Oracle® Fusion Middleware

Adding WebLogic Logging Services to
Applications Deployed on Oracle WebLogic

Server

15¢ (15.1.1.0.0)
(G31431-01
October 2025

ORACLE

Oracle Fusion Middleware Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server,
15¢ (15.1.1.0.0)

G31431-01
Copyright © 2007, 2025, Oracle and/or its affiliates.
Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience i
Documentation Accessibility i
Diversity and Inclusion i
Related Documentation i
Conventions ii

1 Application Logging and WebLogic Logging Services

About WebLogic Logging Services
Integrating Application Logging with WebLogic Logging Services: Main Steps
Accessing the WebLogic Server Logger

2 Internationalization and Localization for WebLogic Server

About Internationalization and Localization Standards

Understanding Internationalization and Localization for WebLogic Server
Understanding Message Catalogs

Understanding Java Interfaces for Internationalization

NN R R

Main Steps for Creating an Internationalized Message

3 Using Message Catalogs with WebLogic Server

Overview of Message Catalogs
Message Catalog Hierarchy
Guidelines for Naming Message Catalogs
Using Message Arguments
Retrieving Additional Information About an Error Message
Message Catalog Formats
Example Log Message Catalog
Elements of a Log Message Catalog
message_catalog Element
log_message Element

0o oo A DA BB W WOWDNMNDNPRPPEP

Child Elements of log_message Element

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of iii

Example Simple Text Catalog

Elements of a Simple Text Catalog
message_catalog Element
message Element
messagebody Element

Example Locale-Specific Catalog

Elements of a Locale-Specific Catalog
locale_message_catalog Element
log_message Element
Other locale_message_catalog Elements

4 Writing Messages to the WebLogic Server Log

10
11
11
12
12
12
13

Using the 118N Message Catalog Framework: Main Steps

Create Message Catalogs

Compile Message Catalogs

Example: Compiling Message Catalogs

Use Messages from Compiled Message Catalogs
Using the NonCatalogLogger APls
Using ServletContext
Configuring Servlet and Resource Adapter Logging
Writing Messages from a Client Application
Writing Debug Messages

5 Using the WebLogic Server Message Editor

© O© N N O b WPk PP

About the Message Editor
Starting the Message Editor
Working with Catalogs
Browsing to an Existing Catalog
Creating a New Catalog
Adding Messages to Catalogs
Entering a New Log Message
Entering a New Simple Text Message
Finding Messages
Finding a Log Message
Finding a Simple Text Message
Using the Message Viewer
Viewing All Messages in a Catalog
Viewing All Messages in Several Catalogs
Selecting a Message to Edit from the Message Viewer
Editing an Existing Message

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

D OO O O O 01 O O A W W NDNMNDNPFP P

October 7, 2025
Page ii of iii

Retiring and Unretiring Messages 7

6 Using the WebLogic Server Internationalization Utilities
WebLogic Server Internationalization Utilities 1
WebLogic Server Internationalization and Localization 1
weblogic.i18ngen Utility 2
weblogic.l10ngen Utility 4
Message Catalog Localization 5
Examples 5
weblogic.GetMessage Utility 6
A Localizer Class Reference for WebLogic Server
About Localizer Classes A-1
Localizer Methods A-1
Localizer Lookup Class A-2
= Loggable Object Reference for WebLogic Server
About Loggable Objects B-1
How To Use Loggable Objects B-1
C TextFormatter Class Reference for WebLogic Server
About TextFormatter Classes C-1
Example of an Application Using a TextFormatter Class C-1
D Logger Class Reference for WebLogic Server
About Logger Classes D-1
Example of a Generated Logger Class D-1

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page iii of iii

ORACLE’

Preface

Audience

This document describes how to use WebLogic Server logging services to monitor application
events. It describes WebLogic support for internationalization and localization of log messages,
and shows you how to use the templates and tools provided with WebLogic Server to create or
edit message catalogs that are locale-specific.

This document is a resource for Java Platform, Enterprise Edition (Java EE) application
developers who want to use WebLogic message catalogs and logging services as a way for
their applications to produce log messages and want to integrate their application logs with
WebLogic Server logs. This document is relevant to all phases of a software project, from
development through test and production phases.

This document does not address how you configure logging, subscribe to and filter log
messages. For links to information on these topics, see Related Documentation.

It is assumed that the reader is familiar with Java EE and Web technologies, object-oriented
programming techniques, and the Java programming language.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation

The corporate Web site provides all documentation for WebLogic Server. Specifically, View
Logs and Configure Logs in the Oracle WebLogic Remote Console Online Help describes

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of iii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

ORACLE
Preface

configuring log files and log messages that a WebLogic Server instance generates.Configuring
WebLogic Logging Services in Configuring Log Files and Filtering Log Messages for Oracle
WebLogic Server describes configuring WebLogic Server to write messages to log files,
filtering message output, and listening for the log messages that WebLogic Server broadcasts.

For general information about internationalization and localization, refer to the following
sources:

e The Java Developer Connection at http://www.oracle.com/technetwork/java/
index.html

* The Internationalization section of the World Wide Web Consortium (W3C) Web Site at
http://www.w3.0rg

Logging Samples and Tutorials

Oracle provides a variety of code examples and tutorials that show WebLogic Server
configuration and API use, and provide practical instructions on how to perform key
development tasks. For more information, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

Logging Examples in the WebLogic Server Distribution

WebLogic Server optionally installs APl code examples in
ORACLE_HOVE\wlserver\samples\server, where ORACLE_HOME represents the directory in which
you installed WebLogic Server.

Internationalizing Applications Using Simple Message Catalogs Example

This example shows various methods for displaying localized text using simple message
catalogs. Using any of the languages supported by the example requires the appropriate
operating system localization software and character encoding. The package that contains this
example is:

java examples.il8n.simple.HelloWorld [lang [country]]
where lang is a two-character ISO language code (for example, en for English) and country is
a two-character ISO country code (for example, US for the United States).

The files are located in
ORACLE_HOVE\wlserver\samples\server\examples\src\examples\i18n\simple, where
ORACLE_HOME represents the directory in which you installed WebLogic Server.

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page ii of iii

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.w3.org

ORACLE’

Preface
Convention Meaning
italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.
monospace Monospace type indicates commands within a paragraph, URLs, code in

examples, text that appears on the screen, or text that you enter.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page iii of iii

Application Logging and WebLogic Logging
Services

You can use WebLogic logging services for your application logging. You can keep a record of
which user invokes specific application components, to report error conditions, or to help
debug your application before releasing it to a production environment.

About WebLogic Logging Services

WebLogic logging services provide information about server and application events. Your
application can also use WebLogic logging services to communicate its status and respond to
specific events. See Understanding WebLogic Logging Services in Configuring Log Files and
Filtering Log Messages for Oracle WebLogic Server.

Two features of WebLogic logging services from which your application can benefit are its
extensibility and support for internationalization.

You can create your own catalog of log messages and use WebLogic utilities to generate Java
classes that you can use in your application code. The log messages generated from your
applications will be integrated with and treated in the same way as log messages generated by
the server. See Writing Messages to the WebLogic Server Log.

Log message catalogs you create can be written in any language and can be accompanied by
translations for different locales. WebLogic support for internationalization ensures that the log
messages are present in the appropriate language for the current locale under which
WebLogic Server is running. See Internationalization and Localization for WebLogic Server.

A major advantage of integrating your application logging with WebLogic logging framework is
ease of management. The WebLogic Remote Console lets you manage all of the log files and
related options. See View Logs and Configure Logs in the Oracle WebLogic Remote Console
Online Help.

Integrating Application Logging with WebLogic Logging Services:
Main Steps

To debug your applications, you must first generate the log messages from your applications
and integrate them with WebLogic logging services. There are several ways to do this
operation:

« Use WebLogic tools to build custom log message catalogs and their associated Java APIs.
Applications can invoke the log methods exposed by these interfaces to generate log
messages. The message catalogs can be easily internationalized. See Using Message
Catalogs with WebL ogic Server.

* Use the WebLogic non-catalog logger to generate log messages. With NonCataloglLogger,
instead of calling messages from a catalog, you place the message text directly in your
application code. See Using the NonCatalogLogger APIs.

* Use a log() method available to servlets and JSPs in javax.servlet._ServletContext.
See Using ServletContext.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE’

Chapter 1
Accessing the WebLogic Server Logger

Application developers who do not use WebLogic message catalogs, NonCatalogLogger, or
servlet logging can do the following:

* Use the Java Logging APlIs to produce and distribute messages.
* Use the Commons API to produce messages.

See org.apache.commons. logging at http://jakarta.apache.org/commons/
logging/api/index.html.

e Use the Server Logging Bridge handler for Java Logging which redirects application log
messages to WebLogic logging services.

Accessing the WebLogic Server Logger

The WebLogic logging infrastructure supports a logger on each server that collects the log
events generated by your own applications and subsystems. WebLogic Server provides direct
access to the logger on each server, as well as to the domain logger on the Administration
Server.

By default, WebLogic logging services use an implementation based on the Java Logging
APIs. The LoggingHelper class provides access to the java.util.logging.Logger object
used for server logging. See the LoggingHelper Javadoc.

In addition, WebLogic logging services provide an implementation of the Jakarta Commons
LogFactory and Log interface, so you can program to the Commons API and direct log
messages to the server log file or any of the registered destinations. This API provides you
with an abstraction that insulates you from the underlying logging implementation, which could
be Java Logging.

See Server Logging Bridge in Configuring Log Files and Filtering Log Messages for Oracle
WebLogic Server.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 2

http://jakarta.apache.org/commons/logging/api/index.html
http://jakarta.apache.org/commons/logging/api/index.html

Internationalization and Localization for
WebLogic Server

The messages that are logged in WebLogic Server can be converted to multiple locale-specific
language. There are specific processes required for internationalization and localization for
WebLogic Server.

About Internationalization and Localization Standards

Oracle has adopted the World Wide Web Consortium's (W3C) recommendations for standard
formats and protocols that are usable worldwide in all languages and in all writing systems.
These standards are part of the Java internationalization APIs that are used by WebLogic
Server.

Internationalization (I18N) refers to the process of designing software so that it can be adapted
to various languages and regions easily, cost-effectively, and, in particular, without engineering
changes to the software. Localization (L10N) is the use of locale-specific language and
constructs at runtime.

Understanding Internationalization and Localization for WebLogic
Server

Localization covers not only language, but collation, date and time formats, monetary formats,
and character encoding. Messages that are logged to the WebLogic Server log can be
localized to meet your particular requirements.WebLogic Server internationalization supports
localization of two types of data:

* Log messages - Log messages are informational messages that are written to the server
log, and may also contain error messages if the appropriate message arguments are
included in the message definition. See Elements of a Log Message Catalog.

* Simple text - Simple text is any text other than log messages and exceptions that the
server must display, such as the output from a utility. Examples of simple text include
usage messages, graphical user interface (GUI) labels, and error messages. See
Elements of a Simple Text Catalog.

Understanding Message Catalogs

All internationalized text is defined in message catalogs, each of which defines a collection of
log messages or simple text.

Log messages contain data that is written to the log file. This data is predominantly dynamic
and contains information that is specific to the current state of the application and system.
When merged with text in a localized log message catalog, this data results in well-formatted,
localized messages that describe the error condition in the language of the user. The output
sent to the WebLogic Remote Console is simple text. As with log messages, simple text can be
merged with dynamic data.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 3

ORACLE’

Chapter 2
Understanding Java Interfaces for Internationalization

To create an internationalized message, you externalize all message strings in a message
catalog so that the strings can be converted to multiple locales without changing or recompiling
the code. The application code supplies runtime values to the logging methods. The logging
methods merge the code with the message string in the catalog according to the current locale.
The application code then prints a localized message in the log files.

There are three types of message catalogs:

* Log message catalogs - Collections of log messages. See Elements of a Log Message
Catalog.

* Simple text message catalogs - Collections of simple text messages. See Elements of a
Simple Text Catalog.

* Locale message catalogs - Collections of locale-specific messages corresponding to a
top-level log message or simple text catalog. See Elements of a Locale-Specific Catalog.

Message IDs in log message catalogs or locale message catalogs are unigue across all log
message or locale message catalogs. Within the message catalog file, each localized version
of the message is assigned a unigue message ID and message text specific to the error.
Ideally, a message is logged from only one location within the system so that a support team
can easily find it. Message IDs in simple text catalogs are unique within each simple text
catalog. See Using Message Catalogs with WebLogic Server.

To view the WebLogic Server message catalogs, see Error Messages.

Understanding Java Interfaces for Internationalization

WebLogic Server uses the Java internationalization interfaces to provide internationalization
and localization.

In addition to understanding how WebLogic Server handles internationalization, you should be
familiar with the Java internationalization interfaces and the following classes included in the
Java Development Kit (JDK).

Table 2-1 Internationalization Classes in JDK

Class Description

java.util.Locale Represents a specific geographical, political, or cultural region.

jJava.util .ResourceBundle Provides containers for locale-specific objects.

Java.text.MessageFormat Produces concatenated messages in a language-neutral way.

Main Steps for Creating an Internationalized Message

Creating an internationalized message comprises creating a top-level message catalog or
local-specific catalog, running the WebLogic utility for validation, and configuring your
application to use the generated runtime classes.The following steps summarize how to create
an internationalized message to use with WebLogic Server. Later sections of this guide
describe these steps in more detail.

