Oracle® Fusion Middleware
Tuning Performance of Oracle WebLogic
Server

15¢ (15.1.1.0.0)
G31577-01
October 2025

ORACLE"

Oracle Fusion Middleware Tuning Performance of Oracle WebLogic Server, 15c (15.1.1.0.0)
G31577-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience

Documentation Accessibility
Diversity and Inclusion
Related Documentation
Conventions

1 Top Tuning Recommendations for WebLogic Server

Tune Pool Sizes

Use the Prepared Statement Cache

Use Logging Last Resource Optimization
Tune Connection Backlog Buffering

Use Optimistic or Read-only Concurrency
Use Local Interfaces

Use eager-relationship-caching

Tune HTTP Sessions

Tune Messaging Applications

2 Performance Tuning Roadmap and Guidelines

NN NN R R P R

Performance Tuning Roadmap
Understand Your Performance Objectives
Measure Your Performance Metrics
Monitor Disk and CPU Utilization
Monitor Data Transfers Across the Network
Locate Bottlenecks in Your System
Minimize Impact of Bottlenecks
Tune Your Application
Tune your DB
Tune WebLogic Server Performance Parameters
Tune Your JVM
Tune the Operating System
Achieve Performance Obijectives

Tuning Performance of Oracle WebLogic Server
G31577-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

A A BB BB OO OWDNMNDNMNDNMDNPEP P

October 8, 2025
Page i of ix

Tuning Tips

3 Tuning Java Virtual Machines (JVMs)

JVM Tuning Considerations
Changing To a Different JVM
Garbage Collection
VM Heap Size and Garbage Collection
Choosing a Garbage Collection Scheme
Using Verbose Garbage Collection to Determine Heap Size
Specifying Heap Size Values
Tuning Tips for Heap Sizes
Java HotSpot VM Heap Size Options
Other Java HotSpot VM Options
Increasing Java Heap Size for Managed Servers
Modify the startManagedWebLogic Script to Set Java Heap Size
Using the Command Line to Set Java Heap Size
Determining the Memory Values Used by a Managed Server

4 Tuning WebLogic Diagnostic Framework and Java Flight Recorder
Integration

D o O o1 o A B WDNDNDNDNPRFP P

Using Java Flight Recorder
Using WLDF
Tuning Considerations

5 Tuning WebLogic Server

Setting Java Parameters for Starting WebLogic Server
Development vs. Production Mode Default Tuning Values
Deployment
On-demand Deployment of Internal Applications
Use FastSwap Deployment to Minimize Redeployment Time
Generic Overrides
Thread Management
Tuning a Work Manager
Self-Tuning Thread Pool Size
How Many Work Managers are Needed?
What are the SLA Requirements for Each Work Manager?
Tuning the Stuck Thread Detection Behavior
Tuning Network I/O
Tuning Muxers

Tuning Performance of Oracle WebLogic Server

A BRA W W W W WDNDNDNDMNDNMMNDNDPREP PR

G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates.

Page ii of ix

Java Non-Blocking 10 (NIO) Muxer 4

Native Muxers 4

Server Location and Supported Platforms 5
Pure-Java Versus Native Socket Reader Implementations 5
Configuring Reader Threads for Java Socket Implementation 6
Network Channels 8
Reducing the Potential for Denial of Service Attacks 9
Tuning Message Size 9

Tuning Complete Message Timeout 9

Tuning Number of File Descriptors 9

Tuning Connection Backlog Buffering 10
Tuning Cached Connections 10
Tuning the Work Manager Maximum Threads Constraint Queue Size 10
Optimize Java Expressions 11
Using WebLogic Server Clusters to Improve Performance 11
Scalability and High Availability 11
How to Ensure Scalability for WebLogic Clusters 12
Database Bottlenecks 12
Session Replication 12
Asynchronous HTTP Session Replication 13
Invalidation of Entity EJBs 14
Invalidation of HTTP sessions 14

JNDI Binding, Unbinding and Rebinding 14
Running Multiple Server Instances on Multi-Core Machines 14
Monitoring a WebLogic Server Domain 15
Using the WebLogic Diagnostic Framework 15
Using JMX to Monitor WebLogic Server 15
Using WLST to Monitor WebLogic Server 15
Resources to Monitor WebLogic Server 15
Tuning Class and Resource Loading 15
Filtering Loader Mechanism 16
Class Caching 16

6 Tuning the WebLogic Persistent Store

Overview of Persistent Stores 1
Using the Default Persistent Store 1
Using Custom File Stores and JDBC Stores 1
Using a JDBC TLOG Store 2
Using JMS Paging Stores 2
Using Flash Storage to Page JMS Messages 2

Using Diagnostic Stores 3

Tuning Performance of Oracle WebLogic Server
G31577-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iii of ix

Best Practices When Using Persistent Stores
Tuning JDBC Stores
Tuning File Stores
Basic Tuning Information
Tuning a File Store Direct-Write-With-Cache Policy
Using Flash Storage to Increase Performance
Additional Considerations
Tuning the File Store Direct-Write Policy
Tuning the File Store Block Size
Setting the Block Size for a File Store
Determining the File Store Block Size
Determining the File System Block Size
Converting a Store with Pre-existing Files
Using a Network File System
Configuring Synchronous Write Policies
Test Server Restart Behavior
Handling NFS Locking Errors
Solution 1 — Using NFS v4 Instead of NFS v3
Solution 2 - Copying Data Files to Remove NFS Locks
Solution 3 - Disabling File Locks in WebLogic Server File Stores

7 Database Tuning

© © © © 0 N N o o o &~ b W W

[i i = = =
N PP O O O

General Suggestions
Database-Specific Tuning
Oracle
Microsoft SQL Server

8 Tuning WebLogic Server EJBs

[I e N

General EJB Tuning Tips
Tuning EJB Caches
Tuning the Stateful Session Bean Cache
Tuning the Entity Bean Cache
Transaction-Level Caching
Caching between Transactions
Ready Bean Caching
Tuning the Query Cache
Tuning EJB Pools
Tuning the Stateless Session Bean Pool
Tuning the MDB Pool
Tuning the Entity Bean Pool

Tuning Performance of Oracle WebLogic Server
G31577-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

W W W W NN DNDNMNDNDDNPRFP P

October 8, 2025
Page iv of ix

10

CMP Entity Bean Tuning

Use Eager Relationship Caching
Using Inner Joins

Use JDBC Batch Operations
Tuned Updates
Using Field Groups
include-updates
call-by-reference
Bean-level Pessimistic Locking
Concurrency Strategy

Tuning In Response to Monitoring Statistics
Cache Miss Ratio
Lock Waiter Ratio
Lock Timeout Ratio
Pool Miss Ratio
Destroyed Bean Ratio
Pool Timeout Ratio
Transaction Timeout Ratio

Tuning Message-Driven Beans

© © 00 0 0 N N O o o or o1 o B M B b

=
o

Use Transaction Batching
MDB Thread Management

Determining the Number of Concurrent MDBs

Selecting a Concurrency Strategy

Thread Utilization When Using WebLogic Destinations

Limitations for Multi-threaded Topic MDBs
Best Practices for Configuring and Deploying MDBs Using Distributed Topics
Using MDBs with Foreign Destinations

Concurrency for MDBs that Process Messages from Foreign Destinations

Thread Utilization for MDBs that Process Messages from Foreign Destinations
Token-based Message Polling for Transactional MDB Listening on Queues/Topics
Compatibility for WLS 10.0 and Earlier-style Polling

Tuning Data Sources

g h D DN WWWNNPR PP

Tune the Number of Database Connections

Waste Not

Use Test Connections on Reserve with Care

Cache Prepared and Callable Statements

Database Listener Timeout under Heavy Server Loads
Disable Wrapping of Data Type Objects

Tuning Performance of Oracle WebLogic Server

G31577-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

W NN DN PP

October 8, 2025
Page v of ix

Advanced Configurations for Oracle Drivers and Databases 3
Use Best Design Practices 3
11 Tuning Transactions
Improving Throughput Using XA Transaction Cluster Affinity 1
Logging Last Resource Transaction Optimization 1
LLR Tuning Guidelines 1
Read-only, One-Phase Commit Optimizations 2
12 Tuning WebLogic JMS

JMS Performance & Tuning Check List 1
Handling Large Message Backlogs 2
Improving Message Processing Performance 3
Controlling Message Production 4
Drawbacks to Controlling Message Production 4

Cache and Re-use Client Resources 4
Tuning Distributed Queues 5
Tuning Topics 6
Tuning Non-durable Topic Publishers 6
Tuning for Large Messages 6
Tuning MessageMaximum 6
Tuning MessageMaximum Limitations 7

Setting Maximum Message Size for Network Protocols 7
Threshold Compression for Remote Producers 8
Store Compression 8
Selecting a Message Compression Option 9
Message Compression for JMS Servers 9
Message Compression for Store-and-Forward Sending Agents 10

Paging Out Messages To Free Up Memory 10
Specifying a Message Paging Directory 10

Tuning the Message Buffer Size Option 11
Defining Quota 11
Quota Resources 11
Destination-Level Quota 12
JMS Server-Level Quota 12
Subscription Message Limits 13
Controlling the Flow of Messages on JMS Servers and Destinations 13
How Flow Control Works 14
Configuring Flow Control 14
Flow Control Thresholds 15

Tuning Performance of Oracle WebLogic Server
G31577-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page vi of ix

Tuning Applications Using Unit-of-Order 15

Best Practices 16
Using UOO and Distributed Destinations 16
Using JMS 2.0 Asynchronous Message Sends 16
Using One-Way Message Sends 18
Configure One-Way Sends On a Connection Factory 19
One-Way Send Support In a Cluster With a Single Destination 19
One-Way Send Support In a Cluster With Multiple Destinations 19
When One-Way Sends Are Not Supported 20
Different Client and Destination Hosts 20
XA Enabled On Client's Host Connection Factory 20
Higher QOS Detected 20
Destination Quota Exceeded 20
Change In Server Security Policy 21
Change In JMS Server or Destination Status 21
Looking Up Logical Distributed Destination Name 21
Hardware Failure 21
One-Way Send QOS Guidelines 21
Client-side Thread Pools 22
Best Practices for JIMS .NET Client Applications 22
Considerations for Oracle Data Guard Environments 23
Migrate JMS Services for Unexpected Outages 23

13 Tuning WebLogic JMS Store-and-Forward

Best Practices for IMS SAF
Tuning Tips for IMS SAF

14 Tuning WebLogic Message Bridge

Best Practices

Changing the Batch Size

Changing the Batch Interval

Changing the Quality of Service

Using Multiple Bridge Instances

Changing the Thread Pool Size

Avoiding Durable Subscriptions

Co-locating Bridges with Their Source or Target Destination
Changing the Asynchronous Mode Enabled Attribute

W W W NDNDNPFPE P PR

Tuning Environments with Many Bridges

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page vii of ix

15

16

17

18

Tuning Resource Adapters

Classloading Optimizations for Resource Adapters
Connection Optimizations

Thread Management

InteractionSpec Interface

Tuning Web Applications

N PR e

Best Practices
Disable Page Checks
Use Custom JSP Tags
Precompile JSPs
Use HTML Template Compression
Use Service Level Agreements
Related Reading
Session Management
Managing Session Persistence
Minimizing Sessions
Aggregating Session Data
Pub-Sub Tuning Guidelines
Enabling GZIP Compression

Tuning Web Services

W W W W NMNDNDNDNDNDNPFPE PP PP

Web Services Best Practices

Tuning Web Service Reliable Messaging Agents

Tuning Heavily Loaded Systems to Improve Web Service Performance
Setting the Work Manager Thread Pool Minimum Size Constraint
Setting the Buffering Sessions
Releasing Asynchronous Resources

Tuning WebLogic Tuxedo Connector

W W NN DNDN PP

Configuration Guidelines
Best Practices

Capacity Planning

Capacity Planning Factors
Programmatic and Web-based Clients
RMI and Server Traffic
SSL Connections and Performance

Tuning Performance of Oracle WebLogic Server

G31577-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

A-1
A-2
A-2

October 8, 2025
Page viii of ix

WebLogic Server Process Load
Database Server Capacity and User Storage Requirements
Concurrent Sessions
Network Load
Clustered Configurations
Server Migration
Application Design
Assessing Your Application Performance Objectives
Hardware Tuning
Benchmarks for Evaluating Performance
Supported Platforms
Network Performance
Determining Network Bandwidth
Related Information

Tuning Performance of Oracle WebLogic Server
G31577-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ix of ix

ORACLE’

Preface

The documentation is intended for administrators who monitor the performance of Oracle
WebLogic Server 15.1.1.0.0 and tune the components such as JVMs, EJBs, DBs, Persistent
Stores, Data Sources, Messaging Servers, and so on.

Audience

This document is written for people who monitor performance and tune the components in a
WebLogic Server environment. It is assumed that readers know server administration and
hardware performance tuning fundamentals, WebLogic Server, XML, and the Java
programming language.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions

The following text conventions are used in this document:

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

ORACLE’

Preface
Convention Meaning
boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.
italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.
nonospace Monospace type indicates commands within a paragraph, URLSs, code in

examples, text that appears on the screen, or text that you enter.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page ii of ii

Top Tuning Recommendations for WebLogic
Server

Tuning Oracle WebLogic Server and your WebLogic Server application is a complex and
iterative process. To get you started, Oracle recommends various tuning techniques to
optimize your application's performance. These tuning techniques are applicable to nearly all
WebLogic applications.

Tune Pool Sizes

Provide pool sizes (such as pools for JDBC connections, Stateless Session EJBs, and MDBS)
that maximize concurrency for the expected thread utilization.

For WebLogic Server releases 9.0 and higher—A server instance uses a self-tuned thread-
pool. The best way to determine the appropriate pool size is to monitor the pool's current size,
shrink counts, grow counts, and wait counts. See Thread Management. Tuning MDBs are a
special case, please see Tuning Message-Driven Beans.

Use the Prepared Statement Cache

The prepared statement cache keeps compiled SQL statements in memory, thus avoiding a
round-trip to the database when the same statement is used later.

See Tuning Data Sources.

Use Logging Last Resource Optimization

When using transactional database applications, consider using the JDBC data source
Logging Last Resource (LLR) transaction policy instead of XA.

The LLR optimization can significantly improve transaction performance by safely eliminating
some of the 2PC XA overhead for database processing, especially for two-phase commit
database insert, update, and delete operations. See Tuning Data Sources.

Tune Connection Backlog Buffering

You can tune the number of connection requests that a WebLogic Server instance accepts
before refusing additional requests. This tunable applies primarily for Web applications.

See Tuning Connection Backlog Buffering.

Use Optimistic or Read-only Concurrency

Use optimistic concurrency with cache-between-transactions or read-only concurrency with
guery-caching for CMP EJBs to leverage the Entity Bean cache provided by the EJB container.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 3

ORACLE Chapter 1
Use Local Interfaces

e Optimistic-concurrency with cache-between-transactions work best with read-mostly
beans. Using verify-reads in combination with these provides high data consistency
guarantees with the performance gain of caching. See Tuning WebL ogic Server EJBs.

* Query-caching is a WebLogic Server 9.0 feature that allows the EJB container to cache
results for arbitrary non-primary-key finders defined on read-only EJBs. All of these
parameters can be set in the application/module deployment descriptors. See Concurrency
Strategy.

Use Local Interfaces

Use local-interfaces or use call-by-reference semantics to avoid the overhead of serialization
when one EJB calls another or an EJB is called by a servlet/JSP in the same application.

Note the following:

@® Note

e Inrelease prior to WebLogic Server 8.1, call-by-reference is turned on by default.
For releases of WebLogic Server 8.1 and later, call-by-reference is turned off by
default. Older applications migrating to WebLogic Server 8.1 and later that do not
explicitly turn on call-by-reference may experience a drop in performance.

e This optimization does not apply to calls across different applications.

Use eager-relationship-caching

Use eager-relationship-caching to allow the EJB container to load related beans using a single
SQL statement.

It improves performance by reducing the number of database calls to load related beans in
transactions when a bean and it's related beans are expected to be used in that transaction.
See Tuning Webl ogic Server EJBs.

Tune HTTP Sessions

Optimize your application so that it does as little work as possible when handling HTTP
session persistence and sessions. Also, design a session management strategy that suits your
environment and application.

See Session Management.

Tune Messaging Applications

Oracle provides messaging users a rich set of performance tunables. In general, you should
always configure quotas and paging.

See:

* Tuning the WebLogic Persistent Store
e Tuning WebLogic JMS

e Tuning WebLogic JMS Store-and-Forward

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 3

ORACLE Chapter 1
Tune Messaging Applications

e Tuning WebLogic Message Bridge

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 3

Performance Tuning Roadmap and Guidelines

Use performance tuning roadmap in Oracle WebLogic Server to understand your performance
objectives and tune your application environment to optimize performance.

Performance Tuning Roadmap

The performance tuning roadmap includes the methods you use to quantify your performance
objectives, such as measuring your performance metrics, locating bottlenecks in system, and
minimizing the impact of bottlenecks.

Understand Your Performance Objectives

To determine your performance objectives, you need to understand the application deployed
and the environmental constraints placed on the system. Gather information about the levels of
activity that components of the application are expected to meet, such as:

The anticipated number of users.
The number and size of requests.
The amount of data and its consistency.
Determining your target CPU utilization.

Your target CPU usage should not be 100%, you should determine a target CPU utilization
based on your application needs, including CPU cycles for peak usage. If your CPU
utilization is optimized at 100% during normal load hours, you have no capacity to handle a
peak load. In applications that are latency sensitive and maintaining the ability for a fast
response time is important, high CPU usage (approaching 100% utilization) can reduce
response times while throughput stays constant or even increases because of work
queuing up in the server. For such applications, a 70% - 80% CPU utilization
recommended. A good target for non-latency sensitive applications is about 90%.

Performance objectives are limited by constraints, such as

The configuration of hardware and software such as CPU type, disk size vs. disk speed,
sufficient memory.

There is no single formula for determining your hardware requirements. The process of
determining what type of hardware and software configuration is required to meet
application needs adequately is called capacity planning. Capacity planning requires
assessment of your system performance goals and an understanding of your application.
Capacity planning for server hardware should focus on maximum performance
requirements. See Capacity Planning.

The ability to interoperate between domains, use legacy systems, support legacy data.

Development, implementation, and maintenance costs.

You will use this information to set realistic performance objectives for your application
environment, such as response times, throughput, and load on specific hardware.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 4

ORACLE Chapter 2
Performance Tuning Roadmap

Measure Your Performance Metrics

After you have determined your performance criteria in Understand Your Performance
Objectives, take measurements of the metrics you will use to quantify your performance
objectives. The following sections provide information on measuring basic performance
metrics:

e Monitor Disk and CPU Utilization

e Monitor Data Transfers Across the Network

Monitor Disk and CPU Utilization

Run your application under a high load while monitoring the:

e Application server (disk and CPU utilization)
« Database server (disk and CPU utilization)

The goal is to get to a point where the application server achieves your target CPU utilization.
If you find that the application server CPU is under utilized, confirm whether the database is
bottle necked. If the database CPU is 100 percent utilized, then check your application SQL
calls query plans. For example, are your SQL calls using indexes or doing linear searches?
Also, confirm whether there are too many ORDER BY clauses used in your application that are
affecting the database CPU.

If you discover that the database disk is the bottleneck (for example, if the disk is 100 percent
utilized), try moving to faster disks or to a RAID (redundant array of independent disks)
configuration, assuming the application is not doing more writes than required.

Once you know the database server is not the bottleneck, determine whether the application
server disk is the bottleneck. Some of the disk bottlenecks for application server disks are:

e Persistent Store writes

e Transaction logging (tlogs)
e HTTP logging

e Server logging

The disk I/O on an application server can be optimized using faster disks or RAID, disabling
synchronous JMS writes, using JTA direct writes for tlogs, or increasing the HTTP log buffer.

Monitor Data Transfers Across the Network

Check the amount of data transferred between the application and the application server, and
between the application server and any remote endpoint. This amount should not exceed your
network bandwidth; otherwise, your network becomes the bottleneck.

Locate Bottlenecks in Your System

If you determine that neither the network nor the database server is the bottleneck, start
looking at your operating system, JVM, and WebLogic Server configurations. Most importantly,
is the machine running WebLogic Server able to get your target CPU utilization with a high
client load? If the answer is no, then check if there is any locking taking place in the
application. You should profile your application to pinpoint bottlenecks and improve application
performance, see Java Mission Control.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 4

http://docs.oracle.com/javase/8/docs/technotes/guides/jmc/

ORACLE Chapter 2
Performance Tuning Roadmap

@ Tip

Even if you find that the CPU is 100 percent utilized, you should profile your
application for performance improvements.

Minimize Impact of Bottlenecks

In this step, you tune your environment to minimize the impact of bottlenecks on your
performance objectives. It is important to realize that in this step you are minimizing the impact
of bottlenecks, not eliminating them. Tuning allows you to adjust resources to achieve your
performance objectives. For the scope of this document, this includes (from most important to
least important):

¢ Tune Your Application

e Tune your DB
« Tune WebLogic Server Performance Parameters

e Tune Your JVM

¢ Tune the Operating System

¢ Tuning the WebLogic Persistent Store

Tune Your Application

To quote the authors of Oracle WebLogic Server: Optimizing WebLogic Server Performance:
"Good application performance starts with good application design. Overly-complex or poorly-
designed applications will perform poorly regardless of the system-level tuning and best
practices employed to improve performance." In other words, a poorly designed application
can create unnecessary bottlenecks. For example, resource contention could be a case of
poor design, rather than inherent to the application domain.

See:

e Tuning WebLogic Server EJBs

e Tuning Message-Driven Beans

e Tuning Data Sources

e Tuning Transactions
e Tuning WebLogic JMS

e Tuning WebLogic JMS Store-and-Forward

e Tuning WeblLogic Message Bridge

e Tuning Resource Adapters

e Tuning Web Applications

e Tuning Web Services

e Tuning WebLogic Tuxedo Connector

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 4

ORACLE Chapter 2
Tuning Tips

Tune your DB

Your database can be a major enterprise-level bottleneck. Database optimization can be
complex and vender dependent. See DataBase Tuning.

Tune WebLogic Server Performance Parameters

The WebLogic Server uses a number of OOTB (out-of-the-box) performance-related
parameters that can be fine-tuned depending on your environment and applications. Tuning
these parameters based on your system requirements (rather than running with default
settings) can greatly improve both single-node performance and the scalability characteristics
of an application. See Tuning Webl ogic Server.

Tune Your JVM

The Java virtual machine (JVM) is a virtual "execution engine" instance that executes the
bytecode in Java class files on a microprocessor. See Tuning Java Virtual Machines (JVMs).

Tune the Operating System

Tune your operating system according to your operating system documentation based on your
application environment.

Achieve Performance Objectives

Performance tuning is an iterative process. After you have minimized the impact of bottlenecks
on your system, go to Step 2, Measure Your Performance Metrics and determine if you have
met your performance objectives.

Tuning TIps
Follow the tuning tips and guidelines when tuning overall system performance.

* Performance tuning is not a silver bullet. Simply put, good system performance depends
on: good design, good implementation, defined performance objectives, and performance
tuning.

« Performance tuning is an ongoing process. Implement mechanisms that provide
performance metrics which you can compare against your performance objectives,
allowing you to schedule a tuning phase before your system fails.

* The object is to meet your performance objectives, not eliminate all bottlenecks.
Resources within a system are finite. By definition, at least one resource (CPU, memory, or
I/0) will be a bottleneck in the system. Tuning allows you minimize the impact of
bottlenecks on your performance objectives.

* Design your applications with performance in mind:
— Keep things simple - avoid inappropriate use of published patterns.
— Apply Jakarta EE performance patterns.

— Optimize your Java code.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 4

Tuning Java Virtual Machines (JVMS)

The Java virtual machine (JVM) in Oracle WebLogic Server is a virtual "execution engine"
instance that executes the bytecode in Java class files on a microprocessor. How you tune
your JVM affects the performance of WebLogic Server and your applications. Configure the
JVM tuning options for WebLogic Server:

JVM Tuning Considerations

Examine some general JVM tuning considerations for WebLogic Server.

The following table presents general JVM tuning considerations for WebLogic Server.

Table 3-1 General JVM Tuning Considerations
|

Tuning Factor Information Reference
JVM vendor and version Use only production JVMs on which WebLogic Server has been
certified.

See Supported Configurations in What's New in Oracle WebLogic
Server for links to the latest certification information on various

platforms.

Tuning heap size and garbage For WebLogic Server heap size tuning details, see Garbage Collection.

collection

Choosing a GC (garbage Depending on your application, there are a number of GC schemes

collection) scheme available for managing your system memory, as described in Choosing a
Garbage Collection Scheme.

Mixed client/server JVMs Deployments using different JVM versions for the client and server are
supported in WebLogic Server.

UNIX threading models Choices you make about Solaris threading models can have a large

impact on the performance of your JVM. You can choose from multiple
threading models and different methods of synchronization within the
model, but this varies from JVM to JVM.

See https://docs. oracl e. coni en/ | avalj avase/ 21/ gct uni ng/
i ndex. ht m

Changing To a Different JVM

When you create a domain, you choose the JVM that you want to run your domain and the
Configuration Wizard configures the Oracle start scripts based on your choice. Modify the
values for the JAVA_HOMVE and JAVA_VENDCR variables in the Configuration Wizard to change the
JVM.

After you create a domain, if you want to use a different JVM, see Changing the JVM That
Runs Servers in Administering Server Startup and Shutdown for Oracle WebLogic Server.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 6

https://docs.oracle.com/en/java/javase/21/gctuning/index.html
https://docs.oracle.com/en/java/javase/21/gctuning/index.html

ORACLE Chapter 3
Garbage Collection

Garbage Collection

Garbage collection is the VM's process of freeing up unused Java objects in the Java heap.

The following sections provide information on tuning your VM's garbage collection.

VM Heap Size and Garbage Collection

The Java heap is where the objects of a Java program live. It is a repository for live objects,
dead objects, and free memory. When an object can no longer be reached from any pointer in
the running program, it is considered "garbage" and ready for collection. A best practice is to
tune the time spent doing garbage collection to within 5% of execution time.

The JVM heap size determines how often and how long the VM spends collecting garbage. An
acceptable rate for garbage collection is application-specific and should be adjusted after
analyzing the actual time and frequency of garbage collections. If you set a large heap size, full
garbage collection is slower, but it occurs less frequently. If you set your heap size in
accordance with your memory needs, full garbage collection is faster, but occurs more
frequently.

The goal of tuning your heap size is to minimize the time that your JVM spends doing garbage
collection while maximizing the number of clients that WebLogic Server can handle at a given
time. To ensure maximum performance during benchmarking, you might set high heap size
values to ensure that garbage collection does not occur during the entire run of the benchmark.

You might see the following Java error if you are running out of heap space:

java.lang. Qut Of MenoryError <<no stack trace avail abl e>>
java.lang. Qut Of MenoryError <<no stack trace avail abl e>>
Exception in thread "main"

To modify heap space values, see Specifying Heap Size Values.

To configure WebLogic Server to detect automatically when you are running out of heap space
in the server, see Specifying Heap Size Values.

Choosing a Garbage Collection Scheme

Depending on which JVM you are using, you can choose from several garbage collection
schemes to manage your system memory. For example, some garbage collection schemes are
more appropriate for a given type of application. Once you have an understanding of the
workload of the application and the different garbage collection algorithms utilized by the JVM,
you can optimize the configuration of the garbage collection.

For an overview of the garbage collection schemes available with Sun's HotSpot VM, see JDK
17 Documentation - HotSpot Virtual Machine Garbage Collection Tuning Guide and JDK 21
Documentation - HotSpot Virtual Machine Garbage Collection Tuning Guide.

Using Verbose Garbage Collection to Determine Heap Size

The verbose garbage collection option (ver bosegc) enables you to measure exactly how much
time and resources are put into garbage collection. To determine the most effective heap size,
turn on verbose garbage collection and redirect the output to a log file for diagnostic purposes.

The following steps outline this procedure:

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 6

https://docs.oracle.com/en/java/javase/17/gctuning/factors-affecting-garbage-collection-performance.html
https://docs.oracle.com/en/java/javase/17/gctuning/factors-affecting-garbage-collection-performance.html
https://docs.oracle.com/en/java/javase/21/gctuning/introduction-garbage-collection-tuning.html
https://docs.oracle.com/en/java/javase/21/gctuning/introduction-garbage-collection-tuning.html

ORACLE

Chapter 3
Garbage Collection

Monitor the performance of WebLogic Server under maximum load while running your
application.

Use the - ver bosegc option to turn on verbose garbage collection output for your JVM and
redirect both the standard error and standard output to a log file.

This places thread dump information in the proper context with WebLogic Server
informational and error messages, and provides a more useful log for diagnostic purposes.

For example, enter the following:

% java -nms32m - mx200m - ver bosegc -cl asspath $CLASSPATH

- Dnebl ogi ¢. Name=%SERVER_NAME% - Dbea. home="C: \ Or acl e\ M ddI ewar e"

- Dnebl ogi ¢. managenent . user name=%\LS_USER%

- Dnebl ogi ¢. managenent . passwor d=9WL.S_PWsb

- Dnebl ogi ¢. managenent . server =%ADM N_URL%

- Dwnebl ogi ¢. Product i onMbdeEnabl ed=%STARTMODEY%

-Dj ava. security. policy="9%_HOVE% server\|ib\webl ogi c. policy" webl ogic. Server >>
logfile. txt 2>&1

where the | ogfi |l e.txt 2>&1 command redirects both the standard error and standard
output to a log file.
Analyze the following data points:

a. How often is garbage collection taking place? In the weblogic.log file, compare the
time stamps around the garbage collection.

b. How long is garbage collection taking? Full garbage collection should not take longer
than 3 to 5 seconds.

c. What is your average memory footprint? In other words, what does the heap settle
back down to after each full garbage collection? If the heap always settles to 85
percent free, you might set the heap size smaller.

Review the New generation heap sizes, see Java HotSpot VM Heap Size Options.

Make sure that the heap size is not larger than the available free RAM on your system.

Use as large a heap size as possible without causing your system to "swap" pages to disk.
The amount of free RAM on your system depends on your hardware configuration and the
memory requirements of running processes on your machine. See your system
administrator for help in determining the amount of free RAM on your system.

If you find that your system is spending too much time collecting garbage (your allocated
virtual memory is more than your RAM can handle), lower your heap size.

Typically, you should use 80 percent of the available RAM (not taken by the operating
system or other processes) for your JVM.

If you find that you have a large amount of available free RAM remaining, run more
instances of WebLogic Server on your machine.

Remember, the goal of tuning your heap size is to minimize the time that your JVM spends
doing garbage collection while maximizing the number of clients that WebLogic Server can
handle at a given time.

Specifying Heap Size Values

System performance is greatly influenced by the size of the Java heap available to the JVM.
This section describes the command line options you use to define the heap sizes values. You
must specify Java heap size values each time you start an instance of WebLogic Server. This
can be done either from the j ava command line or by modifying the default values in the

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 6

ORACLE

Chapter 3
Garbage Collection

sample startup scripts that are provided with the WebLogic distribution for starting WebLogic

Server.

e Tuning Tips for Heap Sizes

e Java HotSpot VM Heap Size Options

Tuning Tips for Heap Sizes

The following section provides general guidelines for tuning VM heap sizes:

* The heap sizes should be set to values such that the maximum amount of memory used
by the VM does not exceed the amount of available physical RAM. If this value is
exceeded, the OS starts paging and performance degrades significantly. The VM always
uses more memory than the heap size. The memory required for internal VM functionality,
native libraries outside of the VM, and permanent generation memory (for the Sun VM
only: memory required to store classes and methods) is allocated in addition to the heap

size settings.

* When using a generational garbage collection scheme, the nursery size should not exceed
more than half the total Java heap size. Typically, 25% to 40% of the heap size is

adequate.

e In production environments, set the minimum heap size and the maximum heap size to the
same value to prevent wasting VM resources used to constantly grow and shrink the heap.
This also applies to the New generation heap sizes.

