the subclasses.

Table 2-9 describes the MessageProducer and MessageConsumer subclasses.

Table 1-8 MessageProducer and MessageConsumer Subclasses

Subclass In Messaging Model Performs this Function

QueueSender PTP Sends messages for a JMS point-to-point provider.

QueueReceiver PTP Receives messages for a JMS point-to-point provider

TopicPublisher Publish/subscribe Sends messages for a JMS Publish/subscribe
provider

TopicSubscriber Publish/subscribe Receives messages for a JMS Publish/subscribe
provider

The PTP model, as shown in the figure Figure 1-3, allows multiple sessions to receive
messages from the same queue. However, a message can only be delivered to one queue
receiver. When there are multiple queue receivers, WebLogic JMS defines the next queue
receiver that will receive a message on a first-come, first-serve basis.

The Publish/Subscribe model, as shown in the figure Figure 1-4, allows messages to be
delivered to multiple topic subscribers. Topic subscribers can be durable or non-durable, as
described in Setting Up Durable Subscriptions.

An application can use the same JMS connection to both publish and subscribe to a topic.
Because topic messages can be delivered to all subscribers, an application can receive
messages it has published itself. To prevent clients from receiving messages that they publish,
a JMS application can set a noLocal attribute on the topic subscriber, as described in Step 5:
Create Message Producers and Message Consumers.

To learn how to use the MessageProducer and MessageConsumer classes within an application,
see Setting Up a JMS Application, or the jakarta.jms.MessageProducer (at https://
javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/
MessageProducer.html), and jakarta.jms.MessageConsumer (at https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageConsumer.html)
Javadoc.

Messages
A Message encapsulates the information exchanged by applications. This information includes
three components:

• Message Header Fields

• Message Property Fields

• Message Body

Chapter 1
Understanding the JMS API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 21

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageProducer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageProducer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageProducer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageConsumer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageConsumer.html

Message Header Fields
Every JMS message contains a standard set of header fields that is included by default and
available to message consumers. Some fields can be set by the message producers.

For information about setting message header fields, see Setting and Browsing Message
Header and Property Fields , or to the jakarta.jms.Message Javadoc at https://
javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/
Message.htmll.

Table 2-10 describes the fields in the message headers and shows how values are defined for
each field.

Table 1-9 Message Header Fields

Field Description Defined by

JMSCorrelationID Specifies one of the following: a WebLogic JMSMessageID (field described
later in this table), an application-specific string, or a byte[] array. The
JMSCorrelationID field is used to correlate messages and is set directly on
the message by the application before send().

There are two common applications for this field.

The first application is to link messages by setting up a request/response
scheme, as follows:

1. When an application sends a message, it stores the JMSMessageID value
assigned to it.

2. When an application receives the message, it copies the JMSMessageID
into the JMSCorrelationID field of a response message that it sends
back to the sending application.

The second application is to use the JMSCorrelationID field to carry any
String you choose, enabling a series of messages to be linked with some
application-determined value.

Application

JMSDeliveryMode Specifies PERSISTENT or NON_PERSISTENT messaging. This field is set on
the producer or as parameter sent by the application before send().

When a persistent message is sent, it is stored in the WebLogic Persistent
Store. The send() operation is not considered successful until delivery of the
message can be guaranteed. A persistent message is guaranteed to be
delivered at least once.

WebLogic JMS does not store non-persistent messages in the persistent
store. This mode of operation provides the lowest overhead. They are
guaranteed to be delivered at least once unless there is a system failure, in
which case messages may be lost. If a connection is closed or recovered, all
non persistent messages that have not yet been acknowledged will be
redelivered. After a non persistent message is acknowledged, it will not be
redelivered.

This value is overwritten by a call to theproducer.send(), setting this value
directly on the message has no effect. The values set by the producer can be
queried using the message supplied to producer.send() or when the
message is received by a consumer.

send() method

Chapter 1
Understanding the JMS API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 21

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html

Table 1-9 (Cont.) Message Header Fields

Field Description Defined by

JMSDeliveryTime Defines the earliest absolute time at which a message can be delivered to a
consumer. This field is set by the application before send() and depends on
timeToDeliver, which is set on the producer.

This field can be used to sort messages in a destination and to select
messages. For purposes of data type conversion, the JMSDeliveryTime is a
long integer.

send() method

JMSDestination Specifies the destination (queue or topic) to which the message is to be
delivered. This field is set when creating producer or as parameter sent by the
application before send().

This value is overwritten by a call to producer.send(), setting this value
directly on the message has no effect. The values set by the producer can be
queried using the message supplied to producer.send() or when the
message is received by a consumer. When a message is received, its
destination value must be equivalent to the value assigned when it was sent.

send() method

JMSExpiration Specifies the expiration, or time-to-live value, for a message. This field is set
by the application before send(). Depends on timeToLive, which is set on
the producer or as a parameter sent by the application to send().

WebLogic JMS calculates the JMSExpiration value as the sum of the
application's time-to-live and the current GMT. If the application specifies time-
to-live as 0, then the JMSExpiration value is set to 0, which means the
message never expires.

WebLogic JMS removes expired messages from the system to prevent their
delivery.

send() method

JMSMessageID Contains a string value that uniquely identifies each message sent by a JMS
Provider. This field is set internally by send().

All JMSMessageIDs start with an ID: prefix.

This value is overwritten by a call to producer.send(), setting this value
directly on the message has no effect. The values set by the producer can be
queried using the message supplied to producer.send() or when the
message is received by a consumer. When the message is received, it
contains a provider-assigned value.

send() method

JMSPriority Specifies the priority level. This field is set on the producer or as parameter
sent by the application before send().

JMS defines ten priority levels, 0 to 9, 0 being the lowest priority. Levels 0-4
indicate gradations of normal priority, and level 5-9 indicate gradations of
expedited priority.

When the message is received, it contains the value specified by the method
sending the message.

send() method

JMSRedelivered Specifies a flag set when a message is redelivered because no acknowledge
was received. This flag is of interest to a receiving application.

If set, the flag indicates that JMS may have delivered the message previously
because one of the following is true:

• The application has already received the message, but did not
acknowledge it.

• The session's recover() method was called to restart the session
beginning after the last acknowledged message. For more information
about the recover() method, see Recovering Received Messages.

WebLogic JMS

Chapter 1
Understanding the JMS API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 21

Table 1-9 (Cont.) Message Header Fields

Field Description Defined by

JMSReplyTo Specifies a queue or topic to which reply messages should be sent. This field
is set directly on the message by the application before send().

This feature can be used with the JMSCorrelationID header field to
coordinate request/response messages.

Setting the JMSReplyTo field does not guarantee a response; it simply
enables the receiving application to respond.

Application

JMSTimestamp Contains the time at which the message was sent. WebLogic JMS writes the
timestamp in the message when it accepts the message for delivery, not when
the application sends the message.

When the message is received, it contains the timestamp.

The value stored in the field is a Java millis time value.

WebLogic JMS

JMSType Specifies the message type identifier (String) set directly on the message by
the application before send().

The JMS specification allows some flexibility with this field to accommodate
diverse JMS providers. Some messaging systems allow application-specific
message types to be used. For such systems, the JMSType field could be
used to hold a message type ID that provides access to the stored type
definitions.

WebLogic JMS does not restrict the use of this field.

Application

Message Property Fields
The property fields of a message contain header fields added by the sending application. The
properties are standard Java name/value pairs. Property names must conform to the message
selector syntax specifications defined in the jakarta.jms.Message Javadoc at https://
javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/
Message.html. The following values are valid: boolean, byte, double, float, int, long, short, and
String.

WebLogic Server supports the use of the following JMS (JMSX) defined properties as defined
in the JMS Specification, at http://www.oracle.com/technetwork/java/jms/index.html:

Table 1-10 JMSX Property

Type Description

JMSXUserID System generated property that identifies the user sending the
message. See Using the JMSXUserID Property.

JMSXDeliveryCount System generated property that specifies the number of message
delivery attempts where first attempt is 1

JMSXGroupID Identity of the message group

JMSXGroupSeq Sequence number of a message within a group

Although message property fields may be used for application-specific purposes, JMS provides
them primarily for use in message selectors. You determine how the JMS properties are used
in your environment. You can include them in some messages and omit them from others
depending upon your processing criteria. For more information, see:

• Setting and Browsing Message Header and Property Fields

Chapter 1
Understanding the JMS API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 21

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html
http://www.oracle.com/technetwork/java/jms/index.html

• Filtering Messages

• JMS Specification, described at http://www.oracle.com/technetwork/java/jms/
index.html

Message Body
A message body contains the content being delivered from the producer to the consumer.

Table 2-12 describes the types of messages defined by JMS. All message types extend
jakarta.jms.Message, at https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-
api/latest/jakarta/jms/Message.html, which consists of message headers and properties,
but no message body.

Table 1-11 JMS Message Types

Type Description

jakarta.jms.BytesMessage Stream of uninterpreted bytes, which must be understood by the
sender and receiver. The access methods for this message type
are stream-oriented readers and writers based on
java.io.DataInputStream and java.io.DataOutputStream.
See https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/
BytesMessage.html.

jakarta.jms.MapMessage Set of name/value pairs in which the names are strings and the
values are Java primitive types. Pairs can be read sequentially or
randomly, by specifying a name. See https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/
jakarta/jms/MapMessage.html.

jakarta.jms.ObjectMessage Single serializable Java object. See https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/
jakarta/jms/ObjectMessage.html.

jakarta.jms.StreamMessage Similar to a BytesMessage, except that only Java primitive types
are written to or read from the stream. See https://
javadoc.io/doc/jakarta.platform/jakarta.jakartaee-
api/latest/jakarta/jms/StreamMessage.html.

jakarta.jms.TextMessage Single String. The TextMessage can also contain XML content.
See https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/
TextMessage.html.

weblogic.jms.extensions.XML
Message

XML content. Use of the XMLMessage type facilitates message
filtering, which is more complex when performed on XML content
shipped in a TextMessage. See XMLMessage.

For more information, see the jakarta.jms.Message Javadoc at https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html. For more
information about the access methods and, if applicable, the conversion charts associated with
a particular message type, see the Javadoc for that message type.

Chapter 1
Understanding the JMS API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 21

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/BytesMessage.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/BytesMessage.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/BytesMessage.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MapMessage.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MapMessage.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MapMessage.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ObjectMessage.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ObjectMessage.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ObjectMessage.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/StreamMessage.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/StreamMessage.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/StreamMessage.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TextMessage.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TextMessage.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TextMessage.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html

ServerSessionPoolFactory

Note

Session pool and connection consumer configuration objects are deprecated. They
are not a required part of the Jakarta EE specification, do not support JTA user
transactions, and are largely superseded by message driven beans (MDBs), which are
simpler, easier to manage, and more capable. For more information about designing
MDBs, see Message-Driven EJBs in Developing Jakarta Enterprise Beans Using
Deployment Descriptors.

A server session pool is a WebLogic-specific JMS feature that enables you to process
messages concurrently. A server session pool factory is used to create a server-side
ServerSessionPool.

WebLogic JMS defines one ServerSessionPoolFactory object, by default:
weblogic.jms.extensions.ServerSessionPoolFactory:<name>, the <name> specifies the
name of the JMS server to which the session pool is created. The WebLogic Server adds the
default server session pool factory to the JNDI space during startup and the application
subsequently retrieves the server session pool factory using WebLogic JNDI.

To learn how to use the server session pool factory within an application, see #unique_66, or
the weblogic.jms.extnesions.ServerSessionPoolFactory Javadoc.

ServerSessionPool
A ServerSessionPool application server object provides a pool of server sessions that
connection consumers can retrieve in order to process messages concurrently.

A ServerSessionPool is created by the ServerSessionPoolFactory object (see
ServerSessionPoolFactory) obtained through a JNDI lookup.

To learn how to use the server session pool within an application, see #unique_66or the
jakarta.jms.ServerSessionPool application Javadoc at https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ServerSessionPool.html.

ServerSession
A ServerSession application server object enables you to associate a thread with a JMS
session by providing a context for creating, sending, and receiving messages.

A ServerSession application is created by a ServerSessionPool object, described in
ServerSessionPool.

To learn how to use the server session within an application, see #unique_66 or the
jakarta.jms.ServerSession Javadoc at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/ServerSession.html.

ConnectionConsumer
A ConnectionConsumer object uses a server session to process received messages. If
message traffic is heavy, then the connection consumer can load each server session with

Chapter 1
Understanding the JMS API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 19 of 21

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ServerSessionPool.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ServerSessionPool.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ServerSession.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ServerSession.html

multiple messages to minimize thread context switching. A ConnectionConsumer is created by
a Connection object, described in Connection.

To learn how to use the connection consumers within an application, see #unique_66, or the
jakarta.jms.ConnectionConsumer Javadoc at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/ConnectionConsumer.html.

Note

Connection consumer listeners run on the same JVM as the server.

Value-Added Public JMS API Extensions
WebLogic JMS is tightly integrated into the WebLogic Server platform, enabling you to build
highly secure Jakarta EE applications that can be easily monitored and administered through
the WebLogic Remote Console.

In addition to fully supporting XA transactions, WebLogic JMS also features high availability
through its clustering and service migration features, while also providing seamless
interoperability with other versions of WebLogic Server and third-party messaging providers.

For a detailed listing of these value-added features, see WebLogic Server Value-Added JMS
Features in Administering JMS Resources for Oracle WebLogic Server.

WebLogic Server Value-Added JMS Features
In addition to the standard JMS APIs specified by the JMS Specification, WebLogic Server
provides numerous weblogic.jms.extensions APIs, which includes the classes and methods
described in the Table 2-1.For more information about these APIs, see Java API Reference for
Oracle WebLogic Server.

Table 1-12 WebLogic JMS Public API Extensions

Interface/Class Function

ConsumerInfo,

DestinationInfo

Provides consumer and destination information to management
clients in CompositeData format.

JMSMessageFactoryImpl,

WLMessageFactory

Provides a factory and methods to:

• Create JMS messages
• Create JMS bytes messages
• Create JMS map messages
• Create JMS object messages
• CreateJMS stream messages
• Create JMS text messages
• Create JMS XML messages

JMSMessageInfo Provides browsing and message manipulation using JMX

JMSModuleHelper,

JMSNamedEntityModifier

Monitors JMS runtime MBeans and manages JMS Module
configuration entities in a JMS module

JMSRuntimeHelper Monitors JMS runtime JMX MBeans

MDBTransaction Associates a message delivered to a MDB (message-driven
bean) with a transaction

Chapter 1
Value-Added Public JMS API Extensions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 20 of 21

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ConnectionConsumer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ConnectionConsumer.html

Table 1-12 (Cont.) WebLogic JMS Public API Extensions

Interface/Class Function

WLDestination Determines if a destination is a queue or a topic

WLMessage Sets a delivery time for messages, redelivery limits, and send
timeouts

Java API Reference for Oracle
WebLogic
ServerWLMessageProducer

Sets a message delivery times for producers and Unit-of-Order
names

WLJMSContext Provides additional fields and methods that are not supported by
jakarta.jms.JMSContext. WLJMSContext provides the same
extension features as WLConnection and WLSession

WLJMSProducer Provides additional methods that are not supported by
jakarta.jms.JMSProducer.

WLQueueSession,

WLSession,

WLTopicSession

Provides additional fields and methods that are not supported by
jakarta.jms.QueueSession, jakarta.jms.Session, and
jakarta.jms.TopicSession

XMLMessage Creates XML messages

Schedule Sets a scheduled delivery times for messages

JMSHelper Monitors JMS runtime MBeans.

Deprecated in this release of WebLogic Server. Replaced by
JMSModuleHelper.

ServerSessionPoolFactory,

ServerSessionPoolListener

Provides interfaces for creating server session pools and
message listeners

Note: Session pool configuration objects are deprecated. They
are not a required part of the Jakarta EE specification, do not
support JTA user transactions, and are largely superseded by
message-driven beans (MDBs), which are a required part of
Jakarta EE. For more information on designing MDBs, see
Developing Message-Driven Beans for Oracle WebLogic Server.

This API also supports NO_ACKNOWLEDGE and MULTICAST_NO_ACKNOWLEDGE acknowledge modes,
and extended exceptions, including throwing an exception:

• To the session exception listener (if set), when one of its consumers has been closed by
the server as a result of a server failure or administrative intervention.

• From a multicast session when the number of messages received by the session, but not
yet delivered to the message listener, exceeds the maximum number of messages allowed
for that session.

• From a multicast consumer when it detects a sequence gap (message received out of
sequence) in the data stream.

Chapter 1
Value-Added Public JMS API Extensions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 21 of 21

2
Best Practices for Application Design

Learn about the design options for WebLogic Server JMS, application behaviors to be
considered during the design process, and the recommended design patterns.

Message Design
Learn how to design messages to improve messaging performance.

Serializing Application Objects
The CPU cost of serializing Java objects can be significant. This expense, in turn, affects JMS
Object messages. You can offset some of this cost by having application objects implement
thejava.io.Externalizable, but there still will be significant overhead in marshalling the class
descriptor. To avoid the cost of having to write the class descriptors of additional objects
embedded in an Object message, have these objects implement Externalizable, and call
readExternal and writeExternal on them directly. For example, call
obj.writeExternal(stream) rather than the stream.writeObject(obj). Using Bytes and
Stream messages is generally a preferred practice.

Serializing Strings
Serializing Java strings is more expensive than serializing other Java primitive types. Strings
are also memory intensive; they consume two bytes of memory per Character, and cannot
compactly represent binary data (integers, for example). In addition, the introduction of string-
based messages often implies an expensive parse step in the application in order to process
the String into something the application can make direct use of. Bytes, Stream, Map and
Object messages are therefore sometimes preferable to Text and XML messages. Similarly, it
is preferable to avoid the use of strings in message properties, especially if they are large.

Server-side Serialization
WebLogic JMS servers do not incur the cost of serializing non persistent messages.
Serialization of non persistent message types is incurred by the remote client. Persistent
messages are serialized by the server.

Selection
Using a selector is expensive. This consideration is important when you are deciding where in
the message to store application data that is accessed through JMS selectors.

Message Compression
Compressing large messages in a JMS application can improve performance.

Message compression reduces the amount of time required to transfer messages across the
network, reduces the amount of memory used by the JMS server, and, if the messages are

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

persistent, reduces the size of persistent writes. Text and XML messages can often be
compressed significantly. Of course, compression is achieved at the expense of an increase in
the CPU usage of the client.

Keep in mind that the benefits of compression become questionable for smaller messages. If a
message is less than a few KB in size, then compression can actually increase its size. The
JDK provides built-in compression libraries. For details, see the java.util.zip package.

For information about using JMS connection factories to specify the automatic compression of
messages that exceed a specified threshold size, see Compressing Messages in the Tuning
Performance of Oracle WebLogic Server.

Message Properties and Message Header Fields
Instead of user-defined message properties, consider using standard JMS message header
fields or the message body for message data. Message properties incur an extra cost in
serialization, and are more expensive to access than standard JMS message header fields.

Avoid embedding large amounts of data in the properties field or the header fields; only
message bodies are paged out when paging is enabled. Consequently, if user defined
message properties are defined in an application, avoid the use of large string properties.

See Message Header Fields and Message Property Fields .

Message Ordering
You should use the Message Unit-of-Order feature rather than Ordered Redelivery to
guarantee ordered message processing.

The advantages of Message Unit-of-Order over Ordered Redelivery are:

• Ease of configuration.

– Does not require a custom connection factory for asynchronous receivers, such as
setting the MessagingMaximum to 1 when using message-driven beans (MDBs).

– Simple configuration when using distributed destinations.

• Preserves message order during processing delays.

• Preserves message order during transaction rollback or session recovery.

Oracle recommends applications that use Ordered Redelivery upgrade to Message Unit-of-
Order. See Using the Message Unit-of-Order.

Topics Vs. Queues
When you start to design your application, it is not always immediately obvious whether it
would be better to use a Topic or Queue.

You should use a Topic only if one of the following conditions applies:

• The same message must be replicated to multiple consumers.

• A message should be dropped if there are no active consumers that will select it.

• There are many subscribers, each with a unique selector.

Note that a topic with a single durable subscriber is semantically similar to a queue. The
differences are as follows:

Chapter 2
Message Properties and Message Header Fields

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

• If you change a topic selector for a durable subscriber, then all previous messages in the
subscription are deleted, while if you change a queue selector for consumer, then no
messages in the queue are deleted.

• A queue may have multiple consumers, and will distribute its messages in a round-robin
fashion, whereas a topic subscriber is limited to one consumer.

For more information about configuring JMS queues and topics, see Queue and Topic
Destination Resources in Administering JMS Resources for Oracle WebLogic Server.

Asynchronous Vs. Synchronous Consumers
In general, asynchronous (onMessage) consumers perform and scale better than synchronous
consumers.

• Asynchronous consumers create less network traffic. Messages are pushed
unidirectionally, and are pipelined to the message listener. Pipelining supports the
aggregation of multiple messages into a single network call.

Note

– In WebLogic Server, your synchronous consumers can also use the same
efficient behavior as asynchronous consumers by enabling the Prefetch Mode
for Synchronous Consumers option on JMS connection factories, as
described in Use Prefetch Mode to Create a Synchronous Message Pipeline.

– WebLogic Server JMS does not support synchronous and asynchronous
consumers on the same session.

• Asynchronous consumers use fewer threads. An asynchronous consumer does not use a
thread while it is inactive. A synchronous consumer consumes a thread for the duration of
its receive call. As a result, a thread can remain idle for long periods, especially if the call
specifies a blocking timeout.

• For application code that runs on a server, it is almost always best to use asynchronous
consumers, typically through MDBs. The use of asynchronous consumers prevents the
application code from doing a blocking operation on the server. A blocking operation, in
turn, idles a server-side thread; it can even cause deadlocks. Deadlocks occur when
blocking operations consume all threads. When no threads remain to handle the
operations required to unblock the blocking operation itself, that operation never stops
blocking.

For more information, see Receiving Messages Asynchronously using the Classic API and
Receiving Messages Synchronously Using the Classic API.

Persistent Vs. Non Persistent Messages
When designing an application, make sure you specify that messages will be sent in non
persistent mode unless a persistent QOS is required.

Oracle recommends non persistent mode because unless synchronous writes are disabled, a
persistent QOS can cause a significant degradation in performance.

Chapter 2
Asynchronous Vs. Synchronous Consumers

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

Note

Avoid persisting sending persistent messages unintentionally. Occasionally an
application sends persistent messages even though the designer intended the
messages to be sent in non persistent mode.

If your messages are truly non persistent, none should end up in a regular JMS store. To make
sure that none of your messages are persistent, check whether the JMS store size grows when
unconsumed messages are accumulating on the JMS server. Here is how message
persistence is determined, in order of precedence:

• Producer's connection's connection factory configuration:

– PERSISTENT (default)

– NON_PERSISTENT

• JMS Producer API override on QueueSender and TopicPublisher:

– setDeliveryMode(DeliveryMode.PERSISTENT)

– setDeliveryMode(DeliveryMode.NON_PERSISTENT)

– setDeliveryMode(DeliveryMode.DEFAULT_DELIVERY_MODE) (default)

• JMS Producer API per message override on QueueSender and TopicPublisher:

– For queues, optional deliveryMode parameter on send()

– For topics, optional deliveryMode parameter on publish()

• Override on destination configuration:

– Persistent

– Non Persistent

– No Delivery (default, implies no override)

• Override on JMS server configuration:

– If store is configured then that implies using the default persistent store that is
available on each targeted WebLogic Server instance

– If a Store is configured then that implies no override.

• Non durable subscribers only:

– If there are no subscribers, or there are only non durable subscribers for a topic, the
messages will be downgraded to non persistent. (Because non durable subscribers
exist only for the life of the JMS server, there is no reason for the message to persist.)

• Temporary destinations:

– Because temporary destinations exist only for the lifetime of their host JMS server,
there is no reason for messages to persist. WebLogic JMS automatically forces all
messages in a temporary destination to non-persistent.

Durable subscribers require a persistent store to be configured on their JMS server, even if
they receive only non persistent messages. A durable subscription persists to ensure that it
continues through a server restart, as required by the JMS specification.

Chapter 2
Persistent Vs. Non Persistent Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

Deferring Acknowledges and Commits
Because sending is generally faster than receiving , consider reducing the overhead
associated with receiving by deferring acknowledgment of messages until several messages
have been received and can be acknowledged collectively.

If you are using transactions, then substitute the word commit for acknowledge.

Deferment of acknowledgements is not likely to improve performance for non durable
subscriptions, because of the internal optimizations already in place.

It may not be possible to implement deferred acknowledgements for asynchronous listeners. If
an asynchronous listener acknowledges only every 10 messages, but for some reason
receives only 5, then the last few messages may not be acknowledged. One possible solution
is to have the asynchronous consumer post synchronous, non blocking receives from within its
onMessage() callback to receive subsequent messages. Another possible solution is to have
the listener start a timer that, when triggered, sends a message to the listener's destination in
order to wake it up and complete the outstanding work that has not yet been acknowledged—
assuming that the wake-up message can be directed at the correct listener.

Using AUTO_ACK for Non Durable Subscribers
Non durable, non transactional topic subscribers are optimized to store local copies of the
message on the client side, thus reducing network overhead when acknowledgements are
being issued.

This optimization yields a 10-20 percent performance improvement, where the improvement is
more evident under higher subscriber loads.

One side effect of this optimization, particularly for high numbers of concurrent topic
subscribers, is the overhead of client-side garbage collection, which can degrade performance
for message subscriptions. To prevent such degradation, Oracle recommends allocating a
larger heap size on the subscriber client. For example, in a test of 100 concurrent subscribers
running in 10 JVMs, it was found that giving clients an initial and maximum heap size of 64MB
for each JVM was sufficient.

Alternative Qualities of Service, Multicast and No-Acknowledge
WebLogic JMS provides alternative qualities of service (QOS) extensions that can help
performance.

Using MULTICAST_NO_ACKNOWLEDGE
Non durable topic subscribers can subscribe to messages using the
MULTICAST_NO_ACKNOWLEDGE. If a topic has such subscribers, then the JMS server will
broadcast messages to them using multicast mode. Multicast improves performance
considerably and provides linear scalability, as the network only needs to handle one message,
regardless of the number of subscribers, rather than one message per subscriber. Multicast
messages may be lost if the network is congested or if the client falls behind in processing
them. Calls to recover() or acknowledge() have no effect on multicast messages.

Chapter 2
Deferring Acknowledges and Commits

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

Note

On the client side, each multicasting session requires a dedicated thread to retrieve
messages off the multicast socket. Therefore, you should increase the JMS client-side
thread pool size to adjust for this.

This QOS extension has the same level of guarantee as some JMS implementations default
QOS from vendors other than Oracle WebLogic Server for non durable topic subscriptions. The
JMS 1.1 specification specifically allows non durable topic messages to be dropped (deleted) if
the subscriber is not ready for them. WebLogic JMS has a higher QOS for non durable topic
subscriptions by default than the JMS 1.1 specification requires.

Using NO_ACKNOWLEDGE
A no-acknowledge delivery mode implies that the server gives messages to consumers, but
does not expect an acknowledgement to be called. Instead, the server pre-acknowledges the
message. In this acknowledge mode, calls to recover will not work, because the message was
acknowledged. This mode saves the overhead of an additional network call to the
acknowledge, at the expense of possibly losing a message when a server failure, a network
failure, or a client failure occurs.

Note

If an asynchronous client calls the close() in this scenario, then all messages in the
asynchronous pipeline are lost.

Asynchronous consumers that use a NO_ACKNOWLEDGE QOS may want to reduce their message
pipeline size in order to lower the number of lost messages in the event of a failure.

Avoid Multi threading
The JMS specification states that multi threading a session, producer, consumer, or message
method results in undefined behavior except when calling close().

See the specification at http://www.oracle.com/technetwork/java/jms/index.html. If your
application is thread limited, then try increasing the number of producers and sessions.

Using the JMSXUserID Property
For WebLogic Server 9.0 and later, you can configure a JMS connection factory and
destination to automatically propagate the message sender's authenticated username. The
username is placed in a jakarta.jms.Message property named JMSXUserID.

Consider the following points when using the JMSXUserID property in your application.

• While the JMS specification makes some mention of the JMSXUserID property, the behavior
is lightly defined and will likely be different for different JMS vendors.

• The JMSXUserID property is based on the credential of the thread an application uses to
create the JMS producer. It does not derive from the credential that is on a thread during
the JMS send call itself.

Chapter 2
Avoid Multi threading

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

http://www.oracle.com/technetwork/java/jms/index.html

• JMS will ignore or override any attempt by an application to directly set JMSXUserID (for
example, jakarta.jms.Message.setXXXProperty() will not work).

• JMS messages are not signed or encrypted (similar to any RMI/EJB call). Therefore, fully
secure transfers of the JMSXUserID require sending the message through secure protocols
(for example, t3s or https).

• WebLogic Store-and-Forward agents do not propagate the JMSXUserID (they null it out).

• WebLogic Messaging bridges will propagate JMSXUserID property of the source
destination's message if the messaging bridges are both are forwarding to a 9.0 or later
JMS server and are configured to Preserve Message Properties. Otherwise, the
forwarded message will either contain no username or the username used by the bridge
sender. The latter behavior is determined by the configuration of the bridge sender's
connection factory and destination.

• The WebLogic JMS WLMessageProducer.forward() extension can forward a received
message's JMSXUserID.

Note

The JMSXUserID property interoperability behavior for WebLogic JMS clients prior
to 9.0 is undetermined.

Performance and Tuning
Implement the performance tuning features available with WebLogic JMS and get the most out
of your applications.

See Tuning WebLogic JMS in Tuning Performance of Oracle WebLogic Server.

Chapter 2
Performance and Tuning

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

3
Enhanced Support for Using WebLogic JMS
with EJBs and Servlets

Learn about WebLogic Server enhancements, such as JMS wrappers, that extend the Jakarta
EE standard to make it easier to access EJB and servlet containers with WebLogic JMS or
third-party JMS providers. Implementing JMS wrapper support is the best practice method of
how to send a WebLogic JMS message from inside an EJB or servlet.

Enabling WebLogic JMS Wrappers
WebLogic Server uses JMS wrappers that make it easier to use WebLogic JMS inside a
Jakarta EE component, such as an EJB or a servlet.

The JMS wrappers also provide a number of enhanced usability and performance features:

• Automatic pooling of JMS connection and session objects (and some pooling of message
producer objects as well)

• Automatic transaction enlistment for WebLogic JMS implementations and for third-party
JMS providers that support two-phase commit transactions (XA protocol)

• Testing of the JMS connection, as well as reestablishment after a failure

• Security credentials that are managed by the EJB or servlet container

The following sections provide information on how to use WebLogic JMS wrappers:

Declaring a JMSContext Object Using @Inject Annotation
WebLogic Server 12.2.1 release supports the JMS 2.0 simplified API, which enables you to
inject a JMSContext object into the application using the @Inject annotation as follows:

@Inject
@JMSConnectionFactory("myJMSCF")
@JMSPasswordCredential(userName="admin", password="admin_password")private
JMSContext context;

The @Inject annotation determines when the container should create the JMSContext object.

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 19

Note

• Injection should be enabled for the class. Depending on the class being used and
the archive in which it is packaged, it may be necessary to specify a beans.xml
file. For more information, see Using Contexts and Dependency Injection for the
Jakarta EE Platform in Developing Applications for Oracle WebLogic Server.

• If the injected JMSContext is null and if your application fails, then review the
server log. If the connection factory could not be found, you can see that error in
the server log. If there is no error in the server log then the application failure is
probably due to a missing beans.xml file.

Specifying a Lookup Name in JMSContext Injection
When injecting a JMSContext object, you can use the @JMSConnectionFactory annotation to
specify the product-specific global JNDI look up name of a connection factory to be used by
the container.

Note

When you provide a product-specific global JNDI name for the connection factory
annotation, you cannot override it using a resource reference in the deployment
descriptor of the container.

Alternatively, you can specify a fully qualified resource reference name of the form
java:comp/env/res-ref-name as follows:

@Inject
@JMSConnectionFactory("java:comp/env/res-ref-name")
private JMSContext context;

In this case, the resource reference name must be defined using a <resource-ref> element in
the deployment descriptor that maps it to an appropriate product-specific global JNDI name.
See Declaring a Wrapped JMS Factory using Deployment Descriptors.

If no lookup name is provided for the @JMSConnectionFactory annotation, then the Jakarta EE
platform default JMS connection factory (java:comp/DefaultJMSConnectionFactory) will be
used.

Determining the Authentication Type for JMSContext Injection
The JMSContext injection cannot use the resource reference to determine whether the
connection factory should use container authentication or application authentication. Instead,
you can use the @JMSPasswordCredential annotation to specify the type of authentication
required.

If you specify the @JMSPasswordCredential annotation then the connection factory will use
password authentication, and the specified user and password. If the @JMSPasswordCredential
annotation is not defined then the connection factory will use container authentication.

Chapter 3
Enabling WebLogic JMS Wrappers

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 19

Declaring JMS Objects as Resources In the EJB or Servlet Deployment
Descriptors

The following sections provide information on declaring JMS objects as resources:

For more information about packaging EJBs, see Implementing Enterprise JavaBeansin
Developing Jakarta Enterprise Beans Using Deployment Descriptors. For more information
about programming servlets, see Creating and Configuring Servlets in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

Declaring a Wrapped JMS Factory using Deployment Descriptors

Note

New applications will likely use EJB 3.0 annotations instead of deployment
descriptors. Annotations are described in Declaring JMS Destinations and Connection
Factories Using Annotations.

You can declare a JMS connection factory as part of an EJB or servlet by defining a resource-
ref element in the ejb-jar.xml or web.xml file, respectively. This process creates a "wrapped"
JMS connection factory that can benefit from the more advanced session pooling, automatic
transaction enlistment, connection monitoring, and container-managed security features
described in Improving Performance Through Pooling.

Here is an example of such a connection factory element:

<resource-ref>
 <res-ref-name>jms/QCF</res-ref-name>
 <res-type>jakarta.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

This element declares that a JMS QueueConnectionFactory object be bound into JNDI, at the
location:

java:comp/env/jms/QCF

This JNDI name is only valid inside the context of the EJB or servlet where the resource-ref
is declared, which is what the java:comp/env JNDI context signifies.

In addition to this element, there must be a matching resource-description element in the
ejb-jar.xml (for EJBs) or weblogic.xml (for servlets) file that tells the Jakarta EE container
which JMS connection factory to put in that location. Here is an example:

<resource-description>
 <res-ref-name>jms/QCF</res-ref-name>
 <jndi-name>weblogic.jms.ConnectionFactory</jndi-name>
</resource-description>

The connection factory specified here must already exist in the global JNDI tree. (This example
uses one of the default JMS connection factories that is automatically created when the built-in
WebLogic JMS server is used). To use another WebLogic JMS connection factory from the
same cluster, include that connection factory's JNDI name inside the jndi-name element. To

Chapter 3
Enabling WebLogic JMS Wrappers

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 19

use a connection factory from another vendor, or from another WebLogic Server cluster, create
a Foreign JMS Server.

If the JNDI name specified in the resource-description element is incorrect, then the
application is still deployed. However, you will receive an error when you try to use the
connection factory.

Declaring JMS Destinations using Deployment Descriptors
You can define a JMS destination resource in a web module, EJB module, application client
module, or in an application deployment descriptor using the jms-destination or resource-
env-ref descriptor elements.

Note

New applications will likely use EJB 3.2 annotations instead of deployment
descriptors. Annotations are described in Declaring JMS Destinations and Connection
Factories Using Annotations.

The transaction enlistment, pooling, connection monitoring features take place in the
connection factory, not in the destinations. However, this feature is useful for consistency, and
to make an application less dependent on a particular configuration of WebLogic Server, since
destinations can easily be modified by simply changing the corresponding jms-destination or
resource-env-ref description, without having to recompile the source code

Declaring JMS Destinations Using the jms-destination Element
You can define a JMS destination resource using the jms-destination element in the ejb-
jar.xml or web.xml deployment descriptors. It creates the destination and binds it to the
appropriate naming context based on the namespace specified.

The following example defines a queue destination myQueue1 that is bound to JNDI at the
location java:app/MyJMSDestination:

<jms-destination>
 <description>JMS Destination definition</description>
 <name>java:app/MyJMSDestination</name>
 <interface-name>jakarta.jms.Queue</interface-name>
 <destination-name>myQueue1</destination-name>
 <property>
 <name>Property1</name>
 <value>10</value>
 </property>
 <property>
 <name>Property2</name>
 <value>20</value>
 </property>
</jms-destination>

For more information about the jms-destination element and its attributes, see the schema at
http://xmlns.jcp.org/xml/ns/javaee/javaee_7.xsd.

Chapter 3
Enabling WebLogic JMS Wrappers

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 19

http://xmlns.jcp.org/xml/ns/javaee/javaee_7.xsd

Declaring JMS Destinations Using the resource-env-ref Element
You can also bind a JMS queue or topic destination into the java:comp/env JNDI tree by
declaring it as a resource-env-ref element in the ejb-jar.xml or web.xml deployment
descriptors.

For resource-env-ref description, the queue or topic destination specified in the descriptor
must already exist in the global JNDI tree. Again, if the destination does not exist, then the
application is deployed, but an exception is thrown when you try to use the destination.

Here is an example of such a queue destination element:

<resource-env-ref>
 <resource-env-ref-name>jms/TESTQUEUE</resource-env-ref-name>
 <resource-env-ref-type>jakarta.jms.Queue</resource-env-ref-type>
</resource-env-ref>

This element declares that a JMS Queue destination object will be bound into JNDI, at the
location:

java:comp/env/jms/TESTQUEUE

As with a referenced connection factory, this JNDI name is only valid inside the context of the
EJB or servlet where the resource-ref is declared.

You must also define a matching resource-env-description element in the weblogic-ejb-
jar.xml or weblogic.xml file. This provides a layer of indirection that enables you to easily
modify referenced destinations just by changing the corresponding resource-env-ref
deployment descriptors.

<resource-env-description>
 <resource-env-ref-name>jms/TESTQUEUE</resource-env-ref-name>
 <jndi-name>jmstest.destinations.TESTQUEUE</jndi-name>
</resource-env-description>

Referencing a Packaged JMS Application Module In Deployment Descriptor
Files

When you package a JMS module with an enterprise application, you must reference the JMS
resources within the module in all applicable descriptor files of the Jakarta EE application
components, including:

• The WebLogic enterprise descriptor file, weblogic-application.xml

• Any WebLogic deployment descriptor file, such as weblogic-ejb-jar.xml or
weblogic.xml

• Any Jakarta EE descriptor file, such as EJB (ejb-jar.xml) or WebApp (web.xml) files

Referencing Application Modules in a weblogic-application.xml Descriptor
When including JMS modules in an enterprise application, you must list each JMS module as a
module element of type JMS in the weblogic-application.xml descriptor file packaged with
the application, and a path that is relative to the root of the Jakarta EE application. Here is an
example of a reference to a JMS module name Workflows:

<module>
 <name>Workflows</name>

Chapter 3
Enabling WebLogic JMS Wrappers

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 19

 <type>JMS</type>
 <path>jms/Workflows-jms.xml</path>
</module>

Referencing JMS Resources in a WebLogic Application
Within any weblogic-foo descriptor file, such as EJB (weblogic-ejb-jar.xml) or WebApp
(weblogic.xml), the name of the JMS module is followed by a number (#) separator character,
which is followed by the name of the resource inside the module. For example, a JMS module
named Workflows that contains a queue named OrderQueue, would have a name of
Workflows#OrderQueue.

<resource-env-description>
 <resource-env-ref-name>jms/OrderQueue</resource-env-ref-name>
 <resource-link>Workflows#OrderQueue</resource-link>
</resource-env-description>

Note that the <resource-link> element is unique to WebLogic Server, and is how the
resources that are defined in a JMS module are referenced (linked) from the other Jakarta EE
Application components.

Referencing JMS Resources in a Jakarta EE Application
The name element of a JMS connection factory resource specified in the JMS module must
match the res-ref-name element defined in the referring EJB or WebApp application
descriptor file. The res-ref-name element maps the resource name (used by java:comp/env)
to a module referenced by an EJB.

For queue or topic destination resources specified in the JMS module, the name element must
match the resource-env-ref field defined in the referring module descriptor file.

That name is how the link is made between the resource referenced in the EJB or web
application module and the resource defined in the JMS module. For example:

<resource-ref>
 <res-ref-name>jms/OrderQueueFactory</res-ref-name>
 <res-type>jakarts.jms.ConnectionFactory</res-type>
</resource-ref>
<resource-env-ref>
 <resource-env-ref-name>jms/OrderQueue</resource-env-ref-name>
 <resource-env-ref-type>jakarta.jms.Queue</resource-env-ref-type>
 </resource-env-ref>

Declaring JMS Destinations and Connection Factories Using Annotations
WebLogic Server 10.0 and later releases support the EJB 3.0 programming model which uses
annotations to configure metadata, eliminating the need for deployment descriptors. You can
declare JMS objects using the @Resources annotation as described in Standard JDK
Annotations Used By EJB 3.0 in Developing Jakarta Enterprise Beans for Oracle WebLogic
Server.

Injecting Resource Dependency into a Class
If you apply the @Resource to a class, then the resource is made available in the comp/env
context. The following is an example of how to inject a WebLogic JMS destination and
connection factory resource in a Jakarta EE application, including EJBs, MDBs, and servlets.

Example 4-1 is a Wrapped JMS Pooling Annotation example:

Chapter 3
Enabling WebLogic JMS Wrappers

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 19

Example 3-1 Wrapped JMS Pooling Annotation Example

.

.

.
// The "name=" or "type=" are not always required,
// "mappedName=" is usually sufficient.
@Resource(name="ReplyQueue",
 type=jakarta.jms.Queue.class,
 mappedName="jms/ReplyQueue") Destination rq;
.
.
.
@Resource(name="ReplyConnectionFactory",
 type=jakarta.jms.ConnectionFactory.class,
 mappedName = "jms/ConnectionFactory") ConnectionFactory cf;
.
.
.

Non-Injected EJB 3.0 Resource Reference Annotations
Injected resource dependencies are resolved when the host EJB or servlet is instantiated. You
may not want injected resource because:

• The injection may prevent applications from deploying successfully if the container
attempts to resolve references during deployment.

• You might want to defer reference resolution until the application is first invoked.

You can setup a non-injected resource reference by placing the @Resources annotation above
the class definition. An application can resolve such references at runtime by looking up the
reference in the bean context. As a best practice, the bean or servlet should also cache the
result in order to avoid the overhead of repeated lookups as shown in Example 4-2:

For a full example, see EJB 3.0 Wrapper Without Injection.

Example 3-2 Non-Injected Resource Example

.

.

.
@Resources ({
 @Resource(name="targetCFRef",
 mappedName="TargetCFJNDIName",
 type=jakarta.jms.ConnectionFactory.class),

 @Resource(name="targetDestRef",
 mappedName="TargetDestJNDIName",
 type=jakarta.jms.Destination.class)
})

@Stateless(mappedName="StatelessBean")
public class MyStatelessBean implements MyStateless {

 @Resource
 private SessionContext sctx; // inject the bean context

 private ConnectionFactory targetCF;
 private Destination targetDest;

 public void completeWorkOrder() {

Chapter 3
Enabling WebLogic JMS Wrappers

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 19

 // Lookup the JMS resources and cache for re-use. Note that a
 // "java:/comp/env" prefix isn't needed for EJB3.0 bean contexts.

 if (targetCF == null) targetCF =
 (jakarta.jms.ConnectionFactory)sctx.lookup("targetCFRef");

 if (targetDest == null) targetDest =
 (jakarta.jms.Destination)sctx.lookup("targetDestRef");
.
.
.

Avoid Transactional XA Interfaces
With resource wrapping, do not use the jakarta.jms XA transactional XA interfaces. The
container uses them internally if the JMS code is used inside a transaction context. This allows
your EJB application code to run EJBs in an environment where transactions are present or in
a non-transactional environment, just by changing the deployment descriptors.

Disabling Wrapping and Pooling
It is sometimes desirable to leverage resource references but disable resource reference
wrapping and pooling.

To disable resource wrapping and pooling, use the deployment descriptor approach, but
change the res-type to java.lang.Object.class in the resource-ref stanza for the
connection factory. There is currently no known way to disable wrapping and pooling using
annotations.

What's Happening Under the JMS Wrapper Covers
Understand what is actually taking place under the covers when WebLogic Server creates a
set of wrappers around the JMS objects.

For example, the code fragment in Sending a JMS Message in a Jakarta EE Container, shows
an instance of a WebLogic-specific wrapper class being returned, rather than the actual JMS
connection factory because the connection factory was looked up from the java:comp/env
JNDI tree. This wrapper object intercepts certain calls to the JMS provider and inserts the
correct Jakarta EE behavior, as described in the following sections.

Automatically Enlisting Transactions
Automatically Enlisting Transaction works for either WebLogic JMS implementations or for
third-party JMS providers that support two-phase commit transactions (XA protocol). If a
wrapped JMS connection sends or receives a message inside a transaction context, then the
JMS session being used to send or receive the message is automatically enlisted in the
transaction through the XA capabilities of the JMS provider. This is the case whether the
transaction was started implicitly because the JMS code was invoked inside an EJB with
container-managed transactions enabled, or whether the transaction was started manually
using the UserTransaction interface in a servlet or an EJB that supports bean-managed
transactions.

However, if an EJB or servlet attempts to send or receive a message inside a transaction
context and the JMS provider does not support XA, the send() or receive() call throws the
following exception:

Chapter 3
Disabling Wrapping and Pooling

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 19

[J2EE:160055] Unable to use a wrapped JMS session in the transaction because two-phase
commit is not available.

Therefore, if you are using a JMS provider that doesn't support XA to send or receive a
message inside a transaction, then either declare the EJB with a transaction mode of
NotSupported or suspend the transaction using one of the JTA APIs.

Container-Managed Security
WebLogic JMS uses the security credentials that are present on the thread when the EJB or
servlet container is invoked. For foreign JMS providers, however, when you declare a JMS
connection factory through a resource-ref element in the ejb-jar.xml or web.xml file, there is
an optional sub element called res-auth. This element may have one of two settings:

Container — When you set the res-auth element to Container, security to the JMS provider
is managed by the Jakarta EE container. In this case, if the JMS connection factory was
mapped into the JNDI tree using a Foreign JMS Connection Factory configuration MBean, then
the user name and password from that MBean is used. Otherwise, WebLogic Server connects
to the provider with no user name or password specified and throws an error if the
createConnection() method is used to pass a user name and password to the connection
factory.

Application — When you set the res-auth element to Application, any user name or
password on the MBean is ignored. Instead, the application code must specify a user name
and password to the createConnection(String userName, String password) method of the
JMS connection factory, or use the version of createConnection() with no parameters if the
user name or password are not required.

Note

When you inject a JMSContext object into the application and if the JNDI name of the
connection factory is specified by @JMSConnectionFactory, then container
authentication is used. If you specify the username and password in the
@JMSPasswordCredential annotation to specify the user/password, application
authentication is used. See Declaring a JMSContext Object Using @Inject Annotation.

Connection Testing
The JMS wrapper classes monitor each connection that is established to the JMS provider.
They do this in two ways:

• Registering a JMS ExceptionListener object on the connection.

• Testing the connection every 2 minutes by sending a message to a temporary queue or
topic and then receiving it again.

Jakarta EE Compliance
The Jakarta EE specification states that you should not be allowed to make certain JMS API
calls inside a Jakarta EE application. The JMS wrappers enforce these restrictions by throwing
the following exceptions when they are violated:

Chapter 3
What's Happening Under the JMS Wrapper Covers

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 19

• On the connection object, the methods createConnectionConsumer(),
createDurableConnectionConsumer(), setClientID(), setExceptionListener(), and
stop() should not be called.

• On the session object, the methods getMessageListener() and setMessageListener()
should not be called.

• On the consumer object (a QueueReceiver or TopicSubscriber object), the methods
getMessageListener() and setMessageListener() should not be called.

Furthermore, the createSession() method, and the associated createQueueSession() and
createTopicSession() methods, are handled differently. The createSession() method takes
two parameters: an "acknowledgement" mode and a "transacted" flag. When used inside an
EJB, these two parameters are ignored. If a transaction is present, then the JMS session is
enlisted in the transaction as described in Automatically Enlisting Transactions; otherwise, it is
not. By default, the acknowledgement mode is set to "auto acknowledge". This behavior is
expected by the Jakarta EE specification.

Note

This may make it more difficult to receive messages from inside an EJB, but the
recommended way to receive messages from inside an EJB is to use a MDB, as
described in Developing Message-Driven Beans for Oracle WebLogic Server.

Inside a servlet, however, the parameters to createQueueSession() and
createTopicSession() are handled normally, and users can make use of all the various
message acknowledgement modes.

Pooled JMS Connection Objects
The JMS wrappers pool various session objects in order to make code like the example
provided in Sending a JMS Message in a Jakarta EE Container more efficient. A pooled JMS
connection is a session pool used by EJBs and servlets that use a resource-ref element in
their deployment descriptor to define their JMS connection factories, as discussed in Declaring
a Wrapped JMS Factory using Deployment Descriptors.

Improving Performance Through Pooling
The automatic pooling of connections and other objects by the JMS wrappers means that it is
efficient to write code.

For example, see the example in Sending a JMS Message in a Jakarta EE Container.
Although in this example the Connection Factory, Connection, and Session objects are created
every time a message is sent, in reality these three classes work together so that when they
are used as shown, they do little more than retrieve a Session object from the pool.

Speeding Up JNDI Lookups by Pooling Session Objects
The JNDI lookups of the Connection Factory and Destination objects can be expensive in
terms of performance. This is particularly true if the Destination object points to a Foreign JMS
Destination MBean, and therefore, is a lookup on a non local JNDI provider. Because the
Connection Factory and Destination objects are thread-safe, they can be looked up after they
are inside an EJB or servlet at creation time, which saves the time required to perform the
lookup each time.

Chapter 3
Improving Performance Through Pooling

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 19

Inside a servlet, these lookups can be performed inside the init() method. The Connection
Factory and Destination objects can then be assigned to an instance variable and reused
whenever a message is sent.

Inside an EJB, these lookups can be performed inside the ejbCreate() method and assigned
to an instance variable. For a session bean, each instance of the bean will then have its own
copy. Because stateless session beans are pooled, this method is also very efficient (and is
consistent with the Jakarta EE specifications), because the number of a times that lookups
occur is drastically reduced by pooling the JMS connection objects. (Caching these objects in a
static member of the EJB class may work, but it is discouraged by the Jakarta EE
specification.)

However, if these objects are cached inside the ejbCreate() or init() method, then the EJB
or servlet must have some way to recreate them if was a failure. This is necessary because
some JMS providers, like WebLogic JMS, may invalidate a Destination object after a server
failure. So, if the EJB runs on Server A, and JMS runs on Server B, then the EJB on Server A
must perform the JNDI lookup of the objects from Server B again after that server has
recovered. The example, PoolTestBean.java includes a sample EJB that performs this caching
and re-lookup process correctly.

Speeding Up Object Creation Through Caching
After Connection Factory object and Destination object pooling is established, it may be
tempting to cache other objects, such as the Connection, Session, and Producer objects,
inside the ejbCreate() method. This will work, but it is not always the most efficient solution.
Essentially, by doing this you are removing a Session object from the cache and permanently
assigning it to a particular EJB, whereas by using the JMS wrappers as designed, that Session
object can be shared by other EJBs and servlets as well. Furthermore, the wrappers attempt to
reestablish a JMS connection and create new session objects if there is a communication
failure with the JMS provider, but this will not work if you cache the Session object on your
own.

