Oracle® Fusion Middleware
Developing and Securing RESTful Web
Services for Oracle WebLogic Server

15¢ (15.1.1.0.0)
(G31580-01
October 2025

ORACLE"

Oracle Fusion Middleware Developing and Securing RESTful Web Services for Oracle WebLogic Server, 15¢
(15.1.1.0.0)

G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience i
Documentation Accessibility i
Diversity and Inclusion i
Related Documentation ii
Conventions ii

1 Introduction to RESTful Web Services

Introduction to the REST Architectural Style

What are RESTful Web Services?

Standards Supported for RESTful Web Service Development on WebLogic Server
Roadmap for Implementing RESTful Web Services

Learn More About RESTful Web Services

A W NN PP

2 Developing RESTful Web Services

About RESTful Web Service Development
Summary of Tasks to Develop RESTful Web Services
Example of a RESTful Web Service
Defining the Root Resource Class
Defining the Relative URI of the Root Resource and Subresources
How to Define the Relative URI of the Resource Class (@Path)
How to Define the Relative URI of Subresources (@Path)
What Happens at Runtime: How the Base URI is Constructed
Mapping Incoming HTTP Requests to Java Methods
About the Jersey Bookmark Sample
How to Transmit a Representation of the Resource (@GET)
How to Create or Update the Representation of the Resource (@PUT)

© 00 N N O OBk B W WDNDNPRE

How to Delete a Representation of the Resource (@DELETE)

How to Create, Update, or Perform an Action on a Representation of the Resource
(@POST) 10

Customizing Media Types for the Request and Response Messages 10
How To Customize Media Types for the Request Message (@Consumes) 11

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of iii

How To Customize Media Types for the Response Message (@Produces) 11
What Happens At Runtime: How the Resource Method Is Selected for Response
Messages 12
Extracting Information From the Request Message 12
How to Extract Variable Information from the Request URI (@PathParam) 13
How to Extract Request Parameters (@QueryParam) 13
How to Define the DefaultValue (@ DefaultValue) 14
Enabling the Encoding Parameter Values (@Encoded) 15
Building Custom Response Messages 15
Mapping HTTP Request and Response Entity Bodies Using Entity Providers 18
Accessing the Application Context 19
Building URIs 20
Using Conditional GETs 21
Accessing the WADL 22
More Advanced RESTful Web Service Tasks 22
Developing RESTful Web Service Clients
Summary of Tasks to Develop RESTful Web Service Clients 1
Example of a RESTful Web Service Client 1
Invoking a RESTful Web Service from a Standalone Client 2
Using the Reactive JAX-RS Client API 3
Building, Packaging, and Deploying RESTful Web Service Applications
Building RESTful Web Service Applications 1
Packaging RESTful Web Service Applications 1
Packaging With an Application Subclass 2
Packaging With a Servlet 2
How to Package the RESTful Web Service Application with Servlet 3.0 3
How to Package the RESTful Web Service Application with Pre-3.0 Servlet
Descriptors 5
Packaging as a Default Resource 6
Deploying RESTful Web Service Applications
Securing RESTful Web Services and Clients
About RESTful Web Service Security 1
Securing RESTful Web Services Using web.xml 1
Securing RESTful Web Services Using SecurityContext 2
Securing RESTful Web Services Using Java Security Annotations 3

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page ii of iii

6 Testing RESTful Web Services

7 Monitoring RESTful Web Services and Clients

About Monitoring RESTful Web Services

Monitoring RESTful Web Services Using WLST
Enabling the Tracing Feature

Disabling RESTful Web Service Application Monitoring

D o1 o N

Disabling Monitoring for a RESTful Web Service Application Using Jersey Property

Disabling Monitoring for a RESTful Web Service Application Using WebLogic
Configuration MBean

Disabling RESTful Web Service Application Monitoring for a WebLogic Domain

[o LN

Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service Application 9

8 Using Server-Sent Events in WebLogic Server

Overview of Server-Sent Events (SSE)
Using Server-Sent Events
Understanding the WebLogic Server-Sent Events API

N N

Sample Applications for Server-Sent Events

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page iii of iii

ORACLE’

Preface

This documentation describes how to develop Jakarta Enterprise web services for Oracle
WebLogic Server 15c.

« Audience

« Documentation Accessibility

» Diversity and Inclusion

» Related Documentation

e Conventions

Audience

This documentation is written for software developers who want develop Jakarta Enterprise
web services for Oracle WebLogic Server 15c¢ that conform to the Representational State
Transfer (REST) architectural style using Jakarta RESTful Web Services (JAX-RS).