1. Create or edit a top-level log message catalog or simple text message catalog by defining
the messages in the catalog.

In addition to message text, include information about the type and placement of any
runtime values that the message contains. See Using the WebLogic Server Message
Editor.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 3

ORACLE’

Chapter 2
Main Steps for Creating an Internationalized Message

Run weblogic.i18ngen to validate the catalog you created or edited in Step 1 and
generate runtime classes.

The generated classes contain a method for each message. The class is defined
according to information specified in the message catalog entry. The classes include
methods for logging or getting message text, depending on the type of catalog. The class
name ends with Logger or TextFormatter. See weblogic.i18ngen Utility.

Create locale-specific catalogs as required for the message catalog you created in Step 1.
See Example Locale-Specific Catalog.

Run weblogic.110ngen to process the locale-specific catalogs. See weblogic.l10ngen
Utility.
Configure your application to use the Logger or TextFormatter classes you generated in

Step 2. When the application logs or returns a message, the message is written using the
localized version of the text according to the Logger or TextFormatter classes used.

See Writing Messages to the Webl ogic Server Log.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 3

Using Message Catalogs with WebLogic
Server

A message catalog is a single XML file that contains a collection of text messages, with each
message indexed by a unique identifier. You compile these XML files into classes that contain
methods, which are the objects used to log messages at run time.

Overview of Message Catalogs

Message catalogs support multiple locales or languages. For a specific message catalog, there
is exactly one default version known as the top-level catalog, which contains the English
version of the messages. Then there are corresponding locale-specific catalogs, one for each
additional supported locale. You use the weblogic. i18ngen utility during the build process to
compile the XML message catalog files. See weblogic.i18ngen Utility.

The top-level catalog (English version) includes all the information necessary to define the
message. The locale-specific catalogs contain only the message ID, the date changed, and the
translation of the message for the specific locale.

The message catalog files are defined by an XML document type definition (DTD). The DTDs
are stored in the weblogic\msgcat directory of W._HOVE\server\lib\weblogic.jar, where
W._HOVE represents the top-level installation directory for WebLogic Server. The default path is
c:\Oracle\Middleware\Oracle_Home\wlserver; however, you are not required to install this
directory in the Oracle home, represented as ORACLE_HOME.

Two DTDs are included in the WebLogic Server installation:

e msgcat.dtd - Describes the syntax of top-level, default catalogs.
« 110n_msgcat.dtd - Describes the syntax of locale-specific catalogs.

The weblogic\msgcat directory of W._HOVE\server\lib\weblogic. jar contains templates that
you can use to create top-level and locale-specific message catalogs.

You can create a single log message catalog for all logging requirements, or create smaller
catalogs based on a subsystem or Java package. Oracle recommends using multiple
subsystem catalogs so you can focus on specific portions of the log during viewing.

For simple text catalogs, we recommend creating a single catalog for each utility being
internationalized. You create message catalogs using the Message Editor as described in
Using the WebLogic Server Message Editor.

Message Catalog Hierarchy

All messages must be defined in the default, top-level catalog. The WebLogic Server
installation includes a collection of sample catalogs in the
ORACLE_HOVE\wlserver\samples\server\examples\src\examples\il8n\msgcat directory.

Catalogs that provide different localizations of the base catalogs are defined in msgcat
subdirectories named for the locale (for example, msgcat/de for Germany). You might have a
top-level catalog named mycat.xml, and a German translation of it called . .de/mycat.xml.
Typically the top-level catalog is English. However, English is not required for any catalogs,

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 13

ORACLE

Chapter 3
Guidelines for Naming Message Catalogs

except for those in the
ORACLE_HOVE\wlserver\samples\server\examples\src\examples\il8n\msgcat directory.

Locale designations (for example, de) also have a hierarchy as defined in the
java.util.Locale documentation. A locale can include a language, country, and variant.
Language is the most common locale designation. Language can be extended with a country
code. For instance, en\US, indicates American English. The name of the associated catalog

is . .en\US\mycat.xml. Variants are vendor or browser-specific and are used to introduce minor
differences (for example, collation sequences) between two or more locales defined by either
language or country.

Guidelines for Naming Message Catalogs

Because the name of a message catalog file (without the .xml extension) is used to generate
runtime class and property names, you must choose the name carefully. Follow these
guidelines for naming message catalogs:

* Do not choose a message catalog name that conflicts with the names of existing classes in
the target package for which you are creating the message catalog.

* The message catalog name should only contain characters that are allowed in class
names.

* Follow class naming standards.

For example, the resulting class names for a catalog named Xyz.xml are XyzLogLocalizer
and XyzLogger.

The following considerations also apply to message catalog files:

* Message IDs are generally six-character strings with leading zeros. Some interfaces also
support integer representations.

@ Note

This only applies to log message catalogs. Simple text catalogs can have any
string value.

« Java lets you group classes into a collection called a package. A package name should be
consistent with the name of the subsystem in which a particular catalog resides.

e The log Localizer "classes" are actually ResourceBundle property files.

Using Message Arguments

Your message contents must conform to the patterns specified by java.text.MessageFormat.

The message body, message detail, cause, and action sections of a log message can include
message arguments, as described by java.text_MessageFormat. Only the message body
section in a simple text message can include arguments. Arguments are values that can be
dynamically set at runtime. These values are passed to routines, such as printing out a
message. A message can support up to 10 arguments, numbered 0-9. You can include any
subset of these arguments in any text section of the message definition (Message Body,
Message Detail, Probable Cause), although the message body must include all of the
arguments. You insert message arguments into a message definition during development, and
these arguments are replaced by the appropriate message content at runtime when the
message is logged.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 13

ORACLE

Chapter 3
Message Catalog Formats

The following excerpt from an XML log message definition shows how you can use message
arguments. The argument number must correspond to one of the arguments specified in the
met hod attribute. Specifically, {0} with the first argument, {1} with the second, and so on. In
Example 3-1, {0} represents the file that cannot be opened, while {1} represents the file that
will be opened in its place.

Example 3-1 Example of Message Arguments

<messagebody>Unable to open file, {0}. Opening {1}. All arguments must be in body.</
messagebody>

<messagedetail> File, {0} does not exist. The server will restore the file
contents from {1}, resulting in the use of default values for all future
requests. </messagedetail>

<cause>The file was deleted</cause>

<action>If this error repeats then investigate unauthorized access to the
file system.</action>

An example of a method attribute is as follows:

-method="1ogNoFile(String name, String path)"

The message example in Example 3-1 expects two arguments, {0} and {1}:
e Both are used in the <messagebody>
e Both are used in the <messagedetai I>

* Neither is used in <cause> or <action>

@® Note

A message can support up to 10 arguments, numbered 0-9. You can include any
subset of these arguments in any text section of the message definition (message
detail, cause, action), although the message body must include all of the
arguments.

In addition, the arguments are expected to be strings, or representable as strings. Numeric
data is represented as {n,number}. Dates are supported as {n,date}. You must assign a
severity level for log messages. Log messages are generated through the generated Logger
methods, as defined by the method attribute.

Retrieving Additional Information About an Error Message

You can retrieve the detailed description, cause, and action for any error message that appears
in the log files or on the console using the weblogic.GetMessage utility.

The weblogic.GetMessage utility displays the message content and can also be used to list all
or some subset of the installed messages. See weblogic.GetMessage Utility for more
information about using the utility.

Message Catalog Formats

The catalog format for top-level and locale-specific catalog files is slightly different. The top-
level catalogs define the textual messages for the base locale (by default, this is the English

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 13

ORACLE Chapter 3
Message Catalog Formats

language). Locale-specific catalogs (for example, those translated to Spanish) only provide
translations of text defined in the top-level version. Log message catalogs are defined
differently from simple text catalogs.Examples and elements of each type of message catalog
are described in the following sections.

Example Log Message Catalog

The following example shows a log message catalog, MyUtilLog.xml, containing one log
message. This log message illustrates the usage of the messagebody, messagedetail, cause,
and action elements.

<?xml version="1.0"?>
<IDOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
110n_package="programs.utils"
118n_package="programs.utils"
subsystem="MYUTIL"
version="1.0"
baseid=""600000"
endid="600100"
<log_message
messageid="600001"
severity="warning"
method=""logNoAuthorization(String arg0, java.util._Date argl,
int arg2)"
<messagebody>
Could not open file, {0} on {1,date} after {2,number} attempts.
</messagebody>
<messagedetail>
The configuration for this application will be defaulted to
factory settings. Custom configuration information resides
in file, {0}, created on {1,date}, but is not readable.
</messagedetai l>
<cause>
The user is not authorized to use custom configurations. Custom
configuration information resides in file, {0}, created on
{1,date}, but is not readable.The attempt has been logged to
the security log.
</cause>
<action>
The user needs to gain approriate authorization or learn to
live with the default settings.
</action>
</log_message>
</message_catalog>

Elements of a Log Message Catalog

The following sections provide reference information for the elements of a log message
catalog.

message_catalog Element

The message_catalog element represents the log message catalog. The following table
describes the attributes that you can define for the message_catalog element.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 13

ORACLE

Chapter 3
Message Catalog Formats

Table 3-1 Attributes for message_catalog Element

Attribute

Default Value

Required/

Optional

Description

i18n_package

weblogic.il8n

Optional

Java package containing generated Logger
classes for this catalog. The classes are
named after the catalog file name. For
example, for a catalog using mycat.xml, a
generated Logger class would be called

<i 18n_package>.mycatLogger.class.

Syntax: standard Java package syntax

Example:
i18n_package="programs.utils"

110n_package

weblogic.i18n

Optional

A Java package containing generated
LogLocalizer properties for the catalog. For
example, for a catalog called mycat.xml, the
following property files would be generated:

<l 10n_package>.mycatLogLocalizer.pr
operties and

<l 10n_package>mycatLogLocal izerDeta
il.properties.

Syntax: standard Java package syntax

Example:
110n_package=""programs.utils"

subsystem

None

Required

An acronym identifying the subsystem
associated with this catalog. The name of the
subsystem is included in the server log and is
used for message isolation purposes.

Syntax: a String
Example: subsystem="MYUTIL"

version

None

Required

Specifies the version of the msgcat.dtd
being used.

Use: Must be "1.0"
Syntax: X.y where x and y are numeric.
Example: version="1.0"

baseid

000000 for
WebLogic Server
catalogs

500000 for user-
defined catalogs

Optional

Specifies the lowest message ID used in this
catalog.

Syntax: one to six decimal digits.
Example: baseid="600000"

endid

499999 for
WebLogic Server
catalogs

999999 for user-
defined catalogs

Optional

Specifies the highest message ID used in this
catalog.

Syntax: one to six decimal digits.
Example: endid="600100"

loggable

false

Optional

Indicates whether to generate additional
methods that return loggable objects.

Syntax: "true" or "false"
Example: loggable=""true"

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 13

ORACLE Chapter 3
Message Catalog Formats

Table 3-1 (Cont.) Attributes for message_catalog Element
|

Attribute Default Value Required/ Description
Optional
prefix Null for user- Optional Specifies a String to be prepended to
defined catalogs message IDs when logged. Server messages
"BEA" for WebLogic default to "BEA" as the prefix and may not

specify a different prefix. User messages can
specify any prefix. A prefixed message ID is
presented in a log entry as follows:

<[prefix-]id>

where prefix is this attribute and id is the
six-digit message ID associated with a
specific message.

For example, if prefix is "XYZ", then
message 987654 would be shown in a log
entry as <XYZ-987654>. If the prefix is not
defined, then the log entry would be
<987654>.

Syntax: any String (should be limited to five
characters)

Example: prefix="BEA"

Server catalogs

description Null (no Optional An optional attribute that serves to document
description) the catalog content.
Syntax: any String
Example: description="Contains
messages logged by the foobar
application”

log_message Element

The following table describes the attributes that you can define for the log_message element.

Table 3-2 Attributes for log_message Element
|

Attribute Default Value Required/ Description
Optional
messageid None Required Unique identifier for this log message. Uniqueness

should extend across all catalogs. Value must be in
range defined by baseid and endid attributes.

Use: Value must be in the range defined by the baseid
and endid attributes defined in the message_catalog
attribute.

Syntax: one to six decimal digits.
Example: messageid="600001"

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 13

ORACLE Chapter 3
Message Catalog Formats

Table 3-2 (Cont.) Attributes for log_message Element
|

Attribute Default Value Required/ Description
Optional
datelastcha None Optional Date/time stamp used for managing modifications to this
nged message. The date is supplied by utilities that run on the
catalogs.

The syntax is:
Long.toString(new Date().getTime());

Use: The date is supplied by utilities (such as
MessageEditor), that run on the catalogs.

Syntax: Long.toString(new Date().getTime());

severity None Required Indicates the severity of the log message. Must be one
of the following: debug, info, warning, error,
notice, critical, alert, or emergency. User-
defined catalogs may only use debug, info, warning,
and error.

Example: severity="warning"

method None Required Method signature for logging this message.

The syntax is the standard Java method signature,
without the qualifiers, semicolon, and extensions.
Argument types can be any Java primitive or class.
Classes must be fully qualified if not in java. lang.
Classes must also conform to
Java.text.MessageFormat conventions. In general,
class arguments should have a useful toString()
method.