Enlisting the Proper Transaction Mode
When a JMS send() or receive() operation is performed inside a transaction, the EJB or
servlet automatically enlists the JMS provider in the transaction. A transaction can be started
automatically inside an EJB or servlet that has container-managed transactions, or it can be
started explicitly using the UserTransaction interface. In either case, the container
automatically enlists the JMS provider. However, if the underlying JMS connection factory used
by the EJB or servlet does not support XA, then the container throws an exception.

Performing the transaction enlistment has overhead. Furthermore, if an XA connection factory
is used, but the send() or receive() method is invoked outside a transaction, then the
container must still create a JTA transaction to wrap the send() or receive() method in order
to ensure that the operation properly takes place no matter which JMS provider is used.
Although this is only a one-phase commit, it can still slow down the server.

Therefore, when writing an EJB or servlet that uses a JMS resource in a non-transactional
manner, it is best to use a JMS connection factory that is not configured to support XA.

Simplified Access to Foreign JMS Providers
Learn how to access foreign JMS providers by using WebLogic Remote Console.

See Accessing Foreign JMS Providers in the Administering JMS Resources for Oracle
WebLogic Server. This feature makes it possible to easily map foreign JMS providers —

Chapter 3
Simplified Access to Foreign JMS Providers

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 19

including remote instances of WebLogic Server in another cluster or domain — so that they
appear in the local JNDI tree as a local JMS object.

Another set of foreign JMS provider features makes it possible to create a "symbolic link"
between a JMS connection factory or destination object in an third-party JNDI provider to an
object inside the local WebLogic Server. This feature can also be used to reference remote
instances of WebLogic Server in another cluster or domain in the local WebLogic JNDI tree.

There are three System Module MBeans for this task:

• Foreign server : Contains information about the remote JNDI provider, including its initial
context factory, URL, and additional parameters. It is the parent of the Foreign Connection
Factory and Foreign Destination MBeans. It can be targeted to an independent WebLogic
Server or to a cluster. For more information see, ForeignServerBean in the MBean
Reference for Oracle WebLogic Server.

• Foreign connection factory : Represents a foreign connection factory. It contains the name
of the connection factory in the remote JNDI provider, the name to map it to in the server's
JNDI tree, and an optional user name and password. The user name and password are
only used when a Foreign Connection Factory is used inside a resource-reference in an
EJB or a servlet, with the "Container" mode of authentication. It creates non-replicated
JNDI objects on each WebLogic Server instance to which the parent Foreign Connection
Factory MBean is targeted. (To create the JNDI object on every node in a cluster, target
the parent MBean to the cluster.). For more information see,
ForeignConnectionFactoryBean in the MBean Reference for Oracle WebLogic Server.

• Foreign destination : Represents a foreign destination. It contains the name to look up on
the foreign JNDI provider, and the name to map it to on the local server.

Examples of JMS Wrapper Functions
JMS wrapper functions make it easier to use WebLogic JMS inside a Jakarta EE component,
such as an EJB or a servlet.

Examples of JMS Wrapper Functions
The following files make up a simple stateless EJB session bean that uses the WebLogic JMS
wrapper functions to send a transactional message (sendXATransactional) when an EJB is
called. Although this example uses a session bean, the same XML descriptors and bean class
(with very few changes) can be used for a message-driven bean.

ejb-jar.xml
This section describes the EJB components. For the "JMS wrapper" code examples provided
in this section, note that this section declares the resource-ref and resource-env-ref
elements for the wrapped JMS connection factory (QueueConnectionFactory) and referenced
JMS destination (TESTQUEUE).

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/ejb-
jar_2_1.xsd">
<?xml version="1.0"?>
...
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>PoolTestBean</ejb-name>

Chapter 3
Examples of JMS Wrapper Functions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 19

 <home>weblogic.jms.pool.test.PoolTestHome</home>
 <remote>weblogic.jms.pool.test.PoolTest</remote>
 <ejb-class>weblogic.jms.pool.test.PoolTestBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>

 <resource-ref>
 <res-ref-name>jms/QCF</res-ref-name>
 <res-type>jakarta.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>

 <resource-env-ref>
 <resource-env-ref-name>jms/TESTQUEUE</resource-env-ref-name>
 <resource-env-ref-type>jakarta.jms.Queue</resource-env-ref-type>
 </resource-env-ref>
 </session>
 </enterprise-beans>

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>PoolTestBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

weblogic-ejb-jar.xml
This section declares matching resource-description queue connection factory and queue
destination elements that tell the Jakarta EE container which JMS connection factory and
destination to put in that location.

<!DOC<weblogic-ejb-jar xmlns="http://www.bea.com/ns/weblogic/920" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/920 http://www.bea.com/ns/
weblogic/920/weblogic-ejb-jar.xsd">

...
<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>PoolTestBean</ejb-name>
 <stateless-session-descriptor>
 <pool>
 <max-beans-in-free-pool>8</max-beans-in-free-pool>
 <initial-beans-in-free-pool>2</initial-beans-in-free-pool>
 </pool>
 </stateless-session-descriptor>

 <resource-description>
 <res-ref-name>jms/QCF</res-ref-name>
 <jndi-name>weblogic.jms.XAConnectionFactory</jndi-name>
 </resource-description>
 <resource-env-description>
 <res-env-ref-name>jms/TESTQUEUE</res-env-ref-name>
 <jndi-name>TESTQUEUE</jndi-name>
 </resource-env-description>
 <jndi-name>PoolTest</jndi-name>

Chapter 3
Examples of JMS Wrapper Functions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 19

 </weblogic-enterprise-bean>
</weblogic-ejb-jar>

PoolTest.java
This section defines the "remote" interface for the PoolTest bean. It declares one method,
called sendXATransactional.

package weblogic.jms.pool.test;

import java.rmi.*;
import jakarta.ejb.*;
public interface PoolTest extends EJBObject
{
 public String sendXATransactional(String text)
 throws RemoteException;
}

PoolTestHome.java
This section defines the "home" interface for the PoolTest bean. It is required by the EJB
specification.

package weblogic.jms.pool.test;

import java.rmi.*;
import jakarta.ejb.*;

public interface PoolTestHome
 extends EJBHome
{
 PoolTest create()
 throws CreateException, RemoteException;
}

PoolTestBean.java
This section defines the actual EJB code. It sends a message whenever the
sendXATransactional method is called.

package weblogic.jms.pool.test;

import java.lang.reflect.*;
import java.rmi.*;
import jakarta.ejb.*;
import jakarta.jms.*;
import javax.naming.*;
import jakarta.transaction.*;

public class PoolTestBean
 extends PoolTestBeanBase
 implements SessionBean
{
 private SessionContext context;
 private QueueConnectionFactory qcf;
 private Queue destination;

 public void ejbActivate()
 {
 }

Chapter 3
Examples of JMS Wrapper Functions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 19

 public void ejbRemove()
 {
 }

 public void ejbPassivate()
 {
 }

 public void setSessionContext(SessionContext ctx)
 {
 context = ctx;
 }

 private void lookupJNDIObjects()
 throws NamingException
 {
 InitialContext ic = new InitialContext();
 try {
 qcf =
 (QueueConnectionFactory)ic.lookup
 ("java:comp/env/jms/QCF");
 destination =
 (Queue)ic.lookup("java:comp/env/jms/TESTQUEUE");
 } finally {
 ic.close();
 }
 }

 public void ejbCreate()
 throws CreateException
 {
 try {
 lookupJNDIObjects();
 } catch (NamingException ne) {
 throw new CreateException(ne.toString());
 }
 }

 public String sendXATransactional(String text)
 throws RemoteException
 {
 String id = "Not sent yet";
 try {
 if ((qcf == null) || (destination == null)) {
 lookupJNDIObjects();
 }
 QueueConnection connection = qcf.createQueueConnection();
 try {
 QueueSession session = connection.createQueueSession
 (false, 0);
 TextMessage message = session.createTextMessage
 (text);
 QueueSender sender = session.createSender(destination);
 sender.send(message);
 id = message.getJMSMessageID();
 } finally {
 connection.close();
 }
 } catch (Exception e) {
 // Invalidate the JNDI objects if there is a failure.
 // this is necessary because the destination object
 // can become invalid if the destination server has

Chapter 3
Examples of JMS Wrapper Functions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 19

 // been shut down.
 qcf = null;
 destination = null;
 throw new RemoteException("Failure in EJB: " + e);
 }
 return id;
 }
}

Sending a JMS Message in a Jakarta EE Container
After you declare the JMS connection factory and destination resources, you can use them to
send and receive JMS messages inside an EJB or servlet. The following sections provide
examples of how to send a message:

Using comp/env
The code in Example 4-3 sends a message if you map to the java:comp/env JNDI tree:

Example 3-3 Sending a Message Using comp/env

.

.

.

InitialContext ic = new InitialContext();
QueueConnectionFactory qcf =
 (QueueConnectionFactory)ic.lookup("java:comp/env/jms/QCF");
Queue destQueue =
 (Queue)ic.lookup("java:comp/env/jms/TESTQUEUE");
ic.close();
QueueConnection connection = qcf.createQueueConnection();
try {
 QueueSession session = connection.createQueueSession(0, false);
 QueueSender sender = session.createSender(destQueue);
 TextMessage msg = session.createTextMessage("This is a test");
 sender.send(msg);
} finally {
 connection.close();
}

This is standard code that complies with the Jakarta EE specification and should run on any
EJB or servlet product that properly supports Jakarta EE , the difference is that it runs more
efficiently on WebLogic Server, because under the covers various objects are pooled, as
described in Pooled JMS Connection Objects.

Note that this code example uses a try...finally block to guarantee that the close()
method on the JMS Connection object is executed even if one of the statements inside the
block throws an exception. If no connection pooling were being done, then this block would be
necessary in order to ensure that the connection is closed, and to prevent server resources
from being wasted. But because WebLogic Server pools some of the objects that are created
by this code example , it is even more important that close() be called; otherwise, the EJB or
servlet container will not know when to return the object to the pool.

Also, none of the transactional XA extensions to the JMS API are used in this code example .
Instead, the container uses them internally if the JMS code is used inside a transaction
context. But whether or not XA is used internally, the user-written code is the same, and does
not use any JMS XA classes. This is what is specified by Jakarta EE. Writing EJB code in this

Chapter 3
Examples of JMS Wrapper Functions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 19

way enables you to run EJBs in an environment where transactions are present or in a non-
transactional environment, just by changing the deployment descriptors.

Note

When using a wrapped JMS connection factory, which is obtained by using the
resource-ref feature and looked up by using the java:comp/env/jms JNDI tree
context, the EJB must not use the jakarta.jms XA transactional XA interfaces.

Dependency Injection
The code in Example 4-4 sends a message if you have used dependency injection to a
variable.

Example 3-4 Sending a Message using Dependency Injection

package test;
// Example injected annotation.
import jakarta.annotation.Resource;
import jakarta.ejb.*;
import jakartax.jms.*;

@Stateless(mappedName="StatelessBean")
public class MyStatelessBean implements MyStateless {
 @Resource(mappedName="myDestJNDIName")
 private Destination dest;

 @Resource(mappedName="weblogic.jms.XAConnectionFactory")
 private ConnectionFactory connectionFactory;

 public void completeWorkOrder() {
 Connection con = null;
 Session session = null;
 MessageProducer sender = null;
 try {
 System.out.println("completeWorkOrder called!");
 con = connectionFactory.createConnection();
 session = con.createSession(true, Session.AUTO_ACKNOWLEDGE);
 sender = session.createProducer(null);
 Message message = session.createTextMessage("work order complete!");
 sender.send(dest, message);
 } catch(Exception e) {
 throw new EJBException("Exception sending message: " + e, e);
 } finally {
 try {
 if (con != null) con.close();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
 }
}

Chapter 3
Examples of JMS Wrapper Functions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 19

EJB 3.0 Wrapper Without Injection
Example 4-5 demonstrates EJB 3.0 annotations for an MDB that references resources that are
not injected. The references are resolved at runtime when the MDB is invoked instead of when
the MDB instances are instantiated.

Example 3-5 Non injected MDB Example

package test;

import jakarta.annotation.Resources;
import jakarta.annotation.Resource;
import javax.naming.*;
import jakarta.ejb.*;
import jakarta.jms.*;

import jakarta.ejb.ActivationConfigProperty;

@MessageDriven(
 name = "MyMDB",
 mappedName = "JNDINameOfMDBSourceDest",
 activationConfig = {
 // the JMS interface type for the MDB destination, either jakarta.jms.Topic or jakar
ta.jms.Queue
 @ActivationConfigProperty(
 propertyName = "destinationType",
 propertyValue = "jakarta.jms.Queue"),
 // optionally specify a connection factory
 // there's no need to specify a connection factory if the source
 // destination is a WebLogic JMS destination
 @ActivationConfigProperty(
 propertyName = "connectionFactoryJndiName",
 propertyValue = "JNDINameOfMDBSourceCF"),
 })

// resources that are not injected

@Resources ({
 @Resource(name="targetCFRef",
 mappedName="TargetCFJNDIName",
 type=jakarta.jms.ConnectionFactory.class),

 @Resource(name="targetDestRef",
 mappedName="TargetDestJNDIName",
 type=jakarta.jms.Destination.class)
})

public class MyMDB implements MessageListener {

 // inject a reference to the MDB context

 @Resource
 private MessageDrivenContext mdctx;

 // cache targetCF and targetDest for re-use (performance)

 private ConnectionFactory targetCF;
 private Destination targetDest;

Chapter 3
Examples of JMS Wrapper Functions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 19

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public void onMessage(Message message) {

 Connection jmsConnection = null;

 try {
 System.out.println("My MDB got message: " + message);

 if (targetCF == null)
 targetCF = (jakarta.jms.ConnectionFactory)mdctx.lookup("targetCFRef");

 if (targetDest == null)
 targetDest = (jakarta.jms.Destination)mdctx.lookup("targetDestRef");

 jmsConnection = targetCF.createConnection();
 Session s = jmsConnection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer mp = s.createProducer(null);

 if (message.getJMSReplyTo() != null)
 mp.send(message.getJMSReplyTo(), s.createTextMessage("My Reply"));
 else
 mp.send(targetDest, message);

 } catch (JMSException e) {
 throw new EJBException(e);

 } finally {

 // Return JMS resources to the resource reference pool for later re-use.
 // Closing a connection automatically also closes its sessions, etc.

 try { if (jmsConnection != null) jmsConnection.close(); }
 catch (JMSException ignored) {};
 }
 }
}

Chapter 3
Examples of JMS Wrapper Functions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 19 of 19

4
Understanding the Simplified API
Programming Model

Understand the key features of JMS simplified API defined by the Java Message Service
(JMS) 2.0 specification. Also learn how it is implemented for creating JMS applications for
WebLogic Server.

About JMS 2.0 Simplified API
The JMS 2.0 simplified API provides the same basic functionality as the JMS 1.1 API (classic
API), but the new interfaces and several API changes make it easier to use.

The following interfaces provided by the simplified API were implemented in Oracle WebLogic
Server 12.2.1 release:

• ConnectionFactory : An administered object used by a client to create a Connection. This
interface is also used by the classic API.

• JMSContext : An active connection to a JMS provider and a single-threaded context used
to send or receive messages.

• JMSProducer : An object created by a JMSContext to send messages to a queue or topic.

• JMSConsumer : An object created by a JMSContext to receive messages sent to a.queue or
topic

Figure 4-1 shows how these objects fit together in a JMS client application.

Figure 4-1 Simplified API Programming Model

For more information about the JMS 2.0 interfaces, see the jakarta.jms package
documentation at https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/
latest/jakarta/jms/package-summary.html.

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/package-summary.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/package-summary.html

New Interfaces in the Simplified JMS API
The JMS 2.0 simplified API consists of three new interfaces.

JMSContext
The main interface in the simplified API is JMSContext . It combines the functions of the
Connection and Session objects of the JMS 1.1 API. Creating a single JMSContext object
eliminates the need to create a connection, session, and a text message separately.

For more information about the JMSContext interface, see https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSContext.html.

The WLJMSContext interface in the weblogic.jms.extensions package defines the fields and
methods that are not supported by jakarta.jms.JMSContext. It provides the same extension
features as WLConnection and WLSession. See the Javadoc for WLJMSContext in Java API
Reference for Oracle WebLogic Server.

JMSProducer
To send messages in the simplified API, use a JMSProducer object. You can create a
JMSProducer object by calling the createProducer method on a JMSContext object.

Note

You do not need to save the JMSProducer object in a variable. It is recommended that
you create this object when sending a message. For more information, see Sending
Messages Using the Simplified JMS API.

For more information about the JMSProducer interface, see https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSProducer.html.

The WLJMSProducer interface defines methods and attributes specific to WebLogic JMS. You
can use these features by casting the JMSProducer instance to the WLSJMSProducer interface
defined in the weblogic.jms.extensions package. See the Javadoc for WLJMSProducer in
Java API Reference for Oracle WebLogic Server.

JMSConsumer
The JMSConsumer object receives messages from a queue or topic. You can create a
JMSConsumer object by passing a Queue or Topic object to one of the createConsumer methods
on a JMSContext or by passing a Topic object to one of the createSharedConsumer or
createDurableConsumer methods on a JMSContext object.

For more information about the JMSConsumer interface, see https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSConsumer.html.

New Methods to Simplify Messaging in JMS 2.0
In addition to the methods for sending and receiving messages on JMSContext objects, JMS
2.0 introduces a few more methods to simplify the code.

Chapter 4
New Interfaces in the Simplified JMS API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSContext.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSContext.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSProducer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSProducer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSConsumer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSConsumer.html

Method to Extract the Body Directly from a Message
The getBody method provides an easy way to obtain the body from a message. This method
applies to both the classic and simplified API.

void onMessage(Message message){ // delivers a BytesMessage
 byte[] bytes = message.getBody(byte[].class);
 ...

For more information, see the Javadoc at

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/
Message.html

Method to Receive a Message Body Directly
The receiveBody method can be used to receive any type of message except for
StreamMessage and Message, as long as the class of the expected body is known in advance.

JMSConsumer consumer = ...
String body = consumer.receiveBody(String.class,1000);

For more information, see the Javadoc at:

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/
JMSConsumer.html

Method to Create a Session
A new createSession method, that accepts a single parameter or no parameter, was added to
the jakarta.jms.Connection. See Create a Session Using the createSession Method.

Chapter 4
New Methods to Simplify Messaging in JMS 2.0

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSConsumer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSConsumer.html

5
Developing a Basic JMS Application

Learn how to set up a basic WebLogic JMS application using the JMS 2.0 and JMS 1.1 APIs.

Importing Required Packages
Import the Java packages that define all required classes and interfaces to create, send,
receive, and read messages for the WebLogic application.

Table 6-1 lists the packages that are commonly used by WebLogic JMS applications.

Table 5-1 WebLogic JMS Packages

Package Description

jakarta.jms
JMS API. This package is always used by WebLogic JMS
applications. See https://jakarta.ee/
specifications/messaging/3.0/apidocs/.

javax.naming
weblogic.jndi

JNDI packages required for server and destination lookups.
See https://docs.oracle.com/en/java/javase/17/
docs/api/java.naming/module-summary.html.

jakarta.transaction.UserTransaction
JTA API required for JTA user transaction support. See
https://jakarta.ee/specifications/transactions/
and https://jakarta.ee/specifications/
transactions/2.0/apidocs/.

weblogic.jms.extensions WebLogic-specific JMS public API that provides additional
classes and methods, as described in Value-Added Public
JMS API Extensions.

Setting Up a JMS Application
Before you can send and receive messages, you must set up a JMS application.

The following sections describe the procedure to set up a basic WebLogic JMS application:

You must ensure that the system administrator responsible for configuring WebLogic Server
has configured the required JMS resources, including the connection factories, JMS servers,
and destinations.

• For information about JMS resource definitions, see Configuring Basic JMS System
Resources in Administering JMS Resources for Oracle WebLogic Server.

• For information about configuring other JMS resources, see Messaging in the Oracle
WebLogic Remote Console Online Help.

• For more information about the JMS classes and methods described in these sections, see
Understanding the JMS API, or the jakarta.jms, at https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/package-
summary.html, or the weblogic.jms.extensions Javadoc in Java API Reference for Oracle
WebLogic Server.

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 30

https://jakarta.ee/specifications/messaging/3.0/apidocs/
https://jakarta.ee/specifications/messaging/3.0/apidocs/
https://docs.oracle.com/en/java/javase/17/docs/api/java.naming/module-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.naming/module-summary.html
https://jakarta.ee/specifications/transactions/
https://jakarta.ee/specifications/transactions/2.0/apidocs/
https://jakarta.ee/specifications/transactions/2.0/apidocs/
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/package-summary.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/package-summary.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/package-summary.html

• For information about setting up transacted applications and JTA user transactions, see
Using Transactions with WebLogic JMS.

Using a Simplified API to Set Up a JMS Application
Oracle WebLogic Server 12.2.1 supports the JMS 2.0 simplified API for sending and receiving
messages. For more information about the simplified API, see Understanding the Simplified
API Programming Model .

Figure 5-1 shows the steps required to set up a JMS application using the JMS 2.0 Simplified
API.

Figure 5-1 Setting Up a JMS Application Using the Simplified API

Look Up a Connection Factory in JNDI
Before you can look up a connection factory, it must be defined as part of the configuration
information.

The administrator can configure new connection factories during configuration; however, these
factories must be uniquely named or the server will not boot. You can also use the default
connection factories defined by the Jakarta EE specification and WebLogic Server. For
information, see Connection Factory Configuration in Administering JMS Resources for Oracle
WebLogic Server.

After the connection factory is defined, you can look it up by establishing a JNDI context
(namingContext) using the InitialContext() constructor, at https://docs.oracle.com/
javase/8/docs/api/javax/naming/InitialContext.html. For any application other than a
servlet application, you must provide a Hashtable defining the environment when calling the
InitialContext constructor.

After the JNDI context is defined, to look up a connection factory in JNDI, execute the following
command:

Chapter 5
Setting Up a JMS Application

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 30

https://docs.oracle.com/javase/8/docs/api/javax/naming/InitialContext.html
https://docs.oracle.com/javase/8/docs/api/javax/naming/InitialContext.html

ConnectionFactory connectionFactory =
 (ConnectionFactory) namingContext.lookup(CF_name);

The CF_name argument specifies the connection factory name defined during the configuration.

For more information about the ConnectionFactory class, see ConnectionFactory, or the
jakarta.jms.ConnectionFactory Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/ConnectionFactory.html.

Look Up a Queue or Topic
Before you can look up a queue or a topic, it must be configured by the WebLogic JMS system
administrator, as described in Create a JMS System Module and Configure Resources for JMS
System Modules in the Oracle WebLogic Remote Console Online Help. For more information,
see Destination or the Javadocs at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/Queue.html and https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Topic.html.

After the destination is configured, you can look up a queue or topic destination using one of
the following procedures:

You can look up a queue or topic destination by establishing a JNDI context (namingContext),
which has already been accomplished in Look Up a Connection Factory in JNDI, and
executing one of the following commands, for Point-to-Point or Publish/Subscribe messaging,
respectively:

Queue queue = (Queue) namingContext.lookup(Queue_name);

Topic topic = (Topic) namingContext.lookup(Topic_name);

The Queue_name and Topic_name arguments specify the JNDI names of the queue and topic
destinations defined during the configuration.

Create a JMSContext Object
A JMSContext object replaces the Connection and Session objects in the classic API. For more
information, see New Interfaces in the Simplified JMS API.

The JMSContext object can be created by calling one of the several createContext methods
on a ConnectionFactory object. For example:

JMSContext context = connectionFactory.createContext(sessionMode);

In this case, a connection and a session with the specified mode are created for use by the
new JMSContext object context. For more information, see connectionFactory interface
definition in https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/
jakarta/jms/ConnectionFactory.html.

Alternatively, you can inject JMSContext in the Jakarta EE web and EJB containers using the
@Inject annotation as described in Declaring a JMSContext Object Using @Inject Annotation.
This is the recommended way for creating JMSContext in Jakarta EE applications. For
example:

@Inject @JMSConnectionFactory("myJMSCF") JMSContext context;

For more information about using the JMSContext interface, see https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSContext.html.

Chapter 5
Setting Up a JMS Application

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ConnectionFactory.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ConnectionFactory.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Queue.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Queue.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Topic.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Topic.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ConnectionFactory.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ConnectionFactory.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSContext.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSContext.html

Create JMSProducer and JMSConsumer Objects
Use the JMSProducer and JMSConsumer objects to send and receive messages respectively.

You can create a JMSProducer object by calling the createProducer method on a JMSContext
object as follows:

JMSProducer producer = context.createProducer();

Note

You do not need to save the JMSProducer object in a variable. Instead, create the
object while calling the send method as follows:

context.createProducer().send(queue, message);

For more information, see https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-
api/latest/jakarta/jms/JMSProducer.html.

You can create a JMSConsumer object by passing a queue or topic object to one of the
createConsumer methods on a JMSContext object as follows:

JMSContext context = connectionFactory.createContext();
JMSConsumer consumer = context.createConsumer(queue);

For more information, see https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-
api/latest/jakarta/jms/JMSConsumer.html.

Sending and Receiving Messages using the Simplified API
The following sections describe how to send and receive messages using the Simplified API:

• Sending Messages Using the Simplified JMS API

• Sending a Message Asynchronously

• Receive Messages Asynchronously Using the Simplified API

• Receive Messages Synchronously Using the Simplified API

Using the Classic API to Set Up a JMS Application
The following figure shows the steps required to set up a JMS application using JMS 1.1
classic API.

Chapter 5
Setting Up a JMS Application

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSProducer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSProducer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSConsumer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSConsumer.html

Figure 5-2 Setting Up a JMS Application using Classic API

Note

Oracle WebLogic Server 12.2.1 supports JMS 2.0 simplified API for sending and
receiving messages. See Understanding the Simplified API Programming Model .

Step 1: Look Up a Connection Factory in JNDI
Before you can look up a connection factory, it must be defined as part of the configuration
information.

The administrator can configure new connection factories during configuration; however, these
factories must be uniquely named or the server will not boot. You can also use the default

Chapter 5
Setting Up a JMS Application

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 30

connection factories defined by the Jakarta EE specification and WebLogic Server. For
information, see "Connection Factory Configuration" in Administering JMS Resources for
Oracle WebLogic Server.

after the connection factory is defined, you can look it up by establishing a JNDI context
(context) using the InitialContext() method, at http://docs.oracle.com/javase/8/
docs/api/javax/naming/InitialContext.html#InitialContext(). For any application other
than a servlet application, you must pass an environment used to create the initial context.

After the context is defined, to look up a connection factory in JNDI, execute one of the
following commands, for PTP or Publish/Subscribe messaging, respectively:

QueueConnectionFactory queueConnectionFactory =
 (QueueConnectionFactory) context.lookup(CF_name);

TopicConnectionFactory topicConnectionFactory =
 (TopicConnectionFactory) context.lookup(CF_name);

The CF_name argument specifies the connection factory name defined during configuration.

For more information about the ConnectionFactory class, see ConnectionFactory, or the
jakarta.jms.ConnectionFactory Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/ConnectionFactory.html.

Step 2: Create a Connection Using the Connection Factory
You can create a connection for accessing the messaging system by using the
ConnectionFactory methods described in the following sections.

For more information about the Connection class, see Connection, or the
jakarta.jms.Connection Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/Connection.html.

Create a Queue Connection
The QueueConnectionFactory provides the following two methods for creating a queue
connection:

public QueueConnection createQueueConnection(
) throws JMSException

public QueueConnection createQueueConnection(
 String userName,
 String password
) throws JMSException

The first method creates a QueueConnection; the second method creates a QueueConnection
using a specified user identity. In each case, a connection is created in stopped mode and
must be started in order to accept messages, as described in Step 7: Start the Connection.

For more information about the QueueConnectionFactory class methods, see the
jakarta.jms.QueueConnectionFactory Javadoc, at https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ConnectionFactory.html.
For more information about the QueueConnection class, see the
jakarta.jms.QueueConnection Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/QueueConnection.html.

Chapter 5
Setting Up a JMS Application

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 30

http://docs.oracle.com/javase/8/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javase/8/docs/api/javax/naming/InitialContext.html#InitialContext()
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ConnectionFactory.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ConnectionFactory.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Connection.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Connection.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ConnectionFactory.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ConnectionFactory.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueConnection.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueConnection.html

Create a Topic Connection
The TopicConnectionFactory provides the following two methods to create a topic connection:

public TopicConnection createTopicConnection(
) throws JMSException

public TopicConnection createTopicConnection(
 String userName,
 String password
) throws JMSException

The first method creates a TopicConnection; the second method creates a TopicConnection
using a specified user identity. In each case, a connection is created in stopped mode and
must be started in order to accept messages, as described in Step 7: Start the Connection.

For more information about the TopicConnectionFactory class methods, see the
jakarta.jms.TopicConnectionFactory Javadoc., at https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/
TopicConnectionFactory.html. For more information about the TopicConnection class, see
the jakarta.jms.TopicConnection Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/TopicConnection.html.

Step 3: Create a Session Using the Connection
You can create one or more sessions for accessing a queue or topic using the Connection
methods described in the following sections.

Note

A session and its message producers and consumers can only be accessed by one
thread at a time. Their behavior is undefined if multiple threads access them
simultaneously.

WebLogic JMS does not support having both types of MessageConsumer
(QueueConsumer and TopicSubscriber) for a single Session. However, it does support
a single session with both a QueueSender and a TopicSubscriber (and vice-versa:
QueueConsumer and TopicPublisher), or with multiple MessageProducers of any type.

For more information about the Session class, see Session or the jakarta.jms.Session
Javadoc, at https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/
jakarta/jms/Session.html.

Create a Session Using the createSession Method
Use the createSession method in jakarta.jms.Connection to create a session. This method
accepts a single parameter, sessionMode, or no parameter as follows:

Session createSession(int sessionMode) throws JMSException

or

Session createSession() throws JMSException

Chapter 5
Setting Up a JMS Application

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicConnectionFactory.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicConnectionFactory.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicConnectionFactory.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicConnection.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicConnection.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Session.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Session.html

Create a Queue Session
The QueueConnection class defines the following method for creating a queue session:

public QueueSession createQueueSession(
 boolean transacted,
 int acknowledgeMode
) throws JMSException

You must specify a boolean argument indicating whether the session will be transacted (true)
or non-transacted (false), and an integer that indicates the acknowledge mode for non-
transacted sessions. The acknowledgeMode attribute is ignored for transacted sessions. In this
case, messages are acknowledged when the transaction is committed using the commit()
method.

For more information about the QueueConnection class methods, see the
jakarta.jms.QueueConnection Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/QueueConnection.html. For more information
about the QueueSession class, see the jakarta.jms.QueueSession Javadoc, at https://
javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/
QueueSession.html.

Create a Topic Session
The TopicConnection class defines the following method for creating a topic session:

public TopicSession createTopicSession(
 boolean transacted,
 int acknowledgeMode
) throws JMSException

You must specify a boolean argument indicating whether the session will be transacted (true)
or non-transacted (false), and an integer that indicates the acknowledge mode for non-
transacted sessions. The acknowledgeMode attribute is ignored for transacted sessions. In this
case, messages are acknowledged when the transaction is committed using the commit()
method.

For more information about the TopicConnection class methods, see the
jakarta.jms.TopicConnection Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/TopicConnection.html. For more information
about the TopicSession class, see the jakarta.jms.TopicSession Javadoc, at https://
javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/
TopicSession.html.

Step 4: Look Up a Destination (Queue or Topic)
Before you can look up a destination, the destination must be configured by the WebLogic JMS
system administrator, as described in Create a JMS System Module and Configure Resources
for JMS System Modules in the Oracle WebLogic Remote Console Online Help. For more
information about the Destination class, see Destination or the jakarta.jms.Destination
Javadoc, at https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/
jakarta/jms/Destination.html.

After the destination is configured, you can look up a destination using a JNDI name or a
reference:

Chapter 5
Setting Up a JMS Application

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueConnection.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueConnection.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueSession.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueSession.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueSession.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicConnection.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicConnection.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicSession.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicSession.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicSession.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Destination.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Destination.html

Using a JNDI Name
You can look up a destination by establishing a JNDI context (context), which has already
been accomplished in Look Up a Connection Factory in JNDI, and executing one of the
following commands, for PTP or Publish/Subscibe messaging, respectively:

Queue queue = (Queue) context.lookup(Dest_name);

Topic topic = (Topic) context.lookup(Dest_name);

The Dest_name argument specifies the JNDI name of the destination defined during
configuration.

Use a Reference
If you do not use a JNDI namespace, you can use the following QueueSession or
TopicSession method to reference a queue or topic, respectively:

Note

The createQueue() and createTopic() methods do not create destinations
dynamically; they create only references to destinations that already exist. For
information about creating destinations dynamically, see Using JMS Module Helper to
Manage Applications.

public Queue createQueue(
 String queueName
) throws JMSException

public Topic createTopic(
 String topicName
) throws JMSException

For the syntax of JNDI name, createQueue(), and createTopic(), see How to Look Up a
Destination.

Step 5: Create Message Producers and Message Consumers
You can create message producers and message consumers by passing the destination
reference to the Session methods described in the following sections.

Note

Each consumer receives its own local copy of a message. After a message is
received, you can modify the header field values; however, the message properties
and message body are read only. (Attempting to modify the message properties or
body at this point will generate a MessageNotWriteableException.) You can modify
the message body by executing the corresponding message type's clearbody()
method to clear the existing contents and enable the write permission.

Chapter 5
Setting Up a JMS Application

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 30

For more information about the MessageProducer and MessageConsumer classes, see
MessageProducer and MessageConsumer, or the jakarta.jms.MessageProducer, at
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/
MessageProducer.html, and jakarta.jms.MessageConsumer Javadocs, at https://
javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/
MessageConsumer.html.

Create QueueSenders and QueueReceivers
The QueueSession object defines the following methods for creating queue senders and
receivers:

public QueueSender createSender(
 Queue queue
) throws JMSException

public QueueReceiver createReceiver(
 Queue queue
) throws JMSException

public QueueReceiver createReceiver(
 Queue queue,
 String messageSelector
) throws JMSException

You must specify the queue object for the queue sender or receiver being created. You may
also specify a message selector for filtering messages. Message selectors are described in
more detail in Filtering Messages.

If you pass the value of null to the createSender() method, you create an anonymous
producer. In this case, you must specify the queue name when sending messages, as
described in Sending Messages.

After the queue sender or receiver is created, you can access the queue name associated with
the queue sender or receiver using the following QueueSender or QueueReceiver method:

public Queue getQueue(
) throws JMSException

For more information about the QueueSession class methods, see the
jakarta.jms.QueueSession Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/QueueSession.html. For more information
about the QueueSender and QueueReceiver classes, see the jakarta.jms.QueueSender, at
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/
QueueSender.html, and jakarta.jms.QueueReceiver Javadocs, at https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueReceiver.html.

Create TopicPublishers and TopicSubscribers
The TopicSession object defines the following methods for creating topic publishers and topic
subscribers:

public TopicPublisher createPublisher(
 Topic topic
) throws JMSException

public TopicSubscriber createSubscriber(
 Topic topic
) throws JMSException

Chapter 5
Setting Up a JMS Application

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageProducer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageProducer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageConsumer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageConsumer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageConsumer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueSession.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueSession.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueSender.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueSender.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueReceiver.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueReceiver.html

public TopicSubscriber createSubscriber(
 Topic topic,
 String messageSelector,
 boolean noLocal
) throws JMSException

Note

The methods described in this section create non-durable subscribers. Non-durable
topic subscribers only receive messages sent while they are active. For information
about the methods used to create durable subscriptions enabling messages to be
retained until all messages are delivered to a durable subscriber, see Creating
Subscribers for a Durable Subscription. In this case, durable subscribers only receive
messages that are published after the subscriber has subscribed.

You must specify the topic object for the publisher or subscriber being created. You can specify
a message selector for filtering messages and a noLocal flag (described later in this section).
Message selectors are described in more detail in Filtering Messages.

If you pass a value of null to the createPublisher() method, then you create an anonymous
producer. In this case, you must specify the topic name when sending messages, as described
in Sending Messages.

An application can have JMS connections that it uses to both publish and subscribe to the
same topic. Because topic messages are delivered to all subscribers, the application can
receive messages it has published itself. To prevent this behavior, a JMS application can set a
noLocal flag to true.

After the topic publisher or subscriber is created, you can access the topic name associated
with the topic publisher or subscriber using the following TopicPublisher or TopicSubscriber
method:

Topic getTopic(
) throws JMSException

In addition, you can access the noLocal variable setting associated with the topic subscriber
using the following TopicSubscriber method:

boolean getNoLocal(
) throws JMSException

For more information about the TopicSession class methods, see the
jakarta.jms.TopicSession Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/TopicSession.html. For more information
about the TopicPublisher and TopicSubscriber classes, see the
jakarta.jms.TopicPublisher, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/TopicPublisher.html, and the
jakarta.jms.TopicSubscriber Javadocs, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/TopicSubscriber.html.

Chapter 5
Setting Up a JMS Application

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicSession.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicSession.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicPublisher.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicPublisher.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicSubscriber.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicSubscriber.html

Step 6a: Create the Message Object (Message Producers)

Note

This step applies to message producers only.

To create the message object, use one of the following Session or WLSession class methods:

• Session Methods

Note

These methods are inherited by both the QueueSession and TopicSession
subclasses.

public BytesMessage createBytesMessage(
) throws JMSException

public MapMessage createMapMessage(
) throws JMSException

public Message createMessage(
) throws JMSException

public ObjectMessage createObjectMessage(
) throws JMSException

public ObjectMessage createObjectMessage(
 Serializable object
) throws JMSException

public StreamMessage createStreamMessage(
) throws JMSException

public TextMessage createTextMessage(
) throws JMSException

public TextMessage createTextMessage(
 String text
) throws JMSException

• WLSession Method

public XMLMessage createXMLMessage(
 String text
) throws JMSException

For more information about the Session and WLSession class methods, see the
jakarta.jms.Session, at https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-
api/latest/jakarta/jms/Session.html, and weblogic.jms.extensions.WLSession
Javadocs, respectively. For more information about the Message class and its methods, see
Messages, or the jakarta.jms.Message Javadoc, at hhttps://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html.

Chapter 5
Setting Up a JMS Application

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Session.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Session.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html

Step 6b: Optionally Register an Asynchronous Message Listener

Note

This step applies to message consumers only.

To receive messages asynchronously, you must register an asynchronous message listener by
performing the following steps:

1. Implement the jakarta.jms.MessageListener interface, at https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/
MessageListener.html, which includes an onMessage() method.

Note

For an example of the onMessage() method interface, see Example: Setting Up a
Point-to-Point JMS Application Using the Classic API.

If you want to issue the close() method within an onMessage() method call, the
system administrator must select the Allow Close In OnMessage option when
configuring the connection factory. For more information on configuring connection
factory options, see "Configuring Basic JMS System Resources" in Administering
JMS Resources for Oracle WebLogic Server.

2. Set the message listener using the following MessageConsumer method, passing the
listener information as an argument:

public void setMessageListener(
 MessageListener listener
) throws JMSException

3. Optionally, implement an exception listener on the session to catch exceptions, as
described in Defining a Connection Exception Listener.

You can unset a message listener by calling the MessageListener() method with the value of
null.

After a message listener is defined, you can access it by calling the following MessageConsumer
method:

public MessageListener getMessageListener(
) throws JMSException

Note

WebLogic JMS guarantees that multiple onMessage() calls for the same session will
not be executed simultaneously.

If a message consumer is closed by an administrator or as the result of a server failure, then a
ConsumerClosedException is delivered to the session exception listener, if one was defined. In

Chapter 5
Setting Up a JMS Application

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageListener.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageListener.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageListener.html

this way, a new message consumer can be created, if necessary. For information about
defining a session exception listener, see Defining a Connection Exception Listener.

The MessageConsumer class methods are inherited by the QueueReceiver and
TopicSubscriber classes. For additional information about the MessageConsumer class
methods, see MessageProducer and MessageConsumer or the
jakarta.jms.MessageConsumer Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/MessageConsumer.html.

Step 7: Start the Connection
You start the connection using the Connection class start() method.

For additional information about starting, stopping, and closing a connection, see Starting,
Stopping, and Closing a Connection or the jakarta.jms.Connection Javadoc, at https://
javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/
Connection.html.

Example: Setting Up a Point-to-Point JMS Application Using the Classic API
The following example is excerpted from the examples.jms.queue.QueueSend example,
provided with WebLogic Server in the
EXAMPLES_HOME\wlserver\samples\server\examples\src\examples\jms\classicapi\queue
directory where EXAMPLES_HOME represents the directory in which the WebLogic Server code
examples are configured. The init() method shows you how to set up and start a
QueueSession for a JMS application. The following shows the init() method, with comments
describing each setup step.

Define the required variables, including the JNDI context, JMS connection factory, and queue
static variables.

public final static String JNDI_FACTORY=
 "weblogic.jndi.WLInitialContextFactory";
public final static String JMS_FACTORY=
 "weblogic.examples.jms.QueueConnectionFactory";
public final static String
 QUEUE="weblogic.examples.jms.exampleQueue";

private QueueConnectionFactory qconFactory;
private QueueConnection qcon;
private QueueSession qsession;
private QueueSender qsender;
private Queue queue;
private TextMessage msg;

Set up the JNDI initial context, as follows:

InitialContext ic = getInitialContext(args[0]);
 .
 .
 .
private static InitialContext getInitialContext(
 String url
) throws NamingException
{
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY);
 env.put(Context.PROVIDER_URL, url);

Chapter 5
Setting Up a JMS Application

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageConsumer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageConsumer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Connection.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Connection.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Connection.html

 return new InitialContext(env);
}

Note

When setting up the JNDI initial context for an EJB or servlet, use the following
method:

Context ctx = new InitialContext();

Create all the necessary objects for sending messages to a JMS queue. The ctx object is the
JNDI initial context passed in by the main() method.

public void init(
 Context ctx,
 String queueName
) throws NamingException, JMSException
{

Step 1

Look up a connection factory in JNDI.

 qconFactory = (QueueConnectionFactory) ctx.lookup(JMS_FACTORY);

Step 2

Create a connection using the connection factory.

 qcon = qconFactory.createQueueConnection();

Step 3

Create a session using the connection. The following code defines the session as non-
transacted and specifies that messages will be acknowledged automatically. For more
information about transacted sessions and acknowledge modes, see Session.

 qsession = qcon.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);

Step 4

Look up a destination (queue) in JNDI.

 queue = (Queue) ctx.lookup(queueName);

Step 5

Create a reference to a message producer (queue sender) using the session and destination
(queue).

 qsender = qsession.createSender(queue);

Step 6

Create the message object.

 msg = qsession.createTextMessage();

Step 7

Chapter 5
Setting Up a JMS Application

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 30

Start the connection.

 qcon.start();
}

The init() method for the examples.jms.queue.QueueReceive example is similar to the
QueueSend init() method shown previously, with the one exception. Steps 5 and 6 would be
replaced by the following code, respectively:

qreceiver = qsession.createReceiver(queue);
qreceiver.setMessageListener(this);

In the first line, instead of calling the createSender() method to create a reference to the
queue sender, the application calls the createReceiver() method to create the queue
receiver.

In the second line, the message consumer registers an asynchronous message listener.

When a message is delivered to the queue session, it is passed to the
examples.jms.QueueReceive.onMessage() method. The following code example shows the
onMessage() interface from the QueueReceive example:

public void onMessage(Message msg)
{
 try {
 String msgText;
 if (msg instanceof TextMessage) {
 msgText = ((TextMessage)msg).getText();
 } else { // If it is not a TextMessage...
 msgText = msg.toString();
 }

 System.out.println("Message Received: "+ msgText);

 if (msgText.equalsIgnoreCase("quit")) {
 synchronized(this) {

 quit = true;
 this.notifyAll(); // Notify main thread to quit
 }
 }
 } catch (JMSException jmse) {
 jmse.printStackTrace();
 }
}

The onMessage() method processes messages received through the queue receiver. The
method verifies that the message is a TextMessage and, if it is, prints the text of the message.
If the onMessage() method receives a different message type, then it uses the message's
toString() method to display the message contents.

Note

It is good practice to verify that the received message is the type expected by the
handler method.

For more information about the JMS classes used in this example, see Understanding the JMS
API or the jakarta.jms Javadoc, at http://www.oracle.com/technetwork/java/jms/index.html.

Chapter 5
Setting Up a JMS Application

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 30

Example: Setting Up a Publish-Subscribe JMS Application Using the Classic
API

The following example is an excerpt from the examples.jms.topic.TopicSend example,
provided with WebLogic Server in the
EXAMPLES_HOME\wlserver\samples\server\examples\src\examples\jms\classicapi\topic
directory, where EXAMPLES_HOME represents the directory in which the WebLogic Server code
examples are configured. The init() method shows you how to set up and start a topic
session for a JMS application. The following shows the init() method, with comments
describing each setup step.

Define the required variables, including the JNDI context, JMS connection factory, and topic
static variables.

public final static String JNDI_FACTORY=
 "weblogic.jndi.WLInitialContextFactory";
public final static String JMS_FACTORY=
 "weblogic.examples.jms.TopicConnectionFactory";
public final static String
 TOPIC="weblogic.examples.jms.exampleTopic";

protected TopicConnectionFactory tconFactory;
protected TopicConnection tcon;
protected TopicSession tsession;
protected TopicPublisher tpublisher;
protected Topic topic;
protected TextMessage msg;

Set up the JNDI initial context, as follows:

InitialContext ic = getInitialContext(args[0]);
 .
 .
 .
private static InitialContext getInitialContext(
 String url
) throws NamingException
{
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY);
 env.put(Context.PROVIDER_URL, url);
 return new InitialContext(env);
}

Note

When setting up the JNDI initial context for a servlet, use the following method:

Context ctx = new InitialContext();

Create all the necessary objects for sending messages to a JMS queue. The ctx object is the
JNDI initial context passed in by the main() method.

public void init(
 Context ctx,
 String topicName

Chapter 5
Setting Up a JMS Application

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 30

) throws NamingException, JMSException
{

Step 1

Look up a connection factory using JNDI.

 tconFactory =
 (TopicConnectionFactory) ctx.lookup(JMS_FACTORY);

Step 2

Create a connection using the connection factory.

 tcon = tconFactory.createTopicConnection();

Step 3

Create a session using the connection. The following defines the session as non-transacted
and specifies that messages will be acknowledged automatically. For more information about
setting session transaction and acknowledge modes, see Session.

 tsession = tcon.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);

Step 4

Look up the destination (topic) using JNDI.

 topic = (Topic) ctx.lookup(topicName);

Step 5

Create a reference to a message producer (topic publisher) using the session and destination
(topic).

 tpublisher = tsession.createPublisher(topic);

Step 6

Create the message object.

 msg = tsession.createTextMessage();

Step 7

Start the connection.

 tcon.start();
 }

The init() method for the examples.jms.topic.TopicReceive example is similar to the
TopicSend init() method shown previously with one exception. Steps 5 and 6 would be
replaced by the following code, respectively:

tsubscriber = tsession.createSubscriber(topic);
tsubscriber.setMessageListener(this);

In the first line, instead of calling the createPublisher() method to create a reference to the
topic publisher, the application calls the createSubscriber() method to create the topic
subscriber.

In the second line, the message consumer registers an asynchronous message listener.

Chapter 5
Setting Up a JMS Application

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 30

When a message is delivered to the topic session, it is passed to the
examples.jms.TopicSubscribe.onMessage() method. The onMessage() interface for the
TopicReceive example is the same as the QueueReceive onMessage() interface, as described
in Example: Setting Up a Point-to-Point JMS Application Using the Classic API.

For more information about the JMS classes used in this example, see Understanding the JMS
API or the jakarta.jms Javadoc, at http://www.oracle.com/technetwork/java/jms/
index.html.

Sending Messages
To send a message, you can use either the simplified API or the classic API.

You can start sending messages after you set up the JMS application as described in Setting
Up a JMS Application.

Sending Messages Using the Simplified JMS API
In the simplified API, messages are sent by creating a JMSProducer object on behalf of
JMSContext. For more information, see Create JMSProducer and JMSConsumer Objects.

To send a message to a specified destination, you can use the following JMSProducer method
which is analogous to the send method of MessageProducer in the classic API:

JMSProducer send(Destination destination, Message message)

For example,

context.createProducer().send(destination,"Hello");

This code creates a TextMessage object and sets its body to "Hello", and then sends it to the
specified destination.

You can also use the following JMSProducer methods, which create a message automatically
for of the appropriate message type and set the payload to the specified parameter:

JMSProducer send(Destination destination,byte[] body)

JMSProducer send(Destination destination, Map<String,Object> body)

JMSProducer send(Destination destination, Serializable body)

JMSProducer send(Destination destination, String body)

For more information about the JMSProducer interface and send methods, see the Javadoc at:

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/
JMSProducer.html

WebLogic JMS provides proprietary attributes that you can use while sending messages. You
can specify the delivery mode (DeliveryMode.PERSISTENT or DeliveryMode.NON_PERSISTENT),
priority (0-9), delivery delay, and time-to-live (in milliseconds) by casting the JMSProducer
instance to weblogic.jms.extensions.WLJMSProducer. See the Javadoc for WLSJMSProducer
in Java API Reference for Oracle WebLogic Server.

For example,

context.createProducer().setDeliveryMode(DeliveryMode.NON_PERSISTENT).send(destination,me
ssage);

Chapter 5
Sending Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 19 of 30

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSProducer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSProducer.html

If not specified, the delivery mode, priority, and time-to-live attributes are set to one of the
following:

• Connection factory or destination override configuration attributes defined for the producer,
as described in Configure Resources for JMS System Modules in the Oracle WebLogic
Remote Console Online Help.

• Values specified using the JMSProducer object's set methods, as described in Setting
JMSProducer and MessageProducer Attributes.

Sending Messages Using the Classic JMS API
Once you have set up the JMS application as described in Using the Classic API to Set Up a
JMS Application, you can send messages. To send a message, you must, in order, perform the
steps described in the following sections:

For more information about the JMS classes for sending messages and the message types,
see the jakarta.jms.Message Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/Message.html. For information about receiving
messages, see Receiving Messages.

Create a Message Object
This step has already been completed as part of the client setup procedure, as described in
Step 6a: Create the Message Object (Message Producers).

Define a Message
This step may have been completed when you set up an application, as described in Step 6a:
Create the Message Object (Message Producers). Whether or not this step has already been
completed depends on the method that was called to create the message object. For example,
for TextMessage and ObjectMessage types, when you create a message object, you have the
option of defining the message when you create the message object.

If a value was specified and you do not want to change it, you can go to step 3.

If a value was specified or if you want to change an existing value, you can define a value
using the appropriate set method. For example, the method for defining the text of a
TextMessage is as follows:

public void setText(
 String string
) throws JMSException

Note

Messages can be defined as null.

Subsequently, you can clear the message body using the following method:

public void clearBody(
) throws JMSException

For more information about methods used to define messages, see the jakarta.jms.Session
Javadoc, at https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/
jakarta/jms/Session.html.

Chapter 5
Sending Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 20 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Session.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Session.html

Send the Message to a Destination Using MessageProducer
The Destination and MessageProducer objects were created when you set up the application,
as described in Using the Classic API to Set Up a JMS Application.

Note

If multiple topic subscribers are defined for the same topic, each subscriber will
receive its own local copy of a message. After the message is received, you can
modify the header field values; however, the message properties and message body
are read only. You can modify the message body by executing the corresponding
message type's clearbody() method to clear the existing contents and enable the
write permission.