Java HotSpot VM Heap Size Options

You achieve best performance by individually tuning each application. However, configuring the
Java HotSpot VM heap size options listed in the following table when starting WebLogic Server
increases performance for most applications.

These options may differ depending on your architecture and operating system. See your
vendor's documentation for platform-specific JVM tuning options.

Table 3-2 Java Heap Size Options

Task Option Comments
Setting the New - XX: NewSi ze As a general rule, set - XX: NewSi ze to be one-fourth the size
generation heap of the heap size. Increase the value of this option for larger
size numbers of short-lived objects.
Be sure to increase the New generation as you increase the
number of processors. Memory allocation can be parallel, but
garbage collection is not parallel.
Setting the - XX: MaxNewSi ze Set the maximum size of the New Generation heap size.

maximum New
generation heap
size

Setting New heap -
size ratios XX: Survi vorRat i
0

The New generation area is divided into three sub-areas:
Eden, and two survivor spaces that are equal in size.

Configure the ratio of the Eden/survivor space size. Try
setting this value to 8, and then monitor your garbage
collection.

Setting initial heap - Xns

size

As a general rule, set initial heap size (- Xms) equal to the
maximum heap size (- Xmx) to minimize garbage collections.

Tuning Performance of Oracle WebLogic Server
G31577-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 6

ORACLE’

Chapter 3
Increasing Java Heap Size for Managed Servers

Table 3-2 (Cont.) Java Heap Size Options
]

Task Option Comments
Setting maximum - Xnx Set the maximum size of the heap.
heap size

For example, when you start a WebLogic Server instance from a j ava command line, you
could specify the HotSpot VM heap size values as follows:

$ java - XX: NewSi ze=128m - XX: MaxNewSi ze=128m - XX: Survi vor Rati 0=8 - Xms512m - Xnx512m
The default size for these values is measured in bytes. Append the letter 'k’ or 'K' to the value
to indicate kilobytes, 'm' or 'M' to indicate megabytes, and 'g' or 'G' to indicate gigabytes. The
example above allocates 128 megabytes of memory to the New generation and maximum New
generation heap sizes, and 512 megabytes of memory to the minimum and maximum heap
sizes for the WebLogic Server instance running in the JVM.

Other Java HotSpot VM Options

Oracle provides other standard and non-standard command-line options to improve the
performance of your VM. How you use these options depends on how your application is
coded.

Test both your client and server JVMs to see which options perform better for your particular
application. For additional examples of the HotSpot VM options, see:

e https://docs.oracle.com en/javaljavasel/ 17/ gctuni ng/index. htm

e https://docs.oracle.conlen/javaljavase/ 21/ gct uni ng/i ndex. ht m

The Java Virtual Machine document provides a detailed discussion of the Client and Server
implementations of the Java virtual machine for Java SE at JDK 17 Documentation and JDK
21 Documentation.

Increasing Java Heap Size for Managed Servers

For better performance, increase the heap size for each Managed Server in your environment.

The following sections provide information about how to modify the Java heap size for
Managed Servers.

See Configuring Remote Startup Arguments in Administering Node Manager for Oracle
WebLogic Server.

Modify the startManagedWebLogic Script to Set Java Heap Size

You can update the st art ManagedWebLogi ¢ script with the required heap size in JAVA_OPTI ONS.
For example:

JAVA OPTI ONS="- Xms2g - Xnx2g" ${ JAVA_OPTI ONS}

See Starting Managed Servers with a Startup Script in Administering Server Startup and
Shutdown for Oracle WebLogic Server.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 6

https://docs.oracle.com/en/java/javase/17/gctuning/index.html
https://docs.oracle.com/en/java/javase/21/gctuning/index.html
https://docs.oracle.com/en/java/javase/17/gctuning/index.html
https://docs.oracle.com/en/java/javase/21/gctuning/index.html
https://docs.oracle.com/en/java/javase/21/gctuning/index.html

ORACLE Chapter 3
Increasing Java Heap Size for Managed Servers

Using the Command Line to Set Java Heap Size

You can pass JVM parameters when starting a managed server by invoking webl ogi c. Server
class in a Java command. See weblogic.Server Command-Line Reference in the Command
Reference for Oracle WebLogic Server.

Determining the Memory Values Used by a Managed Server

Start scripts and the Remote Console (the st art up. properti es file) are common ways to
configure memory arguments in managed servers. Often, they are set in multiple places and
with different values. How do you determine which values are actually used by a running
managed server?

A running managed server always uses the last set of memory arguments passed to the server
during startup. You can verify this by looking through the log files. If you see the memory
arguments listed multiple times, the last set in the output contains the values used by the
server.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 6

Tuning WebLogic Diagnostic Framework and
Java Flight Recorder Integration

Follow the recommended tips and guidelines to tune WebLogic Diagnostic Framework (WLDF)
and Java Flight Recorder of Oracle WebLogic Server.

Using Java Flight Recorder

Java Flight Recorder is a performance monitoring and profiling tool that records diagnostic
information on a continuous basis, making it always available, even in the wake of catastrophic
failure such as a system crash.

Java Flight Recorder is available in Oracle HotSpot. When WebLogic Server is configured with
HotSpot, Java Flight Recorder is not enabled by default. See Using Java Flight Recorder with
Oracle HotSpot in Configuring and Using the Diagnostics Framework for Oracle WebLogic
Server, for information about how to enable Java Flight Recorder with WebLogic Server.

Using WLDF

If WebLogic Server is configured with Oracle HotSpot, and the Java Flight Recorder is
enabled, the Java Flight Recorder data is automatically also captured in the diagnostic image
capture. This data can be extracted from the diagnostic image capture and viewed in Java
Mission Control. If Java Flight Recorder is not enabled, or if WebLogic Server is configured
with a different JVM, the Java Flight Recorder data is not captured in the diagnostics image
capture.

The volume of Java Flight Recorder data that is captured can be configured using the

Di agnosti ¢ Vol une attribute in the WebLogic Remote Console, see Configuring WLDF
Diagnostic Volume in Configuring and Using the Diagnostics Framework for Oracle WebLogic
Server. You can also set the volume using WLST.

Tuning Considerations

In most environments, there is little performance impact when the Di agnosti ¢ Vol une is set to
Low and the most performance impact if Di agnosti ¢ Vol une is set to H gh. The volume of
diagnostic data produced by WebLogic Server needs to be weighed against potential
performance loss.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 1

Tuning WebLogic Server

Learn how to tune Oracle WebLogic Server to match your application.

Setting Java Parameters for Starting WebLogic Server

Java parameters must be specified whenever you start WebLogic Server.

For simple invocations, this can be done from the command line with the webl ogi c. Server
command. However, because the arguments needed to start WebLogic Server from the
command line can be lengthy and prone to error, Oracle recommends that you incorporate the
command into a script. To simplify this process, you can modify the default values in the
sample scripts that are provided with the WebLogic Server distribution, as described in
Specifying Java Options for a WebLogic Server Instance in Administering Server Startup and
Shutdown for Oracle WebLogic Server.

If you used the Configuration Wizard to create your domain, the WebLogic startup scripts are
located in the domain-name directory where you specified your domain. By default, this
directory is ORACLE_HOVE\ user _pr oj ect s\ donai n\ donmai n- nane, where ORACLE_HOME is the
directory you specified as the ORACLE_HOME when you installed Oracle WebLogic Server,
and domai n- nane is the name of the domain directory defined by the selected configuration
template.

You need to modify some default Java values in these scripts to fit your environment and
applications. The important performance tuning parameters in these files are the JAVA HOVE
parameter and the Java heap size parameters:

* Change the value of the variable JAVA _HOVE to the location of your JDK. For example:

set JAVA HOME=nyj dk_| ocati on

where myjdk_location is the path to your supported JDK for this release. See Oracle
Fusion Middleware Supported System Configurations.

e For higher performance throughput, set the minimum Java heap size equal to the
maximum heap size. For example:

"% AVA HOVE% bi n\j ava" -server —Xms512m —Xmx512m - cl asspat h %UCLASSPATH% -

See Specifying Heap Size Values for details about setting heap size options.

Development vs. Production Mode Default Tuning Values

You can indicate whether a domain is to be used in a development environment or a
production environment. WebLogic Server uses different default values for various services
depending on the type of environment you specify.

Specify the startup mode for your domain as shown in the following table.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 16

http://www.oracle.com/pls/topic/lookup?ctx=fmw121300&id=fmwcert
http://www.oracle.com/pls/topic/lookup?ctx=fmw121300&id=fmwcert

ORACLE Chapter 5
Deployment

Table 5-1 Startup Modes

|
Choose this mode when...

Development You are creating your applications. In this mode, the configuration of security is
relatively relaxed, allowing you to auto-deploy applications.

Production Your application is running in its final form. In this mode, security is fully configured.

Secured Production Your application is running in its final form and you want rigid policies and
configuration to ensure a highly secure environment for your production domain.

For information about how the security and performance-related configuration parameters differ
when switching from one domain mode to another, see How Domain Mode Affects the Default
Security Configuration in Securing a Production Environment for Oracle WebLogic Server .

Deployment

Learn techniques to improve deployment performance.

On-demand Deployment of Internal Applications

WebLogic Server deploys many internal applications during startup. Many of these internal
applications are not needed by every user. You can configure WebLogic Server to wait and
deploy these applications on the first access (on-demand) instead of always deploying them
during server startup. This can conserve memory and CPU time during deployment as well as
improving startup time and decreasing the base memory footprint for the server. For a
development domain, the default is for WLS to deploy internal applications on-demand. For a
production-mode domain, the default is for WLS to deploy internal applications as part of
server startup. For more information on how to use and configure this feature, see On-demand
Deployment of Internal Applications in Deploying Applications to Oracle WebLogic Server.

Use FastSwap Deployment to Minimize Redeployment Time

In development mode, you can set WebLogic Server to redefine Java classes in-place without
reloading the ClassLoader. This means that you do not have to wait for an application to
redeploy and then navigate back to wherever you were in the Web page flow. Instead, you can
make your changes, auto compile, and then see the effects immediately. For more information
on how to use and configure this feature, see Using FastSwap Deployment to Minimize
Redeployment in Deploying Applications to WebLogic Server.

Generic Overrides

Generic overrides allow you to override application specific property files without having to
crack a jar file by placing application specific files to be overridden into the AppFi | eOverri des
optional subdirectory. For more information on how to use and configure this feature, see
Generic File Loading Overrides in Deploying Applications to WebLogic Server.

Thread Management

WebLogic Server provides the following mechanisms to manage threads to perform work.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 16

ORACLE Chapter 5
Thread Management

Tuning a Work Manager

In this release, WebLogic Server allows you to configure how your application prioritizes the
execution of its work. Based on rules you define and by monitoring actual runtime
performance, WebLogic Server can optimize the performance of your application and maintain
service level agreements (SLA).

You tune the thread utilization of a server instance by defining rules and constraints for your
application by defining a Work Manager and applying it either globally to WebLogic Server
domain or to a specific application component. The primary tuning considerations are:

¢ How Many Work Managers are Needed?

« What are the SLA Requirements for Each Work Manager?

See Using Work Managers to Optimize Scheduled Work in Administering Server Environments
for Oracle WebLogic Server.

Self-Tuning Thread Pool Size

The thread pool allocates threads to process the requests of service servers and client servers.
The default value of the sel f Tuni ngThr eadPool Si zeMax MBean attribute is 400. Depending on
the provider and consumer requests, you can increase the pool size to a maximum of 65534.

We recommend that you increase the pool size if:

* The service provider and the service consumer share the same WebLogic server.

e The number of concurrent requests from the service consumer is greater than the self-
tuning thread pool size.

* Service consumer requests occupy all the threads from the thread pool, and no thread is
available for the service provider to respond to the requests.

See Self-Tuning Thread Pool in Administering Server Environments for Oracle WebLogic
Server.

How Many Work Managers are Needed?

Each distinct SLA requirement needs a unique work manager.

What are the SLA Requirements for Each Work Manager?

Service level agreement (SLA) requirements are defined by instances of request classes. A
request class expresses a scheduling guideline that a server instance uses to allocate threads.
See Understanding Work Managers in Administering Server Environments for Oracle
WebLogic Server.

Tuning the Stuck Thread Detection Behavior

WebLogic Server automatically detects when a thread in an execute queue becomes "stuck."
Because a stuck thread cannot complete its current work or accept new work, the server logs a
message each time it diagnoses a stuck thread.

WebLogic Server diagnoses a thread as stuck if it is continually working (not idle) for a set
period of time. You can tune a server's thread detection behavior by changing the length of
time before a thread is diagnosed as stuck, and by changing the frequency with which the

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 16

ORACLE

Chapter 5
Tuning Network 1/0

server checks for stuck threads. Although you can change the criteria WebLogic Server uses to
determine whether a thread is stuck, you cannot change the default behavior of setting the
"warning" and "critical" health states when all threads in a particular execute queue become
stuck. See Configuring WebLogic Server to Avoid Overload Conditions in Administering Server
Environments for Oracle WebLogic Server.

Tuning Network 1/O

Learn about network communication between clients and servers (including T3 and IIOP
protocols, and their secure versions).

Tuning Muxers

Two factors determine the efficiency of socket communications in WebLogic Server:

* Whether the server instance host system uses a native or a pure-Java socket reader
implementation.

« For systems that use pure-Java socket readers, whether the server instance is configured
to use enough socket reader threads.

WebLogic Server uses software modules called muxers to read incoming requests on the
server and incoming responses on the client. WebLogic Server supports the following muxer

types:

Java Non-Blocking 10 (NIO) Muxer

WebLogic Server provides a non-blocking 10 muxer implementation as the default muxer
configuration. In the default configuration, Muxer Cl ass is set to
webl ogi c. socket . Nl OSocket Muxer .

Native Muxers

Native Muxers are not recommended for most environments. If you must enable these muxers,
the value of the Muxer O ass attribute must be explicitly set:

e Solaris/HP-UX Native Muxer: webl ogi c. socket . DevPol | Socket Muxer
e POSIX Native Muxer: webl ogi c. socket . Posi xSocket Mixer
* Windows Native Muxer: webl ogi c. socket . NTSocket Mixer

For example, switching to the native NT Socket Muxer on Windows platforms may improve
performance for larger messages/payloads when there is one socket connection to the
WebLogic Server instance.

- Dnebl ogi ¢. Muxer O ass=webl ogi c. socket . NTSocket Mux

The POSIX Native Muxer provides similar performance improvements for larger messages/
payloads in UNIX-like systems that support poll system calls, such as Solaris and HP-UX:

- Dwnebl ogi ¢. Muxer O ass=webl ogi ¢. socket . Posi xSocket Muxer

Native muxers use platform-specific native binaries to read data from sockets. The majority of
all platforms provide some mechanism to poll a socket for data. For example, Unix systems
use the poll system call and the Windows architecture uses completion ports. Native muxers
implement a non-blocking thread model. When a native muxer is used, the server creates a

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 16

ORACLE

Chapter 5
Tuning Network 1/0

fixed number of threads dedicated to reading incoming requests. Prior to WebLogic Server
12.1.2, Oracle recommended to use native muxers and referred to as performance packs.

For WebLogic Server 12.1.2 and subsequent releases, the Non-Blocking 10 (NIO) muxer is

recommended by default. However, Oracle still provides native muxer as an option for users
upgrading WebLogic Server versions prior to 12.1.2 to maximize consistency of the runtime

environment after upgrading.

With native muxers, you may be able to improve throughput for some cpu-bound applications
by using the following:

- Dwnebl ogi c. socket . Socket Muxer . DELAY_POLL_WAKEUP=xx

where xx is the amount of time, in microseconds, to delay before checking if data is available.
The default value is 0, which corresponds to no delay.

Server Location and Supported Platforms

You can refer to the below example for WebLogic Server installation and supported platforms.

Install Location

Libraries for native muxers can be found under ORACLE _HOVE/ wl server/server/native
directory. For example, for linux x86_64 platform, | i brruxer . so is located at: ORACLE_HOVE/
W server/server/native/linux/x86_64/1ibruxer. so.

Supported Platforms

The native library supports the following platforms:

oracle.w s.core. app. server.nativelib/tenplate. xm:

dest ="server/native/sol ari s/ sparc64/1ibnuxer.so" source="w server/server/
native/ sol ari s/ sparc64/1ibnuxer. so"

oracle.w s. core. app. server.nativelib/tenplate. xm:

dest ="server/native/ai x/ ppc64/|ibnmuxer.so" source="w server/server/native/aix/
ppc64/ 1 i bnuxer. so"

oracle.w s.core.app.server.tierlnativelib/tenplate. xm:

dest ="server/native/linux/aarch64/librmuxer.so" source="w server/server/native/
['i nux/aarch64/1i bruxer. so"

oracle.w s.core.app.server.tierlnativelib/tenplate. xm:

dest ="server/native/linux/x86_64/1ibnuxer.so" source="w server/server/native/
l'i nux/x86_64/1i bnuxer. so"

Pure-Java Versus Native Socket Reader Implementations

Although the pure-Java implementation of socket reader threads is a reliable and portable
method of peer-to-peer communication, it does not provide the optimal performance for heavy-
duty socket usage in a WebLogic Server cluster. With pure-Java socket readers, threads must
actively poll all opened sockets to determine if they contain data to read. In other words, socket
reader threads are always "busy" polling sockets, even if the sockets have no data to read.
This unnecessary overhead can reduce performance.

The performance issue is magnified when a server instance has more open sockets than the
socket reader threads. Each reader thread must poll more than one open socket. When the
socket reader encounters an inactive socket, it waits for a timeout before servicing another.
During this timeout period, an active socket may go unread while the socket reader polls
inactive sockets, as shown in Figure 5-1.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 16

ORACLE’

Chapter 5
Tuning Network 1/0

Figure 5-1 Pure-Java Socket Reader Threads Poll Inactive Sockets

o I |

Basic Key

Socket Reader Thread —»

Active Socket I:)

Socket

For optimal socket performance, configure the WebLogic Server host machine to use the
native socket reader implementation for your operating system, rather than the pure-Java
implementation. Native socket readers use far more efficient techniques to determine if there is
data to read on a socket. With a native socket reader implementation, reader threads do not
need to poll inactive sockets. They service only active sockets, and they are immediately
notified (via an interrupt) when a given socket becomes active.

@® Note

Applets cannot use native socket reader implementations, and therefore have limited
efficiency in socket communication.

For instructions on how to configure the WebLogic Server host machine to use the native
socket reader implementation for your operating system, see Configure Native IP Sockets
Readers on Machines that Host Server Instances.

Configuring Reader Threads for Java Socket Implementation

If you do use the pure-Java socket reader implementation, you can still improve the
performance of socket communication by configuring the proper number of socket reader
threads for each server instance. For optimal performance, the number of socket reader
threads in WebLogic Server should equal the potential maximum number of opened sockets.
This configuration avoids the situation in which a reader thread must service multiple sockets,
and ensures that socket data is read immediately.

To determine the proper number of reader threads for server instances in your cluster, see the
following section, Determining Potential Socket Usage.

For instructions on how to configure socket reader threads, see Set the Number of Reader
Threads on Machines that Host Server Instances.

Determining Potential Socket Usage

Each WebLogic Server instance can potentially open a socket for every other server instance
in the cluster. However, the actual maximum number of sockets used at a given time depends
on the configuration of your cluster. In practice, clustered systems generally do not open a

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 16

ORACLE’

Chapter 5
Tuning Network 1/0

socket for every other server instance, because objects are deployed homogeneously—to
each server instance in the cluster.

If your cluster uses in-memory HTTP session state replication, and you deploy objects
homogeneously, each server instance potentially opens a maximum of only two sockets, as
shown in Figure 5-2.

Figure 5-2 Homogeneous Deployment Minimizes Socket Requirements

— EJB

JSP
I
Socket — JDBC
D

JSP — EJB JSP — EJB
| |
Socket — JDBC Socket — JDBC
JSP — EJB
|
Socket — JDBC

Key

Potential IP Socket ~ +—

The two sockets in this example are used to replicate HTTP session states between primary
and secondary server instances. Sockets are not required for accessing clustered objects, due
to the collocation optimizations that WebLogic Server uses to access those objects. (These
optimizations are described in Optimization for Collocated Objects.) In this configuration, the
default socket reader thread configuration is sufficient.

Deployment of "pinned" services (services that are active on only one server instance at a
time) can increase socket usage, because server instances may need to open additional
sockets to access the pinned object. (This potential can only be released if a remote server
instance actually accesses the pinned object.) Figure 5-3 shows the potential effect of
deploying a non-clustered RMI object to Server A.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 16

ORACLE Chapter 5
Tuning Network 1/0

Figure 5-3 Non-Clustered Objects Increase Potential Socket Requirements

A
“Pinned” RMI
JSP — EIB
Socket — JDéC
D B
Jsp — EB JsP — EB
Socket — JDEliC Socket — JDF;C
C
JSP — EJB
Socket | — JDE!}C

Key

Potential IP Socket

In this example, each server instance can potentially open a maximum of three sockets at a
given time, to accommodate HTTP session state replication and to access the pinned RMI
object on Server A.

@ Note

Additional sockets may also be required for servlet clusters in a multitier cluster
architecture, as described in Configuration Notes for Multitier Architecture.

Network Channels

Network channels, also called network access points, allow you to specify different quality of
service (QOS) parameters for network communication. Each network channel is associated
with its own exclusive socket using a unique IP address and port. By default, T3 requests from
a multi-threaded client are multiplexed over the same remote connection and the server
instance reads requests from the socket one at a time. If the request size is large, this
becomes a bottleneck.

Although the primary role of a network channel is to control the network traffic for a server
instance, you can leverage the ability to create multiple custom channels to allow a multi-
threaded client to communicate with server instance over multiple connections, reducing the
potential for a bottleneck. To configure custom multi-channel communication, use the following
steps:

1. Configure multiple network channels using different IP and port settings. See Configure
Custom Network Channels in Oracle WebLogic Remote Console Online Help.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 16

ORACLE

Chapter 5
Tuning Network 1/0

2. Inyour client-side code, use a JNDI URL pattern similar to the pattern used in clustered
environments. The following is an example for a client using two network channels:

t3://<ipl>: <port 1>, <ip2>:<port 2>

See Understanding Network Channels in Administering Server Environments for Oracle
WebLogic Server.

Reducing the Potential for Denial of Service Attacks

To reduce the potential for Denial of Service (DoS) attacks while simultaneously optimizing
system availability, WebLogic Server allows you to specify the following settings:

e Maximum incoming message size
e Complete message timeout
e Number of file descriptors (UNIX systems)

For optimal system performance, each of these settings should be appropriate for the
particular system that hosts WebLogic Server and should be in balance with each other, as
explained in the sections that follow.

Tuning Message Size

WebLogic Server allows you to specify a maximum incoming request size to prevent server
from being bombarded by a series of large requests. You can set a global value or set specific
values for different protocols and network channels. Although it does not directly impact
performance, JMS applications that aggregate messages before sending to a destination may
be refused if the aggregated size is greater than specified value. See Tuning Applications
Using Unit-of-Order.

Tuning Complete Message Timeout

Make sure that the complete message timeout parameter is configured properly for your
system. This parameter sets the maximum number of seconds that a server waits for a
complete message to be received.

The default value is 60 seconds, which applies to all connection protocols for the default
network channel. This setting might be appropriate if the server has a number of high-latency
clients. However, you should tune this to the smallest possible value without compromising
system availability.

If you need a complete message timeout setting for a specific protocol, you can alternatively
configure a new network channel for that protocol.

For information about displaying the WebLogic Remote Console page from which the complete
message timeout parameter can be set, see Configure General Protocol Settings in the Oracle
WebLogic Remote Console Online Help.

Tuning Number of File Descriptors

On UNIX systems, each socket connection to WebLogic Server consumes a file descriptor. To
optimize availability, the number of file descriptors for WebLogic Server should be appropriate
for the host machine. By default, WebLogic Server configures 1024 file descriptors. However,

this setting may be low, particularly for production systems.

Note that when you tune the number of file descriptors for WebLogic Server, your changes
should be in balance with any changes made to the complete message timeout parameter. A

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 16

ORACLE’

Chapter 5
Tuning the Work Manager Maximum Threads Constraint Queue Size

higher complete message timeout setting results in a socket not closing until the message
timeout occurs, which therefore results in a longer hold on the file descriptor. So if the complete
message timeout setting is high, the file descriptor limit should also be set high. This balance
provides optimal system availability with reduced potential for denial-of-service attacks.

For information about how to tune the number of available file descriptors, consult your UNIX
vendor's documentation.

Tuning Connection Backlog Buffering

You can tune the number of connection requests that a WebLogic Server instance will accept
before refusing additional requests. The Accept Backl og parameter specifies how many
Transmission Control Protocol (TCP) connections can be buffered in a wait queue. This fixed-
size queue is populated with requests for connections that the TCP stack has received, but the
application has not accepted yet.

® Note

The Accept Backl og parameter will be used by the Operating System when listening
to the TCP sockets. The TCP backlog semantics are platform implementation specific.

Tuning Cached Connections

Use the ht t p. keepAl i veCache. socket Heal t hCheckTi meout system property for tuning the
behavior of how a socket connection is returned from the cache when keep-alive is enabled
when using HTTP 1.1 protocol. By default, the cache checks the health condition before
returning the cached connection to the client for use. If there is no need to check the
connection’s health condition before returning it to the client, set the

http. keepAl i veCache. socket Heal t hCheckTi meout value to O.

Tuning the Work Manager Maximum Threads Constraint Queue

Size

By default, the queue size for the Work Manager’s maximum threads constraint is 8,192 (8K).
During times of high load (when the machine CPU runs at 100% utilization), Work Manager
instances may be unable to process messages in the queue quickly enough using this default
setting.

You may need to increase the queue size in response to the following runtime exception:

java.lang. Runti neException: [WrkManager: 002943] Maxi num Thr eads Constrai nt

"Cl ust er Messagi ng" queue for work manager "d usterMessagi ng" reached maxi mum
capacity of 8,192 elenents. Consider setting a |arger queue size for the maxi mum
t hreads constraint.

In the following example, the target is specified by the server name (Server-0), and the queue
size is increased to 65,536 (64K).

<max-t hreads- constrai nt >
<nane>C ust er Messagi ng- max</ nane>
<target>Server-0</target>
<count >1</ count >
<queue- si ze>65536</ queue- si ze>
</ max-t hr eads- constrai nt >

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 16

ORACLE

Chapter 5
Optimize Java Expressions

<wor k- manager >

<name>(C ust er Messagi ng</ name>

<target >Server-0</target>

<max-t hr eads- const rai nt >Cl ust er Messagi ng- max</ max- t hr eads- const rai nt >
</ wor k- manager >

You can specify the target using either the server name or the cluster name. You can use
either server or cluster as target names.

Optimize Java Expressions

Set the opti i ze-j ava- expressi on element to optimize Java expressions to improve runtime
performance.

See j sp-descriptor in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic
Server.

Using WebLogic Server Clusters to Improve Performance

A WebLogic Server cluster is a group of WebLogic Servers instances that together provide fail-
over and replicated services to support scalable high-availability operations for clients within a
domain. A cluster appears to its clients as a single server but is in fact a group of servers
acting as one to provide increased scalability and reliability.

A domain can include multiple WebLogic Server clusters and non-clustered WebLogic Server
instances. Clustered WebLogic Server instances within a domain behave similarly to non-
clustered instances, except that they provide failover and load balancing. The Administration
Server for the domain manages all the configuration parameters for the clustered and non-
clustered instances.

For more information about clusters, see Understanding WebLogic Server Clustering in
Administering Clusters for Oracle WebLogic Server.

For information about improving cluster throughput of global transactions, see Improving
Throughput Using XA Transaction Cluster Affinity.

Scalability and High Availability

Scalability is the ability of a system to grow in one or more dimensions as more resources are
added to the system. Typically, these dimensions include (among other things), the number of
concurrent users that can be supported and the number of transactions that can be processed
in a given unit of time.

Given a well-designed application, it is entirely possible to increase performance by simply
adding more resources. To increase the load handling capabilities of WebLogic Server, add
another WebLogic Server instance to your cluster—without changing your application. Clusters
provide two key benefits that are not provided by a single server: scalability and availability.

WebLogic Server clusters bring scalability and high-availability to Jakarta EE applications in a
way that is transparent to application developers. Scalability expands the capacity of the
middle tier beyond that of a single WebLogic Server or a single computer. The only limitation
on cluster membership is that all WebLogic Servers must be able to communicate by IP
multicast. New WebLogic Servers can be added to a cluster dynamically to increase capacity.

A WebLogic Server cluster guarantees high-availability by using the redundancy of multiple
servers to insulate clients from failures. The same service can be provided on multiple servers

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 16

ORACLE Chapter 5
Using WebLogic Server Clusters to Improve Performance

in a cluster. If one server fails, another can take over. The ability to have a functioning server
take over from a failed server increases the availability of the application to clients.

® Note

Provided that you have resolved all application and environment bottleneck issues,
adding additional servers to a cluster should provide linear scalability. When doing
benchmark or initial configuration test runs, isolate issues in a single server
environment before moving to a clustered environment.

Clustering in the Messaging Service is provided through distributed destinations; connection
concentrators, and connection load-balancing (determined by connection factory targeting);
and clustered Store-and-Forward (SAF). Client load-balancing with respect to distributed
destinations is tunable on connection factories. Distributed destination Message Driven Beans
(MDBSs) that are targeted to the same cluster that hosts the distributed destination
automatically deploy only on cluster servers that host the distributed destination members and
only process messages from their local destination. Distributed queue MDBs that are targeted
to a different server or cluster than the host of the distributed destination automatically create
consumers for every distributed destination member. For example, each running MDB has a
consumer for each distributed destination queue member.

How to Ensure Scalability for WebLogic Clusters

In general, any operation that requires communication between the servers in a cluster is a
potential scalability hindrance. The following sections provide information on issues that impact
the ability to linearly scale clustered WebLogic servers:

Database Bottlenecks

In many cases where a cluster of WebLogic servers fails to scale, the database is the
bottleneck. In such situations, the only solutions are to tune the database or reduce load on the
database by exploring other options. See DataBase Tuning and Tuning Data Sources.

Session Replication

User session data can be stored in two standard ways in a Jakarta EE application: stateful
session EJBs or HTTP sessions. By themselves, they rarely impact cluster scalability.
However, when coupled with a session replication mechanism required to provide high-
availability, bottlenecks are introduced. If a Jakarta EE application has Web and EJB
components, you should store user session data in HTTP sessions:

e HTTP session management provides more options for handling fail-over, such as
replication, a shared DB or file.

e Superior scalability.

* Replication of the HTTP session state occurs outside of any transactions. Stateful session
bean replication occurs in a transaction which is more resource intensive.

e The HTTP session replication mechanism is more sophisticated and provides
optimizations for a wider variety of situations than stateful session bean replication.

See Session Management.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 16

ORACLE

Chapter 5
Using WebLogic Server Clusters to Improve Performance

Asynchronous HTTP Session Replication

Asynchronous replication of http sessions provides the option of choosing asynchronous
session replication using:

Asynchronous HTTP Session Replication using a Secondary Server

Asynchronous

Set the PersistentStoreType to async-replicated or async-replicated-if-clustered to specify
asynchronous replication of data between a primary server and a secondary server. See
session-descriptor section of Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server. To tune batched replication, adjust the SessionFlushThreshold parameter.

Replication behavior depends on cluster type. The following table describes how asynchronous
replication occurs for a given cluster topology.

Table 5-2 Asynchronous Replication Behavior by Cluster Topology

|
Topology Behavior

LAN Replication to a secondary server within the same cluster occurs asynchronously with the
"async-replication" setting in the webapp.

MAN Replication to a secondary server in a remote cluster. This happens asynchronously with
the "async-replication" setting in the webapp.

WAN Replication to a secondary server within the cluster happens asynchronously with the
"async-replication" setting in the webapp. Persistence to a database through a remote
cluster happens asynchronously regardless of whether "async-replication" or "replication”
is chosen.