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at htt p: / / www. or acl e. con pl s/t opi ¢/ | ookup?ct x=accé& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit ht t p: / / www. or acl e. conf pl s/t opi ¢/ | ookup?

ct x=acc&i d=i nfo or visithttp: // www. oracl e. con pl s/t opi c/| ookup?ct x=acc& d=trs if you
are hearing impaired.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE
Preface

Related Documentation

New and Changed WebLogic Server Features

For a comprehensive listing of the new and changed WebLogic Server features introduced in
this release, see What's New in Oracle WebLogic Server.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page ii of ii

Introduction to RESTful Web Services

RESTful web services are Jakarta Enterprise web services that you develop to conform to the
Representational State Transfer (REST) architectural style using Jakarta RESTful Web
Services (JAX-RS).

e Introduction to the REST Architectural Style
REST describes any simple interface that transmits data over a standardized interface
(such as HTTP) without an additional messaging layer, such as Simple Object Access
Protocol (SOAP). REST is an architectural style—not a toolkit—that provides a set of
design rules for creating stateless services that are viewed as resources, or sources of
specific information (data and functionality). Each resource can be identified by its unique
Uniform Resource Identifiers (URIs).

* What are RESTful Web Services?
RESTful web services are services that are built according to REST principles and, as
such, are designed to work well on the Web.

e Standards Supported for RESTful Web Service Development on WebLogic Server

¢ Roadmap for Implementing RESTful Web Services
¢ Learn More About RESTful Web Services

Introduction to the REST Architectural Style

REST describes any simple interface that transmits data over a standardized interface (such
as HTTP) without an additional messaging layer, such as Simple Object Access Protocol
(SOAP). REST is an architectural style—not a toolkit—that provides a set of design rules for
creating stateless services that are viewed as resources, or sources of specific information
(data and functionality). Each resource can be identified by its unique Uniform Resource
Identifiers (URIS).

A client accesses a resource using the URI and a standardized fixed set of methods, and a
representation of the resource is returned. A representation of a resource is typically a
document that captures the current or intended state of a resource. The client is said to
transfer state with each new resource representation.

Table 1-1 defines a set of constraints defined by the REST architectural style that must be
adhered to in order for an application to be considered "RESTful."

Table 1-1 Constraints of the REST Architectural Style
. ___ |

Constraint Description

Addressability Identifies all resources using a uniform resource identifier (URI). In the English language,
URIs would be the equivalent of a noun.

Uniform interface Enables the access of a resource using a uniform interface, such as HTTP methods (GET,
POST, PUT, and DELETE). Applying the English language analogy, these methods would be
considered verbs, describing the actions that are applicable to the named resource.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 4

ORACLE’

Chapter 1
What are RESTful Web Services?

Table 1-1 (Cont.) Constraints of the REST Architectural Style
|

Constraint

Description

Client-server architecture Separates clients and servers into interface requirements and data storage requirements.

This architecture improves portability of the user interface across multiple platforms and
scalability by simplifying server components.

Stateless interaction Uses a stateless communication protocol, typically Hypertext Transport Protocol (HTTP). All

requests must contain all of the information required for a particular request. Session state is
stored on the client only.

This interactive style improves:

» Visibility—Single request provides the full details of the request.

* Reliability—Eases recovery from partial failures.

» Scalability—Not having to store state enables the server to free resources quickly.

Cacheable

Enables the caching of client responses. Responses must be identified as cacheable or non-
cacheable. Caching eliminates some interactions, improving efficiency, scalability, and
perceived performance.

Layered system

Enables client to connect to an intermediary server rather than directly to the end server
(without the client's knowledge). Use of intermediary servers improve system scalability by
offering load balancing and shared caching.

What are RESTful Web Services?

RESTful web services are services that are built according to REST principles and, as such,
are designed to work well on the Web.

RESTful web services conform to the architectural style constraints defined in Table 1-1.
Typically, RESTful web services are built on the HTTP protocol and implement operations that
map to the common HTTP methods, such as GET, POST, PUT, and DELETE to retrieve,
create, update, and delete resources, respectively.