Arguments can be any valid name, but should follow the
convention of argn where n is 0 through 9. There can be
no more than 10 arguments. For each argn there should
be at least one corresponding placeholder in the text
elements described in Child Elements of log_message
Element. Placeholders are of the form {n}, {n,nunber }
or {n,date}.

methodtype logger Optional Specifies type of method to generate. Methods can be
loggers or getters. Logger methods format the message
body into the default locale and log the results. Getter
methods return the message body prefixed by the
subsystem and messageid, as follows:
[susbsystem:msgid]text

Syntax: values are "logger" and "getter"

stacktrace true Optional Indicates whether to generate a stack trace for
Throwable arguments. Possible values are true or
false. When the value is true, a trace is generated.

Syntax: stacktrace=""true"

retired false Optional Indicates whether message is retired. A retired message
is one that was used in a previous release but is now
obsolete and not used in the current version. Retired
messages are not represented in any generated classes
or resource bundles.

Syntax: values are "true" and "false"
Example: retired="true"

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 13

ORACLE Chapter 3
Message Catalog Formats

Child Elements of log_message Element

The following table describes the child elements of the log_message element.

Table 3-3 Child Elements of log_message Element

Element Parent Required/Optional Description
Element
messagebody log_message Required A short description for this message.

The messagebody element can contain a O to
10 placeholder as {n}, to be replaced by the
appropriate argument when the log message
is localized.

The message body must include placeholders
for all arguments listed in the corresponding
method attribute, unless the last argument is
throwable or a subclass.

Be careful when using single quotes, because
these are specially parsed by
jJava.text.MessageFormat. If it is
appropriate to quote a message argument,
use double quotes (as in the example below).
If a message has one or more placeholders,
in order for a single quote to appear correctly
(for example, as an apostrophe), it must be
followed by a second single quote.

Syntax: a String
Example:

<messagebody>Could not open file
"{0}" created on {1,date}.</
messagebody>

messagedetail log _message Optional A detailed description of the event. This
element may contain any argument place
holders.
Syntax: a String
Example:

<messagedetail>The configuration
for this application will be
defaulted to factory settings.</
messagedetai >

cause log_message Optional The root cause of the problem. This element
can contain any argument place holders.
Syntax: a String
Example: <cause>The user is not
authorized to use custom
configurations. The attempt has
been logged to the security log.</
cause>

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 13

ORACLE Chapter 3
Message Catalog Formats

Table 3-3 (Cont.) Child Elements of log_message Element
|

Element Parent Required/Optional Description
Element
action log_message Optional The recommended resolution. This element

can contain any argument place holders.
Syntax: a String

Example: <action>The user needs to
gain appropriate authorization or
learn to live with the default
settings.</action>

Example Simple Text Catalog

Example 3-2 shows a simple text catalog, MyUtilLabels.xml, with one simple text definition:

<messagebody>
File
</messagebody>

Example 3-2 Example of a Simple Text Catalog

<?xml version="1.0"7?>
<IDOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog>
110n_package="programs.utils"
i18n_package="programs.utils"
subsystem="MYUTIL"
version="1.0"
<message>
messageid="FileMenuTitle"
<messagebody>
File
</messagebody>
</message>
</message_catalog>

Elements of a Simple Text Catalog

The following sections provide reference information for the simple text catalog elements.

message_catalog Element

The following table describes the attributes that you can define for the message_catalog
element.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 13

ORACLE Chapter 3
Message Catalog Formats

Table 3-4 Attributes for message_catalog Element

__|
Attribute Default Value Required/Optional Description

110n_package weblogic.il8n Optional Java package containing generated
TextFormatter classes and
TextLocalizer properties for this catalog.
The classes are named after the catalog file
name. mycat.xml would have the properties
file,
<l 10n_package>.mycatLoglLocalizer.p
roperties generated.

Syntax: standard Java package syntax

Example:
110n_package=""programs.utils"

subsystem None Required An acronym identifying the subsystem
associated with this catalog. The name of
the subsystem is included in the server log
and is used for message isolation purposes.

Syntax: a String
Example: subsystem="MYUTIL"

version None Required Specifies the version of the msgcat.dtd
being used. The format is n. n, for example,
version="1.0". Must be at least "1.0".

Example: version="1.0"

description Null Optional An optional attribute that documents the
catalog content.

Syntax: a String

Example: description="Contains
labels used in the foobar GUI"

message Element

The following table describes the attributes that you can define for the message element.

Table 3-5 Attributes for message Element

Attribute Default Value Required/ Description
Optional
messageid None Required Unique identifier for this log message in alpha-

numeric string format. Uniqueness is required only
within the context of this catalog. message is a
child element of message_catalog.

datelastchanged None Optional Date/time stamp useful for managing modifications
to this message.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 13

ORACLE Chapter 3
Message Catalog Formats

Table 3-5 (Cont.) Attributes for message Element
]

Attribute Default Value Required/ Description
Optional
method None Optional Method signature for formatting this message.

The syntax is a standard Java method signature,
less return type, qualifiers, semicolon, and
extensions. The return type is always String.
Argument types can be any Java primitive or class.
Classes must be fully qualified if not in java. lang.
Classes must also conform to
jJava.text.MessageFormat conventions. In
general, class arguments should have a useful
toString() method, and the corresponding
MessageFormat placeholders must be strings;
they must be of the form {n}. Argument names can
be any valid name. There can be no more than 10
arguments.

For each argument there must be at least one
corresponding placeholder in the messagebody
element described below. Placeholders are of the
form {n}, {n,number} or {n,date}.

Example:

method="getNoAuthorization

(String filename, java.util.Date
creDate)"”

This example would result in a method in the
TextFormatter class as follows:

public String getNoAuthorization

(String filename, java.util.Date
creDate)

messagebody Element

The following table describes the child element of the message element.

Table 3-6 Child Elements of message Element
]

Element Parent Required/ Description
Element Optional
messagebody message Required The text associated with the message.

This element may contain zero or more
placeholders {n} that will be replaced by the
appropriate arguments when the log message is
localized.

Example Locale-Specific Catalog

Example 3-3 shows a French translation of a message that is available
in ... \msgcat\fr\MyUtilLabels.xml.

The translated message appears as shown in Example 3-3.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 13

ORACLE

Chapter 3
Message Catalog Formats

Example 3-3 Example of a Message Translated to French

<?xml version="1.0"?>
<IDOCTYPE message_catalog PUBLIC
"weblogic-locale-message-catalog-dtd"
"http://www._bea.com/servers/wls90/dtd/110n_msgcat.dtd">
<locale_message_catalog
110n_package="programs.utils"
subsystem="MYUTIL"
version="1.0">
<message>
<messageid="FileMenuTitle">
<messagebody> Fichier </messagebody>
</message>
</locale_message_catalog>

When entering text in the messagebody, messagedetail, cause, and action elements, you must
use a tool that generates valid Unicode Transformation Format-8 (UTF-8) characters, and have
appropriate keyboard mappings installed. UTF-8 is an efficient encoding of Unicode character-
strings that optimizes the encoding ASCII characters. Message catalogs always use UTF-8
encoding. The MessageLocalizer utility that is installed with WebLogic Server is a tool that can
be used to generate valid UTF-8 characters.

Elements of a Locale-Specific Catalog

The locale-specific catalogs are subsets of top-level catalogs. They are maintained in
subdirectories named for the locales they represent. The elements and attributes described in
the following sections are valid for locale-specific catalogs.

locale_message catalog Element

The following table describes the attributes that you can define for the
locale_message_catalog element.

Table 3-7 Attributes for locale_message_catalog Element
]

Attribute Default Value Required/ Description
Optional
110n_package weblogic.il8n Optional Java package containing generated

LogLocalizer or TextLocalizer
properties for this catalog.properties file are
named after the catalog file name.

For example, for a French log message
catalog called mycat.xml, a properties file
called

<l 10n_package>.mycatLogLocalizer_fr
_FR_properties is generated.

version None Required Specifies the version of the msgcat.dtd
being used. The format is n. n, for example,
version="1.0". Must be at least "1.0".

log_message Element

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

The locale-specific catalog uses the attributes defined for the log_message element in the top-
level log message catalog so this element does not need to be defined.

October 7, 2025
Page 12 of 13

ORACLE Chapter 3
Message Catalog Formats

Other locale_message_catalog Elements

The locale-specific catalog uses the messagebody, messagedetail, cause, and action catalog
elements defined for the top-level log message catalog so these elements do not need to be
defined.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 13 of 13

Writing Messages to the WebLogic Server Log

You can facilitate the management of your application by writing log messages to the
WebLogic Server log file.

Using the 118N Message Catalog Framework: Main Steps

The internationalization (I1L8N) message catalog framework provides a set of utilities and APls
that your application can use to send its own set of messages to the WebLogic Server log.To
write log messages using the 118N message catalog framework, complete the tasks described
in the following sections.

Create Message Catalogs

A message catalog is an XML file that contains a collection of text messages. Usually, an
application uses one message catalog to contain a set of messages in a default language and
optionally, additional catalogs to contain messages in other languages.

To create and edit a properly formatted message catalog, use the WebLogic Message Editor
utility, which is a graphical user interface (GUI) that is installed with WebLogic Server. To create
corresponding messages in local languages, use the Message Localizer, which is also a GUI
that WebLogic Server installs.

To access the Message Editor, do the following from a WebLogic Server host:

1. Set the classpath by entering W._HOVE\server\bin\setWLSEnv.cmd (setWLSEnv.sh on
UNIX), where W._HOME is the directory in which you installed WebLogic Server.

2. Enter the following command: java weblogic.MsgEditor
3. To create a new catalog, choose File > New Catalog.

See Using the WebLogic Server Message Editor.

4. When you finish adding messages in the Message Editor, select File > Save Catalog.
5. Then select File > Exit.

To access the Message Localizer, do the following from a WebLogic Server host:

1. Setthe classpath by entering W._HOVE\server\bin\setWLSEnv.cmd (setWLSEnv.sh on
UNIX), where W._HOME is the directory in which you installed WebLogic Server.

2. Enter the following command: java weblogic.MsgLocalizer
3. Use the Message Localizer GUI to create locale-specific catalogs.

For basic command line help, type: java weblogic.MsgEditor -help

Compile Message Catalogs

After you create message catalogs, you use the i18ngen and 110ngen command-line utilities to
generate properties files and to generate and compile Java class files. The utilities take the
message catalog XML files as input and create compiled Java classes. The Java classes

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 10

ORACLE

Chapter 4
Using the 118N Message Catalog Framework: Main Steps

contain methods that correspond to the messages in the XML files. See Using the Webl ogic
Server Internationalization Utilities.

To compile the message catalogs, do the following:

1.

From a command prompt, use W._HOVE\server\bin\setWLSEnv.cmd (setWLSEnv.sh on
UNIX) to set the classpath, where W._HOVE is the directory in which you installed WebLogic
Server.

Enter the following command:

java weblogic.i18ngen -build -d targetdirectory source-files

In the preceding command:

e targetdirectory represents the root directory in which you want the 118ngen utility to
locate the generated and compiled files. The Java files are placed in sub-directories
based on the 118n_package and 110n_package values in the message catalog.

The catalog properties file, 118n_user_properties, is placed in the t arget di rect ory.
The default target directory is the current directory.

e source-files represents the message catalog files that you want to compile. If you
specify one or more directory names, i18ngen processes all XML files in the listed
directories. If you specify file names, the names of all files must include an XML suffix.
All XML files must conform to the msgcat.dtd syntax.

Note that when the i18ngen generates the Java files, it appends Logger to the name of
each message catalog file.

If you created locale-specific catalogs in Create Message Catalogs, do the following to
generate properties files:

a. Inthe current command prompt, add the t ar get di r ect or y that you specified in step 2,
above, to the CLASSPATH environment variable. To generate locale-specific
properties files, all of the classes that the 118ngen utility generated must be on the
classpath.

b. Enter the following command:

java weblogic.110ngen -d targetdirectory source-files

In the preceding command:

e targetdirectory represents the root directory in which you want the 110ngen
utility to locate the generated properties files. Usually this is the same
t ar get di rect ory that you specified in step 2. The properties files are placed in
sub-directories based on the 110n_package values in the message catalog.

« source-files represents the message catalogs for which you want to generate
properties files. You must specify top-level catalogs that the Message Editor
creates; you do not specify locale-specific catalogs that the Message Localizer
creates. Usually this is the same set of sour ce-fil es or source directories that
you specified in step 2.

In most cases, the recommended practice is to include the message class files and
properties files in the same package hierarchy as your application.

However, if you do not include the message classes and properties in the application's
package hierarchy, you must make sure the classes are in the application's classpath.

For complete documentation of the 118ngen commands, see Using the Webl ogic Server
Internationalization Utilities.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 10

ORACLE Chapter 4
Using the 118N Message Catalog Framework: Main Steps

Example: Compiling Message Catalogs

In this example, the Message Editor created a message catalog that contains one message of
type loggable. The Message Editor saves the message catalog as the following file:
c:\MyMsgCat\MyMessages.xml.

Example 4-1 shows the contents of the message catalog.