The following section outlines asynchronous replication session behavior:

e During undeployment or redeployment:
— The session is unregistered and removed from the update queue.
— The session on the secondary server is unregistered.

» If the application is moved to admin mode, the sessions are flushed and replicated to the
secondary server. If secondary server is down, the system attempts to failover to another
server.

e A server shutdown or failure state triggers the replication of any batched sessions to
minimize the potential loss of session information.

HTTP Session Replication using a Database

Set the PersistentStoreType to async-jdbc to specify asynchronous replication of data to a
database. See session-descriptor section of Developing Web Applications, Servlets, and JSPs
for Oracle WebLogic Server. To tune batched replication, adjust the SessionFlushThreshold
and the SessionFlushinterval parameters.

The following section outlines asynchronous replication session behavior:

e During undeployment or redeployment:
— The session is unregistered and removed from the update queue.

— The session is removed from the database.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 16

ORACLE Chapter 5
Using WebLogic Server Clusters to Improve Performance

* If the application is moved to admin mode, the sessions are flushed and replicated to the
database.

Invalidation of Entity EJBS

This applies to entity EJBs that use a concurrency strategy of Opti ni sti ¢ or ReadOnl y with a
read-write pattern.

Opti mi sti c—When an Opti ni sti ¢ concurrency bean is updated, the EJB container sends a
multicast message to other cluster members to invalidate their local copies of the bean. This is
done to avoid optimistic concurrency exceptions being thrown by the other servers and hence
the need to retry transactions. If updates to the EJBs are frequent, the work done by the
servers to invalidate each other's local caches become a serious bottleneck. A flag called
cluster-invalidation-disabl ed (default false) is used to turn off such invalidations. This is
set in the r dons descriptor file.

ReadOnl y with a read-write pattern—In this pattern, persistent data that would otherwise be
represented by a single EJB are actually represented by two EJBs: one read-only and the
other updatable. When the state of the updateable bean changes, the container automatically
invalidates corresponding read-only EJB instance. If updates to the EJBs are frequent, the
work done by the servers to invalidate the read-only EJBs becomes a serious bottleneck.

Invalidation of HTTP sessions

Similar to Invalidation of Entity EJBs, HTTP sessions can also be invalidated. This is not as
expensive as entity EJB invalidation, since only the session data stored in the secondary
server needs to be invalidated. HTTP sessions should be invalidated if they are no longer in
use.

JNDI Binding, Unbinding and Rebinding

In general, JNDI binds, unbinds and rebinds are expensive operations. However, these
operations become a bigger bottleneck in clustered environments because JNDI tree changes
have to be propagated to all members of a cluster. If such operations are performed too
frequently, they can reduce cluster scalability significantly.

Running Multiple Server Instances on Multi-Core Machines

With multi-core machines, additional consideration must be given to the ratio of the number of
available cores to clustered WebLogic Server instances. Because WebLogic Server has no
built-in limit to the number of server instances that reside in a cluster, large, multi-core servers,
can potentially host very large clusters or multiple clusters.

Consider the following when determining the optimal ratio of cores to WebLogic Server
instances:

« The memory requirements of the application. Choose the heap sizes of an individual
instance and the total number of instances to ensure that you're providing sufficient
memory for the application and achieving good GC performance. For some applications,
allocating very large heaps to a single instance may lead to longer GC pause times. In this
case the performance may benefit from increasing the number of instances and giving
each instance a smaller heap.

e Maximizing CPU utilization. While WebLogic Server is capable of utilizing multiple cores
per instance, for some applications, increasing the number of instances on a given
machine (reducing the number of cores per instance) can improve CPU utilization and
overall performance.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 16

ORACLE Chapter 5
Monitoring a WebLogic Server Domain

Monitoring a WebLogic Server Domain

Learn several different ways to monitor a WebLogic Server domain.

Using the WebLogic Diagnostic Framework

The WebLogic Diagnostic Framework (WLDF) is a monitoring and diagnostic framework that
defines and implements a set of services that run within WebLogic Server processes and
participate in the standard server life cycle. See Overview of the WLDF Architecture in
Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

Using JMX to Monitor WebLogic Server

WebLogic Server provides its own set of MBeans that you can use to configure, monitor, and
manage WebLogic Server resources. See Understanding WebLogic Server MBeans in
Developing Custom Management Ultilities Using JMX for Oracle WebLogic Server.

Using WLST to Monitor WebLogic Server

The WebLogic Scripting Tool (WLST) is a command-line scripting interface that system
administrators and operators use to monitor and manage WebLogic Server instances and
domains. See Understanding WebLogic Server MBeans in Developing Custom Management
Utilities Using JMX for Oracle WebLogic Server.

Resources to Monitor WebLogic Server

The Oracle Technology Network at ht t p: / / ww. or acl e. com t echnet wor k/ i ndex. ht m
provides product downloads, articles, sample code, product documentation, tutorials, white
papers, news groups, and other key content for WebLogic Server.

Tuning Class and Resource Loading

The default class and resource loading default behavior in WebLogic Server is to search the
classloader hierarchy beginning with the root. As a result, the full system cl asspat h is
searched for every class or resource loading request, even if the class or resource belongs to
the application.

For classes and resources that are only looked up once (for example: classloading during
deployment), the cost of the full cl asspat h search is typically not a serious problem. For
classes and resources that are requested repeatedly by an application at runtime (explicit
application calls to | oadCl ass or get Resour ce) the CPU and memory overhead of repeatedly
searching a long system and application cl asspat h can be significant. The worst case
scenario is when the requested class or resource is missing. A missing class or resource
results in the cost of a full scan of the cl asspat h and is compounded by the fact that if an
application fails to find the class/resource it is likely to request it repeatedly. This problem is
more common for resources than for classes.

Ideally, application code is optimized to avoid requests for missing classes and resources and
frequent repeated calls to load the same class/resource. While it is not always possible to fix
the application code (for example, a third party library), an alternative is to use WebLogic
Server's Filtering Loader Mechanism.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 16

http://www.oracle.com/technetwork/index.html

ORACLE Chapter 5
Tuning Class and Resource Loading

Filtering Loader Mechanism

WebLogic Server provides a filtering loader mechanism that allows the system cl asspat h
search to be bypassed when looking for specific application classes and resources that are on
the application cl asspat h. This mechanism requires a user configuration that specifies the
specific classes and resources that bypass the system cl asspat h search. See Using a
Filtering Classloader in Developing Applications for Oracle WebLogic Server.

WebLogic's filtering loader mechanism can also be used to filter "resource" loading requests.
The basic configuration of resource filtering is specified in META- | NF/ webl ogi c-
application.xn file and is similar to the class filtering. The the syntax for filtering resources is
shown in the following example:

<prefer-application-resources>
<resour ce- name>x/ y</ r esour ce- nane>
<resour ce- nane>z*</ r esour ce- nane>
</ prefer-application-resources>

In this example, resource filtering has been configured for the exact resource name "x/y" and
for any resource whose name starts with "z". *' is the only wild card pattern allowed.
Resources with names matching these patterns are searched for only on the application

cl asspat h, the system cl asspat h search is skipped.

@® Note

If you add a class or resource to the filtering configuration and subsequently get
exceptions indicating the class or resource isn't found, the most likely cause is that the
class or resource is on the system cl asspat h, not on the application cl asspat h.

Class Caching

WebLogic Server allows you to enable class caching for faster start ups. Once you enable
caching, the server records all the classes loaded until a specific criterion is reached and
persists the class definitions in an invisible file. When the server restarts, the cache is checked
for validity with the existing code sources and the server uses the cache file to bulk load the
same sequence of classes recorded in the previous run. If any change is made to the system
classpath or its contents, the cache will be invalidated and re-built on server restart.

The advantages of using class caching are:
* Reduces server startup time.

e The package level index reduces search time for all classes and resources.

See Configuring Class Caching in Developing Applications for Oracle WebLogic Server.

@® Note

Class caching is supported in development mode when starting the server using a
startWebLogi ¢ script. Class caching is disabled by default and is not supported in
production mode. The decrease in startup time varies among different JRE vendors.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 16 of 16

Tuning the WebLogic Persistent Store

The persistent store provides a built-in, high-performance storage solution for Oracle WebLogic
Server subsystems and services that require persistence. Tune the persistent store by tuning
JDBC stores, file stores, and following the best practices when using persistent stores.

Overview of Persistent Stores

Each server instance, including the Administration Server, has a default persistent store that
requires no configuration. In addition to using the default file store, you can also configure a
file-based store or JDBC-accessible store, JDBC TLOG store, and a file-based paging store.

Using the Default Persistent Store

Each server instance, including the administration server, has a default persistent store that
requires no configuration. The default store is a file-based store that maintains its data in a
group of files in a server instance's dat a\ st or e\ def aul t directory. A directory for the default
store is automatically created if one does not already exist. This default store is available to
subsystems that do not require explicit selection of a particular store and function best by using
the system's default storage mechanism. For example, a JMS Server with no persistent store
configured will use the default store for its Managed Server and will support persistent
messaging. For high availability, it is a best practice to configure custom file or JDBC stores
instead of a default store. See:

« Using the WebLogic Persistent Store in Administering the WebLogic Persistent Store.

e Create a File Store in Oracle WebLogic Remote Console Online Help.

Using Custom File Stores and JDBC Stores

In addition to using the default file store, you can also configure a file store or JDBC store to
suit your specific needs. A custom file store, like the default file store, maintains its data in a
group of files in a directory. However, you may want to create a custom file store so that the file
store's data is persisted to a particular storage device. When configuring a file store directory,
the directory must be accessible to the server instance on which the file store is located.

A JDBC store can be configured when a relational database is used for storage. A JDBC store
enables you to store persistent messages in a standard JDBC-capable database, which is
accessed through a designated JDBC data source. The data is stored in the JDBC store's
database table, which has a logical name of W.St or e. It is up to the database administrator to
configure the database for high availability and performance. See:

e When to Use a Custom Persistent Store in Administering the WebLogic Persistent Store.
e Comparing File Stores and JDBC Stores in Administering the WebLogic Persistent Store.

e Creating a Custom (User-Defined) File Store in Administering the WebLogic Persistent
Store.

e Creating a JDBC Store in Administering the WebLogic Persistent Store.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 13

ORACLE Chapter 6
Overview of Persistent Stores

Using a JDBC TLOG Store

You can configure a JDBC TLOG store to persist transaction logs to a database, which allows
you to leverage replication and HA characteristics of the underlying database, simplify disaster
recovery, and improve Transaction Recovery service migration. See Using a JDBC TLog Store
in Administering the WebLogic Persistent Store.

Using JMS Paging Stores

Each JMS server implicitly creates a file based paging store. When the WebLogic Server JVM
runs low on memory, this store is used to page non-persistent messages as well as persistent
messages. Depending on the application, paging stores may generate heavy disk activity.

You can optionally change the directory location and the threshold settings at which paging
begins. You can improve performance by locating paging store directories on a local file
system, preferably in a temporary directory. Paging store files do not need to be backed up,
replicated, or located in universally accessible location as they are automatically repopulated
each time a JMS server restarts. See JMS Server Behavior in WebLogic Server 9.x and Later
in Administering JMS Resources for Oracle WebLogic Server.

® Note
Paged persistent messages are potentially physical stored in two different places:
* Always in a recoverable default or custom store.

* Potentially in a paging directory.

Using Flash Storage to Page JMS Messages

You can often improve paging performance for IMS messages (persistent or non-persistent) by
configuring JMS server paging directories to reference a directory on a locally mounted
enterprise-class flash storage device. This can be significantly faster than other technologies

@® Note

Most Flash storage devices are a single point of failure and are typically only
accessible as a local device. They are suitable for JIMS server paging stores which do
not recover data after a failure and automatically reconstruct themselves as needed.

In most cases, Flash storage devices are not suitable for custom or default stores
which typically contains data that must be safely recoverable. A configured Di rect ory
attribute of a default or custom store should not normally reference a directory that is
on a single point of failure device.

Use the following steps to use a Flash storage device to page JMS messages:

1. Setthe JMS server Message Pagi ng Directory attribute to the path of your flash storage
device, see Specifying a Message Paging Directory.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 13

ORACLE

Chapter 6
Best Practices When Using Persistent Stores

Tune the Message Buf fer Size attribute (it controls when paging becomes active). You
may be able to use lower threshold values as faster I/O operations provide improved load
absorption. See Tuning the Message Buffer Size Option.

Tune JMS Server quotas to safely account for any Flash storage space limitations. This
ensures that your JMS server(s) will not attempt to page more messages than the device
can store, potentially yielding runtime errors and/or automatic shutdowns. As a
conservative rule of thumb, assume page file usage will be at least 1.5 * ((Maximum
Number of Active Messages) * (512 + average message body size)) rounded up to the
nearest 16MB. See Defining Quota.

Using Diagnostic Stores

The Diagnostics store is a file store that implicitly always uses the Di sabl ed synchronous write
policy. It is dedicated to storing WebLogic server diagnostics information. One diagnostic store
is configured per WebLogic Server instance. See Configuring Diagnostic Archives in
Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

Best Practices When Using Persistent Stores

Learn the best practices for using WebLogic persistent stores.

For subsystems that share the same server instance, share one store between multiple
subsystems rather than using a store per subsystem. Sharing a store is more efficient for
the following reasons:

— A ssingle store batches concurrent requests into single 1/Os which reduces overall disk
usage.

— Transactions in which only one resource participates are lightweight one-phase
transactions. Conversely, transactions in which multiple stores participate become
heavier weight two-phase transactions.

For example, configure all SAF agents and JMS servers that run on the same server
instance so that they share the same store.

Add a new store only when the old store(s) no longer scale.

Tuning JDBC Stores

Review information on tuning JDBC stores.

By default, a WebLogic JDBC store instance obtains two JDBC connections from its data
source and caches these connections for its entire lifetime. The JDBC store can be tuned
to retry more often on a connection failure, and the data source should be tuned to test
connections. See Using a JDBC Store in Administering the WebLogic Persistent Store.

Under heavy JDBC store I/O loads, you can improve performance by configuring a JDBC
store to use multiple JDBC connections to concurrently process I/O operations. See
Enabling 1/0 Multithreading for JDBC Stores in Administering the WebLogic Persistent
Store.

When using Oracle BLOBS, you may be able to improve performance by tuning the
ThreeSt epThr eshol d value. See Enabling Oracle BLOB Record Columns in Administering
the WebLogic Persistent Store.

The location of the JDBC store DDL that is used to initialize empty stores is now
configurable. This simplifies the use of custom DDL for database table creation, which is
sometimes used for database specific performance tuning. See Create a JDBC Store in

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 13

ORACLE

Chapter 6
Tuning File Stores

Oracle WebLogic Remote Console Online Help and Using the WebLogic Persistent Store
in Administering the WebLogic Persistent Store.

Tuning File Stores

Learn about tuning file stores.

Basic Tuning Information

The following section provides general information on tuning File Stores:

e Take care when configuring file store directory locations.

Paging stores should reference a location on a local disk for best performance (paging
stores are not reloaded after a failure and do not need to be on a highly available
storage).

Custom or default file stores that may migrate to a different machine or JVM must be
configured to reference a directory that is in a centrally accessible shared location.

See High Availability Best Practices in Administering JMS Resources for Oracle
WebLogic Server.

See File Locations in Administering the WebLogic Persistent Store.

e For basic (non-RAID) disk hardware, consider dedicating one disk per file store. A store
can operate up to four to five times faster if it does not have to compete with any other
store on the disk. Remember to consider the existence of the default file store in addition to
each configured store and a JMS paging store for each JMS server.

e For custom and default file stores, tune the Synchronous Write Policy.

There are three transactionally safe synchronous write policies: Direct-Wite-Wth-
Cache, Direct-Wite, and Cache- Fl ush. Direct-Wite-Wth-Cache generally has the
best performance of these policies, Cache- Fl ush generally has the lowest
performance, and Di rect - Wi t e is the default. Unlike other policies, Di rect- Wi t e-
W't h- Cache creates cache files in addition to primary files.

The Di sabl ed synchronous write policy is transactionally unsafe. The Di sabl ed write-
policy can dramatically improve performance, especially at low client loads. However, it
is unsafe because writes become asynchronous and data can be lost in the event of
Operating System or power failure.

See Guidelines for Configuring a Synchronous Write Policy in Administering the
WebLogic Persistent Store.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 13

ORACLE

Chapter 6
Tuning File Stores

@® Note

Certain older versions of Microsoft Windows may incorrectly report storage device
synchronous write completion if the Windows default Wite Cache Enabl ed
setting is used. This violates the transactional semantics of transactional products
(not specific to Oracle), including file stores configured with a Direct-Wite
(default) or Di rect - Wit e- Wt h- Cache policy, as a system crash or power failure
can lead to a loss or a duplication of records/messages. One of the visible
symptoms is that this problem may manifest itself in high persistent message/
transaction throughput exceeding the physical capabilities of your storage device.
You can address the problem by applying a Microsoft supplied patch, disabling the
Windows Wite Cache Enabl ed setting, or by using a power-protected storage
device.

* When performing head-to-head vendor comparisons, make sure all the write policies for
the persistent store are equivalent. Some non-WebLogic vendors default to the equivalent
of Di sabl ed.

* Depending on the synchronous write policy, custom and default stores have a variety of
additional tunable attributes that may improve performance. These include
CacheDi rect ory, MaxW ndowBuf f er Si ze, | QBuf f er Si ze, Bl ockSi ze, I nitial Si ze, and
MaxFi | eSi ze.

See FileStoreMBean in the MBean Reference for Oracle WebLogic Server.

* If disk performance continues to be a bottleneck, consider purchasing disk or RAID
controller hardware that has a built-in write-back cache. These caches significantly
improve performance by temporarily storing persistent data in volatile memory. To ensure
transactionally safe write-back caches, they must be protected against power outages,
host machine failure, and operating system failure. Typically, such protection is provided by
a battery-backed write-back cache.

Tuning a File Store Direct-Write-With-Cache Policy

The Direct-Wite-Wth-Cache synchronous write policy is commonly the highest performance
option that still provides transactionally safe disk writes. It is typically not as high-performing as
the Di sabl ed synchronous write policy, but the Di sabl ed policy is not a safe option for
production systems unless you have some means to prevent loss of buffered writes during a
system failure.

Direct-Wite-Wth-Cache file stores write synchronously to a primary set of files in the
location defined by the Di r ect ory attribute of the file store configuration. They also
asynchronously write to a corresponding temporary cache file in the location defined by the
CacheDi rect ory attribute of the file store configuration. The cache directory and the primary
file serve different purposes and require different locations. In many cases, primary files should
be stored in remote storage for high availability, whereas cache files are strictly for
performance and not for high availability and can be stored locally.

When the Direct-Wite- Wt h-Cache synchronous write policy is selected, there are several
additional tuning options that you should consider:

e Setting the CacheDi r ect ory. For performance reasons, the cache directory should be
located on a local file system. It is placed in the operating system temp directory by default.

* Increasing the MaxW ndowBuf f er Si ze and | OBuf f er Si ze attributes. These tune native
memory usage of the file store.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 13

ORACLE

Chapter 6
Tuning File Stores

Increasing the I nitial Si ze and MaxFi | eSi ze tuning attributes. These tune the initial size
of a store, and the maximum file size of a particular file in the store respectively.

Tune the Bl ockSi ze attribute. See Tuning the File Store Block Size.

For more information on individual tuning parameters, see the FileStoreMBean in the MBean
Reference for Oracle WebLogic Server.

Using Flash Storage to Increase Performance

You can gain additional I/O performance by using enterprise-class flash drives, which can be
significantly faster than spinning disks for accessing data in real-time applications and allows
you to free up memory for other processing tasks.

Simply update the CacheDi r ect ory attribute with the path to your flash storage device and
ensure that the device contains sufficient free storage to accommodate a full copy of the
store's primary files. See the CacheDi r ect ory attribute in the MBean Reference for Oracle
WebLogic Server.

Additional Considerations

Consider the following when tuning the Di rect - Wi t e- Wt h- Cache policy:

There may be additional security and file locking considerations when using the Di r ect -
Wite-Wth-Cache synchronous write policy. See Securing a Production Environment for
Oracle WebLogic Server and the CacheDi rect ory and Locki ngEnabl ed attributes of the
FileStoreMBean in the MBean Reference for Oracle WebLogic Server.

It is safe to delete a cache directory while the store is not running, but this may slow down
the next store boot. Cache files are re-used to speed up the file store boot and recovery
process, but only if the store's host WebLogic server has been shut down cleanly prior to
the current boot (not after ki | | -9, nor after an OS/JVM crash) and there was no off-line
change to the primary files (such as a store admin compaction). If the existing cache files
cannot be safely used at boot time, they are automatically discarded and new files are
created. In addition, a Wr ni ng log 280102 is generated. After a migration or failover event,
this same War ni ng message is generated, but can be ignored.

Ifthe aDirect-Wite-Wth-Cache file store fails to load aw fi | ei 0 native driver, the
synchronous write policy automatically changes to the equivalent of Di rect - Wi t e with
Avoi dDi rect | O=t r ue. To view a running custom or default file store's configured and actual
synchronous write policy and driver, examine the server log for WL-280008 and
WL-280009 messages.

To prevent unused cache files from consuming disk space, test and development
environments may need to be modified to periodically delete cache files that are left over
from temporarily created domains. In production environments, cache files are managed
automatically by the file store.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 13

ORACLE Chapter 6
Tuning File Stores

Tuning the File Store Direct-Write Policy

@® Note

The Avoi dDi r ect | Oproperties described in this section are still supported in this
release, but have been deprecated as of 11gR1PS2. Use the configurable Di r ect -
Wite-Wth-Cache synchronous write policy as an alternative to the Direct-Wite

policy.

For file stores with the synchronous write policy of Di rect - Wi t e, you may be directed by
Oracle Support or a release note to set webl ogi c. Server options on the command line or start
script of the JVM that runs the store:

e Globally changes all stores running in the JVM:
- Dwnebl ogi c. store. Avoi dDirect | O=t rue

e For a single store, where st or e- nane is the name of the store:
- Dwnebl ogi c. store. st ore-nanme. Avoi dDi rect | O=t rue

e For the default store, where ser ver - nane is the name of the server hosting the store:
-Dwebl ogi c. store. WS server-nane. Avoi dDi rect | O=true

Setting Avoi dDi rect | Oon an individual store overrides the setting of the global -
Dwebl ogi c. st ore. Avoi dDi rect | Ooption. For example: If you have two stores, A and B, and
set the following options:

- Dnebl ogi c. store. Avoi dDirect | O=t rue
- Dwebl ogi c. store. A Avoi dDirect | O=f al se

then only store B has the setting Avoi dDi rect | O=t r ue.

@® Note

Setting the Avoi dDi r ect | Ooption may have performance implications which often can
be mitigated using the block size setting described in Tuning the File Store Block Size.

Tuning the File Store Block Size

You may want to tune the file store block size for file stores that are configured with a
synchronous write policy of Di rect - Wi t e (default), Direct-Wite-Wth- Cache, or Cache-

Fl ush, especially when using Di rect - Wi t e with Avoi dDi rect | O=t r ue as described in Tuning
the File Store Direct-Write Policy or for systems with a hard-drive-based write-back cache
where you see that performance is limited by physical storage latency.

Consider the following example:
e Asingle WebLogic JMS producer sends persistent messages one by one.
e The network overhead is known to be negligible.

e The file store's disk drive has a 10,000 RPM rotational rate.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 13

ORACLE

Chapter 6
Tuning File Stores

e The disk drive has a battery-backed write-back cache.

and the messaging rate is measured at 166 messages per second.

In this example, the low messaging rate matches the disk drive's latency (10,000 RPM / 60
seconds = 166 RPS) even though a much higher rate is expected due to the battery-backed
write-back cache. Tuning the store's block size to match the file systems' block size could
result in a significant improvement.

In some other cases, tuning the block size may result in marginal or no improvement:

e The caches are observed to yield low latency (so the 1/0O subsystem is not a significant
bottleneck).

* Write-back caching is not used and performance is limited by larger disk drive latencies.

There may be a trade off between performance and file space when using higher block sizes.
Multiple application records are packed into a single block only when they are written
concurrently. Consequently, a large block size may cause a significant increase in store file
sizes for applications that have little concurrent server activity and produce small records. In
this case, one small record is stored per block and the remaining space in each block is
unused. As an example, consider a Web Service Reliable Messaging (WS-RM) application
with a single producer that sends small 100 byte length messages, where the application is the
only active user of the store.

Oracle recommends tuning the store block size to match the block size of the file system that
hosts the file store (typically 4096 for most file systems) when this yields a performance
improvement. Alternately, tuning the block size to other values (such as paging and cache
units) may yield performance gains. If tuning the block size does not yield a performance
improvement, Oracle recommends leaving the block size at the default as this helps to
minimize use of file system resources.

Setting the Block Size for a File Store

® Note

The Bl ockSi ze command line properties that are described in this section are still
supported in 11gR1PS2, but are deprecated. Oracle recommends using the Bl ockSi ze
configurable on custom and default file stores instead.

To set the block size of a store, use one of the following properties on the command line or
start script of the JVM that runs the store:

* Globally sets the block size of all file stores that don't have pre-existing files.
- Dwebl ogi c. st ore. Bl ockSi ze=bl ock- si ze

* Sets the block size for a specific file store that doesn't have pre-existing files.
- Dnebl ogi c. store. st or e- nane. Bl ockSi ze=bl ock- si ze

« Sets the block size for the default file store, if the store doesn't have pre-existing files:
-Dwnebl ogi c. store. _W.S server-name. Bl ockSi ze=bl ock-si ze

The value used to set the block size is an integer between 512 and 8192 which is automatically
rounded down to the nearest power of 2.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 13

ORACLE

Chapter 6
Using a Network File System

Setting Bl ockSi ze on an individual store overrides the setting of the global -
Dwebl ogi c. st ore. Bl ockSi ze option. For example: If you have two stores, A and B, and set the
following options:

- Dwebl ogi c. store. Bl ockSi ze=8192
- Dwebl ogi c. store. A. Bl ockSi ze=512

then store B has a block size of 8192 and store A has a block size of 512.

@® Note

Setting the block size using command line properties only takes effect for file stores
that have no pre-existing files. If a store has pre-existing files, the store continues to
use the block size that was set when the store was first created.

Determining the File Store Block Size

You can verify a file store's current block size and synchronous write policy by viewing the
server log of the server that hosts the store. Search for a "280009" store opened message.

Determining the File System Block Size

To determine your file system's actual block size, consult your operating system
documentation. For example:

e Linux ext2 and ext3 file systems: run / shi n/ dunpe2f s / dev/ devi ce- nane and look for
"Block size"

Windows NTFS: runfsutil fsinfo ntfsinfo device |etter: and look for "Bytes Per
Cluster"

Converting a Store with Pre-existing Files

If the data in a store's pre-existing files do not need to be preserved, then simply shutdown the
host WebLogic Server instance and delete the files to allow the block size to change when the
store is restarted. If you need to preserve the data, convert a store with pre-existing files to a
different block size by creating a version of the file store with the new block size using the
compact command of the command line store administration utility:

1. java -Dwebl ogic.store. Bl ockSi ze=bl ock-si ze webl ogi c. store. Adnmin
2. Type help for available commands.
3. Storeadm n->conpact -dir file-store-directory

See Store Administration Using a Java Command-line in Administering the WebLogic
Persistent Store.

Using a Network File System

Learn about using a WebLogic persistent store with a Network File System (NFS).

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 13

ORACLE

Chapter 6
Using a Network File System

Configuring Synchronous Write Policies

NFS storage may not fully protect transactional data, as it may be configured to silently buffer
synchronous write requests in volatile memory. If a file store Directory is located on an NFS
mount, and the file store's Synchronous Write Policy is anything other than Disabled, check
your NFS implementation and configuration to make sure that it is configured to support
synchronous writes. A Disabled synchronous write policy does not perform synchronous
writes, but, as a consequence, is generally not transactionally safe. You may detect
undesirable buffering of synchronous write requests by observing high persistent message or
transaction throughput that exceeds the physical capabilities of your storage device. On the
NFS server, check the synchronous write setting of the exported NFS directory hosting your
File Store. A SAN based file store, or a JDBC store, may provide an easier solution for safe
centralized storage.

Test Server Restart Behavior

Oracle strongly recommends verifying the behavior of a server restart after abrupt machine
failures when the JMS messages and transaction logs are stored on an NFS mounted
directory. Depending on the NFS implementation, different issues can arise after a failover or
restart. The behavior can be verified by abruptly shutting down the node hosting the Web Logic
servers while these are running. If the server is configured for server migration, it should be
started automatically in the failover node after the corresponding failover period. If not, a
manual restart of the WebLogic Server on the same host (after the node has completely
rebooted) can be performed.

Handling NFS Locking Errors

WebLogic Server maintains locks on files used for storing JMS data and transaction logs.
These locks provide protection against potential data corruption caused when two instances of
the same WebLogic Server or File Store are accidentally started. When two WebLogic file
stores having the same name and directory are mistakenly started or when Oracle WebLogic
Server does not restart after a catastrophic failure, the following errors may appear in the
server log files:

Example 6-1 Store Restart Failure Error Message

<Error> <Store> <BEA-280061> <The persistent store "_WS server_soal" coul d not be
depl oyed:

webl ogi c. store. Persistent StoreException: java.io.|OException:

[Store: 280021] There was an error while opening the file store file

"_W.S SERVER SQA1000000. DAT"

at webl ogic.store.io.file.Heap. open(Heap.java: 168)

at weblogic.store.io.file. FileStorel O open(FileStorel O java: 88)

java.io. | OException: Error fromfentl () for file I ocking, Resource tenporarily
unavai | abl e, errno=11

File locking errors are caused when two file stores using same files are started simultaneously.
The following information can be used to prevent or correct the errors:

« If two file stores from two different domains having the same name are configured to use
the same directory, shut down WebLogic Server and change the configuration of the
conflicting stores to use different directories. This is prevented from occurring with two
different file stores within the same domain, as WebLogic Server prevents the two file
stores from being configured with the same name within the same domain.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 13

ORACLE

Chapter 6
Using a Network File System

* WebLogic does not support starting multiple deployments of the same domain from
different sites when they are using shared persistent storage locations.

* WebLogic does not support starting multiple WebLogic Servers of the same name from
different sites when they are using shared persistent storage locations.

File locking errors are also caused due to an "abandoned lock" which occurs when the owning
file store is no longer running after a machine failure, operating system crash, and virtual
machine destruction. The NFS storage device does not become aware of the problem
immediately. As a result, any subsequent attempt by the WebLogic Server to acquire locks on
the previously locked files may fail. You can perform the tasks described in the following
solutions to unlock the logs and data files:

For more information about locking of files stored in NFS mounted directories on the storage
device, see your storage vendor’s documentation.

Solution 1 — Using NFS v4 Instead of NFS v3

Most abandoned locks are due to using NFS v3 based Network Attached Storage (NAS) which
can leave files locked in the event of catastrophic failures such as a hardware failure, operating
system crash, deletion a virtual machine without allowing it to shutdown normally.

To mitigate this problem, Oracle strongly recommends using a NFS v4 NAS server. It should
be tuned to automatically release abandoned locks within the approximate time required to
complete a server restart or migration and is the most recommended solution.

For more information about locking files stored in NFS-mounted directories on the storage
device, see your storage vendor’s documentation.

Solution 2 - Copying Data Files to Remove NFS Locks

® Note

You should be very cautious when using this option. It is critical to ensure that a file
store is shut down before copying the file store’s files. Otherwise, the files may get
corrupted. Additional procedural precautions must be implemented to avoid any
human error and to ensure that no instance of file store is manually started at any
given point in time during the copy. Similarly, extra precautions must be taken to
ensure that no two domains have a store with the same name that references the
same directory.

Manually unlock the default store, paging store, and JMS store data files and start the servers
by first ensuring that there are no running file stores that are using the files, then creating a
copy of the locked persistence store file, and using the copy for subsequent operations.

