Oracle Fusion Middleware

Developing Manageable Applications Using
JMX for Oracle WebLogic Server

15¢ (15.1.1.0.0)
(G31980-01
October 2025

ORACLE"

Oracle Fusion Middleware Developing Manageable Applications Using JMX for Oracle WebLogic Server, 15c
(15.1.1.0.0)

G31980-01
Copyright © 2007, 2025, Oracle and/or its affiliates.
Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience i
Documentation Accessibility i
Diversity and Inclusion i
Related Documentation ii
Conventions ii

1 Introduction

2 Understanding JMX

What Management Services Can You Develop with IMX? 1
Creating Management-Aware Applications 1
When Is It Appropriate to Use JMX? 2
What Management Services Have Oracle Partners Developed? 2
JMX Layers 2
Indirection and Introspection 3
Notifications and Monitor MBeans 4

How JMX Notifications Are Broadcast and Received 4

Active Polling with Monitor MBeans 5

3 Designing Manageable Applications

Benefits of Oracle Best Practices 1
Use Standard MBeans 1
Registering Custom MBeans in the WebLogic Server Runtime Bean Server 2
Registering Custom MBeans in the Domain Runtime MBean Server 2
Use ApplicationLifecycleListener to Register Application MBeans 2
Unregister Application MBeans When Applications Are Undeployed 3
Place Management Logic for EJBs and Servlets in a Delegate Class 3
Use Open MBean Data Types 4
Emit Notifications Only When Necessary 4
Additional Design Considerations 4

Developing Manageable Applications Using JMX for Oracle WebLogic Server
G31980-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of ii

Registering MBeans in the JVM Platform MBean Server
Registering Application MBeans by Using Only JDK Classes
Organizing Managed Objects and Business Objects
Packaging and Accessing Management Classes

Securing Custom MBeans with Roles and Policies

Instrumenting and Registering Custom MBeans

o o1 o1 o b

Developing
G31980-01

Overview of the MBean Development Process
Create and Implement a Management Interface
Modify Business Methods to Push Data
Register the MBean

Package Application and MBean Classes

Using the WebLogic Server JMX Timer Service

o 01 AN P

Overview of the WebLogic Server JMX Timer Service

Creating the Timer Service: Main Steps

Configuring a Timer MBean to Emit Notifications

Creating Date Objects

Example: Generating a Notification Every Five Minutes After 9 AM
Removing Notifications

Accessing Custom MBeans

O A WON PP PP

Accessing Custom MBeans from JConsole
Accessing Custom MBeans from WebLogic Scripting Tool

Manageable Applications Using JMX for Oracle WebLogic Server

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page ii of ii

ORACLE’

Preface

Audience

This document describes how to use JMX to make your applications manageable.

This document is a resource for software developers who develop management services for
Jakarta EE applications. It also contains information that is useful for business analysts and
system architects who are evaluating WebLogic Server or considering the use of JMX for a

particular application.

It is assumed that the reader is familiar with Jakarta EE and general application management
concepts.

The information in this document is relevant during the design and development phases of a
software project. This document does not address production phase administration,
monitoring, or performance tuning topics. For links to WebLogic Server documentation and
resources related to these topics, see Related Documentation.

This document emphasizes a hands-on approach to developing a limited but useful set of IMX
management services. For information on applying JMX to a broader set of management
problems, refer to the JMX specification or other documents listed in Related Documentation.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE
Preface

Related Documentation

The Oracle Technology Network includes a Web site that provides links to books, white papers,
and additional information on JMX: htt p: // www. oracl e. coml t echnet work/ | aval j avase/ t ech/
| avananagenent - 140525. ht m .

WebLogic Server supports JMX 1.4 by leveraging the JMX implementation in the JDK on which
it is running. To view the JMX 1.4 specification, download it from ht t p: / / docs. or acl e. com
j avase/ 8/ docs/ t echnot es/ gui des/ j mx/

To view the IMX Remote API 1.0 specification, download it from http: //| cp. or g/ about Java/
comuni t yprocess/final/jsr160/index.htm.

You can view the API reference for the j avax. nanagenent * packages from: http://
docs. oracl e. con j avase/ 8/ docs/ api / overvi ew summary. htn .

For guidelines on developing other types of management services for WebLogic Server
applications, see the following documents:

e Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
describes WebLogic support for internationalization and localization of log messages and
shows you how to use the templates and tools provided with WebLogic Server to create or
edit message catalogs that are locale-specific.

e Configuring and Using the Diagnostics Framework for Oracle WebLogic Server describes
how system administrators can collect application monitoring data that has not been
exposed through JMX, logging, or other management facilities.

For guidelines on developing and tuning WebLogic Server applications, see Developing
Applications for Oracle WebLogic Server.

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Developing Manageable Applications Using JMX for Oracle WebLogic Server
G31980-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page ii of ii

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://docs.oracle.com/javase/8/docs/technotes/guides/jmx/
http://docs.oracle.com/javase/8/docs/technotes/guides/jmx/
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://docs.oracle.com/javase/8/docs/api/overview-summary.html
http://docs.oracle.com/javase/8/docs/api/overview-summary.html

Introduction

This document describes how to use the Java Management Extensions (JMX) to reduce the
cost of operating and maintaining your applications by building management facilities into your
applications.

The simplest facility is message logging, which reports events within your applications as they
occur and writes messages to a file or other repository. Depending on the criticality of your
application, the complexity of the production environment, and the types of monitoring systems
your organization uses in its operations center, your needs might be better served by building
richer management facilities based on Java Management Extensions (JMX). JMX enables a
generic management system to monitor your application; raise notifications when the
application needs attention; and change the configuration or run-time state of your application
to remedy problems.

Developing Manageable Applications Using JMX for Oracle WebLogic Server
G31980-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 1

Understanding JMX

This chapter provides an overview of Java Management Extensions (JMX), a specification for
monitoring and managing Java applications. JMX enables a generic management system to
monitor your application; raise notifications when the application needs attention; and change
the state of your application to remedy problems. Like SNMP and other management
standards, JMX is a public specification and many vendors of commonly used monitoring
products support it. WebLogic Server uses the Java Management Extensions (JMX) 1.4
implementation that is included in the JDK.

This chapter includes the following sections:

For information about other APIs and utilities that you can use to manage Jakarta EE
applications on WebLogic Server, see Overview of WebLogic Server System Administration in
Understanding Oracle WebLogic Server.

What Management Services Can You Develop with IMX?

When used to monitor and manage applications, JMX typically provides management
applications access to properties in your Java classes that collect management data.

For more information, see Figure 2-1. Often, these class properties are simple counters that
keep track of the resources your application is consuming. JMX can also provide access to
methods in your Java classes that start or stop processes in the application or reset the value
of the class properties. Any class that exposes management data through JMX is called a
managed bean (MBean). Class properties that are exposed through MBeans are called
attributes and methods that are exposed through MBeans are called operations.

Figure 2-1 JMX Provides Access to Management Properties

_@ MBean
t(.{) { simpleCounter
Management IVIX resetCounter()

System

Once you provide this type of access to JMX-enabled management utilities, system
administrators or the operations staff can integrate the data into their overall view of the
system. They can use a JMX management utility to view the current value of an MBean
attribute, or they can set up JIMX monitors to periodically poll the value of your MBean
attributes and emit notifications to the management utility only when the values exceed specific
thresholds.