For more information about the MessageProducer class, see MessageProducer and
MessageConsumer or the jakarta.jms.MessageProducer Javadoc, at https://
javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/
MessageProducer.html.

You must specify a message. You can also specify the queue name (for anonymous message
producers), delivery mode (DeliveryMode.PERSISTENT or DeliveryMode.NON_PERSISTENT),
priority (0-9), delivery delay, and time-to-live (in milliseconds). If not specified, the delivery
mode, priority, and time-to-live attributes are set to one of the following:

• Connection factory or destination override configuration attributes defined for the producer,
as described in Configure Resources for JMS System Modules in the Oracle WebLogic
Remote Console Online Help.

• Values specified using the message producer's set methods, as described in Setting
JMSProducer and MessageProducer Attributes.

If you define the delivery mode as PERSISTENT, you should configure a backing store for the
destination, as described in Create a File Store and Create a JDBC Store in the Oracle
WebLogic Remote Console Online Help.

Note

If no backing store is configured, then the delivery mode is changed to
NON_PERSISTENT and messages are not written to the persistent store.

For more information about using the QueueSender and TopicPublisher methods for sending
messages, see the WebLogic Server documentation at:

https://docs.oracle.com/middleware/1213/wls/JMSPG/implement.htm#JMSPG228

For additional information about the QueueSender class methods, see the
jakarta.jms.QueueSender Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/QueueSender.html.

For more information about the TopicPublisher class methods, see the
jakarta.jms.TopicPublisher Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/TopicPublisher.html.

Chapter 5
Sending Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 21 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageProducer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageProducer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageProducer.html
https://docs.oracle.com/middleware/1213/wls/JMSPG/implement.htm#JMSPG228
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueSender.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueSender.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicPublisher.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicPublisher.html

Sending a Message Asynchronously
In asynchronous mode, the JMS client sends a message and returns control to the application
without waiting for an acknowledgement from the JMS server.

To send messages asynchronously, your application should define a CompletionListener
object. When an acknowledgement is received from the JMS server to indicate that the
message was received, the JMS provider notifies the application by invoking the callback
method onCompletion on the CompletionListener object defined by the application. For more
information about the CompletionListener interface, see https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/
CompletionListener.html.

After defining the jakarta.jms.CompletionListener object, send messages asynchronously
using the JMSProducer or MessageProducer objects as described.

• If you are using JMSProducer objects to send messages, call the method
setAsync(CompletionListener listener) with a non-null CompletionListener on the
JMSProducer object before calling the send method as listed in the following example:

// send a message asynchronously
try (JMSContext context = connectionFactory.createContext()) {
 MyCompletionListener myCompletionListener = new MyCompletionListener();
//call normal send method
 context.createProducer().setAsync(myCompletionListener).send(queue, "Hello world");
 ...
}

For more information, see Sending Messages Using the Simplified JMS API.

• If you are using a MessageProducer to send messages, use the following method to send
messages asynchronously:

messageProducer.send(message,completionListener);

For more information, see Sending Messages Using the Classic JMS API.

Setting JMSProducer and MessageProducer Attributes
As described in the previous section, when sending a message, you can optionally specify the
delivery mode, priority, delivery delay, and time-to-live values. If not specified, these attributes
are set to the connection factory configuration attributes, as described in Configure Resources
for JMS System Modules in the Oracle WebLogic Remote Console Online Help.

Alternatively, you can set the delivery mode, priority, time-to-deliver, time-to-live, and redelivery
delay (timeout), and redelivery limit values dynamically using the message producer's set
methods. Table 6-2 lists the message producer set and get methods for each dynamically
configurable attribute.

Table 5-2 Message Producer Set and Get Methods

Attribute Set Method Get Method

Delivery Mode public void
setDeliveryMode(int
deliveryMode) throws
JMSException

public int getDeliveryMode()
throws JMSException

Chapter 5
Sending Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 22 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/CompletionListener.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/CompletionListener.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/CompletionListener.html

Table 5-2 (Cont.) Message Producer Set and Get Methods

Attribute Set Method Get Method

Priority public void setPriority(int
defaultPriority) throws
JMSException

public int getPriority() throws
JMSException

Time-to-Live public void
setTimeToLive(long
timeToLive) throws
JMSException

public long getTimeToLive()
throws JMSException

Redelivery limit public void
setRedeliveryLimit(int
redeliveryLimit) throws
JMSException

public int getredeliveryLimit()
throws JMSException

Send timeout public void
setsendTimeout(long
sendTimeout) throws
JMSException

public long getsendTimeout()
throws JMSException

Note

JMS defines optional MessageProducer methods for disabling the message ID and
timestamp information. However, these methods are ignored by WebLogic JMS.

For more information about the MessageProducer class methods, see the
jakarta.jms.MessageProducer Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/MessageProducer.html, or the
weblogic.jms.extensions.WLMessageProducer Javadoc.

Example: Sending Messages Within a Point-toPoint Application
The following example is excerpted from the examples.jms.queue.QueueSend example,
provided with WebLogic Server in the
EXAMPLES_HOME\wl_server\examples\src\examples\jms\queue directory, where
EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. The example shows the code required to create a TextMessage, set the text of the
message, and send the message to a queue.

msg = qsession.createTextMessage();
 .
 .
 .
public void send(
 String message
) throws JMSException
{
 msg.setText(message);
 qsender.send(msg);
}

Chapter 5
Sending Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 23 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageProducer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageProducer.html

For more information about the QueueSender class and methods, see the
jakarta.jms.QueueSender Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/QueueSender.html.

Example: Sending Messages Within a Publish/Subscribe Application
The following example is excerpted from the examples.jms.topic.TopicSend example,
provided with WebLogic Server in the
EXAMPLES_HOME\wl_server\examples\src\examples\jms\topic directory, where
EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. It shows the code required to create a TextMessage, set the text of the message,
and send the message to a topic.

msg = tsession.createTextMessage();
 .
 .
 .
public void send(
 String message
) throws JMSException
{
 msg.setText(message);
 tpublisher.publish(msg);
}

For more information about the TopicPublisher class and methods, see the
jakarta.jms.TopicPublisher Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/TopicPublisher.html.

Receiving Messages
Learn how to receive messages using the JMSConsumer and MessageConsumer methods.

After you set up the JMS application as described in Setting Up a JMS Application, you can
receive messages.

To receive a message, you must create the receiver object and specify whether you want to
receive messages asynchronously or synchronously.

The order in which messages are received can be controlled by the following:

• Message delivery attributes (delivery mode and sorting criteria) defined during
configuration or as part of the send() method, as described in Sending Messages.

• Destination sort order set using destination keys, as described in Configure Resources for
JMS System Modules in the Oracle WebLogic Remote Console Online Help.

After the message received, you can modify the header field values; however, the message
properties and message body are read-only. You can modify the message body by executing
the corresponding message type's clearbody() method to clear the existing contents and
enable write permission.

For more information about the JMS classes for receiving messages and the message types,
see the jakarta.jms.Message Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/Message.html. For information about sending
messages, see Sending Messages.

Chapter 5
Receiving Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 24 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueSender.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueSender.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicPublisher.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/TopicPublisher.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html

Receive Messages Asynchronously Using the Simplified API
To receive messages, you must first create a JMSConsumer object using one of the several
createConsumer or createDurableConsumer methods on JMSContext object.

Create a JMSConsumer object and use the method setMessageListener to specify the object
that implements the MessageListener interface. Message delivery is started automatically.

JMSConsumer consumer = context.createConsumer(queue);
consumer.setMessageListener(messageListener);

Receiving Messages Asynchronously using the Classic API
Receiving Messages Asynchronously using the Classic API is described within the context of
setting up the application. For more information, see Step 6b: Optionally Register an
Asynchronous Message Listener.

Note

You can control the maximum number of messages that may exist for an
asynchronous consumer and that have not yet been passed to the message listener
by setting the Messages Maximum attribute when configuring the connection factory.

Asynchronous Message Pipeline
If messages are produced faster than asynchronous message listeners (consumers) can
consume them, a JMS server will push multiple unconsumed messages in a batch to another
session with available asynchronous message listeners. These in-flight messages are
sometimes referred to as the message pipeline, or in some JMS vendors as the message
backlog. The pipeline or backlog size is the number of messages that are accumulated on an
asynchronous consumer, but that are not been passed to a message listener.

Configuring a Message Pipeline
You can control a client's maximum pipeline size by configuring the Messages Maximum per
Session attribute on the client's connection factory, which is defined as the "maximum number
of messages that can exist for an asynchronous consumer and that have not yet been passed
to the message listener". The default setting is 10. For more information about configuring a
JMS connection factory, see Configure Resources for JMS System Modules in the Oracle
WebLogic Remote Console Online Help.

Behavior of Pipelined Messages
After a message pipeline is configured, it will exhibit the following behavior:

• Statistics — JMS monitoring statistics reports backlogged messages in a message pipeline
as pending (for queues and durable subscribers) until they are either committed or
acknowledged.

• Performance — Increasing the Messages Maximum pipeline size may improve
performance for high-throughput applications. Note that a larger pipeline will increase client

Chapter 5
Receiving Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 25 of 30

memory usage as the pending pipelined messages accumulate on the client JVM before
the asynchronous consumer's listener is called.

• Sorting — Messages in an asynchronous consumer's pipeline are not sorted according to
the consumer destination's configured sort order; instead, they remain in the order in which
they are pushed from the JMS server. For example, if a destination is configured to sort by
priority, high priority messages will not jump ahead of low priority messages that have
already been pushed into an asynchronous consumer's pipeline.

Note

The Messages Maximum per Session pipeline size setting on the connection
factory is not related to the Messages Maximum quota settings on JMS servers
and destinations.

Messages in a pipeline are sometimes aggregated into a single message on the
network transport. If the messages are sufficiently large, the aggregate size of the
data written may exceed the maximum value for the transport, which may cause
undesirable behavior. For example, the t3 protocol sets a default maximum
message size of 10,000,000 bytes, and is configurable on the server with the
MaxT3MessageSize attribute. This means that if ten 2 megabyte messages are in
the pipeline t3 limit may be exceeded.

Receive Messages Synchronously Using the Simplified API
The receive methods on a JMSConsumer object are used for synchronous delivery of
messages.

public String receiveMessage(
ConnectionFactory connectionFactory,Queue queue){
 String body=null;
 try (JMSContext context = connectionFactory.createContext();){
 JMSConsumer consumer = session.createConsumer(queue);
 body = consumer.receiveBody(String.class);
 } catch (JMSRuntimeException ex) {
 // handle exception
 }
 return body;
}

For additional information about the JMSConsumer class methods, see the
jakarta.jms.JMSConsumer Javadoc, at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/JMSConsumer.html.

Receiving Messages Synchronously Using the Classic API
To receive messages synchronously, use the following MessageConsumer methods:

public Message receive(
) throws JMSException

public Message receive(
 long timeout
) throws JMSException

public Message receiveNoWait(
) throws JMSException

Chapter 5
Receiving Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 26 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSConsumer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/JMSConsumer.html

In each case, the application receives the next message produced. If you call the receive()
method with no arguments, then the call blocks indefinitely until a message is produced or the
application is closed. Alternatively, you can pass a timeout value to specify how long to wait for
a message. If you call the receive() method with a value of 0, then the call blocks indefinitely.
The receiveNoWait() method receives the next message if one is available, or returns null; in
this case, the call does not block.

The MessageConsumer class methods are inherited by the QueueReceiver and
TopicSubscriber classes. For additional information about the MessageConsumer class
methods, see the jakarta.jms.MessageConsumer Javadoc, at https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageConsumer.html.

Example: Receiving Messages Synchronously Within a PTP Application
The following example is excerpted from the examples.jms.queue.QueueReceive example,
provided with WebLogic Server in the
EXAMPLES_HOME\wl_server\examples\src\examples\jms\queue directory, where
EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. Rather than set a message listener, you would call qreceiver.receive() for each
message. For example:

qreceiver = qsession.createReceiver(queue);
qreceiver.receive();

The first line creates the queue receiver on the queue. The second line executes a receive()
method. The receive() method blocks and waits for a message.

Example: Receiving Messages Synchronously Within a Pub/Sub Application
The following example is excerpted from the examples.jms.topic.TopicReceive example,
provided with WebLogic Server in the
EXAMPLES_HOME\wl_server\examples\src\examples\jms\topic directory, where
EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. Rather than set a message listener, you would call tsubscriber.receive() for
each message.

For example:

tsubscriber = tsession.createSubscriber(topic);
Message msg = tsubscriber.receive();
msg.acknowledge();

The first line creates the topic subscriber on the topic. The second line executes a receive()
method. The receive() method blocks and waits for a message.

Use Prefetch Mode to Create a Synchronous Message Pipeline
In releases prior to WebLogic Server 9.1, synchronous consumers required making a two-way
network calls for each message, which was an inefficient model because the synchronous
consumer could not retrieve multiple messages, and could also increase network traffic
resources, since synchronous consumers would continually poll the server for available
messages. In WebLogic 9.1 or later, your synchronous consumers can also use the same
efficient behavior as asynchronous consumers by enabling the Prefetch Mode for Synchronous
Consumers option on JMS connection factories, using the JMSClientParamsBean MBean.

Similar to the asynchronous message pipeline, when the Prefetch Mode is enabled on a JMS
client's connection factory, the connection factory's targeted JMS servers will proactively push

Chapter 5
Receiving Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 27 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageConsumer.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/MessageConsumer.html

batches of unconsumed messages to synchronous message consumers, using the connection
factory's Messages Maximum per Session parameter to define the maximum number of
messages per batch. This may improve performance because messages are ready and
waiting for synchronous consumers when the consumers are ready to process more
messages, and it may also reduce network traffic by reducing synchronous calls from
consumers that must otherwise continually poll for messages.

Synchronous message prefetching does not support user (XA) transactions for synchronous
message receives or multiple synchronous consumers per session (regardless of queue or
topic). In most such cases, WebLogic JMS will silently and safely ignore the Prefetch Mode for
Synchronous Consumer flag; however, otherwise WebLogic will fail the application's
synchronous receive calls.

For more information on the behavior of pipelined messages, see Asynchronous Message
Pipeline. For more information on configuring a JMS connection factory, see Configure
Resources for JMS System Modules in the Oracle WebLogic Remote Console Online Help.

Recovering Received Messages

Note

This section applies only to non-transacted sessions for which the acknowledge mode
is set to CLIENT_ACKNOWLEDGE. Synchronously received AUTO_ACKNOWLEDGE messages
may not be recovered; they have already been acknowledged.

An application can request that JMS redeliver messages (unacknowledge them) using the
following method:

public void recover(
) throws JMSException

The recover() method performs the following steps:

• Stops message delivery for the session

• Tags all messages that have not been acknowledged (but may have been delivered) as
redelivered

• Resumes sending messages starting from the first unacknowledged message for that
session

Note

Messages in queues are not necessarily re delivered in the same order that they
were originally delivered, nor to the same queue consumers. For information to
guarantee the correct ordering of re delivered messages, see Ordered Redelivery
of Messages.

Acknowledging Received Messages
Use the acknowledge() method to acknowledge a received message. This method depends
on how the connection factory's Acknowledge Policy attribute is configured.

Chapter 5
Acknowledging Received Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 28 of 30

Note

This section applies only to non-transacted sessions for which the acknowledge mode
is set to CLIENT_ACKNOWLEDGE.

To acknowledge a received message, use the following Message method:

public void acknowledge(
) throws JMSException

The acknowledge() method depends on how the connection factory's Acknowledge Policy
attribute is configured, as follows:

• The default policy of "All" specifies that calling the acknowledge on a message
acknowledges all unacknowledged messages received on the session.

• The "Previous" policy specifies that calling the acknowledge on a message acknowledges
only unacknowledged messages up to, and including, the given message. Messages that
are not acknowledged may be redelivered to the client.

This method is effective only when issued by a non-transacted session for which the
acknowledge mode is set to CLIENT_ACKNOWLEDGE. Otherwise, the method is ignored.

Releasing Object Resources
When you finish using the connection, session, message producer or consumer, connection
consumer, or queue browser created on behalf of a JMS application, you should explicitly close
them to release the resources.

Enter the close() method to close JMS objects, as follows:

public void close(
) throws JMSException

When closing an object:

• The call blocks until the method call completes or until any outstanding asynchronous
receiver onMessage() calls complete.

• All associated sub objects are also closed. For example, when closing a session, all
associated message producers and consumers are also closed. When closing a
connection, all associated sessions are also closed.

For more information about the effects of the close() method for each object, see the
appropriate jakarta.jms Javadoc, at http://www.oracle.com/technetwork/java/jms/
index.html. In addition, for more information about the connection or Session close()
method, see Starting, Stopping, and Closing a Connection or Closing a Session, respectively.

The following example is an excerpt from the examples.jms.queue.QueueSend example,
provided with WebLogic Server in the
EXAMPLES_HOME\wl_server\examples\src\examples\jms\queue directory. EXAMPLES_HOME
represents the directory in which the WebLogic Server code examples are configured. This
example shows the code required to close the message consumer, session, and connection
objects.

public void close(
) throws JMSException
{

Chapter 5
Releasing Object Resources

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 29 of 30

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

 qreceiver.close();
 qsession.close();
 qcon.close();
}

In the QueueSend example, the close() method is called at the end of main() to close objects
and free resources.

Chapter 5
Releasing Object Resources

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 30 of 30

6
Managing Your Applications

Learn how to manage your JMS applications programatically using the value-added WebLogic
JMS features.

Managing Rolled Back, Recovered, Redelivered, or Expired
Messages

Learn how to mange rolled back or recovered messages.

Setting a Redelivery Delay for Messages
You can delay the redelivery of messages when a temporary, external condition prevents an
application from properly handling a message. This enables an application to temporarily
inhibit the receipt of "poison" messages that it cannot currently handle. When a message is
rolled back or recovered, the redelivery delay is the amount of time a message is put aside
before an attempt is made to redeliver the message.

If JMS immediately redelivers the message, then the error condition may not be resolved and
the application may still not be able to handle the message. However, if an application is
configured for a redelivery delay, then when it rolls back or recovers a message, the message
is set aside until the redelivery delay has passed, at which point the messages are made
available for redelivery.

All messages consumed and subsequently rolled back or recovered by a session receive the
redelivery delay for that session at the time of rollback or recovery. Messages consumed by
multiple sessions as part of a single user transaction will receive different redelivery delays as
a function of the session that consumed the individual messages. Messages that are left
unacknowledged or uncommitted by a client, either intentionally or as a result of a failure, are
not assigned a redelivery delay.

Setting a Redelivery Delay
A session inherits the redelivery delay from its connection factory when the session is created.

For more information, see Configure Resources for JMS System Modules in the Oracle
WebLogic Remote Console Online Help.

The application that creates the session can then override the connection factory setting using
WebLogic-specific extensions to the jakarta.jms.Session interface. The session attribute is
dynamic and can be changed at any time. Changing the session redelivery delay affects all
messages consumed and rolled back (or recovered) by that session after the change except
when the message is in a session using non-durable topics.

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 30

Note

When a session is using non-durable topics, the setRedeliveryDelay method does
not apply. This may result in unexpected behavior if you are using a non-durable topic
consumer to drive a workflow.

The method for setting the redelivery delay on a session is provided through the
weblogic.jms.extensions.WLSession interface, which is an extension to the
jakarta.jms.Session interface. To define a redelivery delay for a session, use the following
methods:

public void setRedeliveryDelay(
 long redeliveryDelay
) throws JMSException;

public long getRedeliveryDelay(
) throws JMSException;

For more information on the WLSession class, refer to the
weblogic.jms.extensions.WLSession Javadoc.

Overriding the Redelivery Delay on a Destination
Regardless of what redelivery delay is set on the session, the destination where a message is
being rolled back or recovered can override the setting. The redelivery delay override applied
to the redelivery of a message is the one in effect at the time a message is rolled back or
recovered.

Setting a Redelivery Limit for Messages
You can specify a limit on the number of times that WebLogic JMS will attempt to redeliver a
message to an application. After WebLogic JMS fails to redeliver a message to a destination
for a specific number of times, the message can be redirected to an error destination that is
associated with the message destination. If the redelivery limit is configured, but no error
destination is configured, then persistent or non-persistent messages are deleted when they
reach their redelivery limit.

Alternatively, you can set the redelivery limit value dynamically using the message producer's
set method, as described in Setting JMSProducer and MessageProducer Attributes.

Ordered Redelivery of Messages

Note

Oracle recommends that applications use the Ordered Redelivery upgrade to
Message Unit-of-Order. See Using the Message Unit-of-Order.

All messages initially delivered to a consumer from a given producer are guaranteed to arrive
at the consumer in the order in which they were produced. WebLogic JMS goes above and
beyond this requirement by providing the "Ordered Redelivery of Messages" feature, which
guarantees the correct ordering of redelivered messages as well.

Chapter 6
Managing Rolled Back, Recovered, Redelivered, or Expired Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 30

In order to provide this guarantee, WebLogic JMS must impose certain constraints. They are:

• Single consumers — ordered redelivery is only guaranteed when there is a single
consumer. If there are multiple consumers, then there are no guarantees about the order in
which any individual consumer will receive messages.

Note

With respect to MDBs (message-driven beans), the number of consumers is a
function of the number of MDB instances deployed for a given MDB. The initial
and maximum values for the number of instances must be set to 1. Otherwise no
ordering guarantees can be made with respect to redelivered messages.

• Sort order : If a given destination is sorted, has JMS destination keys defined, and another
message is produced such that the message would be placed at the top of the ordering,
then no guarantee can be made between the redelivery of an existing message and the
delivery of the incoming message.

• Message selection : If a consumer is using a selector, then ordering on redelivery is only
guaranteed between the message being redelivered and other messages that match the
criteria for that selector. There are no guarantees of order with respect to messages that
do not match the selector.

• Redelivery delay : If a message has a redelivery delay period and is recovered or rolled
back, then it is unavailable for the delay period. During that period, other messages can be
delivered before the delayed message, even though these messages were sent after the
delayed message.

• Messages pending recovery : Ordered redelivery does not apply to redelivered messages
that end up in a pending recovery state due to a server failure or a system reboot.

Required Message Pipeline Setting for the Messaging Bridge and MDBs
For asynchronous consumers or JMS applications using the WebLogic Messaging Bridge or
MDBs, the size of the message pipeline must be set to 1. The pipeline size is set using the
Messages Maximum attribute on the JMS connection factory used by the receiving application.
Any value higher than 1 means there may be additional in-flight messages that will appear
ahead of a redelivered message. MDB applications must define an application-specific JMS
connection factory and set the Messages Maximum attribute value to 1 on that connection
factory, and then reference the connection factory in the EJB descriptor for their MDB
application.

For more information about programming EJBs, see Message-Driven EJBs in Developing
Jakarta Enterprise Beans Using Deployment Descriptors.

Performance Limitations
JMS applications that implement the Ordered Redelivery feature will incur performance
degradation for asynchronous consumers using JTA transactions (specifically, MDBs and the
WebLogic Messaging Bridge). This is caused by a mandatory reduction in the number of in-
flight messages to exactly 1, so messages are not aggregated when they are sent to the client.

Handling Expired Messages
WebLogic JMS has an active message Expiration Policy feature that allows you to control how
the system searches for expired messages and how it handles them when they are

Chapter 6
Managing Rolled Back, Recovered, Redelivered, or Expired Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 30

encountered. This feature ensures that expired messages are cleaned up immediately, either
by simply discarding expired messages, discarding expired messages and logging their
removal, or redirecting expired messages to an error destination configured on the local JMS
server.

Setting Message Delivery Times
You can schedule message deliveries to an application for specific times in the future.

Message deliveries can be deferred for short periods of time (such as seconds or minutes) or
for long stretches of time (for example, hours later for batch processing). Until that delivery
time, the message is essentially invisible until it is delivered, enabling you to schedule work at
a particular time in the future.

Messages are not sent on a recurring basis; they are sent only once. In order to send
messages on a recurring basis, a received scheduled message must be sent back to its
original destination. Typically, the receive, the send, and any associated work should be under
the same transaction to ensure exactly-once semantics.

Setting a Delivery Time on Producers
Support for setting and getting a time-to-deliver on an individual producer is provided through
the weblogic.jms.extensions.WLMessageProducer interface, which is an extension to the
jakarta.jms.MessageProducer interface. To define a time-to-deliver on an individual producer,
use the following methods:

public void setTimeToDeliver(
 long timeToDeliver
) throws JMSException;

public long getTimeToDeliver(
) throws JMSException;

For more information about the WLMessageProducer class, see the
weblogic.jms.extensions.WLMessageProducer Javadoc.

Setting a Delivery Time on Messages
DeliveryTime is a JMS message header field that defines the earliest absolute time at which
the message can be delivered. That is, the message is held by the messaging system and is
not given to any consumers until that time.

As a JMS header field, DeliveryTime can be used to sort messages in a destination or to
select messages. For the purposes of data type conversion, the delivery time is stored as a
long integer.

Chapter 6
Setting Message Delivery Times

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 30

Note

Setting a delivery time value on a message has no effect on this field, because JMS
will always override the value with the producer's value when the message is sent or
published. The message delivery time methods described here are similar to other
JMS message fields that are set through the producer, including the delivery mode,
priority, time-to-deliver, time-to-live, redelivery delay, and redelivery limit fields.
Specifically, the setting of these fields is reserved for JMS providers, including
WebLogic JMS.

The support for setting and getting the delivery time on a message is provided through the
weblogic.jms.extensions.WLMessage interface, which is an extension to the
jakarta.jms.Message interface. To define a delivery time on a message, use the following
methods:

public void setJMSDeliveryTime(
 long deliveryTime
) throws JMSException;

public long getJMSDeliveryTime(
) throws JMSException;

For more information about the WLMessage class, see weblogic.jms.extensions.WLMessage
Javadoc.

Overriding a Delivery Time
When a producer is created it inherits its TimeToDeliver attribute, expressed in milliseconds,
from the connection factory used to create the connection that the producer is a part of.
Regardless of the time-to-deliver set on the producer, the destination to which a message is
being sent or published can override the setting. An administrator can set the
TimeToDeliverOverride attribute on a destination in either a relative or scheduled string
format.

Interaction with the Time-to-Live Value
If the specified time-to-live value (JMSExpiration) is less than or equal to the specified time-to-
deliver value, then the message delivery succeeds. However, the message is then silently
expired.

Setting a Scheduled Time-to-Deliver Override
The scheduled TimeToDeliverOverride attribute can also be specified using the
weblogic.jms.extensions.Schedule class, which provides methods that take a schedule and
return the next scheduled time for delivering messages.

Table 6-1 Message Delivery Schedule

Example Description

0 0 0,30 * * * * Exact next nearest half-hour

* * 0,30 4-5 * * * Anytime in the first minute of the half hours between 4 A.M.
and 5 A.M. hours

Chapter 6
Setting Message Delivery Times

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 30

Table 6-1 (Cont.) Message Delivery Schedule

Example Description

* * * 9-16 * * * Between 9 A.M. and 5 P.M. (9:00.00 A.M. to 4:59.59 P.M.)

* * * * 8-14 * 2 The second Tuesday of the month

* * * 13-16 * * 0 Between 1 P.M. and 5 P.M. on Sunday

* * * * * 31 * The last day of the month

* * * * 15 4 1 The next time April 15th occurs on a Sunday

0 0 0 1 * * 2-6;0 0 0 2 * * 1,7 1 A.M. on weekdays; 2 A.M. on weekends

A cron-like string is used to define the schedule. The format is defined by the following BNF
syntax:

schedule := millisecond second minute hour dayOfMonth month
 dayOfWeek

The BNF syntax for specifying the second field is as follows:

second := * | secondList
secondList := secondItem [, secondList]
secondItem := secondValue | secondRange
SecondRange := secondValue - secondValue

Similar BNF statements for milliseconds, minute, hour, day of month, month, and day of week
can be derived from the second syntax. The values for each field are defined as non-negative
integers in the following ranges:

milliSecondValue := 0-999
milliSecondValue := 0-999
secondValue := 0-59
minuteValue := 0-59
hourValue := 0-23
dayOfMonthValue := 1-31
monthValue := 1-12
dayOfWeekValue := 1-7

Note

These values equate to the same ranges that thejava.util.Calendar class uses,
except for monthValue. The java.util.Calendar range for monthValue is 0-11, rather
than 1-12.

Using this syntax, each field can be represented as a range of values indicating all times
between the two times. For example, 2-6 in the dayOfWeek field indicates Monday through
Friday, inclusive. Each field can also be specified as a comma-separated list. For instance, a
minute field of 0,15,30,45 means every quarter hour on the quarter hour. Last, each field can
be defined as both a set of individual values and ranges of values. For example, an hour field
of 9-17,0 indicates between the hours of 9 A.M. and 5 P.M., and on the hour of midnight.

Additional semantics are as follows:

• If multiple schedules are supplied (using a semi-colon (;) as the separator), then the next
scheduled time for the set is determined using the schedule that returns the soonest value.

Chapter 6
Setting Message Delivery Times

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 30

One use for this is for specifying schedules that change based on the day of the week (see
the example below).

• A value of 1 (one) for dayOfWeek equates to Sunday.

• A value of * means every time for that field. For instance, a * in the Month field means
every month. A * in the Hour field means every hour.

• A value of l or last (not case sensitive) indicates the greatest possible value for a field.

• If a day of the month is specified that exceeds the normal maximum for a month, then the
normal maximum for that month will be specified. For example, if it is February during a
leap year and 31 was specified, then the scheduler will schedule as if 29 was specified
instead. This means that setting the month field to 31 always indicates the last day of the
month.

• If milliseconds are specified, then they are rounded down to the nearest 50th of a second.
The values are 0, 19, 39, 59, ..., 979, and 999. Thus, 0-40 gets rounded to 0-39 and
50-999 gets rounded to 39-999.

Note

When a calendar is not supplied as a method parameter to one of the static
methods in this class, the calendar used is a java.util.GregorianCalendar with
a default java.util.TimeZone and a default java.util.Locale.

JMS Schedule Interface
The weblogic.jms.extensions.schedule class has methods that will return the next
scheduled time that matches the recurring time expression. This expression uses the same
syntax as TimeToDeliverOverride. The time returned in milliseconds can be relative or
absolute.

For more information about the WLSession class, see weblogic.jms.extensions.Schedule
Javadoc.

You can define the next scheduled time after the given time using the following method:

public static Calendar nextScheduledTime(
 String schedule,
 Calendar calendar
) throws ParseException {

You can define the next scheduled time after the current time using the following method:

public static Calendar nextScheduledTime(
 String schedule,
) throws ParseException {

You can define the next scheduled time after the given time in absolute milliseconds using the
following method:

public static long nextScheduledTimeInMillis(
 String schedule,
 long timeInMillis
) throws ParseException

You can define the next scheduled time after the given time in relative milliseconds using the
following method:

Chapter 6
Setting Message Delivery Times

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 30

public static long nextScheduledTimeInMillisRelative(
 String schedule,
 long timeInMillis
) throws ParseException {

You can define the next scheduled time after the current time in relative milliseconds using the
following method:

public static long nextScheduledTimeInMillisRelative(
 String schedule
) throws ParseException {

Managing Connections
Learn how to manage JMS connections.

Defining a Connection Exception Listener
An exception listener asynchronously notifies an application whenever a problem occurs with a
connection. This mechanism is particularly useful for a connection waiting to consume
messages that might not be notified otherwise.

Note

The purpose of an exception listener is not to monitor all exceptions thrown by a
connection, but to deliver those exceptions that would not be otherwise delivered.

You can define an exception listener for a connection using the following Connection method:

public void setExceptionListener(
 ExceptionListener listener
) throws JMSException

You must specify an ExceptionListener object for the connection.

The JMS Provider notifies an exception listener, if one has been defined, when it encounters a
problem with a connection using the following ExceptionListener method:

public void onException(
 JMSException exception
)

The JMS provider specifies the exception that describes the problem when calling the method.

You can access the exception listener for a connection using the following Connection method:

public ExceptionListener getExceptionListener(
) throws JMSException

Accessing Connection Metadata
You can access the metadata associated with a specific connection using the following
Connection method:

public ConnectionMetaData getMetaData() throws JMSException

Chapter 6
Managing Connections

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 30

This method returns a ConnectionMetaData object that enables you to access JMS metadata.
The following table lists the various type of JMS metadata and the get methods that you can
use to access them.

Table 6-2 JMS Metadata

JMS Metadata Get Method

Version public String getJMSVersion() throws JMSException

Major version public int getJMSMajorVersion() throws JMSException

Minor version public int getJMSMinorVersion() throws JMSException

Provider name public String getJMSProviderName() throws JMSException

Provider version public String getProviderVersion() throws JMSException

Provider major version public int getProviderMajorVersion() throws JMSException

Provider minor version public int getProviderMinorVersion() throws JMSException

JMSX property names public Enumeration getJMSXPropertyNames() throws
JMSException

For more information about the ConnectionMetaData class, see the
jakarta.jms.ConnectionMetaData Javadoc at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/ConnectionMetaData.html.

Starting, Stopping, and Closing a Connection
To control the flow of messages, you can start and stop a connection temporarily using the
start() and stop() methods, respectively, as follows.

The start() and stop() method details are as follows:

public void start() throws JMSException

public void stop() throws JMSException

A newly created connection is stopped—no messages are received until the connection is
started. Typically, other JMS objects are set up to handle messages before the connection is
started, as described in Setting Up a JMS Application. Messages may be produced on a
stopped connection, but cannot be delivered to a stopped connection.

Once started, you can stop a connection using the stop() method. This method performs the
following steps:

• Pauses the delivery of all messages. No applications waiting to receive messages will
return until the connection is restarted or the time-to-live value associated with the
message is reached.

• Waits until all message listeners that are currently processing messages have completed.

Typically, a JMS Provider allocates a significant amount of resources when it creates a
connection. When a connection is no longer being used, you should close it to free up
resources. A connection can be closed using the following method:

public void close(
) throws JMSException

This method performs the following steps to execute an orderly shutdown:

Chapter 6
Managing Connections

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ConnectionMetaData.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/ConnectionMetaData.html

• Terminates the receipt of all pending messages. Applications may return a message or null
if a message was not available at the time of the close.

• Waits until all message listeners that are currently processing messages have completed.

• Rolls back in-process transactions on its transacted sessions (unless such transactions are
part of an external JTA user transaction). For more information about JTA user
transactions, see Using JTA User Transactions.

• Does not force an acknowledge of client-acknowledged sessions. By not forcing an
acknowledge, no messages are lost for queues and durable subscriptions that require
reliable processing.

When you close a connection, all associated objects are also closed. You can continue to use
the message objects created or received via the connection, except the received message's
acknowledge() method. Closing a closed connection has no effect.

Note

Attempting to acknowledge a received message from a closed connection's session
throws an IllegalStateException.

Managing Sessions
Learn how to manage JMS sessions.

Defining a Session Exception Listener
An exception listener asynchronously notifies a client in the event a problem occurs with a
session. This is particularly useful for a session waiting to consume messages that might not
be notified otherwise.

Note

The purpose of an exception listener is not to monitor all exceptions thrown by a
session, only to deliver those exceptions that would otherwise be undelivered.

You can define an exception listener for a session using the following WLSession method:

public void setExceptionListener(ExceptionListener listener) throws JMSException

You must specify an ExceptionListener object for the session.

The JMS Provider notifies an exception listener, if one has been defined, when it encounters a
problem with a session using the following ExceptionListener method:

public void onException(JMSException exception)

The JMS Provider specifies the exception encountered that describes the problem when
calling the method.

You can access the exception listener for a session using the following WLSession method:

public ExceptionListener getExceptionListener() throws JMSException

Chapter 6
Managing Sessions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 30

Note

Because there can only be one thread per session, an exception listener and message
listener (used for asynchronous message delivery) cannot execute simultaneously.
Consequently, if a message listener is executing at the time a problem occurs,
execution of the exception listener is blocked until the message listener completes its
execution. For more information about message listeners, see Receiving Messages
Asynchronously using the Classic API.

Closing a Session
As with connections, a JMS provider allocates a significant amount of resources when it
creates a session. When a session is no longer being used, it is recommended that it be
closed to free up resources. A session can be closed using the following Session method:

public void close(
) throws JMSException

Note

The close() method is the only Session method that can be invoked from a thread
that is separate from the session thread.

This method does the following to execute an orderly shutdown:

• Terminates the receipt of all pending messages. Applications can return a message or null
if a message was not available at the time connection was closed.

• Waits until all message listeners that are currently processing messages have completed.

• Rolls back in-process transactions (unless these transactions are part of external JTA user
transaction). For more information about JTA user transactions, see Using JTA User
Transactions.

• Does not force an acknowledgement of client acknowledged sessions, ensuring that no
messages are lost for queues and durable subscriptions that require reliable processing.

When you close a session, all associated producers and consumers are also closed.

Note

If you want to issue the close() method within an onMessage() method call, then the
system administrator must select the Allow Close In OnMessage check box when
configuring the connection factory.

Managing Destinations
Learn how to create and delete JMS destinations.

Chapter 6
Managing Destinations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 30

Dynamically Creating Destinations
See the following topics for information about creating destinations dynamically:

• Using JMS Module Helper to Manage Applications briefs you about how to use the
weblogic.jms.extensions.JMSModuleHelper. For more information about Using JMS
Module Helper, see Using JMS Module Helper to Manage Applications

• Using Temporary Destinations briefs you about how applications are enabled to create
destinations as per requirement. For more information about Using Temporary
Destinations, seeUsing Temporary Destinations

The associated procedures for creating dynamic destinations are described in the following
sections.

Dynamically Deleting Destinations
You can dynamically delete JMS destinations (queue or topic) using any of the following
methods:

• JMSModuleHelper class (see Using JMS Module Helper to Manage Applications)

• User-defined JMX application

The JMS server removes the deleted destination in real time, therefore, it is not necessary to
redeploy the JMS server for the deletion to take effect.

Required Conditions for Deleting Destinations
In order to successfully delete a destination, the following conditions must be met:

• The destination must not be a member of a distributed destination. For more information,
see Using Distributed Destinations.

• The destination must not be the error destination for some other destination.

If either of these conditions cannot be met, then the deletion will not be allowed.

What Happens when a Destination Is Deleted
When a destination is deleted, the following behaviors and semantics apply:

• Physical deletion of existing messages : All durable subscribers for the deleted destination
are permanently deleted. All messages, persistent and non-persistent, stored in the
deleted destination are permanently removed from the messaging system.

• No longer able to create producers, consumers, and browsers : After a destination is
deleted, applications will no longer be able to create producers, consumers, or browsers
for the deleted destination. Any attempt to do so will result in the application receiving an
InvalidDestinationException — as if the destination does not exist.

• Closing of consumers : All existing consumers for the deleted destination are closed. The
closing of a consumer generates a ConsumerClosedException, which is delivered to the
ExceptionListener, if any, of the parent session, and which will read "Destination was
deleted".

When a consumer is closed, if it has an outstanding receive() operation, then that
operation is cancelled and the caller receives a null value indicating that no message is

Chapter 6
Managing Destinations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 30

available. Attempts by an application to do anything but close() a closed consumer will
result in an IllegalStateException.

• Closing of browsers: All browsers for the deleted destination are closed. Attempts by an
application to do anything but close() a closed browser will result in an
IllegalStateException. Closing of a browser implicitly closes all enumerations
associated with the browser.

• Closing of enumerations : All enumerations for the deleted destination are closed. The
behavior after an enumeration is closed depends on the last call before the enumeration
was closed. If a call to hasMoreElements() returns a value of true, and no subsequent call
to nextElement() has been made, then the enumeration guarantees that the next element
can be enumerated. This produces the specifics. When the last call before the close was to
hasMoreElements(), and the value returned was true, then the following behaviors apply:

– The first call to the nextElement() will return a message.

– Subsequent calls to the nextElement() will throw a NoSuchElementException.

– Calls to thehasMoreElements() made before the first call to the nextElement() will
return true.

– Calls to the hasMoreElements() made after the first call to the nextElement() will
return false.

If a given enumeration was never called, or the last call before the close was to
nextElement(), or the last call before the close was to the hasMoreElements() and the
value returned was false, then the following behaviors apply:

– Calls to thehasMoreElements() will return false.

– Calls to the nextElement() will throw a NoSuchElementException.

• Blocking send operations cancelled — all blocking send operations posted against the
deleted destination are cancelled. Send operations waiting for quota will receive a
ResourceAllocationException.

• Uncommitted transactions unaffected : The deletion of a destination does not affect
existing uncommitted transactions. Any uncommitted work associated with a deleted
destination is allowed to complete as part of the transaction. However, because the
destination is deleted, the net result of all operations (rollback, commit, and so on) is the
deletion of the associated messages.

Message Timestamps for Troubleshooting Deleted Destinations
If a destination with persistent messages is deleted and then immediately re-created while the
JMS server is not running, then the JMS server will compare the version number of the
destination (using the CreationTime field in the configuration config.xml file) to the version
number of the destination in the persistent messages. In this case, the left over persistent
messages for the older destination will have an older version number than the version number
in the config.xml file for the re-created destination, and when the JMS server is rebooted, the
left over persistent messages are discarded.

However, if a persistent message somehow has a version number that is newer than the
version number in the config.xml for the re-created destination, then either the system clock
was rolled back when the destination was deleted and re-created (while the JMS server was
not running), or a different config.xml is being used. In this situation, the JMS server will fail to
boot. To save the persistent message, you can set the version number (the CreationTime field)
in the config.xml to match the version number in the persistent message. Otherwise, you can
change the version number in the config.xml so that it is newer than the version number in
the persistent message; this way, the JMS server can delete the message when it is rebooted.

Chapter 6
Managing Destinations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 30

Deleted Destination Statistics
Statistics for the deleted destination and the hosting JMS server are updated as the messages
are physically deleted. However, the deletion of some messages can be delayed pending the
outcome of another operation. This includes messages sent and received in a transaction, as
well as unacknowledged non-transactional messages received by a client.

Using Temporary Destinations
Temporary destinations are enabled by default through the JMS server's Hosting Temporary
Template attribute. They enable an application to create a destination, as required, without the
system administration overhead associated with configuring and creating a server-defined
destination.

JMS applications can use the JMSReplyTo header field to return a response to a request. The
sender application may optionally set the JMSReplyTo header field of its messages to its
temporary destination name to advertise the temporary destination that it is using to other
applications.

Temporary destinations exist only for the duration of the current connection, unless they are
removed using the delete() method, described in Deleting a Temporary Destination.

Because messages are never available if the server is restarted, all PERSISTENT messages are
silently made NON_PERSISTENT. As a result, temporary destinations are not suitable for
business logic that must survive a restart.

The following sections describe how to create a temporary queue (Point-to-Point) or temporary
topic (Publish/Subscibe).

Creating a Temporary Queue
You can create a temporary queue using the following QueueSession method:

public TemporaryQueue createTemporaryQueue(
) throws JMSException

For example, to create a reference to a TemporaryQueue that will exist only for the duration of
the current connection, use the following method call:

QueueSender = Session.createTemporaryQueue();

Creating a Temporary Topic
You can create a temporary topic using the following TopicSession method:

public TemporaryTopic createTemporaryTopic(
) throws JMSException

For example, to create a reference to a temporary topic that will exist only for the duration of
the current connection, use the following method call:

TopicPublisher = Session.createTemporaryTopic();

Chapter 6
Using Temporary Destinations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 30

Deleting a Temporary Destination
When you finish using a temporary destination, you can delete it (to release associated
resources) using the following TemporaryQueue or TemporaryTopic method:

public void delete(
) throws JMSException

Setting Up Durable Subscriptions
WebLogic JMS supports durable and non durable subscriptions. Learn how to set up durable
subscriptions for your application.

For durable subscriptions, WebLogic JMS stores a message in a persistent file or database
until the message is delivered to the subscribers or has expired, even if those subscribers are
not active at the time that the message is delivered. A subscriber is considered active if the
Java object that represents it exists. Durable subscriptions are supported for Publish/Subscribe
messaging only.

Note

Durable subscriptions cannot be created for distributed topics. However, you can still
create a durable subscription on distributed topic member and the other topic
members will forward the messages to the member that has the durable subscription.
See Using Distributed Destinations.

For non durable subscriptions, WebLogic JMS delivers messages only to applications with an
active session. Messages sent to a topic while an application is not listening are never
delivered to that application. In other words, non durable subscriptions last only as long as their
subscriber objects. By default, subscribers are non durable.

The following sections describe:

Defining the Persistent Store
You must configure a persistent file or database store and assign it to your JMS server so
WebLogic JMS can store a message until it is delivered to the subscribers or has expired.

• Create a JMS file store or JMS JDBC backing store using the Stores node.

• Target the configured store to your JMS server by selecting it from the Store field's drop-
down list on the General tab of the configuration page under JMS Server.

Note

No two JMS servers can use the same backing store.

Setting the Client ID Policy
The Client ID Policy specifies whether more than one JMS connection can use the same client
ID in a cluster. Valid values for this policy are:

Chapter 6
Setting Up Durable Subscriptions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 30

• RESTRICTED: The default. Only one connection that uses this policy can exist in a cluster at
any given time for a particular client ID (If a connection already exists with a given Client
ID, attempts to create new connections using this policy with the same client ID fail with an
exception).

• UNRESTRICTED: Connections created using this policy can specify any Client ID, even when
other restricted or unrestricted connections already use the same client ID. When a
durable subscription is created using an Unrestricted client ID, it can only be cleaned up
using weblogic.jms.extensions.WLJMSContext.unsubscribe(Topic topic, String
name) or using weblogic.jms.extensions.WLSession.unsubscribe(Topic topic, String
name). See Managing Durable Subscriptions.

Oracle recommends setting the client ID policy to Unrestricted for new applications (unless
your application architecture requires exclusive client IDs), especially if sharing a subscription
(durable or non-durable). Subscriptions created with different client ID policies are always
treated as independent subscriptions. See ClientIdPolicy in the MBean Reference for Oracle
WebLogic Server.

For more information about advanced concepts and functionality of Uniform Distributed Topics
(UDTs) necessary to design high availability applications, see Shared Subscriptions and Client
ID Policy.

Defining the Client ID
To support durable subscriptions, a client identifier (client ID) must be defined for the
connection.

Note

The JMS client ID is not necessarily equivalent to the WebLogic Server username,
that is, a name used to authenticate a user in the WebLogic security realm. You can
set the JMS client ID to the WebLogic Server username, if it is appropriate for your
JMS application.

The client ID can be supplied in two ways:

• The first method is to configure the connection factory with the client ID. For WebLogic
JMS, this means adding a separate connection factory definition during configuration for
each client ID. Applications then look up their own topic connection factories in JNDI and
use them to create connections that contain their own client IDs.

• Alternatively, the preferred method is for an application that can set its client ID in the
connection after the connection is created by calling the following connection method:

public void setClientID(
 String clientID
) throws JMSException

If you use this alternative approach, then you can use the default connection factory (if it is
acceptable for your application) and avoid the need to modify the configuration information.
However, applications with durable subscriptions must ensure that they call
thesetClientID() method immediately after creating their topic connection.

If a client ID is already defined for the connection, then an IllegalStateException is
thrown. If the specified client ID is already defined for another connection, then an
InvalidClientIDException is thrown.

Chapter 6
Setting Up Durable Subscriptions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 30

Note

When specifying the client ID using the setClientID() method, there is a risk that
a duplicate client ID may be specified without throwing an exception. For example,
if the client IDs for two separate connections are set simultaneously to the same
value, then a race condition may occur and the same value may be assigned to
both connections. You can avoid this risk of duplication by specifying the client ID
during configuration.

To display a client ID and test whether or not a client ID has been defined already, use the
following connection method:

public String getClientID(
) throws JMSException

Note

Support for durable subscriptions is a feature unique to the Publish/Subscibe
messaging model, so client IDs are used only with topic connections; queue
connections also contain client IDs, but JMS does not use them.

Durable subscriptions should not be created for a temporary topic, because a
temporary topic is designed to exist only for the duration of the current connection.

Creating a Sharable Subscription Policy
The Subscription Sharing policy specifies whether subscribers can share subscriptions with
other subscribers on the same connections on this connection. Valid values for this policy are:

• Exclusive: The default. All subscribers created using this connection factory cannot share
subscriptions with any other subscribers. Use this policy to retain the functionality of
WebLogic Server 10.3.4.0 and earlier.

• Sharable: Subscribers created using this connection factory can share their subscriptions
with other subscribers, regardless of whether those subscribers are created using the
same connection factory or a different connection factory. Consumers can share non
durable subscriptions only if they have the same client ID and client ID policy; consumers
can share a durable subscription only if they have the same client ID, client ID policy, and
subscription name.

WebLogic JMS applications can override the Subscription Sharing policy specified on the
connection factory configuration by casting a jakarta.jms.JMSContext instance to
weblogic.jms.extensions.WLJMSContext or a jakarta.jms.Connection instance to
weblogic.jms.extensions.WLConnection and calling setSubscriptionSharingPolicy(String
subscriptionSharingPolicy).

Most applications with a Sharable Subscription Sharing policy will also use an Unrestricted
client ID policy in order to ensure that multiple connections with the same client ID can exist.

Two durable subscriptions with the same client ID and subscription name are treated as two
different independent subscriptions if they have a different Client ID Policy. Similarly, two
Sharable non durable subscriptions with the same client ID are treated as two different
independent subscriptions if they have a different client ID policy.

Chapter 6
Setting Up Durable Subscriptions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 30

For more information on how to use the Subscription Sharing policy, see Shared Subscriptions
and Client ID Policy.

Creating Subscribers for a Durable Subscription
This section describes how to create subscribers for a durable subscription and contains the
following topics:

Using JMS 2.0 API
To create subscribers for an unshared durable subscription use one of the following methods:

public MessageConsumer createDurableConsumer(
 Topic topic,
 String name
) throws JMSException

or

public MessageConsumer createDurableConsumer(
 Topic topic,
 String name,
 String selector,
 boolean noLocal
) throws JMSException

Using JMS 1.1 API
You can create subscribers for a durable subscription using the following TopicSession
methods:

public TopicSubscriber createDurableSubscriber(
 Topic topic,
 String name
) throws JMSException

or

public TopicSubscriber createDurableSubscriber(
 Topic topic,
 String name,
 String messageSelector,
 boolean noLocal
) throws JMSException

You must specify the name of the topic for which you are creating a subscriber and the name
of the durable subscription.

Note

Valid durable subscription names cannot include the following characters: comma ,
equals, colon , asterisk , percent , or question mark.

You may also specify a message selector for filtering messages and a noLocal flag (described
later in this section). Message selectors are described in more detail in Filtering Messages. If
you do not specify a selector or messageSelector,then by default all messages are searched.

Chapter 6
Setting Up Durable Subscriptions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 30

An application can use a JMS connection to both publish and subscribe to the same topic.
Because topic messages are delivered to all subscribers, an application can receive messages
it has published itself. To prevent this, a JMS application can set a noLocal flag to true. The
default for the noLocal value is false. Durable subscriptions are stored within the file or
database.

Best Practice: Always Close Failed JMS ClientIDs
As a best practice, JMS clients should always call the close() method instead of allowing the
application to rely on the JVM's garbage collection to clean failed JMS connections. This is
particularly important for durable subscription ClientIDs because the JMS Automatic
Reconnect feature keeps a reference to failed JMS connections. Therefore, always use
connection.close() method to clean up your connections. Also, consider using a finally
block to ensure that your connection resources are cleaned up. Otherwise, WebLogic Server
allocates system resources to keep the connection available.