Standards Supported for RESTful Web Service Development on
WebLogic Server

The Jakarta RESTful Web Services specification provides support for creating web services
according to REST architectural style. Jakarta RESTful Web Services use annotations to
simplify the development of RESTful web services. By simply adding annotations to your web
service, you can define the resources and the actions that can be performed on those
resources. The Jakarta RESTful Web Services specification is part of the Jakarta EE Platform
full profile, and is integrated with Contexts and Dependency Injection (CDI) for the Jakarta EE
Platform (CDI), Jakarta Enterprise Beans (EJB) technology, and Jakarta Servlet technology.
WebLogic Server 15.1.1.0.0 supports the following Jakarta RESTful Web Services
specification:

« Jakarta RESTful Web Services 3.0
e Jersey 3.0.18

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 4

ORACLE Chapter 1
Roadmap for Implementing RESTful Web Services

@® Note

Jersey support is provided by default in this release of WebLogic Server. Registration
as a shared library is no longer required.

Jersey includes the following functionality:
e Jersey

« Jakarta RESTful Web Services

e JSON processing and streaming

Table 1-2 lists key features delivered with Jersey.

Table 1-2 Key Features in Jersey

___|]
Key Feature Description

Client API Communicate with RESTful web services in a standard way. The Client API facilitates the
consumption of a web service exposed via HTTP protocol and enables developers to
concisely and efficiently implement portable client-side solutions that leverage existing and
well established client-side HTTP connector implementations.

For complete details, see:
e Client APl in Jersey 3.0.18 User Guide
e Accessing REST Resources with the JAX-RS Client API in The Jakarta EE Tutorial

Asynchronous Invoke and process requests asynchronously.

communication For complete details, see:
« Asynchronous Services and Clients in the Jersey 3.0.18 User Guide
* Advanced Features of the Client API in The Jakarta EE Tutorial

Filters and interceptors Using filters, modify inbound and outbound requests and responses., such as header
information. Using interceptors, modify entity input and output streams. Filters and
interceptors can be used on both the client and server side.

For complete details, see Filters and Interceptors in the Jersey 3.0.18 User Guide .

For more information about JAX-RS and samples, see Learn More About RESTful Web
Services.

Roadmap for Implementing RESTful Web Services

Review a roadmap of common tasks for developing, packaging and deploying, securing, and
monitoring RESTful web services and clients. These tasks are listed in Table 1-3.

Table 1-3 Roadmap for Implementing RESTful Web Services and Clients

Task More Information

Develop RESTful web services. Developing RESTful Web Services

Develop clients to invoke the RESTful web Summary of Tasks to Develop RESTful Web Service Clients
services.

Package and deploy RESTful web services. e Packaging With an Application Subclass

. Packaging With a Servlet
. Packaging as a Default Resource

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 4

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/client.html
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/websvcs/rest-client/rest-client.html
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/async.html
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/websvcs/rest-client/rest-client.html#_advanced_features_of_the_client_api
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/filters-and-interceptors.html

ORACLE’

Chapter 1
Learn More About RESTful Web Services

Table 1-3 (Cont.) Roadmap for Implementing RESTful Web Services and Clients

Task

More Information

Secure RESTful web services.

. Securing RESTful Web Services Using web.xml
¢ Securing RESTful Web Services Using SecurityContext
* Securing RESTful Web Services Using Java Security Annotations

Test RESTful web services.

Testing RESTful Web Services

Monitor RESTful web services.

Monitoring RESTful Web Services and Clients

(Optional) Migrate existing app
earlier Jersey versions.

lications from Migration Guide in Jersey 3.0.18 User Guide

Learn More About RESTful Web Services

For additio

nal information about RESTful web services, review the resources in Table 1-4.

Table 1-4 Resources for More Information

Resource

Link

Jersey User Guide

Jersey 3.0.18 User Guide

Jersey API Javadoc

Jersey 3.0.18 API Documentation

Community Wiki for Project
Jersey

https://jersey.qgithub.iol

Jakarta RESTful Web
Services Specification

https://jakarta. ee/specifications/restful-ws/

JAX-RS API Javadoc

https://jakartaee. github.iolrest/api docs/

JAX-RS Project

https://qgithub.conljakartaeelrest

RESTful Web Services (JAX-
RS) sample

Sample Application and Code Examples in Understanding Oracle WebLogic Server.