Creating Management-Aware Applications

Instead of placing all management responsibility on system administrators or the operations
staff, you can create management-aware applications that monitor MBeans and then perform
some automated task.

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 6

ORACLE

Chapter 2
When Is It Appropriate to Use JMX?

For example:

e An application that monitors connection pools and grows or shrinks the pools to meet
demand.

e A portal application that monitors the set of deployed applications. If a new application is
deployed, the portal application automatically displays it as a new portlet.

e An application that listens for deployments of connector modules and then configures itself
to use newly deployed modules.

When Is It Appropriate to Use JMX?

Any critical Jakarta EE application that is a heavy consumer of resources, such as database or
JMS connections or caches, should provide some facility for monitoring the application's
resource consumption.

For these kinds of applications, which might be writing or reading from a database many times
each minute, it is not feasible to use logging facilities to output messages with each write and
read operation. Using JMX for this type of monitoring enables you to write management
(instrumentation) code that is easy to maintain and that optimizes your use of network
resources.

If you want to monitor basic run-time metrics for your application, WebLogic Server already
provides a significant number of its own MBeans that you can use (see Best Practices:
Listening for WebLogic Server Events in Developing Custom Management Utilities Using JMX
for Oracle WebLogic Server). For example, you can use existing WebLogic Server MBeans to
track the hit rate on your application's servlets and the amount of time it takes to process
servlet requests.

Although WebLogic Server MBeans can indicate to an operations center the general state of
resources, it cannot provide detailed information about how a specific application is using the
resources. For example, WebLogic Server MBeans can indicate how many connections are
being used in a connection pool, but they do not indicate which applications are using the
connection pools. If your domain contains several active applications and you notice that some
connections are always in use, consider creating MBeans that monitor when each application
session gets and releases a connection. You could also include a management operation that
ends sessions that appear to be stuck.

In addition, if your application creates and maintains its own cache or writes to a data
repository that is outside the control of the application container, consider creating MBeans to
monitor the size of the cache or the amount of data written to the repository.

What Management Services Have Oracle Partners Developed?

Oracle Partners have developed an extensive set of management consoles that can monitor
and analyze data from WebLogic Server MBeans and potentially from MBeans that you
develop for your own applications.

These consoles can integrate WebLogic Server into an overall management strategy for your
network or data center operations.

JMX Layers

Like most of Jakarta EE, JMX is a component-based technology in which different types of
software vendors provide different types of components. This division of labor enables each
type of vendor to focus on providing only the software that falls within its area of expertise.

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 6

ORACLE

Chapter 2
Indirection and Introspection

JMX organizes its components into the following layers:

* Instrumentation

Consists of applications that you write, resources, and other manageable objects. In this
layer, application developers create managed beans (MBeans), which contain the
properties (attributes) and methods (operations) that they want to expose to external
management systems.

« Agent

Consists of the JVM and application servers such as WebLogic Server. This layer includes
a registry of MBeans and standard interfaces for creating, destroying, and accessing
MBeans.

The agent layer also provides services for remote clients as well as a monitoring and a
timer service. See Using the WebLogic Server JMX Timer Service, and Using Notifications
and Monitor MBeans in Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server.

e Distributed Services

Consists of Management consoles or other Jakarta EE applications. A management
application sends or receives requests from the agent layer. Often this layer is available as
a plug-in or as an adapter that enables a management console to support a variety of
management protocols, such as JIMX and SNMP.

Indirection and Introspection

Two key concepts for understanding JMX are indirection and introspection, which enable a
JMX application to manage proprietary resources without requiring access to proprietary class
definitions.

The general model for JMX is that applications in the distributed services layer never interact
directly with classes in the instrumentation layer. Instead, under this model of indirection, the
JMX agent layer provides standard interfaces, such as

j avax. managenent . MBeanSer ver Connect i on, that:

¢ Expose a class management interface to management clients in the distributed services
layer

* Receive requests from management clients, such as a request to get the value of a
property that a class is exposing through JMX

* Interact with the class to carry out the request and return the result to the management
client

Each class describes to the MBean server the set of properties and methods that it wants to
expose through JMX. A property that a class exposes through JMX is called an MBean
attribute, and a method that it exposes is called an operation. JMX specifies multiple
techniques (design patterns) that a class can use to describe its attributes and operations, and
these design patterns are formalized as the following MBean types: standard, dynamic, model,
and open.

A class that implements the standard MBean type describes its management interface in way
that is most like Java programming: a developer creates a JMX interface file that contains
getter and setter methods for each class property that is to be exposed through JMX. The
interface file also contains a wrapper method for each class method that is to be exposed.
Then the class declares the name of its IMX interface. When you register a standard MBean
with the MBean server, the MBean server introspects the class and its JMX interface to
determine which attributes and operations it will expose to the distributed services layer. The

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 6

ORACLE

Chapter 2
Notifications and Monitor MBeans

MBean server also creates an object, MBeanl nf o, that describes the interface. Management
clients inspect this MBeanl nf 0 object to learn about a class's management interface.

A class that implements the model MBean type describes its management interface by
constructing its own MBeanl nf 0 object, which is a collection of metadata objects that describe
the properties and methods to expose through JMX. When you register a model MBean with
the MBean server, the MBean server uses the existing MBeanl nf o object instead of
introspecting the class.

Notifications and Monitor MBeans

JMX provides two ways to monitor changes in MBeans: MBeans can emit notifications when
specific events occur (such as a change in an attribute value), or monitor MBeans can poll an
MBean periodically to retrieve the value of an attribute.

The following sections describe JMX notifications and monitor MBeans:

How JMX Notifications Are Broadcast and Received

As part of MBean creation, you can implement the j avax. management . Noti fi cati onEnitter

interface, which enables the MBean to emit notifications when different types of events occur.
For example, you create an MBean that manages your application's use of a connection pool.
You can configure the MBean to emit a notification when the application creates a connection
and another notification when the application drops a connection.

To listen for notifications, you create a listener class that implements the

j avax. managenent. Noti fi cationLi stener. handl eNoti fi cation() method. Your
implementation of this method includes the logic that causes the listener to carry out an action
when it receives a notification. After you create the listener class, you create another class that
registers the listener with an MBean.

By default, an MBean broadcasts all its naotifications to all its registered listeners. However, you
can create and register a filter for a listener. A filter is a class that implements the

j avax. managenent. NotificationFilter.isNotificationEnabled() method. The
implementation of this method specifies one or more notification types. (In this case, type
refers to a unique string within a notification object that identifies an event, such as

vendor A. appB. event C.) When an event causes an MBean to generate a natification, the
MBean invokes a filter's i sNot i fi cat i onEnabl ed() method before it sends the notification to
the listener. If the notification type matches one of the types specified in

i sNoti ficationEnabl ed(), then the filter returns t r ue and the MBean broadcasts the
message to the associated listener.

For information on creating and registering listeners and filters, see Listening for Notifications
from WebLogic Server MBeans: Main Steps in Developing Custom Management Ultilities Using
JMX for Oracle WebLogic Server. For a complete description of IMX notifications, refer to the
JMX 1.4 specification. See Related Documentation.

Figure 2-2 shows a basic system in which a notification listener receives only a subset of the
notifications that an MBean broadcasts.