The following code example demonstrates using theclose() method and thefinally block in a
JMS client to clean up failed connection resources:

 JMSConnection con = null;
 try {
 con = cf.createConnection();
 con.setClientID("Fred");
 // Do some I/O stuff;
 }
 finally {
 if (con != null) con.close();
 }

For more information about the JMS Automatic Reconnect feature, see Automatic JMS Client
Failover.

Deleting Durable Subscriptions
To delete a durable subscription, you use the following TopicSession method:

public void unsubscribe(
 String name
) throws JMSException

You must specify the name of the durable subscription to be deleted.

You cannot delete a durable subscription if any of the following are true:

• A TopicSubscriber is still active on the session.

• A message received by the durable subscription is part of a transaction or has not yet been
acknowledged in the session.

For information about managing durable subscriptions, see Managing Durable
Subscriptions.

Modifying Durable Subscriptions
To modify a durable subscription, perform the following steps:

1. Delete the durable subscription, as described in Deleting Durable Subscriptions.

Chapter 6
Setting Up Durable Subscriptions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 19 of 30

If it is not explicitly performed, the deletion will be executed implicitly when the durable
subscription is recreated in the next step.

2. Use the methods described in Creating Subscribers for a Durable Subscription to re-create
a durable subscription of the same name, but specifying a different topic name, message
selector, or noLocal value.

The durable subscription is re-created based on the new values.

Note

When re-creating a durable subscription, be careful to avoid creating a durable
subscription with a duplicate name. For example, if you attempt to delete a durable
subscription from a JMS server that is unavailable, the delete call fails. If you
subsequently create a durable subscription with the same name on a different
JMS server, you may experience unexpected results when the first JMS server
becomes available. Because the original durable subscription has not been
deleted, when the first JMS server again becomes available, there will be two
durable subscriptions with duplicate names.

Managing Durable Subscriptions
You can monitor and manage durable topic subscribers through public runtime APIs. This
functionality also enables you to view and browse all messages, and to manipulate most
messages on durable subscribers. This includes message browsing (for sorting), message
manipulation (such as move and delete), and message import and export. For more
information, see and Managing JMS Messages in Administering JMS Resources for Oracle
WebLogic Server.

Setting and Browsing Message Header and Property Fields
WebLogic JMS provides a set of standard header fields that you can define to identify and
route messages. In addition, property fields enable you to include application-specific header
fields within a message, extending the standard set. You can use the message header and
property fields to convey information between communicating processes.

The primary reason for including data in a property field rather than in the message body is to
support message filtering through message selectors. Except for XML message extensions,
data in the message body cannot be accessed through message selectors. For example,
suppose you use a property field to assign high priority to a message. You can then design a
message consumer that contains a message selector that accesses this property field and
selects only messages of expedited priority. See Filtering Messages.

Setting Message Header Fields
JMS messages contain a standard set of header fields that are always transmitted with the
message. They are available to message consumers that receive messages, and some fields
can be set by the message producers that send messages. After a message is received, its
header field values can be modified.

When modifying (overriding) header field values, you must take into consideration instances
when message fields are overwritten by the JMS subsystem. For instance, setting the priority
on a producer affects the priority of the message, but a value supplied to the send() method
overrides the setting on the producer. Similarly, values set on a destination override values set

Chapter 6
Setting and Browsing Message Header and Property Fields

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 20 of 30

by the producer or values supplied to the send() method. The only way to verify the value of
header fields is to query the message after a send() method.

For a description of the standard messages header fields, see Message Header Fields.

Table 7-3 lists the message class set and get methods for each of the supported data types.

Note

In some cases, the send() method overrides the header field value set using the
set() method, as indicated in the following table.

Table 6-3 JMS Header Field Methods

Header Field Set Method Get Method

JMSCorrelationID public void
setJMSCorrelationID(String
correlationID) throws JMSException

public String getJMSCorrelationID()
throws JMSException
public byte[]
getJMSCorrelationIDAsBytes() throws
JMSException

JMSDestination1 public void
setJMSDestination(Destination
destination) throws JMSException

public Destination
getJMSDestination() throws
JMSException

JMSDeliveryMode1 public void setJMSDeliveryMode(int
deliveryMode) throws JMSException

public int getJMSDeliveryMode()
throws JMSException

JMSDeliveryTime1 public void setJMSDeliveryTime(long
deliveryTime) throws JMSException

public long getJMSDeliveryTime()
throws JMSException

JMSDeliveryMode1 public void setJMSDeliveryMode(int
deliveryMode) throws JMSException

public int getJMSDeliveryMode()
throws JMSException

JMSMessageID1 public void setJMSMessageID(String
id) throws JMSException
Note: In addition to the set method, the
weblogic.jms.extensions.JMSRuntimeHe
lper class provides the following methods to
convert between pre-WebLogic JMS 6.0 and
6.1 JMSMessageID formats:

public void
oldJMSMessageIDToNew(String id, long
timeStamp) throws JMSException

public void
newJMSMessageIDToOld(String id, long
timeStamp) throws JMSException

public String getJMSMessageID()
throws JMSException

JMSPriority1 public void setJMSPriority(int
priority) throws JMSException

public int getJMSPriority() throws
JMSException

JMSRedelivered1 public void
setJMSRedelivered(boolean
redelivered) throws JMSException

public boolean getJMSRedelivered()
throws JMSException

JMSRedeliveryLimit1 public void
setJMSRedeliveryLimit(int
redelivered) throws JMSException

public int getJMSRedeliveryLimit()
throws JMSException

Chapter 6
Setting and Browsing Message Header and Property Fields

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 21 of 30

Table 6-3 (Cont.) JMS Header Field Methods

Header Field Set Method Get Method

JMSReplyTo public void
setJMSReplyTo(Destination replyTo)
throws JMSException

public Destination getJMSReplyTo()
throws JMSException

JMSTimeStamp1 public void setJMSTimeStamp(long
timestamp) throws JMSException

public long getJMSTimeStamp() throws
JMSException

JMSType public void setJMSType(String type)
throws JMSException

public String getJMSType() throws
JMSException

1 The corresponding set() method has no impact on the message header field when the send() method is executed. If set, this header
field value will be overridden during the send() operation.

The examples.jms.sender.SenderServlet example, provided with WebLogic Server in the
EXAMPLES_HOME\wl_server\examples\src\examples\jms\sender directory, where
EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured, shows how to set header fields in messages that you send and how to display
message header fields after they are sent.

For example, the following code, which appears after the send() method, displays the
message ID that was assigned to the message by WebLogic JMS:

System.out.println("Sent message " + msg.getJMSMessageID() + " to " +
msg.getJMSDestination());

Setting Message Property Fields
To set a property field, call the appropriate set method and specify the property name and
value. To read a property field, call the appropriate get method and specify the property name.

The sending application can set properties in the message, and the receiving application can
subsequently view them. The receiving application cannot change the properties without first
clearing them using the following clearProperties() method:

public void clearProperties(
) throws JMSException

This method does not clear the message header fields or body.

Note

The JMSX property name prefix is reserved for JMS. The connection metadata contains
a list of JMSX properties, which can be accessed as an enumerated list using the
getJMSXPropertyNames() method. For more information, see Accessing Connection
Metadata.

The JMS_ property name prefix is reserved for provider-specific properties; it is not
intended for use with standard JMS messaging.

Chapter 6
Setting and Browsing Message Header and Property Fields

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 22 of 30

The property field can be set to any of the following types: boolean, byte, double, float,
int, long, short, or string. The following table lists the Message class set and get
methods for each of the supported data types.

Table 6-4 Message Property Set and Get Methods for Data Types

Data Type Set Method Get Method

boolean public void
setBooleanProperty(String name,
boolean value) throws
JMSException

public boolean
getBooleanProperty(String name)
throws JMSException

byte public void
setByteProperty(String name, byte
value) throws JMSException

public byte getByteProperty(String
name) throws JMSException

double public void
setDoubleProperty(String name,
double value) throws JMSException

public double
getDoubleProperty(String name)
throws JMSException

float public void
setFloatProperty(String name,
float value) throws JMSException

public float
getFloatProperty(String name)
throws JMSException

int public void setIntProperty(String
name, int value) throws
JMSException

public int getIntProperty(String
name) throws JMSException

long public void
setLongProperty(String name, long
value) throws JMSException

public long getLongProperty(String
name) throws JMSException

short public void
setShortProperty(String name,
short value) throws JMSException

public short
getShortProperty(String name)
throws JMSException

String public void
setStringProperty(String name,
String value) throws JMSException

public String
getStringProperty(String name)
throws JMSException

In addition to the set and get methods described in the previous table, you can use the
setObjectProperty() and getObjectProperty() methods to use the objectified primitive
values of the property type. When the objectified value is used, the property type can be
determined at execution time rather than during the compilation. The valid object types are
boolean, byte, double, float, int, long, short, and string.

You can access all property field names using the following Message method:

public Enumeration getPropertyNames(
) throws JMSException

This method returns all property field names as an enumeration. You can then retrieve the
value of each property field by passing the property field name to the appropriate get method,
as described in the Table 7-4, based on the property field data type.

Table 6-5 contains a conversion chart for message properties. It enables you to identify the
type that can be read based on the type that has been written. For each property type listed in
the left-most column in which a message has been written, a YES in one of the remaining
columns indicates that the message can be read as the type listed at the top of that column.

Chapter 6
Setting and Browsing Message Header and Property Fields

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 23 of 30

Table 6-5 Message Property Conversion Chart

Property Written
As. . .

boolean byte double float int long short String

boolean YES No No No No No No YES

byte No YES No No YES YES YES YES

double No No YES No No No No YES

float No No YES YES No No No YES

int No No No No YES YES No YES

long No No No No No YES No YES

Object YES YES YES YES YES YES YES YES

short No No No No YES YES YES YES

String YES YES YES YES YES YES YES YES

You can test whether or not a property value was set using the following Message method:

public boolean propertyExists(
 String name
) throws JMSException

You specify a property name and the method returns a Boolean value indicating whether or not
the property exists.

For example, the following code sets two String properties and an int property:

msg.setStringProperty("User", user);
msg.setStringProperty("Category", category);
msg.setIntProperty("Rating", rating);

For more information about message property fields, see Message Property Fields , or the
jakarta.jms.Message Javadoc at https://javadoc.io/doc/jakarta.platform/
jakarta.jakartaee-api/latest/jakarta/jms/Message.htmll.

Browsing Header and Property Fields

Note

Only queue message header and property fields can be browsed. You cannot browse
topic message header and property fields.

You can browse the header and property fields of messages on a queue using the following
QueueSession methods:

public QueueBrowser createBrowser(
 Queue queue
) throws JMSException

public QueueBrowser createBrowser(
 Queue queue,
 String messageSelector
) throws JMSException

Chapter 6
Setting and Browsing Message Header and Property Fields

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 24 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.html

You must specify the queue that you want to browse. You can also specify a message selector
to filter messages that you are browsing. Message selectors are described in more detail in
Filtering Messages.

After you define a queue, you can access the queue name and message selector associated
with a queue browser using the following QueueBrowser methods:

public Queue getQueue(
) throws JMSException

public String getMessageSelector(
) throws JMSException

In addition, you can access an enumeration for browsing the messages using the following
QueueBrowser method:

public Enumeration getEnumeration(
) throws JMSException

The examples.jms.queue.QueueBrowser example, provided with WebLogic Server in the
EXAMPLES_HOME\wl_server\examples\src\examples\jms\queue directory, where
EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured, shows how to access the header fields of received messages.

For example, the following code is an excerpt from the QueueBrowser example and creates the
QueueBrowser object:

qbrowser = qsession.createBrowser(queue);

The following is an excerpt from the displayQueue() method defined in the QueueBrowser
example. In this example, the QueueBrowser object is used to obtain an enumeration that is
subsequently used to scan the queue's messages.

 public void displayQueue(
) throws JMSException
 {
 Enumeration e = qbrowser.getEnumeration();
 Message m = null;

 if (! e.hasMoreElements()) {
 System.out.println("There are no messages on this queue.");
 } else {

 System.out.println("Queued JMS Messages: ");
 while (e.hasMoreElements()) {
 m = (Message) e.nextElement();
 System.out.println("Message ID " + m.getJMSMessageID() +
 " delivered " + new Date(m.getJMSTimestamp())
 " to " + m.getJMSDestination());
 }
 }

When a queue browser is no longer being used, you should close it to free up resources. For
more information, see Releasing Object Resources.

For more information about the QueueBrowser class, see the jakarta.jms.QueueBrowser
Javadoc at https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/
jakarta/jms/QueueBrowser.html.

Chapter 6
Setting and Browsing Message Header and Property Fields

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 25 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueBrowser.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/QueueBrowser.html

Filtering Messages
In many cases, an application does not need to be notified of every message that is delivered
to it. Use message selectors to filter unwanted messages, and subsequently improve
performance by minimizing their effect on network traffic.

Message selectors operate as follows:

• The sending application sets message header or property fields to describe or classify a
message in a standardized way.

• The receiving applications specify a simple query string to filter the messages that they
want to receive.

Because message selectors cannot reference the contents (body) of a message, some
information may be duplicated in the message property fields (except in the case of XML
messages).

You specify a selector when creating a queue receiver or topic subscriber, as an argument to
the QueueSession.createReceiver() or TopicSession.createSubscriber() methods,
respectively. For information about creating queue receivers and topic subscribers, see Step 5:
Create Message Producers and Message Consumers.

WebLogic JMS assigns a state or current processing condition to messages during processing.
You can use these states as selectors. For information on valid message states, see
weblogic.jms.extensions.JMSMessageInfo in Java API Reference for Oracle WebLogic Server.

The following sections describe how to define a message selector using SQL statements and
XML selector methods, and how to update message selectors. For more information about
setting header and property fields, see Setting and Browsing Message Header and Property
Fields and Setting Message Property Fields , respectively.

Defining Message Selectors Using SQL Statements
A message selector is a Boolean expression. It consists of a String with a syntax similar to the
where clause of an SQL select statement.

The following excerpts provide examples of selector expressions.

salary > 64000 and dept in ('eng','qa')

(product like 'WebLogic%' or product like '%T3')
 and version > 3.0

hireyear between 1990 and 1992
 or fireyear is not null

fireyear - hireyear > 4

The following example shows how to set a selector when creating a queue receiver that filters
out messages with a priority lower than 6.

String selector = "JMSPriority >= 6";
qsession.createReceiver(queue, selector);

The following example shows how to set the same selector when creating a topic subscriber.

String selector = "JMSPriority >= 6";
qsession.createSubscriber(topic, selector);

Chapter 6
Filtering Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 26 of 30

For more information about the message selector syntax, see the jakarta.jms.Message
Javadoc at https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/
jakarta/jms/Message.html.

Defining XML Message Selectors Using XML Selector Method
For XML message types, in addition to using the SQL selector expressions described in the
previous section to define message selectors, you can use the following method:

String JMS_BEA_SELECT(String type, String expression)

The JMS_BEA_SELECT is a built-in function in WebLogic JMS SQL syntax. You specify the syntax
type, which must be set to xpath (XML path language) and an XPath expression. The XML
path language is defined in the XML Path Language (XPath) document, which is available at
the XML Path Language web site at: http://www.w3.org/TR/xpath.

Note

Pay careful attention to your XML message syntax, since malformed XML messages
(for example, a missing end tag) will not match any XML selector.

The method returns a null value under the following circumstances:

• The message does not parse.

• The message parses, but the element is not present.

• If a message parses and the element is present, but the message contains no value (for
example, <order></order>).

For example, consider the following XML code example:

<order>
 <item>
 <id>007</id>
 <name>Hand-held Power Drill</name>
 <description>Compact, assorted colors.</description>
 <price>$34.99</price>
 </item>
 <item>
 <id>123</id>
 <name>Mitre Saw</name>
 <description>Three blades sizes.</description>
 <price>$69.99</price>
 </item>
 <item>
 <id>66</id>
 <name>Socket Wrench Set</name>
 <description>Set of 10.</description>
 <price>$19.99</price>
 </item>
</order>

The following example shows how to retrieve the name of the second item in the previous
example. This method call returns the string, Mitre Saw.

 String sel = "JMS_BEA_SELECT('xpath', '/order/item[2]/name/text()') = 'Mitre Saw'";

Chapter 6
Filtering Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 27 of 30

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.htm
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Message.htm
http://www.w3.org/TR/xpath

Pay careful attention to the use of double and single quotation mark and spaces. Note the use
of single quotation mark around xpath, the XML tab, and the string value.

The following example shows how to retrieve the ID of the third item in the previous example.
This method call returns the string, 66.

 String sel = "JMS_BEA_SELECT('xpath', '/order/item[3]/id/text()') = '66'";

Displaying Message Selectors
You can use the following MessageConsumer method to display a message selector:

public String getMessageSelector(
) throws JMSException

This method returns either the currently defined message selector or null if a message selector
is not defined.

Indexing Topic Subscriber Message Selectors to Optimize Performance
For a certain class of applications, WebLogic JMS can significantly optimize topic subscriber
message selectors by indexing them. These applications typically have a large number of
subscribers, each with a unique identifier (like a user name), and they need to be able to
quickly send a message to a single subscriber or to a list of subscribers. A typical example is
an instant messaging application where each subscriber corresponds to a different user, and
each message contains a list of one or more target users.

To activate optimized subscriber message selectors, subscribers must use the following syntax
for their selectors:

 "identifier IS NOT NULL"

identifier is an arbitrary string that is not a predefined JMS message property (e.g., neither
JMSCorrelationID nor JMSType). Multiple subscribers can share the same identifier.

WebLogic JMS uses this message selector syntax as a hint to build internal subscriber
indexes. Message selectors that do not follow the syntax, or that include additional OR and AND
clauses, are still honored, but do not activate the optimization.

After subscribers register using this message selector syntax, a message published to the
topic can target specific subscribers by including one or more identifiers in the message's user
properties, as shown in the following example:

// Set up a named subscriber, where "wilma" is the name of
// the subscriber and subscriberSession is a JMS TopicSession.
// Note that the selector syntax used activates the optimization.

TopicSubscriber topicSubscriber =
 subscriberSession.createSubscriber(
 (Topic)context.lookup("IMTopic"),
 "Wilma IS NOT NULL",
 /* noLocal= */ true);

// Send a message to subscribers "Fred" and "Wilma",
// where publisherSession is a JMS TopicSession. Subscribers
// with message selector expressions "Wilma IS NOT NULL"
// or "Fred IS NOT NULL" will receive this message.

TopicPublisher topicPublisher =
 publisherSession.createPublisher(

Chapter 6
Filtering Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 28 of 30

 (Topic)context.lookup("IMTopic");

TextMessage msg =
 publisherSession.createTextMessage("Hi there!");
msg.setBooleanProperty("Fred", true);
msg.setBooleanProperty("Wilma", true);

topicPublisher.publish(msg);

Note

The optimized message selector and message syntax is based on the standard JMS
API; therefore, applications that use this syntax will also work on versions of WebLogic
JMS that do not have optimized message selectors, and on non-WebLogic JMS
products. However, these versions will not perform as well as versions that include this
enhancement.

The message selector optimization will have no effect on applications that use the
MULTICAST_NO_ACKNOWLEDGE acknowledge mode. These applications have no need for
the enhancement anyway, because the message selection occurs on the client side
rather than on the server side.

Sending XML Messages
The WebLogic Server JMS API provides native support for the Document Object Model (DOM)
to send XML messages.

Note

This release does not support streaming. Only text and DOM representations of XML
documents are supported.

The following sections provide information on WebLogic JMS API extensions that provide
enhanced support for XML messages.

WebLogic XML APIs
You can use the following WebLogic XML APIs for transformation of XML between String and
DOM representations:

• XMLMessage: Use to send messages with XML content.

• WLSession.createXMLMessage : Use to create an XML message.

It is possible for the payload of XMLMessage to be set using one XML representation and
retrieved using a different representation. For example, it is valid for the XMLMessage body to
be set using a String representation and be retrieved using a DOM representation.

Using a String Representation
Use the following steps to publish an XML message using a string type:

Chapter 6
Sending XML Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 29 of 30

1. Serialize the XML to a StringWriter.

2. Call thetoString on the StringWriter and pass it into the message.setText.

3. Publish the message.

Using a DOM Representation
Sending XML messages using a DOM representation provides a significant performance
improvement over sending messages as a String. Use the following steps to publish an XML
message using a Dom representation:

1. If necessary, generate a DOM document from your XML source.

2. Pass the DOM document into the XMLMessage.setDocument.

3. Publish the message.

Chapter 6
Sending XML Messages

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 30 of 30

7
Using JMS Module Helper to Manage
Applications

Learn how to create and manage JMS servers, Store-and-Forward agents, and JMS system
resources by using JMSModuleHelper.

See weblogic.jms.extensions.JMSModuleHelper.

Configuring JMS System Resources Using JMSModuleHelper
You can manage a system module, including the JMS resources it contains by providing the
domain MBean or by providing the initial context to the administration server in the API
signatures defined by the JMSModuleHelper class.

The JMSModuleHelper class provides the following API signatures to manage a system module
and JMS resources, such as queues and topics:

• Create a resource

• Create and modify resource

• Delete a resource

• Find and modify a resource

• Find using a template

See Configuring Basic JMS System Resources in the Administering JMS Resources for Oracle
WebLogic Server.

Configuring JMS Servers and Store-and-Forward Agents
You can manage JMS servers and Store-and-Forward agents by providing the domain MBean
or by providing the initial context to the administration server in the API signature defined by
the JMSModuleHelper class.

The JMSModuleHelper class provides the following method APIs to manage JMS servers and
Store-and-Forward agents:

• Create JMS servers and Store-and-Forward Agents

• Delete JMS servers and Store-and-Forward Agents

• Deploy JMS servers and Store-and-Forward Agents

• Undeploy JMS servers and Store-and-Forward Agents

Related Topics

• Configuring Basic JMS System Resources in the Administering JMS Resources for Oracle
WebLogic Server.

• Understanding the Store-and-Forward Service in the Administering JMS Resources for
Oracle WebLogic Server.

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 5

JMSModuleHelper Sample Code
Learn how to create and delete a JMS system resource module by following instructions in the
sample code.

Creating a JMS System Resource
The module contains a connection factory and a topic.

Example 8-1 shows how to create JMS system resources.

Example 7-1 Create JMS System Resources

.

.

.
private static void createJMSUsingJMSModuleHelper(Context ctx){
System.out.println(
 "\n\n.... Configure JMS Resource for C API Topic Example\n\n");

 try {

 MBeanHome mbeanHome =
 (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
 DomainMBean domainMBean = mbeanHome.getActiveDomain();
 String domainMBeanName = domainMBean.getName();
 ServerMBean[] servers = domainMBean.getServers();

 String jmsServerName = "examplesJMSServer";

//
// create a JMSSystemResource "CapiTopic-jms"
//
 String resourceName = "CapiTopic-jms";
 JMSModuleHelper.createJMSSystemResource(
 ctx,
 resourceName,
 servers[0].getName());
 JMSSystemResourceMBean jmsSR =
 JMSModuleHelper.findJMSSystemResource(
 ctx,
 resourceName);
 JMSBean jmsBean = jmsSR.getJMSResource();
 System.out.println("Created JMSSystemResource " + resourceName);

//
// create a JMSConnectionFactory "CConFac"
//
 String factoryName = "CConFac";
 String jndiName = "CConFac";
 JMSModuleHelper.createConnectionFactory(
 ctx,
 resourceName,
 factoryName,
 jndiName,
 servers[0].getName());
 JMSConnectionFactoryBean factory =
jmsBean.lookupConnectionFactory(factoryName);
 System.out.println("Created Factory " + factory.getName());

Chapter 7
JMSModuleHelper Sample Code

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 5

//
// create a topic "CTopic"
//
 String topicName = "CTopic";
 String topicjndiName = "CTopic";
 JMSModuleHelper.createTopic(
 ctx,
 resourceName,
 jmsServerName,
 topicName,
 topicjndiName);

 TopicBean topic = jmsBean.lookupTopic(topicName);
 System.out.println("Created Topic " + topic.getName());
 } catch (Exception e) {
 System.out.println("Example configuration failed :" + e.getMessage());
 e.printStackTrace();
 }
}
.
.
.

Deleting a JMS System Resource
The following code removes JMS system resources.

Example 8-2 shows how to delete the JMS system resources.

Example 7-2 Delete JMS System Resources

.

.

.
private static void deleteJMSUsingJMSModuleHelper(Context ctx) {

 System.out.println("\n\n.... Remove JMS System Resource for C API Topic
Example\n\n");

 try {

 MBeanHome mbeanHome =
 (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
 DomainMBean domainMBean = mbeanHome.getActiveDomain();
 String domainMBeanName = domainMBean.getName();
 ServerMBean[] servers = domainMBean.getServers();

 String jmsServerName = "examplesJMSServer";

//
// delete JMSSystemResource "CapiTopic-jms"
//
 String resourceName = "CapiTopic-jms";
 JMSModuleHelper.deleteJMSSystemResource(
 ctx,
 resourceName
);
 } catch (Exception e) {
 System.out.println("Example configuration failed :" + e.getMessage());
 e.printStackTrace();
 }

Chapter 7
JMSModuleHelper Sample Code

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 5

}
.
.
.

Security Considerations for Anonymous Users
If your application environment depends on using anonymous users, you can create a security
role for Anonymous and then apply a policy to the weblogic.management.mbeanservers JNDI
resource that allow access by users in that role.

See Security for WebLogic Server MBeans in Developing Custom Management Utilities Using
JMX for Oracle WebLogic Server.

Since WebLogic Server 10.3.6, the JMSModuleHelper does not support anonymous lookup
(using -Dweblogic.management.anonymousAdminLookupEnabled=true) to comply with the
existing WebLogic security model.

Best Practices When Using JMSModuleHelper
Understand the best practices to follow when using the JMSModuleHelper class to configure
JMS servers and resources.

• Trap for null MBean objects (such as servers, JMS servers, modules) before trying to
manipulate the MBean object.

• A create or delete method call can fail without throwing an exception. In addition, a thrown
exception does not necessarily indicate that the method call failed.

• The time required to create the destination on the JMS server and propagate the
information to the JNDI namespace can be significant. The propagation delay increases if
the environment contains multiple servers. It is recommended that you test for the
existence of the queue or topic, respectively, using the session createQueue() or
createTopic() method, rather than perform a JNDI lookup. By doing so, you can avoid
some of the propagation-specific delay.

For example, the following method, findQueue(), attempts to access a dynamically
created queue, and if unsuccessful, sleeps for a specified interval before retrying. A
maximum retry count is established to prevent an infinite loop.

private static Queue findQueue (
 QueueSession queueSession,
 String jmsServerName,
 String queueName,
 int retryCount,
 long retryInterval
) throws JMSException
{
 String wlsQueueName = jmsServerName + "/" + queueName;
 String command = "QueueSession.createQueue(" +
 wlsQueueName + ")";
 long startTimeMillis = System.currentTimeMillis();
 for (int i=retryCount; i>=0; i--) {
 try {
 System.out.println("Trying " + command);
 Queue queue = queueSession.createQueue(wlsQueueName);
 System.out.println(command + "succeeded after " +
 (retryCount - i + 1) + " tries in " +
 (System.currentTimeMillis() - startTimeMillis) +
 " millis.");

Chapter 7
Security Considerations for Anonymous Users

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 5

 return queue;
 } catch (JMSException je) {
 if (retryCount == 0) throw je;
 }
 try {
 System.out.println(command + "> failed, pausing " +
 retryInterval + " millis.");
 Thread.sleep(retryInterval);
 } catch (InterruptedException ignore) {}
 }
 throw new JMSException("out of retries");
}

You can then call the findQueue() method after the JMSModuleHelper class method call to
retrieve the dynamically created queue after it becomes available. For example:

JMSModuleHelper.createPermanentQueueAsync(ctx, domain, jmsServerName,
 queueName, jndiName);
Queue queue = findQueue(qsess, jmsServerName, queueName,
 retry_count, retry_interval);

Chapter 7
Best Practices When Using JMSModuleHelper

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 5

8
Using Multicasting with WebLogic JMS

Learn how WebLogic JMS Multicasting enables the delivery of messages to a select group of
hosts that subsequently forward the messages to subscribers in a cluster.

Benefits of Using Multicasting
Understand the benefits of using multicasting.

• Near real-time delivery of messages to a host group

• High scalability due to the reduction in the amount of resources required by the JMS server
to deliver messages to topic subscribers in a cluster

Limitations of Using Multicasting
Understand the limitations of multicasting and the scenarios when multicasting should not be
used.

The limitations of multicasting include:

• Multicast messages are not guaranteed to be delivered to all members of the host group.
For messages requiring reliable delivery and recovery, you should not use multicasting.

• For interoperability with different versions of WebLogic Server, clients cannot have an
earlier release of WebLogic Server installed than the host has. They must all have at least
the same version or later.

For an example of when multicasting might be useful, consider a stock ticker. When accessing
stock quotes, timely delivery is more important than reliability. When accessing the stock
information in real-time, if all or a portion of the contents is not delivered, the client can request
the information to be resent. Clients would not want to have the information recovered, in this
case, as by the time it is redelivered, it would be out-of-date.

Using WebLogic Server Unicast
WebLogic Server provides an alternative to using multicast to handle cluster messaging and
communications. Unicast configuration is much easier because it does not require the cross
network configuration that multicast requires. Additionally, it reduces potential network errors
that can occur from multicast address conflicts.

JMS topics configured for multicasting can access WebLogic clusters configured for unicast
because a JMS topic publishes messages on its own multicast address that is independent of
the cluster address. However, the following considerations apply:

• The router hardware configurations that allow unicast clusters may not allow JMS multicast
subscribers to work.

• JMS multicast subscribers need to be in a network hardware configuration that allows
multicast accessibility.

See Communications In a Cluster in Administering Clusters for Oracle WebLogic Server.

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 6

Configuring Multicasting for WebLogic Server
Learn how to configure multicasting for WebLogic server.

Figure 9-1 shows the steps required to set up multicasting.

Figure 8-1 Setting Up Multicasting

Note

Multicasting is only supported for the Publish/Subscribe messaging model, and only
for non durable subscribers.

Monitoring statistics are not provided for multicast sessions or consumers.

Prerequisites for Multicasting
Before setting up multicasting, the connection factory and destination must be configured to
support multicasting, as follows:

• For each connection factory, the system administrator configures the maximum number of
outstanding messages that can exist on a multicast session and whether the most recent
or oldest messages are discarded in the event the maximum is reached. If the message
maximum is reached, a DataOverrunException is thrown, and messages are automatically
discarded. These attributes are also dynamically configurable, as described in Dynamically
Configuring Multicasting Configuration Attributes.

• For each destination, the Multicast Address (IP), Port, and TTL (Time-To-Live) attributes
are specified. To better understand the TTL attribute setting, see Example: Multicast Time-
to-Live.

Note

It is strongly recommended that you seek the advice of your network administrator
when configuring the multicast IP address, port, and time-to-live attributes to
ensure that the appropriate values are set.

Chapter 8
Configuring Multicasting for WebLogic Server

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 6

Step 1: Set Up the JMS Application, Multicast Session and Topic Subscriber
Set up the JMS application as described in Setting Up a JMS Application. However, when
creating sessions, as described in Step 3: Create a Session Using the Connection, specify that
the session would like to receive multicast messages by setting the acknowledgeMode value to
MULTICAST_NO_ACKNOWLEDGE.

Note

Multicasting is only supported for the Publish/Subscibe messaging model for non-
durable subscribers. An attempt to create a durable subscriber on a multicast session
will cause a JMSException to be thrown.

For example, the following method shows how to create a multicast session for the Publish/
Subscibe messaging model.

JMSModuleHelper.createPermanentQueueAsync(ctx, domain, jmsServerName,
 queueName, jndiName);
Queue queue = findQueue(qsess, jmsServerName, queueName,
 retry_count, retry_interval);

Note

On the client side, each multicasting session requires one dedicated thread to retrieve
messages off the socket. Therefore, you should increase the JMS client-side thread
pool size to adjust for this.

In addition, create a topic subscriber, as described in Create TopicPublishers and
TopicSubscribers.

For example, the following code illustrates how to create a topic subscriber:

tsubscriber = tsession.createSubscriber(myTopic);

Note

The createSubscriber() method fails if the specified destination is not configured to
support multicasting.

Step 2: Set Up the Message Listener
Multicast topic subscribers can only receive messages asynchronously. If you attempt to
receive synchronous messages on a multicast session, then a JMSException is thrown.

Set up the message listener for the topic subscriber, as described in Receiving Messages
Asynchronously using the Classic API.

For example, the following code shows how to establish a message listener:

tsubscriber.setMessageListener(this);

Chapter 8
Configuring Multicasting for WebLogic Server

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 6

When receiving messages, WebLogic JMS tracks the order in which messages are sent by the
destinations. If a multicast subscriber's message listener receives the messages out of
sequence, resulting in one or more messages being skipped, then a SequenceGapException
will be delivered to the ExceptionListener for the session(s) present. If a skipped message is
subsequently delivered, then it will be discarded. For example, in the Figure 9-2, the subscriber
is receiving messages from two destinations simultaneously.

Figure 8-2 Multicasting Sequence Gap

Upon receiving the "4" message from Destination 1, a SequenceGapException is thrown to
notify the application that a message was received out of sequence. If subsequently received,
the "3" message will be discarded.

Note

The larger the messages being exchanged, the greater the risk of encountering a
SequenceGapException.

Dynamically Configuring Multicasting Configuration Attributes
During configuration, for each connection factory the system administrator configures the
following information to support multicasting:

• Message maximum specifying the maximum number of outstanding messages that can
exist on a multicast session.

• Overrun policy specifying whether recent or older messages are discarded in the event the
message maximum is reached.

If the message maximum is reached, a DataOverrunException is thrown and messages are
automatically discarded based on the overrun policy. Alternatively, you can set the messages
maximum and overrun policy using the Session set methods.

Table 9-1 lists the Session set and get methods for each dynamically configurable attribute.

Chapter 8
Configuring Multicasting for WebLogic Server

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 6

Table 8-1 Message Producer Set and Get Methods

Attribute Set Method Get Method

Message
Maximum

public void
setMessagesMaximum(int
messagesMaximum) throws
JMSException

public int getMessagesMaximum()
throws JMSException

Overrun Policy public void setOverrunPolicy
(int overrunPolicy) throws
JMSException

public int getOverrunPolicy()
throws JMSException

Note

The values set using the set methods take precedence over the configured values.

For more information about these Session class methods, see the
weblogic.jms.extensions.WLSession Javadoc.

Example: Multicast Time-to-Live

Note

The following example is a very simplified illustration of how the Multicast TTL (time-
to-live) destination configuration attribute affects the delivery of messages across
routers. It is strongly advised that you seek the assistance of your network
administrator when configuring the multicast TTL attribute to ensure that the
appropriate value is set.

The Multicast TTL is independent of the message time-to-live.

Figure 9-1 shows how the Multicast TTL destination configuration attribute affects the delivery
of messages across routers.

Chapter 8
Configuring Multicasting for WebLogic Server

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 6

Figure 8-3 Multicast TTL Example

In the figure, the network consists of three subnets: Subnet A containing the multicast
publisher, and Subnets B and C each contain one multicast subscriber.

If the Multicast TTL attribute is set to 0 (indicating that the messages cannot traverse any
routers and are delivered on the current subnet only), when the multicast publisher on Subnet
A publishes a message, the message will not be delivered to any of the multicast subscribers.

If the Multicast TTL attribute is set to 1 (indicating that messages can traverse one router),
when the multicast publisher on Subnet A publishes a message, the multicast subscriber on
Subnet B will receive the message.

Similarly, if the Multicast TTL attribute is set to 2 (indicating that messages can traverse two
routers), when the multicast publisher on Subnet A publishes a message, the multicast
subscribers on Subnets B and C will receive the message.

Chapter 8
Configuring Multicasting for WebLogic Server

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 6

9
Using Distributed Destinations

Understand the concepts and functionality of distributed destinations necessary to design high
availability (HA) applications.

What Is a Distributed Destination?
A distributed destination is a set of destinations (queues or topics) that are accessible as a
single, logical destination to a client.

A distributed destination has the following characteristics:

• It is referenced by its own JNDI name.

• Each member of the set can belong to a separate JMS server distributed across multiple
servers within a single cluster, or can be located on JMS servers that are all on the same
single non-clustered standalone server. Members of the set cannot be distributed across
multiple non-clustered standalone servers, and cannot be distributed across multiple
clusters.

Why Use a Distributed Destination
Applications that use distributed destinations are more highly available than applications that
use simple destinations because WebLogic JMS provides load balancing and failover for
member destinations of a distributed destination within a cluster.

Once properly configured, your producers and consumers are able to send and receive
messages through the distributed destination. WebLogic JMS then balances the messaging
load across all available members of the distributed destination. When one member becomes
unavailable due a server failure, traffic is then redirected toward other available destination
members in the set. For more information about how destination members are load balanced,
see "Configuring Distributed Destination Resources" in Administering JMS Resources for
Oracle WebLogic Server.

Creating a Distributed Destination
See Configuring Distributed Destination Resources in Administering JMS Resources for Oracle
WebLogic Server.

Types of Distributed Destinations
Learn about the two types of distributed destinations supported by WebLogic Server.

Uniform Distributed Destinations
In a uniform distributed destination (UDD), each of the member destinations has a consistent
configuration of all distributed destination parameters, particularly in regards to weighting,
security, persistence, paging, and quotas.

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 10

Oracle recommends using UDDs because you no longer need to create or designate
destination members, but instead rely on WebLogic Server to uniformly create the necessary
members on the JMS servers to which a UDD is targeted. This feature of UDDs provides
dynamic updating of a UDD when a new member is added or a member is removed.

For example, if a UDD is targeted to a cluster, there is a UDD member on every JMS server in
the cluster. If a new JMS server is added, then a new UDD member is dynamically added to
the UDD. Likewise, if a JMS server is removed, then the corresponding UDD member is
removed from the UDD. This allows UDDs to provide higher availability by eliminating
bottlenecks caused by configuration errors. For more information, see Configuring Distributed
Destination Resources in Administering JMS Resources for Oracle WebLogic Server.

Weighted Distributed Destinations

Note

Weighted distributed destinations are deprecated in Weblogic Server 10.3.4.0. Oracle
recommends using Uniform Distributed Destinations.

In a weighted distributed destination, the member destinations do not have a consistent
configuration of all distributed destination parameters, particularly in regards to weighting,
security, persistence, paging, and quotas.

Oracle recommends converting weighted distributed destinations to UDDs because of the
administrative inflexibility when creating members that are intended to carry extra message
load or have extra capacity (more weight). Lack of a consistent member configuration can lead
to unforeseen administrative and application problems because the weighted distributed
destination can not be deployed consistently across a cluster.

For more information, see Configuring Distributed Destination Resources in Administering JMS
Resources for Oracle WebLogic Server.

Using Distributed Destinations
A distributed destination is a set of physical JMS destination members (queues or topics) that
is accessed through a single JNDI name.

As such, a distributed destination can be looked up using JNDI. Distributed destination
implements the jakarta.jms.Destination interface, at https://javadoc.io/doc/
jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Destination.html, and
can be used to create producers, consumers, and browsers.

For information about obtaining a reference to a distributed destination, see How to Look Up a
Destination.

Using Distributed Queues
A distributed queue is a set of physical JMS queue members. As such, a distributed queue can
be used to create a QueueSender, QueueReceiver, and a QueueBrowser. The fact that a
distributed queue represents multiple physical queues is mostly transparent to your application.

The queue members can be located anywhere, but must all be served by JMS servers in a
single server cluster. When a message is sent to a distributed queue, it is sent to one of the

Chapter 9
Using Distributed Destinations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 10

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Destination.html
https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/jms/Destination.html

physical queues in the set of members for the distributed queue. Once the message arrives at
the queue member, it is available for receipt by consumers of that queue member only. '

This section provides information on using distributed queues:

QueueSenders
After creating a queue sender, if the queue supplied at creation time was a distributed queue,
then each time a message is produced using the sender a decision is made as to which queue
member will receive the message. Each message is sent to a single physical queue member.

The message is not replicated. As such, the message is only available from the queue member
where it was sent. If that physical queue becomes unavailable before a given message is
received, then the message is unavailable until that queue member comes back online.

It is not enough to send a message to a distributed queue and expect the message to be
received by a queue receiver of that distributed queue. Because the message is sent to only
one physical queue member, there must be a queue receiver receiving or listening on that
queue member.

Note

For information about the load-balancing heuristics for distributed queues with zero
consumers, see Configuring Distributed Destination Resources in Administering JMS
Resources for Oracle WebLogic Server.

QueueReceivers
When creating a queue receiver, if the supplied queue is a distributed queue, then a single
physical queue member is chosen for the receiver at creation time. The created QueueReceiver
is pinned to that queue member until the queue receiver loses its access to the queue member.
At that point, the consumer will receive a JMSException, as follows:

• If the queue receiver is synchronous, then the exception is returned to the user directly.

• If the queue receiver is asynchronous, then the exception is delivered inside of a
ConsumerClosedException that is delivered to the ExceptionListener defined for the
consumer session, if any.

Upon receiving such an exception, an application can close its queue receiver and recreate it.
If any other queue members are available within the distributed queue, then the creation will
succeed and the new queue receiver will be pinned to one of those queue members. If no
other queue member is available, then the application would not be able to recreate the queue
receiver and will have to try again later.

Note

For information about the load-balancing heuristics for distributed queues with zero
consumers, see Configuring Distributed Destination Resources in Administering JMS
Resources for Oracle WebLogic Server.

Chapter 9
Using Distributed Destinations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 10

QueueBrowsers
When creating a queue browser, if the supplied queue is a distributed queue, then a single
physical queue member is chosen for the browser at creation time. The created queue browser
is pinned to that queue member until the receiver loses its access to the queue member. At
that point, any calls to the queue browser will receive a JMSException. Any calls to the
enumeration will return a NoSuchElementException.

Note

The queue browser can only browse the queue member that it is pinned to. Even
though a distributed queue was specified at creation time, the queue browser cannot
see or browse messages for the other queue members in the distributed destination.

Using Replicated Distributed Topics
A distributed topic is a set of physical JMS topic members. A distributed topic can be used to
create a TopicPublisher and TopicSubscriber. The fact that a distributed topic represents
multiple physical topics is mostly transparent to the application.

Note

Durable subscribers (DurableTopicSubscriber) cannot be created for distributed
topics. However, you can still create a durable subscription on a distributed topic
member and the other topic members will forward the messages to the topic member
that has the durable subscription.

The topic members can be located anywhere but must all be served either by a single
WebLogic Server or any number of servers in a cluster. When a message is sent to a
distributed topic, it is sent to all of the topic members in the distributed topic set. This enables
all subscribers to the distributed topic to receive messages published for the distributed topic.

A message published directly to a topic member of a distributed destination (that is, the
publisher did not specify the distributed destination) is also forwarded to all the members of
that distributed topic. This includes subscribers that originally subscribed to the distributed
topic and happened to be assigned to that particular topic member. In other words, publishing
a message to a specific distributed topic member automatically forwards it to all the other
distributed topic members, just as publishing a message to a distributed topic automatically
forwards it to all of its distributed topic members. For more information about looking up
specific distributed destination members, see Accessing Distributed Destination Members.

This section provides information on using distributed topics:

TopicPublishers
When creating a topic publisher, if the supplied destination is a distributed destination, then any
messages sent to that distributed destination are sent to all available topic members for that
distributed topic (DT), as follows:

Chapter 9
Using Distributed Destinations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 10

• When some of the members of a uniform distributed topic are offline, non-persistent
messages published to the distributed topic are saved for those members and made
available when the members come back online.

In releases prior to 9.0, if you did not configure a persistent store for a JMS server or if
there was a persistent store defined and storedEnabled=false was set on the distributed
topic member, non persistent messages were dropped and not made available when the
distributed topic member came back online. If your application depends on dropping these
messages, you can approximate similar behavior by setting the time-to-live for a server
to a very low value. This will allow the messages to be disregarded before an offline
distributed topic member would come back online. New applications developed on
WebLogic Server releases 10.3.4.0 and higher can use partitioned distributed topics with
message-driven beans (MDBs) as message consumers to provide a similar capability. See
"Developing Advanced Pub/Sub Applications" in Programming JMS for Oracle WebLogic
Server.

• If one or more of the distributed topic members is not reachable, and the message being
sent is persistent, then the message is stored and forwarded to the other topic members
when they become reachable. However, the message can only be persistently stored if the
topic member has a JMS store configured.

Note

Every effort is made to first forward the message to distributed members that
utilize a persistent store. However, if none of the distributed members utilize a
store, then the message is still sent to one of the members according to the
selected load-balancing algorithm, as described in Configuring Distributed
Destination Resources in Administering JMS Resources for Oracle WebLogic
Server.

• If all of the distributed topic members are unreachable (regardless of whether the message
is persistent or non persistent), then the publisher receives a JMSException when it tries to
send a message.

TopicSubscribers
When creating a topic subscriber, if the supplied topic is a distributed topic, then the topic
subscriber receives messages published to that distributed topic. If one or more of the topic
members for the distributed topic are not reachable by a topic subscriber, then depending on
whether the messages are persistent or non persistent the following occurs:

• Any persistent messages published to one or more unreachable distributed topic members
are eventually received by topic subscribers of those topic members after they become
reachable. However, the messages can only be persistently stored if the topic member has
a JMS store configured.

• Any non persistent messages published to those unreachable distributed topic members
will not be received by that topic subscriber.

Chapter 9
Using Distributed Destinations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 10

Note

If a JMS store is configured for a JMS server that is hosting a distributed topic
member, then all the Distributed Topic System Subscribers associated with that
member destination are treated as durable subscriptions, even when a topic
member does not have a JMS store explicitly configured. The saving of all the
messages sent to these distributed topic subscribers in memory can result in
unexpected memory and disk consumption. Therefore, a recommended best
design practice when deploying distributed destination is to consistently configure
all member destinations: either with a JMS store for durable messages or without
a JMS store for non durable messages. For example, if you want all of your
distributed topic subscribers to be no -durable, but some member destinations
implicitly have a JMS store configured because their associated JMS server uses
a JMS store, then you need to explicitly set the StoreEnabled attribute to False for
each member destination to override the JMS server setting.

Ultimately, a topic subscriber is pinned to a physical topic member. If that topic member
becomes unavailable, then the topic subscriber will receive a JMSException, as follows:

• If the topic subscriber is synchronous, then the exception is returned to the user directly.

• If the topic subscriber is asynchronous, then the exception is delivered inside of a
ConsumerClosedException that is delivered to the ExceptionListener defined for the
consumer session, if any.

After receiving this type of an exception, an application can close its topic subscriber and
recreate it. If any other topic member is available within the distributed topic, then the creation
should be successful and the new topic subscriber will be pinned to one of those topic
members. If no other topic member is available, then the application will not be able to recreate
the topic subscriber and will have to try again later.

Deploying Message-Driven Beans on a Distributed Topic
For information about how to deploy MDBs on topics, see Configuring and Deploying MDBs
Using Distributed Topics in Developing Message-Driven Beans for Oracle WebLogic Server.

Using Partitioned Distributed Topics
Starting in WebLogic Server 10.3.4.0, partitioned distributed topics, combined with the ability to
share subscriptions and allow multiple connections to use the same Client ID, provide the
following application design patterns that provide parallel processing and HA capabilities
similar to distributed queues:

• One-copy-per-instance: Each instance of an application gets one copy of each message
that is published to the Topic.

• One-copy-per-application: Each application as a whole (that is all instances of the
application together) receives one copy of each message that is published to the
distributed topic . That is each instance only receives a subset of the messages that are
sent to the distributed topic .

Chapter 9
Using Distributed Destinations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 10

Note

Oracle recommends designing applications that utilize WebLogic Server MDBs. See
Configuring and Deploying MDBs Using Distributed Topics in Developing Message-
Driven Beans for Oracle WebLogic Server for detailed information on how to design
and implement applications that use message-driven beans to provide improved HA
and scalability.

For more information about using Partitioned Distributed Topics, including information about
replacing an existing Replicated Distributed Topic with a Partitioned Distributed Topic, see
Developing Advanced Pub/Sub Applications.

Accessing Distributed Destination Members
For information on how to access distributed destinations and their members, see How to Look
Up a Destination.

Distributed Destination Failover

Note

If the distributed queue member on which a queue producer is created fails, yet the
WebLogic Server instance where the producer's JMS connection resides is still
running, then the producer remains active and WebLogic JMS will fail it over to
another distributed queue member, irrespective of whether the Load Balancing option
is enabled. For example, a WebLogic cluster contains WLSServer1, WLSServer2, and
WLSServer3 and you are connected to WLServer2. If server WLSServer 2 fails,
WebLogic JMS fail the producer over to one of the remaining cluster members. For
more information, see Configuring Distributed Destination Resources in Administering
JMS Resources for Oracle WebLogic Server.

A simple way to failover a client connected to a failed distributed destination is to write
reconnect logic in the client code to connect to the distributed destination after catching
onException.

Using Message-Driven Beans with Distributed Destinations
A message-driven bean (MDB) acts as a JMS message listener, which is similar to an event
listener except that it receives messages instead of events.

See also:

• MDBs and Messaging Models in Developing Message-Driven Beans for Oracle WebLogic
Server

• Deploying MDBs in Developing Message-Driven Beans for Oracle WebLogic Server

Common Use Cases for Distributed Destinations
Understand when to use distributed destinations for your applications.

Chapter 9
Using Message-Driven Beans with Distributed Destinations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 10

The following sections provide common use case scenarios when using distributed
destinations:

Maximizing Production
To maximize message production, Oracle recommends that each member of a distributed
destination be associated with a producer and a consumer. Figure 10-1 shows how to
efficiently provide maximum message production and high availability using a UDD without
using load balancing:

Figure 9-1 Paired Producers and Consumers

In this situation, UDD1 is a uniform distributed destination composed of two physical members:
D1 and D2. Each physical destination has a producer/consumer pair and the effective path for
a message follows the solid line from the producer through the destination member to the
consumer. If you are using ordering, you should have a producer for each expected Unit-of-
Order. See Using Unit-of-Order with Distributed Destinations.

Maximizing Availability
This section provides information on how to maximize message availability.

Using Queues
Ideally, its best to pair a producer with a consumer but it is not always practical. The rate that
messages are consumed is the limiting factor that determines the message throughput of your
application. You can increase the availability of consumers by using load balancing between

Chapter 9
Common Use Cases for Distributed Destinations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 10

member destinations. In this situation, consumers are not paired with a producer as the UDD
load balances an incoming message to the next available consumer using the assigned load
balancing algorithm.

Note

Some combinations of Unit-of-Order features can result in the starvation of competing
Unit-of-Order message streams, including the under utilization of resources when the
number of consumers exceed the number of in-flight messages with different Unit-of-
Order names. You will need to test your applications under maximum loads to optimize
your system's performance and eliminate conditions that under utilize resources.

Using Topics
When using a distributed topic, every member destination will forward its messages to every
other member of the distributed topic.

Figure 9-2 Using Distributed Topics

In Figure 10-2, UDD1 is a uniform distributed destination composed of two physical members:
D1 and D2. Each physical destination has a producer/consumer pair. Each consumer receives
messages sent by Producer 1 and Producer 2.

Chapter 9
Common Use Cases for Distributed Destinations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 10

Stuck Messages
InFigure 10-3, a producer is sending messages to one member of a UDD but there is no
consumer available to get the message. This typically happens as a producer sends a
message to one of the destinations (D1) and a consumer is listening for messages on another
destination (D2).

Figure 9-3 Stuck Messages

UDD1 is a uniform distributed destination composed of two physical members: D1 and D2. D1
has a producer and D2 has a consumer. Avoid this configuration by using producer/consumer
pairs or by configuring forwarding on the destination.