The Jakarta EE Tutorial:
Building RESTful Web
Services With JAX-RS

https://jakarta.eel/learn/docs/jakartaee-tutorial/9.1/ websvcs/rest/
rest. htnl

"Representational State
Transfer (REST)" in
Architectural Styles and the
Design of Network-based
Software Architectures
(Dissertation by Roy Fielding)

http://ww.ics.uci.edu/~fielding/pubs/dissertation/rest arch style.htm

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 4

https://eclipse-ee4j.github.io/jersey.github.io/documentation/latest30x/migration.html
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/index.html
https://eclipse-ee4j.github.io/jersey.github.io/apidocs/3.0.18/jersey/index.html
https://jersey.github.io/
https://jakarta.ee/specifications/restful-ws/
https://jakartaee.github.io/rest/apidocs/
https://github.com/jakartaee/rest
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/websvcs/rest/rest.html
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/websvcs/rest/rest.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Developing RESTful Web Services

To develop Jakarta Enterprise web services that conform to the Representational State
Transfer (REST) architectural style using Jakarta RESTful Web Services (JAX-RS), you
perform tasks such as defining the root resource class, mapping incoming HTTP requests to
Java methods, customizing media types for requests and responses, and more.

e About RESTful Web Service Development

» Defining the Root Resource Class

« Defining the Relative URI of the Root Resource and Subresources

* Mapping Incoming HTTP Requests to Java Methods

 Customizing Media Types for the Request and Response Messages

« Extracting Information From the Request Message

e Building Custom Response Messages
Instead of the default response codes, you can customize the response codes returned or
include additional metadata information in the response.

 Mapping HTTP Request and Response Entity Bodies Using Entity Providers

» Accessing the Application Context

e Building URIs

e Using Conditional GETs
A conditional GET enables you to evaluate one or more preconditions before processing a
GET request. If the preconditions are met, a Not Mdi fied (304) response can be
returned rather than the normal response, potentially reducing bandwidth and improving
server performance.

e Accessing the WADL
The Web Application Description Language (WADL) is an XML-based file format that
describes your RESTful web services application. By default, a basic WADL is generated
at runtime and can be accessed from your RESTful web service by issuing a GET on the /
application.wadl resource at the base URI of your RESTful application.

More Advanced RESTful Web Service Tasks

About RESTful Web Service Development

JAX-RS is a Java programming language API that uses annotations to simplify the
development of RESTful web services. JAX-RS annotations are runtime annotations. When
you deploy the Jakarta EE application archive containing JAX-RS resource classes to
WebLogic Server, as described in Building, Packaging, and Deploying RESTful Web Service
Applications , the runtime configures the resources, generates the helper classes and artifacts,
and exposes the resource to clients.

For information about developing RESTful web services using Oracle JDeveloper, see
Creating RESTful Web Services and Clients in Developing Applications with Oracle
JDeveloper.

The following sections provide more information about RESTful web service development:

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 22

ORACLE’

Chapter 2
About RESTful Web Service Development

Summary of Tasks to Develop RESTful Web Services

« Example of a RESTful Web Service

Summary of Tasks to Develop RESTful Web Services

Table 2-1 summarizes a subset of the tasks that are required to develop RESTful web service
using JAX-RS annotations. For more information about advanced tasks, see More Advanced

RESTful Web Service Tasks.

@® Note

In addition to the development tasks described in Table 2-1, you may wish to take
advantage of features available with Jersey when developing your RESTful web
services. For a list of key features, see Table 1-2.

Table 2-1 Summary of Tasks to Develop RESTful Web Services
|

Task

More Information

Define the root resource class.

Defining the Root Resource Class

Define the relative URI of the root resource class and its
methods using the @Pat h annotation.

If you define the @at h annotation using a variable, you can
assign a value to it using the @at hPar amannotation.

Defining the Relative URI of the Root Resource and

Subresources

Map incoming HTTP requests to your Java methods using
@BET, @OST, @PUT, or @ELETE, to get, create, update, or
delete representations of the resource, respectively.

Mapping Incoming HTTP Requests to Java Methods

Customize the request and response messages, as required,
to specify the MIME media types of representations a
resource can produce and consume.

Customizing Media Types for the Request and Response
Messages

Extract information from the request.

Extracting Information From the Request Message

Build custom response messages to customize response
codes or include additional metadata.

Building Custom Response Messages

Access information about the application deployment context
or the context of individual requests.

Accessing the Application Context

Build new or extend existing resource URIs.

Building URIs

Evaluate one or more preconditions before processing a GET
request, potentially reducing bandwidth and improving server
performance.

Using Conditional GETs

Access the WADL.

Accessing the WADL

Optionally, create a class that extends
jakarta.ws.rs.core. Application to define the
components of a RESTful web service application
deployment and provides additional metadata.

Packaging With an Application Subclass

Secure your RESTful web services.