Example 4-1 Sample Message Catalog

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
118n_package=""com.xyz.msgcat"
110n_package=""com.xyz.msgcat.110n"
subsystem="MyClient"
version="1.0"
baseid="700000"
endid="800000"
loggables=""true"
prefix="Xyz-"
>
<I-- Welcome message to verify that the class has been invoked-->
<logmessage
messageid="700000"
datelastchanged="1039193709347"
datehash=""-1776477005"
severity="info"
method="startup()"

<messagebody>
The class has been invoked.
</messagebody>
<messagedetail>
Verifies that the class has been invoked
and is generating log messages
</messagedetail>
<cause>
Someone has invoked the class in a remote JVM.
</cause>
<action> </action>
</logmessage>
</message_catalog>

In addition, the Message Localizer creates a Spanish version of the message in
MyMessages.xml. The Message Localizer saves the Spanish catalog as
c:\MyMsgCat\es\ES\MyMessages.xml, shown in Example 4-2.

Example 4-2 Locale-Specific Catalog for Spanish

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE locale_message _catalog PUBLIC
"weblogic-locale-message-catalog-dtd"”
"http://www._bea.com/servers/wls90/dtd/110n_msgcat.dtd">
<locale_message_catalog
version="1.0"
>
<I-- Mensaje agradable para verificar que se haya invocado la clase. -->
<logmessage

messageid="700000"

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 10

ORACLE Chapter 4
Using the 118N Message Catalog Framework: Main Steps

datelastchanged="1039546411623"
>
<messagebody>
La clase se haya invocado.
</messagebody>
<messagedetail>
Verifica que se haya invocado la clase y esta
generando mensajes del registro.
</messagedetai >
<cause>Alguien ha invocado la clase en un JVM alejado.</cause>
<action> </action>
</logmessage>
</locale_message_catalog>

Compiling the Message Catalog

To compile the message catalog that the Message Editor created, enter the following
command:

java weblogic.i18ngen -build -d c:\MessageOutput c:\MyMsgCat\MyMessages.xml

The 118ngen utility creates the following files:

e c:\MessageOutput\il8n_user.properties

* c:\MessageOutput\com\xyz\msgcat\MyMessagesLogger.java

e c:\MessageOutput\com\xyz\msgcat\MyMessagesLogger.class

e c:\MessageOutput\com\xyz\msgcat\110n\MyMessagesLogLocal izer _properties

e c:\MessageOutput\com\xyz\msgcat\110n\MyMessagesLogLocal izerDetails.properties

Creating Properties Files

To create properties files for the Spanish catalog, do the following:
1. Add the 118n classes to the command prompt's classpath by entering the following:
2. set CLASSPATH=%CLASSPATH%;c:\MessageOutput
3. Enter the following command:
java weblogic.110ngen -d c:\MessageOutput c:\MyMsgCat\MyMessages.xml
The 110ngen utility creates the following files:
e c:\MessageOutput\com\xyz\msgcat\110n\MyMessagesLogLocal izer_es_ES._properties

e c:\MessageOutput\com\xyz\msgcat\110n\MyMessagesLogLocal izerDetails_es ES.prope
rties

Use Messages from Compiled Message Catalogs

The classes and properties files generated by 118ngen and 110ngen provide the interface for
sending messages to the WebLogic Server log. Within the classes, each log message is
represented by a method that your application calls.

To use messages from compiled message catalogs:

1. Inthe class files for your application, import the Logger classes that you compiled in
Compile Message Catalogs.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 10

ORACLE

Using the

Chapter 4
Using the NonCatalogLogger APIs

To verify the package name, open the message catalog XML file in a text editor and
determine the value of the 118n_package attribute. For example, the following segment of
the message catalog in Example 4-1 indicates the package name:

<message_catalog
i18n_package=""com.xyz.msgcat"
To import the corresponding class, add the following line:
import com.xyz.msgcat.MyMessagesLogger;
2. Call the method that is associated with a message name.

Each message in the catalog includes a method attribute that specifies the method you call
to display the message. For example, the following segment of the message catalog in
Example 4-1 shows the name of the method:

<logmessage
messageid="700000"
datelastchanged=""1039193709347"
datehash="-1776477005"
severity="info"
method="startup()"

>

The following example illustrates a simple class that calls this startup method.

import com.xyz.msgcat.MyMessageslLogger;

public class MyClass {
public static void main (String[] args) {
MyMessagesLogger .startup();

}
}

If the JVM's system properties specify that the current location is Spain, then the message is
printed in Spanish.

NonCatalogLogger APIs

In addition to using the 118N message catalog framework, your application can use the
weblogic.logging.NonCataloglLogger APIs to send messages to the WebLogic Server log.
With NonCataloglLogger, instead of calling messages from a catalog, you place the message
text directly in your application code.Oracle recommends that you do not use this facility as the
sole means for logging messages if your application needs to be internationalized.
NonCatalogLogger is also intended for use by client code that is running in its own JVM (as
opposed to running within a WebLogic Server JVM). A subsequent section, Writing Messages
from a Client Application, provides more information.

To use NonCataloglLogger in an application that runs within the WebLogic Server JVM, add
code to your application that does the following:

1. Imports the weblogic.logging.NonCataloglLogger interface.
2. Uses the following constructor to instantiate a NonCatalogLogger object:

NonCataloglLogger(java.lang.String nyAppl i cation)

In the preceding syntax, myAppl i cat i on represents a name that you supply to identify
messages that your application sends to the WebLogic Server log.

3. Calls any of the NonCatalogLogger methods.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 10

ORACLE

Chapter 4
Using the NonCatalogLogger APIs

Use the following methods to report normal operations:
e info(java.lang.String msg)
« info(java.lang.String msg, java.lang.Throwable t)

Use the following methods to report a suspicious operation, event, or configuration that
does not affect the normal operation of the server or application:

e warning(java.lang.String msg)
e warning(Java.lang.String msg, java.lang.Throwable t)

Use the following methods to report errors that the system or application can handle with
no interruption and with limited degradation in service.

e error(java.lang.String msg)
e error(Java.lang.String msg, java.lang.Throwable t)

Use the following methods to provide detailed information about operations or the state of
the application. These debug messages are not broadcast as JMX notifications. If you use
this severity level, we recommend that you create a "debug mode" for your application.
Then, configure your application to output debug messages only when the application is
configured to run in the debug mode. For information about using debug messages, see
Writing Debug Messages.

e debug(Java.lang.String msg)
e debug(java.lang.String msg, java.lang.Throwable t)

All methods that take a Throwable argument can print the stack trace in the server log. For
information on the NonCataloglLogger APIs, see the weblogic.logging.NonCataloglLogger
Javadoc.

The following example illustrates a servlet that uses NonCatalogLogger APIs to write
messages of various severity levels to the WebLogic Server log.

import java.io.PrintWriter;
import java.io.lOException;
import javax.servlet_http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet_http.HttpServletResponse;
import javax.servlet.ServletException;
import javax.naming.Context;
import weblogic.jndi.Environment;
import weblogic.logging.NonCataloglLogger;
public class MyServlet extends HttpServlet {
public void service (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, I0Exception {
PrintWriter out = response.getWriter();
NonCataloglLogger myLogger = null;
try {
out._printIn("Testing NonCataloglLogger. See
WLS Server log for output message.™);
// Constructing a NonCatalogLogger instance. All messages from this
// instance will include a <MyApplication> string.
myLogger = new NonCatalogLogger('MyApplication™);
// Outputting an INFO message to indicate that your application has started.
mylogger.info(""Application started.™);
// For the sake of providing an example exception message, the next
// lines of code purposefully set an initial context. If you run this
// servlet on a server that uses the default port number (7001), the
// servlet will throw an exception.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 10

ORACLE Chapter 4
Using ServletContext

Environment env = new Environment();
env.setProviderUrl(*"t3://localhost:8000");
Context ctx = env.getlnitialContext();

}
catch (Exception e){
out.printIn(Can"t set initial context: " + e.getMessage());
// Prints a WARNING message that contains the stack trace.
mylogger.warning(''Can"t establish connections. ", e);

}
}
}

When the servlet illustrated in the previous example runs on a server that specifies a listen port
other than 8000, the following messages are printed to the WebLogic Server log file. Note that
the message consists of a series of strings, or fields, surrounded by angle brackets (< >).

#it#<May 27, 2004 8:45:42 AM EDT> <Error> <MySubsystem> <myhost> <adminServer>

<ExecuteThread: "0 for queue: “"weblogic.kernel._Default (self-tuning)"> <system>
<> <> <1085661942864> <BEA-000000> <Test NonCataloglLogger message
java.lang.Exception: Test NonCatalogLogger message

Using ServletContext

The servlet specification provides the log(j ava. | ang. String nsg)and log(j ava. | ang. String
meg, j ava. l ang. Throwabl e t) APIs in javax.servlet.ServletContext that your servlets and
JSPs can use to write a simple message to the WebLogic Server log.For more information on
using these APIs, see the Javadoc for the javax.servlet._ServletContext interface at
http://docs.oracle.com/cd/E17802_01/products/products/serviet/2.3/javadoc/javax/
servlet/ServletContext.html.

The following example illustrates JSP logging using the ServletContext:

<%@ page language="java" %>

<IDOCTYPE HTML PUBLIC "-//w3c//dtd html 4.0 transitional//en'>
<html>

<head>

<title>INDEX</title>

</head>

<body bgcolor="#FFFFFF'>

<%

config.getServletContext().log("Invoked ServletContext.log() From a JSP™);
out.write(""Request param arg0 = " + request.getParameter(*'arg0™));
%>

</body>

</html>

Configuring Servlet and Resource Adapter Logging

You can configure Web application and resource adapter logging behavior using WebLogic
specific deployment descriptors. The logging configuration deployment descriptor elements
define similar attributes used to configure server logging through the LogMBean interface, such
as the log file name, location, and rotation policy.

When configured, application events are directed to a Web application specific log file. When
the deployment descriptor does not include any logging configuration information, the default
behavior is to write these events in the server log file.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 10

http://docs.oracle.com/cd/E17802_01/products/products/servlet/2.3/javadoc/javax/servlet/ServletContext.html
http://docs.oracle.com/cd/E17802_01/products/products/servlet/2.3/javadoc/javax/servlet/ServletContext.html

ORACLE

Chapter 4
Configuring Servlet and Resource Adapter Logging

Similarly, WebLogic logging services are provided to Jakarta EE resource adapters for
ManagedConnectionFactory scoped logging. You configure the log file name, location, and
rotation policy for resource adapter logs through the weblogic-ra.xml deployment descriptor.
See weblogic-ra.xml Schema in Developing Resource Adapters for Oracle WebLogic Server.

The following example illustrates a snippet of the deployment descriptor for configuring the
logging behavior of Web application and resource adapter logging. The elements of logging
correspond to attribute definitions on the LogMBean interface. All the LogVMBean attributes are not
listed in this example. Logging configuration is defined in the WEB-INF/weblogic.xml file for
Web applications and in the META-INF/weblogic-ra.xml file for resource adapters.

<IDOCTYPE weblogic-web-app PUBLIC "//DTD Web Application 9.0//EN"
"http://www.bea.com/servers/wls90/dtd/weblogic90-web-jar._dtd">
<weblogic-web-app>
<logging>
<log-filename>d:\tmp\mywebapp . log</log-filename>
<rotation-type>bySize</rotation-type>
<number-of-files-limited>true</number-of-files-limited>
<file-count>3</file-count>
<file-size-limit>50</file-size-limit>
<rotate-log-on-startup>true</rotate-log-on-startup>
<log-file-rotation-dir>config/MedRecDomain/WebApp</log-file-rotation-dir>
</logging>
</weblogic-web-app>
<weblogic-connector xmlns="http://www.bea.com/ns/weblogic/90">
<jndi-name>eis/900BlackBoxNoTxConnector</jndi-name>
<outbound-resource-adapter>
<connection-definition-group>
<connection-factory-interface>javax.sql .DataSource</connection-factory-interface>
<connection-instance>
<jndi-name>eis/900BlackBoxNoTxConnectorJNDINAME</jndi-name>
<connection-properties>
<pool-params>
<initial-capacity>5</initial-capacity>
<max-capacity>10</max-capacity>
<capacity-increment>1</capacity-increment>
<shrinking-enabled>true</shrinking-enabled>
<shrink-frequency-seconds>60</shrink-frequency-seconds>
<highest-num-waiters>1</highest-num-waiters>
<highest-num-unavai lable>3</highest-num-unavailable>
<connection-reserve-timeout-seconds>11</connection-reserve-timeout-seconds>
</pool-params>
<logging>
<log-filename>900BlackBoxNoTxOne . log</log-filename>
<logging-enabled>true</logging-enabled>
<rotation-type>bySize</rotation-type>
<number-of-files-limited>true</number-of-files-limited>
<file-count>3</file-count>
<file-size-limit>100</file-size-limit>
<rotate-log-on-startup>true</rotate-log-on-startup>
<log-file-rotation-dir>c:/mylogs</log-file-rotation-dir>
<rotation-time>3600</rotation-time>
<file-time-span>7200</file-time-span>
</logging>
<properties>
<property>
<name>ConnectionURL</name>
<value>jdbc:oracle:thin:@bcpdb:1531:bay920</value>
</property>
<property>
<name>unique_ra_id</name>
<value>blackbox-notx.oracle.810</value>

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 10

ORACLE Chapter 4
Writing Messages from a Client Application

</property>
</properties>
</connection-properties>
</connection-instance>
</connection-definition-group>
</outbound-resource-adapter>
</weblogic-connector>

Writing Messages from a Client Application

If your application runs in a JVM that is separate from a WebLogic Server instance, it can use
message catalogs and NonCatalogLogger, but the messages are not written to the WebLogic
Server log. Instead, the application's messages are written to the client JVM's standard out.