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 6

ORACLE Chapter 2
Notifications and Monitor MBeans

Figure 2-2 Receiving Notifications from an MBean

MBean Notification

implements NotificationEmitter type=vendorA.appB.eventC

Filter and listener
registered with MBean

MyFilter If a notification satisfies filter
criteria, MBean passes the
isNotificationEnabled() notification to the listener
MyNotificationListener

<

handleNotification()

Active Polling with Monitor MBeans

JMX includes specifications for a type of MBeans called monitor MBeans, which can be
instantiated and configured to periodically observe other MBeans. Monitor MBeans emit JIMX
notifications only if a specific MBean attribute has changed beyond a specific threshold. A
monitor MBean can observe the exact value of an attribute in an MBean, or optionally, the
difference between two consecutive values of a numeric attribute. The value that a monitor
MBean observes is called the derived gauge.

When the value of the derived gauge satisfies a set of conditions, the monitor MBean emits a
specific natification type. Monitors can also send notifications when certain error cases are
encountered while monitoring an attribute value.

To use monitor MBeans, you configure a monitor MBean and register it with the MBean you
want to observe. Then you create a listener class and register the class with the monitor
MBean. Because monitor MBeans emit only very specific types of notification, you usually do
not use filters when listening for notifications from monitor MBeans.

Figure 2-3 shows a basic system in which a monitor MBean is registered with an MBean. A
Noti fi cati onLi stener is registered with the monitor MBean, and it receives notifications when
the conditions within the monitor MBean are satisfied.

Developing Manageable Applications Using JMX for Oracle WebLogic Server
G31980-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 6

ORACLE Chapter 2
Notifications and Monitor MBeans

Figure 2-3 Monitor MBeans

Observed MBean

Monitor MBean registered with an
observed MBean. Monitor MBean
periodically polls the observed MBean

MyMonitor MBean Notification

Filter and listener registered with
the monitor MBean

|
MyFilter

If a notification satisfies filter
criteria, MBean passes the
notification to the listener

MyNotificationListener

Developing Manageable Applications Using JMX for Oracle WebLogic Server
G31980-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 6

Designing Manageable Applications

This chapter describes Oracle best practices for designing manageable applications. The last
section, Additional Design Considerations, provides alternatives to some Oracle
recommendations and discusses additional design considerations.

This chapter includes the following sections:

Benefits of Oracle Best Practices

Several viable JMX design patterns and deployment options can make your application more
manageable.

The design patterns that Oracle recommends are based on the assumption that the
instrumentation of your Java classes should:

* Use as few system resources as possible; management functions must not interfere with
business functions.

* Be separate from your business code whenever possible.

» Deploy along with the business code and share its life cycle; you should not require the
operations staff to take additional steps to enable the management of your application.

Use Standard MBeans

Of the many design patterns that JMX defines, Oracle recommends that you use standard
MBeans, which are the easiest to code.

To use the simplest design pattern for standard MBeans:

1. Create an interface for the management properties and operations that you want to
expose.

2. Implement the interface in your Java class.

3. Create and register the MBean in the WebLogic Server Runtime MBean Server by
invoking the Runtime MBean Server's
j avax. managenent . MBeanSer ver Connect i on. cr eat eMBean() method and passing your
management interface in the method's parameter.

When you invoke the cr eat eMBean() method, the Runtime MBean Server introspects your
interface, finds the implementation, and registers the interface and implementation as an
MBean.

In this design pattern, the management interface and its implementation must follow strict
naming conventions so that the MBean server can introspect your interface. You can
circumvent the naming requirements by having your Java class extend

j avax. managemnent . St andar dMBean. See St andar dMBean in the Java SE 17 API Specification at
https://docs.oracle.conm en/javaljavase/ 17/ docs/ api/j ava. nanagenent /j avax/
managenent / St andar dMBean. ht i .

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 6

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/StandardMBean.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/StandardMBean.html

ORACLE’

Chapter 3
Registering Custom MBeans in the WebLogic Server Runtime Bean Server

Registering Custom MBeans in the WebLogic Server Runtime
Bean Server

A JVM can contain multiple MBean servers, and another significant design decision is which
MBean server you use to register your custom MBeans.

Oracle recommends that you register custom MBeans in the WebLogic Server Runtime MBean
Server. (Each WebLogic Server instance contains its own instance of the Runtime MBean
Server. See MBean Servers in Developing Custom Management Ultilities Using JMX for Oracle
WebLogic Server.) As of WebLogic Server 10.3.3, the WebLogic Runtime MBean Server is the
JVM's platform MBean server. See Registering MBeans in the JVM Platform MBean Server.

With this option:

* Your MBeans exist in the same MBean server as WebLogic Server MBeans. Remote JMX
clients need to maintain only a single connection to monitor your application's MBeans and
WebLogic Server MBeans.

* JMX clients must authenticate and be authorized through the WebLogic Server security
framework to access your custom MBeans and WebLogic Server MBeans. See Securing
Custom MBeans with Roles and Policies.

The WebLogic Server Runtime MBean Server registers its j avax. nanagenent . MBeanSer ver
interface in the JNDI tree. See Make Local Connections to the Runtime MBean Server in
Developing Custom Management Utilities Using JMX for Oracle WebLogic Server.

Registering Custom MBeans in the Domain Runtime MBean

Server

If you need to register aggregation-type MBeans whose implementation will invoke on other
MBeans located in Managed Servers, register those MBeans in the Domain Runtime MBean
Server.

The WebLogic Server Domain Runtime MBean Server registers its

j avax. managenent . MBeanSer ver interface in the JNDI tree. See Make Local Connections to
the Domain Runtime MBean Server in Developing Custom Management Ultilities Using JMX for
Oracle WebLogic Server.

Use ApplicationLifecycleListener to Register Application MBeans

If you are creating MBeans for EJBs, servlets within Web applications, or other modules that
are deployed, and if you want your MBeans to be available as soon as you deploy your
application, listen for notifications from the deployment service.

When you deploy an application (and when you start a server on which you have already
deployed an application), the WebLogic Server deployment service emits notifications at
specific stages of the deployment process. When you receive a notification that the application
has been deployed, you can create and register your MBeans.

There are two steps for listening to deployment notifications with
Appl i cationLifecycl eLi st ener:

1. Create a class that extends webl ogi c. appl i cati on. Appl i cati onLi f ecycl eLi st ener.
Then implement the Appl i cati onLi f ecycl eLi st ener. post St art method to create and

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 6

ORACLE’

Chapter 3
Unregister Application MBeans When Applications Are Undeployed

register your MBean in the MBean server. The class invokes your post Start () method
only after it receives a post St art notification from the deployment service. See
Programming Application Life Cycle Events in Developing Applications for Oracle
WebLogic Server.

2. Inthe webl ogi c-appl i cation.xm deployment descriptor, register your class as an
application listener class.

If you do not want to use proprietary WebLogic Server classes and deployment descriptors to
register application MBeans, see Registering Application MBeans by Using Only JDK Classes.

Unregister Application MBeans When Applications Are
Undeployed

Regardless of how you create your MBeans, Oracle recommends that you unregister your
MBeans whenever you receive a deployment notification that your application has been
undeployed. Failure to do so introduces a potential memory leak.

If you create a class that extends Appl i cati onLi f ecycl eLi st ener, you can implement the
Appl i cationLifecycl eLi st ener. preSt op method to unregister your MBeans. For information
on implementing the pr eSt op method, see Register the MBean.