To create a copy of the locked persistence store file, rename the file, and then copy it back to
its original name. The following sample steps assume that transaction logs are stored in the /
shar ed/ t1 ogs directory and JMS data is stored in the / shar ed/ j s directory.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 13

ORACLE Chapter 6
Using a Network File System

Example 6-2 Sample Steps to Remove NFS Locks

cd /shared/tlogs

nv _W.S SOA SERVERL000000. DAT _W.S_SOA_SERVER1000000. DAT. ol d

cp _W.S SCA SERVERL000000. DAT. ol d _W.S_SOA SERVER1000000. DAT

cd /shared/jns

nv SCAJMSFI LESTORE_AUTO 1000000. DAT SOAJNMSFI LESTORE_AUTO 1000000. DAT. ol d

cp SOAJNSFI LESTORE_AUTO 1000000. DAT. ol d SOAJMSFI LESTORE_AUTO_1000000. DAT

m/ UMSJMSFI LESTORE_AUTO_1000000. DAT UMSJMSFI LESTORE_AUTO_1000000. DAT. ol d

cp UVBINMBFI LESTORE_AUTO 1000000. DAT. ol d UVBJMSFI LESTORE_AUTO_1000000. DAT

In this solution, the WebLogic file locking mechanism continues to provide protection from any
accidental data corruption caused when multiple instances of the same servers are started
accidentally. However, the servers must be restarted manually after abrupt machine failures. In
addition, file stores create multiple nunber ed. DAT files consecutively when they are used to
store large amounts of data. All files may need to be copied and renamed when this occurs.

Solution 3 - Disabling File Locks in WebLogic Server File Stores

@® Note

With this solution, because the WebLogic Server locking is disabled, automated server
restarts and failovers are expected to succeed. However, you should be very cautious
when using this option. The WebLogic file locking feature is designed to help prevent
severe file corruptions that can occur in concurrency scenarios.

The following prerequisites mitigate the risk of disabling file locks:

« If the server using the file store is configured for server migration, configure the database-
based leasing option. This enforces additional locking mechanisms using database tables
and prevents automated restart of more than one instance of the same WebLogic Server.

* Avoid disabling file locks on a file store that is using Automatic Service Migration (ASM).

— ASM requires file store locking to work safely and is activated in the following
scenarios:

1. A custom file store target is set to a Migratable Target and the Migratable Target is
configured with a Migration Policy other than 'manual’ (the default).

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 13

ORACLE Chapter 6
Using a Network File System

2. A custom file store target is set to a WebLogic cluster when the store is configured
with a Migration Policy other than 'Off' (the default).

3. A WebLogic Server is configured with a JTA Migratable Target with a Migration
Policy value other than ‘manual’ (the default), as this in turn can lead to default file
store migrations.

— If both ASM and disabling file locks are required, store your critical data in database
stores instead of file stores to avoid the risk of file corruptions. For example, use a
custom JDBC store instead of a file store and configure JTA to use a JDBC TLOG
store instead of each WebLogic Server’s default file store.

e Additional procedural precautions must be implemented to avoid any human error and to
ensure that only one instance of a server is manually started at any given point in time.
Similarly, precautions must be taken to ensure that no two domains have a store with the
same name that references the same directory.

You can use a system property or WebLogic Server configuration to disable WebLogic file
locking mechanisms for the default file store, custom file store, a JMS paging file store, and a
Diagnostics file store, as described in the following sections:

Disabling File Locking for all Stores Using a System Property

Starting from WebLogic Server 14.1.2 release, you can specify a Java system property on the
webl ogi c. Ser ver command line or start script of the JVM to disable locking on all of its file
stores including default, paging, diagnostic, and custom file stores as shown below:

"-Dwebl ogi c. store.file.LockEnabl ed=f al se"

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 13

Database Tuning

Follow the Oracle WebLogic Server tuning guidelines to prevent your database from becoming
a major enterprise-level bottleneck by configuring it for optimal performance.

General Suggestions

Review general database tuning suggestions.

Good database design — Distribute the database workload across multiple disks to avoid
or reduce disk overloading. Good design also includes proper sizing and organization of
tables, indexes, and logs.

Disk I/0O optimization — Disk I/O optimization is related directly to throughput and
scalability. Access to even the fastest disk is orders of magnitude slower than memory
access. Whenever possible, optimize the number of disk accesses. In general, selecting a
larger block/buffer size for /0O reduces the number of disk accesses and might
substantially increase throughput in a heavily loaded production environment.

Checkpointing — This mechanism periodically flushes all dirty cache data to disk, which
increases the 1/0 activity and system resource usage for the duration of the checkpoint.
Although frequent checkpointing can increase the consistency of on-disk data, it can also
slow database performance. Most database systems have checkpointing capability, but not
all database systems provide user-level controls. Oracle, for example, allows
administrators to set the frequency of checkpoints while users have no control over
SQLServer 7.x checkpoints. For recommended settings, see the product documentation
for the database you are using.

Disk and database overhead can sometimes be dramatically reduced by batching multiple
operations together and/or increasing the number of operations that run in parallel
(increasing concurrency). Examples:

— Increasing the value of the Message bridge Bat chSi ze or the Store-and-Forward
W ndowSi ze can improve performance as larger batch sizes produce fewer but larger
I/Os.

— Programmatically leveraging JDBC's batch APIs.

— Use the MDB transaction batching feature. See Tuning Message-Driven Beans.

— Increasing concurrency by increasing nax- beans-i n-free- pool and thread pool size
for MDBs (or decreasing it if batching can be leveraged).

Database-Specific Tuning

Consider the basic tuning suggestions for Oracle, SQL Server, and Sybase databases.

Oracle

This section describes performance tuning for Oracle.

For proper initial configuration of the database to gain significant performance benefits, see
Configuring a Database for Performance.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 3

https://docs.oracle.com/en/database/oracle/oracle-database/23/tgdba/configuring-database-for-performance.html#GUID-8314AD37-F37C-4A61-B909-4853D6FC9747

ORACLE

Chapter 7
Database-Specific Tuning

Number of processes — On most operating systems, each connection to the Oracle server
spawns a shadow process to service the connection. Thus, the maximum number of
processes allowed for the Oracle server must account for the number of simultaneous
users, as well as the number of background processes used by the Oracle server. The
default number is usually not big enough for a system that needs to support a large
number of concurrent operations. For platform-specific issues, see your Oracle
administrator's guide. The current setting of this parameter can be obtained with the
following query:

SELECT nane, val ue FROM v$paraneter WHERE nane = 'processes';

Buffer pool size —The buffer pool usually is the largest part of the Oracle server system
global area (SGA). This is the location where the Oracle server caches data that it has
read from disk. For read-mostly applications, the single most important statistic that affects
data base performance is the buffer cache hit ratio. The buffer pool should be large
enough to provide upwards of a 95% cache hit ratio. Set the buffer pool size by changing
the value, in data base blocks, of the db_cache_si ze parameter in the i ni t . or a file.

Shared pool size — The share pool in an important part of the Oracle server system global
area (SGA). The SGA is a group of shared memory structures that contain data and
control information for one Oracle database instance. If multiple users are concurrently
connected to the same instance, the data in the instance's SGA is shared among the
users. The shared pool portion of the SGA caches data for two major areas: the library
cache and the dictionary cache. The library cache stores SQL-related information and
control structures (for example, parsed SQL statement, locks). The dictionary cache stores
operational metadata for SQL processing.

For most applications, the shared pool size is critical to Oracle performance. If the shared
pool is too small, the server must dedicate resources to managing the limited amount of
available space. This consumes CPU resources and causes contention because Oracle
imposes restrictions on the parallel management of the various caches. The more you use
triggers and stored procedures, the larger the shared pool must be. The SHARED POOL_SI ZE
initialization parameter specifies the size of the shared pool in bytes.

The following query monitors the amount of free memory in the share pool:

SELECT * FROM v$sgast at
WHERE name = 'free nmenory' AND pool = 'shared pool";

Maximum opened cursor — To prevent any single connection taking all the resources in
the Oracle server, the OPEN_CURSCRS initialization parameter allows administrators to limit
the maximum number of opened cursors for each connection. Unfortunately, the default
value for this parameter is too small for systems such as WebLogic Server. Cursor
information can be monitored using the following query:

SELECT nane, val ue FROM v$sysst at
VHERE nane LI KE 'opened cursor%;

Database block size — A block is Oracle's basic unit for storing data and the smallest unit
of 1/0. One data block corresponds to a specific number of bytes of physical database
space on disk. This concept of a block is specific to Oracle RDBMS and should not be
confused with the block size of the underlying operating system. Since the block size
affects physical storage, this value can be set only during the creation of the database; it
cannot be changed once the database has been created. The current setting of this
parameter can be obtained with the following query:

SELECT name, val ue FROM v$parameter WHERE name = ' db_bl ock_si ze';

Sort area size — Increasing the sort area increases the performance of large sorts
because it allows the sort to be performed in memory during query processing. This can be
important, as there is only one sort area for each connection at any point in time. The
default value of this i ni t. or a parameter is usually the size of 6—8 data blocks. This value

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 3

ORACLE

Chapter 7
Database-Specific Tuning

is usually sufficient for OLTP operations but should be increased for decision support
operation, large bulk operations, or large index-related operations (for example, recreating
an index). When performing these types of operations, you should tune the following

i nit.ora parameters (which are currently set for 8K data blocks):

sort_area_size = 65536
sort_area_retained_size = 65536

Microsoft SQL Server

The following guidelines pertain to performance tuning parameters for Microsoft SQL Server
databases. For more information about these parameters, see your Microsoft SQL Server
documentation.

Store t enpdb on a fast I/O device.
Increase the recovery interval if per f non shows an increase in 1/0.

Use an 1/O block size larger than 2 KB.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 3

Tuning WebLogic Server EJBs

Tune the Oracle WebLogic Server EJBs for your application environment by following the
general EJB tuning tips, and tuning EJB caches and pools.

General EJB Tuning Tips

Use the general EJB tuning tips to optimize the application's performance.

Deployment descriptors are schema-based. Descriptors that are new in this release of
WebLogic Server are not available as DTD-based descriptors.

Avoid using the Requi r esNew transaction parameter. Using Requi r esNew causes the EJB
container to start a new transaction after suspending any current transactions. This means
additional resources, including a separate database connection is allocated.

Use local-interfaces or set call-by-reference to true to avoid the overhead of serialization
when one EJB calls another or an EJB is called by a servlet/JSP in the same application.
Note the following:

— This optimization does not apply to calls across different applications.
The calls across different applications can be between:
* applications on different JVMs
* applications on the same JVM

For example, when you have a JVM that

contains EJBAppl. ear and EJBApp2. ear on the same server, and you deploy one
EJB on EJBAppl. ear and another EJB on EJBApp2. ear , the calls between the
applications on EJBAppl. ear and EJBApp2. ear are considered as calls across
different applications even though they are on the same JVM.

Use stateless session beans over stateful session beans whenever possible. Stateless
session beans scale better than stateful session beans because there is no state
information to be maintained.

WebLogic Server provides additional transaction performance benefits for EJBs that reside
in a WebLogic Server cluster. When a single transaction uses multiple EJBs, WebLogic
Server attempts to use EJB instances from a single WebLogic Server instance, rather than
using EJBs from different servers. This approach minimizes network traffic for the
transaction. In some cases, a transaction can use EJBs that reside on multiple WebLogic
Server instances in a cluster. This can occur in heterogeneous clusters, where all EJBs
have not been deployed to all WebLogic Server instances. In these cases, WebLogic
Server uses a multitier connection to access the datastore, rather than multiple direct
connections. This approach uses fewer resources, and yields better performance for the
transaction. However, for best performance, the cluster should be homogeneous — all
EJBs should reside on all available WebLogic Server instances.

Tuning EJB Caches

Learn how to tune EJB caches.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 10

ORACLE Chapter 8
Tuning EJB Caches

Tuning the Stateful Session Bean Cache

The EJB Container caches stateful session beans in memory up to a count specified by the
max- beans- i n- cache parameter specified in webl ogi c- ej b-j ar. xnl . This parameter should be
set equal to the number of concurrent users. This ensures minimum passivation of stateful
session beans to disk and subsequent activation from disk which yields better performance.

Tuning the Entity Bean Cache

Entity beans are cached at two levels by the EJB container:

Transaction-Level Caching

Once an entity bean has been loaded from the database, it is always retrieved from the cache
whenever it is requested when using the fi ndByPri mar yKey or invoked from a cached
reference in that transaction. Getting an entity bean using a non-primary key finder always
retrieves the persistent state of the bean from the data base.

Caching between Transactions

Entity bean instances are also cached between transactions. However, by default, the
persistent state of the entity beans are not cached between transactions. To enable caching
between transactions, set the value of the cache- bet ween-t ransact i ons parameter to true.

Is it safe to cache the state? This depends on the concurrency-strategy for that bean. The
entity-bean cache is really only useful when cache- bet ween-transacti ons can be safely set to
true. In cases where ej bActi vat e() and ej bPassi vat e() callbacks are expensive, it is still a
good idea to ensure the entity-cache size is large enough. Even though the persistent state
may be reloaded at least once per transaction, the beans in the cache are already activated.
The value of the cache-size is set by the deployment descriptor parameter nax- beans- i n-
cache and should be set to maximize cache-hits. In most situations, the value need not be
larger than the product of the number of rows in the table associated with the entity bean and
the number of threads expected to access the bean concurrently.

Ready Bean Caching

For entity beans with a high cache miss ratio, maintaining ready bean instances can adversely
affect performance.

If you set di sabl e-ready-instances inthe entity-cache el ement of anentity-descriptor,
the container does not maintain the ready instances in cache. If the feature is enabled in the
deployment descriptor, the cache only keeps the active instances. Once the involved
transaction is committed or rolled back, the bean instance is moved from active cache to the
pool immediately.

Tuning the Query Cache

Query Caching allows read-only CMP entity beans to cache the results of arbitrary finders.
Query caching is supported for all finders except pr epar ed- quer y finders. The query cache
can be an application-level cache as well as a bean-level cache. The size of the cache is
limited by the webl ogi c-ej b-j ar. xm parameter max- queri es-in-cache. The finder-| evel
flag in the webl ogi c- cnp- r dbns descriptor file, enabl e- quer y- cachi ng is used to specify
whether the results of that finder are to be cached. A flag with the same name has the same

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 10

ORACLE

Chapter 8
Tuning EJB Pools

purpose for internal relationship finders when applied to the webl ogi c-rel ati onshi p-rol e
element. Queries are evicted from the query-cache under the following circumstances:

e The query is least recently used and the query- cache has hit its size limit.

e At least one of the EJBs that satisfy the query has been evicted from the entity bean
cache, regardless of the reason.

e The query corresponds to a finder that has eager - r el at i onshi p- cachi ng enabled and the
query for the associated internal relationship finder has been evicted from the related
bean's query cache.

It is possible to let the size of the entity-bean cache limit the size of the query-cache by setting

the max- queri es- i n- cache parameter to 0, since queries are evicted from the cache when the

corresponding EJB is evicted. This may avoid some lock contention in the query cache, but the
performance gain may not be significant.

Tuning EJB Pools

Learn how to tune EJB pools.

Tuning the Stateless Session Bean Pool

The EJB container maintains a pool of stateless session beans to avoid creating and
destroying instances. Though generally useful, this pooling is even more important for
performance when the ej bCr eat e() and the set Sessi onCont ext () methods are expensive.
The pool has a lower as well as an upper bound. The upper bound is the more important of the
two.

* The upper bound is specified by the max- beans-i n-free- pool parameter. It should be set
equal to the number of threads expected to invoke the EJB concurrently. Using too small of
a value impacts concurrency.

e The lower bound is specified by the i ni ti al - beans-i n-free-pool parameter. Increasing
the value of i niti al - beans-in-free-pool increases the time it takes to deploy the
application containing the EJB and contributes to startup time for the server. The
advantage is the cost of creating EJB instances is not incurred at run time. Setting this
value too high wastes memory.

Tuning the MDB Pool

The life cycle of MDBs is very similar to stateless session beans. The MDB pool has the same
tuning parameters as stateless session beans and the same factors apply when tuning them.
In general, most users will find that the default values are adequate for most applications. See
Tuning Message-Driven Beans.

Tuning the Entity Bean Pool

The entity bean pool serves two purposes:

e Atarget objects for invocation of finders via reflection.

* A pool of bean instances the container can recruit if it cannot find an instance for a
particular primary key in the cache.

The entity pool contains anonymous instances (instances that do not have a primary key).
These beans are not yet active (meaning ej bActi vat e() has not been invoked on them yet),
though the EJB context has been set. Entity bean instances evicted from the entity cache are

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 10

ORACLE

Chapter 8
CMP Entity Bean Tuning

passivated and put into the pool. The tunables are the i ni ti al - beans-i n-free-pool and max-
beans-i n-free-pool . Unlike stateless session beans and MDBs, the nax- beans-i n-f r ee- pool
has no relation with the thread count. You should increase the value of max- beans-in-free-
pool if the entity bean constructor or set Eni t yCont ext () methods are expensive.

CMP Entity Bean Tuning

The largest performance gains in entity beans are achieved by using caching to minimize the
number of interactions with the data base. However, in most situations, it is not realistic to be
able to cache entity beans beyond the scope of a transaction. Learn about the WebLogic
Server EJB container features that you can use to minimize database interaction safely.

Use Eager Relationship Caching

Using eager relationship caching allows the EJB container to load related entity beans using a
single SQL join. Use only when the same transaction accesses related beans. See
Relationship Caching in Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic
Server.

In this release of WebLogic Server, if a CMR field has specified both r el at i onshi p- cachi ng
and cascade-delete, the owner bean and related bean are loaded to SQL which can provide an
additional performance benefit.

Using Inner Joins

The EJB container always uses an outer join in a CMP bean finder when eager r el ati onshi p-
cachi ng is turned on. Typically, inner joins are faster to execute than outer joins with the
drawback that inner joins do not return rows which do not have data in the corresponding
joined table. Where applicable, using an inner join on very large databases may help to free
CPU resources.

use-inner-joi n is available in webl ogi c- cnp-rdbns-j ar. xm , as an attribute of the weblogic-
rdbms-bean, as shown here:

<webl ogi c- r dbns- bean>

<ej b- name>exanpl eBean</ e b- nane>

<use-inner-j oi n>t rue</ use-inner-joi n>
</ webl ogi c- r dbrs- bean>

This element should only be set to t r ue if the CMP bean's related beans can never be null or
an empty set.

The default value is f al se. If you specify its value as true, all relationship cache query on the
entity bean use an inner join instead of a left outer join to execute a select query clause.

Use JDBC Batch Operations

JDBC batch operations are turned on by default in the EJB container. The EJB container
automatically re-orders and executes similar data base operations in a single batch which
increases performance by eliminating the number of data base round trips. Oracle
recommends using batch operations.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 10

ORACLE Chapter 8
CMP Entity Bean Tuning

Tuned Updates

When an entity EJB is updated, the EJB container automatically updates in the data base only
those fields that have actually changed. As a result the update statements are simpler and if a
bean has not been modified, no data base call is made. Because different transactions may
modify different sets of fields, more than one form of update statements may be used to store
the bean in the data base. It is important that you account for the types of update statements
that may be used when setting the size of the prepared statement cache in the JDBC
connection pool. See Cache Prepared and Callable Statements.

Using Field Groups

Field groups allow the user to segregate commonly used fields into a single group. If any of the
fields in the group is accessed by application/bean code, the entire group is loaded using a
single SQL statement. This group can also be associated with a finder. When the finder is
invoked and fi nder s- | oad- bean is true, it loads only those fields from the data base that are
included in the field group. This means that if most transactions do not use a particular field
that is slow to load, such as a BLOB, it can be excluded from a field-group. Similarly, if an
entity bean has a lot of fields, but a transaction uses only a small number of them, the unused
fields can be excluded.

@® Note

Be careful to ensure that fields that are accessed in the same transaction are not
configured into separate field-groups. If that happens, multiple data base calls occur to
load the same bean, when one would have been enough.

include-updates

This flag causes the EJB container to flush all modified entity beans to the data base before
executing a finder. If the application modifies the same entity bean more than once and
executes a non-pk finder in-between in the same transaction, multiple updates to the data base
are issued. This flag is turned on by default to comply with the EJB specification.

If the application has transactions where two invocations of the same or different finders could
return the same bean instance and that bean instance could have been modified between the
finder invocations, it makes sense leaving i ncl ude- updat es turned on. If not, this flag may be
safely turned off. This eliminates an unnecessary flush to the data base if the bean is modified
again after executing the second finder. This flag is specified for each finder in the cnp- r dbns
descriptor.

call-by-reference

When it is turned off, method parameters to an EJB are passed by value, which involves
serialization. For mutable, complex types, this can be significantly expensive. Consider using
for better performance when:

e The application does not require call-by-value semantics, such as method parameters are
not modified by the EJB.

or

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 10

ORACLE

Chapter 8
CMP Entity Bean Tuning

* If modified by the EJB, the changes need not be invisible to the caller of the method.

This flag applies to all EJBs, not just entity EJBs. It also applies to EJB invocations between
servlets/JSPs and EJBs in the same application. The flag is turned off by default to comply with
the EJB specification. This flag is specified at the bean-level in the WebLogic-specific
deployment descriptor.

Bean-level Pessimistic Locking

Bean-level pessimistic locking is implemented in the EJB container by acquiring a data base
lock when loading the bean. When implemented, each entity bean can only be accessed by a
single transaction in a single server at a time. All other transactions are blocked, waiting for the
owning transaction to complete. This is a useful alternative to using a higher data base
isolation level, which can be expensive at the RDBMS level. This flag is specified at the bean
level in the cnp-r dbs deployment descriptor.

@ Note

If the lock is not exclusive lock, you man encounter deadlock conditions. If the data
base lock is a shared lock, there is potential for deadlocks when using that RDBMS.

Concurrency Strategy

The concurrency- st rat egy deployment descriptor tells the EJB container how to handle
concurrent access of the same entity bean by multiple threads in the same server instance. Set
this parameter to one of four values:

e Excl usi ve—The EJB container ensures there is only one instance of an EJB for a given
primary key and this instance is shared among all concurrent transactions in the server
with the container serializing access to it. This concurrency setting generally does not
provide good performance unless the EJB is used infrequently and chances of concurrent
access is small.

» Dat abase—This is the default value and most commonly used concurrency strategy. The
EJB container defers concurrency control to the database. The container maintains
multiple instances of an EJB for a given primary-key and each transaction gets it's own
copy. In combination with this strategy, the database isolation-level and bean level
pessimistic locking play a major role in determining if concurrent access to the persistent
state should be allowed. It is possible for multiple transactions to access the bean
concurrently so long as it does not need to go to the database, as would happen when the
value of cache- bet ween-transactions is true. However, setting the value of cache-
bet ween-t ransacti ons to true unsafe and not recommended with the Dababase
concurrency strategy.

e Optim stic—The goal of the optimistic concurrency strategy is to minimize locking at the
data base and while continuing to provide data consistency. The basic assumption is that
the persistent state of the EJB is changed very rarely. The container attempts to load the
bean in a nested transaction so that the isolation-level settings of the outer transaction
does not cause locks to be acquired at the data base. At commit-time, if the bean has been
modified, a predicated update is used to ensure it's persistent state has not been changed
by some other transaction. If so, an Opti m sti cConcurrencyExcepti on is thrown and must
be handled by the application.

Since EJBs that can use this concurrency strategy are rarely modified, using cache-
bet ween-transacti ons on can boost performance significantly. This strategy also allows

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 10

ORACLE

Chapter 8
Tuning In Response to Monitoring Statistics

commit-time verification of beans that have been read, but not changed. This is done by
setting the veri fy-rows parameter to Read in the cnp-r dbns descriptor. This provides very
high data-consistency while at the same time minimizing locks at the data base. However,
it does slow performance somewhat. It is recommended that the optimistic verification be
performed using a version column: it is faster, followed closely by timestamp, and more
distantly by modified and read. The modified value does not apply if verify-rows is set to
Read.

When an optimistic concurrency bean is modified in a server that is part of a cluster, the
server attempts to invalidate all instances of that bean cluster-wide in the expectation that
it will prevent Opt i ni sti cConcurrencyExceptions. In some cases, it may be more cost
effective to simply let other servers throw an Opt i mi sti cConcurrencyExcepti on. in this
case, turn off the cluster-wide invalidation by setting the cl ust er -i nval i dat i on- di sabl ed
flag in the cnp- r dbrs descriptor.

e ReadOnl y—The ReadOnly value is the most performant. When selected, the container
assumes the EJB is non-transactional and automatically turns on cache- bet ween-
transacti ons. Bean states are updated from the data base at periodic, configurable
intervals or when the bean has been programmatically invalidated. The interval between
updates can cause the persistent state of the bean to become stale. This is the only
concurrency-strategy for which query- cachi ng can be used. See Caching between
Transactions.

Tuning In Response to Monitoring Statistics

The WebLogic Remote Console reports a wide variety of EJB runtime monitoring statistics,
many of which are useful for tuning the performance of your EJBs. Learn how some of these
statistics can help you tune the performance of EJBs.

If you prefer to write a custom monitoring application, you can access the monitoring statistics
using JMX or WLST by accessing the relevant runtime MBeans. See Runtime MBeans in
MBean Reference for Oracle WebLogic Server.

Cache Miss Ratio

The cache miss ratio is a ratio of the number of times a container cannot find a bean in the
cache (cache miss) to the number of times it attempts to find a bean in the cache (cache
access):

Cache Mss Ratio = (Cache Total Mss Count / Cache Total Access Count) * 100

A high cache miss ratio could be indicative of an improperly sized cache. If your application
uses a certain subset of beans (read primary keys) more frequently than others, it would be
ideal to size your cache large enough so that the commonly used beans can remain in the
cache as less commonly used beans are cycled in and out upon demand. If this is the nature
of your application, you may be able to decrease your cache miss ratio significantly by
increasing the maximum size of your cache.

If your application doesn't necessarily use a subset of beans more frequently than others,
increasing your maximum cache size may not affect your cache miss ratio. We recommend
testing your application with different maximum cache sizes to determine which give the lowest
cache miss ratio. It is also important to keep in mind that your server has a finite amount of
memory and therefore there is always a trade-off to increasing your cache size.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 10

ORACLE Chapter 8
Tuning In Response to Monitoring Statistics

Lock Waiter Ratio

When using the Excl usi ve concurrency strategy, the lock waiter ratio is the ratio of the number
of times a thread had to wait to obtain a lock on a bean to the total amount of lock requests
issued:

Lock Waiter Ratio = (Current Waiter Count / Current Lock Entry Count) * 100

A high lock waiter ratio can indicate a suboptimal concurrency strategy for the bean. If
acceptable for your application, a concurrency strategy of Database or Optimistic will allow for
more parallelism than an Exclusive strategy and remove the need for locking at the EJB
container level.

Because locks are generally held for the duration of a transaction, reducing the duration of
your transactions will free up beans more quickly and may help reduce your lock waiter ratio.
To reduce transaction duration, avoid grouping large amounts of work into a single transaction
unless absolutely necessary.

Lock Timeout Ratio

When using the Excl usi ve concurrency strategy, the lock timeout ratio is the ratio of timeouts
to accesses for the lock manager:

Lock Tineout Ratio =(Lock Manager Timeout Total Count / Lock Manager Total Access Count)
* 100

The lock timeout ratio is closely related to the lock waiter ratio. If you are concerned about the
lock timeout ratio for your bean, first take a look at the lock waiter ratio and our
recommendations for reducing it (including possibly changing your concurrency strategy). If
you can reduce or eliminate the number of times a thread has to wait for a lock on a bean, you
will also reduce or eliminate the amount of timeouts that occur while waiting.

A high lock timeout ratio may also be indicative of an improper transaction timeout value. The
maximum amount of time a thread will wait for a lock is equal to the current transaction timeout
value.

If the transaction timeout value is set too low, threads may not be waiting long enough to obtain
access to a bean and timing out prematurely. If this is the case, increasing the trans-timeout-
seconds value for the bean may help reduce the lock timeout ratio.

Take care when increasing the trans-timeout-seconds, however, because doing so can cause
threads to wait longer for a bean and threads are a valuable server resource. Also, doing so
may increase the request time, as a request ma wait longer before timing out.

Pool Miss Ratio

The pool miss ratio is a ratio of the number of times a request was made to get a bean from
the pool when no beans were available, to the total number of requests for a bean made to the
pool:

Pool Mss Ratio = (Pool Total Mss Count / Pool Total Access Count) * 100

If your pool miss ratio is high, you must determine what is happening to your bean instances.
There are three things that can happen to your beans.

e They are in use.

* They were destroyed.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 10

ORACLE

Chapter 8
Tuning In Response to Monitoring Statistics

e They were removed.

Follow these steps to diagnose the problem:

1. Check your destroyed bean ratio to verify that bean instances are not being destroyed.
2. Investigate the cause and try to remedy the situation.
3. Examine the demand for the EJB, perhaps over a period of time.

One way to check this is via the Beans in Use Current Count and Idle Beans Count displayed
in the WebLogic Remote Console. If demand for your EJB spikes during a certain period of
time, you may see a lot of pool misses as your pool is emptied and unable to fill additional
requests.

As the demand for the EJB drops and beans are returned to the pool, many of the beans
created to satisfy requests may be unable to fit in the pool and are therefore removed. If this is
the case, you may be able to reduce the number of pool misses by increasing the maximum
size of your free pool. This may allow beans that were created to satisfy demand during peak
periods to remain in the pool so they can be used again when demand once again increases.

Destroyed Bean Ratio

The destroyed bean ratio is a ratio of the number of beans destroyed to the total number of
requests for a bean.

Destroyed Bean Ratio = (Total Destroyed Count / Total Access Count) * 100

To reduce the number of destroyed beans, Oracle recommends against throwing non-
application exceptions from your bean code except in cases where you want the bean instance
to be destroyed. A non-application exception is an exception that is either a
java.rmi.RemoteException (including exceptions that inherit from RemoteException) or is not
defined in the throws clause of a method of an EJB's home or component interface.

In general, you should investigate which exceptions are causing your beans to be destroyed as
they may be hurting performance and may indicate problem with the EJB or a resource used
by the EJB.

Pool Timeout Ratio

The pool timeout ratio is a ratio of requests that have timed out waiting for a bean from the pool
to the total number of requests made:

Pool Tineout Ratio = (Pool Total Timeout Count / Pool Total Access Count) * 100

A high pool timeout ratio could be indicative of an improperly sized free pool. Increasing the
maximum size of your free pool via the max- beans-i n-free- pool setting will increase the
number of bean instances available to service requests and may reduce your pool timeout
ratio.

Another factor affecting the number of pool timeouts is the configured transaction timeout for
your bean. The maximum amount of time a thread will wait for a bean from the pool is equal to
the default transaction timeout for the bean. Increasing the trans-ti neout - seconds setting in
your webl ogi c-ej b-jar. xm file will give threads more time to wait for a bean instance to
become available.

Users should exercise caution when increasing this value, however, since doing so may cause
threads to wait longer for a bean and threads are a valuable server resource. Also, request
time might increase because a request will wait longer before timing out.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 10

ORACLE Chapter 8
Tuning In Response to Monitoring Statistics

Transaction Timeout Ratio

The transaction timeout ratio is the ratio of transactions that have timed out to the total number
of transactions involving an EJB:

Transaction Tineout Ratio = (Transaction Total Timeout Count / Transaction Total Count)
* 100

A high transaction timeout ratio could be caused by the wrong transaction timeout value. For
example, if your transaction timeout is set too low, you may be timing out transactions before
the thread is able to complete the necessary work. Increasing your transaction timeout value
may reduce the number of transaction timeouts.

You should exercise caution when increasing this value, however, since doing so can cause
threads to wait longer for a resource before timing out. Also, request time might increase
because a request will wait longer before timing out.

A high transaction timeout ratio could be caused by a number of things such as a bottleneck
for a server resource. We recommend tracing through your transactions to investigate what is
causing the timeouts so the problem can be addressed.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 10

Tuning Message-Driven Beans

Use the tuning and best practice information of Oracle WebLogic Server for Message-Driven
Beans (MDBs).