If you want the WebLogic logging service to send these messages to a log file that the client
JVM maintains, include the following argument in the command that starts the client JVM:

-Dweblogic.log.FileName=l ogfi | enane

In the preceding argument, | ogfi | enane represents the name that you want to use for the
remote log file.

If you want a subset of the message catalog and NonCataloglLogger messages to go to
standard out as well as the remote JVM log file, include the following additional startup
argument;

-Dweblogic.log.StdoutSeverityLevel=String

In the preceding argument, valid values for StdoutSeverityLevel are Debug, Info, Warning,
Error, Notice, Critical, Alert, Emergency, and Off.

For a description of the supported severity levels, see weblogic. logging.Severities in Java
API Reference for Oracle WebLogic Server.

Writing Debug Messages

While your application is under development, you can create and use messages that provide
verbose descriptions of low-level activity within the application. You can use the DEBUG severity
level to categorize these low-level messages.

All DEBUG messages that your application generates are sent to all WebLogic Server logging
destinations, depending on the configured minimum threshold severity level.

If you use the DEBUG severity level, we recommend that you create a "debug mode" for your
application. For example, your application can create an object that contains a Boolean value.
To enable or disable the debug mode, you toggle the value of the Boolean. Then, for each
DEBUG message, you can create a wrapper that outputs the message only if your application's
debug mode is enabled.

For example, the following code can produce a debug message:

private static boolean debug = Boolean.getBoolean(*'my.debug.enabled™);
if (debug) {
mylogger.debug(*'Something debuggy happened™);

You can use this type of wrapper both for DEBUG messages that use the message catalog
framework and that use the NonCatalogLogger API.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 10

ORACLE Chapter 4
Writing Debug Messages

To enable your application to print this message, you include the following Java option when
you start the application's JVM:

-Dmy.debug.enabled=true

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 10

Using the WebLogic Server Message Editor

You can use the Message Editor, which is a graphical interface tool that lets you create, read,
and write XML message catalogs.

About the Message Editor

Message Editor is used to create and manage the XML catalogs, and the messages in the
catalog. The Message Editor is installed when you install WebLogic Server.

Optionally, you can edit the XML catalogs in a text editor or with any XML editing tool.

@® Note

WebLogic Server provides its own message catalogs which contain all the messages
relating to WebLogic Server subsystems and functionality. You cannot edit these
catalogs. For descriptions of WebLogic Server catalogs, see Error Messages.

You can use the Message Editor to perform the following tasks:

e Create XML message catalogs

e Create and edit messages

« View all the messages in one catalog

* View the messages in several catalogs simultaneously
e Search for messages

e Validate the XML in catalog entries

e Retire and unretire messages

@® Note

The Message Editor does not support the editing of localized catalogs.

Starting the Message Editor

You can use the java weblogic._MsgEditor or java weblogic.il8ntools.gui.MessageEditor
commands to start the Message Editor.

Before you start the Message Editor, install and configure your WebLogic Server system and
set the environment variables,
ORACLE_HOWE\user_projects\domains\wl_server\setExamplesEnv.cmd. Make sure that your
classpath is set correctly. See Planning the Oracle WebLogic Server Installation in Installing
and Configuring Oracle WebLogic Server and Coherence.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE

Chapter 5
Working with Catalogs

Sample message catalog files are located in your ORACLE_HOVE/wlserver/samples/server/
examples/src/examples/i18n/msgcat directory.

You can use the sample message catalogs as templates to create your own messages. You
simply modify the provided information, such as the package name and class name. Then
translate the message text and save the catalog. See Writing Messages to the WebLogic

Server Log.

To access basic command line help, enter:

java weblogic.MsgEditor -help

The main WebLogic Message Editor window for Log Messages appears.

Working with Catalogs

You can use the Message Editor to manage catalogs tasks.The following sections describe
how to use the Message Editor to manage catalogs.

Browsing to an Existing Catalog

To find an existing catalog from the main WebLogic Message Editor window, enter the full
pathname in the Message Catalog field, or click Browse and navigate to the existing catalog
from the Open dialog.

The sample catalogs included with your WebLogic Server installation are in the ORACLE_HOVE/
wlserver/samples/server/examples/src/examples/il8n/msgcat directory.

@ Note

Your directory path might be different, depending on where you installed WebLogic
Server.

You can place your user-defined catalogs in any directory you designate.

Once you locate the catalog, Packages, Subsystem, Version, Base ID, and End ID (if any)
are displayed, and the displayed catalog is the context catalog in which all other actions are
performed.

You are now ready to enter new messages, edit existing messages, search for a message, or
view all messages in the catalog.

If you select a log message catalog in the Message catalog field, the WebLogic Message
Editor window for Log Messages appears.

If you select a simple messages catalog in the Message catalog field, the WebLogic Message
Editor window for Simple Messages appears.

Creating a New Catalog

To create a new catalog, complete the following procedure:

1. From the main menu bar of the WebLogic Message Editor window, choose File > New
Catalog.

The Create New Catalog dialog appears.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 7

ORACLE

Chapter 5
Adding Messages to Catalogs

In the Message Catalog field, enter the full pathname and the name of the new catalog,
which must include the xml extension. Or, click Browse and navigate to the appropriate
catalog directory. (This would be the msgcat directory, if you are using WebLogic Server
example messages.)

Use the drop-down Catalog type list to indicate whether your catalog is a Log messages
or a Simple messages catalog.

If you select a log message catalog, the Base ID and End ID fields are displayed. These
fields indicate the range of ID numbers for messages in the catalog. If you select a simple
text message catalog, these fields are not present.

Enter the name of the package in which you want to place the generated Logger classes in
the 118n Package field.

The default is weblogic.i18n. If you want to place the logger classes in another package
with your application, specify the package name here.

Enter the name of the package where you want to place the catalog data in the L10n
Package field.

The default is weblogic.110n. If you want to place your catalog data in another package
with your application, specify the package name here.

@® Note

In most cases, the recommended practice is to include the message class files
and properties files in the same package hierarchy as your application.

However, if you do not include the message classes and properties in the
application's package hierarchy, you must make sure the classes are in the
application's classpath.

Enter a name in the Subsystem field to indicate which part of the system will log the
message.

This name is logged with the message. For applications, the application name is typically
entered in the Subsystem field.

In the Prefix field, enter a prefix to be prepended to the message ID when logged.

The default server message prefix is BEA. You can enter any prefix for user messages.
(Oracle recommends that the prefix be less that 10 characters in length. Also, make sure
you use standard java naming conventions.)

Click Create Catalog.

The Create New Catalog dialog closes, and the catalog you just created is displayed as
the context catalog in the Message Editor window.

Adding Messages to Catalogs

You can use Message Editor to add messages to catalogs.The following sections describe how
to use Message Editor to add messages to catalogs.

Entering a New Log Message

To enter a new message into a log catalog:

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE

10.

11.

12.

13.

Chapter 5
Adding Messages to Catalogs

In the WebLogic Message Editor main dialog, enter the full path name in the Message
Catalog field or click Browse and navigate to an existing catalog.

Click Get next ID to generate the next unique numerical ID in the context catalog.
The ID appears in the Message ID field.
Enter any relevant comments about the message in the Comment field.

Enter the appropriate Method for your log message, including parentheses and any
arguments. For example, logErrorSavingTimestamps(Exception i0Excep)

Set the Method Type for the log message.

Your options are logger and getter. The default method type is logger, which is used for
messages that will be logged. The getter option is for messages that are used for non-
logging purposes, such as exceptions.

Choose a Severity from the list of possible levels.
Enter text for the Message body.

Parameters are denoted by {n}. For example, "Exception occurred while loading
_WL_TIMESTAMP FILE."

Enter text for the Message detail.

Parameters are denoted by {n}. For example, "Exception occurred while loading
_WL_TIMESTAMP FILE. Forcing recompilation: {0}."

Enter text for the Probable Cause.

Parameters are denoted by {n}. For example, "There was an error reading this
file."

Enter text for the Action.
Parameters are denoted by {n}. For example, "No action required."
Toggle the Display stacktrace option by selecting or clearing the check box.

Use this option to print a stacktrace along with the message when a Logger method takes
an exception as one of its arguments.

Toggle the Retired message option by selecting or clearing the check box.

Use this option to retire (hide) obsolete messages. Retired messages are deleted in the
sense that they are not represented in the generated classes. However, the message data
does remain in the .xml file.

Click Add.

The message is added and the entire catalog is immediately written to disk.

Entering a New Simple Text Message

To enter a new message into a log catalog:

1.

In the WebLogic Message Editor main dialog, enter the full pathname in the Message
Catalog field or click Browse and navigate to the existing catalog.

The WebLogic Message Editor for Simple Messages dialog appears.
Enter a unique alphanumeric Message ID.

Enter a Comment if required.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE

Chapter 5
Finding Messages

Enter the appropriate Method for your simple message, including parentheses and any
arguments. For example, startingClusterService()

Enter the Message body text. For example, startingClusterService
Click Add.

The message is added and the entire catalog is immediately written to disk.

Finding Messages

You can use the Message Editor to find messages. The following sections describe how to use
the Message Editor to find messages.

Finding a Log Message

To find a log message:

1.

a & B Db

Make sure that the context catalog is a log message catalog and the WebLogic Message
Editor Log Messages window appears.

Choose Edit from the main menu bar.
Choose Search to display the Search for Log Message dialog.
Enter the Message ID and the Method name.

Enter as much information as needed in the Message text search field to find the correct
message.

The search for text does a partial match in any of the text fields.
Click Find first or Find next.

The fields are strung together to find the message. If a matching message is found, it is
displayed in the Message Editor window.

Finding a Simple Text Message

To find a simple text message, complete the following procedure:

1.

g & W DN

Make sure that the context catalog is a simple text message catalog and the WebLogic
Message Editor Simple Messages window appears.

Choose Edit from the main menu bar.
Choose Search to display the Search for Simple Message dialog.
Enter the Message ID.

Enter as much information as needed in the Message text search field to find the correct
message.

The search for text does a partial match in any of the text fields.
Click Find first or Find next.

The fields are strung together to find the message. If a matching message is found, it is
displayed in the Message Editor window.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE’

Chapter 5
Using the Message Viewer

Using the Message Viewer

The WebLogic Message Editor contains a Message Viewer that lets you view all messages in
a catalog, view all messages in multiple catalogs, and select any message to edit.The following
sections describe how to use the Message Viewer to view and select messages to edit.

Viewing All Messages in a Catalog

To view all the messages in a catalog:

1.

Open the WebLogic Message Editor.

The WebLogic Message Editor window displays the catalog for the last message viewed
as the current context catalog.

Choose View from the menu bar.
Choose All messages.

All the messages for the current context catalog are displayed in the Message Viewer
window. The Message Editor window remains open.

Viewing All Messages in Several Catalogs

If you view the messages from the current context catalog and then change the context by
navigating to a new catalog, a second Message Viewer window opens displaying the new
catalog. You can view messages for as many catalogs as you require (or can reasonably fit on
your screen). Each catalog is displayed in a separate Message Viewer window. See Browsing
to an Existing Catalog.

Selecting a Message to Edit from the Message Viewer

You can select any message displayed in the Message Viewer and the selected message
becomes the context catalog. The message is displayed in the Message Editor window.

Editing an Existing Message

You can use the Message Editor to find and update an existing message in a catalog.

To edit an existing message:

1.

Find the message you want to edit.

You can use the Search dialog, described in Finding a Log Message, and Finding a Simple
Text Message, or select the message in the message viewer, described in Selecting a
Message to Edit from the Message Viewer.

The message appears in the Message Editor window.
Edit the fields you want to change.
Click Update.

The message is updated and the entire catalog is immediately written to disk.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE Chapter 5
Retiring and Unretiring Messages

Retiring and Unretiring Messages

You can retire and unretire messages in the Message Editor window. Retiring a message does
not mean that the message is deleted from the master catalog; it is simply hidden from user
view.

This feature is useful for removing obsolete messages. If you need to bring a retired message
back into view, you can unretire it.

To retire or unretire a message, complete the following procedure:

1. Find the message you want to retire or unretire.

2. Inthe Message Editor window, toggle the Retired message option by selecting or clearing
the check box.

3. Click Update.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 7

Using the WebLogic Server
Internationalization Utilities

WebLogic Server utilities are used for internationalization and localization of log messages in
WebLogic Server.

WebLogic Server Internationalization Utilities

WebLogic Server provides three internationalization utilities: weblogic.il8ngen Utility,
weblogic.110ngen Utility, and weblogic.GetMessage Utility.

* weblogic.il8ngen Utility - Message catalog parser. Use this utility to validate and
generate classes used for localizing text in log messages. See weblogic.i18ngen Utility.

* weblogic.l10ngen Utility - Locale-specific message catalog parser. Use this utility to
process locale-specific catalogs. See weblogic.l10ngen Utility.

* weblogic.GetMessage Utility - Utility that lists installed log messages. Use this utility to
generate a list of installed log messages or display a message. See weblogic.GetMessage
Utility.