Chapter 9
Common Use Cases for Distributed Destinations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 10

10
Using the Message Unit-of-Order

Learn how to use Message Unit-of-Order to provide strict message ordering when using
WebLogic JMS.

What is Message Unit-Of-Order?
Message Unit-of-Order is a WebLogic Server feature that enables a stand-alone message
producer, or a group of producers acting as one, to group messages into a single unit with
respect to the processing order.

This single unit is called a Unit-of-Order and requires that all messages from that unit be
processed sequentially in the order they were created.

Understanding Message Processing with Unit-of-Order
Understand how the message processing by WebLogic Server's Message Unit-of-Order
feature is different from the message processing as described by the JMS specification.

Message Processing According to the JMS Specification
While the Java Message Service Specification, at http://www.oracle.com/technetwork/
java/jms/index.html, provides an ordered message delivery, it does so in a very strict sense.
It defines order between a single instance of a producer and a single instance of a consumer,
but does not take into account the following common situations:

• Many consumers on one queue. See Using Distributed Destinations.

• Multiple producers within a single application acting as a single producer. See Using
Distributed Destinations.

• Message recoveries or transaction rollbacks where other messages from the same
producer can be delivered to another consumer for processing. See What Happens When
a Message Is Delayed During Processing?.

• Use of filters and destination sort keys. See Message Unit-of-Order Advanced Topics.

Message Processing with Unit-of-Order
The WebLogic Server Unit-of-Order feature enables a message producer or group of message
producers acting as one, to group messages into a single unit that is processed sequentially in
the order the messages were created. The message processing of a single message is
complete when a message is acknowledged, committed, recovered, or rolled back. Until
message processing for a message is complete, the remaining unprocessed messages for that
Unit-of-Order are blocked.

This section provides information about rules for JMS acknowledgement modes, described at
http://www.oracle.com/technetwork/java/jms/index.html, when using Message Unit-of-
Order:

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 10

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

• No messages from a Unit-of-Order are processed in parallel when the acknowledgement
mode is CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE, or DUPS_OK_ACKNOWLEDGE.

• When the consumer is closed, the current message processing is completed, regardless of
the session's acknowledge mode.

• CLIENT_ACKNOWLEDGE – The application calling Message.acknowledge and
Session.recover indicate which messages are completely processed in the Unit-of-Order.

• AUTO_ACKNOWLEDGE – The session automatically acknowledges a client's receipt of a
message when it has either successfully returned from a call to receive or when the
MessageListener that was called returns successfully.

– Asynchronous mode: Successful completion or exception of the onMessage(msg)
indicates when a message is completely processed.

– Synchronous mode: For a given consumer, such as consumer A, consumerA.receive
is completed when one of the following occurs: consumerA.receive,
consumerA.setMessageListener, or consumerA.close.

• DUPS_OK_ACKNOWLEDGE – The session automatically acknowledges a client's receipt of a
message when it has either successfully returned from a call to receive or when the
MessageListener that was called returns successfully.

– Asynchronous mode: Successful completion or exception of onMessage(msg) indicates
when a message is completely processed.

– Synchronous mode: For a given consumer, such as consumer A,
consumerA.receive() is completed when one of the following occurs:
consumerA.receive(), consumerA.setMessageListener(), or consumerA.close().

• NO_ACKNOWLEDGE – The session provides no order processing guarantees. Messages can
be processed in parallel with different available consumers.

Message Delivery with Unit-of-Order
Message Unit-of-Order provides that messages are delivered in accordance with the following
rules:

• Member messages of a Unit-of-Order are delivered to queue consumers sequentially in the
order they were created. The message order within a Unit-of-Order will not be affected by
sort criteria, priority, or filters. However, messages that are uncommitted, have a
Redelivery Delay, or have an unexpired TimetoDeliver timer will delay messages that
arrive after them.

• Unit-of-Order messages are processed one at a time. The processing completion of one
message allows the next message in the Unit-of-Order to be delivered.

• Unit-of-Order messages sent to a distributed queue reside on only one physical member of
the distributed queue. For more information, see Using Unit-of-Order with Distributed
Destinations.

• All uncommitted or unacknowledged messages from the same Unit-of-Order must be in the
same transaction, or if non-transactional, the same JMSSession. When one message in the
Unit-of-Order is uncommitted or unacknowledged, the other messages are deliverable only
to the same transaction or JMSSession. This keeps all unacknowledged messages from the
same Unit-of-Order in one recoverable operation and allows order to be maintained
despite rollbacks or recoveries.

• A queue that has several messages from the same Unit-of-Order must complete
processing all of them before they can be delivered to any queue consumer or the next
message can be delivered to the queue.

Chapter 10
Understanding Message Processing with Unit-of-Order

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 10

For Example,

– when Messages M1 through Mn are delivered as part of a transaction and the
transaction is rolled back (processing is complete). Then messages M1 through Mn are
delivered to any available consumer:

– when Messages M1 through Mn are delivered outside of a transaction and the
messages are recovered (processing is complete). Then messages M1 through Mn are
delivered to any available consumer.

– when Messages M1 through Mn are delivered outside of a transaction and the
messages are acknowledged (processing is complete). Then the undelivered message
Mn+1 is delivered to any available consumer.

Message Unit-of-Order Case Study
Learn the features of Message Unit-of-Order through a case study based on ordering a book
from an online bookstore.

Joe Orders a Book
XYZ Online Bookstore implements a simple processing design that uses JMS to process
customer orders. The JMS processing system is composed of:

• A message producer sending to a queue (Queue1).

• Multiple message driven beans (MDBs), such as MdbX and MdbY, that process messages
from Queue1.

• A database (myDB) that contains order and order status information.

Joe logs in his XYZ Online Bookstore account and searches his favorite book topics. He
chooses a book, proceeds to the checkout, and completes the sales transaction. Then Joe
realizes he has previously purchased this same item, so he cancels the order. One week later,
the book is delivered to Joe.

What Happened to Joe's Order
In Joe's ordering scenario, his cancel order message was processed before his purchase order
message. The result was that Joe received a book he did not wish to purchase. The following
steps demonstrate how Joe's order was processed.

The Figure 11-1 and the corresponding actions demonstrate how Joe's order was processed.

Chapter 10
Message Unit-of-Order Case Study

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 10

Figure 10-1 Workflow for Joe's Order

1. Joe clicks the order button from his shopping cart.

2. The order message (message A) is placed on Queue1.

3. Joe cancels the order.

4. The cancel order (message B) is placed on Queue1.

5. MdbX takes message A from Queue1.

6. MdbY takes message B from Queue1.

7. MdbY writes the cancel message to the database. Because there is no corresponding
order message, there is no order message to remove from the database.

8. MdbX writes the order message to the database.

9. An application responsible for shipping books reads the database, sees the order
message, and initiates shipment to Joe's home.

Although the Java Message Service Specification, at http://www.oracle.com/technetwork/
java/jms/index.html, provides an ordered message delivery, it only provides ordered
message delivery between a single instance of a producer and a single instance of a
consumer. In Joe's case, multiple MDBs were available to consume messages from Queue1
and the processing order of the messages was no longer guaranteed.

How Message Unit-of-Order Solves the Problem
To ensure that all messages in Joe's order are processed correctly, the system administrator
for XYZ Bookstore configures a Message Unit-of-Order based on a user session, such that all
messages from a user session have a Unit-of-Order name attribute with the value of the
session id. See How to Create a Unit-of-Order. All messages created during Joe's user session
are processed sequentially in the order they were created because WebLogic Server
guarantees that messages in a Unit-of-Order are not processed in parallel.

In Figure 11-2 and the corresponding actions demonstrate how Joe's order was processed
using Message Unit-of-Order.

Chapter 10
Message Unit-of-Order Case Study

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 10

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Figure 10-2 Workflow for Joe's Order Using Unit-of-Order

1. Joe clicks the order button from his shopping cart.

2. The order message (message A) is placed on Queue1.

3. Joe cancels the order.

4. The cancel order (message B) is placed on Queue1.

5. MdbX takes message A from Queue1.

6. MdbY takes message B from Queue1.

7. Message B on MdbY is blocked until MdbX acknowledges the order message. See What
Happens When a Message Is Delayed During Processing?.

8. Message A is committed and written to the database.

9. Message B is committed and written to the database.

Because there is a corresponding order message, Joe's order is removed from the
database and he does not receive a book.

How to Create a Unit-of-Order
Learn how to create a Message Unit-of-Order programmatically and administratively.

Also see Message Delivery with Unit-of-Order and Message Unit-of-Order Advanced Topics.

Creating a Unit-of-Order Programmatically
Use the setUnitOfOrder() method of the WLMessageProducer interface to associate a
producer with a Unit-of-Order name.

In the following example, the Unit-of-Order name attribute value is set to myUOOname:

getProducer().setUnitOfOrder("myUOOname");

After a producer is associated with a Unit-of-Order, all messages sent by this producer are
processed as a Unit-of-Order until either the producer is closed or the association between the
producer and the Unit-of-Order is dissolved.

Chapter 10
How to Create a Unit-of-Order

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 10

The Example 11-1 shows how to associate a producer with a Unit-of-Order:

Example 10-1 Using the WLMessageProducer Interface to Create a Unit-of-Order

.

.

.
queue = (Queue)(ctx.lookup(destName));
qsender = (WLMessageProducer) qs.createProducer(queue);
qsender.setUnitOfOrder();
uooname = qsender.getUnitOfOrder();
System.out.println("Using UnitOfOrder :" + uooname);
.
.
.

Unit-of-Order Naming Rules
A Unit-of-Order is identified by a name attribute. Within a destination, messages that have the
same value for the Unit-of-Order name attribute belong to the same Unit-of-Order. The name
can be provided by either the system or the application. Messages in the same Unit-of-Order
all share the same name. See How to Create a Unit-of-Order.

The name attribute for a Unit-of-Order must adhere to the following rules:

• A valid value for the Unit-of-Order name attribute is any non-null and non-empty string.

• System-generated Unit-of-Order names are timestamp-based and statistically unique.

• Applications can supply their own Unit-of-Order names. For example, WebLogic
Integration applications can use Workflow names and Web Services applications can use
conversation names.

• Message Unit-of-Order has its own name space. A Unit-of-Order does not need to be
unique with respect to other named objects. For instance, it is valid to have a Unit-of-Order
named Foo and a queue named Foo.

• The scope of a Message Unit-of-Order is limited to a single destination. Two different Units
of Order on two destinations can have the same name.

• One or more producers can send messages with the same Unit-of-Order name by using
the same string to create the Unit-of-Order.

A system-generated Unit-of-Order name can be used by more than one producer. This
paradigm works just as well for application-assigned Unit-of-Order names. It will be most
efficient if the information is serialized in only one place, so a property like Conversation ID
can be stored only as the Unit-of-Order name. This paradigm does not work when the
message is sent through a non-Unit-of-Order JMS provider (releases before WebLogic 9.0
or non-WebLogic JMS providers).

Getting the Current Unit-of-Order
You can extract the Unit-of-Order name from a delivered message.

For example:

msg.getStringProperty("JMS_BEA_UnitOfOrder");

Chapter 10
Getting the Current Unit-of-Order

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 10

Message Unit-of-Order Advanced Topics
Understand how Unit-of-Order processes messages in advanced or more complex situations.

What Happens When a Message Is Delayed During Processing?
There are many situations that can occur during message processing that would normally
change the order in which a message is processed. The following is a short list of typical
message processing states that make a message not ready for delivery:

• A message is within an uncommitted transaction.

• A message's TimeToDeliver value prevents it from being delivered until the
TimeToDeliver interval has elapsed.

• A consumer calls a recover or rollback operation that prevents a message from being re-
delivered until the RedeliveryDelay interval has elapsed.

Suppose messages A and B arrive respectively in the same Unit-of-Order, and message A
cannot be delivered for any of the previously listed reason. Even though nothing is delaying the
delivery of message B, it is not deliverable until message A in its Unit-of-Order is delivered.

What Happens When a Filter Makes a Message Undeliverable
Using a filter and a Unit-of-Order can provide unexpected behaviors. Suppose messages A
through Z are in the same Unit-of-Order in the same Queue. Consumer1 has a filter, and
messages A, B, and C satisfy the filter, and they are delivered to Consumer1.

1. Messages D through Z are undeliverable until messages A, B, and C are acknowledged.

2. Messages A, B, and C are acknowledged or recovered.

3. Message D is available to the message delivery system.

4. Message D does not pass the filter and can never be presented to Consumer1.

5. Messages E through Z are undeliverable until message D is processed.

• The transaction that contains message D must be rolled back.

• After message D is processed, messages E through Z can be delivered.

For more information, see Filtering Messages.

What Happens When Destination Sort Keys Are Used
Destination sort keys control the order in which messages are presented to consumers when
messages are not part of a Unit-of-Order or are not part of the same Unit-of-Order.

For example, messages A and B arrive and in the same Unit-of-Order on a queue that is
sorted by priority and the sort order is depending, but message B has a higher priority than A.

Even though message B has a higher priority than message A, message B is still not
deliverable until message A is processed because they are in the same Unit-of-Order. If a
message C arrives and either does not have a Unit-of-Order or is not in the same Unit-of-Order
as message A, then the priority setting of message C and the priority setting of message A
determine the delivery order. See Configuring Basic JMS System Resources in Administering
JMS Resources for Oracle WebLogic Server.

Chapter 10
Message Unit-of-Order Advanced Topics

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 10

Using Unit-of-Order with Distributed Destinations
As previously discussed in the Message Processing According to the JMS Specification, the
Java Message Service Specification (at http://www.oracle.com/technetwork/java/jms/
index.html) does not guarantee ordered message delivery when applications use distributed
queues. WebLogic JMS directs messages with the same Unit-of-Order and having a distributed
destination target to the same distributed destination member. The member is selected by the
destination's Unit-of-Order configuration:

Using the Path Service
You can configure the WebLogic Path Service to provide a persistent map that can store the
information required to route the messages contained in a Unit-of-Order to its destination
resource; a member of a uniform distributed destination. If the WebLogic Path Service is
configured for a uniform distributed destination, then the routing path to a member destination
is determined by the server using the run-time load balancing heuristics for the distributed
queue.

Using Hash-Based Routing
If the WebLogic Path Service is not configured, then the default routing path to a uniform
queue member is chosen by the server based on the hash codes of the Message Unit-of-Order
name and the uniform distributed queue members. An advantage of this routing mechanism is
that routes to a distributed queue member are calculated quickly and do not require persistent
storage in a cluster.

Consider the following when implementing Message Unit-of-Order in conjunction with hash-
based routing:

• If a distributed queue member has an associated Unit-of-Order and is removed from the
distributed queue, new messages are sent to a different distributed queue member and the
messages will not be continuous with older messages.

• If a distributed Queue member has an associated Unit-of-Order and is unreachable, then
the producer sending the message will throw a JMSOrderException and the messages are
not routed to other distributed Queue members. The exception is thrown because the JMS
messaging system can not meet the quality-of-service required ; only one distributed
destination member consumes messages for a particular Unit-of-Order.

Using Unit-of-Order with Topics
Assigning a Unit-of-Order does not prohibit parallel processing of a message by two
subscribers on the same topic. Because individual subscribers for a topic have their own
destination and message list, similar to a queue with one consumer, messages are processed
by all subscribers according to the Unit-of-Order assigned at the time of production.

Unit-of-Order and Distributed Topics
The routing of messages between physical topics can affect Unit-of-Order if an application
directly sends to a member of a distributed topic. To ensure correct order of processing, the
application must ensure the messages are sent using the logical distributed topic (that is, the
destination is obtained using the JNDI name of the distributed topic). WebLogic Server then
ensures messages with the same Unit-of-Order take the same path to the distributed topic
member.

Chapter 10
Message Unit-of-Order Advanced Topics

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 10

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Unit-of-Order, Topics, and Message Driven Beans
The WebLogic Server message-driven bean implementation goes beyond the requirements of
the EJB and JMS specifications to provide parallel processing of an incoming message stream
for a single topic subscription and JMS session. This parallel processing does not take Unit-of-
Order into account by default for the non-transactional case, so care is required to ensure that
the processing is still ordered correctly.

When using Unit-of-Order with topics and non-transactional message driven beans, apply one
or more of the following to ensure that the UOO ordering contract is honored:

• Use a Non-Default Message Distribution Policy: Set the Topic Message Distribution Policy
to either One Copy Per Server or One Copy Per Application. See Setting Message
Distribution Tuning in Developing Message-Driven Beans for Oracle WebLogic Server.

• Enable Container-Managed Transactions: See Configuring Transaction Management
Strategy for an MDB in Developing Message-Driven Beans for Oracle WebLogic Server. If
performance is a concern, you may want to consider additionally enabling transaction
batching, which can mitigate the performance impact and often yields better performance
than the non-transactional case. See Use Transaction Batching in Tuning Performance of
Oracle WebLogic Server.

• Set Pool Size to One: Setting the pool size to one has a drastic effect on parallelism. See
the description for max-beans-in-free-pool element in Deployment Elements and
Annotations for MDBs in Developing Message-Driven Beans for Oracle WebLogic Server.

Using Unit-of-Order with JMS Message Management
JMS message management allows a JMS administrator to move and delete most messages in
a running JMS Server. This enables an administrator to violate the delivery rules specified in
Message Delivery with Unit-of-Order.

If messages A, B, C, and D are produced and sent to destination D1 and belong to Unit-of-
Order foo, consider the following:

• Moving messages C and D to destination D2 may allow parallel processing of messages
from both destinations.

• Moving messages B and C to destination D2 may allow parallel processing of message A
and messages B and C. After message A is processed, message D is deliverable.

For applications that depend on maintaining message order, a best practice is to move all of
the messages in a Unit-of-Order as a single group.

To ensure Unit-of-Order delivery rules are maintained, use the following steps:

1. Pause the source destination and the target destination.

2. Select all of the messages with the Unit-of-Order you would like to move.

3. Move the selected messages to the target destination. If necessary, sort them according to
the order that you want them processed.

4. Resume the source and target destinations.

For more information, see "Troubleshooting WebLogic JMS" in Administering JMS Resources
for Oracle WebLogic Server.

Chapter 10
Message Unit-of-Order Advanced Topics

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 10

Using Unit-of-Order with WebLogic Store-and-Forward
WebLogic Store-and-Forward supports Message Unit-of-Order. For example, a Store-and-
Forward producer sends messages with a Unit-of-Order named Foo. If the producer
disconnects and reconnects through a different connection, the producer creates another Unit-
of-Order with the name Foo and continues sending messages. All messages sent before and
after the reconnect are directed through the same Store-and-Forward agent. See
Administering the Store-and-Forward Service for Oracle WebLogic Server.

Using Unit-of-Order with WebLogic Messaging Bridge
If both the source and target destinations are WebLogic Server 9.0 or later Messaging Bridge
instances, you can enable PreserveMsgProperty on the Messaging Bridge to preserve the
Unit-of Order name and set the producer's Unit-of-Order accordingly. See Administering
WebLogic Tuxedo Connector for Oracle WebLogic Server.

Limitations of Message Unit-of-Order
Understand the limitations when using Message Unit-of-Order.

• A browser enumeration contains the current queue messages in the order they are to be
received by the browser, where current is defined as those messages that are deliverable.
At most, the first message within a Unit-of-Order is deliverable. Subsequent messages in
the same Unit-of-Order are not deliverable.

• Some combinations of Unit-of-Order features can result in the starvation of competing Unit-
of-Order message streams, including the under utilization of resources when the number of
consumers exceed the number of in-flight messages with different Unit-of-Order names.
You will need to test your applications under maximum loads to optimize your system's
performance and eliminate conditions that under utilize resources.

• This release of WebLogic Server Message Unit-of-Order does not support clients
connecting to a non-Unit-of-Order JMS provider (releases before than WebLogic 9.0 or
non-WebLogic JMS providers).

Chapter 10
Limitations of Message Unit-of-Order

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 10

11
Using Unit-of-Work Message Groups

Learn how to use Unit-of-Work Message Groups to provide groups of messages when using
WebLogic JMS.

What Are Unit-of-Work Message Groups?
WebLogic JMS provides the Unit-of-Work (UOW) Message Groups, which allows applications
to send JMS messages, identifying some of them as a group and allowing a JMS consumer to
process them as such.

The Unit-of-Work (UOW) Message Groups can be used when applications need an even more
restricted notion of a group than provided by the Message Unit-of-Order (UOO) feature. For
example, a JMS producer can designate a set of messages that must be delivered to a single
client without interruption, so that the messages can be processed as a unit. Further, the client
will not be blocked waiting for the completion of one unit when there is another unit that is
already complete.

Note

It is a programming error to use both the Unit-of-Order and Unit-of-Work features on
the same JMS message.

The following sections describe how to use Message UOW to provide strict message grouping
when using WebLogic JMS:

• Understanding Message Processing with Unit-of-Work

• How to Create a Unit-of-Work Message Group

• Message Unit-of-Work Advanced Topics

• Limitations of UOW Message Groups

Understanding Message Processing with Unit-of-Work
Understand the basic UOW terminology and the rules for processing UOW messages.

Basic UOW Terminology
Table 11-1 defines the terms used to define UOW.

Table 11-1 Unit-of-Work Terminology

Term Definition

Unit-of-Work (UOW) A set of JMS messages that must be processed as a single unit.

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 10

Table 11-1 (Cont.) Unit-of-Work Terminology

Term Definition

UOW Component Message A message that is part of a UOW. In order for WebLogic JMS to
identify a message as part of a UOW, the message must have the
JMS properties described in How to Write a Producer to Set UOW
Message Properties.

UOW Producer A producer that needs to split its work into multiple parts (i.e., a
creator of a UOW). Multiple producers can concurrently contribute
component messages to a UOW message, as shown in Message
Unit-of-Work Case Study.

If fact, a UOW producer can close midway through a UOW and a new
producer can complete the UOW message, while maintaining the
same strict component message integrity (that is detect duplicates,
etc.).

Intermediate Destination A destination whose consumers have the job of processing
component messages separately rather than as a unit. No special
UOW configuration is required for intermediate destinations.

When a component message arrives on an intermediate destination it
will be made available without waiting for other component messages
to arrive. Further, if the intermediate destination is a distributed
destination, no special routing needs to occur. See How to Write a
UOW Consumer/Producer For an Intermediate Destination.

Terminal Destination A destination whose consumers have the job of processing a full
UOW. A destination is identified as a terminal destination by the Unit-
of-Work Message Handling Policy parameter on standalone
destinations, distributed destinations, or JMS templates. See
Configuring Terminal Destinations.

Available/Visible Messages Equivalent JMS terms that refer to a message becoming ready for
consumption, pending the reception of any messages that precede it.
For example, a JMS message is not available until its time to deliver
has been reached or a JMS message that is sent as part of a
transaction is not visible until that transaction is committed.

Rules For Processing UOW Messages
The following rules apply to UOW messages.

• All Messages Required For Processing

No message within the UOW will be available until all of them are available on the terminal
destination.

• Message Reordering

No matter what order the messages arrive to the terminal destination, they will be put into
the order specified by the UOW producer.

• Gap Freedom

The group of messages will be delivered to the user without gaps. That is, all messages in
the group will be delivered to the user before messages from any other group (or part of no
group at all).

• Single Consumer Consumption

The group of messages will be delivered to the same consumer.

Chapter 11
Understanding Message Processing with Unit-of-Work

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 10

Message Unit-of-Work Case Study
This section provides a simple case study for Message Unit-of-Work based on an online order
that requires a variety of merchandise from multiple companies.

Jill Orders Miscellaneous Items from an Online Retailer:

The Megazon online retailer implements a processing design that uses JMS to process
customer orders for a variety of merchandise, some of which need to be routed to Megazon's
partner companies to complete the order. For example, Megazon can directly fulfill book
orders, but must re route some parts of the order for certain electronics or houseware items.
Since Megazon is configured to use UOW, items in an order can be routed as UOW messages
to these intermediate company destinations before being passed onto Megazon's terminal
destination where all the UOW messages that make up the order are gathered before a final
invoice can be processed.

The Megazon JMS processing system is composed of:

• A UOW producer sending order fulfillment component messages with the required UOW
properties to the appropriate intermediate and terminal destinations

• Intermediate destinations for non book items, where UOW component messages are
processed by consumer and/or producer clients before being passed onto the final UOW
destination

• A UOW terminal destination where the component messages are gathered for final
processing

Jill logs into her Megazon account and does some holiday shopping. She chooses a book,
flash drive, MP3 player, and a lava lamp, she then proceeds to the checkout, and completes
the sales transaction.

How Message Unit-of-Work Completes the Order:

To ensure that all messages in Jill's order are processed as a single unit, the order-taking JMS
producer client sets UOW properties on her order messages to indicate that they are part of a
single unit. These UOW message properties must also be copied by any consumer or
producer clients listening on the intermediate Gadget Planet, Widget World, and Desperate
Housewares destinations before they pass the UOW messages onto the terminal destination.
Last, the system administrator for Megazon configures the terminal destination to UOW
Message Handling Policy parameter to Single Message Delivery. See How to Create a Unit-of-
Work Message Group.

Figure 12-1 and the corresponding actions demonstrate how Jill's order was processed using
Message Unit-of-Work.

Chapter 11
Understanding Message Processing with Unit-of-Work

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 10

Figure 11-1 Workflow for Jill's Order Using Unit-of-Work

1. Jill clicks the order button from her shopping cart.

2. The order is split into three messages that use the same unique UOW name:

• SEQ#1, which is routed to the intermediate Gadget Planet queue, where a consumer
processes the Flash Drive order before passing SEQ#1 onto a producer who then
routes it to the intermediate Widget World queue, where a consumer processes the
MP3 player order before passing SEQ#1 to the terminal Megazon queue for final
invoice processing.

• SEQ#2, which is routed to the intermediate Desperate Housewares queue, where a
consumer processes the lava lamp order before passing SEQ#1 onto a producer who
routes it to the Megazon terminal processing queue for final invoice processing.

• SEQ#3, which is routed directly to Megazon's terminal queue for book order fulfillment
and for final invoice processing.

3. The terminal Megazon queue gathers the three UOW messages before forming them into
an ObjectMessage list for delivery to Megazon's invoice consumer client.

4. Jill receives an invoice that shows her entire order was processed.

How to Create a Unit-of-Work Message Group
Learn how to set UOW message properties for a message consumer and producer.

Chapter 11
How to Create a Unit-of-Work Message Group

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 10

How to Write a Producer to Set UOW Message Properties
UOW enables a producer to split its work into multiple parts to accomplish its goal. UOW is, in
effect, taking these multiple messages and joining them into one. Whether component
messages are delivered as parts of a single message or as many messages, it is easiest to
envision them as a single virtual message, as well as individual messages.

In order for WebLogic JMS to identify a message as part of a UOW, the message must have
the JMS properties in Table 11-1 set by the producer client.

Table 11-2 Unit-of-Work Properties

Type Description

JMS_BEA_UnitOfWork A string property that is set by the standard JMS mechanism for setting
properties. For example:

message.setStringProperty("JMS_BEA_UnitOfWork",
"MyUnitOfWorkName")

To avoid naming conflicts, the UOW ID should never be reused. For
example, if messages are lost or retransmitted, then they may be
perceived as part of a separate UOW. For this reason, Oracle
recommends using a Java universally unique identifier (UUID). See
http://docs.oracle.com/javase/8/docs/api/java/util/
UUID.html.

JMS_BEA_UnitOfWorkSequen
ceNumber

An integer property that is set by the standard JMS mechanism for
setting properties. For example:

message.setIntProperty("JMS_BEA_UnitOfWorkSequenceNumbe
r", 5)

The valid values are integers greater than or equal to 1

JMS_BEA_IsUnitOfWorkEnd A Boolean property that is set by the standard JMS mechanism for
setting properties. For example:

message.setBooleanProperty("JMS_BEA_IsUnitOfWorkEnd",
true)

When this property is set to true, the message is the last in the Unit-of-
Work. When this property is false or nonexistent, the message is not
last in the Unit-of-Work.

If the UnitOfWork property is not set, then SequenceNumber and End will be ignored.

Example UOW Producer Code
The Example 12-2copies the UOW properties defined in Table 11-1.

Example 11-1 Sample UOW Producer Message Properties

 for (int i=1; i<=100; i++)
 {
 sendMsg.setStringProperty("JMS_BEA_UnitOfWork","joule");
 sendMsg.setIntProperty("JMS_BEA_UnitOfWorkSequenceNumber",i);
 if (i == 100)
 {
 System.out.println("set the end of message flag for message # " + i);
 sendMsg.setBooleanProperty("JMS_BEA_IsUnitOfWorkEnd",true);
 }
 qSender.send(sendMsg, DeliveryMode.PERSISTENT,7,0);
 }

Chapter 11
How to Create a Unit-of-Work Message Group

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 10

http://docs.oracle.com/javase/8/docs/api/java/util/UUID.html
http://docs.oracle.com/javase/8/docs/api/java/util/UUID.html

UOW Exceptions
The following exceptions may be thrown to the producer when sending JMS messages to a
terminal destination. When a UOW exception is town, the UOW message is not delivered.

Except for the last one, they are all in the weblogic.jms.extensions package and are
subclasses of JMSException.

• BadSequenceNumberException – This will occur if (a) UnitOfWork is set on the message,
but SequenceNumber is not or (b) the SequenceNumber is less than or equal to zero.

• OutOfSequenceRangeException – This will be thrown if (a) a message is sent with a
SequenceNumber that is higher than the sequence number of the message which has
already been marked as the end of the unit or (b) a message is sent with a sequence
number which is lower than a message which has already arrived in the same unit, yet the
new message is marked as the end message.

• DuplicateSequenceNumberException – This will be thrown to the producer if it sends a
message with a sequence number which is the same as a previously sent message in the
same UOW.

• JMSException – A JMS exception will be thrown if a message has both the UnitOfOrder
property set and the UnitOfWork property set.

Note

As a programming best-practice, consider having your UOW producers send all
component messages that comprise a new UOW under a single transaction. This
way, either all of the work is completed or none of it is. For example, if a UOW
producer gets an exception or crashes partway through a UOW and wants to then
cancel the current UOW, then the entire transaction will be rolled back and the
application will not need to make a decision for each message after a failure.

How to Write a UOW Consumer/Producer For an Intermediate Destination
An intermediate destination is one whose consumers have the job of processing component
messages separately rather than as a unit. A JMS ForwardHelper extension API is available to
assist developers who are writing producers and/or consumers at intermediate destinations.
This is because there are many message properties that need to be copied from the incoming
message to the outgoing message. For example, the message properties that control the
behavior of UOW need to be copied.

The following intermediate consumer code sample copies the UOW properties defined in
Table 11-1.

Example 11-2 Sample Client Code for UOW Intermediate Destination

 msg = qReceiver1.receive();
 try
 {
 text = msg.getText();
 TextMessage forwardmsg = qsess.createTextMessage();
 forwardmsg.setText(text);
 forwardmsg.setStringProperty("JMS_BEA_UnitOfWork",
 msg.getStringProperty("JMS_BEA_UnitOfWork"));
 forwardmsg.setIntProperty("JMS_BEA_UnitOfWorkSequenceNumber",

Chapter 11
How to Create a Unit-of-Work Message Group

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 10

 msg.getIntProperty("JMS_BEA_UnitOfWorkSequenceNumber"));
 if (tm.getBooleanProperty("JMS_BEA_IsUnitOfWorkEnd"))
 forwardmsg.setBooleanProperty("JMS_BEA_IsUnitOfWorkEnd",
 msg.getBooleanProperty("JMS_BEA_IsUnitOfWorkEnd"));
 qsend.send(forwardmsg);
 }

Note that the three UOW properties are copied from the incoming message to the outgoing
message.

Configuring Terminal Destinations
A destination is identified as a terminal destination by the Unit-of-Work Message Handling
Policy parameter on standalone destinations, distributed destinations, or JMS templates. There
is also a parameter that allows for expiration of incomplete work on terminal destinations.

The Advanced configuration options for all destination types are available by using the
DestinationBean API, as well as on JMS templates by using the TemplateBean API.

Table 11-3 Unit-of-Work Configuration Options

Console Label/MBean Name Description

Unit-of-Work (UOW) Message
Handling Policy

UnitOfWorkHandlingPolicy

Specifies whether the Unit-of-Work (UOW) feature is enabled for a
destination.

• Pass-Through : By default, destinations do not treat
messages as part of a UOW.

• Single Message Delivery : Select this option if UOW
consumers are receiving component messages on this
terminal destination. When selected, component UOW
messages are formed into a list and are consumed as an
ObjectMessage containing the java.util.list.

Expiration time for incomplete UOW
Messages

IncompleteWorkExpirationTime

The maximum length of time, in milliseconds, before undeliverable
messages in an incomplete UOW are expired. Such messages
will then follow the expiration policy defined for undeliverable
messages. Message expiration begins after the first UOW
message arrives.

This field is effective only if Unit-of-Work Handling Policy is set to
Single Message Delivery. The default value of -1 means that
UOW messages will never expire.

Note: If an expiration time is not configured on terminal
destination, then it is possible for a UOW message to wait
indefinitely on the destination when a component message was
either: (A) never sent/committed, (B) expired, or (C) manually
deleted).

For more information about these parameters, see DestinationBean and TemplateBean in the
MBean Reference for Oracle WebLogic Server.

UOW Message Routing for Terminal Distributed Destinations
The Unit-of-Order Routing field is used to determine the routing of UOW messages for uniform
distributed destinations, using either the path service or hash-based routing. And similar to
UOO, when a UOW terminal destination is also a distributed destination, all messages within a
UOW must go to the same distributed destination member. For more information on the UOO
routing mechanisms, see Using Unit-of-Order with Distributed Destinations.

Chapter 11
How to Create a Unit-of-Work Message Group

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 10

However, basic UOO routing and UOW routing are not the same. Strictly, all messages within a
single UOO do not have to go to the same member: when there are no more unconsumed
messages for a certain UOO, newly arrived messages can go to any member. In UOW,
message routing must be guaranteed until the whole UOW has arrived at the physical
destination and consumption is irrelevant.

How to Write a UOW Consumer for a Terminal Destination
The sample UOW consumer code in Example 12-3 shows how a consumer listening on a
terminal destination verifies that all component messages sent are contained within the final
UOW message.

Example 11-3 Sample Client Code for UOW Terminal Destination

 {
 msg = qReceiver1.receive();
 if (msg != null)
 {
 count++;
 System.out.println"Message received: " + msg);
 //Check that this one message contains all the messages sent.
 ArrayList msgList = (ArrayList)(((ObjectMessage)msg).getObject());
 numMsgs = msgList.size();
 System.out.println("no. of messages in the msg = " + numMsgs);
 }
 } while (msg != null);

Message Unit-of-Work Advanced Topics
Learn how Unit-of-Work processes messages in advanced or more complex situations.

Message Property Handling
UOW is, in effect, taking multiple messages and joining them into one. This is true whether or
not the messages are delivered as one message. For example, each message will have an
independent expiration time, but if one expires, none of them will ever be delivered. Therefore,
as a best practice your message producers should make sure that messages that make up a
UOW are as uniform as possible.

Whether component messages are delivered as parts of a single message or as many
messages, it is easiest to envision them as a single virtual message, as well as individual
messages. For example, because the messages must be seen consecutively, UOW's effect on
message sorting can be viewed as determining the correct placement of the virtual message.
The same is true of message selection (a consumer must see the whole group or not see the
group at all); WebLogic JMS must determine whether "consumer A must see the virtual
message" before deciding to deliver all of the messages to consumer A.

System-Generated Properties
Some fields of the virtual message will need to be populated independently of the component
messages. For example, the virtual message cannot get its value for delivery count from a
component message. This is the list of property values that are system-generated:

• Timestamp

• Delivery count (redelivered)

• Destination

Chapter 11
Message Unit-of-Work Advanced Topics

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 10

Final Component Message Properties
The message properties will be derived from the component messages. However, different
properties get values derived in different ways. One way to derive virtual message properties is
to get their values directly from one of the component messages, (this simplifies the handling
of component messages with different property values). For simplicity, the last message in the
UOW is the message from which the values are derived. For example, the message priority for
the virtual message will be the priority of the message marked as last (by having the property
JMS_BEA_IsUnitOfWorkEnd set to true).

This is the list of virtual message properties that are derived from the values contained in the
last message in the UOW:

• Message ID

• Correlation ID

• Priority

• User Properties

• User ID

Component Message Heterogeneity
Another method for handling component message heterogeneity is to coerce all component
messages into the same value. For example, as mentioned earlier, a mixture of expiration
times doesn't make sense. This is the complete list of message properties that are handled in
this way:

• Delivery Mode

• Expiration

ReplyTo Message Property
The ReplyTo property value is not reflected in the virtual message because it is not used in
message selection or sorting and is only useful to the application, therefore it is ignored.

UOW and Uniform Distributed Destinations
As discussed in UOW Message Routing for Terminal Distributed Destinations, the Unit-of-
Order Routing field is used to determine the routing mechanism for UOW messages. One
other requirement for UOW in distributed destinations is that all member destinations must
have the same value for the UOW Handling Policy. A configuration that is configured otherwise
is invalid.

As a best practice, the use of topics (especially distributed topics) is discouraged for use as
intermediate UOW destinations, because this configuration may lead to duplicate component
messages.

UOW and Store-and-Forward Destinations
The WebLogic Store-and-Forward service supports UOW, with the exception that a store-and-
forward (SAF) imported destination cannot be a terminal destination. However, SAF obeys the
routing rules of UOW messages, just as it does for UOO messages. See Using Unit-of-Order
with WebLogic Store-and-Forward.

Chapter 11
Message Unit-of-Work Advanced Topics

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 10

Limitations of UOW Message Groups
Understand the limitations when using Unit-of-Work message groups.

• JMS clients created using WebLogic Server earlier than 9.0 cannot create messages that
will be processed as part of a UOW.

• The JMS C JNI client is not able to process UOW messages at a terminal destination,
because they are object messages. It can, however, be used as a UOW producer or on an
intermediate destination.

• UOW is poorly suited for sets of large file transfers. Ideally, your messaging environment is
configured for lower maximum message sizes and to facilitate the streaming transfer of
large chunks of data (such as large files) from a single producer to a single consumer.
UOW doesn't handle this use-case because the individual messages are accumulated
back into large giant message on the server before they are pushed to the consumer,
rather than streamed.

Chapter 11
Limitations of UOW Message Groups

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 10

12
Using Transactions with WebLogic JMS

Learn how to use transactions with WebLogic JMS and learn about JTA user transactions
using message driven beans.

Note

For more information about the JMS classes described in this section, access the
latest JMS Specification and Javadoc supplied on the Java Web site at the following
location: http://www.oracle.com/technetwork/java/jms/index.html.

Overview of Transactions
A transaction enables an application to coordinate a group of messages for production and
consumption, treating messages sent or received as an atomic unit.

When an application commits a transaction, all of the messages it received within the
transaction are removed from the messaging system and the messages it sent within the
transaction are delivered. If the application rolls back the transaction, then the messages it
received within the transaction are returned to the messaging system and messages it sent are
discarded.

When a topic subscriber rolls back a received message, the message is redelivered to that
subscriber. When a queue receiver rolls back a received message, the message is redelivered
to the queue, not the consumer, so that another consumer on that queue can receive the
message.

For example, when shopping online, you select items and store them in an online shopping
cart. Each ordered item is stored as part of the transaction, but your credit card is not charged
until you confirm the order by checking out. At any time, you can cancel your order and empty
your cart, rolling back all orders within the current transaction.

There are three ways to use transactions with JMS:

• If you are using only JMS in your transactions, you can create a JMS transacted session.

• If you are mixing other operations, such as EJB, with JMS operations, you should use a
Java Transaction API (JTA) user transaction in a non-transacted JMS session.

• Use message driven beans.

The following sections explain how to use a JMS transacted session and JTA user transaction.

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

http://www.oracle.com/technetwork/java/jms/index.html

Note

When using transactions, it is recommended that you define a session exception
listener to handle any problems that occur before a transaction is committed or rolled
back, as described in Defining a Connection Exception Listener.

If the acknowledge() method is called within a transaction, then it is ignored. If the
recover() method is called within a transaction, a JMSException is thrown.

Using JMS Transacted Sessions
A JMS transacted session supports transactions that are located within the session.

A JMS transacted session's transaction will not have any effect outside of the session. For
example, rolling back a session will roll back all sends and receives on that session, but will not
roll back any database updates. JTA user transactions are ignored by JMS transacted
sessions.

Transactions in JMS transacted sessions are started implicitly, after the first occurrence of a
send or receive operation, and chained together; whenever you commit or roll back a
transaction, another transaction automatically begins.

Before using a JMS transacted session, the system administrator should adjust the connection
factory (Transaction Timeout) and/or session pool (Transaction) attributes, as necessary for the
application development environment.

Figure 13-1 shows the steps required to set up and use a JMS transacted session.

Figure 12-1 Setting Up and Using a JMS Transacted Session

Step 1: Set Up JMS Application, Creating Transacted Session
Set up the JMS application as described in Setting Up a JMS Application, when creating
sessions, as described in Step 3: Create a Session Using the Connection, specify that the
session is to be transacted by setting the transacted Boolean value to true.

For example, the following methods show how to create a transacted session for the point-to-
point and Publish/subscribe messaging models, respectively:

Chapter 12
Using JMS Transacted Sessions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

 qsession = qcon.createQueueSession(
 true,
 Session.AUTO_ACKNOWLEDGE
);

 tsession = tcon.createTopicSession(
 true,
 Session.AUTO_ACKNOWLEDGE
);

After a session is defined, you can determine whether or not a session is transacted using the
following session method:

 public boolean getTransacted(
) throws JMSException

Note

The acknowledge value is ignored for transacted sessions.

Step 2: Perform Desired Operations
Perform the desired operations associated with the current transaction.

Step 3: Commit or Roll Back the JMS Transacted Session
After you have performed the desired operations, execute one of the following methods to
commit or roll back the transaction.

To commit the transaction, execute the following method:

 public void commit(
) throws JMSException

The commit() method commits all messages sent or received during the current transaction.
Sent messages are made visible, while received messages are removed from the messaging
system.

To roll back the transaction, execute the following method:

 public void rollback(
) throws JMSException

The rollback() method cancels any messages sent during the current transaction and returns
any messages received to the messaging system.

If either the commit() or rollback() methods are issued outside of a JMS transacted session,
then a IllegalStateException is thrown.

Using JTA User Transactions
The Java Transaction API (JTA) supports transactions across multiple data resources. JTA is
implemented as part of WebLogic Server and provides a standard Java interface for
implementing transaction management.

Chapter 12
Using JTA User Transactions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

You program your JTA user transaction applications using the
jakarta.transaction.UserTransaction object, described at http://www.oracle.com/
technetwork/java/javaee/jta/index.html, to begin, commit, and roll back the transactions.
When mixing JMS and EJB within a JTA user transaction, you can also start the transaction
from the EJB, as described in Transactions in EJB Applications in Developing JTA Applications
for Oracle WebLogic Server.

You can start a JTA user transaction after a transacted session has been started; however, the
JTA transaction will be ignored by the session and vice versa.

WebLogic Server supports the two-phase commit protocol (2PC), enabling an application to
coordinate a single JTA transaction across two or more resource managers. It guarantees data
integrity by ensuring that transactional updates are committed in all of the participating
resource managers, or are fully rolled back out of all the resource managers, reverting to the
state before the start of the transaction.

Before using a JTA transacted session, the system administrator must configure the
connection factories to support JTA user transactions by selecting the XA Connection Factory
Enabled check box.

Figure 13-2 shows the steps required to set up and use a JTA user transaction.

Figure 12-2 Setting Up and Using a JTA User Transaction

Chapter 12
Using JTA User Transactions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

http://www.oracle.com/technetwork/java/javaee/jta/index.html
http://www.oracle.com/technetwork/java/javaee/jta/index.html

Step 1: Set Up JMS Application, Creating Non-Transacted Session
Set up the JMS application as described in Setting Up a JMS Application, however, when
creating sessions, as described in Step 3: Create a Session Using the Connection, specify that
the session is to be non-transacted by setting the transacted boolean value to false.

For example, the following methods illustrate how to create a non-transacted session for the
PTP and Pub/sub messaging models, respectively.

 qsession = qcon.createQueueSession(
 false,
 Session.AUTO_ACKNOWLEDGE
);

 tsession = tcon.createTopicSession(
 false,
 Session.AUTO_ACKNOWLEDGE
);

Note

When a user transaction is active, the acknowledge mode is ignored.

Step 2: Look Up the User Transaction in JNDI
The application uses JNDI to return an object reference to the UserTransaction object for the
WebLogic Server domain.

You can look up the UserTransaction object by establishing a JNDI context (context) and
executing the following code, for example:

UserTransaction xact = ctx.lookup("jakarta.transaction.UserTransaction");

Step 3: Start the JTA User Transaction
Start the JTA user transaction using the UserTransaction.begin() method. For example:

xact.begin();

Step 4: Perform Desired Operations
Perform the desired operations associated with the current transaction.

Step 5: Commit or Roll Back the JTA User Transaction
Once you have performed the desired operations, execute one of the following commit() or
rollback() methods on the UserTransaction object to commit or roll back the JTA user
transaction.

To commit the transaction, execute the following commit() method:

 xact.commit();

Chapter 12
Using JTA User Transactions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

The commit() method causes WebLogic Server to call the Transaction Manager to complete
the transaction, and commit all operations performed during the current transaction. The
Transaction Manager is responsible for coordinating with the resource managers to update any
databases.

To roll back the transaction, execute the following rollback() method:

 xact.rollback();

The rollback() method causes WebLogic Server to call the Transaction Manager to cancel
the transaction, and roll back all operations performed during the current transactions.

Once you call the commit() or rollback() method, you can optionally start another transaction
by calling xact.begin().

JTA User Transactions Using Message Driven Beans
Use message-driven beans to simulate asynchronous message delivery within JTA user
transactions.

Because JMS cannot determine which, if any, transaction to use for an asynchronously
delivered message, JMS asynchronous message delivery is not supported within JTA user
transactions.

However, message— driven beans provide an alternative approach. A message driven bean
can automatically begin a user transaction just before message delivery.

See Designing Message-Driven EJBs in Developing Jakarta Enterprise Beans Using
Deployment Descriptors.

Example: JMS and EJB in a JTA User Transaction
Learn how to set up an application for mixed EJB and JMS operations in a JTA user
transaction.

The following example shows the steps to set up an application by looking up a
jakarta.transaction.UserTransaction using JNDI, and beginning and then committing a
JTA user transaction. In order for this example to run, the XA Connection Factory Enabled
check box must be selected when the system administrator configures the connection factory.

Note

In addition to this simple JTA User Transaction example, see example provided with
WebLogic JTA, located in the
EXAMPLES_HOME\wl_server\examples\src\examples\jta\jmsjdbc directory, where
EXAMPLE_HOME represents the directory in which the WebLogic Server code examples
are configured.

Import the appropriate packages, including the jakarta.transaction.UserTransaction
package, at https://jakarta.ee/specifications/transactions/.

import java.io.*;
import java.util.*;
import jakarta.transaction.UserTransaction;

Chapter 12
JTA User Transactions Using Message Driven Beans

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

https://jakarta.ee/specifications/transactions/

import javax.naming.*;
import jakarta.jms.*;

Define the required variables, including the JTA user transaction variable.

public final static String JTA_USER_XACT=
 "jakarta.transaction.UserTransaction";
 .
 .
 .

Step 1 Set Up the JMS Application
Set up the JMS application, creating a non-transacted session. For more information on setting
up the JMS application, refer to Setting Up a JMS Application.

//JMS application setup steps including, for example:
 qsession = qcon.createQueueSession(false,
 Session.CLIENT_ACKNOWLEDGE);

Step 2 Look Up the User Transaction
Look up the UserTransaction using JNDI.

UserTransaction xact = (UserTransaction)
 ctx.lookup(JTA_USER_XACT);

Step 3 Start the JTA User Transaction
Start the JTA user transaction.

xact.begin();

Step 4 Perform the Desired Operations
Perform the desired operations.

// Perform some JMS and EJB operations here.

Step 5 Commit the JTA User Transaction
Commit the JTA user transaction.

xact.commit()

Using Cross-Domain Security
You must correctly configure either the Cross— Domain Security or Security Interoperability
Mode for all participating domains.

Keep all the domains used by your process symmetric with respect to Cross Domain Security
configuration and Security Interoperability Mode. Because both settings are set at the domain
level, it is possible for a domain to be in a mixed mode, meaning the domain has both Cross
Domain Security and Security Interoperability Mode set. See Configuring Secure Inter-Domain
and Intra-Domain Transaction Communication in Developing JTA Applications for Oracle
WebLogic Server.

Chapter 12
Using Cross-Domain Security

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

13
Developing Advanced Pub/Sub Applications

Understand the advanced WebLogic JMS publish and subscribe (pub/sub) concepts and
functionality of Uniform Distributed Topics (UDTs) necessary to design high availability (HA)
applications.

Overview of Advanced High Availability Concepts
WebLogic messaging offers high availability and scalability by using distributed destinations.
The WebLogic Server migration features also provide high availability for the individual
members of a distributed destination.

Note

Oracle recommends designing applications that utilize WebLogic Server MDBs or the
Oracle SOA JMS Adapter rather than explicitly handling all potential topology
changes.

WebLogic Messaging High Availability Features
Oracle's WebLogic messaging offers high availability (HA) and scalability using the following
features:

• Using Distributed Destinations

• Migration of JMS-related Services in Administering JMS Resources for Oracle WebLogic
Server

• Whole Server Migration in Administering Clusters for Oracle WebLogic Server

Distributed Destinations make a group of JMS physical destinations accessible as a single,
logical destination to a client. Applications that use distributed destinations usually have higher
availability and better scalability because WebLogic JMS provides load balancing and failover
among member destinations of a distributed destination within a cluster. Automatic Service
Migration (ASM) and Whole Server Migration (WSM) enable restarting either a set of services
(including JMS servers and destinations) or an entire WebLogic Server instance in a new
location. These migration features provide high availability for the individual members of a
distributed destination.

The nature of these technologies means that the topology of a JMS system can be unknown to
a client application as:

• The scaling of a cluster, along with the scaling of a distributed destination may exceed the
number of consumers defined by the application.

• The topology may dynamically change in the event of a server or service failure.

Typically, topology changes are handled transparently using MDBs either locally or on a remote
WebLogic Server instance. However, when using other client types, these topology changes

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 10

must be explicitly handled by the application, especially if the application is remote to the
servers hosting the JMS destinations.

Application Design Limitations When Using Replicated Distributed Topics
Applications implementing Uniform Distributed Topics earlier than WebLogic Server 10.3.4.0
were constrained by the following limitations:

• Messages are always forwarded and duplicated across a distributed topic, which means
that either parallel processing, and/or ensuring that a clustered application gets one copy
of each message, may requires significant additional configuration, coding, and message
hops.

• Only one consumer at a time can process the messages in a given subscription except for
the limited case of Non-XA MDBs where all processing of the subscription must occur on
the same server with a thread pool. This prevents most customers from designing
application architectures that intend to have "round-robin" distributed or parallel processing
of a single subscription's topic messages, instead of single-threaded processing.

• MDBs only directly support durable subscriptions on distributed topics that are located in
the same cluster.

• For applications other than MDBs, a durable subscriber created for a distributed topic can
only be created on a distributed topic (DT) member, and the durable subscription will only
exist on that member. If the member hosting the subscription is down, then the subscription
will not be available to any subscriber (and is therefore not "highly available" by definition).

• Pinning subscribers to a distributed topic member prevents automatic adjustment to
changes in topology in the same way that adjustments are made for distributed queues.