Securing RESTful Web Services and Clients

Example of a RESTful Web Service

Example 2-1 provides a simple example of a RESTful web service. In this example:

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 22

ORACLE’

Chapter 2
Defining the Root Resource Class

The hel | oWor | d class is a resource with a relative URI path defined as / hel | owor | d. At
runtime, if the context root for the WAR file is defined as ht t p: / / exanpl es. com the full
URI to access the resource is htt p: / / exanpl es. conl hel | owor | d. See Defining the
Relative URI of the Root Resource and Subresources.

The sayHel | o method supports the HTTP GET method. See Mapping Incoming HTTP
Requests to Java Methods.

The sayHel | 0 method produces content of the MIME media type t ext/ pl ai n. See
Customizing Media Types for the Request and Response Messages.

Additional examples are listed in Learn More About RESTful Web Services.

Example 2-1 Simple RESTful Web Service

package sanpl es. hel | oworl d;

inport jakarta.ws.rs.GET,
import jakarta.ws.rs.Path;
inport jakarta.ws.rs.Produces;

/1 Specifies the path to the RESTful service

@rat h("/ hel | owor| d")

public class helloWrld {

/1 Specifies that the method processes HTTP GET requests

@ET

@roduces("text/plain")
public String sayHello() {
return "Hello World!";

}
}

Defining the Root Resource Class

A root resource class is a Plain Old Java Object (POJO) that meets specific annotation
requirements. The root resource class must satisfy one or both of the following statements:

Is annotated with @at h. See Defining the Relative URI of the Root Resource and
Subresources.

Has at least one method annotated with @at h or with a request method designator, such
as @BET, @POST, @UT, or @ELETE. A resource method is a method in the resource class
that is annotated using a request method designator. See Mapping Incoming HTTP
Requests to Java Methods.

Defining the Relative URI of the Root Resource and
Subresources

Add the j akarta. ws. rs. Pat h annotation at the class level of the resource to define the relative
URI of the RESTful web service. Such classes are referred to as root resource classes. You
can add @at h on methods of the root resource class as well, to define subresources to group
specific functionality.

The following sections describe how to define the relative URI of the root resource and
subresources:

How to Define the Relative URI of the Resource Class (@Path)

How to Define the Relative URI of Subresources (@Path)

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 22

ORACLE Chapter 2
Defining the Relative URI of the Root Resource and Subresources

What Happens at Runtime: How the Base URI is Constructed

How to Define the Relative URI of the Resource Class (@Path)

The @Pat h annotation defines the relative URI path for the resource, and can be defined as a
constant or variable value (referred to as "URI path template™). You can add the @at h
annotation at the class or method level.

To define the URI as a constant value, pass a constant value to the @at h annotation.
Preceding and ending slashes (/) are optional.

In Example 2-2, the relative URI for the resource class is defined as the constant value, /
hel | owor | d.

Example 2-2 Defining the Relative URI as a Constant Value

package sanpl es. hel | owor| d;
import jakarta.ws.rs.Path;

/1 Specifies the path to the RESTful service
@Path('/helloworld™)
public class helloWrld {. . .}

To define the URI as a URI path template, pass one or more variable values enclosed in
braces in the @at h annotation. Then, you can use the j akart a. ws. rs. Pat hPar amannotation
to extract variable information from the request URI, defined by the @at h annotation, and
initialize the value of the method parameter, as described in How to Extract Variable
Information from the Request URI (@PathParam).

In Example 2-3, the relative URI for the resource class is defined using a variable, enclosed in
braces, for example, / user s/ {user name}.

Example 2-3 Defining the Relative URI as a Variable Value

package sanpl es. hel | oworl d;
import jakarta.ws.rs.Path;

/1 Specifies the path to the RESTful service
@Path("'/users/{username}")
public class hellowrld {. . .}

}

To further customize the variable, you can override the default regular expression of "[*/]+?" by
specifying the expected regular expression as part of the variable definition. For example:

@rat h("users/{username: [a-zA-Z][a-zA-Z 0-9]}")
In this example, the user name variable will match only user names that begin with one
uppercase or lowercase letter followed by zero or more alphanumeric characters or the

underscore character. If the user name does not match the requirements, a 404 (Not Found)
response will be sent to the client.

See the @Pat h annotation in the Jakarta EE 9.1 APl Documentation .