@® Note

Text in the catalog definitions may contain formatting characters for readability (for
example, end of line characters), but these are not preserved by the parsers. Text data
is normalized into a one-line string. All leading and trailing white space is removed. All
embedded end of line characters are replaced by spaces as required to preserve word
separation. Tabs are left intact.

Use escapes to embed new lines (for example *\n"). These are stored and result in
new lines when printed.

WebLogic Server Internationalization and Localization

You can use the weblogic. i18ngen utility to validate message catalogs and create the
necessary runtime classes for producing localized messages.

The weblogic. 110ngen utility validates locale-specific catalogs, creating additional properties
files for the different locales defined by the catalogs.

You can internationalize simple text-based utilities that you are running on WebLogic Server by
specifying that those utilities use Localizers to access text data. You configure the
applications with Logger and TextFormatter classes generated from the weblogic.i18ngen
utility.

For more information on Logger and TextFormatter classes, see TextFormatter Class
Reference for WebL ogic Server, and Logger Class Reference for Webl ogic Server.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE

Chapter 6
weblogic.i18ngen Utility

The generated Logger classes are used for logging purposes, as opposed to the traditional
method of writing English text to a log. For example, weblogic. i18ngen generates a class
xyzLogger in the appropriate package for the catalog xyz.xml. For the MyUtilLog.xml catalog,
the class, programs.utils._MyUtilLogger.class, would be generated. For each log message
defined in the catalog, this class contains static public methods as defined by the method
attributes.

TextFormatter classes are generated for each simple message catalog. These classes
include methods for accessing localized and formatted text from the catalog. They are
convenience classes that handle the interface with the message body, placeholders, and
MessageFormat. You specify the formatting methods through the method attribute in each
message definition. For example, if the definition of a message in a catalog includes the
attribute, method=getErrorNumber(int err), the TextFormatter class shown in Example 6-1
is generated.

Example 6-1 Example of a TextFormatter Class

package my.text;
public class xyzTextFormatter

{

public String getErrorNumber(int err)
{

}

Example 6-2 shows an example of how the getErrorNumber method could be used in code.
Example 6-2 Example of getErrorNumber Method

import my.text.xyzTextFormatter

xyzTextFormatter xyzL10n = new xyzTextFormatter();
System.out.printIn(xyzL10n.getErrorNumber(someVal));

The output prints the message text in the current locale, with the someVal argument inserted
appropriately.

weblogic.i18ngen Utility

The weblogic. i18ngen utility parses message catalogs (XML files) to produce Logger and
TextFormatter classes that are used for localizing the text in log messages.

The utility creates or updates the following properties file, which is used to load the message
ID lookup class hashtable weblogic.i18n.L10nLookup:

targetdirectory\ i18n_user.properties

Any errors, warnings, or informational messages are sent to stderr.

In order for user catalogs to be recognized, the 118n_user .properties file must reside in a
directory identified in the WebLogic classpath.

For example: t ar get di rect or y\il8n_user.properties

Oracle recommends that the 118n_user.properties file reside in the server classpath. If the
i18n_user.propertiesfileisintargetdirectory, thentargetdirectory should be in the
server classpath.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 7

ORACLE Chapter 6
weblogic.i18ngen Utility

Syntax

java weblogic.i18ngen [options] [filelist]

@® Note

Utilities can be run from any directory, but if files are listed on the command line, then
their path is relative to the current directory.

Options

Table 6-1 Options Available for weblogic.il8ngen Utility

|
Option Definition

-build Generates all necessary files and compiles them.

The -bui ld option combines the -i18n, -110n, -keepgenerated, and -
compile options.

-d targetdirectory Specifies the root directory to which generated Java source files are targeted.
User catalog properties are placed in 118n_user.properties, relative to
the designated target directory. Files are placed in appropriate directories
based on the 118n_package and 110n_package values in the
corresponding message catalog. The default target directory is the current
directory. This directory is created as necessary.

If this argument is omitted, all classes are generated in the current directory,
without regard to any class hierarchy described in the message catalog.

-n Parse and validate, but do not generate classes.

-keepgenerated Keep generated Java source (located in the same directory as the class files).
-ignore Ignore errors.

-i118n Generates internationalizers (for example, Loggers and TextFormatters).

118ngen -118n creates the internationalizer source (for example,
*Logger . jJava) that supports the logging of internationalized messages.

-110n Generates localizers (for example, LogLocalizers and TextLocalizers).

i18ngen -110n creates the localizer source (resource bundles) that provide
access to each message defined in the message catalog. These classes are
used by localization utilities to localize messages.

-compile Compiles generated Java files using the current CLASSPATH. The resulting
classes are placed in the directory identified by the -d option. The resulting
classes are placed in the same directory as the source.

Errors detected during compilation generally result in no class files or
properties file being created. 118ngen exits with a bad exit status.

-nobui ld Parse and validate only.

-debug Debugging mode.

-dates Causes weblogic. 118ngen to update message timestamps in the catalog. If
the catalog is writable and timestamps have been updated, the catalog is
rewritten.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE

Chapter 6
weblogic.110ngen Utility

Table 6-1 (Cont.) Options Available for weblogic.il8ngen Utility

. __|
Option Definition

filelist Process the files and directories in this list of files. If directories are listed, the
command processes all XML files in the listed directories. The names of all
files must include an XML suffix. All files must conform to the msgcat.dtd
syntax. weblogic. 118ngen prints the fully-qualified list of names (Java
source) to the stdout log for those files actually generated.

weblogic.I10ngen Utility

The weblogic. 110ngen utility generates property resources for localizations of message
catalogs named in the file list. The file list identifies the top-level catalogs, not translated
catalogs.

Similarly, the target directory (-d option) identifies the same target directory where the default
localizations reside. For example, if the default catalogs are located in $SRC\weblogic\msgcat
and the generated resources are to be placed in $CLASSESDIR, the appropriate 110ngen
invocation would be:

java weblogic.110ngen -d $CLASSESDIR $SRC\weblogic\msgcat

This command generates localized resources for all locales defined in the weblogic\msgcat
subdirectories.

Syntax

java weblogic.110ngen [options] [filelist]

@ Note

Utilities can be run from any directory, but if files are listed on the command line, then
their path is relative to the current directory.

Options

Table 6-2 Options Available for weblogic.l10ngen Utility
]

Option Definition

-d target Directory in which to place properties. Default is the current directory.
-language code Language code. Defaultis al I.

-country code Country code. Default is al l.

-variant code Variant code. Default is al 1.

filelist Specifies the message catalogs for which you want to generate properties

files. You must specify top-level catalogs that the Message Editor creates; you
do not specify locale-specific catalogs that the Message Localizer creates.
Usually, this is the same set of source files or source directories that you
specified in the 118ngen command.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE

Chapter 6
weblogic.I10ngen Utility

Message Catalog Localization

Examples

Catalog subdirectories are named after lowercase, two-letter ISO 639 language codes (for
example, ja for Japanese and fr for French). You can find supported language codes in the
java.util.Locale javadoc.

Variations to language codes are achievable through the use of uppercase, two-letter ISO
3166 country codes and variants, each of which are subordinate to the language code. The
generic syntax is lang\country\variant.

For example, zh is the language code for Chinese. CN is a country code for simplified Chinese,
whereas TW is the country code for traditional Chinese. Therefore zh\CN and zh\TW are two
distinct locales for Chinese.

Variants are of use when, for instance, there is a functional difference in platform vendor
handling of specific locales. Examples of vendor variants are WIN, MAC, and POSIX. There
may be two variants used to further qualify the locale. In this case, the variants are separated
with an underscore (for example, Traditional Mac as opposed to Modern_MAC).

@® Note

Language, country, and variants are all case sensitive.

A fully-qualified locale would look like zh\TW\WIN, identifying traditional Chinese on a Win32
platform.

Message catalogs to support the above locale would involve the following files:
e *_xml - default catalogs

* \zh*.xml - Chinese localizations

o \zh\TW*_xml - Traditional Chinese localizations

* \zh\TW\WIN*_xml - Traditional Chinese localizations for Win32 code sets

Specific localizations do not need to cover all messages defined in parent localizations.

1. To generate localization properties for all locales:
java weblogic.110ngen -d $CLASSESEDIR cat al ogdi rectory
2. To generate localization properties for all traditional Chinese locales:
java weblogic.110ngen -d $CLASSESEDIR -language zh -country TW catal ogdirectory
3. To generate localization properties for all Chinese locales:
java weblogic.l110ngen -d $CLASSESEDIR -language zh cat al ogdirectory
4. To generate localization properties for the JMS catalog in all locales:

java weblogic.110ngen -d $CLASSESEDIR cat al ogdi rectory

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE’

Chapter 6
weblogic.GetMessage Utility

@® Note

Example 2 is a subset of example 3. All Chinese (zh) would include any country
designations (for example, TW) and variants.

weblogic. 110ngen does not validate the locale designators (language, country,
variant).

weblogic.GetMessage Utility

The weblogic.GetMessage utility displays message content. It can also list all or some subset
of installed messages.By default (no options), weblogic.GetMessage prints a usage statement.
The weblogic.GetMessage utility replaces the CatlInfo utility provided with the earlier releases
of WebLogic Server.

Syntax

java weblogic.GetMessage [options]

Options

@ Note

All options may be abbreviated to a single character except -verbose.

Table 6-3 Options Available for weblogic.GetMessage Utility

|
Option Definition

-id nnnnnn where nnnnnn represents the message ID.
The -id option is used to specify a particular message.

-subsystem i dentifier The subsystem identifier. The -subsystem option prints only
those messages that match the specified subsystem.

-nodetail Requests a non-detailed listing, and only outputs the
message body of a message. By default, a detailed listing is
output, which includes severity, subsystem, message detalil,
cause, and action information.

-verbose Requests more detail on the listing. The -verbose option
also prints packaging, stacktrace option, severity, subsystem,
message detail, cause, and action information.

-lang code The language to use. For example, en for English.
-country code The country code to use. For example, US for United States.
-variant code The variant designator for locale.

-help Provides usage information.

-retired Lists all retired messages. Retired messages are not

displayed unless this option is used. Only the subsystem and
ID's of such messages are listed.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE Chapter 6
weblogic.GetMessage Utility

If no arguments are provided, weblogic.GetMessage outputs a usage message, equivalent to -
help.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 7

Localizer Class Reference for WebLogic

Server

The Localizer class created for each catalog file inlcudes the Localizer methods, key values
for Localizers, and lookup properties for Localizers.

@® Note

This information on Local izer class methods is provided as reference for advanced
users. Normally, you do not need to use these interfaces directly. Instead, you would
typically use the generated methods in the catalogs.

About Localizer Classes

The weblogic. i118ngen utility creates Local izer classes based on the content of the message
catalog.

One Localizer class is generated for each catalog file. The name of the class is the catalog
name (without the .xml extension, which is stripped by the utility), followed by LogLocalizer
for log message catalogs and TextLocalizer for simple text catalogs. A Localizer class for
the catalog ejb.xml is ejbLoglLocalizer.

Localizer Methods

Localizers are PropertyResourceBundle objects. Four additional methods are provided to
simplify the access of the localization data in the Localizer.These methods are not part of the
Localizer. Rather, they are part of the Localizer class.

The methods are described in Table A-1. The Localizer class is used by the Logger and
TextFormatter classes to extract data out of the Localizer. Each Localizer has an
associated Localizer class that is obtained through L10nLookup, the Localizer lookup object.

Table A-1 Methods for Localization Data Access
]

Method Description
public Object getObject(String key, Returns localization text for the key element for
String id) message id.
public Object getObject(String key, int Returns localization text for the key element for
id) message Id.
public String getString(String key, Returns localization text for the key element for
String id) message id.

public String getString(String key, int Returns localization text for the key element for
id) message id.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-1 of A-3

ORACLE

Appendix A
Localizer Lookup Class

Each of the methods for accessing localization data has a key argument. The following list
shows the recognized values for the key argument:

e Localizer.SEVERITY

* Localizer_MESSAGE_ID

e Localizer.MESSAGE_BODY

e Localizer.MESSAGE_DETAIL
* Localizer.CAUSE

e Localizer.ACTION

With the exception of the Localizer.SEVERITY key, the localization data returned by
Localizers are String objects that return an integer object.

The following list shows the severity values that are returned:

« weblogic.logging.severities.EMERGENCY

e weblogic.logging.severities.ALERT

« weblogic.logging.severities.CRITICAL

e weblogic.logging.severities.NOTICE

e weblogic.logging.severities.ERROR

* weblogic.logging.severities.WARNING

« weblogic.logging.severities. INFO

* weblogic.logging.severities.DEBUG

The specific strings returned are defined in the message catalogs.

The key argument to the get*() methods identify which element of a definition to return.
Acceptable values are defined in the Localizer class definition. The returned text can be
further expanded through java.text_MessageFormat.format(). The message body, detail,
cause, and action elements are all localizable. The other elements, message 1D, severity,
and subsystem are not localizable and do not require further processing by MessageFormat.

Localizer Lookup Class

To obtain the correct Local izer for a message, you must use the L10nLookup class, which is a
property class extension that is loaded at system startup from the property file,
i18n_user.properties.This property file is created by weblogic.i18ngen and is included in
the WebLogic Server installation. When you start up a user application, any
i18n_user._properties files in its classpath are also loaded into L10nLookup.