Place Management Logic for EJBs and Servlets in a Delegate

Class

If you want to expose management attributes or operations for any type of EJB (session, entity,
message-driven) or servlet, Oracle recommends that you implement the management
attributes and operations in a separate, delegate class so that your EJB or servlet
implementation classes contain only business logic, and so that their business interfaces
present only business logic.

See Figure 3-1.

Figure 3-1 Place Management Properties and Operations in a Delegate Class

Session EJB

Push management
data to MBean

l MBean Server

My standard MBean
implementation
(delegate class)

My standard MBean
| interface

!

Gets management
data through the
MBean server

JMX Client

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 6

ORACLE Chapter 3
Use Open MBean Data Types

In Figure 3-1, business methods in the EJB push their data to the delegate class. For example,
each time a specific business method is invoked, the method increments a counter in the
delegate class, and the MBean interface exposes the counter value as an attribute.

This separation of business logic from management logic might be less efficient than
combining the logic into the same class, especially if the counter in the delegate class is
incremented frequently. However, in practice, most JVMs can optimize the method calls so that
the potential inefficiency is negligible.

If this negligible difference is not acceptable for your application, your business class in the
EJB can contain the management value and the delegate class can retrieve the value
whenever a JMX client requests it.

Use Open MBean Data Types

If a remote JMX client will access your custom MBeans, Oracle recommends that you limit the
data types of your MBean attributes and the data types that your operations return to those
defined in j avax. managenent . opennbean. CpenType.

All JVMs have access to these basic types. See OpenType in the Java SE 17 API Specification
at https://docs. oracl e. com en/javaljavase/ 17/ docs/ api /j ava. nenagenent / j avax/
managenent / opennbean/ OpenType. html .

If your MBeans expose other data types, the types must be serializable and the remote JMX
clients must include your types on their class paths.

Emit Notifications Only When Necessary

Each time an MBean emits a notification, it uses memory and network resources. For MBean
attributes whose values change frequently, such memory and resource uses might be
unacceptable.

Instead of configuring your MBeans to emit notifications each time its attributes change, Oracle
recommends that you use monitor MBeans to poll your custom MBeans periodically to
determine whether attributes have changed. You can configure the monitor MBean to emit a
notification only after an attribute changes in a specific way or reaches a specific threshold.

See Best Practices: Listening Directly Compared to Monitoring in Developing Custom
Management Ultilities Using JMX for Oracle WebLogic Server.

Additional Design Considerations

In addition to Oracle best practices, bear in mind the following considerations when designing
manageable applications.

Registering MBeans in the JVM Platform MBean Server

In this release of WebLogic Server, the WebLogic Runtime MBean Server is the JVM platform
MBean server. As such, JMX clients can monitor your custom MBeans, WebLogic Server
MBeans, and the JVM's platform MXBeans through a single MBean server. With this option:

* Local applications can access all of the MBeans through the MBeanSer ver interface that
j ava. | ang. managenent . Managenent Fact ory. get Pl at f or mvBeanSer ver () returns.

e If you want to enable remote JMX clients to access custom MBeans, platform MXBeans,
and WebLogic Server MBeans, consider the following configuration:

Developing Manageable Applications Using JMX for Oracle WebLogic Server
G31980-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 6

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/OpenType.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/OpenType.html

ORACLE

Chapter 3
Additional Design Considerations

— By the default, the WebLogic Server Runtime MBean Server is configured to be the
platform MBean server.

— Remote access to the platform MBean server is not enabled.

— Remote JMX clients access platform MXBeans by connecting to the Runtime MBean
Server.

See Using the Platform MBean Server in the Developing Custom Management Utilities Using
JMX for Oracle WebLogic Server.

Registering Application MBeans by Using Only JDK Classes

Using Oracle's Appl i cati onLi f ecycl eLi st ener is the easiest technique for making an MBean
share the life cycle of its parent application. If you do not want to use proprietary WebLogic
Server classes and deployment descriptor elements for managing a servlet or an EJB, you can
do the following:

* For aservlet, configure ajakarta.servlet. Filter that creates and registers your MBean
when a servlet calls a specific method or when the servlet itself is instantiated. See Fi | ter
in the Jakarta EE 8 API Specification at https://jakarta.ee/specifications/platform/8/

apidocs/.

e For an EJB, implement its j akart a. ej b. Enti t yBean. ej bActi vat e() method to create and
register your MBean. For a session EJB whose instances share a single MBean instance,
include logic that creates and registers your MBean only if it does not already exist. See
Enti t yBean in the Jakarta EE 8 API Specification at https://jakarta.ee/specifications/
platform/8/apidocs/javax/ejb/package-frame.

Organizing Managed Objects and Business Objects

While you might design one managed object for each business object, there is no requirement
for how your management objects should relate to your business objects. One management
object could aggregate information from multiple business objects or conversely, you could split
information from one business object into multiple managed objects.

For example, if a servlet uses multiple helper classes and you want one MBean to represent
the servlet, each helper class should push its management data into a single MBean
implementation class.

The organization that you choose depends on the number of MBeans you want to provide to
the system administrator or operations staff contrasted with the difficulty of maintaining a
complex management architecture.

Packaging and Accessing Management Classes

If you package your management classes in an application's APP- | NF directory, all other
classes in the application can access them. If you package the classes in a module's archive
file, then only the module can access the management classes.

For example, consider an application that contains multiple Web applications, each of which
contains its own copy of a session EJB named EJB1. If you want one MBean to collect
information for all instances of the session EJB across all applications, you must package the
MBean's classes in the APP- | NF directory. If you want each Web application's copy of the EJB
to maintain its own copy of the MBean, then package the MBean's classes in the EJB's JAR
file. (If you package the classes in the EJB's JAR, then you distribute the MBean classes to
each Web application when you copy the JAR to the Web application.)

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 6

https://jakarta.ee/specifications/platform/8/apidocs/
https://jakarta.ee/specifications/platform/8/apidocs/
https://jakarta.ee/specifications/platform/8/apidocs/
https://jakarta.ee/specifications/platform/8/apidocs/

ORACLE Chapter 3
Additional Design Considerations

Securing Custom MBeans with Roles and Policies

If you register your MBeans in the WebLogic Server Runtime MBean Server, in addition to
limiting access only to users who have authenticated and been authorized through the
WebLogic Server security framework, you can further restrict access by creating roles and
polices. A security role, like a security group, grants an identity to a user. Unlike a group,
however, membership in a role can be based on a set of conditions that are evaluated at run
time. A security policy is another set of run-time conditions that specify which users, groups,
or roles can access a resource.

Note the following restrictions to securing custom MBeans with roles and policies:

* Your MBean's object name must include a "Type=val ue" key property.

e You must describe your roles and policy in a XACML 2.0 document and then use the
WebLogic Scripting Tool to add the data to your realm.

e If your XACML document describes authorization policies, your security realm must use
either the WebLogic Server XACML Authorization Provider or some other provider that
implements the webl ogi ¢. nenagenent . security. aut hori zati on. Pol i cySt or eMBean
interface.

* If your XACML document describes role assignments, your security realm must use either
the WebLogic Server XACML Role Mapping Provider or some other provider that
implements the webl ogi c. management . security. aut hori zati on. Pol i cySt or eMBean
interface.