Use Transaction Batching

MDB transaction batching allows several JIMS messages to be processed in one container
managed transaction. Batching amortizes the cost of transactions over multiple messages and
when used appropriately, can reduce or even eliminate the throughput difference between 2PC
and 1PC processing.

See Transaction Batching of MDBs in Developing Message-Driven Beans for Oracle WebLogic
Server.

* Using batching may require reducing the number of concurrent MDB instances. If too many
MDB instances are available, messages may be processed in parallel rather than in a
batch. See MDB Thread Management.

* While batching generally increases throughput, it may also increase latency (the time it
takes for an individual message to complete its MDB processing).

MDB Thread Management

Thread management for MDBs is described in terms of concurrency—the number of MDB
instances that can be active at the same time. Review information about MDB concurrency.

Determining the Number of Concurrent MDBs

Table 9-1 provides information on how to determine the number of concurrently running MDB
instances for a server instance.

Table 9-1 Determining Concurrency for WebLogic Server MDBs

Type of work manager or execute Threads
queue

Default work manager or unconstrained varies due to self-tuning, up to Min(max- beans-i n-free-
work manager pool , 16)

Default work manager with self-tuning Min(def aul t - t hr ead- pool - si ze/2+1, max- beans- i n-
disabled free-pool)

This is also the default thread pool concurrency algorithm for
WebLogic Server 8.1

Custom execute queue Min(execut e- queue- si ze, max- beans-in-f ree- pool)

Custom work manager with constraint varies due to self-tuning, between m n-t hr ead- const r ai nt
and Min(max- t hr eads- const rai nt, max- beans-in-free-
pool)

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE

Chapter 9
MDB Thread Management

Transactional WebLogic MDBs use a synchronous polling mechanism to retrieve messages
from JMS destinations if they are either: A) listening to non-WebLogic queues; or B) listening to
a WebLogic queue and transaction batching is enabled. See Token-based Message Polling for
Transactional MDBs Listening on Queues/Topics.

Selecting a Concurrency Strategy

The following section provides general information on selecting a concurrency strategy for your
applications:

@® Note

Every application is unique, select a concurrency strategy based on how your
application performs in its environment.

In most situations, if the message stream has bursts of messages, using an unconstrained
work manager with a high fair share is adequate. Once the messages in a burst are
handled, the threads are returned to the self-tuning pool.

In most situations, if the message arrival rate is high and constant or if low latency is
required, it makes sense to reserve threads for MDBs. You can reserve threads by either
specifying a work manager with a ni n-t hr eads- const rai nt or by using a custom execute

queue.

To achieve MDB concurrency numbers higher than 16, you will need to create a custom
work manager or custom execute queue. See Table 9-1.

Thread Utilization When Using WebLogic Destinations

The following section provides information on how threads are allocated when WebLogic
Server interoperates with WebLogic destinations.

Tuning Performance of Oracle WebLogic Server

G31577-01

Non-transactional WebLogic MDBs allocate threads from the thread-pool designated by
the di spat ch- pol i cy as needed when there are new messages to be processed. If the
MDB has successfully connected to its source destination, but there are no messages to
be processed, then the MDB will use no threads.

Transactional WebLogic MDBs with transaction batching disabled work the same as non-
transactional MDBs except for Topic MDBs with a Topic Messages Distribution Mode of
Conpati bi lity (the default), in which case the MDB always limits the thread pool size to 1.

The behavior of transactional MDBs with transaction batching enabled depends on
whether the MDB is listening on a topic or a queue:

— MBDBs listening on topics: — Each deployed MDB uses a dedicated daemon polling
thread that is created in Non-Pooled Threads thread group.

* Topic Messages Distribution Mode = Compatibility: Each deployed MDB uses a
dedicated daemon polling thread that is created in the Non-Pooled Threads thread
group.

* Topic Messages Distribution Mode = One-Copy-Per-Server or One-Copy-Per-
Application: Same as queues.

— MBDBs listening on queues — Instead of a dedicated thread, each deployed MDB uses
a token-based, synchronous polling mechanism that always uses at least one thread

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE’

Chapter 9
Best Practices for Configuring and Deploying MDBs Using Distributed Topics

from the di spat ch- pol i cy. See Token-based Message Polling for Transactional MDBs
Listening on Queues/Topics.

For information on how threads are allocated when WebLogic Server interoperates with MDBs
that consume from Foreign destinations, see Thread Utilization for MDBs that Process
Messages from Foreign Destinations.

Limitations for Multi-threaded Topic MDBs

When the t opi cMessagesDi st ri buti onMode is Conpati bility, the default behavior for non-
transactional topic MDBs is to multi-thread the message processing. In this situation, the MDB
container fails to provide reproducible behavior when the topic is not a WebLogic JMS Topic,
such as unexpected exceptions and acknowledgement of messages that have not yet been
processed. For example, if an application throws a Runt i neExcept i on from onnmessage, the
container may still acknowledge the message. Oracle recommends setting max- beans-i n-
free-pool to avalue of 1 in the deployment descriptor to prevent multi-threading in topic
MDBs when the topic is a foreign vendor topic (not a WebLogic JMS topic).

/\ Caution

Non-transactional Foreign Topics: Oracle recommends explicitly setting max- beans-

i n-free-pool to 1 for non-transactional MDBs that work with foreign (non-WebLogic)
topics. Failure to do so may result in lost messages in the event of certain failures,
such as the MDB application throwing Runt i me or Err or exceptions.

Unit-of-Order: Oracle recommends explicitly setting max- beans-i n-free- pool to 1 for
non-transactional Conpati bi | i t y mode MDBs that consume from a WebLogic JMS
topic and process messages that have a WebLogic JMS Unit-of-Order value. Unit-of-
Order messages in this use case may not be processed in order unless max- beans-

i n-free-pool issettol.

Transactional MDBs automatically force concurrency to 1 regardless of the max-beans-in-free-
pool setting.

Best Practices for Configuring and Deploying MDBs Using
Distributed Topics

Message-driven beans provide a number of application design and deployment options that
offer scalability and high availability when using distributed topics. Follow the best practices for
configuring and deploying MDBs.

See Configuring and Deploying MDBs Using Distributed Topics in Developing Message-Driven
Beans for Oracle WebLogic Server.

Using MDBs with Foreign Destinations

Review information on the behavior of WebLogic Server when using MDBs that consume
messages from foreign destinations

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE Chapter 9
Token-based Message Polling for Transactional MDB Listening on Queues/Topics

@® Note

The term "foreign destination” in this context refers to destinations that are hosted by a
non-WebLogic JMS provider. It does not refer to remote WebLogic destinations.

Concurrency for MDBs that Process Messages from Foreign Destinations

The concurrency of MDBs that consume from destinations hosted by foreign providers (non-
WebLogic JMS destinations) is determined using the same algorithm that is used for WebLogic
JMS destinations.

Thread Utilization for MDBs that Process Messages from Foreign
Destinations

The following section provides information on how threads are allocated when WebLogic
Server interoperates with MDBs that process messages from foreign destinations:

* Non-transactional MDBs use a foreign vendor's thread, not a WebLogic Server thread. In
this situation, the di spat ch- pol i cy is ignored except for determining concurrency.

e Transactional MDBs run in WebLogic Server threads, as follow:

— MBDBs listening on topics — Each deployed MDB uses a dedicated daemon polling
thread that is created in Non-Pooled Threads thread group.

— MBDBs listening on queues — Instead of a dedicated thread, each deployed MDB uses
a token-based, synchronous polling mechanism that always uses at least one thread
from the di spat ch- pol i cy. See Token-based Message Polling for Transactional MDBs
Listening on Queues/Topics

Token-based Message Polling for Transactional MDB Listening
on Queues/Topics

Token-based polling mechanism approach provides better control of the concurrent poller
thread count under changing message loads. Transactional WebLogic MDB uses a
synchronous polling mechanism to retrieve messages from JMS destinations. With
synchronous polling, one or more WebLogic polling threads synchronously receive messages
from the MDB's source destination and then invoke the MDB application's onMessage callback.

Transactional WebLogic MDB uses a synchronous polling mechanism to retrieve messages
from JMS destinations if they are:

e Listening to non-WebLogic queues
e Listening to a WebLogic queue and transaction batching is enabled
e Listening to a WebLogic Topic where:

— Topic Messages Distribution Mode = One-Copy-Per-Server and transaction batching is
enabled

— Topic Messages Distribution Mode = One-Copy-Per-Application and transaction
batching is enabled

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE

Chapter 9
Compatibility for WLS 10.0 and Earlier-style Polling

As of WebLogic 10.3, the polling mechanism changed to a token-based approach to provide
better control of the concurrent poller thread count under changing message loads. In previous
releases, the thread count ramp-up could be too gradual in certain use cases. Additionally,
child pollers, once awoken, could not be ramped down and returned back to the pool for
certain foreign JMS providers.

When a thread is returned to the thread pool with token-based polling, the thread's internal
JMS consumer is closed rather than cached. This assures that messages will not be implicitly
pre-fetched by certain foreign JIMS Providers while there is no polling thread servicing the
consumer.

In addition, each MDB maintains a single token that provides permission for a given poller
thread to create another thread.

e On receipt of a message — A poller thread that already has the token or that is able to
acquire the token because the token is not owned, wakes up an additional poller thread
and gives the token to the new poller if the maximum concurrency has not yet been
reached. If maximum concurrency has been reached, the poller thread simply releases the
token (leaving it available to any other poller).

e Onfinding an empty queue/Topic — A poller tries to acquire the token and if successful will
try to poll the queue periodically. If it fails to acquire the token, it returns itself back to the
pool. This ensures that with an empty queue or topic, there is still at least one poller
checking for messages.

WebLogic 12.2.1.2.0 introduces two properties of type activation-configproperty:

mdbDest i nati onPol I I nterval M11is and ni ni ni zeAQSessi ons. The

mdbDest i nati onPol | I nternval M I 1is property controls the message polling interval that is
used by the synchronous polling mechanism for MDB. When the JMS provider is AQIMS, the
m ni m zeAQSessi ons property reduces the use of database resources by minimizing the
number of AQ JMS sessions.

Compatibility for WLS 10.0 and Earlier-style Polling

In WLS 10.0 and earlier, transactional MDBs with batching enabled created a dedicated polling
thread for each deployed MDB. This polling thread was not allocated from the pool specified by
di spat ch-pol i cy, it was an entirely new thread in addition to the all other threads running on
the system.

See Use Transaction Batching.

To override the token-based polling behavior and implement the WLS 10.0 and earlier
behavior, you can either:

e Atthe server level, set the webl ogi ¢. ndb. nessage. 81Styl ePol | i ng system property to
Tr ue to override the token-based polling behavior.

e Atthe MDB level, set the use81- styl e- pol | i ng element under message-dri ven-
descri ptor to override the token-based polling behavior. When using foreign transactional
MDBs with the WLS 8.1-style polling flag, some foreign vendors require a permanently
allocated thread per concurrent MDB instance. These threads are drawn from the pool
specified by di spat ch- pol i cy and are not returned to the pool until the MDB is
undeployed. Since these threads are not shared, the MDB can starve other resources in
the same pool. In this situation, you may need to increase the number of threads in the
pool. With the token-based polling approach for such foreign vendors, the thread's internal
JMS message consumer is closed rather than cached to assure that messages will not be
reserved by the destination for the specific consumer.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 5

Tuning Data Sources

To get the best performance from your Oracle WebLogic Server data sources, use the
recommended tips to tune the data sources.

Tune the Number of Database Connections

Creating a database connection is a relatively expensive process in any environment. A
straightforward and easy way to boost performance of a data source in WebLogic Server
applications is to set the value of I nitial Capacity equal to the value for Maxi mum Capaci ty
when configuring connection pools in your data source.

Typically, a connection pool starts with a small number of connections. As client demand for
more connections grow, there may not be enough in the pool to satisfy the requests. WebLogic
Server creates additional connections and adds them to the pool until the maximum pool size
is reached.

One way to avoid connection creation delays for clients using the server is to initialize all
connections at server startup, rather than on-demand as clients need them. Set the initial
number of connections equal to the maximum number of connections in the Connection Pool
tab of your data source configuration. See Control JDBC Data Sources in the Oracle WebLogic
Remote Console Online Help. You will still need to determine the optimal value for the Maxi mum
Capaci ty as part of your pre-production performance testing.

Note that if you configure the value of I nitial Capacity to be zero, WebLogic Server does
not get a connection during startup. This provides a big startup performance gain, especially if
several data sources are available. But more importantly, it allows the data source to be
deployed on startup, even if the database is not available or has problems at startup (or it
could be a standby data source that is not even available when the primary service is running).

There are two situations in which a connection is reserved, evenif Initial Capacity is zero:

1. For a multi data source configured for LLR, a connection is reserved on each member data
source to determine if the underlying database is an Oracle Real Application Clusters
(Oracle RAC) database. If it is Oracle RAC, only one of the member data sources must be
available.

2. For an Active GridLink (AGL) data source configured with auto-ONS(that is, with no ONS
host and port pairs provided), a connection is created to get the ONS configuration
information from the database.

See Tuning Data Source Connection Pool Options in Administering JDBC Data Sources for
Oracle WebLogic Server.

Waste Not

Another simple way to boost performance is to avoid wasting resources. Read about situations
in which you can avoid wasting JDBC related resources.

« JNDI lookups are relatively expensive, so caching an object that required a look-up in
client code or application code avoids incurring this performance hit more than once.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 3

ORACLE’

Chapter 10
Use Test Connections on Reserve with Care

e Once client or application code has a connection, maximize the reuse of this connection
rather than closing and reacquiring a new connection. While acquiring and returning an
existing creation is much less expensive than creating a new one, excessive acquisitions
and returns to pools creates contention in the connection pool and degrades application
performance.

« Don't hold connections any longer than is necessary to achieve the work needed. Getting a
connection once, completing all necessary work, and returning it as soon as possible
provides the best balance for overall performance.

Use Test Connections on Reserve with Care

When Test Connections on Reserve is enabled, the server instance checks a database
connection prior to returning the connection to a client. This reduces the risk of passing invalid
connections to clients.

However, it is a fairly expensive operation. Typically, a server instance performs the test by
executing a full-fledged SQL query with each connection prior to returning it. If the SQL query
fails, the connection is destroyed and a new one is created in its place. A new and optional
performance tunable has been provided in WebLogic Server 9.x within this "test connection on
reserve" feature. The new optional performance tunable in 9.x allows WebLogic Server to skip
this SQL-query test within a configured time window of a prior successful client use (default is
10 seconds). When a connection is returned to the pool by a client, the connection is
timestamped by WebLogic Server. WebLogic Server will then skip the SQL-query test if this
particular connection is returned to a client within the time window. Once the time window
expires, WebLogic Server will execute the SQL-query test. This feature can provide significant
performance boosts for busy systems using "test connection on reserve".

Cache Prepared and Callable Statements

When you use a prepared statement or callable statement in an application or EJB, there is
considerable processing overhead for the communication between the application server and
the database server and on the database server itself. To minimize the processing costs,
WebLogic Server can cache prepared and callable statements used in your applications.

When an application or EJB calls any of the statements stored in the cache, WebLogic Server
reuses the statement stored in the cache. Reusing prepared and callable statements reduces
CPU usage on the database server, improving performance for the current statement and
leaving CPU cycles for other tasks. See Increasing Performance with the Statement Cache in
Administering JDBC Data Sources for Oracle WebLogic Server.

Using the statement cache can dramatically increase performance, but you must consider its
limitations before you decide to use it. See Usage Restrictions for the Statement Cache in
Administering JDBC Data Sources for Oracle WebLogic Server.

Database Listener Timeout under Heavy Server Loads

In some situations where WebLogic Server is under heavy loads, the database listener may
timeout and throw an exception while creating a new connection. To workaround this issue,
increase the listener timeout on the database server.

The following example is for an Oracle driver and database:

e The exception thrown is a Resour ceDeadExcept i on and the driver exception was Socket
read tined out.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 3

ORACLE Chapter 10
Disable Wrapping of Data Type Objects

* The workaround is to increase the timeout of the database server using the following:
sgl net.ora: SQLNET. | NBOUND_CONNECT_TI MEQUT=180
listener.ora: | NBOUND CONNECT TIMEQUT |istener name=180

Disable Wrapping of Data Type Objects

By default, data type objects for Array, Blob, Clob, NClob, Ref, SQLXML, and Struct, plus
ParameterMetaData and ResultSetMetaData objects are wrapped with a WebLogic wrapper.
You can disable wrapping of data type objects.

See Using Unwrapped Data Type Objects in Administering JDBC Data Sources for Oracle
WebLogic Server.

Advanced Configurations for Oracle Drivers and Databases

Oracle provides advanced configuration options that can provide improved data source and
driver performance when using Oracle drivers and databases. Options include proxy
authentication, setting credentials on a connection, connection harvesting, and labeling
connections.

Use Best Design Practices

Most performance gains or losses in a database application is not determined by the
application language, but by how the application is designed. The number and location of
clients, size and structure of DBMS tables and indexes, and the number and types of queries
all affect application performance.

See Designing Your Application for Best Performance in Developing JDBC Applications for
Oracle WebLogic Server.

Tuning Performance of Oracle WebLogic Server
G31577-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

Tuning Transactions

Learn tuning guidelines of Oracle WebLogic Server to optimize transaction performance.

Improving Throughput Using XA Transaction Cluster Affinity

XA transaction cluster affinity allows server instances that are participating in a global
transactions to service related requests rather than load-balancing these requests to other
member servers.

When Enabl e Transaction Affinity=true, cluster throughput is increased by:

e Reducing inter-server transaction coordination traffic
e Improving resource utilization, such as reducing JDBC connections
< Simplifying asynchronous processing of transactions

See Configure Clusters in Oracle WebLogic Remote Console Online Help and XA Transaction
Affinity in Administering Clusters for Oracle WebLogic Server.

Logging Last Resource Transaction Optimization

The Logging Last Resource (LLR) transaction optimization through JDBC data sources safely
reduces the overhead of two-phase transactions involving database inserts, updates, and
deletes. Two phase transactions occur when two different resources participate in the same
global transaction (global transactions are often referred to as "XA" or "JTA" transactions).

Consider the following:

* Typical two-phase transactions in JMS applications usually involve both a JMS server and
a database server. The LLR option can as much as double performance compared to XA.

e The safety of the JDBC LLR option contrasts with well known but less-safe XA

optimizations such as "last-agent", "last-participant"”, and "emulate-two-phase-commit" that
are available from other vendors as well as WebLogic.

» JDBC LLR works by storing two-phase transaction records in a database table rather than
in the transaction manager log (the TLOG).

See Logging Last Resource Transaction Optimization in Developing JTA Applications for
Oracle WebLogic Server.

LLR Tuning Guidelines

The following section provides tuning guidelines for LLR:

e Oracle recommends that you read and understand Logging Last Resource Transaction
Optimization in Developing JTA Applications for Oracle WebLogic Server and
Programming Considerations and Limitations for LLR Data Sources in Administering JDBC
Data Sources for Oracle WebLogic Server. LLR has a number of important administration
and design implications.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE

Chapter 11
Read-only, One-Phase Commit Optimizations

JDBC LLR generally improves performance of two-phase transactions that involve SQL
updates, deletes, or inserts.

LLR generally reduces the performance of two-phase transactions where all SQL
operations are read-only (just selects).

JDBC LLR pools provide no performance benefit to WebLogic JDBC stores. WebLogic
JDBC stores are fully transactional but do not use JTA (XA) transactions on their internal
JDBC connections.

Consider using LLR instead of the less safe "last-agent" optimization for connectors, and
the less safe "emulate-two-phase-commit" option for JIDBC connection pools (formerly
known as the "enable two-phase commit" option for pools that use non-XA drivers).

On Oracle databases, heavily used LLR tables may become fragmented over time, which
can lead to unused extents. This is likely due to the highly transient nature of the LLR
table's data. To help avoid the issue, set PCT_FREE to 5 and PCT_USED to 95 on the LLR
table. Also periodically defragment using the ALTER TABLESPACE [t abl espace- nang]
COALESCE command.

Read-only, One-Phase Commit Optimizations

When resource managers, such as the Oracle Database (including Oracle AQ and Oracle
RAC), provide read-only optimizations, Oracle WebLogic can provide a read-only, one-phase
commit optimization that provides a number of benefits — even when enabling multiple
connections of the same XA transactions — such as eliminating XAResour ce. pr epar e network
calls and transaction log writes, both in Oracle WebLogic and in the resource manager.

See Read-only, One-Phase Commit Optimizations in Developing JTA Applications for Oracle
WebLogic Server.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 2

Tuning WebLogic JMS

Get the most out of your applications by implementing the administrative performance tuning
features available with Oracle WebLogic Server JMS.

JMS Performance & Tuning Check List

Review a checklist of items to consider when tuning WebLogic JMS.

Always configure quotas, see Defining Quota.

Verify that default paging settings apply to your needs, see Paging Out Messages To Free
Up Memory. Paging lowers performance but may be required if JVM memory is
insufficient.

Avoid large message backlogs. See Handling Large Message Backlogs.

Create and use custom connection factories with all applications instead of using default
connection factories, including when using MDBs. Default connection factories are not
tunable, while custom connection factories provide many options for performance tuning.

Write applications so that they cache and re-use JMS client resources, including JNDI
contexts and lookups, and JMS connections, sessions, consumers, or producers. These
resources are relatively expensive to create. For information on detecting when caching is
needed, as well as on built-in pooling features, see Cache and Re-use Client Resources.

For asynchronous consumers and MDBs, tune MessagesMaxi mumon the connection
factory. Increasing MessagesMaxi mumcan improve performance, decreasing

MessagesMaxi mumto its minimum value can lower performance, but helps ensure that
messages do not end up waiting for a consumer that's already processing a message. See
Tuning MessageMaximum.

Avoid single threaded processing when possible. Use multiple concurrent producers and
consumers and ensure that enough threads are available to service them.

Tune server-side applications so that they have enough instances. Consider creating
dedicated thread pools for these applications. See Tuning Message-Driven Beans.

For client-side applications with asynchronous consumers, tune client-side thread pools
using Client-side Thread Pools.

Tune persistence as described in Tuning the WebLogic Persistent Store. In particular, it's
normally best for multiple JIMS servers, destinations, and other services to share the same
store so that the store can aggregate concurrent requests into single physical 1/0 requests,
and to reduce the chance that a JTA transaction spans more than one store. Multiple
stores should only be considered once it's been established that the a single store is not
scaling to handle the current load.

If you have large messages, see Tuning for Large Messages.

Prevent unnecessary message routing in a cluster by carefully configuring connection
factory targets. Messages potentially route through two servers, as they flow from a client,
through the client's connection host, and then on to a final destination. For server-side
applications, target connection factories to the cluster. For client-side applications that work
with a distributed destination, target connection factories only to servers that host the

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 23

ORACLE

Chapter 12
Handling Large Message Backlogs

distributed destinations members. For client-side applications that work with a singleton
destination, target the connection factory to the same server that hosts the destination.

If JTA transactions include both JMS and JDBC operations, consider enabling the JDBC
LLR optimization. LLR is a commonly used safe "ACID" optimization that can lead to
significant performance improvements, with some drawbacks. See Tuning Transactions.

If you are using Java clients, avoid thin Java clients except when a small jar size is more
important than performance. Thin clients use the slower IIOP protocol even when T3 is
specified so use a full java client instead. See Developing Standalone Clients for Oracle
WebLogic Server.

Tune JMS Store-and-Forward according to Tuning Webl ogic JMS Store-and-Forward.

Tune a WebLogic Messaging Bridge according Tuning Webl ogic Message Bridge.

For asynchronous message sends, see Using JMS 2.0 Asynchronous Message Sends
(preferred), or if IMS 2.0 is not an option, and you are using non-persistent non-
transactional remote producer clients, then consider enabling one-way calls. See Using
One-Way Message Sends.

Consider using JMS distributed queues. See Using Distributed Queues in Developing JIMS
Applications for Oracle WebLogic Server.

If you are already using distributed queues, see Tuning Distributed Queues.

Consider using advanced distributed topic features (PDTs). See Developing Advanced
Pub/Sub Applications in Developing JMS Applications for Oracle WebLogic Server.

If your applications use Topics, see Tuning Topics.

Avoid configuring sorted destinations, including priority sorted destinations. FIFO or LIFO
destinations are the most efficient. Destination sorting can be expensive when there are
large message backlogs, even a backlog of a few hundred messages can lower
performance.

Use careful selector design. See Filtering Messages in Developing JMS Applications for
Oracle WebLogic Server.

Run applications on the same WebLogic Servers that are also hosting destinations. This
eliminates networking and some or all marshalling overhead, and can heavily reduce
network and CPU usage. It also helps ensure that transactions are local to a single server.
This is one of the major advantages of using an application server's embedded messaging.

Handling Large Message Backlogs

When message senders inject messages faster than consumers, messages accumulate into a
message backlog.

Large backlogs can be problematic for a number of reasons, for example:

Indicates consumers may not be capable of handling the incoming message load, are
failing, or are not properly load balanced across a distributed queue.

Can lead to out-of-memaory on the server, which in turn prevents the server from doing any
work.

Can lead to high garbage collection (GC) overhead. A JVM's GC overhead is partially
proportional to the number of live objects in the JVM.

There are two areas to investigate in order to avoid or reduce message backlogs:

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 23

ORACLE

Chapter 12
Handling Large Message Backlogs

Improving Message Processing Performance

One area for investigation is to improve overall message processing performance. Here are
some suggestions:

Follow the JMS tuning recommendations as described in JMS Performance & Tuning
Check List.

Check for programming errors in newly developed applications. In particular, ensure that
non-transactional consumers are acknowledging messages, that transactional consumers
are committing transactions, that plain j akart a. j ns applications called

jakarta.jnms. Connection.start(), and that transaction timeouts are tuned to reflect the
needs of your particular application. Here are some symptoms of programming errors:
consumers are not receiving any messages (make sure they called start ()), high
"pending" counts for queues, already processed persistent messages re-appearing after a
shutdown and restart, and already processed transactional messages re-appearing after a
delay (the default JTA timeout is 30 seconds, default transacted session timeout is one
hour).

Check WebLogic statistics for queues that are not being serviced by consumers. If you're
having a problem with distributed queues, see Tuning Distributed Queues.

Check WebLogic statistics for topics with high pending counts. This usually indicates that
there are topic subscriptions that are not being serviced. There may be a slow or
unresponsive consumer client that's responsible for processing the messages, or it's
possible that a durable subscription may no longer be needed and should be deleted, or
the messages may be accumulating due to delayed distributed topic forwarding. You can
check statistics for individual durable subscriptions on the WebLogic Remote Console. A
durable subscription with a large backlog may have been created by an application but
never deleted. Unserviced durable subscriptions continue to accumulate topic messages
until they are either administratively destroyed, or unsubscribed by a standard JMS client.

Understand replicated distributed topic behavior when not all members are active. In
replicated distributed topics, each produced message to a particular topic member is
forwarded to each remote topic member. If a remote topic member is unavailable then the
local topic member will store each produced message for later forwarding. Therefore, if a
topic member is unavailable for a long period of time, then large backlogs can develop on
the active members. In some applications, this backlog can be addressed by setting
expiration times on the messages.

In certain applications it may be fine to automatically delete old unprocessed messages.

For transactional MDBs, consider using MDB transaction batching as this can yield a 5 fold
improvement in some use cases.

Leverage distributed queues and add more JVMs to the cluster (in order to add more
distributed queue member instances). For example, split a 200,000 message backlog
across 4 JVMs at 50,000 messages per JVM, instead of 100,000 messages per JVM.

For client applications, use asynchronous consumers instead of synchronous consumers
when possible. Asynchronous consumers can have a significantly lower network overhead,
lower latency, and do not block a thread while waiting for a message.

For synchronous consumer client applications, consider: enabling pr ef et ch, using
CLI ENT_ACKNOWLEDGE to enable acknowledging multiple consumed messages at a time,
and using DUPS_OK_ACKNOALEDGE instead of AUTO ACKNONLEDGE.

For asynchronous consumer client applications, consider using DUPS_OK_ACKNOW.EDGE
instead of AUTO_ACKNOW.EDGE.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 23

ORACLE

Chapter 12
Cache and Re-use Client Resources

Leverage batching. For example, include multiple messages in each transaction, or send
one larger message instead of many smaller messages.

For non-durable subscriber client-side applications handling missing ("dropped")
messages, investigate MULTI CAST_NO_ACKNOW.EDGE. This mode broadcasts messages
concurrently to subscribers over UDP multicast.

Controlling Message Production

Another area for investigation is to slow down or even stop message production. Here are
some suggestions:

Set lower quotas. See Defining Quota. For topics, additionally consider tuning a
subscription limit. See Subscription Message Limits.

Use fewer producer threads.

Tune a sender blocking timeout that occurs during a quota condition. The timeout is
tunable on connection factory.

Tune producer flow control, which automatically slows down producer calls under threshold
conditions. See Controlling the Flow of Messages on JMS Servers and Destinations.

Consider modifying the application to implement flow-control. For example, some
applications do not allow producers to inject more messages until a consumer has
successfully processed the previous batch of produced messages (a windowing protocol).
Other applications might implement a request/reply algorithm where a new request isn't
submitted until the previous reply is received (essentially a windowing protocol with a
window size of 1). In some cases, JMS tuning is not required as the synchronous flow from
the RMI/EJB/Servlet is adequate.

Drawbacks to Controlling Message Production

Slowing down or stopping message processing has at least two potential drawbacks:

It puts back-pressure on the down-stream flow that is calling the producer. Sometimes the
down-stream flow cannot handle this back-pressure, and a hard-to-handle backlog
develops behind the producer. The location of the backlog depends on what's calling the
producer. For example, if the producer is being called by a servlet, the backlog might
manifest as packets accumulating on the incoming network socket or network card.

Blocking calls on server threads can lead to thread-starvation, too many active threads, or
even dead-locks. Usually the key to address this problem is to ensure that the producer
threads are running in a size limited dedicated thread pool, as this ensures that the
blocking threads do not interfere with activity in other thread pools. For example, if an EJB
or servlet is calling a "send" that might block for a significant time: configure a custom work
manager with a max t hr eads constraint, and set the di spat ch- pol i cy of the EJB/servlet to
reference this work-manager.

Cache and Re-use Client Resources

JMS client resources are relatively expensive to create in comparison with sending and
receiving messages. These resources should be cached or pooled for re-use rather than
recreating them with each message. They include contexts, destinations, connection factories,
connections, sessions, consumers, or producers.

In addition, it is important for applications to close contexts, connections, sessions, consumers,
or producers once they are completely done with these resources. Failing to close unused
resources leads to a memory leak, which lowers overall JVM performance and eventually may

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 23

ORACLE

Chapter 12
Tuning Distributed Queues

cause the JVM to fail with an out-of-memory error. Be aware that JNDI contexts have cl ose()
method, and that closing a JMS connection automatically efficiently closes all sessions,
consumers, and producers created using the connection.

For server-side applications, WebLogic automatically wraps and pools JMS resources that are
accessed using a resource reference. See Enhanced Support for Using WebLogic JMS with
EJBs and Servlets in Developing JMS Applications for Oracle WebLogic Server.

e To check for heavy JMS resource allocation or leaks, you can monitor mbean stats and/or
use your particular JVM's built in facilities. You can monitor mbean stats using the console,
WLST, or java code.

e Check JVM heap statistics for memory leaks or unexpectedly high allocation counts.

e Similarly, check WebLogic statistics for memory leaks or unexpectedly high allocation
counts.