Properties in the lookup (i18n_user.properties) file have the following format:

nnnnnn=subsyst em:Local i zer cl ass

The arguments on this line are defined as follows:

e nnnnnn is the message ID
e subsyst emis the related subsystem
e Localizer class isthe name of the generated Localizer class

For example, message 001234 is identified as an EJB subsystem message ID from the
weblogic.il8n.ejbLoglLocalizer class by the following property in the lookup file:

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-2 of A-3

ORACLE Appendix A
Localizer Lookup Class

001234=EJB:weblogic.il8n.ejbLogLocalizer

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-3 of A-3

Loggable Object Reference for WebLogic

Server

Loggable objects are used for generating log messages that are logged at a later time.

About Loggable Objects

By default, all log message catalogs create Logger classes with methods that are used to log
the messages to the WebLogic Server log. The Logger classes can optionally include methods
that return a loggable object instead of logging the message. Loggable objects are useful when
you want to generate the log message but actually log it at a later time. They are also useful if
you want to use the message text for other purposes, such as throwing an exception.

How To Use Loggable Objects

To create a Logger class that provides methods to return loggable objects, you must set the
loggables attribute in the message catalog. For example, consider the test.xml catalog

shown in Example B-1.
Example B-1 test.xml Message Catalog

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"” "http://www.bea.com/
servers/wls90/dtd/msgcat.dtd">
<message_catalog
subsystem="Examples"
version="1.0"
baseid="500000"
endid="500001"
loggables="true"
>
<logmessage
messageid="500000"
severity="error"
method="1ogl0Error(Throwable t)"
>
<messagebody>
10 failure detected.
</messagebody>
<messagedetail>
</messagedetai >
<cause>
</cause>
<action>
</action>
</logmessage>
</message_catalog>

When you run this catalog through the weblogic. i118ngen utility, a Logger class is created for
this catalog with the following two methods:

e loglOError (throwable) - logs the message

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-1 of B-2

ORACLE Appendix B
How To Use Loggable Objects

* loglOErrorLoggable (throwable) - returns a loggable object
The loggable object can be used as shown in Example B-2.

Example B-2 Example of Use of Loggable Object

package test;
import weblogic.logging.Loggable;
import weblogic.i18n.testlLogger;
try {
// some 10
} catch (10Exception ioe) {
Loggable 1 = testLogger.loglOErrorLoggable(ioe);
1.1og(); // log the error
throw new Exception(l.getMessage());//throw new exception with
same text as logged

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-2 of B-2

TextFormatter Class Reference for WeblLogic

Server

The TextFormatter classes provide methods for generating localized versions of message text

at runtime.

About TextFormatter Classes

TextFormatter classes are generated by weblogic. i18ngen from simple message catalogs.
These classes provide methods for generating localized versions of message text at run time.

Example of an Application Using a TextFormatter Class

The TextFormatter class can be generated from simple message catalogs of your application.
The following example shows the TextFormatter class generated for a simple Hello_World

application:

Example C-1 Example of a Simple Message Catalog

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd" "http://www.bea.com/

servers/wls90/dtd/msgcat.dtd">

<message_catalog

110n_package="examples.i18n.simple"

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

subsystem=""118N"
version="1.0"
>
<message
messageid="HELLO_WORLD"
datelastchanged="967575717875"
method="helloWorld()"
>
<messagebody>
Hello World!
</messagebody>
</message>
<l-- -
<message
messageid="HELLO_AGAIN"
datelastchanged="967575717804"
method="helloAgain()"
>
<messagebody>
Hello again
</messagebody>
</message>
<lee -
<message
messageid="NTH_HELLO"
datelastchanged="967575770971"
method="nthHello(int count)"
>

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix C-1 of C-6

ORACLE

<messagebody>

This is hello number {0,number}.

</messagebody>
</message>
<l —=>
<message
messageid="VERSION"
datelastchanged="967578656214"
method=""version(String version)"
>
<messagebody>
Catalog version: {0}
</messagebody>
</message>
<l-— >
<message
messageid=""118N_PACKAGE"
datelastchanged="967578691394"
method=""118nPackage(String pkg)"
>
<messagebody>
118n Package: {0}
</messagebody>
</message>
<l —-=>
<message
messageid=""L10N_PACKAGE"
datelastchanged="967578720156"
method=""110nPackage(String pkg)"
>
<messagebody>
L10n Package: {0}
</messagebody>
</message>
<l —=>
<message
messageid=""SUBSYSTEM"
datelastchanged="967578755587""
method=""subSystem(String sub)"
>
<messagebody>
Catalog subsystem: {0}
</messagebody>
</message>

</message_catalog>

Appendix C
Example of an Application Using a TextFormatter Class

The following is an example of an application using the HelloWorld catalog. The example
shows various ways of internationalizing an application using simple message catalogs.

Example C-2 Example of an Application Using the HelloWorld Catalog

package examples.il8n.simple;

import java.util.Locale;

import java.text.MessageFormat;
import weblogic.i18n.Localizer;
import weblogic.il18ntools.L10nLookup;

/**

* This example shows various ways of internationalizing an application

*

¥ ok %

using simple message catalogs.
<p>

Usage: java examples.il8n.simple.HelloWorld [lang [country]]

<p>

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix C-2 of C-6

ORACLE

ok ok % o % % b X 3k o X 3k X X ok X % F

Appendix C
Example of an Application Using a TextFormatter Class

lang is a 2 character I1SO language code. e.g. "en"

country is a 2 character IS0 country code. e.g. "US"

<p>

Usage of any of the languages supported by this example presumes

the existence of the appropriate 0S localization software and character
encodings.

<p>

The example comes with catalogs for English (the default) and French.
The catalog source is in the following files, and were built

using the catalog editing utility, weblogic.il8ntools.gui.MessageEditor.
<p>

<pre>

English(base language) ../msgcat/Helloworld.xml

French ../msgcat/fr/FR/HelloWorld.xml

</pre>

<p>

To build this example run the bld.sh(UNIX) or bld.cmd (NT) scripts from
the examples/il8n/simple directory. CLIENT_CLASSES must be set up and
needs to be in the classpath when running the example.

*
~N

public final class HelloWorld {

public static void main(String[] argv) {

/*
The easiest method for displaying localized text is to
instantiate the generated formatter class for the HelloWorld catalog.
This class contains convenience methods that return localized text for
each message defined in the catalog. The class name is
the catalog name followed by "TextFormatter™.

Typically, you would use the default constructor to obtain
formatting in the current locale. This example uses a locale
based on arguments to construct the TextFormatter.

* Ok % ok ok ok o *

*/
Locale Icl;
if (argv.length == 0) { // default is default locale for JVM
Icl = Locale.getDefault();
}
else {
String lang = null;
String country = null;
//get the language code
lang = argv[0];
if (argv.length >= 2) { // get the country code
country = argv[1];

}
Icl = new Locale(lang,country);
}
/*
* Get formatter in appropriate locale.
*/

HelloWorldTextFormatter fmt = new HelloWorldTextFormatter(lcl);
fint.setExtendedFormat(true);
/*
* Print the text in the current locale.
*/
System.out.printin(fmt.helloWorld());
/*
* Alternatively, text can be accessed and formatted manually. In this
* case you must obtain the Localizer class for the catalog. The
* Localizer class is formed from the 110n_package attribute in the

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix C-3 of C-6

ORACLE

Appendix C
Example of an Application Using a TextFormatter Class

* catalog, the catalog name, and the string "TextLocalizer".
*/
Localizer 110n = L10nLookup.getLocalizer
(Icl,"examples.il18n.simple.HelloWorldTextLocalizer™);
System.out.printin(110n.get(""HELLO_AGAIN'));
/*
* If the message accepts arguments, they can be passed to the
* method defined for the message.
*/
System.out.printin(fmt.nthHello(3));
/*
* If using the manual method, you must manually apply the argument to
* the text using the MessageFormat class.
*/
String text = 110n.get("NTH_HELLO™);
Object[] args = {new Integer(4)};
System.out.printin(MessageFormat.format(text,args));
/*
* The Localizer class also provides methods for accessing catalog
* information.
*/
System.out.printin(fmt.version(110n.getVersion()));
System.out.printin(fmt. 110nPackage(110n.getL10nPackage()));
System.out.printin(fmt.i18nPackage(110n.getl18nPackage()));
System.out.printIn(fmt.subSystem(110n.getSubSystem()));

}

The following listing shows an example of the generated TextFormatter for the Helloworld
catalog.

Example C-3 Example of Generated TextFormatter Class for the HelloWorld Catalog

package examples.il8n.simple;import java.text.MessageFormat;
import java.text.DateFormat;

import java.util.Date;

import java.util.Locale;

import weblogic.il8n.Localizer;

import weblogic.il18ntools.L10nLookup;

public class HelloWorldTextFormatter {

private Localizer 110n;

private boolean format=false;

// constructors

public HelloWorldTextFormatter() {

110n = L1OnLookup.getLocalizer(Locale.getDefault(),

"examples.il8n.simple_HelloWorldTextLocalizer™);

}
public HelloWorldTextFormatter(Locale 1) {

110n =
L10nLookup.getLocalizer(l,"examples.il8n.simple_HelloWorldTextLocalizer™);

}

public static HelloWorldTextFormatter getlnstance() {
return new HelloWorldTextFormatter();

}

public static HelloWorldTextFormatter getlnstance(Locale 1) {
return new HelloWorldTextFormatter(l);

public void setExtendedFormat(boolean fmt) {
format = fmt;

public boolean getExtendedFormat() { return format;

/**

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix C-4 of C-6

ORACLE Appendix C
Example of an Application Using a TextFormatter Class

* Hello World!
*/
public String helloWorld() {
String fmt = "";
String id = "HELLO WORLD" ;
String subsystem = "118N" ;
Object [] args = { };
String output = MessageFormat.format(110n.get(id) , args);
if (getExtendedFormat()) {
DateFormat dformat = DateFormat.getDateTimelnstance(DateFormat.MEDIUM,
DateFormat.LONG);
fmt = "<"+dformat.format(new Date())+"><"+subsystem+"><"+id+"> ";

}
return fmt+output;
}

/**

* Hello again

*/

public String helloAgain() {
String fmt = "";

String id = "HELLO AGAIN" ;
String subsystem = "118N" ;
Object [] args = { };
String output = MessageFormat.format(110n.get(id) , args);
if (getExtendedFormat()) {
DateFormat dformat = DateFormat.getDateTimelnstance(DateFormat.MEDIUM,
DateFormat.LONG);
fmt = "<"+dformat.format(new Date())+"><"+subsystem+"><"+id+">";
}
return fmt+output;
}
/**
* This is hello number {0,number}.
*/
public String nthHello(int arg0) {
String fmt = "";
String id = "NTH_HELLO" ;
String subsystem = "118N" ;
Object [] args = { new Integer(arg0) };
String output = MessageFormat.format(110n.get(id) , args);
if (getExtendedFormat()) {
DateFormat dformat = DateFormat.getDateTimelnstance(DateFormat.MEDIUM,
DateFormat.LONG);
fmt = "<"+dformat.format(new Date())+"><"+subsystem+"><"+id+">";

}
return fmt+output;
}
/**
* Catalog version: {0}
*/
public String version(String arg0) {

String fmt ="";

String id = "VERSION" ;
String subsystem = "118N" ;
Object [] args = { arg0 };
String output = MessageFormat.format(110n.get(id) , args);
if (getExtendedFormat()) {
DateFormat dformat = DateFormat.getDateTimelnstance(DateFormat.MEDIUM,
DateFormat.LONG);
fmt = "<"+dformat.format(new Date())+"><"+subsystem+"><"+id+">";

}

return fmt+output;

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix C-5 of C-6

ORACLE Appendix C
Example of an Application Using a TextFormatter Class

}
/**
* 118n Package: {0}
*/
public String il8nPackage(String arg0) {
String fmt ="";
String id = "118N_PACKAGE" ;
String subsystem = "118N" ;
Object [] args = { arg0 };
String output = MessageFormat.format(110n.get(id) , args);
if (getExtendedFormat()) {
DateFormat dformat = DateFormat.getDateTimelnstance(DateFormat.MEDIUM,
DateFormat.LONG);
fmt = "<"+dformat.format(new Date())+"><"+subsystem+"><"+id+">";
}

return fmt+output;

}
/**
* L10n Package: {0}
*/
public String I10nPackage(String arg0) {
String fmt ="";
String id = "L10ON_PACKAGE" ;
String subsystem = "118N" ;
Object [] args = { arg0 };
String output = MessageFormat.format(110n.get(id) , args);
if (getExtendedFormat()) {
DateFormat dformat = DateFormat.getDateTimelnstance(DateFormat.MEDIUM,
DateFormat.LONG);
fmt = "<"+dformat.format(new Date())+"><"+subsystem+"><"+id+">";
}

return fmt+output;
}
/**
* Catalog subsystem: {0}
*/
public String subSystem(String arg0) {
String fmt = "";
String id = "SUBSYSTEM" ;
String subsystem = "118N" ;
Object [] args = { arg0 };
String output = MessageFormat.format(110n.get(id) , args);
if (getExtendedFormat()) {
DateFormat dformat = DateFormat.getDateTimelnstance(DateFormat.MEDIUM,
DateFormat.LONG);
fmt = "<"+dformat.format(new Date())+"><"+subsystem+"><"+id+">";
}

return fmt+output;

}

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix C-6 of C-6

Logger Class Reference for WebLogic Server

Logger classes provide the interface to WebLogic Server logging. The appendix describes
Logger classes and provides an example of a message catalog and its corresponding Logger
class.