Advanced Topic Features
Starting in WebLogic Server 10.3.4.0, partitioned distributed topics, combined with the ability to
share subscriptions and allow multiple connections to use the same Client ID, provide the
following application design patterns that provide parallel processing and HA capabilities
similar to distributed queues:

• One copy per instance: Each instance of an application gets one copy of each message
that is published to the Topic.

• One copy per application: Each application as a whole (that is all instances of the
application together) receives one copy of each message that is published to the Topic.
Each instance only receives a subset of the messages that are sent to the Topic.

Note

Oracle recommends designing applications that utilize WebLogic Server MDBs. See
Configuring and Deploying MDBs Using JMS Topics in Programming Message-Driven
Beans for Oracle WebLogic Server for detailed information about how to design and
implement applications that use message-driven beans to provide improved HA and
scalability.

Chapter 13
Overview of Advanced High Availability Concepts

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 10

Advanced Topic Messaging Features for High Availability
In order to understand how an application can achieve One-copy-per-instance and One-copy-
per-application design patterns, you need to understand the new and changed features such
as shared subscriptions and the client ID policy.

Shared Subscriptions and Client ID Policy
Before WebLogic Server 10.3.4.0, one subscription, durable or non durable, could only be
accessed by a single subscriber instance at any time. Each subscriber receives all messages
that are sent to a topic after the subscription is established and the messages for each
subscription are processed sequentially by one consumer.

In this WebLogic Server release, multiple subscribers can share one subscription (durable or
non durable). Messages are distributed among multiple consumers that share the same
subscription and can be processed in parallel. Subscription sharing only occurs on the same
destination instance or the same member instance of a DT. See Configure Shared
Subscriptions in Administering JMS Resources for Oracle WebLogic Server.

In order to share a subscription, durable or non-durable subscriptions must have the Client Id
set on their connection factory or connection. Before WebLogic Server 10.3.4.0, a Client ID
was exclusively used by one connection at any given time. In this release of WebLogic Server,
this restriction is relaxed and a new Client ID Policy is used to restrict or not restrict use of a
Client ID. The default policy, Restricted, allows only one Client ID to be used by one
connection. The Unrestricted policy allows multiple connections to use the same client ID.
For more information, see How Sharing a Durable Subscription Works.

What is the Subscription Key
A subscription key is used to uniquely identify a subscription. For non-durable subscriptions,
the key is composed of the Client ID and Client ID Policy. For durable subscriptions, the key is
composed of the Client ID, Client ID Policy, and Subscription Name.

Configuring a Shared Subscription
To configure a shared subscription, you need to configure the Subscription Sharing Policy
attribute on the connection factory. Setting the Subscription Sharing Policy to Sharable allows
subscribers created using a connection factory to share their subscriptions with other
subscribers, regardless of whether those subscribers are created using the same connection
factory or a different connection factory. Consumers can share a non-durable subscriptions
only if they have the same Client ID and Client ID Policy. Consumers can share a durable
subscription only if they have the same Client ID, Client ID Policy, and Subscription Name. See
ClientIdPolicy in MBean Reference for Oracle WebLogic Server

How Sharing a Non Durable Subscription Works
In order to share a subscription among multiple non durable subscribers, the subscribers have
to have a Client ID, which serves to identify the subscription. All subscribers that intend to
share a subscription must have the same subscription key (clientID and clientIDPolicy) on
their connection. If Subscription Sharing Policy is set to SHARABLE, but the clientID is not set
on the Connection, the subscription is not a shared subscription.

The first subscriber that is created with a subscription key creates the subscription. All
subsequently created subscribers with the same subscription key share the subscription

Chapter 13
Advanced Topic Messaging Features for High Availability

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 10

created by the first subscriber if all subscription details (such as: the selector, noLocal option,
and the physical destination) match. For example:

• If a subscription is created with a selector and noLocal option, a subscriber creation call
that uses the same subscription key but a different selector, noLocal option or a different
physical destination is treated as a different subscription.

• If a clientID is used by an EXCLUSIVE subscriber, any current or subsequent subscribers
using the same clientID, selector, and noLocal option is treated as a different
subscription.

Note

It is only possible to have the same clientID if the subscriber is created with the
same connection instance or a connection using the UNRESTRICTED client ID
policy).

How a Shared Subscription Policy for a Non durable Subscription Is Determined
The Subscription Sharing Policy for a particular non-durable subscription is dynamically
determined by the first active subscriber on the subscription and does not change for the life of
the subscription. Any attempt to change the Shared Subscription Policy for a subscription
throws an InvalidSubscriptionSharingException, which extends
jakarta.jms.JMSException. For example:

• If a non-durable subscription has an EXCLUSIVE subscriber on a destination, the
subscription is EXCLUSIVE, and any attempt to create an additional subscriber using the
subscription on the same destination fails with an
InvalidSubscriptionSharingException, regardless of whether the yet-to-be-created
subscriber is EXCLUSIVE or SHARABLE.

• If a subscription has active subscribers with a SHARABLE policy, then the subscription is
SHARABLE, and any attempt to create a new EXCLUSIVE subscriber on the subscription fail
with an InvalidSubscriptionSharingException.

How a Non durable Subscription Is Closed
After all subscribers that share the same subscription close, the subscription is cleaned up.
Specifically, when the last subscriber consumer on a shared subscription calls the close()
method, the subscription and all the associated JMS resources cleaned up.

There is no runtime mbean that represents a non-durable subscription, regardless of whether it
is a shared or exclusive subscription. It is possible to monitor individual subscribers using the
appropriate JMSConsumerRuntime MBean.

How Sharing a Durable Subscription Works
In previous releases, the subscription key (<ClientID, SubscriptionName>) uniquely identified
a subscription within a cluster where the subscription could only exist on a single destination
instance or a single member of a DT within the cluster. In this WebLogic Server release, the
subscription key becomes <ClientID, ClientIDPolicy, SubscriptionName>. All durable
subscribers that use the same subscription key share the same subscription if they subscribe
to a regular topic, or if they subscribe to the same member of a distributed topic. Multiple

Chapter 13
Advanced Topic Messaging Features for High Availability

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 10

subscriptions that use the same subscription key can exist on multiple distributed destination
member destinations.

The first subscriber that is created with a particular subscription key creates the subscription.
All subsequently created subscribers with the same subscription key share the subscription
created by the first subscriber if all subscription details (such as the selector, noLocal option,
and the physical destination) match and they are on the same physical destination.

If a subscription is created with a selector and the noLocal option, a subscriber created on the
same physical destination using the same subscription key with a different selector and
noLocal option will:

• Replace the existing durable subscription and clean-up all pending messages that are
saved for the durable subscription if there are no active subscribers using this existing
subscription.

• Throw anInvalidSubscriptionSharingException if there are active subscribers using the
same subscription key with a different selector or noLocal option.

How a Shared Subscription Policy for a Durable Subscription is Determined
The Subscription Sharing Policy for a particular durable subscription is dynamically determined
by the first active subscriber on the subscription and does not change unless all current
subscribers close and new subscribers attach with a different policy. Any attempt to change the
policy of a subscription that already has active subscribers throws an
InvalidSubscriptionSharingException. For example:

• If a durable subscription has an EXCLUSIVE subscriber and the Subscription Sharing Policy
is EXCLUSIVE, any attempt to create an additional subscribers on the subscription throws an
InvalidSubscriptionSharingException, regardless of whether the yet-to-be-created
subscriber is EXCLUSIVE or aSHARABLE.

• If a durable subscription has active subscribers with a SHARABLE policy, the Subscription
Sharing Policy is SHARABLE and, any attempt to create a new EXCLUSIVE subscriber on the
subscription throws an InvalidSubscriptionSharingException.

Note

Changing the Subscription Sharing Policy on an existing durable subscription does not
delete any messages that already exist on the subscription.

How to Unsubscribe a Durable Subscription
Before unsubscribing a subscription, you must consider the Client ID Policy for the
subscription:

• Applications that use a client ID Policy with a value of RESTRICTED unsubscribe a durable
subscription using the standard Session.unsubscribe(String name) API.

Note

Before WebLogic Server 10.3.4.0, all client IDs are RESTRICTED by default. A client ID
could only be used by one connection at any given time in a WLS JMS cluster.

Chapter 13
Advanced Topic Messaging Features for High Availability

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 10

• Applications that use a client ID Policy with a value of UNRESTRICTED unsubscribe a durable
subscription using the WLSession.unsubscribe(String name, Topic topic) extension by
supplying the subscription name and the topic or a distributed topic member object.

Considerations When Unsubscribing a Durable Subscriber
The following section provides information on how to unsubscribe or avoid scenarios that throw
an exception:

• If there are active consumers on the subscription, a call to the unsubscribe() method
throws a JMSException.

• If there are no active consumers on a subscription, then a call to the unsubscribe()
method deletes the matching durable subscription identified by the subscription key
<ClientID, ClientIDPolicy, SubscriptionName>.

• The unsubscribe() method of a durable subscription is done per standalone topic or per
member of a DT.

• A subscription created using a connection with a RESTRICTED client ID can only be cleaned
up from a connection that uses the same RESTRICTED Client ID.

• A subscription created using a connection with an UNRESTRICTED client ID can only be
cleaned up from a connection using the same UNRESTRICTED client ID.

• If WebLogic JMS does not find a matching subscription on the topic that was created with
the same client ID and client ID Policy as the unsubscribe call, then an
InvalidDestinationException is thrown.

• If an unsubscribe call with an UNRESTRICTED client ID specifies a DT or does not specify
any Topic, then an InvalidDestinationException is thrown.

• Although .Net and C API messaging applications can share subscriptions by using the
client ID Policy and Subscription Sharing Policy on a connection factory deployed on
WebLogic Server 10.3.4.0 or later, an unsubscribe API extension is not yet available for
subscriptions that use an unrestricted client ID. The workaround is to use administrative
measures described in Managing Durable Subscriptions.

Managing Durable Subscriptions
When there are subscriptions distributed throughout a cluster, it is possible there are some
subscriptions that should were deleted but have not been deleted. These subscriptions are
sometimes called "abandoned" subscriptions, and can continue to accumulate messages even
though there is no subscriber processing the messages. If the accumulating messages never
expire, they can eventually cause the topic to begin throwing resource allocation exceptions
(quota exceptions), or if quotas are not configured, then the accumulating message can even
cause a server to run out of memory.

For example, the unsubscribe call fails when there are active subscribers on the subscription
and the unsubscribe call does not reach subscriptions on inactive (shutdown) members. When
this happens, the subscription is left on the member where the call failed until it is manually
removed by an administrator or the call is repeated.

To help handle these situations, administrators have the following options to monitor and
manage durable subscriptions:

• There is one instance of the JMSDurableSubscriptionRuntimeMBean for each durable
subscription. Administrators can monitor a topic or UDT using the WebLogic Remote
Console or by using WLST command line or scripts. See Monitor Servers in Oracle
WebLogic Remote Console Online Help.

Chapter 13
Advanced Topic Messaging Features for High Availability

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 10

• To find an abandoned or orphaned durable subscription, the administrator can check the
LastMessagesReceivedTime on the JMSDurableSubscriberRuntimeMBean. The
getLastMessagesReceivedTime() method returns the last time a message was received by
a subscriber from the subscription. Based on this information, together with attributes like
the MessagesPendingCount or BytesPendingCount on the same MBean, the administrator
can build a clear picture of the status of a particular durable subscription and take
appropriate action, such as cleanup the resources.

Naming Conventions for JMSDurableSubscriberRuntimeMbean
If a durable subscription is created using the subscription key, <MyClientID,
MySubscriptionName>, then the name of the associated JMSDurableSubscriberRuntimeMBean
is either:

• MyClientID_MySubscriptionName when the client ID Policy is RESTRICTED. Where
MyClientID is the Client ID for this subscription, and MySubscriptionName is the name of
the subscription.

• MyClientID_MySubscriptionName@topicName@JMSServerName when the client ID Policy is
UNRESTRICTED. Where MyClientID is the client ID for this subscription,
MySubscriptionName is the name of the subscription., topicName is the name of a
standalone topic or a member of a UDT, and JMSServerName is the name of the JMS
Server that the topic or member is deployed on.

Design Strategies When Using Topics
Learn about the Topic-based design strategies that can be used to develop high availability
applications.

One-Copy-Per-Instance Design Strategy
The one-copy-per-instance design strategy is the traditional design pattern and is backward
compatible with WebLogic Server releases before 10.3.4.0. One-copy-per-instance has the
following characteristics:

• Each instance of an application gets one copy of each message that is published to the
topic.

• This pattern is usually best implemented by leveraging an MDB, which sets up policies and
subscriptions across a cluster automatically. See Best Practices for Distributed Topics.

One-Copy-Per-Application Design Strategy
The One-Copy-Per-Application design strategy is a design pattern available in WebLogic
Server 10.3.4.0 and higher releases. One-copy-per-application design strategyhas the
following characteristics:

• This pattern is usually best implemented by leveraging an MDB, which sets up policies and
subscriptions across a cluster automatically. See Best Practices for Distributed Topics.

• Each application as a whole (that is all instances of the application together) receives one
copy of each message that is published to the DT. That is, each instance only receives a
subset of the messages that are sent to the DT

• An UNRESTRICTED Client ID Policy

• An SHARABLE Subscription Sharing Policy

Chapter 13
Design Strategies When Using Topics

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 10

• Uses the same subscription name if the subscribers are durable

• All consumers subscribe to the same topic instance (or member of a DT)

Considerations When Using JMS 2.0 Shared Subscriptions
JMS 2.0 shared subscriptions internally leverage the proprietary WebLogic shared subscription
feature. Therefore, JMS 2.0 and proprietary WebLogic shared subscriptions have similar
semantics.

This section provides information about how to use JMS 2.0 shared subscriptions to avoid
throwing exceptions:

• When a shared non-durable subscription is created on a distributed topic directly or on a
distributed topic member, and if the client ID is not set on the connection, use a connection
with an UNRESTRICTED client ID Policy.

• When a shared durable subscription is created on a distributed topic directly, either use
MDBs or use extensions and subscriptions on members.

• When a shared durable subscription is created on a distributed topic member, and if the
client ID is not set on the connection, then use a connection with an UNRESTRICTED client ID
Policy.

Note

When the client ID Policy is set to UNRESTRICTED, unsubscribe a durable subscription
using the WLSession.unsubscribe(String name, Topic topic) extension by
supplying the subscription name and the topic or a distributed topic member object.

Replacing a Replicated Distributed Topic
Learn about replacing a Replicated Distributed Topic (RDT) with a standalone topic or PDT.

Reasons for Replacing a Replicated Distributed Topic

It is sometimes necessary to replace an existing Replicated Distributed Topic (RDT) with a
Partitioned Distributed Topic (PDT) or standalone topic because RDTs are not supported in the
following scopes:

• Cluster-targeted JMS servers. See Simplified JMS Cluster and High Availability
Configuration in Administering JMS Resources for Oracle WebLogic Server.

• Dynamic clusters

An attempt to configure or deploy an RDT in any of these scopes generates a configuration
validation error.

It also can be helpful to replace an RDT with a PDT or standalone topic because these options
handle the same use cases, yet are simpler and tend to perform better. RDTs implicitly run
transactional internal forwarders to duplicate messages between their members, and these
forwarders have a relatively high overhead.

Chapter 13
Considerations When Using JMS 2.0 Shared Subscriptions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 10

Important Prerequisites Before Replacing an RDT

Before replacing an RDT with a different type of topic, it is important to make sure that pre-
existing messages are processed. In addition, any old subscriptions on the RDT should be
deleted – or more simply, all store files or database tables should be deleted. If the change
needs to occur without restarting a cluster, create a new topic with a different name and delete
the old topic.

Replacing an RDT with a Standalone Topic

Replacing an RDT with a singleton standalone topic instead of a PDT can be the simplest
option, but sacrifices scalability and some HA. Ensuring that a cluster-hosted standalone topic
is migratable, can mitigate HA concerns. See What About Failover? in Administering JMS
Resources for Oracle WebLogic Server.

Note

Standalone topics that are hosted on cluster-targeted JMS servers or a dynamic
cluster can only be hosted on a JMS server that references a store configured with a
singleton distribution policy. They also require configuring cluster leasing on a cluster
where database leasing is recommended over consensus leasing. See Simplified JMS
Cluster and High Availability Configuration in Administering JMS Resources for Oracle
WebLogic Server.

Replacing an RDT with a PDT

To configure a PDT, set the forwarding-policy attribute of a uniform distributed topic to
Partitioned instead of Replicated. A PDT does not duplicate a message produced to one of
its members to every other member, so this different semantic may require further changes:

• If you are using MDBs to consume from a PDT, then each MDB’s topic-message-
distribution-mode attribute will need to be set to one-copy-per-server or one-copy-
per-app if it is not already. The default compatibility topic-message-distribution-mode
will not work with PDTs - the MDB will generate an exception. See Configuring and
Deploying MDBs Using JMS Topics and Topic Deployment Scenarios in Developing
Message-Driven Beans for Oracle WebLogic Server.

• If you are using the SOA JMS adapter to consume from a PDT, then no change is needed.
It defaults to the MDB equivalent of one-copy-per-app when consuming from a PDT. See
Accessing Distributed Destinations (Queues and Topics) on the WebLogic Server JMS in
Understanding Technology Adapters.

• Similarly, if you are using the OSA JMS Adapter to consume from a PDT, then it is likely no
change is needed.

• If you have jakarta.jms topic consumers that are not an MDB, SOA JMS Adapter, or OSA
JMS Adapter, then application code changes may be needed. For example, the application
may need to be changed so that it consumes from subscriptions on each and every PDT
member instead of from a single subscription. This is because a PDT does not replicate
each sent message to each of its members. For more information and a discussion of
helper APIs in this area, see Developing Advanced Publish/Subscibe Applications,

Chapter 13
Replacing a Replicated Distributed Topic

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 10

Advanced Programming with Distributed Destinations and Using the JMS Destination
Availability Helper API.

Best Practices for Distributed Topics
Follow Oracle’s recommendations when designing new applications using distributed topics.

• Simplify application design and complexity by utilizing MDBs. See:

– Distributed Topic Deployment Scenarios in Developing Message-Driven Beans for
Oracle WebLogic Server

– Configuring and Deploying MDBs Using Distributed Topics in Developing Message-
Driven Beans for Oracle WebLogic Server

• If MDBs are not an option, consider using an UNRESTRICTED Client ID Policy, a SHARABLE
Subscription Policy, in combination with a Partitioned Topic (a distributed topic with a
PARTITIONED forwarding policy). See:

– Configure an Unrestricted ClientID in Administering JMS Resources for Oracle
WebLogic Server

– Configure Shared Subscriptions in Administering JMS Resources for Oracle WebLogic
Server

– Configuring Partitioned Distributed Topics in Administering JMS Resources for Oracle
WebLogic Server

– Advanced Programming with Distributed Destinations Using the JMS Destination
Availability Helper API

Chapter 13
Best Practices for Distributed Topics

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 10

14
Recovering from a Server Failure

Understand how WebLogic JMS client applications reconnect or recover from a server/network
failure and learn how to migrate JMS data after a server failure.

Automatic JMS Client Failover
With the automatic JMS client reconnect feature, if a server or network failure occurs, some
JMS client objects will transparently failover to use another server instance, as long as one is
available.

Note

The WebLogic JMS automatic reconnect feature is deprecated. The JMS connection
factory configuration, weblogic.jms.extensions.WLConnection API, and
weblogic.jms.extensions.JMSContext API for this feature will be removed or ignored
in a future release. They do not handle all possible failures and so are not an effective
substitute for standard resiliency best practices. Oracle recommends that client
applications handle connection exceptions as described in Client Resiliency Best
Practices in Administering JMS Resources for Oracle WebLogic Server.

With the automatic JMS client reconnect feature, if a fatal server failure occurs, then JMS
clients automatically attempt to reconnect to the server when it becomes available.

A network connection failure could be due to transient reasons (a temporary interruption in the
network connection) or non-transient reasons (a server bounce or network failure). In such
cases, some JMS client objects will try to automatically operate with another server instance in
a cluster, or possibly with the host server.

By default, JMS producer session objects automatically try to reconnect to an available server
instance without any manual configuration or modifications to the existing client code. If you do
not want your JMS producers to be automatically reconnected, then you must explicitly disable
this feature either programmatically or administratively.

In addition, JMS consumer session objects can also be configured to automatically attempt to
reconnect to an available server, but due to their potentially asynchronous nature, you must
explicitly enable this capability using the public WebLogic JMS APIs.

Related Topics

Automatic Reconnect Limitations
Automatic reconnect logic can provide a seamless failover for clients in many failure scenarios.
However, there are some connection failure scenarios where the result of a message operation
is undetermined and WebLogic Server throws an exception. Your application must deal with
the exception appropriately. For instance:

• If the message send operation is idempotent, resend the message.

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 12

• Otherwise, your application may need to take some action. For instance, you may need to
check if the message is already available on the queue before resending to avoid
duplicates.

Note

If the destination or distributed destination member is unavailable, you will not be able
to determine if the message send operation was successful until that member
becomes available.

Implicit failover of the following JMS objects is not supported before WebLogic Server 9.2:

• Queue browsers: jakarta.jms.QueueBrowser

• The WebLogic JMS thin client (wljmsclient.jar) does not automatically reconnect.

• Client statistics are reset on each reconnect, which results in the loss historical data for the
client.

• Under some circumstances, automatic reconnect is not possible. If it is not possible, an
exception is reported.

• Temporary destinations (jakarta.jms.TemporaryQueue and
jakarta.jms.TemporaryTopic).

Note

Temporary destinations may still be accessible after a sever/network failure. This
is because temporary destinations are not always on the same server instance as
the local connection factory due to server load balancing. Therefore, if a temporary
destination survives a server/network failure and a producer continues sending
messages to it, an auto-reconnected consumer may or may not be able consume
messages from the same temporary destination it was connected to before the
failure occurred.

Automatic Failover for JMS Producers
In most cases, JMS producer applications will transparently failover to another server instance
if one is available. The following WebLogic JMS producer-oriented objects will attempt to
automatically reconnect to an available sever instance without any manual configuration or
modification to the existing client code:

• Connection

• Session

• MessageProducer

If you do not want your JMS clients to be automatically reconnected, then you must explicitly
disable this feature either programatically or administratively, as described in Explicitly
Disabling Automatic Failover on JMS Clients.

Chapter 14
Automatic JMS Client Failover

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 12

Sample Producer Code
In the event of a network failure, the WebLogic JMS client code for message production will try
to reconnect to an available server during Steps 3-8 shown in Example 14-1.

Example 14-1 Sample JMS Client Code for Message Production

 //set exception listener
1. public void onException(jakarta.jms.JMSException jsme) {
 connection.setExceptionListener
 // handle the exception, which may require checking for duplicates
 // or sending the message again
 }

2. Context ctx = create WebLogic JNDI context with credentials etc.
3. ConnectionFactory cf = ctx.lookup(JNDI name of connection factory)
4. Destination dest = ctx.lookup(JNDI name of destination)
 // the following operations recover from network failures
5. Connection con = cf.createConnection()
6. Session sess = con.createSession(no transactions, ack mode)
7. MessageProducer prod = sess.createProducer(dest)

8. Loop over:
9. Message msg = sess.createMessage()
 // try block to handle destination availablitiy scenarios
10. try {
 prod.send(msg)}
 catch (Some Destination Availability Exception e) {
 //handle the exception, in most cases, the destination or member
 //is not yet available, so the code should try to resend
 }
 //end loop

 // done sending messages
11. con.close(); ctx.close();

The JMS producer will transparently fail-over to another server instance, if one is available.
This keeps the client code as simple as listed in Example 15-1and eliminates the need for
client code for retrying across network failures.

The WebLogic JMS does not reconnect MessageConsumers by default. For this to automatically
occur programmatically, your client application code must call the WebLogic WLConnection
extension, with the setReconnectPolicy set to "all", as explained in Configuring Automatic
Failover for JMS Consumers.

Re usable ConnectionFactory Objects
A ConnectionFactory object looked up using JNDI (see Step 1 in Example 14-1 and
Example 14-2) is re usable after a server or network failure without requiring a re-lookup. A
network failure could be between the JMS client JVM and the remote WebLogic Server
instance it is connected to as part of the JNDI lookup, or between the JMS client JVM and any
remote WebLogic Server instance in the same cluster where the JMS client subsequently
connects.

Re usable Destination Objects
A destination object (queue or topic) looked up using JNDI (see Step 2 in Example 14-1 and
Example 14-2) is re usable after a server or network failure without requiring another lookup.

Chapter 14
Automatic JMS Client Failover

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 12

The same principle applies to producers that send to a distributed destinations, because the
client looks up the distributed destination in JNDI, and not the unavailable distributed member.

A network failure could be between the client JVM and the WebLogic Server instance it is
connected to, or between that WebLogic Server instance and the WebLogic Server instance
that actually hosts the destination. The Destination object will also be robust after restarting the
WebLogic Server instance hosting the destination.

Note

For information on how consumers of distributed destinations behave with automatic
JMS client reconnect, see Consumers of Distributed Destinations.

Reconnected Connection Objects
The JMS connection object is used to map one-to-one to a physical network connection
between the client JVM and a remote WebLogic Server instance. With the JMS client
reconnect feature, the JMS Connection object that the client gets from the
ConnectionFactory.createConnection() method (see Step 3 in Example 14-1 and
Example 14-2) maps in a one-to-one-at-a-time fashion to the physical network connection. One
consequence is that while the JMS client continues to use the same Connection object, it could
be actually communicating with a different WebLogic Server instance after an implicit failover.

If there is a network disconnection and a subsequent implicit refresh of the connection, then all
objects derived from the connection (such as jakarta.jms.Session and
jakarta.jms.MessageProducer objects) are also implicitly refreshed. During the refresh, any
synchronous operation on the connection or its derived objects that go to the server (such as
producer.send() or connection.createSession()), may block for a period of time before
giving up on the connection refresh. This time is configured using the
setReconnectBlockingMillis(long) API in the weblogic.jms.extensions.WLConnection
interface.

The reconnect feature keeps trying to reconnect to the WebLogic Server instance's
ConnectionFactory object in the background until the application calls connection.close().
The ReconnectBlockingMillis parameter is the time-out for a synchronous caller trying to use
the connection when the connection in being retried in the background.

If a synchronous call times out without seeing a refreshed connection, then it then behaves in
exactly the same way (that is, throws the same Exceptions) as without the implicit reconnect
(that is, it will behave as if it was called on a stale connection without the reconnect feature).

The caller can then decide to retry the synchronous call (with a potentially lower quality of
service, like duplicate messages), or decide to call connection.close()method , which will
terminate the background retries for that connection.

Special Cases for Reconnected Connections
There are special cases that can occur when producer connections are refreshed:

• Connections with a ClientID for Durable Subscribers – If your Reconnect Policy field is set
to None or Producer, and a JMS Connection has a Client ID specified at the time of a
network/server failure, then the Connection will not be automatically refreshed. The reason
for this restriction is backward compatibility, which avoids breaking existing JMS
applications that try to re-create a JMS Connection with the same connection name after a

Chapter 14
Automatic JMS Client Failover

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 12

failure. If implicit failover also occurs on a network failure, then the application's creation of
the connection will fail due to a duplicate ClientID.

Note

For information on how a consumer connection with a ClientID behaves, see
Consumer Connections with a ClientID for Durable Subscriptions.

• Closed Objects Are Not Refreshed – When the application calls
jakarta.jms.Connection.close(), jakarta.jms.Session.close(), etc., that object and it
descendents are not refreshed. Similarly, when the JMS client is told its Connection has
been administratively destroyed, it is not refreshed.

• Connection with Registered Exception Listener – If the JMS Connection has an application
ExceptionListener registered on it, that ExceptionListener's onException() callback will be
invoked even if the connection is implicitly refreshed. This notifies the application code of
the network disconnect event. The JMS client application code might normally call
connection.close() in onException; however, if it wants to take advantage of the
reconnect feature, it may choose not to call connection.close(). The registered
ExceptionListener is also migrated transparently to the internally refreshed connection to
listen for exceptions on the refreshed connection.

• Multiple Connections – If there are multiple JMS Connections created off the same
ConnectionFactory object, each connection will behave independently of the other
connections as far as the reconnect feature is concerned. Each connection will have its
own connection status, its own connection retry machinery, etc.

Reconnected Session Objects
As described in Reconnected Connection Objects, JMS Session objects are refreshed when
their associated JMS connection gets refreshed (see Step 4 in Example 14-1 and
Example 14-2). Session states, such as acknowledge mode and transaction mode, are
preserved across each refresh occurrence. The same session object can be used for calls, like
createMessageProducer(), after a refresh.

Special Cases for Reconnected Sessions
These sections discuss special cases that can occur when Sessions are reconnected.

• Transacted Sessions With Pending Commits or Rollbacks – Operations similar to non-
transacted JMS Sessions, transacted JMS sessions are automatically refreshed. However,
if there were send or receive operations on a session pending a commit or rollback at the
time of the network disconnect, then the first commit call after the Session refresh will fail
throwing a jakarta.jms.TransactionRolledBackException. When a JMS session
transaction spans a network refresh, the commit for that transaction cannot vouch for the
operations done before the refresh as part of that transaction (from an application code
perspective).

After a session refresh, operations like send() or receive() will not throw an exception; it
is only the first commit after a refresh that will throw an exception. However, the first
commit after a session refresh will not throw an exception if there were no pending
transactional operations in that JMS session at the time of the network disconneciont. In
case of Session.commit() throwing the exception, the client application code can simply
retry all the operations in the transaction again with the same (implicitly refreshed) JMS
objects. The stale operations before a refresh will not be committed and will not be
duplicated.

Chapter 14
Automatic JMS Client Failover

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 12

• Pending Unacknowledged Messages – If a session had unacknowledged messages prior
to the session refresh, then the first WLSession.acknowledge() call after a refresh throws a
weblogic.jms.common.LostServerException. This indicates that the acknowledge() call
may not have removed messages from the server. As a result, the refreshed session may
receive duplicate messages that were also delivered before the disconnect.

Reconnected MessageProducer Objects
As described in Reconnected Connection Objects, JMS MessageProducer objects are
refreshed when their associated JMS connection gets refreshed (see Step 5 in Example 14-1).
If producers are non-anonymous, that is, they are specific to a destination object (standalone
or distributed destination), then the producer's destination is also implicitly refreshed, as
described in Re usable Destination Objects. If a producer is anonymous, that is not specific to
a destination object, then the possibly stale destination object specified on the producer's
send() operation is implicitly refreshed.

Special Case for Distributed Destinations
It is possible that a producer can send a message at the same time that a distributed
destination member becomes unavailable. If WebLogic JMS can determine that the distributed
destination member is not available, or was not available when the message was sent, the
system will retry sending the message to another distributed member. If there is no way to
determine if the message made it through the connection all the way to the distributed member
before it went down, the system will not attempt to resend the message because doing so may
create a duplicate message. In that case, WebLogic JMS will throw an exception. It is up to the
application to catch that exception and decide whether or not to resend the message.

Configuring Automatic Failover for JMS Consumers
JMS MessageConsumer objects that are part of a JMS Connection (through a JMS Session) can
be refreshed during a JMS connection refresh (see Step 5 in Example 14-2). However, due to
the stateful nature of JMS consumers, as well as their potential asynchronous nature, you must
explicitly enable this capability using the weblogic.jms.extensions.WLConnection API.

Explicitly enabling automatic refresh of consumers also refreshes connections with a
configured client ID for a durable subscriber, as described in Consumer Connections with a
ClientID for Durable Subscriptions. However, refreshed consumers does not include
QueueBrowser clients, which are never refreshed, as described in Automatic Reconnect
Limitations.

Sample Consumer Client Code
When Message Consumer refresh is explicitly activated, in the event of a network failure, the
WebLogic JMS client code for message consumption will attempt to reconnect during Steps
3-8 in Example 14-2.

Example 14-2 Sample JMS Client Code for Message Consumption

0. Context ctx = create WebLogic JNDI context with credentials etc.
1. ConnectionFactory cf = ctx.lookup(JNDI name of connection factory)
2. Destination dest = ctx.lookup(JNDI name of destination)
 // the following operations recover from network failures
3. Connection con = cf.createConnection()
 (weblogic.jms.extensions.WLConnection)con).setReconnectPolicy("all")
4. Session sess = con.createSession(no transactions, auto ack)
5. MessageConsumer cons = sess.createConsumer(dest, message selector)
 - also for async consumers : cons.setMessageListener(onMessage impl)

Chapter 14
Automatic JMS Client Failover

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 12

6. con.start()
7. Loop over:
 for sync consumers: Message msg = consumer.receive()
 for async consumers (in different thread): onMessage() invoked
8. con.close(), ctx.close()

Note that the connection factory does not refresh MessageConsumer objects by default. For this
to occur programmatically, your client application code must call the WebLogic WLConnection
extension, with the setReconnectPolicy set to "all", as shown in Step 3 in Example 14-2.

Configuring Automatic Client Refresh Options
The JMS client reconnect API includes the following configuration parameters, which enables
you to make some choices that affect the behavior of the reconnect feature for consumers.

Table 14-1 Automatic JMS Client Reconnect Options

MBean Attribute Value Description

Reconnect Policy

ReconnectPolicy

• None
• Producer

(default)
• All

Determines which JMS client objects are implicitly refreshed when a
network disconnect or server reboot. It only affects the implicit refresh
of connections, sessions, producers, and consumers derived from this
connection factory. This attribute does not affect Destination or
ConnectionFactory objects in the JMS client, since those objects are
always refreshed implicitly. Nor does it affect the QueueBrowser object
in the JMS client, since that object is never refreshed.

Reconnect Blocking Time

ReconnectBlockingTimeMilli
s

6000 Determines how long any synchronous JMS calls, such as
producer.send(), consumer.receive(), and
session.createBrowser() will block the calling thread before giving
up on a JMS client reconnect in progress.

TotalReconnectPeriodMillis -1 Determines how long JMS clients should keep retrying to connect after
either the initial network disconnection or the last synchronous JMS
call attempt (whichever occurs most recently), before giving up retrying.

Note

The configuration options in the table are not supported in the WebLogic Remote
Console, as these options are for an already deprecated feature.

For more information about these parameters, see ClientParamsBean in the MBean Reference
for Oracle WebLogic Server.

Common Cases for Reconnected Consumers
This section describes the common scenarios when refreshing synchronous and asynchronous
consumers.

Synchronous Consumers
Synchronous consumers use MessageConsumer.receive(),
MessageConsumer.receive(timeout), and MessageConsume.receiveNoWait() methods to
consume messages. The first two methods are already expected to potentially block the
application code, while the third method is not expected to block the application code. To retain

Chapter 14
Automatic JMS Client Failover

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 12

these semantics, the following rules describe interaction of the reconnect feature with the
synchronous consumer calls:

• MessageConsumer.receive()– If there is a network disconnection during this call, this
method can block for up to Reconnect Blocking Time property (described in the
configuration section) for a reconnect to go through before throwing an Exception.

• MessageConsumer.receive(timeout) – This call will block for the at-most timeout in
milliseconds specified by the caller. If the Reconnect Blocking Time property is less than
the timeout, then the receive will still block up to the Reconnect Blocking Time setting; if
the Reconnect Blocking Time value is more than the timeout, the receive will only block up
to timeout.

• MessageConsumer.receiveNoWait() – This call will not block if the JMS Connection is in
the process of reconnecting. The Reconnect Blocking Time value has no effect on this call.

If these methods eventually reach their respective timeout/wait periods, they all will throw the
same Exceptions. as they would reconnect. If a reconnect succeeds while these methods are
blocked/called, then these methods will continue returning messages, but with a potentially
lowered quality-of-service and with generally similar semantics of receiving messages (like
Redelivered messages), as after a recover. The application is notified of this possibility by a
Connection ExceptionListener callback with theLostServerException. In addition, for non-
AUTO_ACK acknowledge modes, the first acknowledge call after a refresh will throw a
LostServerException to notify the application of this possibility.

Asynchronous Consumers
In the context of a reconnect, the behavior for asynchronous consumers will be governed by
the setting on the Total Reconnect Period property. The JMS consumer's registered message
listener's onMessage()method will continue to be invoked if the reconnect framework is able to
successfully re-establish a connection within the Total Reconnect Period setting after a
connection failure. If the user explicitly calls a close() on the JMS Connection (or on the JMS
Session corresponding to the asynchronous Consumer), then the reconnect framework will not
invoke any further onMessages for that Consumer. The onMessage() should expect post
recover behavior (like redelivered messages) if the Connection ExceptionListener's
onException is invoked with a LostServerException.

Special Cases for Reconnected Consumers
These sections discuss special cases that can occur when consumers are refreshed.

Consumers of Distributed Destinations
Before to WebLogic Server 9.2, consumers of distributed destinations (DDs) were pinned to a
particular destination member of the DD for the life of the pinned consumer. This applies to
queue consumers of distributed queues, and non-durable subscribers of distributed topics
(durable subscribers are not supported distributed topics).

With MessageConsumer reconnect, DD consumers are also refreshed; however, the refreshed
consumer is almost never on the same destination member as the stale consumer. Therefore,
even though the application is using the same DD consumer across a refresh, it is effectively
not pinned to the same destination member across a refresh.

Message-Driven EJBs
Message-driven EJBs (MDBs) are a special sub case of asynchronous consumers that have
their own behavior requirements and their own refresh framework. As such, MDBs are not

Chapter 14
Automatic JMS Client Failover

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 12

expected to participate in MessageConsumer refreshes, and are not expected to be affected in
any other way by the JMS client reconnect framework.

Consumer Connections with a ClientID for Durable Subscriptions
Durable subscriptions on standalone topics will not notice any difference due to the client
reconnect feature if the topic is still available across a disconnect. The JMS client reconnect
framework implicitly refreshes the durable subscriber on that topic and continue from where it
was interrupted. Note that if your Reconnect Policy is set to All, JMS Connections with a
ClientID will also refresh automatically, thus allowing durable subscriptions (which are scoped
by ClientID) to refresh automatically. Connections with a ClientID set will not reconnect for any
other Reconnect Policy setting.

Note

If a JMS Connection has a ClientID specified at the time of a network/server failure,
then reconnecting that client make take significantly longer than your other clients. For
example, in a cluster the JMS server must wait for the WebLogic Server "heartbeat"
notification that is broadcast from other members of the cluster, as explained in
Failover and Replication in a Cluster in Administering Clusters for Oracle WebLogic
Server.

WebLogic JMS does not support durable subscriptions on distributed topics, so there
is no issue of failover to another distributed topic member during a refresh.

Non Durable Subscriptions and Possible Missed Messages
For consumers that are non-durable subscribers of topics, though the consumption apparently
continues successfully across a refresh from an application perspective, it is possible for
messages to be published to the topic and dropped (e.g., for lack of consumers) while the
reconnect was happening. Missed messages can occur with either synchronous or
asynchronous non durable subscribers.

Duplicate Messages
Due to the nature of the consumer refresh feature, there is a possibility of redelivered
messages without the client application code calling recover explicitly because a consumer
refresh effectively does an implicit equivalent of a recover upon a refresh. This is the main
reason why implicit Consumer refresh is not on by default. The semantics of never redelivering
a successfully acknowledged message still hold true.

There is also an unlikely case when non-durable subscribers of distributed topics can receive
duplicate messages that are not marked redelivered (e.g., when failover happens faster than
messages are discarded in topics). This is a consequence of a non-durable subscriber refresh
for the distributed topic not being pinned to a topic member across a refresh.

Variations Due to Acknowledge Modes
There will be no difference in the reconnect behaviors of Consumers due to different
acknowledge modes. However, the first acknowledge call after a refresh for non-AUTO_ACK
modes will throw a LostServerException as described earlier to notify user of potential lowered
quality of service.

Chapter 14
Automatic JMS Client Failover

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 12

Reconnecting with Migrated JMS Destinations In a Cluster
Consumers will not always reconnect after a JMS server (and its destinations) is migrated to
another server in a cluster. If consumers do not get migrated with the destinations, then either
an exception is thrown or onException will occur to inform the application that the consumer is
no longer valid. As a workaround, an application can refresh the consumer either in the
exception handler or through onException.

Explicitly Disabling Automatic Failover on JMS Clients
If you do not want your JMS clients to be automatically reconnected, then you must explicitly
disable this feature either programatically or administratively.

Programmatically
If you do not want your JMS clients to be automatically reconnected, then your applications
should call the following code:

 ConnectionFactory cf = (jakarta.jms.ConnectionFactory)ctx.lookup
 (JNDI name of connection factory)
 jakarta.jms.Connection con = cf.createConnection();
 ((weblogic.jms.extensions.WLConnection)con).setReconnectPolicy("none")

For more information about the setReconnectPolicy method, see the
weblogic.jms.extensions.WLConnection API.

Administratively
Administrators that do not want JMS clients to automatically reconnect should refer to the
details:

For more information about the other JMS connection factory client parameters, see
ClientParamsBean in the MBean Reference for Oracle WebLogic Server.

Best Practices for JMS Clients Using Automatic Failover
Oracle recommends the following best practices for JMS clients when using the Automatic
JMS Client Reconnect feature:

Always Catch exceptions
There are some connection failure scenarios where the result of a message operation is
undetermined and WebLogic Server throws an exception. Your application must deal with the
exception appropriately. See the following:

• Automatic Reconnect Limitations

• Special Cases for Reconnected Sessions

• Special Case for Distributed Destinations

Use Transactions to Group Message Work
Use transacted sessions (JMS) or user transactions (JTA) to group related or dependent work,
including messaging work, so that either all of the work is completed or none of it is. If a server
instance goes down and a message is lost in the middle of a transaction, the entire transaction

Chapter 14
Automatic JMS Client Failover

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 12

is rolled back and the application does not need to make a decision for each message after a
failure.

Note

Be aware of transaction commit failures after a server reconnect, which may occur if
the transaction subsystem cannot reach all the participants involved in the transaction.

JMS Clients Should Always Call the close() Method
As a best practice, your applications should not rely on the JVM's garbage collection to clean
up JMS connections because the JMS automatic reconnect feature keeps a reference to the
JMS connection. Therefore, always use theconnection.close() to clean up your connections.
Also consider using a Finally block to ensure that your connection resources are cleaned up.
Otherwise, WebLogic Server allocates system resources to keep the connection available.

For more information about closing JMS client connections, see Best Practice: Always Close
Failed JMS ClientIDs.

Manually Migrating JMS Data to a New Server
WebLogic JMS uses the migration framework to allow WebLogic JMS to respond properly to
migration requests and bring a WebLogic JMS server online and offline in an orderly fashion.
This includes both scheduled migrations as well as migrations in response to a WebLogic
Server failure.

After a JMS server is properly configured, a JMS server and all of its destinations can migrate
to another WebLogic Server within a cluster.

You can manually recover JMS data from a failed WebLogic Server by starting a new server
and doing one or more of the tasks in Table 15-3.

Note

There are special considerations when you migrate a service from a server instance
that has crashed or is unavailable to the Administration Server. If the Administration
Server cannot reach the previously active host of the service at the time you perform
the migration, see Migrating a Service From an Unavailable Server in Administering
Clusters for Oracle WebLogic Server.

Table 14-2 Migration Task Guide

If Your JMS Application Uses Perform the Following Task

Persistent messaging—JDBC Store • If the JDBC database store physically exists on the failed
server, then migrate the database to a new server and
ensure that the JDBC connection pool URL attribute reflects
the appropriate location reference.

• If the JDBC database does not physically exist on the failed
server, access to the database has not been affected , and
no changes are required.

Chapter 14
Manually Migrating JMS Data to a New Server

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 12

Table 14-2 (Cont.) Migration Task Guide

If Your JMS Application Uses Perform the Following Task

Persistent messaging—File Store If you are using a shared file system, ensure that your file store
directories are explicitly configured to reference the shared
location (do not depend on the default), otherwise you will need
to copy the files to the new server and ensure they have the
same directory path as the original server before restarting the
migrated file stores. See Using Custom File Stores and File
Locations in Administering the WebLogic Persistent Store.

Transactions To facilitate recovery after a failure , WebLogic Server provides
the Transaction Recovery Service, which automatically tries to
recover transactions when the system startup. The Transaction
Recovery Service owns the transaction log for a server.

For detailed instructions about recovering transactions from a
failed server, see Transaction Recovery After a Server Fails in
Developing JTA Applications for Oracle WebLogic Server.

Note

JMS persistent stores can increase the amount of memory required during initialization
of WebLogic Server as the number of stored messages increases. When rebooting
WebLogic Server, if initialization fails due to insufficient memory, then increase the
heap size of the Java Virtual Machine (JVM) proportionally to the number of messages
that are currently stored in the JMS persistent store and try the reboot again.

See Starting and Stopping Servers: Quick Reference. For information about recovering a failed
server, refer to Avoiding and Recovering From Server Failure in Administering Server Startup
and Shutdown for Oracle WebLogic Server.

For more information about defining migratable services, see Service Migration in
Administering Clusters for Oracle WebLogic Server.

Chapter 14
Manually Migrating JMS Data to a New Server

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 12

15
Understanding WebLogic JMS Security

Learn how to secure WebLogic JMS resources using thread-based and object-based security
models.

Securing WebLogic JMS Resources
WebLogic JMS enables you to secure JMS resources by restricting access to JMS
destinations.

By default, all users can access JMS resources in a WebLogic Server or WebLogic cluster.
This includes users with remote access, and users running directly in the WebLogic Server or
WebLogic cluster itself. To restrict access to WebLogic JMS destinations, you must create
security policies on the user's system resources and ensure users have the required roles. See
Overview of Securing WebLogic Resources for more information about security roles and
policies, and Java Messaging Service (JMS) Resources for policies available to JMS.

JMS Security Terminology

WebLogic JMS uses either object-based security (OBS) or thread-based security to determine
which user is checked when accessing a secured WebLogic JMS destination.

Understand some common terminology used in the context of JMS security before exploring
the difference between the two security approaches:

• Subject: The security object that represents a user in a WebLogic application.

• Principal and Credentials: A user's user name and password respectively.

• Credentials: Often used to represent the combination of a user's user name and password.

Thread-based security implies that the subject that a secured WebLogic JMS destination
checks is implicitly derived from the current caller's thread. Object-based security implies that
the subject is implicitly derived from a subject stored in the object the caller is using to make its
JMS call. In general, WebLogic security is thread based. The following sections explore both
approaches.

Understanding Thread-Based Security on Clients and Servers
By default, access to secured WebLogic JMS resources leverages thread-based security. This
gives WebLogic JMS security behavior parity with Jakarta EE's general security model for
EJBs, web applications, and RMI.

It means that WebLogic JMS send and consume operations are:

1. Checked using the security subject/role stored implicitly within the current thread.

2. Not checked using the user name and password that can be passed to JMS jakarta.jms
createConnection() or createJMSContext() calls. In other words, the thread's subject
from (1) supersedes the user name and password that an application can optionally pass
into createConnection() or createJMSContext().

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 10

Thread-Based Security for Server Applications
For server-side applications, there are multiple ways to set EJB and Web application thread's
subject or role. See Securing Enterprise JavaBeans (EJBs) . To override thread-based JMS
security checking behavior for server-side WebLogic JMS send and consume calls, see
Understanding Object Based Security on Server Applications.

Thread-Based Security for Client Applications
For client applications, the current thread's subject is generated and implicitly placed on the
thread when the client application creates a JNDI context. A JNDI context can optionally
specify credentials by using its SECURITY_PRINCIPAL and Context.SECURITY_CREDENTIALS
properties.

The following code sample puts a subject on the current thread for user myusername and
password user_password:

java.util.Hashtable env = new Hashtable();
 env.put(Context.PROVIDER_URL, url); // typical url: t3://
example.com:7001
 env.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");
 env.put(Context.SECURITY_PRINCIPAL, "myusername");
 env.put(Context.SECURITY_CREDENTIALS, "user_password");
 javax.naming.InitialContext ic = new InitialContext(env); // throws an
exception if user name/password is incorrect
 // thread now implicitly has subject for the ic user name/password
 ic.close();
 // thread now has original subject from before the ic was created

If a client creates an InitialContext object without specifying credentials, then:

• The subject already on the current thread is unchanged.

• If there is no subject on the thread, then it is assumed to be an anonymous subject.

If a client program needs to transfer a thread's subject to a different thread than the thread
used to create an InitialContext object, the client program can use security APIs to store the
current subject of the thread and then subsequently use this cached subject in a different
thread.

For example:

// retrieve the subject that is implicitly store in the current thread
javax.security.auth.Subject subject =
weblogic.security.Security.getCurrentSubject();
...
// use the given subject to perform an action:
// if the action throws, return an exception
// if the action succeeds, return "OK"
static Object doSomethingAsSubject(javax.security.auth.Subject subject) {
try {
return weblogic.security.Security.runAs(subject,
 new java.security.PrivilegedExceptionAction() {
 public java.lang.Object run() throws Exception {

Chapter 15
Understanding Thread-Based Security on Clients and Servers

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 10

 // do something or throw
 return "OK";
 }});
 } catch (java.security.PrivilegedActionException e) {
 return e;
} catch (Throwable t) {
 return t;
 }
}

This example code pattern can also be used to switch the subject on a thread for the use case
where one single JMS client communicates with two domains at the same time, see
Programming Pattern for a Single JMS Client Communicating With Two WebLogic Domains.

Sometimes it is useful to get an anonymous subject:

 javax.security.auth.Subject anon = new javax.security.auth.Subject();

To override thread-based JMS security checking behavior for client-side WebLogic JMS send
and consume calls, see Understanding Object-Based Security on Clients.

Understanding Object-Based Security
WebLogic JMS clients can optionally use a simpler security model called object-based security
(OBS) instead of thread-based security. This option was introduced in WebLogic 12.2.1.3 and
is useful for multithreaded clients which otherwise need extra code to transfer thread-based
security subjects between threads.

The following sections explain how to enable object-based security:

Enabling Object-Based Security on Clients
Enabling object-based security (OBS) causes message send and consume security checks to
be based on credentials specified during JMS client initialization instead of on the calling
thread's subject.

Enabling OBS requires using an OBS JNDI initial context. Any WebLogic JMS senders or
consumers that are created using an OBS connection factory that is obtained from an OBS
initial context will, by default, implicitly use the credential that is associated with the OBS initial
context instead of the subject that is associated with the current sender or consumer thread. In
addition, if a user name and password credential is passed as parameters to a standard JMS
createConnection() or createJMSContext() call on an OBS connection factory, then this new
credential supersedes the credential that is associated with the OBS initial context and the new
credential will be used for sends or consumes on that connection or JMS context.

Steps to enable OBS on a JMS client's senders and consumers:

1. Create a javax.naming.InitialContext object:

a. Specify a Context.INITIAL_CONTEXT_FACTORY property with string value
weblogic.jms.WLInitialContextFactory instead of
weblogic.jndi.WLInitialContextFactory. This returns an OBS initial context, and is
the only step required for the majority of applications that want to use JMS client OBS.

b. (Optional) Specify user name and password credentials using the standard JNDI
Context.SECURITY_PRINCIPAL and Context.SECURITY_CREDENTIALS properties (same

Chapter 15
Understanding Object-Based Security

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 10

as what you do for a non OBS context). This will become the default OBS credential
that is associated with the OBS initial context. If these properties are not specified,
then the credential associated with the OBS initial context is determined by the
weblogic.jndi.securityPolicy setting.

c. (Optional) Specify an initial context property named weblogic.jndi.securityPolicy
with string value ObjectBased or ObjectBasedHybrid. This fine tunes behavior when
no user name and password credential is specified using the initial context
Context.SECURITY_PRINCIPAL and Context.SECURITY_CREDENTIALS properties.