Tuning Distributed Queues

Each distributed queue member is individually advertised in JNDI as j ns- ser ver -

nane@li stri but ed- desti nati on-j ndi - nane. If produced messages are failing to load balance
evenly across all distributed queue members, you may wish to change the configuration of
your producer connection factories to disable server affinity (enabled by default) or set
Producer Load Balancing Policy to Per - JVM

Once created, a JMS consumer remains pinned to a particular queue member. This can lead
to situations where consumers are not evenly load balanced across all distributed queue
members, particularly if new members become available after all consumers have been
initialized. If consumers fail to load balance evenly across all distributed queue members, the
best option is to use an MDB that's targeted to a cluster designed to process the messages.
WebLogic MDBs automatically ensure that all distributed queue members are serviced. If
MDBs are not an option, here are some suggestions to improve consumer load balancing:

« Ensure that your application is creating enough consumers and the consumer's connection
factory is tuned using the available load balancing options. In particular, consider disabling
the default server affinity setting and consider setting the Producer Load Balancing Policy
to Per-JVM

* Change applications to periodically close and recreate consumers. This forces consumers
to re-load balance.

e Consume from individual queue members instead of from the distributed queues logical
name.

e Configure the distributed queue to enable forwarding. Distributed queue forwarding
automatically internally forwards messages that have been idled on a member destination
without consumers to a member that has consumers. This approach may not be practical
for high message load applications.

@® Note

Queue forwarding is not compatible with the WebLogic JMS Unit-of-Order feature,
as it can cause messages to be delivered out of order.

See Using Distributed Destinations in Developing JMS Applications for Oracle WebLogic
Server and Configuring Advanced JMS System Resources in Administering JMS
Resources for Oracle WebLogic Server.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 23

ORACLE

Chapter 12
Tuning Topics

Tuning Topics

Review information on how to tune WebLogic Topics.

You may want to convert singleton topics to distributed topics.

Oracle highly recommends leveraging MDBs to process Topic messages, especially when
working with Distributed Topics. MDBs automate the creation and servicing of multiple
subscriptions and also provide high scalability options to automatically distribute the
messages for a single subscription across multiple Distributed Topic members.

There is a Shar abl e subscription extension that allows messages on a single topic
subscription to be processed in parallel by multiple subscribers on multiple JVMs.
WebLogic MDBs leverage this feature when they are not in Conpati bi |l i ty mode.

If the application can tolerate the deletion of old messages without having them be
processed by a consumer, consider using message expirations or subscription limits. See
Subscription Message Limits.

If produced messages are failing to load balance evenly across the members of a
Distributed Topic, you may need to change the configuration of your producer connection
factories to disable server affinity (enabled by default) or set Producer Load Balancing
Policy to Per - JVM

Before using any of these previously mentioned advanced features, Oracle recommends
fully reviewing the following related documentation:

— Developing Advanced Pub/Sub Applications in Administering JMS Resources for
Oracle WebLogic Server

— Advanced Programming with Distributed Destinations Using the JMS Destination
Availability Helper API in Administering JMS Resources for Oracle WebLogic Server

Tuning Non-durable Topic Publishers

Since WebLogic Server 9.0, a hon-durable topic message publish request may block until the
message is pushed to all consumers that are currently ready to process the message. This
may cause non-durable topic publishers with large numbers of consumers to take longer to
publish a message than expected. To revert to a publish that does not wait for consumers and
waits only until it's confirmed the message arrived on a JMS server, use the following property:

- Dnebl ogi ¢. messagi ng. Di sabl eTopi cMul ti Sender=true

Tuning for Large Messages

Learn how to improve JMS performance when handling large messages.

Tuning MessageMaximum

WebLogic JMS pipelines messages that are delivered to asynchronous consumers (otherwise
known as message listeners) or prefetch-enabled synchronous consumers. This action aids
performance because messages are aggregated when they are internally pushed from the
server to the client. The messages backlog (the size of the pipeline) between the JMS server
and the client is tunable by configuring the MessagesMaxi mum setting on the connection factory.
See Asynchronous Message Pipeline in Developing JMS Applications for Oracle WebLogic
Server.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 23

ORACLE

Chapter 12
Tuning for Large Messages

In some circumstances, tuning the MessagesMaxi mumparameter may improve performance
dramatically, such as when the JMS application defers acknowledges or commits. In this case,
Oracle suggests setting the MessagesMaxi mumvalue to:

2 * (ack or commit interval) + 1

For example, if the JMS application acknowledges 50 messages at a time, set the
MessagesMaxi mumvalue to 101.

Tuning MessageMaximum Limitations

Tuning the MessagesMaxi numvalue too high can cause:

* Increased memory usage on the client.

* Affinity to an existing client as its pipeline fills with messages. For example: If
MessageshMaxi numhas a value of 10,000,000, the first consumer client to connect will get all
messages that have already arrived at the destination. This condition leaves other
consumers without any messages and creates an unnecessary backlog of messages in
the first consumer that may cause the system to run out of memory.

* Packet is too large exceptions and stalled consumers. If the aggregate size of the
messages pushed to a consumer is larger than the current protocol's maximum message
size (default size is 10 MB and is configured on a per WebLogic Server instance basis
using the console and on a per client basis using the - Daebl ogi c. MaxMessageSi ze
command line property), the message delivery fails.

Setting Maximum Message Size for Network Protocols

You may need to configure WebLogic clients in addition to the WebLogic Server instances,
when sending and receiving large messages.

For most protocols, including T3, WLS limits the size of a network call to 10MB by default. If
individual JIMS message sizes exceed this limit, or if a set of IMS messages that is batched
into the same network call exceeds this limit, this can lead to either "packet too large
exceptions" and/or stalled consumers. Asynchronous consumers can cause multiple IMS
messages to batch into the same network call, to control this batch size, see Tuning
MessageMaximum Limitations.

To set the maximum message size on a server instance, tune the maximum message size for
each supported protocol on a per protocol basis for each involved default channel or custom
channel. In this context the word 'message’ refers to all network calls over the given protocol,
not just JMS calls.

To set the maximum message size on a client, use the following command line property:

- Dnebl ogi ¢. MaxMessageSi ze

@® Note

This setting applies to all WebLogic Server network packets delivered to the client, not
just JMS related packets.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 23

ORACLE Chapter 12
Tuning for Large Messages

Threshold Compression for Remote Producers

A message compression threshold can be set programmatically using a JMS API extension to
the W.MessagePr oducer interface, or administratively by either specifying a Default
Compression Threshold value on a connection factory or on a JMS SAF remote context.
Compressed messages may actually inadvertently affect destination quotas since some
message types actually grow larger when compressed.

Once configured, message compression is triggered on producers for client sends, on
connection factories for message receives and message browsing, or through SAF forwarding.
Messages are compressed using GZIP. Compression only occurs when message producers
and consumers are located on separate server instances where messages must cross a JVM
boundary, typically across a network connection when WebLogic domains reside on different
machines. Decompression automatically occurs on the client side and only when the message
content is accessed, except for the following situations:

* Using message selectors on compressed XML messages can cause decompression, since
the message body must be accessed in order to filter them. For more information on
defining XML message selectors, see Filtering Messages in Developing JMS Applications
for Oracle WebLogic Server.

e Interoperating with earlier versions of WebLogic Server can cause decompression. For
example, when using the Messaging Bridge, messages are decompressed when sent from
the current release of WebLogic Server to a receiving side that is an earlier version of
WebLogic Server.

On the server side, messages always remains compressed, even when they are written to
disk.

Store Compression

WebLogic Server provides the ability to configure message compression for JMS Store 1/0
operations.

By selecting an appropriate message body compression option, JMS store /O performance
may improve for:

» Persistent messages that are read from or written to disk.

* Persistent and non-persistent messages are paged in or paged out when JMS paging is
enabled.

For general tuning information on JMS message compression, see Threshold Compression for
Remote Producers.

The following sections provide information on how to configure message compression.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 23

ORACLE’

Selecting a Message Compression Option

Chapter 12
Tuning for Large Messages

This section provides information on the types of message compression available for use when

message body compression is enabled.

@® Note

The performance of each compression option is dependent on the operating
environment, data type, and data size. Oracle recommends users test their
environments to determine the most appropriate compression option.

Table 12-1 Message Body Compression Options

Compression Type

Description

&I P DEFAULT_COVPRESSI ON

Use &ZI P_DEFAULT_COWPRESSI ON to enable
message compression using the JDK GZIP API
with DEFAULT_COVPRESSI ON level. See java.util.zip

package.

&I P BEST_COMPRESSI ON

Use &ZI P_BEST_COWPRESSI ON to enable message
compression using the JDK GZIP API with
BEST_COMWPRESSI ON level. See java.util.zip

package.

&I P BEST_SPEED

Use ZI P_BEST_SPEED to enable message
compression using the JDK GZIP API with
BEST_SPEED level. See java.util.zip package.

LZF

Use LZF to enable message compression using
Open Source LZF. See https://github.com/ning/
compress.

Message Compression for JMS Servers

To configure message body compression for JMS servers:

1. If you have not done so, create a JMS Server, see Create a JMS Server in the Oracle

WebLogic Remote Console Online Help.

2. Use the instructions to Configure Resources for JIMS System Modules in the Oracle
WebLogic Remote Console Online Help. Update the following Advanced JMS server

attributes for your environment:

a. Optionally, select Store Message Compression Enabled to enable the JMS store to
perform message body compression. See StoreMessageCompressionEnabled in
MBean Reference for Oracle WebLogic Server.

b. Optionally, select Paging Message Compression Enabled to enable the JMS paging
store to perform message body compression on persistent and non-persistent
messages. See PagingMessageCompressionEnabled in MBean Reference for Oracle

WebLogic Server.

c. In Message Compression Options, specify the type of message compression used.
See MessageCompressionOptions in MBean Reference for Oracle WebLogic Server.

Tuning Performance of Oracle WebLogic Server
G31577-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 23

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/zip/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/zip/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/zip/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/zip/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/zip/package-summary.html
https://github.com/ning/compress
https://github.com/ning/compress

ORACLE

Chapter 12
Tuning for Large Messages

Message Compression for Store-and-Forward Sending Agents

To configure message body compression for SAF Sending Agents:

1. If you have not done so, create a SAF Sending Agent, see Create a Store-and-Forward
Agent in the Oracle WebLogic Remote Console Online Help.

2. . Update the following Advanced Sending Agent attributes for your environment:

a. Optionally, select Store Message Compression Enabled to enable the JMS store to
perform message body compression. See StoreMessageCompressionEnabled in
MBean Reference for Oracle WebLogic Server.

b. Optionally, select Paging Message Compression Enabled to enable the JMS paging
store to perform message body compression on persistent and non-persistent
messages. See PagingMessageCompressionEnabled in MBean Reference for Oracle
WebLogic Server.

c. In Message Compression Options, specify the type of message compression used.
See MessageCompressionOptions in MBean Reference for Oracle WebLogic Server.

Paging Out Messages To Free Up Memory

With the message paging feature, JMS servers automatically attempt to free up virtual memory
during peak message load periods. This feature can greatly benefit applications with large
message spaces. Message paging is always enabled on JMS servers, and so a message
paging directory is automatically created without having to configure one. You can, however,
specify a directory using the Paging Directory option, then paged-out messages are written to
files in this directory.

In addition to the paging directory, a JMS server uses either a file store or a JDBC store for
persistent message storage. The file store can be user-defined or the server's default store.
Paged JDBC store persistent messages are copied to both the JDBC store as well as the JMS
Server's paging directory. Paged file store persistent messages that are small are copied to
both the file store as well as the JMS Server's paging directory. Paged larger file store
messages are not copied into the paging directory. See Best Practices When Using Persistent
Stores.

However, a paged-out message does not free all of the memory that it consumes, since the
message header with the exception of any user properties, which are paged out along with the
message body, remains in memory for use with searching, sorting, and filtering. Queuing
applications that use selectors to select paged messages may show severely degraded
performance as the paged out messages must be paged back in. This does not apply to topics
or to applications that select based only on message header fields (such as Correl ati onl D). A
good rule of thumb is to conservatively assume that messages each use 512 bytes of JVM
memory even when paged out.

Specifying a Message Paging Directory

If a paging directory is not specified, then paged-out message bodies are written to the default
\'t np directory inside the servername subdirectory of a domain's root directory. For example, if
no directory name is specified for the default paging directory, it defaults to:

ORACLE_HOVE
\'user _proj ect s\ donai ns\ domai nnane\ server s\ servernane\t np

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 23

ORACLE

Chapter 12
Defining Quota

where donai nnane is the root directory of your domain, typically

c:\Oracl e\ M ddl ewar e\ Oracl e_Home\ user _proj ect s\ domai ns\ domai nname, which is parallel
to the directory in which WebLogic Server program files are stored, typically

c:\Oracl e\ M ddl ewar e\ Oracl e_Home\ wl server.

Tuning the Message Buffer Size Option

The Message Buffer Size option specifies the amount of memory that will be used to store
message bodies in memory before they are paged out to disk. The default value of Message
Buffer Size is approximately one-third of the maximum heap size for the JVM, or a maximum of
512 megabytes. The larger this parameter is set, the more memory JMS will consume when
many messages are waiting on queues or topics. Once this threshold is crossed, JMS may
write message bodies to the directory specified by the Paging Directory option in an effort to
reduce memory usage below this threshold.

It is important to remember that this parameter is not a quota. If the number of messages on
the server passes the threshold, the server writes the messages to disk and evicts the
messages from memory as fast as it can to reduce memory usage, but it will not stop
accepting new messages. It is still possible to run out of memory if messages are arriving
faster than they can be paged out. Users with high messaging loads who wish to support the
highest possible availability should consider setting a quota, or setting a threshold and
enabling flow control to reduce memory usage on the server.

Defining Quota

It is highly recommended to always configure message count quotas. Quotas help prevent
large message backlogs from causing out-of-memory errors, and WebLogic JMS does not set
quotas by default.

There are many options for setting quotas, but in most cases it is enough to simply set a
Messages Maxi mumquota on each JMS Server rather than using destination level quotas. Keep
in mind that each current JMS message consumes JVM memory even when the message has
been paged out, because paging pages out only the message bodies but not message
headers. A good rule of thumb for queues is to assume that each current IMS message
consumes 512 bytes of memory. A good rule of thumb for topics is to assume that each current
JMS message consumes 256 bytes of memory plus an additional 256 bytes of memory for
each subscriber that hasn't acknowledged the message yet. For example, if there are 3
subscribers on a topic, then a single published message that hasn't been processed by any of
the subscribers consumes 256 + 256*3 = 1024 bytes even when the message is paged out.
Although message header memory usage is typically significantly less than these rules of
thumb indicate, it is a best practice to make conservative estimates on memory utilization.

In prior releases, there were multiple levels of quotas: destinations had their own quotas and
would also have to compete for quota within a JMS server. In this release, there is only one
level of quota: destinations can have their own private quota or they can compete with other
destinations using a shared quota.

In addition, a destination that defines its own quota no longer also shares space in the JMS
server's quota. Although JMS servers still allow the direct configuration of message and byte
guotas, these options are only used to provide quota for destinations that do not refer to a
guota resource.

Quota Resources

A quota is a named configurable JMS module resource. It defines a maximum number of
messages and bytes, and is then associated with one or more destinations and is responsible

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 23

ORACLE

Chapter 12
Defining Quota

for enforcing the defined maximums. Multiple destinations referring to the same quota share
available quota according to the sharing policy for that quota resource.

Quota resources include the following configuration parameters:

Table 12-2 Quota Parameters
]

Attribute Description
Bytes Maximum and The Messages Maximum/Bytes Maximum parameters for a quota
Messages Maximum resource defines the maximum number of messages and/or bytes

allowed for that quota resource. No consideration is given to messages
that are pending; that is, messages that are in-flight, delayed, or
otherwise inhibited from delivery still count against the message and/or
bytes quota.

Quota Sharing The Shared parameter for a quota resource defines whether multiple
destinations referring to the same quota resource compete for resources
with each other.

Quota Policy The Policy parameter defines how individual clients compete for quota
when no quota is available. It affects the order in which send requests
are unblocked when the Send Timeout feature is enabled on the
connection factory, as described in Tuning for Large Messages.

For more information about quota configuration parameters, see Quot aBean in the MBean
Reference for Oracle WebLogic Server.

Destination-Level Quota

Destinations no longer define byte and messages maximums for quota, but can use a quota
resource that defines these values, along with quota policies on sharing and competition.

The Quota parameter of a destination defines which quota resource is used to enforce quota
for the destination. This value is dynamic, so it can be changed at any time. However, if there
are unsatisfied requests for quota when the quota resource is changed, then those requests

will fail with a j akarta. j ms. Resour ceAl | ocati onExcepti on.

@® Note

Outstanding requests for quota will fail at such time that the quota resource is
changed. This does not mean changes to the message and byte attributes for the
quota resource, but when a destination switches to a different quota.

JMS Server-Level Quota

Tuning Performance of Oracle WebLogic Server

G31577-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

In some cases, there will be destinations that do not configure quotas. JMS Server quotas
allow JMS servers to limit the resources used by these quota-less destinations. All destinations
that do not explicitly set a value for the Quota attribute share the quota of the JIMS server
where they are deployed. The behavior is exactly the same as if there were a special Quota
resource defined for each JMS server with the Shared parameter enabled.

The interfaces for the JMS server quota are unchanged from prior releases. The JMS server
guota is entirely controlled using methods on the JMSServerMBean. The quota policy for the
JMS server quota is set by the Blocking Send Policy parameter on a JMS server. It behaves
just like the Policy setting of any other quota.

October 8, 2025
Page 12 of 23

ORACLE Chapter 12
Subscription Message Limits

Subscription Message Limits

In Oracle WebLogic JMS 12.2.1.3.0 and later, you can help prevent overloaded subscriptions
from using all the available resources by configuring a message limit for a topic or a template.
To configure a message limit, set the MessagesLi i t Over ri de attribute on a destination
template, a standalone topic, or a uniform distributed topic.

When a subscription reaches its specified limit and receives a new message, the head
message of the subscription is deleted to provide space for the new message. For a default
FIFO subscription, the head message is the oldest. Messages are deleted only from
subscriptions that have reached their limit. If a message exists on multiple subscriptions and is
deleted on one subscription, then the message can still be received by the other subscriptions.

A subscription limit differs from a quota in multiple ways. A topic that has reached its quota
disallows new messages until existing messages have been processed or expired; on the
other hand, a subscription that has reached its subscription limit allows the new message and
makes room for it by deleting current messages. Also, a topic that has reached its quota affects
all subscriptions on the topic, as this disallows new messages from being added to any
subscription. By contrast, a subscription limit only affects subscriptions that have reached their
limits.

@® Note

e Subscription limits are not substitutes for quotas. Oracle always recommends
configuring quotas, even when a subscription limit is also configured.

e Regardless of subscription limits, subscription messages are not deleted if they
are participating in a pending transaction, are part of a Unit-of-Work that is still
waiting to accumulate all of its messages, or have already been passed to a
consumer and are awaiting acknowledgement.

e If a topic has not reached its quota, and all messages are immune from deletion,
then a new message is accepted regardless of whether this causes a subscription
to exceed its limit.

To configure a subscription limit, set the MessagesLimitOverride attribute on a destination
template, stand-alone topic, or uniform distributed topic. You can see whether a topic’s runtime
MBean has a subscription limit configured via its SubscriptionMessagesLimit attribute (“-1”
indicates that no limit has been configured). You can monitor the number of messages that
have been deleted due to a subscription limit on a durable subscription by checking its
SubscriptionLimitDeletedCount attribute.

Controlling the Flow of Messages on JMS Servers and
Destinations

With the Flow Control feature, you can direct a JMS server or destination to slow down
message producers when it determines that it is becoming overloaded.

See Compressing Messages.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 23

ORACLE

Chapter 12
Controlling the Flow of Messages on JMS Servers and Destinations

How Flow Control Works

Specifically, when either a JMS server or it's destinations exceeds its specified byte or
message threshold, it becomes armed and instructs producers to limit their message flow
(messages per second).

Producers will limit their production rate based on a set of flow control attributes configured for
producers via the JMS connection factory. Starting at a specified f | ow maxi mumnumber of
messages, a producer evaluates whether the server/destination is still armed at prescribed
intervals (for example, every 10 seconds for 60 seconds). If at each interval, the server/
destination is still armed, then the producer continues to move its rate down to its prescribed
flow minimum amount.

As producers slow themselves down, the threshold condition gradually corrects itself until the
server/destination is unarmed. At this point, a producer is allowed to increase its production
rate, but not necessarily to the maximum possible rate. In fact, its message flow continues to
be controlled (even though the server/destination is no longer armed) until it reaches its
prescribed flow maximum, at which point it is no longer flow controlled.

Configuring Flow Control

Producers receive a set of flow control attributes from their session, which receives the
attributes from the connection, and which receives the attributes from the connection factory.
These attributes allow the producer to adjust its message flow.

Specifically, the producer receives attributes that limit its flow within a minimum and maximum
range. As conditions worsen, the producer moves toward the minimum; as conditions improve;
the producer moves toward the maximum. Movement toward the minimum and maximum are

defined by two additional attributes that specify the rate of movement toward the minimum and
maximum. Also, the need for movement toward the minimum and maximum is evaluated at a

configured interval.

Flow Control options are described in following table:

Table 12-3 Flow Control Parameters

. __|
Attribute Description

Flow Control Determines whether a producer can be flow controlled by the JMS server.
Enabled

Flow The maximum number of messages per second for a producer that is experiencing a
Maximum threshold condition.

If a producer is not currently limiting its flow when a threshold condition is reached, the
initial flow limit for that producer is set to Flow Maximum. If a producer is already limiting
its flow when a threshold condition is reached (the flow limit is less than Flow Maximum),
then the producer will continue at its current flow limit until the next time the flow is
evaluated.

Once a threshold condition has subsided, the producer is not permitted to ignore its flow
limit. If its flow limit is less than the Flow Maximum, then the producer must gradually
increase its flow to the Flow Maximum each time the flow is evaluated. When the
producer finally reaches the Flow Maximum, it can then ignore its flow limit and send
without limiting its flow.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 23

ORACLE Chapter 12
Tuning Applications Using Unit-of-Order

Table 12-3 (Cont.) Flow Control Parameters

. __|
Attribute Description

Flow Minimum The minimum number of messages per second for a producer that is experiencing a
threshold condition. This is the lower boundary of a producer's flow limit. That is,
WebLogic JMS will not further slow down a producer whose message flow limit is at its
Flow Minimum.

Flow Interval An adjustment period of time, defined in seconds, when a producer adjusts its flow from
the Flow Maximum number of messages to the Flow Minimum amount, or vice versa.

Flow Steps The number of steps used when a producer is adjusting its flow from the Flow Minimum
amount of messages to the Flow Maximum amount, or vice versa. Specifically, the Flow
Interval adjustment period is divided into the number of Flow Steps (for example, 60
seconds divided by 6 steps is 10 seconds per step).

Also, the movement (that is, the rate of adjustment) is calculated by dividing the
difference between the Flow Maximum and the Flow Minimum into steps. At each Flow
Step, the flow is adjusted upward or downward, as necessary, based on the current
conditions, as follows:

The downward movement (the decay) is geometric over the specified period of time
(Flow Interval) and according to the specified number of Flow Steps. (For example, 100,
50, 25, 12.5).

The movement upward is linear. The difference is simply divided by the number of Flow
Steps.

Flow Control Thresholds

The attributes used for configuring bytes/messages thresholds are defined as part of the IMS
server and/or its destination.Table 12-4 defines how the upper and lower thresholds start and
stop flow control on a JMS server and/or JMS destination.

Table 12-4 Flow Control Threshold Parameters

Attribute Description

Bytes/Messages When the number of bytes/messages exceeds this threshold, the JMS server/

Threshold High destination becomes armed and instructs producers to limit their message
flow.

Bytes/Messages When the number of bytes/messages falls below this threshold, the IMS

Threshold Low server/destination becomes unarmed and instructs producers to begin

increasing their message flow.

Flow control is still in effect for producers that are below their message flow
maximum. Producers can move their rate upward until they reach their flow
maximum, at which point they are no longer flow controlled.

Tuning Applications Using Unit-of-Order

Message Unit-of-Order is a WebLogic Server value-added feature that enables a stand-alone
message producer, or a group of producers acting as one, to group messages into a single unit
with respect to the processing order (a sub-ordering). This single unit is called a Unit-of-Order
(or UOO) and requires that all messages from that unit be processed sequentially in the order
they were created.

UOO replaces the following complex design patterns:

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 23

ORACLE Chapter 12
Using JMS 2.0 Asynchronous Message Sends

* A dedicated consumer with a unique selector per each sub-ordering
e A new destination per sub-ordering, one consumer per destination.

See Using Message Unit-of-Order in Developing JMS Applications for Oracle WebLogic
Server.

Best Practices

The following sections provide best practice information when using UOO:

< ldeal for applications that have strict message ordering requirements. UOO simplifies
administration and application design, and in most applications improves performance.

e Use MDB batching to:
— Speed-up processing of the messages within a single sub-ordering.
— Consume multiple messages at a time under the same transaction.

See Tuning Message-Driven Beans.

* You can configure a default UOO for the destination. Only one consumer on the
destination processes messages for the default UOO at a time.

Using UOO and Distributed Destinations

To ensure strict ordering when using distributed destinations, each different UOOQ is pinned to a
specific physical destination instance. There are two options for automatically determining the
correct physical destination for a given UOO:

* Hashing — Is generally faster and the UOO setting. Hashing works by using a hash function
on the UOO name to determine the physical destination. It has the following drawbacks:

— It doesn't correctly handle the administrative deleting or adding physical destinations to
a distributed destination.

— If a UOO hashes to an unavailable destination, the message send fails.

« Path Service — Is a single server UOO directory service that maps the physical destination
for each UOO. The Path Service is generally slower than hashing if there are many
differently named UOO created per second. In this situation, each new UOO name
implicitly forces a check of the path service before sending the message. If the number of
UOOs created per second is limited, Path Service performance is not an issue as the UOO
paths are cached throughout the cluster.

Using JMS 2.0 Asynchronous Message Sends

WebLogic Server 12.2.1.0 introduced a standard way to do asynchronous sends, that is
flexible, powerful, and supported by the standard JMS 2.0 asynchronous send method.

The JMS 2.0 asynchronous send feature allows messages to be sent asynchronously without
waiting for a JMS Server to accept them. This feature may yield a substantial performance
gain, even a 'multi-x' gain, for applications that are bottlenecked on message send latency,
especially for batches of small non-persistent messages.

Asynchronous send calls each get an asynchronous reply from the server indicating the
message has been successfully sent with the same degree of confidence as if a synchronous
send had been performed. The JMS provider notifies the application by invoking the callback
method onConpl et i on, on an application-specified Conpl et i onLi st ener object. For a given

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 16 of 23

ORACLE Chapter 12
Using JMS 2.0 Asynchronous Message Sends

message producer, callbacks to the Conpl et i onLi st ener will be performed, single threaded
per session, in the same order as the corresponding calls to the asynchronous send method.

@® Note

Oracle recommends using JMS 2.0 asynchronous sends instead of the proprietary
WebLogic one-way message sends as described in Using One-Way Message Sends.

The JMS 2.0 asynchronous send has a performance similar to that of the One-Way Sends.

The JMS 2.0 asynchronous send:
e Can handle both non-persistent and persistent messages.
e Can handle Unit of Order messages.

» Does not get degraded performance when a client's connection host is connected to a
different server in the cluster, than the producer's target destination.

* Provides best effort flow control (block) internally, without a need for special tuning when
the amount of outstanding, asynchronously sent data without a completion-event gets too
high.

See JMS 2.0 javadoc for send() calls with CompletionListeners.

See What's New in JMS 2.0, Part Two—New Messaging Features for example usage.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 17 of 23

https://docs.oracle.com/javaee/7/api/javax/jms/CompletionListener.html
https://www.oracle.com/technetwork/articles/java/jms2messaging-1954190.html

ORACLE Chapter 12
Using One-Way Message Sends

@® Note

» To get asynchronous send performance gains, it is important to cache or pool
message producers between asynchronous send calls. The following calls will
block until all outstanding asynchronous send call Conpl et i onLi st ener objects
have been processed.

— Connection. cl ose()

— Session. close()

— MessageProducer. cl ose()
— Session.comit()

— Session.rol | back()

* Animplementation of the Conpl et i onLi st ener interface must not make calls on
their owning session unless no other threads are using the session. This is
because the behavior of multi-threaded JMS session access is undefined and
unpredictable (as per the JMS specification).

* Asrequired by the JMS specification, asynchronous send calls fail within standard
Jakarta EE server applications. If it is necessary to bypass this check, then a non-
standard (proprietary to WebLogic) application can still access asynchronous
sends by accessing JMS connection factories or contexts directly, instead of via
context injection, or via a resource reference to a connection factory. Bypassing
JMS in this way is for advanced users only; this disables Jakarta EE restriction
checks and the automatic pooling of JMS client objects that are built into the
server-side WebLogic applications.

* Asynchronous send calls are not compatible with JTA (XA) transactions, and will
fail if a JTA transaction is active when called and the sender's connection was
created with a connection factory configured with XA Enabled.

Using One-Way Message Sends

One-way message sends can greatly improve the performance of applications that are bottle-
necked by senders, but do so at the risk of introducing a lower QOS (quality-of-service). By
enabling the One-Way Send Mode options, you allow message producers created by a user-
defined connection factory to do one-way message sends, when possible.

@® Note

Oracle recommends using the JMS 2.0 asynchronous send feature instead of the
proprietary WebLogic one-way send feature. The asynchronous send feature was
introduced in 12.2.1.0 and has less activation restrictions. For example, the JMS 2.0
asynchronous send feature works well in a cluster without requiring additional
configuration changes.

Typical message sends from a JMS producer are termed two-way sends because they include
both an internal request and an internal response. When an producer application calls send(),
the call generates a request that contains the application's message and then waits for a
response from the JMS server to confirm its receipt of the message. This call-and-response
mechanism regulates the producer, since the producer is forced to wait for the JMS server's

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 18 of 23

ORACLE

Chapter 12
Using One-Way Message Sends

response before the application can make another send call. Eliminating the response
message eliminates this wait, and yields a one-way send. WebLogic Server supports a
configurable one-way send option for non-persistent, non-transactional messaging; no
application code changes are required to leverage this feature.

When the One-Way Send Mode is active, the associated producers can send messages
without internally waiting for a response from the target destination's host JMS server. You can
choose to allow queue senders and topic publishers to do one-way sends, or to limit this
capability to topic publishers only. You must also specify a One-Way Window Size to determine
when a two-way message is required to regulate the producer before it can continue making
additional one-way sends.

Configure One-Way Sends On a Connection Factory

You configure one-way message send parameters on a connection factory by using the
WebLogic Scripting Tool (WLST) or JMX via the Fl owCont r ol Par ansBean MBean.

® Note

One-way message sends are disabled if your connection factory is configured with
"XA Enabled". This setting disables one-way sends whether or not the sender actually
uses transactions.

One-Way Send Support In a Cluster With a Single Destination

To ensure one-way send support in a cluster with a single destination, verify that the
connection factory and the JMS server hosting the destination are targeted to the same
WebLogic server. The connection factory must not be targeted to any other WebLogic Server
instances in the cluster.

One-Way Send Support In a Cluster With Multiple Destinations

To ensure one-way send support in a cluster with multiple destinations that share the same
name, special care is required to ensure the WebLogic Server instance that hosts the client
connection also hosts the destination. One solution is the following:

1. Configure the cluster wide RMI load balancing algorithm to "Server Affinity".

2. Ensure that no two destinations are hosted on the same WebLogic Server instance.
3. Configure each destination to have the same local-jndi-name.
4

Configure a connection factory that is targeted to only those WebLogic Server instances
that host the destinations.

5. Ensure sender clients use the INDI names configured in Steps 3 and 4 to obtain their
destination and connection factory from their INDI context.

6. Ensure sender clients use URLSs limited to only those WebLogic Server instances that host
the destinations in Step 3.

This solution disables RMI-level load balancing for clustered RMI objects, which includes EJB
homes and JMS connection factories. Effectively, the client will obtain a connection and
destination based only on the network address used to establish the JNDI context. Load
balancing can be achieved by leveraging network load balancing, which occurs for URLSs that
include a comma-separated list of WebLogic Server addresses, or for URLs that specify a DNS

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 19 of 23

ORACLE Chapter 12
Using One-Way Message Sends

name that resolves to a r ound- r obi n set of IP addresses (as configured by a network
administrator).