For information about creating XACML roles policies and adding them to your realm, see Using
XACML Documents to Secure WebLogic Resources in Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

Developing Manageable Applications Using JMX for Oracle WebLogic Server
G31980-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 6

Instrumenting and Registering Custom
MBeans

This chapter describes how to instrument and register standard MBeans for application
modules.
This chapter includes the following sections:

Overview of the MBean Development Process

This section describes the MBean development process.

Figure 4-1 illustrates the MBean development process. The steps in the process, and the
results of each are described in Table 4-1. Subsequent sections detail each step in the
process.

Figure 4-1 Standard MBean Development Overview

: Modify business methods Create an Application Life
%%ﬂ; aer;gémri’lﬁrg?ggea to push management data Cycle Listener that registers
g to the management class your MBean
| v l v |
.java files

v

‘ Compile source files ‘

v

.class files

v

Register listener in
weblogic-application.xml

v

‘ Package classes ‘

'

Application Archive
(EAR)

|

‘ Deploy application ‘

Developing Manageable Applications Using JMX for Oracle WebLogic Server
G31980-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 6

ORACLE’

Chapter 4

Create and Implement a Management Interface

Table 4-1 Model MBean Development Tasks and Results

Step

Description

Result

1. Create and Implement a
Management Interface

Create a standard Java interface that
describes the properties (management
attributes) and operations you want to
expose to JMX clients.

Create a Java class that implements the
interface. Because management logic
should be separate from business logic,
the implementation should not be in the
same class that contains your business
methods.

Source files that describe and
implement your management
interface.

2. Modify Business Methods
to Push Data

If your management attributes contain
data about the number of times a
business method has been invoked, or if
you want management attributes to
contain the same value as a business
property, modify your business methods
to push (update) data into the
management implementation class.

For example, if you want to keep track of
how frequently your business class
writes to the database, modify the
business method that is responsible for
writing to the database to also increment
a counter property in your management
implementation class. This design
pattern enables you to insert a minimal
amount of management code in your
business code.

A clean separation between
business logic and
management logic.

3.Reqister the MBean

If you want to instantiate your MBeans
as part of application deployment, create
a WebLogic Server

Appl i cationLifecycl eLi st ener
class to register your MBean.

A Java class and added
entries in webl ogi c-
application.xn.

4. Package Application and
MBean Classes

Package your compiled classes into a
single archive.

A JAR, WAR, EAR file or
other deployable archive file.

Create and Implement a Management Interface

One of the main advantages to the standard MBeans design pattern is that you define and
implement management properties (attributes) as you would any Java property (using get Xxx,
set xxx, and i sxxx methods); similarly, you define and implement management methods
(operations) as you would any Java method.

When you register the MBean, the MBean server examines the MBean interface and
determines how to represent the data to JMX clients. Then, JMX clients use the
MBeanSer ver Connection. get Attribute() and set Attribute() methods to get and set the
values of attributes in your MBean and they use MBeanSer ver Connecti on. i nvoke() to invoke
its operations. See MBeanSer ver Connect i on in the Java SE 17 API Specification at htt ps: //
docs. oracle. com en/javaljavase/ 17/ docs/ api /| ava. managenent / | avax/ managenent /

MBeanSer ver Connection. htm .

To create an interface for your standard MBean:

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 6

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html

ORACLE

5.

Chapter 4
Create and Implement a Management Interface

Declare the interface as public.
Oracle recommends that you name the interface as follows:

Busi ness- obj ect MBean. j ava

where Busi ness- obj ect is the object that is being managed.

Oracle's recommended design pattern for standard MBeans enables you to follow
whatever naming convention you prefer. In other standard MBean design patterns
(patterns in which the MBean's implementation file does not extend

j avax. managenent . St andar dMBean), the file name must follow this pattern: | npl -
fil eMBean. java where | npl -fi |l e is the name of the MBean's implementation file.

For each read-write attribute that you want to make available in your MBean, define a
getter and setter method that follows this naming pattern:

get Attri but e-nanme
set Attribute-nanme
where At tri but e- nane is a case-sensitive name that you want to expose to JMX clients.

If your coding conventions prefer that you use ani sAttri but e- nane as the getter method
for attributes of type Bool ean, you may do so. However, JMX clients use the
MBeanSer ver Connection. get Attri but e() method to retrieve an attribute's value
regardless of the attribute's data type; there is no MBeanSer ver Connection. i sAttribute()
method.

For each read-only attribute that you want to make available, define only ani s or a getter
method.

For each write-only attribute, define only a setter method.

Define each management operation that you want to expose to JMX clients.

Example 4-1 is an MBean interface that defines a read-only attribute of type i nt and an
operation that JMX clients can use to set the value of the attribute to 0.

1.

Create a public class.

Oracle recommends the following pattern as a naming convention for implementation files:
MBean- I nter facel npl . j ava.

Extend j avax. managenent . St andar dvMBean to enable this flexibility in the naming
requirements.

See St andar dMBean in the Java SE 17 API Specification at ht t ps: // docs. oracl e. conl en/
javal j avase/ 17/ docs/ api /| ava. managenent /| avax/ managenent / St andar dvBean. ht ml .

Implement the St andar dvBean(Gbj ect i npl ementation, C ass nbeanlnterface)
constructor.

With Oracle's recommended design pattern in which you separate the management logic
into a delegate class, you must provide a public constructor that implements the
St andar dMBean(Qoj ect inpl ementation, C ass nbeanlnterface) constructor.

Implement the methods that you defined in the management interface.
Follow these guidelines:

e If you are using Oracle's recommended design pattern, in which business objects push
management data into the management object, provide a method in this
implementation class that the business methods use to set the value of the
management attribute. In Example 4-2, the i ncr ement Tot al Rx() method is available
to business methods but it is not part of the management interface.

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 6

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/StandardMBean.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/StandardMBean.html

ORACLE

Chapter 4
Modify Business Methods to Push Data

* If multiple instances of an EJB, servlet, or other class can set the value of a
management attribute, make sure to increment the property atomically and do not
make its getter and setter (or increment method) synchronized. While synchronizing
guarantees the accuracy of management data, it blocks business threads until the
management operation has completed.

Example 4-1 Management Interface

package com bea. medrec. controller;
public interface RecordSessi onEJBMBean {
public int getTotal Rx();
public void reset Total Rx();

}

To implement the interface:
Example 4-2 MBean Implementation

package com bea. medrec. controller;

i mport j avax. managenent. St andar dvBean;

i mport com bea. medrec. control |l er. RecordSessi onEJBMBean;

public class RecordSessi onEJBMBeanl npl extends StandardMBean
i mpl ements Recor dSessi onEJBMBean {

publ i ¢ RecordSessi onEJBMBeanl npl () throws
j avax. managerment . Not Conpl i ant MBeanException {
super (Recor dSessi onEJBMBean. cl ass) ;

}

public int Total Rx = 0;
public int getTotal Rx() {
return Total Rx;

public void incrementTotal Rx() {
Tot al Rx++;

public void reset Total Rx() {
Total Rx = 0;
}
}

Modify Business Methods to Push Data

If your management attributes contain data about the number of times a business method has
been invoked, or if you want management attributes to contain the same value as a business
property, modify your business methods to push (update) data into the management
implementation class.

Example 4-3 shows a method in an EJB that increments the integer in the Tot al Rx property
each time the method is invoked.