• ObjectBased (the default): If no credential is provided when the initial context is
created, then, by default, use an anonymous subject for JNDI lookups and
WebLogic JMS sends or consumes credentials that are associated with the
factory.

• ObjectBasedHybrid: If no credential is provided when the initial context is created,
then, by default, use the credential that was on the current thread when the initial
context was created for subsequent JNDI lookups and WebLogic JMS sends or
consumes credentials that are associated with the factory.

2. Use the OBS initial context created in step (1) to look up WebLogic JMS connection
factories (same as you look up a connection factory for a non OBS context), which will then
implicitly be OBS JMS connection factories. Any JMS senders or consumers that are
created using an OBS JMS connection factory will use OBS.

3. (Optional) Override the OBS credential associated with the OBS JMS connection factory
by passing a user name and password into the JMS standard createConnection() or
createJMSContext()call that is used to create a JMS connection or context.

Object-Based Security Limitations on Clients
Listed below are some of the limitations of OBS:

• An OBS initial context only supports lookup() calls and will otherwise throw NotSupported
exceptions. If you need a context that supports other calls, then create a second context
that does not enable OBS.

• An OBS initial context is supported only on WebLogic clients and is not supported on
WebLogic Servers. An exception is thrown when attempting to use such a context in
combination with WebLogic JMS server facilities like bridges, MDBs, or resource
references. This restriction exists because these server-side JMS facilities already have
their own security handling that provides similar semantics to OBS.

• When an OBS initial context is created, the initial context's user is not placed on the
current thread. This differs from a weblogic.jndi.WLInitialContextFactory context.

Enabling Object-Based Security on Server Applications
Learn how to enable object-based security (OBS) for inbound and outbound JMS applications:

Object-Based Security for Inbound JMS Applications
Server applications that make inbound WebLogic JMS calls, such as Message Driven Beans,
are implicitly object based. Credentials or roles for these applications to access incoming JMS
messages are supplied in one of the following ways:

• Supplied with the application itself.

Chapter 15
Understanding Object-Based Security

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 10

Note

Oracle does not recommend using this method.

• Defined on the service itself (Messaging Bridges allow you to configure user name or
password).

Note

Oracle does not recommend using this method.

• Just as for the outbound case, specified using a foreign JMS Server in a JMS system
resource module that maps a JMS resource into JNDI.

As a best practice, use the foreign JMS Server method for Message Driven Beans, Messaging
Bridges, and outbound JMS, as this:

• Ensures the credentials are dynamically configurable and not hard coded into an
application or descriptor file.

• Applies to almost all inbound and outbound use cases so it is useful as a way to centrally
manage your JMS credentials.

See FAQs: Integrating Remote JMS Providers and Enhanced Support for Using WebLogic
JMS with EJBs and Servlets.

Object-Based Security for Outbound JMS Applications
Server applications that make outbound WebLogic JMS calls can achieve an object-based
security pattern that supersedes the current security subject on the current thread. For this to
work, ensure the following:

1. Map the current JNDI location of a JMS connection factory to a local JNDI by:

• Configuring a foreign JMS Server in a JMS system resource module.

• Configuring credentials in the foreign JMS Server for users who have the required
permissions.

2. In the application code, use a JMS resource reference or inject a JMS context that
references the local JNDI name of the JMS connection factory.

Note

It is a general best practice for server applications to use resource references or
JMS context injection to reference a JMS connection factory regardless of whether
you need an object-based security pattern or a thread-based security pattern.

After the above requirements are met, WebLogic Server subsequently injects the
credentials that you configured in the foreign JMS Server into every outbound
send or consume call that originates from the given JMS connection factory.

Understanding Cross-Domain Security

Chapter 15
Understanding Cross-Domain Security

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 10

By default, WebLogic Server security is thread-based, which means operations are performed
as the "user" that is associated with the current thread. See Understanding Thread-Based
Security on Clients and Servers. When an application uses JMS to communicate with multiple
domains, the application needs to ensure that the correct user is used when it communicates
with each of the domains that are involved.

In addition, in order to secure the internal communication between WebLogic Server instances
across domain boundaries, cross-domain security needs to be established between the
domains. Using a cross-domain security configuration, WebLogic Server establishes a security
role for cross-domain users, and uses the WebLogic Credential Mapping security provider in
each domain to store the credentials to be used by the cross-domain users. You can enable
cross-domain security in a per domain basis. A cross-domain credential mapping must be
configured for each remote domain where internal communications need to be secure. Details
about cross-domain security configuration are discussed in Configuring Cross-Domain Security
in Administering Security for Oracle WebLogic Server. Guidelines are provided for using the
cross-domain security in various cross-domain scenarios. See Cross-Domain Security
Guidelines.

Note

The examples provided are example code for illustrating security patterns, not working
code that conforms to all JMS coding best practices. See Configuration Best
Practices.

Cross-Domain Security Guidelines
Follow these guidelines while configuring cross-domain security:

• If your Message-Driven Bean (MDB) deployment and the JMS destination that the MDB
listens on, are in different WebLogic domains, you need to consider configuring cross-
domain security between the two domains in combination with a foreign JMS server. For
more details, see Using MDBs With Cross Domain Security in Developing Message-Driven
Beans for Oracle WebLogic Server.

• If your application or a messaging bridge participates in global transactions that involve
more than one WebLogic domain, you need to consider configuring cross-domain security
between the two domains. This applies to messaging bridges between two WebLogic
domains with an exactly-once QoS. For more details, see Configuring Cross Domain
Security in Developing JTA Applications for Oracle WebLogic Server

• If your application in one WebLogic domain accesses WebLogic Server JMS distributed
destinations in another WebLogic domain, you need to consider configuring cross-domain
security between the two domains. In addition, the application should use a foreign JMS
server in combination with a standard Jakarta EE resource reference to reference the
remote destination.

• If your application uses WebLogic Server JMS store-and-forward to forward messages
from one WebLogic domain to another WebLogic domain, you need to consider
configuring cross-domain security between the two domains. See SAF and Cross Domain
Security in Administering the Store-and-Forward Service for Oracle WebLogic Server.

• If a single JMS client communicates with multiple domains at the same time, the
application code may need to manage switching users back and forth corresponding to the
domain that the application talks to using the same thread. See the runAs helper method
described in Thread-Based Security for Client Applications.

Chapter 15
Understanding Cross-Domain Security

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 10

• If using a foreign JMS server in a cross-domain scenario without combining this feature
with a Jakarta EE resource reference, MDB, or messaging bridge, a built-in helper API can
be used to correctly handle security credential propagation.

Note

It is a best practice to use a Jakarta EE resource reference, MDB, or messaging
bridge instead of a helper API.

Programming Pattern for a Single JMS Client Communicating With Two
WebLogic Domains

A single JMS client that is not running on a WebLogic Server may need to communicate with
two (or more) WebLogic domains at the same time while specifying a valid thread-based
security subject for each.

Here is an example of an application that incorrectly handles security subjects while
communicating with two domains. It attempts to receive request messages from a JMS
destination in one domain and send response messages to a destination in another domain as
indicated in the following code excerpt.

// This sample code INCORRECTLY handles security subjects
// in a client that communicates between two domains. It is
// intended to forward JMS messages.

 java.util.Hashtable env = new Hashtable();
 env.put(Context.PROVIDER_URL, domain1_url); // typical url: t3://
example.com:7001
 env.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");
 env.put(Context.SECURITY_PRINCIPAL, "mydomain1_username");
 env.put(Context.SECURITY_CREDENTIALS, "mydomain1_password");
 javax.naming.InitialContext ctx = new InitialContext(env);
 // thread now implicitly has subject that is valid in domain1
 final Destination reqDest = (Destination) ctx.lookup(reqDestJNDI);
 final ConnectionFactory cf = (ConnectionFactory) ctx.lookup(reqCfJNDI);
 final MessageConsumer consumer =
cf.createContext().createConsumer(reqDest);

 java.util.Hashtable env2 = new Hashtable();
 env2.put(Context.PROVIDER_URL, domain2_url); // typical url: t3://
example.com:7001
 env2.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");
 env2.put(Context.SECURITY_PRINCIPAL, "mydomain2_username");
 env2.put(Context.SECURITY_CREDENTIALS, "mydomain2_password");
 javax.naming.InitialContext ctx2 = new InitialContext(env2);
 // thread now implicitly has subject that is valid in domain2

 final Destination resDest = (Destination) ctx2.lookup(resDestJNDI);
 final ConnectionFactory cf2 = (ConnectionFactory) ctx.lookup(resCfJNDI);
 // create JMS producer to send response msg to domain2 now
 MessageProducer producer = cf2.createConext().createProducer(resDest);

Chapter 15
Understanding Cross-Domain Security

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 10

 do {
 // !!The following operation may fail since the current thread has the
subject that is only valid in domain2
 // while the consumer tries to talk to domain1.
 Message msg = consumer.receive(1000);
 if (msg != null) {
 // process msg and generate response message resMsg
 producer.send(resMsg);
 }
 } while (msg != null);

In the above example, the receive operation may fail since the current thread has the subject
that is only valid in domain2 while the consumer tries to talk in domain1.

To resolve this issue, the JMS client application code needs to use the programming pattern
discussed in Thread-Based Security for Client Applications to cache the subjects each time
after a new initial context is created, and to restore it on the thread as needed. The following
code illustrates the necessary changes to the previous example code.

 java.util.Hashtable env = new Hashtable();
 env.put(Context.PROVIDER_URL, domain1_url); // typical url: t3://
example.com:7001
 env.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");
 env.put(Context.SECURITY_PRINCIPAL, "mydomain1_username");
 env.put(Context.SECURITY_CREDENTIALS, "mydomain1_password");
 javax.naming.InitialContext ctx = new InitialContext(env);

 // thread now implicitly has subject that is valid in domain1
 // retrieve the subject that is implicitly stored in the current thread
 javax.security.auth.Subject domain1Subject =
weblogic.security.Security.getCurrentSubject();
 final Destination reqDest = (Destination) ctx.lookup(reqDestJNDI);
 final ConnectionFactory cf = (ConnectionFactory) ctx.lookup(reqCfJNDI);

 // create JMS consumer to receive from domain1 now
 MessageConsumer consumer = cf.createContext().createConsumer(reqDest);

 java.util.Hashtable env2 = new Hashtable();
 env2.put(Context.PROVIDER_URL, domain2_url); // typical url: t3://
example.com:7001
 env2.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");
 env2.put(Context.SECURITY_PRINCIPAL, "mydomain2_username");
 env2.put(Context.SECURITY_CREDENTIALS, "mydomain2_password");
 javax.naming.InitialContext ctx2 = new InitialContext(env2);
 // thread now implicitly has subject that is valid in domain2

 final Destination resDest = (Destination)
ctx2.lookup(resDestJNDI);
 final ConnectionFactory cf2 = (ConnectionFactory) ctx.lookup(resCfJNDI);
 // we can create JMS producer to send response msg to domain2 now
 MessageProducer producer =
cf2.createConext().createProducer(resDest);

Chapter 15
Understanding Cross-Domain Security

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 10

 do{
 // use the given subject to perform an action:
 try {
 Message msg = (Message)
weblogic.security.Security.runAs(domain1Subject,
 new.java.security.PrivilegedExceptionAction() {
 public java.lang.Object run()throws Exception {
 return consumer.receive(1000);

 }});

 } catch (java.security.PrivilegedActionException e) {
 // handle securty exception
 } catch (Throwable t) {
 // handle other throwables
 }
 // the current thread still has the credentials for domain2
 if (msg) {
 // process msg and generate response message resMsg
 producer.send(resMsg);
 }
 } while (msg != null);

Programming Patterns for Using a Foreign JMS Server Between Two
WebLogic Domains

Note

This section does not apply if you are using a foreign JMS server in combination with
Jakarta EE resource references, messaging bridges, or MDBs. It is a best practice to
use these features when possible because then no special case security handling
code is needed as long as cross-domain security is properly configured between the
domains.

You can use a foreign JMS server to map JMS resources from one WebLogic domain to
another WebLogic domain. When a client or a Jakarta EE application directly looks up the local
JNDI name of a foreign JMS destination mapping, a lookup-by-reference is implicitly
performed. The remote credentials that are configured in a foreign JMS server are
automatically (temporarily) placed on the thread during this lookup by reference, and the
thread will resume the local subject that was on the thread before the lookup, after the lookup
returns to the client. But note that the remote credentials from a foreign JMS server are not
implicitly used for subsequent JMS operations unless you are also using MDBs, messaging
bridges, or resource references. As a result, any subsequent JMS calls to a remote domain
that do not use these features will cause an access denied error if the JMS resources in the
remote domain are protected, even when a foreign JMS configuration contains the correct
credentials.

The following code example shows how to use the JMSDestinationAvailabilityHelper API
to make sure that the correct remote credentials are on the thread when accessing a remote
JMS resources using a foreign JMS server without also using a Jakarta EE resource reference,
MDB, or messaging bridge. For more information about using the

Chapter 15
Understanding Cross-Domain Security

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 10

JMSDestinationAvailabilityHelper, see Advanced Programming with Distributed
Destinations Using the JMS Destination Availability Helper API

Hashtable h = new Hashtable();
h.put(Context.INITIAL_CONTEXT_FACTORY,"weblogic.jndi.WLInitialContextFactory")
;
h.put(Context.PROVIDER_URL, url);
h.put(Context.SECURITY_PRINCIPAL, user);
h.put(Context.SECURITY_CREDENTIALS, password);
RegistrationHandle handle =
JMSDestinationAvailabilityHelper.getInstance().register(h, destJNDI, new
MyDAHelperListener());
final Context ctx = new InitialContext(h);
final Destination queue = (Destination) ctx.lookup(destJNDI);
final ConnectionFactory cf= (ConnectionFactory) ctx.lookup(cfJNDI);
handle.runAs(
 new PrivilegedExceptionAction(){
 public Object run()throws Exception{
 JMSContext context = cf.createContext();
 for(int i=0; i<msgcount ; i++){
 String msg= text + i;
 context.createProducer().send(queue,msg);
 }
 context.close();
 return null;
 }
 }
);
 ctx.close();
 handle.unregister();
 }
 private class MyDAHelperListener implements DestinationAvailabilityListener
{
 public void onDestinationsAvailable(String destJNDIName,
List<DestinationDetail> list) {
 // no op for this particular example
 }
 public void onDestinationsUnavailable(String destJNDIName,
List<DestinationDetail> list){
 // no op for this particular example
 }
 public void onFailure(String destJNDIName, Exception exception) {
 // no op for this particular example

 }
}

Chapter 15
Understanding Cross-Domain Security

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 10

16
WebLogic JMS C API

Understand the requirements, design principles, security considerations and implementation
guidelines need to use the WebLogic JMS C API to create C clients that can access WebLogic
JMS applications and resources.

What Is the WebLogic JMS C API?
The WebLogic JMS C API is an application program interface that enables you to create C
client applications that can access WebLogic JMS applications and resources.

The C client application then uses the Java Native Interface (JNI), described at http://
docs.oracle.com/javase/8/docs/technotes/guides/jni/index.html, to access the client-
side Java JMS classes. See Figure 16-1.

For this release, the WebLogic JMS C API adheres to the JMS Version 1.1 specification to
promote the porting of Java JMS 1.1 code. See the JMS C API Reference for Oracle WebLogic
Server.

Figure 16-1 WebLogic JMS C API Client Application Environment

System Requirements
Understand the system requirements needed to use WebLogic JMS C API in your
environment.

• A list of supported operating systems for the WebLogic JMS C API is available from the
Oracle Fusion Middleware Supported System Configurations page. See Supported
Configurations at What's New in Oracle WebLogic Server.

• A supported JVM for your operating system.

• An ANSI C compiler for your operating system.

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 6

http://docs.oracle.com/javase/8/docs/technotes/guides/jni/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/jni/index.html

• One of the following WebLogic clients to connect your C client applications to your JMS
applications:

– The WebLogic Thin T3 Client jar (wlthint3client.jar). See Developing a WebLogic
Thin T3 Client in Developing Standalone Clients for Oracle WebLogic Server.

– The WebLogic Install client (weblogic.jar file). See WebLogic Install Client in
Developing Standalone Clients for Oracle WebLogic Server.

Design Principles
Understand the design principles for porting and developing applications for the WebLogic
JMS C API.

Java Objects Map to Handles
The WebLogic JMS C API is handle-based to promote modular code implementation. This
means that in your application you implement Java objects as handles in C code. The details
of how a JMS object is implemented is hidden inside a handle. However, unlike in Java, when
you are done with a handle, you must explicitly free it by calling the corresponding Close or
Destroy methods. See Memory Allocation and Garbage Collection.

Thread Utilization
The handles returned from the WebLogic JMS C API are as thread—safe as their Java
counterparts. For example:

• jakarta.jms.Session objects are not thread-safe, and the corresponding WebLogic JMS
C API handle, JmsSession, is not thread safe.

• java.jms.Connection objects are thread-safe, and the corresponding WebLogic JMS C
API handle, JmsConnection, is thread safe.

As long as concurrency control is managed by the C client application, all objects returned by
the WebLogic JMS C API can be used in any thread.

Exception Handling

Note

The WebLogic JMS C API uses integer return codes.

Exceptions in the WebLogic JMS C API are local to a thread of execution. The WebLogic JMS
C API has the following exception types:

• JavaThrowable represents the class java.lang.Throwable.

• JavaException represents the class java.lang.Exception.

• JmsException represents the class jakarta.jms.JMSException. All standard subclasses of
JMSException are determined by bits in the type descriptor of the exception. The type
descriptor is returned with a call to JmsGetLastException.

Chapter 16
Design Principles

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 6

Type Conversions
When you interoperate between Java code and C code, typically one of the main tasks is
converting a C type to a Java type. For example, a short type is a two-byte entity in Java as
well as in C. The following type conversions that require special handling:

Integer (int)
Integer (int) converts to JMS32I (4-byte signed value).

Long (long)
Long (long) converts to JMS64I (8-byte signed value).

Character (char)
Character (char) converts to short (2-byte Java character).

String
String converts to JmsString.

Java strings are arrays of 2 -byte characters. In C, strings are generally arrays of 1-byte UTF-8
encoded characters. Pure ASCII strings fit into the UTF-8 specification. For more information
about UTF-8 string, see http://www.unicode.org. It is inconvenient for C programmers to
translate all strings into the 2-byte Java encoding. The JmsString structure allows C clients to
use native strings or Java strings, depending on the requirements of the application.

JmsString supports two kinds of strings:

• Native C string (CSTRING)

• JavaString (UNISTRING)

A union of the UNISTRING and CSTRING called uniOrC has a character pointer called string that
can be used for a NULL terminated UTF-8 encoded C string. The uniOrC union provides a
structure called uniString, which contains a void pointer for the string data and an integer
length (bytes).

When the stringType element of JmsString is used as input, you should set it to CSTRING or
UNISTRING, depending on the type of string input. The corresponding data field contains the
string used as input.

The UNISTRING encoding encodes every 2– bytes as a single Java character. The 2-byte
sequence is big-endian. Unicode calls this encoding UTF-16BE (as opposed to UTF-16LE,
which is a 2-byte sequence that is little-endian). The CSTRING encoding expects a UTF-8
encoded string.

When the stringType element of JmsString is used as output, the caller has the option to let
the API allocate enough space for output using malloc, or you can supply the space and have
the system copy the returned string into the provided bytes. If the appropriate field in the union
(either string or data) is NULL, then the API allocates enough space for the output using
malloc. It is the callers responsibility to free this allocated space using free when the memory
is no longer in use. If the appropriate field in the union (string or data) is not NULL, then the
allocatedSize field of JmsString must contain the number of bytes available to be written.

Chapter 16
Design Principles

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 6

http://www.unicode.org

If there is not enough space in the string to contain the entire output, then allocatedSize sets
to the amount of space needed and the API called returns JMS_NEED_SPACE. The appropriate
field in the JmsString (either string or data) contains as much data as could be stored up to the
allocatedSize bytes. In this case, the NULL character may or may not have been written at
the end of the C string data returned. Example:

For example, to allocate 100 bytes for the string output from a text message, you would set the
data pointer and the allocatedSize field to 100. The JmsMessageGetTextMessage API returns
JMS_NEED_SPACE with allocatedSize set to 200. Call realloc on the original string to reset the
data pointer and call the function again. Now the call succeeds, and you are able to extract the
string from the message handle. Alternatively, you can free the original buffer and allocate a
new buffer of the correct size.

Memory Allocation and Garbage Collection
All resources that you allocate must also be disposed of it properly. In Java, garbage collection
cleans up all objects that are no longer referenced. However, in C, all objects must be explicitly
cleaned up. All WebLogic JMS C API handles given to the user must be explicitly destroyed.
Notice that some handles have a verb that ends in Close while others end in Destroy. This
convention distinguishes between Java objects that have a close method and those that do
not. For example:

• The jakarta.jms.Session object has a close method so the WebLogic JMS C API has a
JmsSessionClose function.

• The jakarta.jms.ConnectionFactory object does not have a close method so the
WebLogic JMS C API has a JmsConnectionFactoryDestroy function.

Note

A handle that has been closed or destroyed should never be referenced again.

Closing Connections
In Java JMS, closing a connection implicitly closes all subordinate sessions, producers, and
consumers. In the WebLogic JMS C API, closing a connection does not close any subordinate
sessions, producers, or consumers. After a connection is closed, all subordinate handles are
no longer available and need to be explicitly closed.

Helper Functions
The WebLogic JMS C API provides some helper functions that do not exist in WebLogic JMS.
These helpers are explained fully in the JMS C API Reference for Oracle WebLogic Server.
For example:

JmsMessageGetSubclass operates on a JmsMessage handle and returns an integer
corresponding to the subclass of the message. In JMS, this could be accomplished using
instanceof.

Security Considerations
The WebLogic JMS C API supports WebLogic compatibility realm security mode based on a
username and password.

Chapter 16
Security Considerations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 6

The username and password must be passed to the initial context in the SECURITY_PRINCIPAL
and SECURITY_CREDENTIALS fields of the hash table used to create the InitialContext object.

Implementation Guidelines
Understand the limitations when you implement the WebLogic JMS C API.

• It does not support WebLogic Server JMS extensions, including XML messages.

• It does not support JMS Object messages.

• It creates an error log if an error is detected in the client. This error log is named
ULOG.mmddyy (month/day/year). This log file is fully internationalized using the NLSPATH,
LOCALE, and LANG environment variables of the client.

• Users who want to translate the message catalog can use the gencat utility provided on
Windows or the gencat utility of the host platform. If the generated catalog file is placed
according to the NLSPATH, LOCALE, and LANG variables, then the translated catalog will be
used when writing messages to the log file.

• You can set the following environment variables in the client environment:

– JMSDEBUG: Provides verbose debugging output from the client.

– JMSJVMOPTS: Provides extra arguments to the JVM loaded by the client.

– ULOGPFX: Configures the pathname and file prefix where the error log file is placed.

Client Packaging Requirements
You will need to include the JMS C API library and other files when you package the C
application.

Include the following files along with a C application executable:

• A supported JVM for your operating system.

• If WebLogic Server is not installed on the machine that will run the application: the
WebLogic JMS client jar(s) – usually the wlthint3client.jar. See Developing a WebLogic
Thin T3 Client in Developing Standalone Clients for Oracle WebLogic Server.

• If the client executable dynamically links its JMS C library, include the JMS C API library
specific to the platform on which your application will run. JMS C API dynamic libraries can
be copied from your WebLogic Server install at:

– server/native/aix/ppc/libjmsc.so

– server/native/aix/ppc64/libjmsc.so

– server/native/hpux11/IPF64/libjmsc.so

– server/native/linux/i686/libjmsc.so

– server/native/linux/ia64/libjmsc.so

– server/native/linux/s390x/libjmsc.so

– server/native/linux/x86_64/libjmsc.so

– server/native/solaris/sparc/libjmsc.so

– server/native/solaris/sparc64/libjmsc.so

– server/native/solaris/x64/libjmsc.so

Chapter 16
Implementation Guidelines

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 6

– server/native/solaris/x86/libjmsc.so

– server/native/win/32/jmsc.dll

– server/native/win/64/jmsc.dll

– server/native/win/x64/jmsc.dll

Workarounds for Client Failure Thread Detach Issue
A C program that uses the JMS C client library may fail when its implicitly embedded JVM fails.

The JMS client failure could be related to a known, intermittent race-condition that occurs only
with certain JVM products. The likelihood of failure can change based on the JVM version and
patch level, operating system, and hardware combination. Specifically, the JMS C-Client library
implicitly attaches C-threads to the JVM, but fails to detach them when it is done with them.
The suggested workarounds are as follows:

• Add code in the client to detach the JVM from any C thread that exits and that has
previously called into the JMS C-API.

• Do not allow a C thread that has previously called into the JMS C-API to exit before the
entire process exits.

The sample Java JNI code shown in Example 16-1 describes how to detach the thread from
the JVM.

Example 16-1 Sample Java JNI Code

#include <jni.h>

...

JavaVM *jvmList[JVM_LIST_SIZE];
jsize retSize = -1;
jint retVal = JNI_GetCreatedJavaVMs(jvmList, JVM_LIST_SIZE, &retSize);
if ((retVal != 0) || (retSize < 1)) {
 printf('ERROR: got %d/%d on JNI_getCreatedJavaVMs\n', retVal, retSize);
 return;
}
printf('INFO: got %d/%d on JNI_getCreatedJavaVMs\n', retVal, retSize);
/* The following line assumes that there's exactly one JVM: */
(*(jvmList[0]))->DetachCurrentThread(jvmList[0]);

If a program is not directly making JNI calls already, it may be necessary to add compiler and
linker parameters for access to the Java JNI libraries. For example, in MicroSoft Visual C++, do
the following:

• Add -I$(JAVA_HOME)/include and -I$(JAVA_HOME)/include/win32 to the compile

• Add $(JAVA_HOME)/lib/jvm.lib to the link

Chapter 16
Workarounds for Client Failure Thread Detach Issue

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 6

A
FAQs: Integrating Remote JMS Providers

The Jakarta EE standards for JMS (messaging), JTA (transaction), and JNDI (naming) work
together to provide reliable Java-to-Java messaging between different host machines and even
different vendors. Oracle WebLogic Server provides a variety of tools that leverage these APIs
to help integrate remote JMS providers into a local application.

Understanding JMS and JNDI Terminology
Q. What is a remote JMS provider?

A. A remote JMS provider is a JMS server that is hosted outside a local stand alone WebLogic
server or outside WebLogic server cluster. The remote JMS server can be a WebLogic or a
non-WebLogic (foreign) JMS server.

Q. What is JNDI?

A. Java Naming and Directory Interface (JNDI) is a Jakarta EE lookup service that maps
names to services and resources. JNDI provides a directory of advertised resources that exist
on a particular stand alone (non-clustered) WebLogic server or within a WebLogic server
cluster. Examples of these resources include JMS connection factories, JMS destinations,
JDBC (database) data sources, and application EJBs.

A client connecting to WebLogic Server in a WebLogic cluster can transparently reference any
JNDI advertised service or resource hosted on any WebLogic Server within the cluster. The
client doesn't require explicit knowledge of which particular WebLogic Server in the cluster
hosts a desired resource.

Q. What is a JMS connection factory?

A. A JMS connection factory is a named entity resource stored in JNDI. Applications, message
driven beans (MDBs), and messaging bridges lookup a JMS connection factory in JNDI and
use it to create JMS connections. JMS connections are used in turn to create JMS sessions,
producers, and consumers that can send or receive messages.

Q. What is a JMS connection-id?

A. JMS connection-IDs are used to name JMS client connections. Durable subscribers require
named connections, otherwise connections are typically unnamed. Note that within a clustered
set of servers or stand alone server, only one JMS client connection may use a particular
named connection at a time. An attempt to create new connection with the same name as an
existing connection will fail.

Q. What is the difference between a JMS topic and a JMS queue?

A. JMS queues deliver a message to one consumer, while JMS topics deliver a copy of each
message to each consumer.

Q. What is a topic subscription?

A. A topic subscription can be thought of as an internal queue of messages waiting to be
delivered to a particular subscriber. This internal queue accumulates copies of each message
published to the topic after the subscription was created. Conversely, it does not accumulate

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-1 of A-11

messages that were sent before the subscription was created. Subscriptions are not sharable,
only one subscriber may subscribe to a particular subscription at a time.

Q. What is a non-durable topic subscriber?

A. A non durable subscriber creates unnamed subscriptions that exist only for the life of the
JMS client. Messages in a non durable subscription are never persisted—even when the
message's publisher specifies a persistent quality of service (QOS). Shutting down a JMS
server terminates all non durable subscriptions.

Q. What is a durable subscriber?

A. A durable subscriber creates named subscriptions that continue to exist even after the
durable subscriber exits or the server reboots. A durable subscriber connects to its
subscription by specifying the topic-name, connection-ID, and subscriber-ID. Together, the
connection-id and subscriber-id uniquely name the subscriber's subscription within a cluster. A
copy of each persistent message published to a topic is persisted to each of the topic's durable
subscriptions. In the event of a server failure and restart, durable subscriptions and their
unconsumed persistent messages are recovered.

Understanding Transactions
Q. What is a transaction?

A. A transaction is a set of distinct application operations that must be treated as an atomic
unit. To maintain consistency, all operations in a transaction must either all succeed or all fail.
See Introducing Transactions in Developing JTA Applications for Oracle WebLogic Server.

Q. Why are transactions important for integration?

A. Integration applications often use transactions to ensure data consistency. For example, to
ensure that a message is forwarded exactly-once, a single transaction is often used to
encompass the two operations of receiving the message from its source destination and
sending the message to the target destination. Transactions are also often used to ensure
atomicity of updating a database and performing a messaging operation.

Q. What is a JTA/XA/global transaction?

A. In Jakarta EE, the terms JTA transaction, XA transaction, user transaction, and global
transaction are often used interchangeably to refer to a single global transaction. This type of
transaction can include operations on multiple different XA capable resources and different
resource types. A JTA transaction is always associated with the current thread, and can be
passed from server to server as one application calls another. A common example of an XA
transaction is one that includes both a WebLogic JMS operation and a JDBC (database)
operation.

Q. What is a local transaction?

A. A JMS local transaction is a transaction in which only a single resource or service can
participate. A JMS local transaction is associated with a particular JMS session where the
destinations of a single vendor participate. Unlike XA transactions, a database operation can
not participate in a JMS local transaction.

Q. How does JMS provide local transactions?

A. Local transactions are enabled by a JMS specific API called transacted sessions. For
vendors other than WebLogic JMS, the scope of a transacted session is typically limited to a
single JMS server. In WebLogic JMS, multiple JMS operations on multiple destinations within
an entire cluster can participate in a single transacted session's transaction. In other words, it

Appendix A
Understanding Transactions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-2 of A-11

is scoped to a WebLogic cluster and no remote JMS provider to the JMS session's cluster can
participate in a transaction.

Q. Are JMS local transactions useful for integration purposes?

A. Local transactions are generally not useful for integration purposes because they are limited
in scope to a single resource, typically a messaging or database server.

Q. What is Automatic Transaction Enlistment?

A. Operations on resources such as database servers or messaging servers participate in a
Jakarta EE JTA transaction provided that:

• The resource is XA transaction capable

• The resource was enlisted with the current transaction

• The client library used to access the resource is transaction aware (XA enabled).

Automatic participation of operations on an XA capable resource in a transaction is technically
referred to as automatic enlistment.

• WebLogic clients using XA enabled WebLogic APIs automatically enlist operation in the
current thread's JTA transaction. Examples of XA enabled WebLogic clients include
WebLogic JMS XA enabled (or user transaction enabled) connection factories, and JDBC
connection pool data sources that are global transaction enabled.

• Foreign (non-WebLogic) JMS clients do not automatically enlist in the current JTA
transaction. These clients must either go through an extra step of programmatically
enlisting in the current transaction, or use WebLogic provided features that wrap the
foreign JMS client and automatically enlist when the foreign JMS client is accessed via
wrapper APIs.

JMS features that provide automatic enlistment for foreign vendors are:

• Message-Driven EJBs

• JMS resource-reference pools

• Messaging Bridges

To determine if a non-WebLogic vendor's JMS connection factory is XA capable, check the
vendor documentation. Remember, support for transacted sessions (local transactions) does
not imply support for global/XA transactions.

How to Integrate with a Remote Provider
Q. What does a JMS client do to communicate with a remote JMS provider?

A. To communicate with any JMS provider, a JMS client must perform the following steps:

1. Look up a JMS connection factory object and a JMS destination object using JNDI

2. Create a JMS connection using the connection factory object

3. Create message consumers or producers using the JMS connection and JMS destination
objects.

Q. What information do I need to set up communications with a remote JMS provider?

A. You will need the following information to set up communications with a remote JMS
provider:

• The destination type: Whether the remote JMS destination is a queue or a topic.

Appendix A
How to Integrate with a Remote Provider

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-3 of A-11

• The JNDI name of the remote JMS destination.

• For durable topic subscribers: The connection-id and subscriber-id names that uniquely
identify them. Message Driven EJBs provide default values for these values based on the
EJB name.

• For non-WebLogic remote JMS providers

– Initial Context Factory Class Name: The java class name of the remote JMS Provider's
JNDI lookup service.

– The file location of the java jars containing the remote JMS provider's JMS client and
JNDI client libraries. Ensure that these jars are specified in the local JVM's classpath.

• The URL of the remote provider's JNDI service. For WebLogic servers, the URL is usually
in the form t3://hostaddress:port. If you are tunneling over HTTP, begin the URL with
http rather than t3. No URL is required for server application code that accesses a
WebLogic JMS Server that resides on the same WebLogic Server or WebLogic cluster as
the application.

• The JNDI name of the remote provider's JMS connection factory. This connection factory
must exist on the remote provider, not the local provider.

If the JMS application requires transactions, the connection factory must be XA capable.
WebLogic documentation refers to XA capable factories as user transactions enabled.

By default, WebLogic servers automatically provide three non-configurable connection
factories:

– weblogic.jms.ConnectionFactory: A non-XA capable factory.

– weblogic.jms.XAConnectionFactory: An XA-capable factory

– weblogic.jms.MessageDrivenBeanConnectionFactory: An XA-capable factory for
message-driven EJBs.

Additional WebLogic JMS connection factories must be explicitly configured.

Q. What if a foreign JMS provider JNDI service has limited functionality?

A. The preferred method for locating JMS provider connection factories and destinations is to
use a standard Jakarta EE JNDI lookup. Occasionally a non-WebLogic JMS provider's JNDI
service is hard to use or unreliable. The solution is to create a startup class or load-on-start
servlet that runs on a WebLogic server that does the following:

• Uses the foreign provider's proprietary (non-JNDI) APIs to locate connection factories and
JMS destinations.

• Registers the JMS destinations and JMS connection factories in WebLogic JNDI.

Q. How can I pool JMS resources?

A. Remote and local JMS resources, such as client connections and sessions, are often
pooled to improve performance. Message— driven EJBs automatically pool their internal JMS
consumers. JMS consumers and producers accessed through resource-references are also
automatically pooled.

Q. Which tools are available for integrating with remote JMS providers?

A. The following table summarizes the tools available for integrating with remote JMS
providers:

Appendix A
How to Integrate with a Remote Provider

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-4 of A-11

Method Automatic Enlistment JMS Resource Pooling

Direct use of the remote
provider's JMS client

Yes for a WebLogic server
provider. Other providers must
perform enlistment
programmatically.

No. Can be done programmatically.

Messaging Bridge Yes N/A

Foreign JMS Server Definition No. To get automatic enlistment,
use in conjunction with a JMS
resource reference or MDB.

No. To get resource pooling, use in
conjunction with a JMS resource
reference or MDB.

JMS Resource Reference Yes Yes

Message Driven EJBs Yes Yes

SAF Client N/A N/A

SAF Yes N/A

Best Practices When Integrating with Remote Providers
Q. How do I receive messages from a remote a JMS provider from within an EJB or Servlet?

A. Use a message driven EJB. Synchronous receives are not recommended because they idle
a server side thread while the receiver blocks waiting for a message. See Using Messaging
Beans.

Q. How do I send messages to a remote JMS provider from within an EJB or Servlet?

A. Use a resource reference. It provides pooling and automatic enlistment. See Using EJB/
Servlet JMS Resource References. In limited cases where wrappers are not sufficient, you can
write your own pooling code.

If the target destination is remote, then consider adding a local destination and messaging
bridge to implement a store-and-forward high availability design. See Using a Messaging
Bridge.

Another best practice is to use foreign JMS server definitions. Foreign JMS server definitions
allow an application's JMS resources to be administratively changed and avoid the problem of
hard coding URLs into application code. In addition, foreign JMS server definitions are required
to enable resource references to reference remote JMS providers. See Using Foreign JMS
Server Definitions.

Q. How do I communicate with remote JMS providers from a client?

A. If the destination is not provided by WebLogic Server, and you to include operations on the
destination in a global transaction, use a server proxy to encapsulate JMS operations on the
foreign vendor in an EJB. Applications running on WebLogic Server have facilities to enlist
non-WebLogic JMS providers that are transaction (XA) capable with the current transaction.

If you need store-and-forward capability, consider sending to local destinations and using
messaging bridges to forward the message to the foreign destination. See:

• Using a Messaging Bridge

• Using WebLogic Store-and-Forward

• Using WebLogic JMS SAF Client

Appendix A
Best Practices When Integrating with Remote Providers

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-5 of A-11

Another option is to simply use the remote vendor's JNDI and JMS API directly or configuring
foreign JMS providers to avoid hard-coding references to them. You must add the foreign
provider's class libraries to the client's class-path.

Q. How can I tune WebLogic JMS interoperability features?

A. See Tuning WebLogic Server EJBs, Tuning WebLogic Message Bridge, and Tuning
WebLogic JMS Store-and-Forward in Tuning Performance of Oracle WebLogic Server.

Using Foreign JMS Server Definitions
Q. What are Foreign JMS Server Definitions?

A. Foreign JMS server definitions are an administratively configured symbolic link between a
JNDI object in a remote JNDI directory, such as a JMS connection factory or destination object,
and a JNDI name in the JNDI name space for a stand-alone WebLogic Server or a WebLogic
cluster. They can be configured using the standard JMX MBean APIs, or programmatically
using scripting. See Simplified Access to Foreign JMS Providers.

Q. When is it best to use a Foreign JMS Server Definition?

A. For this release, a Foreign JMS Server definition conveniently moves JMS JNDI parameters
into one central place. You can share one definition between EJBs, servlets, and messaging
bridges. You can change a definition without recompiling or changing deployment descriptors.
They are especially useful for:

• Any message driven EJB (MDB) where it is desirable to administer standard JMS
communication properties via configuration rather than hard code them into the
application's EJB deployment descriptors. This applies even if the MDB's source
destination isn't remote.

• Any MDB that has a destination remote to the cluster. This simplifies deployment
descriptor configuration and enhances administrative control.

• Any EJB or servlet that sends or receives from a remote destination.

• Enabling resource references to refer to remote JMS providers. See Using EJB/Servlet
JMS Resource References.

Using EJB/Servlet JMS Resource References
Q. What are JMS resource references?

A. Resource references are specified by servlet and EJB application developers and packaged
with an application. They are easy-to-use and provide a level of indirection that lets
applications reference JNDI names defined in an EJB descriptor rather than hard coding JNDI
names directly into application source code.

JMS resource-references provide two additional features:

• Automatic pooling of JMS resources when those resources are closed by the application.

• Automatic enlistment of JMS resources with the current transaction, even for non-
WebLogic JMS providers.

Inside an EJB or servlet application code, use a JMS resource references by including
resource-ref elements in the deployment descriptors and then use a JNDI context to look them
up using the syntax java:comp/env/jms/<reference name>.

Appendix A
Using Foreign JMS Server Definitions

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-6 of A-11

Resource references provide no functionality outside of application code, and therefore are not
useful for configuring a message driven EJB's source destination or a messaging bridge's
source or target destinations.

For WebLogic documentation on JMS resource-reference pooling, see Enhanced Support for
Using WebLogic JMS with EJBs and Servlets.

Q. What advantages do JMS resource references provide?

A. JMS resource references provide the following advantages:

• They ensure portability of servlet and EJB applications: they can be used to change an
application's JMS resource without recompiling the application's source code.

• They provide automatic pooling of JMS Connection, Session, and MessageProducer
objects.

• They provide automatic transaction enlistment for non-WebLogic JMS providers. This
requires XA support in the JMS provider. If resource references are not used, then enlisting
a non-WebLogic JMS provider with the current transaction requires extra programmatic
steps.

Q. How do I use resource references with foreign JMS providers?

A. To enable resource references to reference remote JMS providers, they must be used in
conjunction with a foreign JMS definition. This is because resources references do not provide
a place to specify a URL or initial context factory. See Using Foreign JMS Server Definitions.

Q. How do I use resource references with non-transactional messaging?

A. For non-transactional cases, do not use a global transaction (XA) capable connection
factory. This will affect messaging performance. If you do, the resource reference will
automatically begin and commit an internal transaction for each messaging operation. See
Understanding Transactions.

Using WebLogic Store-and-Forward
Q. What is the WebLogic Store-and-Forward Service?

A. The WebLogic Store-and-Forward (SAF) Service enables WebLogic Server to deliver
messages reliably between applications that are distributed across WebLogic Server
instances. For example, with the SAF service, an application that runs on or connects to a local
WebLogic Server instance can reliably send messages to a destination that resides on a
remote server. If the destination is not available at the moment the messages are sent, either
because of network problems or system failures, then the messages are saved on a local
server instance, and are forwarded to the remote destination when it becomes available. See
Understanding the Store-and-Forward Service in Administering the Store-and-Forward Service
for Oracle WebLogic Server.

Q. When should I use the WebLogic Store-and-Forward Service?

A. The WebLogic Store-and-Forward (SAF) Service should be used when forwarding JMS
messages between WebLogic Server 9.0 or later domains. The SAF service can deliver
messages:

• Between two stand-alone server instances

• Between server instances in a cluster

Across two clusters in a domain

• Across separate domains

Appendix A
Using WebLogic Store-and-Forward

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-7 of A-11

Q. When can't I use WebLogic Store-and-Forward?

A. You can't use the WebLogic Store-and-Forward service in the following situations:

• Receiving from a remote destination—use a message driven EJB or implement a client
consumer directly

• Sending messages to a local destination—send directly to the local destination

• Forwarding messages to prior releases of WebLogic Server. See Using a Messaging
Bridge

• Interoperating with third-party JMS products (for example, MQSeries) See Using a
Messaging Bridge.

• When using temporary destinations with the JMSReplyTo field to return a response to a
request

• Environment with low tolerance for message latency. SAF increases latency and may
lower throughput

Using WebLogic JMS SAF Client
Q. What is the WebLogic JMS SAF Client?

A. The JMS SAF Client feature extends the JMS store-and-forward service introduced in
WebLogic Server 9.0 to standalone JMS clients. Now JMS clients can reliably send messages
to server-side JMS destinations, even when the client cannot reach a destination (for example,
due to a temporary network connection failure). While disconnected from the server, messages
sent by a JMS SAF client are stored locally on the client file system and are forwarded to
server-side JMS destinations when the client reconnects. See Reliably Sending Messages
Using the JMS SAF Client.

Q. When should I use the WebLogic JMS SAF Client?

A. Use when forwarding JMS messages to WebLogic Server 9.0 or later domains.

Q. What are the limitations of using the JMS SAF Client?

A. See Limitations of Using the JMS SAF Client.

Using a Messaging Bridge
Q. What is a Messaging bridge?

A. Messaging bridges are administratively configured services that run on a WebLogic server.
They automatically forward messages from a configured source JMS destination to a
configured target JMS destination. These destinations can be on different servers than the
bridge and can even be foreign (non-WebLogic) destinations. Each bridge destination is
configured using the four common properties of a remote provider:

• The initial context factory

• The connection URL

• The connection factory JNDI name

• The destination JNDI name

Messaging bridges can be configured to use transactions to ensure exactly-once message
forwarding from any XA capable (global transaction capable) JMS provider to another.

Appendix A
Using WebLogic JMS SAF Client

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-8 of A-11

Q. When should I use a messaging bridge?

A. Typically, messaging bridges are used to provide store-and-forward high availability design
requirements. A messaging bridge is configured to consume from a sender's local destination
and forward it to the sender's actual target remote destination. This provides high availability
because the sender is still able to send messages to its local destination even when the target
remote destination is unreachable. When a remote destination is not reachable, the local
destination automatically begins to store messages until the bridge is able to forward them to
the target destination when the target becomes available again.

Q. When should I avoid using a messaging bridge?

A. Other methods are preferred in the following situations:

• Receiving from a remote destination :Use a message driven EJB or implement a client
consumer directly.

• Sending messages to a local destination : Send directly to the local destination.

• Environment with low tolerance for message latency. Messaging Bridges increase latency
and may lower throughput. Messaging bridges increase latency for messages as they
introduce an extra destination in the message path and may lower throughput because
they forward messages using a single thread.

• Forward messages between WebLogic 9.0 domains: Use WebLogic Store-and-Forward.
See Using WebLogic Store-and-Forward.

Q. Why are some of my messages not being forwarded?

A. Usually, a messaging bridge should forward all messages. If some messages are not being
forwarded, here are some possible reasons:

• Some messages may have an expiration time, in which case either the JMS provider for
the source or target destination expires the message.

• If you configured the bridge source destination to specify a selector filter, then only the
filtered messages are forwarded.

• A bridge does not directly provide an option to automatically move messages to an error
destination or to automatically delete messages after a limited number of forward attempts.
That said, it is possible that a JMS provider may provide such an option, which could effect
any messages on the bridge source destination. If a redelivery limit option is enabled on
the JMS provider that hosts the bridge source destination, then you may need to
reconfigure the provider to prevent the bridge automatic retry mechanism from causing
messages to exceed the redelivery limit.

Using Messaging Beans
Q. What is a Message Driven EJB (MDB)?

A. Message Driven EJBs are EJB containers that internally use standard JMS APIs to
asynchronously receive messages from local, remote, or foreign JMS destinations and then
call application code to process the messages. MDBs have the following characteristics:

• Automatically connects to a source destination and automatically retries connecting if the
remote destination is inaccessible.

• Support automatic enlistment of the received messages in container managed
transactions, even when the JMS provider is not WebLogic.

• Automatically pool their internal JMS connections, sessions, and consumers.

Appendix A
Using Messaging Beans

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-9 of A-11

• A MDB's source destination, URL, and connection factory are configured in the EJB and
WebLogic descriptors which are packaged as part of an application.

• The messaging processing application logic is contained in a single method callback
onMessage().

• A MDB is an EJB that supports transactions, security, JDBC, and other typical EJB actions.

See Message-Driven EJBs in Developing Jakarta Enterprise Beans Using Deployment
Descriptors.

Q. When should I use a MDB?

A. MDBs are the preferred mechanism for WebLogic Server applications that receive and
process JMS messages.

Q. Do I need to use a Messaging Bridge with a MDB?

A. Configure MDBs to directly consume from their source destination rather than insert a
messaging bridge between them. MDBs automatically retry connecting to their source
destination if the source destination is inaccessible, so there is no need to insert a messaging
bridge in the message path to provide higher availability. Introducing a messaging bridge may
have a performance effect. See Using a Messaging Bridge.

Q. What is the best way to configure a MDB?

A. The following section provides tips for configuring a MDB:

• To configure MDB concurrency and thread pools, use the max-beans-in-free-pool and
dispatch-policy descriptor fields. WebLogic Server may create fewer concurrent
instances than max-beans-in-free-pool depending on the number of available server
threads in the MDB's thread pool.

• Use foreign JMS server definitions when configuring a MDB to consume from a remote
JMS provider. Although WebLogic MDB descriptors can be configured to directly refer to
remote destinations, this information is packaged with the application and is not
dynamically editable. You should configure a foreign JMS server definition and then
configure the MDB to reference the foreign definition instead. Please note that some
documentation refers to foreign JMS server definitions as wrappers. See Using Foreign
JMS Server Definitions.

• Use care when configuring a MDB for container managed transactions. A MDB supports
container managed XA transactions when a MDB's descriptor files have transaction-type
of Container and a trans-attribute of Required and the JMS connection factory is XA
enabled. Failure to follow these steps will result in the MDB being non-transactional. The
default WebLogic Server setting for a MDB connection factory is XA enabled. The MDB
automatically begins a transaction and automatically enlists the received message in the
transaction.

Using AQ JMS
Q. Can I interoperate with AQ JMS?

A. Oracle WebLogic Server applications interoperate with Oracle Streams Advanced Queuing
(AQ) through the JMS API using either WebLogic Server resources (Web Apps, EJBs, MDBs)
or stand alone clients. AQ JMS uses a database connection and stored JMS messages in a
database accessible to an entire WebLogic Server cluster, enabling the use of database
features and tooling for data manipulating and backup.

Use the JMS Foreign Server configuration to interoperate with Oracle Streams Advanced
Queuing (AQ) through the JMS API using either WebLogic Server resources (Web Apps,

Appendix A
Using AQ JMS

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-10 of A-11

EJBs, MDBs) or stand-alone clients. See Interoperating with Oracle AQ JMS in Administering
JMS Resources for Oracle WebLogic Server.

Appendix A
Using AQ JMS

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-11 of A-11

B
How to Look Up a Destination

Learn how to use JNDI and a Create Destination Identifier to look up a message destination.

Note

For information about how to configure JMS resources, see Understanding JMS
Resource Configurationin Administering JMS Resources for Oracle WebLogic Server

Use a JNDI Name
The recommended way to lookup any type of destination is to use JNDI. You can look up a
destination by establishing a JNDI context (context) and executing one of the following
commands, for PTP or Pub/Sub messaging, respectively:

Queue queue = (Queue) context.lookup(Dest_name);

Topic topic = (Topic) context.lookup(Dest_name);

The Dest_name argument specifies the destination's JNDI name defined during configuration.
See Using a JNDI Name and Examples of Syntax Used to Look Up Destinations.

Use a Create Destination Identifier
Create Destination Identifier (CDI) is a less common method to lookup a destination or
member of a distributed destination that does not use JNDI. CDI uses one of the following
QueueSession or TopicSession methods to reference a queue or topic, respectively:

public Queue createQueue(
 String queueName
) throws JMSException

public Topic createTopic(
 String topicName
) throws JMSException

The syntax of the queueName and topicName strings is not defined by the JMS specification. For
WebLogic JMS, the syntax is described here:

• Default WebLogic CDI Syntax

• Custom WebLogic CDI Syntax

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-1 of B-5

http://docs.oracle.com/javaee/6/api/javax/jms/Session.html#createQueue(java.lang.String)
http://docs.oracle.com/javaee/6/api/javax/jms/Session.html#createTopic(java.lang.String)

Note

The createQueue() and createTopic() methods do not create destinations
dynamically; they create only references to destinations that already exist. For
information about creating destinations dynamically, see Using JMS Module Helper to
Manage Applications.

Default WebLogic CDI Syntax
Default WebLogic CDI Syntax is a string which contains a JMS server name, module, and the
destination configuration name. See Examples of Syntax Used to Look Up Destinations.

Custom WebLogic CDI Syntax
In addition to the default CDI syntax, WebLogic JMS provides the
JMSCreateDestinationIdentifier as an additional configuration parameter of a Destination or
Uniform Distributed Destination. This enables you to configure a unique reference name when
there is more than one queue or topic defined (in one or more modules) with the same value
for the default CDI syntax. In other words, it is useful for differentiating two different
destinations in two different modules that have the same default CDI name. See Examples of
Syntax Used to Look Up Destinations

This name must be unique within the scope of the JMS server to which this destination is
targeted. However, it does not need to be unique within the scope of the entire JMS module.
For example, two queues can have the same CDI name as long as those queues are targeted
to different JMS servers.