For more information on Server Affinity for clusters, see Load Balancing for EJBs and RMI
Objects in Administering Clusters for Oracle WebLogic Server.

When One-Way Sends Are Not Supported

This section defines when one-way sends are not supported. When one-ways are not
supported, the send QOS is automatically upgraded to standard two-ways.

Different Client and Destination Hosts

One-way sends are supported when the client producer's connection host and the JMS server
hosting the target destination are the same WebLogic Server instance; otherwise, the one-way
mode setting will ignored and standard two-way sends will be used instead.

XA Enabled On Client's Host Connection Factory

One-way message sends are disabled if the client's host connection factory is configured with
XA Enabled. This setting disables one-way sends whether or not the sender actually uses
transactions.

Higher QOS Detected

When the following higher QOS features are detected, then the one-way mode setting will be
ignored and standard two-way sends will be used instead:

« XA

e Transacted sessions
e Persistent messaging
e Unit-of-order

e Unit-of-work

« Distributed destinations

Destination Quota Exceeded

When the specified quota is exceeded on the targeted destination, then standard two-way
sends will be used until the quota clears.

One-way messages that exceed quota are silently deleted, without immediately throwing
exceptions back to the client. The client will eventually get a quota exception if the destination
is still over quota at the time the next two-way send occurs. (Even in one-way mode, clients will
send a two-way message every One Way Send Window Size number of messages configured
on the client's connection factory.)

A workaround that helps avoid silently-deleted messages during quota conditions is to increase
the value of the Blocking Send Timeout configured on the connection factory, as described in
Compressing Messages. The one-way messages will not be deleted immediately, but instead
will optimistically wait on the JMS server for the specified time until the quota condition clears
(presumably due to messages getting consumed or by messages expiring). The client sender
will not block until it sends a two-way message. For each client, no more than One Way
Window Size messages will accumulate on the server waiting for quota conditions to clear.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 20 of 23

ORACLE Chapter 12
Using One-Way Message Sends

Change In Server Security Policy

A change in the server-side security policy could prevent one-way message sends without
notifying the JMS client of the change in security status.

Change In JMS Server or Destination Status

One-way sends can be disabled when a host JIMS server or target destination is
administratively undeployed, or when message production is paused on either the JMS server
or the target destination using the "Production Pause/Resume" feature. See Production Pause
and Production Resume in Administering JIMS Resources for Oracle WebLogic Server.

Looking Up Logical Distributed Destination Name

One-way message sends work with distributed destinations provided the client looks up the
physical distributed destination members directly rather than using the logical distributed
destination's name. See Using Distributed Destinations in Developing JMS Applications for
Oracle WebLogic Server.

Hardware Failure

A hardware or network failure will disable one-way sends. In such cases, the JMS producer is
notified by an OnExcept i on or by the next two-way message send. (Even in one-way mode,
clients will send a two-way message every One Way Send Window Size number of messages
configured on the client's connection factory.) The producer will be closed. The worst-case
scenario is that all messages can be lost up to the last two-way message before the failure
occurred.

One-Way Send QOS Guidelines

Use the following QOS-related guidelines when using the one-way send mode for typical non-
persistent messaging.

* When used in conjunction with the Blocking Sends feature, then using one-way sends on a
well-running system should achieve similar QOS as when using the two-way send mode.

* One-way send mode for topic publishers falls within the QOS guidelines set by the IMS
Specification, but does entail a lower QOS than two-way mode (the WebLogic Server
default mode).

* One-way send mode may not improve performance if JIMS consumer applications are a
system bottleneck, as described in Asynchronous vs. Synchronous Consumers in
Developing JMS Applications for Oracle WebLogic Server.

e Consider enlarging the JVM's heap size on the client and/or server to account for
increased batch size (the Window) of sends. The potential memory usage is proportioned
to the size of the configured Window and the number of senders.

* The sending application will not receive all quota exceptions. One-way messages that
exceed quota are silently deleted, without throwing exceptions back to the sending client.
See Destination Quota Exceeded for more information and a possible work around.

« Configuring one-way sends on a connection factory effectively disables any message flow
control parameters configured on the connection factory.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 21 of 23

ORACLE

Chapter 12
Client-side Thread Pools

* By default, the One-way Window Size is set to "1", which effectively disables one-way
sends as every one-way message will be upgraded to a two-way send. (Even in one-way
mode, clients will send a two-way message every One Way Send Window Size number of
messages configured on the client's connection factory.) Therefore, you must set the one-
way send window size much higher. It is recommended to try setting the window size to
"300" and then adjust it according to your application requirements.

e The client application will not immediately receive network or server failure exceptions,
some messages may be sent but silently deleted until the failure is detected by WebLogic
Server and the producer is automatically closed. See Hardware Failure for more
information.

Client-side Thread Pools

WebLogic client thread pools are configured differently than WebLogic server thread-pools,
and are not self tuning. Use the - Dnebl ogi c. Thr eadPool Si ze=n command-line property to
configure the thread pools.

With most Java client side applications, the default client thread pool size of 5 threads is
sufficient. If, however, the application has a large number of asynchronous consumers, then it
is often beneficial to allocate slightly more threads than asynchronous consumers. This allows
more asynchronous consumers to run concurrently.

WebLogic clients have a specific thread pool that is used for handling incoming requests from
the server, such as JMS MessagelListener invocations. This pool can be configured via the
command-line property:

- Dnebl ogi c. Thr eadPool Si ze=n
where n is the number of threads

You can force a client-side thread dump to verify that this setting is taking effect.

Best Practices for JMS .NET Client Applications

Review a short list of performance related best practices to use when creating a JMS .NET
client application.

* Always register a connection exception listener using an IConnection if the application
needs to take action when an idle connection fails.

* Have multiple .NET client threads share a single context to ensure that they use a single
socket.

e Cache and reuse frequently accessed JMS resources, such as contexts, connections,
sessions, producers, destinations, and connection factories. Creating and closing these
resources consumes significant CPU and network bandwidth.

* Use DNS aliases or comma separated addresses for load balancing JMS .NET clients
across multiple JMS .NET client host servers in a cluster.

For more information on best practices and other programming considerations for JIMS .NET
client applications, see Programming Considerations in Developing JMS .NET Client
Applications for Oracle WebLogic Server.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 22 of 23

ORACLE Chapter 12
Considerations for Oracle Data Guard Environments

Considerations for Oracle Data Guard Environments

Review the configuration considerations for a WebLogic JMS environment that includes Oracle
Data Guard.

For more information on Oracle Data Guard, see http://www.oracle.com/us/products/database/
options/active-data-guard/overview/index.html.

Migrate JMS Services for Unexpected Outages

For unexpected service outages, implement JMS Service migration with the Restart on
Failure option. Should the amount of time required to switch from the production to standby
database exceed the value of the Store | ORet r yDel aySeconds attribute and the JMS Services
fails, the JMS service and associated store are restarted in-place. See In-Place Restarting of
Failed Migratable Services in Administering Clusters for Oracle WebLogic Server.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 23 of 23

http://www.oracle.com/us/products/database/options/active-data-guard/overview/index.html
http://www.oracle.com/us/products/database/options/active-data-guard/overview/index.html

Tuning WebLogic JMS Store-and-Forward

Oracle WebLogic Server JMS provides advanced Store-and-Forwarding (SAF) capability for
high-performance message forwarding from a local server instance to a remote JMS
destination. Get the best performance from SAF applications by following the recommended
practices and tips.

See Understanding the Store-and-Forward Service in Administering the Store-and-Forward
Service for Oracle WebLogic Server.

Best Practices for IMS SAF

Learn the best practices for IMS SAF.

Avoid using SAF if remote destinations are already highly available. JMS clients can send
directly to remote destinations. Use SAF in situations where remote destinations are not
highly available, such as an unreliable network or different maintenance schedules.

Use the better performing JMS SAF feature instead of using a Messaging Bridge when
forwarding messages to remote destinations. In general, a JMS SAF agent is significantly
faster than a Messaging Bridge. One exception is a configuration when sending messages
in a non-persistent exactly-once mode.

@® Note

A Messaging Bridge is still required to store-and-forward messages to foreign
destinations.

Configure separate SAF Agents for IMS SAF and Web Services Reliable Messaging
Agents (WS-RM) to simplify administration and tuning.

Sharing the same WebLogic Store between subsystems provides increased performance
for subsystems requiring persistence. For example, transactions that include SAF and JMS
operations, transactions that include multiple SAF destinations, and transactions that
include SAF and EJBs. See Tuning the WebL ogic Persistent Store.

Tune message load balancing to match your preference. See SAF Load Balancing in
Administering the Store-and-Forward Service.

Tuning Tips for JMS SAF

For better performance of JMS SAF, use the recommended tuning tips.

Target imported destinations to multiple SAF agents to load balance message sends
among available SAF agents.

Consider using a separate remote SAF context for each SAF destination for better
performance. SAF destinations that use the same remote SAF context are typically single
threaded.

Increase the JMS SAF W ndow Si ze for applications that handle small messages. By
default, a IMS SAF agent forwards messages in batches that contain up to 10 messages.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE

Chapter 13
Tuning Tips for JIMS SAF

For small messages size, it is possible to double or triple performance by increasing the
number of messages in each batch to be forwarded. A more appropriate initial value for
W ndow Si ze for small messages is 100. You can then optimize this value for your
environment.

Changing the W ndow Si ze for applications handling large message sizes is not likely to
increase performance and is not recommended. W ndow Si ze also tunes WS-RM SAF
behavior, so it may not be appropriate to tune this parameter for SAF Agents of type Bot h.

@® Note

For a distributed queue, W ndowSi ze is ignored and the batch size is set internally
at 1 message.

Increase the JMS SAF W ndow | nt erval . By default, a JMS SAF agent has a W ndow

I nterval value of 0 which forwards messages as soon as they arrive. This can lower
performance as it can make the effective W ndow si ze much smaller than the configured
value. A more appropriate initial value for W ndow | nt erval value is 500 milliseconds. You
can then optimize this value for your environment. In this context, small messages are less
than a few K, while large messages are on the order of tens of K.

Changing the W ndow | nt erval improves performance only in cases where the forwarder
is already able to forward messages as fast as they arrive. In this case, instead of
immediately forwarding newly arrived messages, the forwarder pauses to accumulate
more messages and forward them as a batch. The resulting larger batch size improves
forwarding throughput and reduces overall system disk and CPU usage at the expense of
increasing latency.

@® Note

For a distributed queue, W ndow | nt erval is ignored.

Set the Non- Per si st ent QOS value to At - Least - Once for imported destinations if your
application can tolerate duplicate messages.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 2

Tuning WebLogic Message Bridge

Learn how to improve message bridge performance using the best practices available in
Oracle WebLogic Server.

Best Practices

Learn the best practices for tuning WebLogic message bridge.

e Avoid using a message bridge if remote destinations are already highly available. IMS
clients can send directly to remote destinations. Use a messaging bridge in situations
where remote destinations are not highly available, such as an unreliable network or
different maintenance schedules.

e Use the better performing JMS store-and-forward feature instead of using a message
bridge when forwarding messages to remote destinations. In general, a JMS SAF agent is
significantly faster than a message bridge. One exception is a configuration when sending
messages in a non-persistent exactly-once mode.

@® Note

A message bridge is still required to store-and-forward messages to foreign
destinations and destinations from releases prior to WebLogic 9.0.

Changing the Batch Size

When the Asynchr onous Mbde Enabl ed attribute is set to false and the quality of service is
Exact | y-once, the Bat ch Si ze attribute can be used to reduce the number of transaction
commits by increasing the number of messages per transaction (batch). The best batch size
for a bridge instance depends on the combination of JMS providers used, the hardware,
operating system, and other factors in the application environment.

Changing the Batch Interval

When the Asynchronous Mbde Enabl ed attribute is set to false and the quality of service is
Exact | y- once, the Bat chl nt erval attribute is used to adjust the amount of time the bridge
waits for each batch to fill before forwarding batched messages. The best batch interval for a
bridge instance depends on the combination of JMS providers used, the hardware, operating
system, and other factors in the application environment. For example, if the queue is not very
busy, the bridge may frequently stop forwarding in order to wait batches to fill, indicating the
need to reduce the value of the Bat chl nt erval attribute.

Changing the Quality of Service

An Exact | y- once quality of service may perform significantly better or worse than At - nost -
once and Dupl i cat e- okay.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 4

ORACLE

Chapter 14
Using Multiple Bridge Instances

When the Exact | y- once quality of service is used, the bridge must undergo a two-phase
commit with both JMS servers in order to ensure the transaction semantics and this operation
can be very expensive. However, unlike the other qualities of service, the bridge can batch
multiple operations together using Exact | y- once service.

You may need to experiment with this parameter to get the best possible performance. For
example, if the queue is not very busy or if non-persistent messages are used, Exact | y- once
batching may be of little benefit. See Create a Messaging Bridge Instance in Oracle WebLogic
Remote Console Online Help.

Using Multiple Bridge Instances

If message ordering is not required, consider deploying multiple bridges.

Multiple instances of the bridge may be deployed using the same destinations. When this is
done, each instance of the bridge runs in parallel and message throughput may improve. If
multiple bridge instances are used, messages will not be forwarded in the same order they had
in the source destination. See Create a Messaging Bridge Instance in Oracle WebLogic
Remote Console Online Help.

Consider the following factors when deciding whether to use multiple bridges:

e Some JMS products do not seem to benefit much from using multiple bridges

* WebLogic JMS messaging performance typically improves significantly, especially when
handling persistent messages.

« If the CPU or disk storage is already saturated, increasing the number of bridge instances
may decrease throughput.

Changing the Thread Pool Size

A general bridge configuration rule is to provide a thread for each bridge instance targeted to a
server instance. You can change the thread pool size to ensure that an adequate number of
threads is available for your environment.

e Use the common thread pool—A server instance changes its thread pool size
automatically to maximize throughput, including compensating for the number of bridge
instances configured. See Understanding How WebLogic Server Uses Thread Pools in
Administering Server Environments for Oracle WebLogic Server.

e Configure a work manager for the webl ogi c. j ms. Messagi ngBri dge class. See
Understanding Work Managers in Administering Server Environments for Oracle WebLogic
Server.

* Ensure that the bridge resource adapter pool is twice as large as the number of bridges.
See Resource Adapters in Administering the WebLogic Messaging Bridge for Oracle
WebLogic Server.

Avoiding Durable Subscriptions

If the bridge is listening on a topic and it is acceptable that messages are lost when the bridge
is not forwarding messages, disable the Durability Enabl ed flag to ensure undeliverable
messages do not accumulate in the source server's store. Disabling the flag also makes the
messages non-persistent.

See Create a Messaging Bridge Instance in Oracle WebLogic Remote Console Online Help.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 4

ORACLE Chapter 14
Co-locating Bridges with Their Source or Target Destination

Co-locating Bridges with Their Source or Target Destination

If a messaging bridge source or target is a WebLogic destination, deploy the bridge to the
same WebLogic Server as the destination.

Targeting a messaging bridge with one of its destinations eliminates associated network and
serialization overhead. Such overhead can be significant in high-throughput applications,
particularly if the messages are non-persistent.

Changing the Asynchronous Mode Enabled Attribute

The Asynchronous Mbde Enabl ed attribute determines whether the messaging bridge receives
messages asynchronously using the JM5 Messageli st ener interface at https://

javaee. github.iol/javaee-spec/javadocs/javax/jms/ MessagelLi stener. htm , or whether the
bridge receives messages using the synchronous JMS APIs. In most situations, the
Asynchronous Enabl ed attributes value is dependent on the QOS required for the application
environment as shown in Table 14-1:

Table 14-1 Asynchronous Mode Enabled Values for QOS Level
]

QOSs Asynchronous Mode Enabled Attribute value
Exact | y-oncel false
At -1 east-once true
At - most - once true

1 If the source destination is a non-WebLogic JMS provider and the QOS is Exactly-once, then the Asynchronous
Mode Enabled attribute is disabled and the messages are processed in synchronous mode.

See Create a Messaging Bridge Instance in Oracle WebLogic Remote Console Online Help.

A quality of service of Exact | y- once has a significant effect on bridge performance. The bridge
starts a new transaction for each message and performs a two-phase commit across both JMS
servers involved in the transaction. Since the two-phase commit is usually the most expensive
part of the bridge transaction, as the number of messages being processed increases, the
bridge performance tends to decrease.

Tuning Environments with Many Bridges

Learn to improve system boot time and general performance of systems that deploy many
bridge instances.

* Modify the capacity of the connection factory associated with each resource adaptor by
adjusting the nax- capaci ty attribute in the webl ogi c-ra. xm descriptor file. The value of
the max- capaci t y attribute should be at least two times the number of bridge instances.

For example, if your environment has up to ten message bridge instances targeted, a max-
capaci ty attribute setting of 20 in the default configuration is adequate. But if you increase
the number of bridge instances to 15, increase the max- capaci t y attribute to 30. See
Setting the Number of Connection Factories in Administering the WebLogic Messaging
Bridge for Oracle WebLogic Server.

* Increase the entire server's thread pool size to something somewhat higher than the
number of active bridges. This applies for any XA (transactional) bridge with a batch size

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 4

https://javaee.github.io/javaee-spec/javadocs/javax/jms/MessageListener.html
https://javaee.github.io/javaee-spec/javadocs/javax/jms/MessageListener.html

ORACLE Chapter 14
Tuning Environments with Many Bridges

higher than 1, or any XA bridge that consumes from a source destination hosted by a non-
WebLogic JMS provider.

For example, pass the following on the command line if you have 90 message bridges:
- Dnebl ogi ¢. t hreadpool . M nPool Si ze=100

This ensures there are enough threads available when affected bridges initialize. If there
are not enough threads available, there can be a multi-second delay until a new thread is
created.

* Provide a thread for each bridge instance targeted to a server instance. See Changing the
Thread Pool Size.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 4

Tuning Resource Adapters

Learn the best practices available in Oracle WebLogic Server to tune resource adapters.

Classloading Optimizations for Resource Adapters

You can package resource adapter classes in one or more JAR files, and then place the JAR
files in the RAR file. These are called nested JARs. When you nest JAR files in the RAR file,
and classes need to be loaded by the classloader, the JARs within the RAR file must be
opened and closed and iterated through for each class that must be loaded.

If there are very few JARSs in the RAR file and if the JARs are relatively small in size, there will
be no significant performance impact. On the other hand, if there are many JARs and the JARs
are large in size, the performance impact can be great.

To avoid such performance issues, you can either:

1. Deploy the resource adapter in an exploded format. This eliminates the nesting of JARs
and hence reduces the performance hit involved in looking for classes.

2. If deploying the resource adapter in exploded format is not an option, the JARs can be
exploded within the RAR file. This also eliminates the nesting of JARs and thus improves
the performance of classloading significantly.

Connection Optimizations

Oracle recommends that resource adapters implement the optional enhancements described
in Connection Optimization section of the Jakarta Connectors 2.0 Specification.

See https://downl oad. ecli pse. org/j akart aee/ connect ors/ 2. 0/ connect or s-
spec- 2. 0. ht nl #connect i on-opti ni zati ons. Implementing these interfaces allows WebLogic
Server to provide several features that will not be available without them.

Lazy Connection Association allows the server to automatically clean up unused connections
and prevent applications from hogging resources. Lazy Transaction Enlistment allows
applications to start a transaction after a connection is already opened.

Thread Management

Resource adapter implementations use the Wr kManager to launch operations that need to run
in a new thread, rather than creating new threads directly. WebLogic Server manages and
monitors these threads.

See Chapter 11, "Work Management" in the Jakarta Connectors 2.0 at htt ps: //
downl oad. ecl i pse. org/j akart aee/ connect ors/ 2. 0/ connect or s- spec- 2. 0. ht nl #wor k-

managenent .

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 2

https://download.eclipse.org/jakartaee/connectors/2.0/connectors-spec-2.0.html#connection-optimizations
https://download.eclipse.org/jakartaee/connectors/2.0/connectors-spec-2.0.html#connection-optimizations
https://download.eclipse.org/jakartaee/connectors/2.0/connectors-spec-2.0.html#work-management
https://download.eclipse.org/jakartaee/connectors/2.0/connectors-spec-2.0.html#work-management
https://download.eclipse.org/jakartaee/connectors/2.0/connectors-spec-2.0.html#work-management

ORACLE Chapter 15
InteractionSpec Interface

InteractionSpec Interface

An InteractionSpec holds properties for driving an Interaction with an EIS instance. The CCI
specification defines a set of standard properties for an InteractionSpec. The InteractionSpec
implementation class must provide getter and setter methods for each of its supported
properties.

WebLogic Server supports the Common Client Interface (CCI) for EIS access, as defined in
Chapter 18, "Common Client Interface" in the Jakarta Connectors 2.0 athttps://

downl oad. ecl i pse. org/j akart aee/ connect ors/ 2. 0/ connect or s- spec-2. 0. ht i #comnmon-
client-interface-2. The CCl defines a standard client API for application components that
enables application components and EAI frameworks to drive interactions across
heterogeneous ElSes.

As a best practice, you should not store the | nt er act i onSpec class that the CClI resource
adapter is required to implement in the RAR file. Instead, you should package it in a separate
JAR file outside of the RAR file, so that the client can access it without having to put the

I nteracti onSpec interface class in the generic CLASSPATH.

With respect to the | nt er act i onSpec interface, it is important to remember that when all
application components (EJBs, resource adapters, Web applications) are packaged in an EAR
file, all common classes can be placed in the APP-INF/lib directory. This is the easiest possible
scenario.

This is not the case for standalone resource adapters (packaged as RAR files). If the interface
is serializable (as is the case with | nt er act i onSpec), then both the client and the resource
adapter need access to the | nt eract i onSpec interface as well as the implementation classes.
However, if the interface extends j ava. i 0. Renot e, then the client only needs access to the
interface class.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 2

https://download.eclipse.org/jakartaee/connectors/2.0/connectors-spec-2.0.html#common-client-interface-2
https://download.eclipse.org/jakartaee/connectors/2.0/connectors-spec-2.0.html#common-client-interface-2
https://download.eclipse.org/jakartaee/connectors/2.0/connectors-spec-2.0.html#common-client-interface-2

Tuning Web Applications

Learn the best practices available in Oracle WebLogic Server for tuning Web applications and
managing sessions.

Best Practices

Learn the best practices for tuning Web applications.

Disable Page Checks

You can improve performance by disabling servlet and JDP page checks. Set each of the
following parameters to -1:

* pageCheckSeconds
e servlet-rel oad-check-secs
e servlet Reload Check

These are default values for production mode.

Use Custom JSP Tags

Oracle provides three specialized JSP tags that you can use in your JSP pages: cache, repeat,
and process. These tags are packaged in a tag library jar file called webl ogi c-t ags. j ar. This
jar file contains classes for the tags and a tag library descriptor (TLD). To use these tags, you
copy this jar file to the Web application that contains your JSPs and reference the tag library in
your JSP. See Using Custom WebLogic JSP Tags (cache, process, repeat) in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

Precompile JSPs

You can configure WebLogic Server to precompile your JSPs when a Web Application is
deployed or re-deployed or when WebLogic Server starts up by setting the precompile
parameter to true in the j sp- descri pt or element of the webl ogi c. xm deployment descriptor.
To avoid recompiling your JSPs each time the server restarts and when you target additional
servers, precompile them using webl ogi c. appc and place them in the WEB-INF/classes folder
and archive them in a . war file. Keeping your source files in a separate directory from the
archived . war file eliminates the possibility of errors caused by a JSP having a dependency on
one of the class files. For a complete explanation on how to avoid JSP recompilation, see
Avoiding Unnecessary JSP Recompilation.

Use HTML Template Compression

Using the conpr ess- ht nl -t enpl at e element compresses the HTML in the JSP template
blocks which can improve runtime performance. If the JSP's HTML template block contains the
<pre> HTML tag, do not enable this feature.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 4

https://www.oracle.com/technical-resources/articles/enterprise-architecture/jsp-reloaded.html

ORACLE Chapter 16
Session Management

See j sp-descriptor in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic
Server.

Use Service Level Agreements

You should assign servlets and JSPs to work managers based on the service level agreements
required by your applications. See Thread Management.

Related Reading

* Servlet Best Practices in Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server.

e Servlet and JSP Performance Tuning at https://www.infoworld.com/article/2072812/servlet-and-jsp-
performance-tuning.html, by Rahul Chaudhary, JavaWorld, June 2004.

Session Management

Optimize your application so that it does as little work as possible when handling session
persistence and sessions. Learn to design a session management strategy that suits your
environment and application.

Managing Session Persistence

WebLogic Server offers many session persistence mechanisms that cater to the differing
requirements of your application, including Async-repl i cat ed and Async- JDBC modes. The
session persistence mechanisms are configurable at the Web application layer. Which session
management strategy you choose for your application depends on real-world factors like HTTP
session size, session life cycle, reliability, and session failover requirements. For example, a
Web application with no failover requirements could be maintained as a single memory-based
session; whereas, a Web application with session fail-over requirements could be maintained
as replicated sessions or JDBC-based sessions, based on their life cycle and object size.

In terms of pure performance, replicated session persistence is a better overall choice when
compared to JDBC-based persistence for session state. However, replicated-based session
persistence requires the use of WebLogic clustering, so it isn't an option in a single-server
environment.

On the other hand, an environment using JDBC-based persistence does not require the use of
WebLogic clusters and can maintain the session state for longer periods of time in the
database. One way to improve JDBC-based session persistence is to optimize your code so
that it has as high a granularity for session state persistence as possible. Other factors that can
improve the overall performance of JDBC-based session persistence are: the choice of
database, proper database server configuration, JDBC driver, and the JDBC connection pool
configuration.

For more information on managing session persistence, see:

e Configuring Session Persistence in Developing Web Applications, Servlets, and JSPs for
Oracle WebLogic Server

e HTTP Session State Replication in Administering Clusters for Oracle WebLogic Server

* Using a Database for Persistent Storage (JDBC Persistence) in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 4

https://www.infoworld.com/article/2072812/servlet-and-jsp-performance-tuning.html
https://www.infoworld.com/article/2072812/servlet-and-jsp-performance-tuning.html
https://www.infoworld.com/article/2072812/servlet-and-jsp-performance-tuning.html
https://www.infoworld.com/article/2072812/servlet-and-jsp-performance-tuning.html

ORACLE Chapter 16
Pub-Sub Tuning Guidelines

Minimizing Sessions

Configuring how WebLogic Server manages sessions is a key part of tuning your application
for best performance. Consider the following:

e Use of sessions involves a scalability trade-off.

« Use sessions sparingly. In other words, use sessions only for state that cannot realistically
be kept on the client or if URL rewriting support is required. For example, keep simple bits
of state, such as a user's name, directly in cookies. You can also write a wrapper class to
"get" and "set" these cookies, in order to simplify the work of servlet developers working on
the same project.

« Keep frequently used values in local variables.

See Setting Up Session Management in Developing Web Applications, Serviets, and JSPs for
Oracle WebLogic Server.

Aggregating Session Data

This section provides best practices on how to aggregate session data. WebLogic Server
tracks and replicates changes in the session by attribute so you should:

e Aggregate session data that changes in tandem into a single session attribute.

* Aggregate session data that changes frequently and read-only session data into separate
session attributes

For example: If you use a a single large attribute that contains all the session data and only
10% of that data changes, the entire attribute has to be replicated. This causes unnecessary
serialization/deserialization and network overhead. You should move the 10% of the session
data that changes into a separate attribute.

Pub-Sub Tuning Guidelines

Follow the general tuning guidelines for a pub-sub server such as increasing the file
descriptors, tuning the JVM options, and so on.

* Increase file descriptors to cater for a large number of long-living connections, especially
for applications with thousands of clients.

e Tune logging level for WebLogic Server.

e Tune JVM options. Suggested options: - Xms1536m - Xmx1536m - Xns512m -
XXt | aSi ze: m n=128k, pref erred=256k

e Increase the maximum message. If your application publishes messages under high
volumes, consider setting the value to <max- message- si ze>10000000</ max- nessage-
Si ze>.

Enabling GZIP Compression

The WebLogic Server Web container supports HTTP content-encoding GZIP compression,
which is part of HTTP/1.1. With GZIP compression, you can reduce the size of the data that a
Web browser has to download, improving network bandwidth. You can tune Web applications
by enabling and configuring GZIP compression at either the domain level or Web application
level.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 4

ORACLE Chapter 16
Enabling GZIP Compression

See Enabling GZIP Compression for Web Applications in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 4

Tuning Web Services

Use best practices available in Oracle WebLogic Server for designing, developing, and
deploying WebLogic Web Services applications and application resources.

Web Services Best Practices

Design and architectural decisions have a strong impact on runtime performance and
scalability of Web Service applications. Follow the key recommendations to achieve best
performance.

Design Web Service applications for course-grained service with moderate size payloads.
Choose correct service-style & encoding for your Web service application.

Control serializer overheads and namespaces declarations to achieve better performance.
Use MTOM/XOP or Fast Infoset to optimizing the format of a SOAP message.

Carefully design SOAP attachments and security implementations for minimum
performance overheads.

Consider using an asynchronous messaging model for applications with:
— Slow and unreliable transport.
— Complex and long-running process.

For transactional Service Oriented Architectures (SOA) consider using the Last Logging
Resource transaction optimization (LLR) to improve performance. See Tuning
Transactions.

Use replication and caching of data and schema definitions to improve performance by
minimizing network overhead.

Consider any XML compression technique only when XML compression/decompression
overheads are less than network overheads involved.

Applications that are heavy users of XML functionality (parsers) may encounter
performance issues or run out of file descriptors. This may occur because XML parser
instances are bootstrapped by doing a lookup in the j axp. properti es file (JAXP API).
Oracle recommends setting the properties on the command line to avoid unnecessary file
operations at runtime and improve performance and resource usage.

Follow JWS Programming Best Practices in Developing JAX-WS Web Services for Oracle
WebLogic Server.

Follow best practice and tuning recommendations for all underlying components, such as
Tuning Webl ogic Server EJBs, Tuning Web Applications, Tuning Data Sources, and
Tuning WeblL ogic JMS.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 3

ORACLE Chapter 17
Tuning Web Service Reliable Messaging Agents

Tuning Web Service Reliable Messaging Agents

Web Service Reliable Messaging provides advanced store-and-forward capability for high-
performance message forwarding from a local server instance to a remote destination.

See Understanding the Store-and-Forward Service in Administering the Store-and-Forward
Service for Oracle WebLogic Server.

The following section provides information on how to get the best performance from Store-and-
Forward (SAF) applications:

« Configure separate SAF Agents for JIMS SAF and Web Services Reliable Messaging
Agents to simplify administration and tuning.

e Sharing the same WebLogic Store between subsystems provides increased performance
for subsystems requiring persistence. For example, transactions that include SAF and JMS
operations, transactions that include multiple SAF destinations, and transactions that
include SAF and EJBs. See Tuning the Webl ogic Persistent Store.

e Consider increasing the W ndowSi ze parameter on the remote SAF agent. For small
messages of less than 1K, tuning W ndowSi ze as high as 300 can improve throughput.

@® Note

W ndowsSi ze also tunes JMS SAF behavior, so it may not be appropriate to tune
this parameter for SAF agents of type bot h.

 Ensurethatretry del ay is not set too low. This may cause the system to make
unnecessary delivery attempts.

Tuning Heavily Loaded Systems to Improve Web Service
Performance

The asynchronous request-response, reliable messaging, and buffering features are all pre-
tuned for minimum system resource usage to support a small number of clients (under 10). If
you plan on supporting a larger number of clients or high message volumes, adjust the tuning
parameters to accommodate the additional load.

Setting the Work Manager Thread Pool Minimum Size Constraint

Define a Work Manager and set the thread pool minimum size constraint (m n-t hr eads-
constraint) to a value that is at least as large as the expected number of concurrent requests
or responses into the service.