Example 4-3 EJB Method That Increments the Management Attribute

private Collection addRxs(Collection rXs, RecordLocal recordLocal)
t hrows CreateException, Exception {

com bea. nedrec. control | er. Recor dSessi onEJBMBean! npl . i ncr enent Tot al Rx() ;

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 6

ORACLE

Chapter 4

Register the MBean

Register the MBean

If you want to instantiate your MBeans as part of application deployment, create an

ApplicationLifecycl eLi stener that registers your MBean when the application deploys.

For more information, see Use ApplicationLifecycleListener to Register Application MBeans.

1. Create a class that extends webl ogi c. appl i cati on. Appl i cationLifecycl eLi stener.

2. Inthis Appli cationLifecycl elLi st ener class, implement the

ApplicationLifecyclelListener.postStart(ApplicationLifecycleEvent evt) method.

In your implementation of this method:
a. Construct an object name for your MBean.
Oracle recommends this naming convention:

your . conpany: Nanme=Par ent - nodul e, Type=MBean- i nt er f ace- cl assnane

To get the name of the parent module, use Appl i cati onLi f ecycl eEvent to get an
Appl i cationCont ext object. Then use Appl i cati onCont ext to get the module's

identification.

b. If you are registering the MBean on the WebLogic Server Runtime MBean

Server:

Access the WebLogic Server Runtime MBean Server through JNDI.

If the classes for the JMX client are part of a Jakarta EE module, such as an EJB or

Web application, the JNDI name for the Runtime MBeanServer is:

webl ogi ¢/ j mx/ runtime

For example:

Initial Context ctx = new Initial Context();
MBeanServer server = (MBeanServer)
ctx. | ookup("webl ogi ¢/j mx/runtine");

If the classes for the JMX client are not part of a Jakarta EE module, the INDI name

for the Runtime MBean Server is:

java: conp/ j mx/runtine

See Make Local Connections to the Runtime MBean Server in Developing Custom

Management Utilities Using JMX for Oracle WebLogic Server.

c. If you are registering the MBean on the Domain Runtime MBean Server:

Access the Domain Runtime MBean Server through JNDI.

If the classes for the JMX client are part of a Jakarta EE module, such as an EJB or

Web application, the JNDI name for the Domain Runtime MBean server is:

webl ogi ¢/ j mx/ domai nRunt i me

For example:

Initial context ctx = new Initial Context();
server = (MBeanServer)ctx. | ookup("webl ogi c/jnx/domai nRuntinme");

If the classes for the JMX client are not part of a Jakarta EE module, the JNDI name

for the Domain Runtime MBean Server is:

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates.

Page 5 of 6

ORACLE Chapter 4
Package Application and MBean Classes

j ava: conp/ j nx/ domai nRunt i ne

® Note

The Domain Runtime MBean Server is present only on the Administration
Server. Therefore, since the ct x. | ookup() call returns a reference to the local
MBean Server, the lookup method can only be called when running on the
Administration Server. If called when running on a managed server, a

NameNot Found exception is thrown.

See Make Local Connections to the Domain Runtime MBean Server in Developing
Custom Management Utilities Using JMX for Oracle WebLogic Server

d. Register your MBean using MBeanSer ver . r egi st er MBean(Cbj ect obj ect, Obj ect Nare
name) , where:

obj ect represents an instance of your MBean implementation class.
name represents the JMX object name for your MBean.

When your application deploys, the WebLogic deployment service emits

Appl i cationLifecycl eEvent notifications to all its registered listeners. When the listener
receives a post St art notification, it invokes its post St art method. See Programming
Application Life Cycle Events in Developing Applications for Oracle WebLogic Server.

3. Inthe same class, implement the
ApplicationLifecyclelListener. preStop(ApplicationLifecycl eEvent evt) method.

In your implementation of this method, invoke the
j avax. managenent . MBeanSer ver. unr egi st er (Cbj ect Nane MBean- nane) method to
unregister your MBean.

4. Register your class as an Appl i cati onLi f ecycl eLi st ener by adding the following element
to the webl ogi c-appl i cation. xm file of your application:

<l'istener>
<l'i stener-cl ass>
ful l'y-qualified-class-nane
</listener-class>
</listener>

Package Application and MBean Classes

Package your MBean classes in the application's APP- | NF directory or in a module's JAR, WAR
or other type of archive file depending on the access that you want to enable for the MBean.

For more information, see Additional Design Considerations.

Developing Manageable Applications Using JMX for Oracle WebLogic Server
G31980-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 6

Using the WebLogic Server IMX Timer
Service

This chapter describes how to use the WebLogic Server JMX timer service, which can be used
by JMX clients to carry out a task at a specified time or a regular time interval.
This chapter includes the following sections:

Overview of the WebLogic Server JMX Timer Service

A JMX timer service can be configured to emit notifications, and a listener to respond to the
notifications with a specified action.

For example, you want a JMX monitor to run between 9am and 9pm each day. You configure

the JMX timer service to emit a notification daily at 9am, which triggers a JMX listener to start

your monitor. The timer service emits another notification at 9pm, which triggers the listener to
stop the monitor MBean.

The JDK includes an implementation of the JMX timer service (see

j avax. managenent . timer. Ti mer in the Java SE 17 API Specification at htt ps: //

docs. oracl e. conml en/j ava/ j avase/ 17/ docs/ api / | ava. nenagenent / | avax/ managenent /
timer/Tiner. htm); however, listeners for this timer service run in their own thread in a
server's JVM.

WebLogic Server includes an extension of the standard timer service that causes timer
listeners to run in a thread that WebLogic Server manages and within the security context of a
WebLogic Server user account.

Creating the Timer Service: Main Steps

You construct and manage instances of the timer service for each JMX client. WebLogic
Server does not provide a centralized timer service that all IMX clients use. Each time you
restart a server instance, each JMX client must re-instantiate any timer service configurations it
needs.

To create the WebLogic Server timer service:

1. Create a JMX listener class in your application.

For general instructions on creating a JMX listener, see Creating a Notification Listener in
Developing Custom Management Ultilities Using JMX for Oracle WebLogic Server.

2. Create a class that does the following:

a. Configures an instance of webl ogi ¢. managenent . ti mer. Ti mer MBean to emit
j avax. managenent . tiner. Ti mer Noti fi cati on notifications at a specific time or at a
recurring interval. See Ti mer Not i fi cati on in the Java SE 17 API Specification at
https://docs.oracle.con en/javaljavase/ 17/ docs/ api/j ava. nanagenent /j avax/
managenent /timer/ Ti mer Notification.htnl.

For each natification that you configure, include a St ri ng in the notification's Type
attribute that identifies the event that caused the timer to emit the notification.

Developing Manageable Applications Using JMX for Oracle WebLogic Server
G31980-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 6

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/timer/Timer.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/timer/Timer.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/timer/Timer.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/timer/TimerNotification.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/timer/TimerNotification.html

ORACLE’

3.

Chapter 5
Configuring a Timer MBean to Emit Notifications

See Configuring a Timer MBean to Emit Notifications.

b. Registers your listener and an optional filter with the timer MBean that you configured.
c. Starts the timer in the timer MBean that you configured.

See Configuring a Notification Filter and Registering a Notification Listener and Filter in
Developing Custom Management Ultilities Using JMX for Oracle WebLogic Server.

d. Unregisters the timer MBean and closes its connection to the MBean server when it
finishes using the timer service.

Package and deploy the listener and other JIMX classes to WebLogic Server. See
Packaging and Deploying Listeners on WebLogic Server in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

Configuring a Timer MBean to Emit Notifications

This section describes how to configure a timer MBean to emit notifications.