Note

Because, this name must be unique within the scope of a JMS server, verify whether
other JMS modules may contain destination names that conflict with this name. It is
the responsibility of the deployer to resolve the destination names targeted to JMS
servers.

Server Affinity When Looking Up Destinations
The createTopic() and createQueue() methods also allow a "./Destination_Name" syntax to
indicate server affinity when looking up destinations. This will locate destinations that are
locally deployed in the same JVM as the JMS connection's connection factory host. If the name
is not on the local JVM an exception is thrown, even though the same name might be deployed
on a different JVM.

An application might use this convention to avoid hard-coding the server name when using the
createTopic() and createQueue() methods so that the code can be reused on different JMS
servers without requiring any changes.

Examples of Syntax Used to Look Up Destinations
The following sections provide examples of the syntax used to reference a destination or a
member of a distributed destination:

Appendix B
Examples of Syntax Used to Look Up Destinations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-2 of B-5

Non distributed Destinations
The following section provides examples of syntax used to reference regular destinations
(destinations that are not distributed):

JNDI Syntax for Non distributed Destinations
Most applications use JNDI instead of CDI to lookup destinations. The following section
provides examples of the syntax used to reference non distributed destinations using JNDI:

• When a JNDI name is configured, a string defined by:

Dest_JNDI_Name

• When a local JNDI name is configured:

Dest_Local_JNDI_Name

Note

The local JNDI name only works when the JNDI context host is on the same server as
the non distributed destinations. The JNDI context host is not necessarily the same as
the JMS connection host.

CDI Syntax for Non distributed destinations
This section provides examples of the syntax used to reference a non-distributed destination
using thecreateQueue or createTopicmethod using CDI:

• When using the default CDI, a string defined by:

JMS_Server_Name/JMS_Module_Name!Destination_Name

• When using the default CDI in an interop module, a string defined by:

JMS_Server_Name/interop-jms!Destination_Name

• When a custom CDI is configured, a string defined by:

JMS_Server_Name/CDI_Name

Note

When using server affinity (replacing JMS_Server_Name with "."), the search is
restricted to the JMS connection host rather than the entire cluster.

To reference destination in releases earlier than WebLogic 9.0 Server , use a string
defined by JMS_Server_Name!Destination_Name (for example, myjmsserver!
mydestination).

Uniform Distributed Destinations
The following section provides examples of the syntax used to reference Uniform Distributed
Destinations (UDDs):

Appendix B
Examples of Syntax Used to Look Up Destinations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-3 of B-5

JNDI Syntax for UDDs
Most applications use JNDI instead of CDI to lookup destinations. The following section
provides examples how to reference an individual member or logical UDD using JNDI

• For a logical UDD, a string defined by:

udd-jndi-name

• For an individual member of a UDD hosted on a set of individually configured JMS servers,
a string defined by:

jms-server-name@udd-jndi-name

• For an individual member of a UDD hosted on a cluster targeted JMS server, a string
defined by:

jms-server-name@wl-server-name@udd-jndi-name

Where the wl-server-name in this case is the configured name of a WebLogic Server in a
configured cluster, or is the dynamic-server server-name-prefix appended with a server
number in a dynamic cluster.

CDI Syntax for UDDs

Note

You can use the helper methods weblogic.jms.extensions.JMSModuleHelper class
uddMemberName and uddMemberJNDIName APIs to help create UDD CDI names in the
correct syntax.

This section provides an example of how to reference a UDD member using createQueue or
createTopic using CDI:

• For an individual member when CDI is not configured, a string defined by:

jms-server-name/module-name!jms-server-name@udd-name

• For an individual member when CDI is configured, a string defined by:

jms-server-name/cdi-name

• A logical UDD is referenced using a string defined by: module-name!udd-name.

Note

When jms-server-name is replaced with ".", the API returns the first locally available/
started member of the UDQ. A member is considered to be locally available if the JMS
client connection is hosted by the same WebLogic Server that currently hosts the
member.

Appendix B
Examples of Syntax Used to Look Up Destinations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-4 of B-5

Weighted Distributed Destinations

Note

Weighted distributed destinations are deprecated in Weblogic Server 10.3.4.0. Oracle
recommends using Uniform Distributed Destinations.

A weighted distributed destination is a set of individually configured regular destinations that
has its own JNDI and CDI name. The logical name of the WDD represents the entire set, and
is configured as a JNDI name. There is no option for accessing the logical for a WDD using
CDI.

JNDI Syntax for WDDs
The following section provides examples how to reference an individual member or logical
WDD using JNDI:

• For a logical WDD, a string defined by:

wdd-jndi-name

• For an individual member logical WDD, see JNDI Syntax for Non distributed Destinations.

CDI Syntax for WDDs
This section provides an example of how to reference a WDD member using thecreateQueue
or createTopicmethod with and without using CDI:

• There is no option for accessing a WDD logical name using the createQueue() or
createTopic() methods. A logical WDD must always be referenced using a string defined
by the JNDI name of the member. Sometimes it is useful to look up the local individual
member using the "." server affinity syntax for non distributed destinations.

• For an individual member when CDI is configured on the member, see CDI Syntax for Non
distributed destinations.

Appendix B
Examples of Syntax Used to Look Up Destinations

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-5 of B-5

C
Advanced Programming with Distributed
Destinations Using the JMS Destination
Availability Helper API

Learn how to design a distributed application or a container that offers high availability (HA),
scalability, and flexibility when using JMS distributed destinations in a clustered environment.

Note

This guide includes advanced information for experienced JMS developers. Oracle
recommends that you use Message Driven Beans (MDBs) when interacting with
Distributed Destinations. The MDB container automatically creates and closes internal
consumers across all members of a Distributed Destination as needed. It also handles
security, threading, pooling, application life cycle, automatic reconnect, and transaction
enlistment. If you cannot use MDBs, then you can use simpler workarounds, such as
periodically restarting consumers to rebalance consumers across a distributed
destination, or if messaging ordering and performance are not a concern, then
enabling the distributed queue forwarding option.

Introduction
A distributed destination (DD) is a group of JMS physical destinations (a group of queues or a
group of topics) that is accessed as a single logical destination. Messages are load balanced
across members, and clients can failover between member destinations.

Distributed destination users that don't leverage MDBs may encounter problems with
consumer applications. These include:

• Failing to ensure that all DD members are serviced by consumers.

• Unprocessed messages accumulating on DD members that have no consumers.

• DD Consumers not automatically rebalancing in the event of a JMS server migration,
WebLogic Server restart, or any other event that results in DD member changes.

To address these use cases, WebLogic Server provides the JMS Destination Availability
Helper APIs and advanced topic features in Developing Advanced Pub/Sub Applications.

Controlling DD Producer Load Balancing
Before discussing consumer load balancing, it is helpful to first explore producer load
balancing basics and best practices.

Basic JMS
A JMS program sets up message sends in three stages:

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-1 of C-13

1. Clients create a JMS connection into WebLogic using a JMS connection factory.

2. Clients use the connection to create JMS sessions and senders.

3. Clients use the senders to send messages.

In WebLogic JMS, the WebLogic server that the client is connected to is called the client's
connection host, and messages always route from the sender, through its connection host, and
then on to a destination that's in the same cluster as the connection host. Connections stay
pinned to their connection host for the life of the connection.

A WebLogic connection factory can be targeted at one or more WebLogic servers. If a client is
running on the same WebLogic server where a connection factory is targeted, then the factory
always returns a connection with a connection host that is the same server as the client (the
connection is local). On the other hand, if a client is not running on a WebLogic server that is
included in its connection factory targets, the factory automatically load balances among the
targets and returns a connection to one of them.

When working with a distributed destination, senders should always send to the JNDI name of
the DQ or PDT (its "logical name") instead of sending to the JNDI names of the individual
members, as this enables automatic load balancing behavior.

Senders to Distributed Queues (DQs) and Partitioned Distributed Topics
(PDTs)

The default behavior for a sender to a DQ or PDT is: If there are members that run on the
sender's connection host, all sent messages go to one of these local members, otherwise
messages move in a round-robin among all members.

To force messages from the same DQ or PDT sender to move in a round-robin among all
active members even when local members reside on the sender's connection host, use a
custom connection factory with Server Affinity set to false and Load Balance set to true.

Senders to Replicated Distributed Topics (RDTs)
Senders to RDTs always load balance once and then pin to a particular member for all
messages - this member becomes the "sender host". After a message arrives on the sender
host, the message is automatically replicated to every subscription on every RDT member.

If you want to control the initial load balance decision for the sender host so that it is not biased
towards being the same as its connection host, then use a connection factory with Server
Affinity configured to false (default is true), and Load Balance configured to true (the
default).

Using the JMS Destination Availability Helper API
The following sections provide information on how to use the
JMSDestinationAvailabilityHelper APIs:

Overview
When a consumer is created using the client jakarta.jms API and a DD logical JNDI name is
specified, the consumer is load balanced to an active DD member and remains pinned to that
member over its lifetime. If new members become active after all consumers were created,
then the new members have no consumers.

Appendix C
Using the JMS Destination Availability Helper API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-2 of C-13

The JMSDestinationAvailabilityHelper APIs provide a way to get notifications when
destinations become available or unavailable. These notifications can help ensure that an
application creates consumers on all DD members even when there are unavailable members
at the time the application is initialized. The same mechanism can also be used to detect
availability of other types of destinations (not just WebLogic distributed destinations, but also
regular destinations and foreign vendor destinations).

Applications register a notification listener with the helper by specifying JNDI context
parameters and the JNDI name of a destination. For DDs, the helper notifies listeners when
members become available and unavailable, as they are undeployed, added as a new
member, migrated, shut down, or restarted.

Note that MDBs in WebLogic Server internally use this same mechanism for both local MDBs
(deployed in the same cluster as a DD) and remote MDBs (deployed in a cluster that is
separate from the cluster that hosts the DD). MDBs provide an out-of-the-box solution that
achieves the same dynamic adaptability to DD topology changes that the
JMSDestinationAvailabilityHelper APIs provide.

General Flow
Applications that use the JMSDestinationAvailabilityHelper APIs should follow these
general steps:

1. Implement the weblogic.jms.extensions.DestinationAvailableListener interface to
provide behavior as per step 3 below.

2. Register interest with the helper by specifying JNDI context properties (typically just a URL
and context factory), the JNDI name of the destination, and a listener instance. Do not
specify a URL if the client is running in the same cluster as the DD.

import java.util.Hashtable;
import javax.naming.Context;
import weblogic.jms.extensions.JMSDestinationAvailabilityHelper;

Hashtable contextProps = new Hashtable();
contextProps.put(javax.naming.Context.PROVIDER_URL, myURL);
contextProps.put(Context.INITIAL_CONTEXT_FACTORY, "weblogic.jndi.WLInitialContextFact
ory");
JMSDestinationAvailabilityHelper dah = JMSDestinationAvailabilityHelper.getInstance()
;

RegistrationHandler rh = dah.register(
 contextProperties,
 destinationJNDIName,
 myDestinationAvailableListener
)

3. Handle listener callbacks. Callbacks are single-threaded for each listener instance, so no
two callbacks occur concurrently.

a. onDestinationsAvailable(): Typically the first notification. Implementations of this
callback usually react by creating zero or more consumers on each given destination,
and if this fails, periodically retrying.

b. onDestinationsUnavailable(): This callback is usually used to destroy existing
consumers on the destination.

c. onFailure(): This callback is usually used simply to log a failure. The helper continues
to retry internally and make subsequent callbacks, but administrators may need to see
the failure. The helper makes a best effort to just call theonFailure()method once for
the same repeated failures.

Appendix C
Using the JMS Destination Availability Helper API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-3 of C-13

4. When you are done, unregister interest in a destination by calling the
rh.unregister()method.

Handling the weblogic.jms.extensions.DestinationDetail
As described previously, an onDestinationsAvailable() notification indicates that a stand
alone destination, foreign destination, or distributed destination member has become available.
The notification consists of a list of DestinationDetail instances, where key information is
obtained by calling thegetDestinationType(), getJNDIName(), isLocalWLSServer(), and
isLocalCluster() on each Detail.

The destination detail helps determine the actions that the caller should take. If the destination
is of type DD_QUEUE, REPLICATED_DT, or PARTITIONED_DT then the detail's getJNDIName()
method returns the JNDI name of a specific DD member and the caller may or may not want to
deploy instances of the application consumer on the member. If the destination is of type
PHYSICAL or FOREIGN, then the application treats the destination as a regular destination.

Especially when working with DDs, it is highly recommended that you take advantage of the
co-location flags in DestinationDetail. You can determine the co-location nature of a
destination by calling isLocalWLSServer(), and isLocalCluster(). See Best Practice for
Local Server Consumers.

For more information about APIs and their methods, see DestinationDetail in Java API
Reference for Oracle WebLogic Server.

Best Practices for Consumer Containers
The following sections provide best practice guidelines for consumer containers:

When to Register and Unregister
1. Register with JMSDestinationAvailabilityHelper at application deployment time. Do not

fail the deployment if the helper calls the onFailure() callback on your listener (assume it
could be an intermittent failure).

2. Unregister with JMSDestinationAvailabilityHelper at application undeployment time.

URL Handling
1. If the client is running on the same server or same cluster as the destination, then don't

specify a URL when registering with the helper or creating a JNDI context. This ensures
that the helper creates a local context.

2. Consider logging a single warning if isLocalCluster() or isLocalServer() returns true,
but a URL was specified (as no URL is needed in this case).

Failure Handling
1. Log the errors reported by onFailure() notifications, so that the application developer can

have a chance to correct possible configuration/application errors. Avoid repeatedly
logging the same exception. The helper continues to retry internally and make subsequent
callbacks on success or different types of failures, but administrators may need to see the
failures. The error may be caused by an application or administrative error such as an
incorrect URL, invalid security information, or non-existent destination. It might also be
caused by temporary unavailability of the JNDI context host or the destination.

Appendix C
Using the JMS Destination Availability Helper API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-4 of C-13

2. When a JMS call throws an exception, or when a JMS connection exception listener
reports a connection failure, close the connection. Once all resources have been cleaned
up, then periodically attempt to re-initialize all resources. Re-initialization generally involves
creating a context, performing JNDI lookups, and then creating a connection, session, and
a consumer.

3. Avoid immediately retrying after a failure. Instead periodically retry every few seconds to
avoid overloading the server.

JNDI Context Handling
1. In general, avoid creating multiple JNDI initial context instances to the same server or

cluster.

Note

It may be necessary to use additional context instances to work around some
security problems, especially in inter-domain scenarios.

2. Call close() on a context on undeploy to prevent a memory leak.

3. Call close() on a context and re create on any failure (including a lookup failure).

JMS Connection Handling
1. For JMS connections, always register a standard JMS connection "exception listener".

2. On an onException(), close the connection and periodically retry JNDI lookups, recreating
a JMS connection, and setting up consumers in another thread.

3. Close connections on undeploy to prevent memory leaks.

4. Instead of sharing a WebLogic Server connection among multiple sessions, consider
creating one connection per session. With WebLogic Server, multiple connections allow for
better load balancing. There is no performance penalty when working with WebLogic
Server, but this might have unexpected overhead with foreign vendors, because some
foreign vendors create a TCP/IP socket or a similarly expensive resource for each
connection.

Interoperability Guidelines
The JMSDestinationAvailabilityHelper in Java API Reference for Oracle WebLogic Server
includes details about usage and behavior of the various methods available, including details
about interoperability guidelines discussed in the following sections:

API Availability
The public JMS Destination Availability Helper API is available on AS11gR1PS2 (WebLogic
Server version 10.3.3) and later clients and servers.

Foreign Contexts
The context properties that are specified when registering a notification listener with the DA
Helper can resolve to any valid JNDI context, including contexts from foreign vendors and
older versions of WebLogic Server.

Appendix C
Using the JMS Destination Availability Helper API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-5 of C-13

For foreign (non-WebLogic) contexts, the foreign JNDI vendor's classes must be in the current
classpath and the Context.INITIAL_CONTEXT_FACTORY property must reference the foreign
vendor JNDI context factory class name.

Destination Type Support
The JMSDestinationAvailabilityHelper API works with any type of destination that can be
registered in a JNDI context, including non-distributed destinations and foreign vendor
destinations. However, unavailable notifications are only generated for DD members and
certain DestinationDetail fields apply only to DD members. Unavailable notifications do not
apply to foreign destinations.

Unavailable Notifications
Unavailable notifications only apply to DD type destinations (DQ_QUEUE, PARTITIONED_DT,
REPLICATED_DT).

Interoperating with WebLogic Server 9.0 and Earlier Distributed Queues
When interoperating with a WebLogic Server 9.0 or later DDs, the DA Helper generates
notifications for each individual member of the DD, when working with versions prior to 9.0, the
helper only generates a single DestinationDetail notification which contains the logical JNDI
name for the DD destination and getDestinationType() returns PHYSICAL.

WebLogic Server 9.0 and earlier DDs are usually treated as a regular destination, and
consequently have the same limitations as outlined in Application Design Limitations When
Using Replicated Distributed Topics.

Interoperating with WebLogic Server 10.3.4.0 and Earlier Distributed Topics
In releases prior to WebLogic Server 10.3.4, there are no features that enable unrestricted
(non-exclusive) client IDs or shared subscriptions.

Note

For information about how to configure unrestricted client-ids and shared
subscriptions, see Configure an Unrestricted ClientID and Configure Shared
Subscriptions in Administering JMS Resources for Oracle WebLogic Server.

To determine if a destination is a WebLogic 10.3.4.0 topic or later, ensure that the destination
type is PHYSICAL_TOPIC, REPLICATED_DT or PARTITIONED_DT and not FOREIGN_TOPIC and that
isAdvancedTopicSupported() returns true. A topic prior to WebLogic Server 10.3.4.0:

• Will never be a PARTITIONED_DT.

• PHYSICAL_TOPICs are usually treated as regular topics and are limited to one consumer per
subscription.

Automatic attempts to durably subscribe to individual members of WebLogic 10.3.4.0 and
earlier DT when a logical DT name is specified are not recommended. Oracle recommends
that your applications do not support this option and log an error informing users that need
durable subscriptions on a of WebLogic 10.3.4.0 and earlier DT to directly specify the JNDI
name of a member instead of specifying the logical DT name.

Appendix C
Using the JMS Destination Availability Helper API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-6 of C-13

When subscribing non-durably to a distributed topic prior to WebLogic Server 10.3.4.0, Oracle
recommends creating a consumer on any single member JNDI name, or on the logical DR
name, and ignoring all other notifications (one subscriber gets all messages sent to the DT and
there can be only one consumer thread on the subscription).

DestinationDetail Fields
The behavior of some destination detail fields changes based on the type of destination, the
JMS vendor, and, when working WebLogic JMS, the WebLogic Server version. See
JMSDestinationAvailabilityHelper in Java API Reference for Oracle WebLogic Server.

Security Considerations
The following sections provide information about implementing security using the Jakarta EE
and WebLogic Server security models:

WebLogic Server Security Model
WebLogic Server credential propagation is thread based in most cases. The current thread
credentials are established by specifying them when creating a JNDI context or application
descriptor. These credentials are automatically propagated along with any RMI-based calls
between JVMs including WebLogic JMS calls.

Passing Credentials Between Threads
The subject associated with a JNDI context is lost if the context instance is passed to and used
in a different thread, which can cause security problems in some multi domain application
scenarios. The following sections provide methods on passing credentials:

Using the Same Thread
If possible, you can avoid the issue by using the same thread to create the context, perform all
JMS and JNDI operations, and close the context.

Pass as Anonymous User
Use an anonymous subject if the JMS destination and JNDI resources are not secured. In
particular, when interoperating among multiple WebLogic domains, it is usually simplest to
force all calls to use an anonymous subject if the JMS destination and JNDI resources are not
secured. Non-anonymous credentials are typically only valid for a particular domain, leading to
security exceptions if an attempt is made to use them for a different domain.

Cache and Reuse a Subject from the Initial Context
The following code provides an example of how to cache a subject and associate it with
another thread using an anonymous user.

import java.security.PrivilegedExceptionAction;
import java.security.PrivilegedActionException;

import javax.security.auth.Subject;
import weblogic.security.Security;

 class MyClass {

 // don't make the cached subject public

Appendix C
Using the JMS Destination Availability Helper API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-7 of C-13

 private Subject subject;

 MyClass() {
 subject = Security.getCurrentSubject();
 }

 void doSomething() {

 // run some operation as the subject on the original thread
 try {
 Security.runAs(subject,new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 // do something;
 return null; // or return some Object
 }});
 } catch (PrivilegedActionException e) {
 // handle exception
 }
 }
}

Managing Cross-Domain Security
When using the JMSDestinationAvailabilityHelper API in communication between different
WebLogic domains, refer the Cross-Domain Security Guidelines.

Authentication of Users
The following sections provide methods to provide the username and password when
accessing JMS, which authenticates an application user, and also authorizes an application for
JNDI and JMS operations.

Specifying Credentials for a JNDI Context
In order to access JMS resources, an application must have access to the JNDI provider. The
credentials can be supplied when a application code creates an initial context to the JNDI
provider. The thread that establishes the initial context carries the subject, and is therefore
used for all sub sequential operations. When an application is running on a WebLogic Server
and no server URL and security credentials are provided while creating an initial context, the
thread continues to have the same credentials that were on the thread before the initial context
was created. When the thread that creates an initial context closes the context, the thread will
resume the original security credentials that are on the thread before creating the context.

Specifying Credentials for a JMS Connection
The ConnectionFactory.createConnection() call optionally supports a username and
password. The credentials that are provided at the connection creation time do not have any
affect with respect to security in JMS operations on the connection that is created (This is a
WebLogic JMS specific behavior for WebLogic JMS Java clients, with the exception of
the .NET client). The credentials are only be used to check, whether or not the user is a valid
user in the domain where the connection is created.

Using Credentials of a Foreign JMS Server JNDI Context
Configure the Foreign JMS Server instance with JNDI Properties to gain access to the JNDI
provider. The JNDI properties contain the options for setting the security principal and
credentials.

Appendix C
Using the JMS Destination Availability Helper API

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-8 of C-13

Using Credentials of a Foreign JMS Server Connection
The user name and password that can be specified when configuring a Foreign Connection
Factory mapping are ignored unless you use an EJB or Servlet resource reference to look up
the JMS connection factory. See Improving Performance Through Pooling.

Securing Destinations
WebLogic JMS provides the ability to specify ACLs for destinations. This enables the
destination to be secured and only authorized users are allowed to perform operations on that
destination. See Java Messaging Service (JMS) Resources in Securing Resources Using
Roles and Policies for Oracle WebLogic Server.

Securing Wire Data
When an application must protect JMS data passed on a wire, configure the network to use
SSL. See Configuring SSL in Administering Security for Oracle WebLogic Server.

Transaction Considerations
WebLogic Server JTA transaction propagation is thread-based. The thread that starts a
transaction should be the one that commits or rolls back the transaction. If there is a WebLogic
JTA transaction on the current thread when you perform send or receive operations on a
WebLogic JMS destination, then the JMS resources are automatically enlisted with the
WebLogic transaction manager, and there is no need to perform your own enlistment.

You only need to do explicit "manual" enlistment when there is a need for WebLogic JMS
resources to participate in a foreign or third-party transaction, or there's a need for a non-
WebLogic destination to participate in a transaction. Enlisting with a foreign transaction
manager (TM) is not directly supported on WebLogic JMS stand-alone clients. EJB and Servlet
resource references enable automatic enlistment of non-WebLogic JMS vendors with the
WebLogic TM.

Applications should not use transacted sessions if JMS operations are required to participate in
a global XA— transaction. Global transactions require use of XA-based connection factories,
while local transactions use non-XA based JMS connection factories.

Strategies for Uniform Distributed Queue Consumers
A consumer application can be either running in the same JVM of a WebLogic Server or not,
which are called a "server side consumer" and "stand-alone consumer" respectively.

While a JMS UDQ consumer is deployed on a WebLogic Server or cluster, the application can
either run on the same cluster/server as the UDQ, or on a different cluster. We call these two
different application configurations the local case and the remote case respectively.

Appendix C
Strategies for Uniform Distributed Queue Consumers

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-9 of C-13

Note

Oracle recommends using MDBs to implement advanced message distribution modes
using replicated and partitioned distributed topics. For detailed information about
advanced publish/subscribe application design using MDBs, see Developing
Advanced Pub/Sub Applications and Configuring and Deploying MDBs Using
Distributed Topics in Developing Message-Driven Beans for Oracle WebLogic Server.

For application that cannot use MDBs in their application architecture for some reason, the
following guidelines should be followed:

General Strategies
In order to for an application to receive all the messages that are sent to a UDQ, the
application must make sure that it creates one consumer on each member of the UDQ using
the member JNDI name. This requires that applications know the topology of the domains and
UDQ configuration, and this is where JMSDestinationAvailabilityHelper can help.

The general strategy is that each deployment instance of a particular application should
register with JMSDestinationAvailabilityHelper. The listener will receive notifications about
member availability.

• Upon receipt of an onDestinationsAvailable() notification, the application gets a list of
DestinationDetail instances for all available members, and then it must create one or
more consumer instances using the member JNDI name for each member in the list. For
remote consumers, each instance of the application should create a consumer on each
member of the UDQ. For local consumers, the application should create a consumer on
the local UDQ member only. See Best Practice for Local Server Consumers.

• Upon receipt of an onDestinationsUnavailable() notification, the application gets a list of
DestinationDetail instances for all destinations that becomes unavailable since the last
notification. Then for each member destination in the list, the application must find the
consumer previously created for the member destination and close it.

Best Practice for Local Server Consumers
An application should be deployed on the same server, group of servers, or cluster that host
the UDQ whenever possible. Under this configuration, for best performance, the application
should receive messages only from the local members; local members can be determined
using the DestinationDetail isLocalWLSCluster() call if the servers are in a cluster or the
isLocalWLSServer() call for individual servers or individual cluster members. This approach
yields high performance because all messaging is local (it avoids transferring messages over
network calls), and still ensures that all members are serviced by consumers.

In some use cases, the local server optimization network savings does not outweigh the
benefit of distributing message processing for unbalanced queue loads across all JVMs in a
cluster. This is especially a concern when message backlogs develop unevenly throughout the
cluster, and message processing is expensive. In these use cases, the optimization should be
avoided in favor of the general strategy model for remote consumers.

Appendix C
Strategies for Uniform Distributed Queue Consumers

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-10 of C-13

Strategies for Subscribers on Uniform Distributed Topics

Note

Oracle recommends using MDBs to implement advanced message distribution modes
using replicated and partitioned distributed topics. For detailed information about
advanced publish/subscribe application design using MDBs, see Developing
Advanced Pub/Sub Applications and Configuring and Deploying MDBs Using
Distributed Topics in Developing Message-Driven Beans for Oracle WebLogic Server.

For all clustered and distributed applications that process messages from a UDT, Oracle
recommends using product 10.3.4 or later topics in combination with the following settings:

• Set the Client ID Policy to Unrestricted. See Configure an Unrestricted ClientID in
Administering JMS Resources for Oracle WebLogic Server.

• Set Subscription Sharing Policy to SHARABLE. See Configure Shared Subscriptions in
Administering JMS Resources for Oracle WebLogic Server.

• Use the JMSDestinationAvailabilityHelper API to get the notification of member
availability

• Always create subscribers on the member destinations.

WebLogic JMS has two types of Uniform distributed topics:

• A replicated distributed topic (RDT) has forwarding capability among its members. As a
result, each member of a RDT has a copy of all messages that are sent to the RDT.

• A partitioned distributed topic (PDT) does not have forwarding capability among its
members. As a result, each member of a PDT has its own copy of all messages that were
sent to this particular member. This is a new type of DT introduced in WebLogic Server
10.3.4.0. See Configuring Partitioned Distributed Topics in Administering JMS Resources
for Oracle WebLogic Server.

The following subsections discuss configuration requirements and programming patterns when
using RDTs and PDTs:

One Copy Per Instance
The one copy per instance pattern ensures that each instance gets a copy of each message
published to a topic. For example, if each instance is a JVM, then this pattern ensures that
each JVM gets a copy of each message sent to the source topic. The following sections
provide information on developing design patterns based on one copy per instance:

General Pattern Design Strategy for One Copy Per Instance
In order for the instances of a distributed application/container to receive messages that are
sent to a DT in a one-copy-per-instance manner, each instance must do the following:

1. Choose a base ClientID that will be shared by all connections and a durable subscription
name that will be shared by all durable subscribers. The subscription name should
uniquely identify your application instance. For example, if each instance runs on a
differently named WebLogic Server JVM, then the subscription name for each instance
could be based on the WebLogic Server name.

Appendix C
Strategies for Subscribers on Uniform Distributed Topics

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-11 of C-13

2. Create JMS connections and sessions according to standard JMS specifications. The
connection's ClientID should be set to the base ClientID appended by an identifier that is
unique for this instance, For example, use the WebLogic Server name or the third-party
application server that the application or container is running on. The ClientIDPolicy
should be set to Unrestricted.

3. Set the SubscriptionSharingPolicy to Sharable.

4. Register with the JMSDestinationAvailabilityHelper for membership availability
notifications, specifying the JNDI name of the DT.

5. Set an Exception listener.

6. Upon receipt of an onDestinationsAvailable() notification, create a subscriber on each
newly available destination in the list. If the DT is a replicated DT, the subscriber must use
a "NOT JMS_WL_DDForwarded" selector or prefix "(NOT JMS_WL_DDForwarded) AND" to the
existing application provided selector.

7. Upon receipt of an onDestinationsUnavailable() notification, close the corresponding
consumer().

Best Practice for Local Server Consumers using One Copy Per Instance
An application should be deployed on the same server, group of servers, or cluster that hosts
the UDT whenever possible. Under this configuration, the application needs follow the same
steps as outlined in General Pattern Design Strategy for One Copy Per Instance except that it
creates consumers only on local members. You can use the
JMSDestinationAvailabilityHelper.DestinationDetail.isLocalWLSServer() call to
determine if a member is local.

One Copy Per Application
The one-copy-per application pattern ensures that an application receives one copy of each
message sent to a topic, even when the application is clustered across multiple JVMs. For
example: If messages "A", "B", and "C" are sent to a topic, the messages are processed once
by the application, instead of getting one-copy-per application instance.

The following sections provide information about developing design patterns based on one-
copy-per application:

General Pattern Design Strategy for One Copy Per Application
In order for the instances of a distributed application/container to receive messages that are
sent to a DT in a one-copy-per-application manner, each instance must do the following:

1. Choose a base ClientID for all connections and the durable subscription name for all
durable subscribers. The subscription name should uniquely identify your application
instance. For example, if each instance runs on a differently named WebLogic Server JVM,
the subscription name for each instance could be based on the WebLogic Server name
then..

2. Create JMS connections and sessions according to standard JMS specifications. The
connection's ClientID should be set to the base ClientID. The ClientIDPolicy should
set to Unrestricted.

3. Set the SubscriptionSharingPolicy to Sharable.

4. Register with the JMSDestinationAvailabilityHelper for membership availability
notifications, specifying the JNDI name of the DT.

Appendix C
Strategies for Subscribers on Uniform Distributed Topics

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-12 of C-13

5. Set an Exception listener.

6. Upon receipt of an onDestinationsAvailable() notification, create a subscriber on each
newly available destination in the list. If the DT is a replicated DT, the subscriber needs to
use a "NOT JMS_WL_DDForwarded" selector or prefix "(NOT JMS_WL_DDForwarded) AND" to
the existing application provided selector.

Best Practice for Local Server Consumers Using One Copy Per Application
An application should be deployed on the same server, group of servers, or cluster that hosts
the UDT whenever possible. Under this configuration, the application must follow the same
step outlined in General Pattern Design Strategy for One Copy Per Application except that it
creates consumers only on local members. You can use the
JMSDestinationAvailabilityHelper.DestinationDetail.isLocalWLSServer() call to
determine if a member is local.

Appendix C
Strategies for Subscribers on Uniform Distributed Topics

Developing JMS Applications for Oracle WebLogic Server
G31651-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-13 of C-13

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Samples and Tutorials for the JMS Developer
	New and Changed WebLogic Server Features

	Conventions

	1 Understanding WebLogic JMS
	Overview of the Java Message Service and WebLogic JMS
	What Is the Java Message Service?
	Implementation of Java Specifications
	WebLogic JMS Architecture

	Understanding the Messaging Models
	Point-to-Point Messaging
	Publish/Subscribe Messaging
	Message Persistence

	Understanding the JMS API
	ConnectionFactory
	Using the Default Connection Factories
	Configuring and Deploying Connection Factories
	The ConnectionFactory Class

	JMSContext
	Connection
	Session
	WebLogic JMS Session Guidelines
	Session Subclasses
	Non-Transacted Sessions
	Transacted Sessions

	Destination
	Distributed Destinations

	MessageProducer and MessageConsumer
	Messages
	Message Header Fields
	Message Property Fields
	Message Body

	ServerSessionPoolFactory
	ServerSessionPool
	ServerSession
	ConnectionConsumer

	Value-Added Public JMS API Extensions
	WebLogic Server Value-Added JMS Features

	2 Best Practices for Application Design
	Message Design
	Serializing Application Objects
	Serializing Strings
	Server-side Serialization
	Selection

	Message Compression
	Message Properties and Message Header Fields
	Message Ordering
	Topics Vs. Queues
	Asynchronous Vs. Synchronous Consumers
	Persistent Vs. Non Persistent Messages
	Deferring Acknowledges and Commits
	Using AUTO_ACK for Non Durable Subscribers
	Alternative Qualities of Service, Multicast and No-Acknowledge
	Using MULTICAST_NO_ACKNOWLEDGE
	Using NO_ACKNOWLEDGE

	Avoid Multi threading
	Using the JMSXUserID Property
	Performance and Tuning

	3 Enhanced Support for Using WebLogic JMS with EJBs and Servlets
	Enabling WebLogic JMS Wrappers
	Declaring a JMSContext Object Using @Inject Annotation
	Specifying a Lookup Name in JMSContext Injection
	Determining the Authentication Type for JMSContext Injection

	Declaring JMS Objects as Resources In the EJB or Servlet Deployment Descriptors
	Declaring a Wrapped JMS Factory using Deployment Descriptors
	Declaring JMS Destinations using Deployment Descriptors
	Declaring JMS Destinations Using the jms-destination Element
	Declaring JMS Destinations Using the resource-env-ref Element

	Referencing a Packaged JMS Application Module In Deployment Descriptor Files
	Referencing Application Modules in a weblogic-application.xml Descriptor
	Referencing JMS Resources in a WebLogic Application
	Referencing JMS Resources in a Jakarta EE Application

	Declaring JMS Destinations and Connection Factories Using Annotations
	Injecting Resource Dependency into a Class
	Non-Injected EJB 3.0 Resource Reference Annotations

	Avoid Transactional XA Interfaces

	Disabling Wrapping and Pooling
	What's Happening Under the JMS Wrapper Covers
	Automatically Enlisting Transactions
	Container-Managed Security
	Connection Testing
	Jakarta EE Compliance
	Pooled JMS Connection Objects

	Improving Performance Through Pooling
	Speeding Up JNDI Lookups by Pooling Session Objects
	Speeding Up Object Creation Through Caching
	Enlisting the Proper Transaction Mode

	Simplified Access to Foreign JMS Providers
	Examples of JMS Wrapper Functions
	Examples of JMS Wrapper Functions
	ejb-jar.xml
	weblogic-ejb-jar.xml
	PoolTest.java
	PoolTestHome.java
	PoolTestBean.java

	Sending a JMS Message in a Jakarta EE Container
	Using comp/env

	Dependency Injection
	EJB 3.0 Wrapper Without Injection

	4 Understanding the Simplified API Programming Model
	About JMS 2.0 Simplified API
	New Interfaces in the Simplified JMS API
	JMSContext
	JMSProducer
	JMSConsumer

	New Methods to Simplify Messaging in JMS 2.0
	Method to Extract the Body Directly from a Message
	Method to Receive a Message Body Directly
	Method to Create a Session

	5 Developing a Basic JMS Application
	Importing Required Packages
	Setting Up a JMS Application
	Using a Simplified API to Set Up a JMS Application
	Look Up a Connection Factory in JNDI
	Look Up a Queue or Topic
	Create a JMSContext Object
	Create JMSProducer and JMSConsumer Objects
	Sending and Receiving Messages using the Simplified API

	Using the Classic API to Set Up a JMS Application
	Step 1: Look Up a Connection Factory in JNDI
	Step 2: Create a Connection Using the Connection Factory
	Create a Queue Connection
	Create a Topic Connection

	Step 3: Create a Session Using the Connection
	Create a Session Using the createSession Method
	Create a Queue Session
	Create a Topic Session

	Step 4: Look Up a Destination (Queue or Topic)
	Using a JNDI Name
	Use a Reference

	Step 5: Create Message Producers and Message Consumers
	Create QueueSenders and QueueReceivers
	Create TopicPublishers and TopicSubscribers

	Step 6a: Create the Message Object (Message Producers)
	Step 6b: Optionally Register an Asynchronous Message Listener
	Step 7: Start the Connection

	Example: Setting Up a Point-to-Point JMS Application Using the Classic API
	Example: Setting Up a Publish-Subscribe JMS Application Using the Classic API

	Sending Messages
	Sending Messages Using the Simplified JMS API
	Sending Messages Using the Classic JMS API
	Create a Message Object
	Define a Message
	Send the Message to a Destination Using MessageProducer

	Sending a Message Asynchronously
	Setting JMSProducer and MessageProducer Attributes
	Example: Sending Messages Within a Point-toPoint Application
	Example: Sending Messages Within a Publish/Subscribe Application

	Receiving Messages
	Receive Messages Asynchronously Using the Simplified API
	Receiving Messages Asynchronously using the Classic API
	Asynchronous Message Pipeline
	Configuring a Message Pipeline
	Behavior of Pipelined Messages

	Receive Messages Synchronously Using the Simplified API
	Receiving Messages Synchronously Using the Classic API
	Example: Receiving Messages Synchronously Within a PTP Application
	Example: Receiving Messages Synchronously Within a Pub/Sub Application

	Use Prefetch Mode to Create a Synchronous Message Pipeline
	Recovering Received Messages

	Acknowledging Received Messages
	Releasing Object Resources

	6 Managing Your Applications
	Managing Rolled Back, Recovered, Redelivered, or Expired Messages
	Setting a Redelivery Delay for Messages
	Setting a Redelivery Delay
	Overriding the Redelivery Delay on a Destination

	Setting a Redelivery Limit for Messages
	Ordered Redelivery of Messages
	Required Message Pipeline Setting for the Messaging Bridge and MDBs
	Performance Limitations

	Handling Expired Messages

	Setting Message Delivery Times
	Setting a Delivery Time on Producers
	Setting a Delivery Time on Messages
	Overriding a Delivery Time
	Interaction with the Time-to-Live Value
	Setting a Scheduled Time-to-Deliver Override
	JMS Schedule Interface

	Managing Connections
	Defining a Connection Exception Listener
	Accessing Connection Metadata
	Starting, Stopping, and Closing a Connection

	Managing Sessions
	Defining a Session Exception Listener
	Closing a Session

	Managing Destinations
	Dynamically Creating Destinations
	Dynamically Deleting Destinations
	Required Conditions for Deleting Destinations
	What Happens when a Destination Is Deleted
	Message Timestamps for Troubleshooting Deleted Destinations
	Deleted Destination Statistics

	Using Temporary Destinations
	Creating a Temporary Queue
	Creating a Temporary Topic
	Deleting a Temporary Destination

	Setting Up Durable Subscriptions
	Defining the Persistent Store
	Setting the Client ID Policy
	Defining the Client ID
	Creating a Sharable Subscription Policy
	Creating Subscribers for a Durable Subscription
	Using JMS 2.0 API
	Using JMS 1.1 API

	Best Practice: Always Close Failed JMS ClientIDs
	Deleting Durable Subscriptions
	Modifying Durable Subscriptions
	Managing Durable Subscriptions

	Setting and Browsing Message Header and Property Fields
	Setting Message Header Fields
	Setting Message Property Fields
	Browsing Header and Property Fields

	Filtering Messages
	Defining Message Selectors Using SQL Statements
	Defining XML Message Selectors Using XML Selector Method
	Displaying Message Selectors
	Indexing Topic Subscriber Message Selectors to Optimize Performance

	Sending XML Messages
	WebLogic XML APIs
	Using a String Representation
	Using a DOM Representation

	7 Using JMS Module Helper to Manage Applications
	Configuring JMS System Resources Using JMSModuleHelper
	Configuring JMS Servers and Store-and-Forward Agents
	JMSModuleHelper Sample Code
	Creating a JMS System Resource
	Deleting a JMS System Resource

	Security Considerations for Anonymous Users
	Best Practices When Using JMSModuleHelper

	8 Using Multicasting with WebLogic JMS
	Benefits of Using Multicasting
	Limitations of Using Multicasting
	Using WebLogic Server Unicast
	Configuring Multicasting for WebLogic Server
	Prerequisites for Multicasting
	Step 1: Set Up the JMS Application, Multicast Session and Topic Subscriber
	Step 2: Set Up the Message Listener
	Dynamically Configuring Multicasting Configuration Attributes
	Example: Multicast Time-to-Live

	9 Using Distributed Destinations
	What Is a Distributed Destination?
	Why Use a Distributed Destination
	Creating a Distributed Destination
	Types of Distributed Destinations
	Uniform Distributed Destinations
	Weighted Distributed Destinations

	Using Distributed Destinations
	Using Distributed Queues
	QueueSenders
	QueueReceivers
	QueueBrowsers

	Using Replicated Distributed Topics
	TopicPublishers
	TopicSubscribers
	Deploying Message-Driven Beans on a Distributed Topic

	Using Partitioned Distributed Topics
	Accessing Distributed Destination Members
	Distributed Destination Failover

	Using Message-Driven Beans with Distributed Destinations
	Common Use Cases for Distributed Destinations
	Maximizing Production
	Maximizing Availability
	Using Queues
	Using Topics

	Stuck Messages

	10 Using the Message Unit-of-Order
	What is Message Unit-Of-Order?
	Understanding Message Processing with Unit-of-Order
	Message Processing According to the JMS Specification
	Message Processing with Unit-of-Order
	Message Delivery with Unit-of-Order

	Message Unit-of-Order Case Study
	Joe Orders a Book
	What Happened to Joe's Order
	How Message Unit-of-Order Solves the Problem

	How to Create a Unit-of-Order
	Creating a Unit-of-Order Programmatically
	Unit-of-Order Naming Rules

	Getting the Current Unit-of-Order
	Message Unit-of-Order Advanced Topics
	What Happens When a Message Is Delayed During Processing?
	What Happens When a Filter Makes a Message Undeliverable
	What Happens When Destination Sort Keys Are Used
	Using Unit-of-Order with Distributed Destinations
	Using the Path Service
	Using Hash-Based Routing

	Using Unit-of-Order with Topics
	Unit-of-Order and Distributed Topics
	Unit-of-Order, Topics, and Message Driven Beans

	Using Unit-of-Order with JMS Message Management
	Using Unit-of-Order with WebLogic Store-and-Forward
	Using Unit-of-Order with WebLogic Messaging Bridge

	Limitations of Message Unit-of-Order

	11 Using Unit-of-Work Message Groups
	What Are Unit-of-Work Message Groups?
	Understanding Message Processing with Unit-of-Work
	Basic UOW Terminology
	Rules For Processing UOW Messages
	Message Unit-of-Work Case Study

	How to Create a Unit-of-Work Message Group
	How to Write a Producer to Set UOW Message Properties
	Example UOW Producer Code
	UOW Exceptions

	How to Write a UOW Consumer/Producer For an Intermediate Destination
	Configuring Terminal Destinations
	UOW Message Routing for Terminal Distributed Destinations

	How to Write a UOW Consumer for a Terminal Destination

	Message Unit-of-Work Advanced Topics
	Message Property Handling
	System-Generated Properties
	Final Component Message Properties
	Component Message Heterogeneity
	ReplyTo Message Property

	UOW and Uniform Distributed Destinations
	UOW and Store-and-Forward Destinations

	Limitations of UOW Message Groups

	12 Using Transactions with WebLogic JMS
	Overview of Transactions
	Using JMS Transacted Sessions
	Step 1: Set Up JMS Application, Creating Transacted Session
	Step 2: Perform Desired Operations
	Step 3: Commit or Roll Back the JMS Transacted Session

	Using JTA User Transactions
	Step 1: Set Up JMS Application, Creating Non-Transacted Session
	Step 2: Look Up the User Transaction in JNDI
	Step 3: Start the JTA User Transaction
	Step 4: Perform Desired Operations
	Step 5: Commit or Roll Back the JTA User Transaction

	JTA User Transactions Using Message Driven Beans
	Example: JMS and EJB in a JTA User Transaction
	Step 1 Set Up the JMS Application
	Step 2 Look Up the User Transaction
	Step 3 Start the JTA User Transaction
	Step 4 Perform the Desired Operations
	Step 5 Commit the JTA User Transaction

	Using Cross-Domain Security

	13 Developing Advanced Pub/Sub Applications
	Overview of Advanced High Availability Concepts
	WebLogic Messaging High Availability Features
	Application Design Limitations When Using Replicated Distributed Topics
	Advanced Topic Features

	Advanced Topic Messaging Features for High Availability
	Shared Subscriptions and Client ID Policy
	What is the Subscription Key
	Configuring a Shared Subscription

	How Sharing a Non Durable Subscription Works
	How a Shared Subscription Policy for a Non durable Subscription Is Determined
	How a Non durable Subscription Is Closed

	How Sharing a Durable Subscription Works
	How a Shared Subscription Policy for a Durable Subscription is Determined
	How to Unsubscribe a Durable Subscription
	Considerations When Unsubscribing a Durable Subscriber
	Managing Durable Subscriptions
	Naming Conventions for JMSDurableSubscriberRuntimeMbean

	Design Strategies When Using Topics
	One-Copy-Per-Instance Design Strategy
	One-Copy-Per-Application Design Strategy

	Considerations When Using JMS 2.0 Shared Subscriptions
	Replacing a Replicated Distributed Topic
	Reasons for Replacing a Replicated Distributed Topic
	Important Prerequisites Before Replacing an RDT
	Replacing an RDT with a Standalone Topic
	Replacing an RDT with a PDT

	Best Practices for Distributed Topics

	14 Recovering from a Server Failure
	Automatic JMS Client Failover
	Automatic Reconnect Limitations
	Automatic Failover for JMS Producers
	Sample Producer Code
	Re usable ConnectionFactory Objects
	Re usable Destination Objects
	Reconnected Connection Objects
	Special Cases for Reconnected Connections

	Reconnected Session Objects
	Special Cases for Reconnected Sessions

	Reconnected MessageProducer Objects
	Special Case for Distributed Destinations

	Configuring Automatic Failover for JMS Consumers
	Sample Consumer Client Code
	Configuring Automatic Client Refresh Options
	Common Cases for Reconnected Consumers
	Synchronous Consumers
	Asynchronous Consumers

	Special Cases for Reconnected Consumers
	Consumers of Distributed Destinations
	Message-Driven EJBs
	Consumer Connections with a ClientID for Durable Subscriptions
	Non Durable Subscriptions and Possible Missed Messages
	Duplicate Messages
	Variations Due to Acknowledge Modes
	Reconnecting with Migrated JMS Destinations In a Cluster

	Explicitly Disabling Automatic Failover on JMS Clients
	Programmatically
	Administratively

	Best Practices for JMS Clients Using Automatic Failover
	Always Catch exceptions
	Use Transactions to Group Message Work
	JMS Clients Should Always Call the close() Method

	Manually Migrating JMS Data to a New Server

	15 Understanding WebLogic JMS Security
	Securing WebLogic JMS Resources
	Understanding Thread-Based Security on Clients and Servers
	Thread-Based Security for Server Applications
	Thread-Based Security for Client Applications

	Understanding Object-Based Security
	Enabling Object-Based Security on Clients
	Object-Based Security Limitations on Clients

	Enabling Object-Based Security on Server Applications
	Object-Based Security for Inbound JMS Applications
	Object-Based Security for Outbound JMS Applications

	Understanding Cross-Domain Security
	Cross-Domain Security Guidelines
	Programming Pattern for a Single JMS Client Communicating With Two WebLogic Domains
	Programming Patterns for Using a Foreign JMS Server Between Two WebLogic Domains

	16 WebLogic JMS C API
	What Is the WebLogic JMS C API?
	System Requirements
	Design Principles
	Java Objects Map to Handles
	Thread Utilization
	Exception Handling
	Type Conversions
	Integer (int)
	Long (long)
	Character (char)
	String

	Memory Allocation and Garbage Collection
	Closing Connections
	Helper Functions

	Security Considerations
	Implementation Guidelines
	Client Packaging Requirements
	Workarounds for Client Failure Thread Detach Issue

	A FAQs: Integrating Remote JMS Providers
	Understanding JMS and JNDI Terminology
	Understanding Transactions
	How to Integrate with a Remote Provider
	Best Practices When Integrating with Remote Providers
	Using Foreign JMS Server Definitions
	Using EJB/Servlet JMS Resource References
	Using WebLogic Store-and-Forward
	Using WebLogic JMS SAF Client
	Using a Messaging Bridge
	Using Messaging Beans
	Using AQ JMS

	B How to Look Up a Destination
	Use a JNDI Name
	Use a Create Destination Identifier
	Default WebLogic CDI Syntax
	Custom WebLogic CDI Syntax
	Server Affinity When Looking Up Destinations

	Examples of Syntax Used to Look Up Destinations
	Non distributed Destinations
	JNDI Syntax for Non distributed Destinations
	CDI Syntax for Non distributed destinations

	Uniform Distributed Destinations
	JNDI Syntax for UDDs
	CDI Syntax for UDDs

	Weighted Distributed Destinations
	JNDI Syntax for WDDs
	CDI Syntax for WDDs

	C Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper API
	Introduction
	Controlling DD Producer Load Balancing
	Basic JMS
	Senders to Distributed Queues (DQs) and Partitioned Distributed Topics (PDTs)
	Senders to Replicated Distributed Topics (RDTs)

	Using the JMS Destination Availability Helper API
	Overview
	General Flow
	Handling the weblogic.jms.extensions.DestinationDetail
	Best Practices for Consumer Containers
	When to Register and Unregister
	URL Handling
	Failure Handling
	JNDI Context Handling
	JMS Connection Handling

	Interoperability Guidelines
	API Availability
	Foreign Contexts
	Destination Type Support
	Unavailable Notifications
	Interoperating with WebLogic Server 9.0 and Earlier Distributed Queues
	Interoperating with WebLogic Server 10.3.4.0 and Earlier Distributed Topics
	DestinationDetail Fields

	Security Considerations
	WebLogic Server Security Model
	Passing Credentials Between Threads
	Using the Same Thread
	Pass as Anonymous User
	Cache and Reuse a Subject from the Initial Context

	Managing Cross-Domain Security
	Authentication of Users
	Specifying Credentials for a JNDI Context
	Specifying Credentials for a JMS Connection
	Using Credentials of a Foreign JMS Server JNDI Context
	Using Credentials of a Foreign JMS Server Connection

	Securing Destinations
	Securing Wire Data

	Transaction Considerations

	Strategies for Uniform Distributed Queue Consumers
	General Strategies
	Best Practice for Local Server Consumers

	Strategies for Subscribers on Uniform Distributed Topics
	One Copy Per Instance
	General Pattern Design Strategy for One Copy Per Instance
	Best Practice for Local Server Consumers using One Copy Per Instance

	One Copy Per Application
	General Pattern Design Strategy for One Copy Per Application
	Best Practice for Local Server Consumers Using One Copy Per Application