For example, if a Web service client issues 20 requests in rapid succession, the recommended
thread pool minimum size constraint value would be 20 for the application hosting the client. If
the configured constraint value is too small, performance can be severely degraded as
incoming work waits for a free processing thread.

For more information about the thread pool minimum size constraint, see Constraints in
Administering Server Environments for Oracle WebLogic Server.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 3

ORACLE

Chapter 17
Tuning Heavily Loaded Systems to Improve Web Service Performance

Setting the Buffering Sessions

The reliable messaging and buffering features use JMS queue sessions to send messages to
the reliability/buffer queues. By default, WebLogic Server allocates 10 sessions for buffering
which enables 10 clients to enqueue messages simultaneously onto the reliability/buffer
queue.

For asynchronous request-response, the request and response portion of the communication
exchange count separately, as two clients. In this case, the default pool of sessions can
support five simultaneous asynchronous request-response clients. To accommodate the
number of concurrent clients you expect in your application, set the following parameter to
twice the number of expected client threads:

- Dwnebl ogi c. wsee. buf f er. QueueSessi onPool Si ze=si ze

Releasing Asynchronous Resources

When using the asynchronous request-response feature, WebLogic Server persistently stores
information about the request until the asynchronous response is returned to the client. These
resources remain in the persistent store until they are released by a background thread, called
the store cleaner.

Often, these resources can be released sooner. Executing the store cleaner more frequently
can help to reduce the size of the persistent store and minimize the time required to clean it.

By default, the store cleaner runs every two minutes (120000 ms). Oracle recommends that
you set the store cleaner interval to one minute (60000 ms) using the following Java system
property:

- Dnebl ogi c. wsee. St at ed eanl nt er val =60000

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 3

Tuning WebLogic Tuxedo Connector

The WebLogic Tuxedo Connector (WTC) provides interoperability between Oracle WebLogic
Server applications and Tuxedo services. WTC allows WebLogic Server clients to invoke
Tuxedo services and Tuxedo clients to invoke WebLogic Server Enterprise Java Beans (EJBS)
in response to a service request.

Get the best performance from WebLogic Tuxedo Connector (WTC) applications using the tips
provided.

See Introduction to Oracle WebLogic Tuxedo Connector Programming in Developing Oracle
WebLogic Tuxedo Connector Applications for Oracle WebLogic Server.

Configuration Guidelines

Refer the recommended guidelines when configuring WebLogic Tuxedo Connector.

* You may have more than one WTC Service in your configuration.
* You can only target one WTC Service to a server instance.

*« WTC does not support connection pooling. WTC multiplexes requests though a single
physical connection.

« Configuration changes implemented as follows:

— Changing the session/connection configuration (local APs, remote APs, Passwords,
and Resources) before a connection/session is established. The changes are
accepted and are implemented in the new session/connection.

— Changing the Imported and Exported services configuration. The changes are
accepted and are implemented in the next inbound or outbound request. Oracle does
not recommend this practice as it can leave in-flight requests in an unknown state.

— Changing the tBridge configuration. Any change in a deployed WTC service causes an
exception. You must untarget the WTC service before making any tBridge
configuration changes. After untargeting and making configuration changes, you must
target the WTC service to implement the changes.

Best Practices

Learn the best practices for using WebLogic Tuxedo Connector.

* When configuring the connection policy, use ON_STARTUP and | NCOM NG_ONLY. ON_STARTUP
and | NCOM NG _ONLY always paired. For example: If a WTC remote access point is
configured with ON_STARTUP, the DM _TDOMAI N section of the Tuxedo domain configuration
must be configured with the remote access point as | NCOM NG_ONLY. In this case, WTC
always acts as the session initiator. See Configuring the Connections Between Access
Points in the Administering WebLogic Tuxedo Connector for Oracle WebLogic Server.

e Avoid using connection policy ON_DEMAND. The preferred connection policy is ON_STARTUP
and | NCOM NG _ONLY. This reduces the chance of service request failure due to the routing
semantics of ON_DEMAND. See Configuring the Connections Between Access Points in the
Administering WebLogic Tuxedo Connector for Oracle WebLogic Server.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 3

ORACLE

Chapter 18
Best Practices

Consider using the following WTC features: Link Level Failover, Service Level failover and
load balancing when designing your application. See Configuring Failover and Failback in
the Administering WebLogic Tuxedo Connector for Oracle WebLogic Server.

Consider using WebLogic Server clusters to provide additional load balancing and failover.
To use WTC in a WebLogic Server cluster:

— Configure a WTC instance on all the nodes of the WebLogic Server cluster.
— Each WTC instance in each cluster node must have the same configuration.

See How to Manage WebLogic Tuxedo Connector in a Clustered Environment in the
Administering WebLogic Tuxedo Connector for Oracle WebLogic Server.

If your WTC to Tuxedo connection uses the internet, use the following security settings:

— Set the value of Security to DM PW See Authentication of Remote Access Points in the
Administering WebLogic Tuxedo Connector for Oracle WebLogic Server.

— Enable Link-level encryption and set the ni n- encrypt - bi t s parameter to 40 and the
max- encrypt - bits to 128. See Link-Level Encryption in the Administering WebLogic
Tuxedo Connector for Oracle WebLogic Server.

Your application logic should provide mechanisms to manage and interpret error conditions
in your applications.

— See Application Error Management in the Developing Oracle WebLogic Tuxedo
Connector Applications for Oracle WebLogic Server.

— See System Level Debug Settings in the Administering WebLogic Tuxedo Connector
for Oracle WebLogic Server.

Avoid using embedded TypedFM_32 buffers inside TypedFM.32 buffers. See Using FML with
WebLogic Tuxedo Connector in the Developing Oracle WebLogic Tuxedo Connector
Applications for Oracle WebLogic Server.

If your application handles heavy loads, consider configuring more remote Tuxedo access
points and let WTC load balance the work load among the access points. See Configuring
Failover and Failback in the Administering WebLogic Tuxedo Connector for Oracle
WebLogic Server.

When using transactional applications, try to make the remote services involved in the

same transaction available from the same remote access point. See WebLogic Tuxedo
Connector JATMI Transactions in the Developing Oracle WebLogic Tuxedo Connector
Applications for Oracle WebLogic Server.

The number of client threads available when dispatching services from the gateway may
limit the number of concurrent services running. There is no WebLogic Tuxedo Connector
attribute to increase the number of available threads. Use a reasonable thread model when
invoking service. See Thread Management and Using Work Managers to Optimize
Scheduled Work in Administering Server Environments for Oracle WebLogic Server.

WebLogic Server Releases 9.2 and higher provide improved routing algorithms which
enhance transaction performance. Specifically, performance is improved when there are
more than one Tuxedo service requests involved in a 2 phase commit (2PC) transaction. If
your application does only single service request to the Tuxedo domain, you can disable
this feature by setting the following WebLogic Server command line parameter:

- Dnebl ogi c. wt c. xaAf finity=fal se

Call the constructor TypedFM.32 using the maximum number of objects in the buffer. Even
if the maximum number is difficult to predict, providing a reasonable number improves
performance. You approximate the maximum number by multiplying the number of fields
by 1.33.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 3

ORACLE Chapter 18
Best Practices

® Note
This performance tip does not apply to TypedFM. buffer type.

For example:

If there are 50 fields in a TypedFM.32 buffer type then the maximum number is 63. Calling
the constructor TypedFM_32(63, 50) performs better than TypedFM.32() .

If there are 50 fields in a TypedFM.32 buffer type and each can have maximum 10
occurrences, then call the constructor TypedFM.32(625, 50) will give better performance
than TypedFM.32() .

« When configuring Tuxedo applications that act as servers interoperating with WTC clients,
take into account of parallelism that may be achieved by carefully configuring different
servers on different Tuxedo machines.

- Be aware of the possibility of database access deadlock in Tuxedo applications. You can
avoid deadlock through careful Tuxedo application configuration.

e If your are using WTC load balancing or service level failover, Oracle recommends that you
do not disable WTC transaction affinity.

e For load balancing outbound requests, configure the imported service with multiple entries
using a different key. The imported service uses composite key to determine each record's
unigueness. The composite key is compose of "the service name + the local access point
+ the primary route in the remote access point list".

The following is an example of how to correctly configure load balancing requests for
servi cel between TDomai nSessi on(WDOML, TUXDOML) and
TDonai nSessi on(WDOML, TUXDOMR) :

Table 18-1 Example of Correctly Configured Load Balancing
|

ResourceName LocalAccessPoint RemoteAccessPointLi RemoteName
st

servicel WDOML TUXDOML TOLOWER

servicel WDOML TUXDOVR TOLOWER2

The following is an example an incorrectly configured load balancing requests. The following
configuration results in the same composite key for servi cel:

Table 18-2 Example of Incorrectly Configured Load Balancing
|

ResourceName LocalAccessPoint RemoteAccessPointLi RemoteName
st

servicel WDOML TUXDOML TOLOWER

servicel WDOML TUXDOML TOLOWER

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 3

Capacity Planning

Capacity planning in Oracle WebLogic Server is the process of determining what type of
hardware and software configuration is required to meet application needs adequately.
Capacity planning is not an exact science. Every application is different and every user
behavior is different.

Capacity Planning Factors

A number of factors influence how much capacity a given hardware configuration will need in
order to support a WebLogic Server instance and a given application. The hardware capacity
required to support your application depends on the specifics of the application and
configuration.

You should consider how each of these factors applies to your configuration and application.

The following sections discuss several of these factors. Understanding these factors and
considering the requirements of your application will aid you in generating server hardware
requirements for your configuration. Consider the capacity planning questions in Table A-1.

Table A-1 Capacity Planning Factors and Information Reference
]

Capacity Planning Questions For Information, See:

Is WebLogic Server well-tuned? Assessing Your Application Performance
Objectives

How well-designed is the user application? Database Server Capacity and User Storage
Requirements

Is there enough bandwidth? Network Load

How many transactions need to run Concurrent Sessions

simultaneously?

Is the database a limiting factor? Are there Database Server Capacity and User Storage

additional user storage requirements? Requirements

What is running on the machine in addition to Network Load

WebLogic Server?

Do clients use SSL to connect to WebLogic SSL Connections and Performance

Server?

What types of traffic do the clients generate? RMI and Server Traffic

What types of clients connect to the WebLogic Programmatic and Web-based Clients

Server application?

Is your deployment configured for a cluster? Clustered Configurations

Are your servers configured for migration? Server Migration

Programmatic and Web-based Clients

Primarily, two types of clients can connect to WebLogic Server:

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-1 of A-6

ORACLE

Appendix A
Capacity Planning Factors

* Web-based clients, such as Web browsers and HTTP proxies, use the HTTP or HTTPS
(secure) protocol to obtain HTML or servlet output.

e Programmatic clients, such as Java applications and applets, can connect through the T3
protocol and use RMI to connect to the server.

The stateless nature of HTTP requires that the server handle more overhead than is the case
with programmatic clients. However, the benefits of HTTP clients are numerous, such as the
availability of browsers and firewall compatibility, and are usually worth the performance costs.

Programmatic clients are generally more efficient than HTTP clients because T3 does more of
the presentation work on the client side. Programmatic clients typically call directly into EJBs
while Web clients usually go through servlets. This eliminates the work the server must do for
presentation. The T3 protocol operates using sockets and has a long-standing connection to
the server.

A WebLogic Server installation that relies only on programmatic clients should be able to
handle more concurrent clients than an HTTP proxy that is serving installations. If you are
tunneling T3 over HTTP, you should not expect this performance benefit. In fact, performance
of T3 over HTTP is generally 15 percent worse than typical HTTP and similarly reduces the
optimum capacity of your WebLogic Server installation.

RMI and Server Traffic

What types of server traffic do the clients generate? If you are using T3 clients, most
interaction with the server involves Remote Method Invocation (RMI.) Clients using RMI do not
generate heavy traffic to the server because there is only one sender and one listener.

RMI can use HTTP tunneling to allow RMI calls to traverse a firewall. RMI tunneled through
HTTP often does not deliver the higher degree of performance provided by non-tunneled RMI.

SSL Connections and Performance

Secure sockets layer (SSL) is a standard for secure Internet communications. WebLogic
Server security services support X.509 digital certificates and access control lists (ACLS) to
authenticate participants and manage access to network services. For example, SSL can
protect JSP pages listing employee salaries, blocking access to confidential information.

SSL involves intensive computing operations. When supporting the cryptography operations in
the SSL protocol, WebLogic Server can not handle as many simultaneous connections.

The number of SSL connections required out of the total number of clients required. Typically,
for every SSL connection that the server can handle, it can handle three non-SSL connections.
SSL substantially reduces the capacity of the server depending upon the strength of encryption
used in the SSL connections. Also, the amount of overhead SSL imposes is related to how
many client interactions have SSL enabled. WebLogic Server includes native performance
packs for SSL operations.

WebLogic Server Process Load

What is running on the machine in addition to a WebLogic Server? The machine may be
processing much more than presentation and business logic. For example, it could be running
a Web server or maintaining a remote information feed, such as a stock information feed from
a quote service.

Consider how much of your WebLogic Server machine's processing power is consumed by
processes unrelated to WebLogic Server. In the case in which WebLogic Server (or the
machine on which it resides) is doing substantial additional work, you need to determine how

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-2 of A-6

ORACLE Appendix A
Capacity Planning Factors

much processing power will be drained by other processes. When a Web server proxy is
running on the same machine as WebLogic Server, expect anywhere from 25 to 50 percent of
the computing capacity.

Database Server Capacity and User Storage Requirements

Is the database a bottleneck? Are there additional user storage requirements? Often the
database server runs out of capacity much sooner that WebLogic Server does. Plan for a
database that is sufficiently robust to handle the application. Typically, a good application's
database requires hardware three to four times more powerful than the application server
hardware. It is good practice to use a separate machine for your database server.

Generally, you can tell if your database is the bottleneck if you are unable to maintain
WebLogic Server CPU usage in the 85 to 95 percent range. This indicates that WebLogic
Server is often idle and waiting for the database to return results. With load balancing in a
cluster, the CPU utilization across the nodes should be about even.

Some database vendors are beginning to provide capacity planning information for application
servers. Frequently this is a response to the three-tier model for applications.

An application might require user storage for operations that do not interact with a database.
For example, in a secure system disk and memory are required to store security information for
each user. You should calculate the size required to store one user's information, and multiply
by the maximum number of expected users.

Concurrent Sessions

How many transactions must run concurrently? Determine the maximum number of concurrent
sessions WebLogic Server will be called upon to handle. For each session, you will need to
add more RAM for efficiency. Oracle recommends that you install a minimum of 256 MB of
memory for each WebLogic Server installation that will be handling more than minimal
capacity.

Next, research the maximum number of clients that will make requests at the same time, and
how frequently each client will be making a request. The number of user interactions per
second with WebLogic Server represents the total number of interactions that should be
handled per second by a given WebLogic Server deployment. Typically for Web deployments,
user interactions access JSP pages or servlets. User interactions in application deployments
typically access EJBs.

Consider also the maximum number of transactions in a given period to handle spikes in
demand. For example, in a stock report application, plan for a surge after the stock market
opens and before it closes. If your company is broadcasting a Web site as part of an
advertisement during the World Series or World Cup Soccer playoffs, you should expect spikes
in demand.

Network Load

Is the bandwidth sufficient? WebLogic Server requires enough bandwidth to handle all
connections from clients. In the case of programmatic clients, each client JVM will have a
single socket to the server. Each socket requires bandwidth. A WebLogic Server handling
programmatic clients should have 125 to 150 percent the bandwidth that a server with Web-
based clients would handle. If you are interested in the bandwidth required to run a web server,
you can assume that each 56kbps (kilobits per second) of bandwidth can handle between
seven and ten simultaneous requests depending upon the size of the content that you are

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-3 of A-6

ORACLE

Appendix A
Assessing Your Application Performance Objectives

delivering. If you are handling only HTTP clients, expect a similar bandwidth requirement as a
Web server serving static pages.

The primary factor affecting the requirements for a LAN infrastructure is the use of replicated
sessions for servlets and stateful session EJBs. In a cluster, replicated sessions are the
biggest consumer of LAN bandwidth. Consider whether your application will require the
replication of session information for servlets and EJBs.

To determine whether you have enough bandwidth in a given deployment, look at the network
tools provided by your network operating system vendor. In most cases, including Windows
and Solaris platforms, you can inspect the load on the network system. If the load is very high,
bandwidth may be a bottleneck for your system.

Clustered Configurations

Clusters greatly improve efficiency and failover. Customers using clustering should not see any
noticeable performance degradation. A number of WebLogic Server deployments in production
involve placing a cluster of WebLogic Server instances on a single multiprocessor server.

Large clusters performing replicated sessions for Enterprise JavaBeans (EJBs) or servlets
require more bandwidth than smaller clusters. Consider the size of session data and the size of
the cluster.

Server Migration

Are your servers configured for migration? Migration in WebLogic Server is the process of
moving a clustered WebLogic Server instance or a component running on a clustered instance
elsewhere in the event of failure. In the case of whole server migration, the server instance is
migrated to a different physical machine upon failure, either manually or automatically.

For capacity planning in a production environment, keep in mind that server startup during
migration taxes CPU utilization. You cannot assume that because a machine can handle x
number of servers running concurrently that it also can handle that same number of servers
starting up on the same machine at the same time.

Application Design

How well-designed is the application? WebLogic Server is a platform for user applications.
Badly designed or unoptimized user applications can drastically slow down the performance of
a given configuration from 10 to 50 percent. The prudent course is to assume that every
application that is developed for WebLogic Server will not be optimal and will not perform as
well as benchmark applications. Increase the maximum capacity that you calculate or expect.
See Tune Your Application.

Assessing Your Application Performance Objectives

Capacity planning for server hardware focuses on the maximum performance requirements
and sets measurable objectives for capacity. Assess your application performance by gathering
information about the level of activity expected on your server, the anticipated number of users,
the number of requests, acceptable response time, and preferred hardware configuration.

The numbers that you calculate from using one of our sample applications are of course just a
rough approximation of what you may see with your application. There is no substitute for
benchmarking with the actual production application using production hardware. In particular,
your application may reveal subtle contention or other issues not captured by our test
applications.

Tuning Performance of Oracle WebLogic Server

G31577-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-4 of A-6

ORACLE Appendix A
Hardware Tuning

Hardware Tuning

The hardware capacity required to support your application depends on the specifics of the
application and configuration. Consider how each factor applies to your configuration and
application.

When you examine performance, a number of factors influence how much capacity a given
hardware configuration will need in order to support WebLogic Server and a given application.

Benchmarks for Evaluating Performance

The Standard Performance Evaluation Corporation, at ht t p: / / www. spec. or g, provides a set of
standardized benchmarks and metrics for evaluating computer system performance.

Supported Platforms

See Supported Configurations in What's New in Oracle WebLogic Server for links to the latest
certification information on the hardware/operating system platforms that are supported for
each release of WebLogic Server.

Network Performance

Network performance is affected when the supply of resources is unable to keep up with the
demand for resources. It is important to continually monitor your network performance to
troubleshoot potential performance bottlenecks.

Today's enterprise-level networks are very fast and are now rarely the direct cause of
performance in well-designed applications. However, if you find that you have a problem with
one or more network components (hardware or software), work with your network administrator
to isolate and eliminate the problem. You should also verify that you have an appropriate
amount of network bandwidth available for WebLogic Server and the connections it makes to
other tiers in your architecture, such as client and database connections.

Determining Network Bandwidth

A common definition of bandwidth is "the rate of the data communications transmission,
usually measured in bits-per-second, which is the capacity of the link to send and receive
communications."” A machine running WebLogic Server requires enough network bandwidth to
handle all WebLogic Server client connections. In the case of programmatic clients, each client
JVM has a single socket to the server, and each socket requires dedicated bandwidth. A
WebLogic Server instance handling programmatic clients should have 125-150 percent of the
bandwidth that a similar Web server would handle. If you are handling only HTTP clients,
expect a bandwidth requirement similar to a Web server serving static pages.

To determine whether you have enough bandwidth in a given deployment, you can use the
network monitoring tools provided by your network operating system vendor to see what the
load is on the network system. You can also use common operating system tools, such as the
net st at command for Solaris or the System Monitor (per f non) for Windows, to monitor your
network utilization. If the load is very high, bandwidth may be a bottleneck for your system.

Also monitor the amount of data being transferred across the your network by checking the
data transferred between the application and the application server, and between the
application server and the database server. This amount should not exceed your network

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-5 of A-6

http://www.spec.org

ORACLE Appendix A
Related Information

bandwidth; otherwise, your network becomes the bottleneck. To verify this, monitor the network
statistics for retransmission and duplicate packets, as follows:

netstat -s -Ptcp

Related Information

Information on topics related to capacity planning is available from numerous third-party
software sources. The Oracle Technology Network provides detailed documentation for

WebLogic Server.
See https://www.oracle.com/middleware/technologies/weblogic.html.

Tuning Performance of Oracle WebLogic Server
G31577-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-6 of A-6

https://www.oracle.com/middleware/technologies/weblogic.html

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Top Tuning Recommendations for WebLogic Server
	Tune Pool Sizes
	Use the Prepared Statement Cache
	Use Logging Last Resource Optimization
	Tune Connection Backlog Buffering
	Use Optimistic or Read-only Concurrency
	Use Local Interfaces
	Use eager-relationship-caching
	Tune HTTP Sessions
	Tune Messaging Applications

	2 Performance Tuning Roadmap and Guidelines
	Performance Tuning Roadmap
	Understand Your Performance Objectives
	Measure Your Performance Metrics
	Monitor Disk and CPU Utilization
	Monitor Data Transfers Across the Network
	Locate Bottlenecks in Your System
	Minimize Impact of Bottlenecks
	Tune Your Application
	Tune your DB
	Tune WebLogic Server Performance Parameters
	Tune Your JVM
	Tune the Operating System
	Achieve Performance Objectives

	Tuning Tips

	3 Tuning Java Virtual Machines (JVMs)
	JVM Tuning Considerations
	Changing To a Different JVM
	Garbage Collection
	VM Heap Size and Garbage Collection
	Choosing a Garbage Collection Scheme
	Using Verbose Garbage Collection to Determine Heap Size
	Specifying Heap Size Values
	Tuning Tips for Heap Sizes
	Java HotSpot VM Heap Size Options
	Other Java HotSpot VM Options

	Increasing Java Heap Size for Managed Servers
	Modify the startManagedWebLogic Script to Set Java Heap Size
	Using the Command Line to Set Java Heap Size
	Determining the Memory Values Used by a Managed Server

	4 Tuning WebLogic Diagnostic Framework and Java Flight Recorder Integration
	Using Java Flight Recorder
	Using WLDF
	Tuning Considerations

	5 Tuning WebLogic Server
	Setting Java Parameters for Starting WebLogic Server
	Development vs. Production Mode Default Tuning Values
	Deployment
	On-demand Deployment of Internal Applications
	Use FastSwap Deployment to Minimize Redeployment Time
	Generic Overrides

	Thread Management
	Tuning a Work Manager
	Self-Tuning Thread Pool Size
	How Many Work Managers are Needed?
	What are the SLA Requirements for Each Work Manager?
	Tuning the Stuck Thread Detection Behavior

	Tuning Network I/O
	Tuning Muxers
	Java Non-Blocking IO (NIO) Muxer
	Native Muxers
	Server Location and Supported Platforms
	Pure-Java Versus Native Socket Reader Implementations
	Configuring Reader Threads for Java Socket Implementation
	Determining Potential Socket Usage

	Network Channels
	Reducing the Potential for Denial of Service Attacks
	Tuning Message Size
	Tuning Complete Message Timeout
	Tuning Number of File Descriptors

	Tuning Connection Backlog Buffering
	Tuning Cached Connections

	Tuning the Work Manager Maximum Threads Constraint Queue Size
	Optimize Java Expressions
	Using WebLogic Server Clusters to Improve Performance
	Scalability and High Availability
	How to Ensure Scalability for WebLogic Clusters
	Database Bottlenecks
	Session Replication
	Asynchronous HTTP Session Replication
	Asynchronous HTTP Session Replication using a Secondary Server
	Asynchronous HTTP Session Replication using a Database

	Invalidation of Entity EJBs
	Invalidation of HTTP sessions
	JNDI Binding, Unbinding and Rebinding

	Running Multiple Server Instances on Multi-Core Machines

	Monitoring a WebLogic Server Domain
	Using the WebLogic Diagnostic Framework
	Using JMX to Monitor WebLogic Server
	Using WLST to Monitor WebLogic Server
	Resources to Monitor WebLogic Server

	Tuning Class and Resource Loading
	Filtering Loader Mechanism
	Class Caching

	6 Tuning the WebLogic Persistent Store
	Overview of Persistent Stores
	Using the Default Persistent Store
	Using Custom File Stores and JDBC Stores
	Using a JDBC TLOG Store
	Using JMS Paging Stores
	Using Flash Storage to Page JMS Messages

	Using Diagnostic Stores

	Best Practices When Using Persistent Stores
	Tuning JDBC Stores
	Tuning File Stores
	Basic Tuning Information
	Tuning a File Store Direct-Write-With-Cache Policy
	Using Flash Storage to Increase Performance
	Additional Considerations

	Tuning the File Store Direct-Write Policy
	Tuning the File Store Block Size
	Setting the Block Size for a File Store
	Determining the File Store Block Size
	Determining the File System Block Size
	Converting a Store with Pre-existing Files

	Using a Network File System
	Configuring Synchronous Write Policies
	Test Server Restart Behavior
	Handling NFS Locking Errors
	Solution 1 – Using NFS v4 Instead of NFS v3
	Solution 2 - Copying Data Files to Remove NFS Locks
	Solution 3 - Disabling File Locks in WebLogic Server File Stores
	Disabling File Locking for all Stores Using a System Property

	7 Database Tuning
	General Suggestions
	Database-Specific Tuning
	Oracle
	Microsoft SQL Server

	8 Tuning WebLogic Server EJBs
	General EJB Tuning Tips
	Tuning EJB Caches
	Tuning the Stateful Session Bean Cache
	Tuning the Entity Bean Cache
	Transaction-Level Caching
	Caching between Transactions
	Ready Bean Caching

	Tuning the Query Cache

	Tuning EJB Pools
	Tuning the Stateless Session Bean Pool
	Tuning the MDB Pool
	Tuning the Entity Bean Pool

	CMP Entity Bean Tuning
	Use Eager Relationship Caching
	Using Inner Joins

	Use JDBC Batch Operations
	Tuned Updates
	Using Field Groups
	include-updates
	call-by-reference
	Bean-level Pessimistic Locking
	Concurrency Strategy

	Tuning In Response to Monitoring Statistics
	Cache Miss Ratio
	Lock Waiter Ratio
	Lock Timeout Ratio
	Pool Miss Ratio
	Destroyed Bean Ratio
	Pool Timeout Ratio
	Transaction Timeout Ratio

	9 Tuning Message-Driven Beans
	Use Transaction Batching
	MDB Thread Management
	Determining the Number of Concurrent MDBs
	Selecting a Concurrency Strategy
	Thread Utilization When Using WebLogic Destinations
	Limitations for Multi-threaded Topic MDBs

	Best Practices for Configuring and Deploying MDBs Using Distributed Topics
	Using MDBs with Foreign Destinations
	Concurrency for MDBs that Process Messages from Foreign Destinations
	Thread Utilization for MDBs that Process Messages from Foreign Destinations

	Token-based Message Polling for Transactional MDB Listening on Queues/Topics
	Compatibility for WLS 10.0 and Earlier-style Polling

	10 Tuning Data Sources
	Tune the Number of Database Connections
	Waste Not
	Use Test Connections on Reserve with Care
	Cache Prepared and Callable Statements
	Database Listener Timeout under Heavy Server Loads
	Disable Wrapping of Data Type Objects
	Advanced Configurations for Oracle Drivers and Databases
	Use Best Design Practices

	11 Tuning Transactions
	Improving Throughput Using XA Transaction Cluster Affinity
	Logging Last Resource Transaction Optimization
	LLR Tuning Guidelines

	Read-only, One-Phase Commit Optimizations

	12 Tuning WebLogic JMS
	JMS Performance & Tuning Check List
	Handling Large Message Backlogs
	Improving Message Processing Performance
	Controlling Message Production
	Drawbacks to Controlling Message Production

	Cache and Re-use Client Resources
	Tuning Distributed Queues
	Tuning Topics
	Tuning Non-durable Topic Publishers

	Tuning for Large Messages
	Tuning MessageMaximum
	Tuning MessageMaximum Limitations

	Setting Maximum Message Size for Network Protocols
	Threshold Compression for Remote Producers
	Store Compression
	Selecting a Message Compression Option
	Message Compression for JMS Servers
	Message Compression for Store-and-Forward Sending Agents

	Paging Out Messages To Free Up Memory
	Specifying a Message Paging Directory
	Tuning the Message Buffer Size Option

	Defining Quota
	Quota Resources
	Destination-Level Quota
	JMS Server-Level Quota

	Subscription Message Limits
	Controlling the Flow of Messages on JMS Servers and Destinations
	How Flow Control Works
	Configuring Flow Control
	Flow Control Thresholds

	Tuning Applications Using Unit-of-Order
	Best Practices
	Using UOO and Distributed Destinations

	Using JMS 2.0 Asynchronous Message Sends
	Using One-Way Message Sends
	Configure One-Way Sends On a Connection Factory
	One-Way Send Support In a Cluster With a Single Destination
	One-Way Send Support In a Cluster With Multiple Destinations
	When One-Way Sends Are Not Supported
	Different Client and Destination Hosts
	XA Enabled On Client's Host Connection Factory
	Higher QOS Detected
	Destination Quota Exceeded
	Change In Server Security Policy
	Change In JMS Server or Destination Status
	Looking Up Logical Distributed Destination Name
	Hardware Failure
	One-Way Send QOS Guidelines

	Client-side Thread Pools
	Best Practices for JMS .NET Client Applications
	Considerations for Oracle Data Guard Environments
	Migrate JMS Services for Unexpected Outages

	13 Tuning WebLogic JMS Store-and-Forward
	Best Practices for JMS SAF
	Tuning Tips for JMS SAF

	14 Tuning WebLogic Message Bridge
	Best Practices
	Changing the Batch Size
	Changing the Batch Interval
	Changing the Quality of Service
	Using Multiple Bridge Instances
	Changing the Thread Pool Size
	Avoiding Durable Subscriptions
	Co-locating Bridges with Their Source or Target Destination
	Changing the Asynchronous Mode Enabled Attribute
	Tuning Environments with Many Bridges

	15 Tuning Resource Adapters
	Classloading Optimizations for Resource Adapters
	Connection Optimizations
	Thread Management
	InteractionSpec Interface

	16 Tuning Web Applications
	Best Practices
	Disable Page Checks
	Use Custom JSP Tags
	Precompile JSPs
	Use HTML Template Compression
	Use Service Level Agreements
	Related Reading

	Session Management
	Managing Session Persistence
	Minimizing Sessions
	Aggregating Session Data

	Pub-Sub Tuning Guidelines
	Enabling GZIP Compression

	17 Tuning Web Services
	Web Services Best Practices
	Tuning Web Service Reliable Messaging Agents
	Tuning Heavily Loaded Systems to Improve Web Service Performance
	Setting the Work Manager Thread Pool Minimum Size Constraint
	Setting the Buffering Sessions
	Releasing Asynchronous Resources

	18 Tuning WebLogic Tuxedo Connector
	Configuration Guidelines
	Best Practices

	A Capacity Planning
	Capacity Planning Factors
	Programmatic and Web-based Clients
	RMI and Server Traffic
	SSL Connections and Performance
	WebLogic Server Process Load
	Database Server Capacity and User Storage Requirements
	Concurrent Sessions
	Network Load
	Clustered Configurations
	Server Migration
	Application Design

	Assessing Your Application Performance Objectives
	Hardware Tuning
	Benchmarks for Evaluating Performance
	Supported Platforms

	Network Performance
	Determining Network Bandwidth

	Related Information