Perform the following steps to configure a Ti ner MBean instance to emit a notification;

1.

Initialize a connection to the Domain Runtime MBean Server.

See Make Remote Connections to an MBean Server in Developing Custom Management
Utilities Using JMX for Oracle WebLogic Server.

Create an Obj ect Nane for your timer MBean instance.

See j avax. management . Obj ect Name in the Java SE 17 API Specification at https:/
docs.oracle.com/en/javal/javase/17/docs/api/java.management/javax/management/ObjectName.html.

Oracle recommends that your object name start with the name of your organization and
include key properties that clearly identify the purpose of the timer MBean instance.

For example, "nyconpany: Name=nyDai | yTi mer, Type=webl ogi cTi ner"
Create and register the timer MBean.

Use j avax. managenent . MBeanSer ver Connecti on. creat eMBean(String cl assnanme
(bj ect Name nane) method, where:

e classnane is webl ogi c. managenent . ti mer. Ti mer

* nane represents the object name that you created for the timer MBean instance.

@® Note

The timer MBean that you create runs in the JMX agent on WebLogic Server
(it does not run in a client JVM even if you create the timer MBean from a
remote JMX client).

Configure the timer MBean to emit a notification.

Invoke the MBean's addNot i fi cati on operation. Table 5-1 describes each parameter of
the addNot i fi cati on operation. See webl ogi c. managenent . ti ner. Ti ner in the WebLogic
Server API Reference.

The addNot i fi cati on operation creates a Ti mer Not i fi cati on object and returns a
handback object of type | nt eger, which contains an integer that uniquely identifies the
Ti merNoti fi cati on object.

Repeat step 4 for each timer notification that your JMX client needs to receive.

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 6

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/ObjectName.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/ObjectName.html

ORACLE’

Chapter 5
Creating Date Objects

6. Start the timers in your timer MBean by invoking the timer MBean's start () operation.

When the time that you specify arrives, the timer service emits the Ti mer Not i fi cati on object
along with a reference to the handback object.

Table 5-1 Parameters of the addNotification Operation
]

Parameter Description

java.lang. String A string that you use to identify the event that triggers this notification to be

type broadcast. For example, you can specify m dni ght for a notification that you
configure to be broadcast each day at midnight.

java.lang. String Specifies the value of the Ti mer Not i f i cat i on object's nessage attribute.

nessage

j ava.lang. Qbj ect Specifies the name of an object that contains whatever data you want to send

user Dat a to your listeners. Usually, you specify a reference to the class that registered
the notification, which functions as a callback.

java.util.Date Specifies a Dat e object that contains the time and day at which the timer

startTime emits your notification.

See Creating Date Objects.

[ong period (Optional) Specifies the interval in milliseconds between notification
occurrences. Repeating natifications are not enabled if this parameter is zero
or is not defined (nul |).

[ong nbCccurences (Optional) Specifies the total number of times that the notification will occur. If
the value of this parameter is zero or is not defined (nul |) and if the period is
not zero or null, then the notification will repeat indefinitely.

If you specify this parameter, each time the Timer MBean emits the
associated notification, it decrements the number of occurrences by one. You
can use the timer MBean's get NoCccur r ences operation to determine the
number of occurrences that remain. When the number of occurrences
reaches zero, the timer MBean removes the notification from its list of
configured notifications.

Creating Date Objects

The constructor for the j ava. uti | . Dat e object initializes the object to represent the time at
which you created the Dat e object measured to the nearest millisecond.

Perform the following steps to specify a different time or date:
1. Create an instance of java. util. Cal endar.

2. Configure the fields in the Cal endar object to represent the time or date.

3. Invoke the Cal endar object's get Ti me() method, which returns a Dat e object that
represents the time in the Cal endar object.

For example, the following code configures a Dat e object that represents midnight:

java.util.Cal endar cal = java.util.Calendar.getlnstance();
cal .set(java.util.Cal endar. HOUR_OF_DAY, 24);
java.util.Date norning = cal.getTime();

Seejava. util. Cal endar in the Java SE 17 API Specification at htt ps: //
docs. oracl e. coml en/j aval j avase/ 17/ docs/ api /| ava. base/ java/ util/Cal endar. htni .

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 6

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Calendar.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Calendar.html

ORACLE’

Chapter 5
Example: Generating a Notification Every Five Minutes After 9 AM

Example: Generating a Notification Every Five Minutes After 9

AM

This section provides an example to create, register, and configure a timer MBean.

The code in Example 5-1 creates an instance of webl ogi c. managerent . ti ner. Ti ner that
emits a notification every 5 minutes after 9am.

Note the following about the code:

It creates and registers the timer MBean in the WebLogic Server Runtime MBean Server,
under the assumption that the JMX client runs alongside applications that are deployed on
multiple server instances. In this case, your JMX client would register a timer MBean in
each Runtime MBean Server in the domain.

Even though it creates an instance of the WebLogic Server timer MBean, the class does
not import WebLogic Server classes. Only the MBean server needs access to the
WebLogic Server Ti ner class, not the JMX client.

Any generic JMX listener can be used to listen for timer notifications, because all timer
notifications extend j avax. managenent . Noti fi cati on.

Example 5-1 Create, Register, and Configure a Timer MBean

import java.util.Hashtable;
i mport java.io.lCOException;
i mport java.net. Mal f or mredURLExcept i on;

i mport j avax. managenent. MBeanSer ver Connect i on;

i mport j avax. managenent. bj ect Nane;

i mport j avax. managenent. Mal f or medChj ect NaneExcepti on;
i mport j avax. managenent. renot e. JMXConnect or;

i nport javax. managenent . renot e. JMXConnect or Fact ory;

i mport j avax. managenent.renote. JMXServi ceURL;

i mport j avax. nam ng. Cont ext ;

i mport javax. managenent. NotificationFilterSupport;

public class RegisterTimer {

private static MBeanServerConnection connection;
private static JMXConnector connector;
private static final ChjectNane service;

/1 Initialize the object name for RuntimeServiceMBean
/1 so it can be used throughout the class.
static {
try {
service = new Cbj ect Nang(
"com bea: Name=Runt i meSer vi ce, Type=webl ogi c. nenagenent . nheanservers. ru
ntime. Runti meServi ceMBean");
}catch (Mal for nedOhj ect NameException e) {
throw new AssertionError(e. get Message());
}

}

/*

* Initialize connection to the Runtime MBean Server.

* This MBean is the root of the runtime MBean hierarchy, and
* each server in the domain hosts its own instance.

*/

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 6

ORACLE

Chapter 5
Example: Generating a Notification Every Five Minutes After 9 AM

public static void initConnection(String hostnane, String portString,

}

String username, String password) throws | OException,

Mal f or medURLException {

String protocol = "t3";

Integer portlnteger = Integer.val ueX (portString);

int port = portlnteger.intValue();

String jndiroot = "/jndi/";

String nserver = "webl ogi c. managenent . nheanservers. runtime";

JMXSer vi ceURL serviceURL = new JMXServi ceURL(protocol, hostname, port,
jndiroot + nserver);

Hasht abl e h = new Hashtabl e();

h. put (Cont ext . SECURI TY_PRI NCI PAL, usernane);

h. put (Cont ext . SECURI TY_CREDENTI ALS, password);

h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. managenent. renote");

connect or = JMXConnect or Fact ory. connect (servi ceURL, h);

connection = connector. get MBeanSer ver Connection();

public static void main(String[] args) throws Exception {

String hostname = args[0];
String portString = args[1];
String username = args[2];
String password = args[3];

try {
/* Invokes a custom method that establishes a connection to the

* Runtime MBean Server and uses an instance of

* MBeanSer ver Connection to represents the connection. The custom

* nethod assigns the MBeanServerConnection to a class-w de, static

* variable naned "connection".