About Logger Classes

The classes generated by 118ngen are known as Logger classes. Logger classes provide the
interface to WebLogic logging. For a catalog Xyz.xml, a Logger class XyzLogger is generated.
The Logger class provides methods to log all messages defined in a catalog to the WebLogic
Server log. The methods included are the same as those defined in the associated catalog. If
the catalog specifies the loggables attribute as true, then Loggable methods are also
generated for each message. See Loggable Object Reference for Webl ogic Server.

Example of a Generated Logger Class

You can use the weblogic. i18ngen utility to generate Logger classes that are used for
localizing the text in log messages.Example D-1 contains an example of a generated logger
class.

Example D-1 Example of Generated Logger Class

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
118n_package="examples.i18n.logging"
110n_package="examples.i18n.logging"
subsystem=""118N"
version="1.0"
baseid="600000"
endid=""610000"
loggables="true"
>
<logmessage
messageid="600000"
method="logEntry()"
severity="info"
>
<messagebody>Starting 118nLog example...</messagebody>
<messagedetai I></messagedetai l>
<cause></cause>
<action></action>
</logmessage>
<logmessage
messageid="600001"
method=""testArgs(String name,int cnt)"
severity="debug"
>
<messagebody>Class {0} started with {1,number} arguments.</messagebody>
<messagedetai I></messagedetai l>
<cause></cause>

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-1 of D-6

ORACLE Appendix D
Example of a Generated Logger Class

<action></action>
</logmessage>
<logmessage
messageid="600002"
method="logTrace(Throwable t)"
severity="error"
stacktrace="true"
>
<messagebody>This message is followed by a trace</messagebody>
<messagedetai I></messagedetai l>
<cause></cause>
<action></action>
</logmessage>
<logmessage
messageid="600003"
method="logNoTrace(Throwable t)"
severity="warning"
stacktrace=""false"
>
<messagebody>This message is not followed by a trace, but we can insert its text :
{0}</messagebody>
<messagedetai I></messagedetai l>
<cause></cause>
<action></action>
</logmessage>
<logmessage
messageid="600004"
method="getld()"
severity="info"
>
<messagebody>This message®s id will be in the next message</messagebody>
<messagedetail>A message can contain additional detailed information.</
messagedetai l>
<cause>This message is displayed on purpose</cause>
<action>Nothing to do, the example is working</action>
</logmessage>
<logmessage
messageid="600005"
method="showld(String id)"
severity="info"
>
<messagebody>The previous message logged had message id {0}</messagebody>
<messagedetai I></messagedetai l>
<cause></cause>
<action></action>
</logmessage>
</message_catalog>

Example D-2 shows the corresponding Java source code generated by weblogic.i18ngen.

Example D-2 Example of Generated Logger Class

package examples.il8n.logging;

import weblogic. logging.MessagelLogger;
import weblogic.logging.Loggable;
import java.util _MissingResourceException;
public class 118nLogLogger
{

/**

* Starting 118nLog example...

* @exclude
*

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-2 of D-6

ORACLE Appendix D
Example of a Generated Logger Class

* messageid: 600000
* severity: info
*/
public static String logEntry() {
Object [] args = { };
MessageLogger . log(
"600000",
args,
"examples.il8n.logging.118nLogLogLocalizer™);
return "600000";
}
public static Loggable logEntryLoggable() throws MissingResourceException {
Object[] args = { };
return new Loggable(*'600000", args);
}
/**
* Class {0} started with {1,number} arguments.
* @exclude
*
* messageid: 600001
* severity: debug
*/
public static String testArgs(String arg0, int argl) {
Object [] args = { arg0, new Integer(argl) };
MessageLogger . log(
"600001",
args,
"examples.il18n.logging.118nLogLogLocalizer™);
return "600001";
}
public static Loggable testArgsLoggable(String arg0, int argl) throws
MissingResourceException {
Object[] args = { arg0, new Integer(argl) };
return new Loggable(*'600001", args);
}
/**
* This message is followed by a trace
* @exclude
*
* messageid: 600002
* severity: error
*/
public static String logTrace(Throwable arg0) {
Object [] args = { arg0 };
MessageLogger . log(
"600002",
args,
"examples.il18n.logging.118nLogLogLocalizer™);
return 600002";
}
public static Loggable logTraceLoggable(Throwable arg0) throws
MissingResourceException {
Object[] args = { arg0 };
return new Loggable(*'600002", args);
}

/**

* This message is not followed by a trace, but we can insert its text : {0}
* @exclude

*

* messageid: 600003

* severity: warning

*/

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-3 of D-6

ORACLE

Appendix D
Example of a Generated Logger Class

public static String logNoTrace(Throwable arg0) {
Object [] args = { arg0 };
MessageLogger . log(
"600003",
args,
"examples.il18n.logging.118nLogLogLocalizer™);
return 600003";
}
public static Loggable logNoTraceLoggable(Throwable arg0) throws
MissingResourceException {
Object[] args = { arg0 };
return new Loggable(*'600003", args);
}
/**
* This message®s id will be in the next message
* @exclude
* messageid: 600004
* severity: info
*/
public static String getld() {
Object [] args = { };
MessageLogger . log(
'600004",
args,
"examples.i18n.logging.118nLogLogLocalizer™);
return 600004";
}
public static Loggable getldLoggable() throws MissingResourceException {
Object[] args = { };
return new Loggable(*'600004", args);
}
/**
* The previous message logged had message id {0}
* @exclude
* messageid: 600005
* severity: info
*/
public static String showld(String arg0) {
Object [] args = { arg0 };
MessageLogger . log(
"'600005",
args,
"examples.il18n.logging.118nLogLogLocalizer™);
return "600005";
}
public static Loggable showldLoggable(String arg0) throws MissingResourceException {
Object[] args = { arg0 };
return new Loggable(*'600005", args);
}

}

Example D-3 shows an example application that uses the weblogic.i18nLog (internationalized
(118n) logging interfaces). The example logs an informational message.

Example D-3 Example of Application Using i18nLog

package examples.il8n.logging;

import java.util.Locale;

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-4 of D-6

ORACLE Appendix D
Example of a Generated Logger Class

import weblogic.il8n.Localizer;
import weblogic.il8ntools.L10nLookup;
import weblogic.logging.Loggable;

/**
* This example shows how to use the internationalized (118n) logging interfaces.
* <p>
* usage: java examples.il8n.logging.118nLog
* <p>
* Build procedure: run bld.sh (UNIX) or bld.cmd (NT). These scripts
* process the 118nLog.xml catalog, producing the logging class,
* <tt>examples.il8n.logging.118nLoglLogger</tt>. This class contains static
* methods for logging messages to the WLS server log. The methods
* and arguments are defined in the 118nLog.xml catalog. This example also
*

uses a simple message catalog, 118nSimple.xml.
*/

public class 118nLog {
public 118nLog() {}

public static void main(String[] argv) {
/**
* This call just logs an info message. There are no arguments defined
* for this method.
* This also shows how to use the Loggable form of the method.
*/

Loggable 11 = 118nLogLogger.logEntrylLoggable();

11.10g0);
System.out.printin(ll.getMessage());

/**

* Here"s an example of a message including a variety

* of arguments.

*/

118nLoglLogger . testArgs(118nLog.class.getName(),argv. length);
/**

* If a Throwable is passed then it will result in a stack trace

* being logged along with the method by default.

*/
Throwable t = new Throwable("'Test with stack trace™);
118nLogLogger. logTrace(t);
/**

* Messages can optionally be defined to not log a stack trace.

*/

118nLogLogger. logNoTrace(t);

/**

* The logger methods return the message id for applications

* that want to do more than just log these messages.

*/

String messageld = 118nLogLogger.getld();
118nLogLogger.showld(messageld);

/**

* The message id can be used to obtain the different attributes

* of a message. The L10nLookup object provides access to the catalogs
* via Localizer classes. Localizers provide the access to individual
* messages. Each log message catalog has two Localizers: one for
* general message information and one for the detailed attributes.

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
G31431-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-5 of D-6

ORACLE

Appendix D
Example of a Generated Logger Class

The basic Localizer provides access to catalog information:
Version
L10n Package - package for catalog data
118n Package - package for Logger methods
Subsystem - catalog subsystem
For each message it also provides:
Severity: debug, info, warning, error
Message Body - the message text
Stack option - whether to log a stack trace

ok o % ok X % ok X

*

* First get to the L10nLookup properties, then use them to get the
* Localizers for the message.

*/

L10nLookup 110n = L10nLookup.getL10n();

/**

* This returns the basic Localizer (arg 3 = false)
*/

Localizer Icl = 110n.getLocalizer(messageld,Locale.getDefault(),false);
/**

* This returns the detailed Localizer (arg 3 = true)

*/

Localizer IclDetail = 110n.getLocalizer(messageld,Locale.getDefault(),true);
/**

* Use this appplication®s simple message catalog to display the

* log message catalog information

*/
118nSimpleTextFormatter fmt = new 118nSimpleTextFormatter();
System.out.printIn(fmt.version(messageld, Icl.getVersion()));
System.out.printin(fmt.110nPackage(messageld, Icl.getlL10nPackage()));
System.out.printIn(fmt.i18nPackage(messageld, Icl.getl18nPackage()));
System.out.printIn(fmt.subsystem(messageld, Icl.getSubSystem()));
System.out.printIn(fmt.severity(messageld, Icl.getSeverity(messageld)));
System.out.printIn(fmt.body(messageld, Icl.getBody(messageld)));
System.out.printIn(fmt.stack(messageld, Icl.getStackTrace(messageld)));
/**

* Now for the detailed information.

*/
System.out.printin(fmt.detail(messageld, IcIDetail .getDetai l (messageld)));
System.out.printIn(fmt.cause(messageld, IclDetail .getCause(messageld)));
System.out.printIn(fmt.action(messageld, IcIDetail .getAction(messageld)));

Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

G31431-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-6 of D-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Logging Samples and Tutorials
	New and Changed WebLogic Server Features

	Conventions

	1 Application Logging and WebLogic Logging Services
	About WebLogic Logging Services
	Integrating Application Logging with WebLogic Logging Services: Main Steps
	Accessing the WebLogic Server Logger

	2 Internationalization and Localization for WebLogic Server
	About Internationalization and Localization Standards
	Understanding Internationalization and Localization for WebLogic Server
	Understanding Message Catalogs
	Understanding Java Interfaces for Internationalization
	Main Steps for Creating an Internationalized Message

	3 Using Message Catalogs with WebLogic Server
	Overview of Message Catalogs
	Message Catalog Hierarchy
	Guidelines for Naming Message Catalogs
	Using Message Arguments
	Retrieving Additional Information About an Error Message

	Message Catalog Formats
	Example Log Message Catalog
	Elements of a Log Message Catalog
	message_catalog Element
	log_message Element
	Child Elements of log_message Element

	Example Simple Text Catalog
	Elements of a Simple Text Catalog
	message_catalog Element
	message Element
	messagebody Element

	Example Locale-Specific Catalog
	Elements of a Locale-Specific Catalog
	locale_message_catalog Element
	log_message Element
	Other locale_message_catalog Elements

	4 Writing Messages to the WebLogic Server Log
	Using the I18N Message Catalog Framework: Main Steps
	Create Message Catalogs
	Compile Message Catalogs
	Example: Compiling Message Catalogs
	Compiling the Message Catalog
	Creating Properties Files

	Use Messages from Compiled Message Catalogs

	Using the NonCatalogLogger APIs
	Using ServletContext
	Configuring Servlet and Resource Adapter Logging
	Writing Messages from a Client Application
	Writing Debug Messages

	5 Using the WebLogic Server Message Editor
	About the Message Editor
	Starting the Message Editor
	Working with Catalogs
	Browsing to an Existing Catalog
	Creating a New Catalog

	Adding Messages to Catalogs
	Entering a New Log Message
	Entering a New Simple Text Message

	Finding Messages
	Finding a Log Message
	Finding a Simple Text Message

	Using the Message Viewer
	Viewing All Messages in a Catalog
	Viewing All Messages in Several Catalogs
	Selecting a Message to Edit from the Message Viewer

	Editing an Existing Message
	Retiring and Unretiring Messages

	6 Using the WebLogic Server Internationalization Utilities
	WebLogic Server Internationalization Utilities
	WebLogic Server Internationalization and Localization
	weblogic.i18ngen Utility
	weblogic.l10ngen Utility
	Message Catalog Localization
	Examples

	weblogic.GetMessage Utility

	A Localizer Class Reference for WebLogic Server
	About Localizer Classes
	Localizer Methods
	Localizer Lookup Class

	B Loggable Object Reference for WebLogic Server
	About Loggable Objects
	How To Use Loggable Objects

	C TextFormatter Class Reference for WebLogic Server
	About TextFormatter Classes
	Example of an Application Using a TextFormatter Class

	D Logger Class Reference for WebLogic Server
	About Logger Classes
	Example of a Generated Logger Class