*/

i ni t Connection(hostnane, portString, usernane, password);

/I Creates and registers the timer Mean.
bj ect Nane timerON = new

bj ect Nane(" nyconpany: Nane=nyDai | yTi mer, Type=webl ogi cTi ner");
String classname = "webl ogi c. managenent. timer. Timer";
connection. creat eMBean(cl assname, timerON);
Systemout. println("===> created timer nbean "+tinerQ\);

/1 Configures the timer MBean to emt a norning notification.
/1 Assigns the return value of addNotification to a variable so that
/1 it will be possible to invoke other operations for this specific
/1 notification.
java.util.Calendar cal = java.util.Cal endar.getlnstance();
cal .set(java.util.Cal endar. HOUR_OF DAY, 9);
java.util.Date norning = cal.getTime();
String nyData = "Timer notification";
Integer nmorningTinerlD = (Integer) connection.invoke(tinerON,
"addNot i fication",
new Qbject[] { "mycompany.tiner.notification.after9ant ,
"After 9am", nyData, norning, new Long(300000) },
new String[] {"java.lang. String", "java.lang.String",
"java.lang. Ghject", "java.util.Date", "long" });

/llnstantiates your |istener class and configures a filter to

/1 forward only timer nessages.

M/Li stener |istener = new MyListener();

NotificationFilterSupport filter = new NotificationFilterSupport();
filter.enabl eType("nyconpany.timer");

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 6

ORACLE’

Chapter 5
Removing Notifications

/1 Uses the MBean server's addNotificationListener method to
/lregister the listener and filter with the tiner Mean.

connection. addNotificationListener(tinmerQON, listener, filter, null);
Systemout. println("\n[nyListener]: Listener registered ...");

//Starts the tiner.
connection.invoke(tinmerON, "start", new oject[] { }, new String[] {});

/1 Keeps the remote client active.
Systemout. println("Pausing. Press Returntoend........... ");
Systemin.read();

} catch(Exception e)

{
Systemout. println("Exception: " + e);
e.printStackTrace();

Removing Notifications

This section describes when the timer MBean removes notifications.

The timer MBean removes notifications from its list when either of the following occurs:

A non-repeating notification is emitted.

A repeating notification exhausts its number of occurrences.

The timer MBean also provides the following operations to remove notifications:

removeAl | Notifications(), which removes all notifications that are registered with the
timer MBean instance.

renmoveNoti fication(java.lang.|nteger id),which removes the notification whose
handback object contains the integer value that you specify. The addNot i fi cati on method
returns this handback object when you invoke it (see Step 4 in Configuring a Timer MBean
to Emit Notifications.

removeNot i fications(java.lang. String type), which removes all notifications whose
type corresponds to the type that you specify. You define a natification's type value when
you create the notification object. See Table 5-1.

See webl ogi c. managenent . timer. Ti mer in the WebLogic Server API Reference.

Developing Manageable Applications Using JMX for Oracle WebLogic Server

G31980-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 6

Accessing Custom MBeans

This chapter describes ways to access your custom MBeans by means other than
programmatic JMX access to them. You can use any JMX-compliant management system to
access your MBeans. See the Oracle Technology Network Web site, which provides links to
books, white papers, and other information on JMX: htt p: // www. or acl e. coni t echnet wor k/
javal j avase/tech/javamanagenent - 140525. htmi .

This chapter includes the following sections:

Accessing Custom MBeans from JConsole

The JDK includes JConsole, a Swing-based JMX client that you can use to browse MBeans.
You can browse the MBeans in any WebLogic Server MBean server and in the JVM platform
MBean server.

Oracle recommends that you use JConsole only in a development environment; it consumes
significant amounts of resources. See Using JConsole to Monitor Applications at http://
www. or acl e. com t echnetwork/articles/javaljconsol e-1564139. htni .

For more information about accessing WebLogic Server MBeans from JConsole with
w thint3client.jar and webl ogi c.jar, see Using JConsole To Access WebLogic Server
MBeans in Developing Standalone Clients for Oracle WebLogic Server.

@® Note

Thew jnxclient.jar andw client.jar are removed in WebLogic Server 14c
(14.1.1.0.0). If you are using an earlier version of WebLogic Server that has
wjmclient.jar andw client.jar, see Accessing Custom MBeans from JConsole
in the Developing Manageable Applications Using JMX for Oracle WebLogic Server
document for 12c¢ (12.2.1.4.0).

Accessing Custom MBeans from WebLogic Scripting Tool

If you register your MBeans in the Runtime MBean Server or Domain Runtime MBean Server,
you can use WebLogic Scripting Tool to access your custom MBeans.

For more information, see Accessing Other WebLogic MBeans and Custom MBeans in
Understanding the WebLogic Scripting Tool.

Developing Manageable Applications Using JMX for Oracle WebLogic Server
G31980-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 1

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/articles/java/jconsole-1564139.html
http://www.oracle.com/technetwork/articles/java/jconsole-1564139.html
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/jmxpg/accesscus.html#GUID-B993430F-C464-495E-8836-DD263BEF0A16

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Introduction
	2 Understanding JMX
	What Management Services Can You Develop with JMX?
	Creating Management-Aware Applications
	When Is It Appropriate to Use JMX?
	What Management Services Have Oracle Partners Developed?
	JMX Layers
	Indirection and Introspection
	Notifications and Monitor MBeans
	How JMX Notifications Are Broadcast and Received
	Active Polling with Monitor MBeans

	3 Designing Manageable Applications
	Benefits of Oracle Best Practices
	Use Standard MBeans
	Registering Custom MBeans in the WebLogic Server Runtime Bean Server
	Registering Custom MBeans in the Domain Runtime MBean Server
	Use ApplicationLifecycleListener to Register Application MBeans
	Unregister Application MBeans When Applications Are Undeployed
	Place Management Logic for EJBs and Servlets in a Delegate Class
	Use Open MBean Data Types
	Emit Notifications Only When Necessary
	Additional Design Considerations
	Registering MBeans in the JVM Platform MBean Server
	Registering Application MBeans by Using Only JDK Classes
	Organizing Managed Objects and Business Objects
	Packaging and Accessing Management Classes
	Securing Custom MBeans with Roles and Policies

	4 Instrumenting and Registering Custom MBeans
	Overview of the MBean Development Process
	Create and Implement a Management Interface
	Modify Business Methods to Push Data
	Register the MBean
	Package Application and MBean Classes

	5 Using the WebLogic Server JMX Timer Service
	Overview of the WebLogic Server JMX Timer Service
	Creating the Timer Service: Main Steps
	Configuring a Timer MBean to Emit Notifications
	Creating Date Objects
	Example: Generating a Notification Every Five Minutes After 9 AM
	Removing Notifications

	6 Accessing Custom MBeans
	Accessing Custom MBeans from JConsole
	Accessing Custom MBeans from WebLogic Scripting Tool