How to Define the Relative URI of Subresources (@Path)

Add the j akarta. ws. rs. Pat h annotation to the method of a resource to define a subresource.
Subresources enable users to group specific functionality for a resource.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/path

ORACLE

Chapter 2
Defining the Relative URI of the Root Resource and Subresources

In Example 2-4, if the request path of the URI is users/ | i st, then the get User Li st
subresource method is matched and a list of users is returned.

Example 2-4 Defining a Subresource

package sanpl es. hel | owor| d;

import jakarta.ws.rs.GET,
import jakarta.ws.rs.Path;

/1 Specifies the path to the RESTful service

@rat h("/users")

public class UserResource {

..@ET

@Path(/list")

public String getUserList() {

}
}

What Happens at Runtime: How the Base URI is Constructed

The base URI is constructed as follows:

http: // myHost Name/ cont ext Pat h/ ser vl et URI / r esour ceURI

myHost Name—DNS name mapped to the Web Server. You can replace this with host : port
which specifies the name of the machine running WebLogic Server and the port used to
listen for requests.

cont ext Pat h—Name of the standalone Web application. The Web application name is
specified in the META- | NF/ appl i cati on. xm deployment descriptor in an EAR file or the
webl ogi c. xm deployment descriptor in a WAR file. If not specified, it defaults to the name
of the WAR file minus the . war extension. See context-root in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

servl et URI—Base URI for the servlet context path. This path is configured as part of the
packaging options defined in Table 4-1. Specifically, you can define the servlet context path
by:

— Updating the web. xm deployment descriptor to define the servlet mapping.

— Adding ajakarta.ws.rs. ApplicationPat h annotation to the class that extends
jakarta.ws.rs.core. Application, if defined.

If the servlet context path is configured using both options above, then the servlet mapping
takes precedence. If you do not configure the servlet context path in your configuration
using either of the options specified above, the WebLogic Server provides a default
RESTful web service application context path, r esour ces. See Building, Packaging, and
Deploying RESTful Web Service Applications .

r esour ceURI —@pat h value specified for the resource or subresource. This path may be
constructed from multiple resources and subresources @at h values.

In Example 2-2, at runtime, if the context path for the WAR file is defined as rest and the
default URI for the servlet (r esour ces) is in effect, the base URI to access the resource is
http://nyServer: 7001/ rest/resources/ hel | oworl d.

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 22

ORACLE Chapter 2
Mapping Incoming HTTP Requests to Java Methods

In Example 2-3, at runtime, the base URI will be constructed based on the value specified for
the variable. For example, if the user entered j ohnsni t h as the username, the base URI to
access the resource is htt p: // nyServer: 7001/ rest/resour ces/ users/johnsmi t h.

Mapping Incoming HTTP Requests to Java Methods

JAX-RS uses Jakarta annotations to map an incoming HTTP request to a Java method.
Table 2-2 lists the annotations available, which map to the similarly named HTTP methods.

Table 2-2 jakarta.ws.rs Annotations for Mapping HTTP Requests to Java Methods

Annotation Description Idempotent

@sET Transmits a representation of the resource identified by the URI to the client. The Yes
format might be HTML, plain text, JPEG, and so on. See How to Transmit a
Representation of the Resource (@GET).

@\ur Creates or updates the representation of the specified resource identified by the Yes
URI. See How to Create or Update the Representation of the Resource (@PUT).

@PELETE Deletes the representation of the resource identified by the URI. See How to Delete Yes
a Representation of the Resource (@DELETE).

@QcsT Creates, updates, or performs an action on the representation of the specified No
resource identified by the URI. See How to Create, Update, or Perform an Action
on a Representation of the Resource (@POST).

@HEAD Returns the response headers only, and not the actual resource (that is, no Yes
message body). This is useful to save bandwidth to check characteristics of a
resource without actually downloading it. See the @HEAD annotation in the Jakarta
EE 9.1 APl Documentation .

The HEAD method is implemented automatically if not implemented explicitly. In this

case, the runtime invokes the implemented GET method, if present, and ignores the
response entity, if set.

@PTI ONS Returns the communication options that are available on the request/response Yes
chain for the specified resource identified by the URI. The Al | owresponse header
will be set to the set of HTTP methods supported by the resource and the WADL
file is returned. See the @PTI ONS annotation in the Jakarta EE 9.1 API
Documentation .

The OPTI ONS method is implemented automatically if not implemented explicitly. In
this case, the Al | owresponse header is set to the set of HTTP methods supported
by the resource and the WADL describing the resource is returned.

@+t t pMet hod Indicates that the annotated method should be used to handle HTTP requests. See N/A
the @1t t pMet hod annotation in the Jakarta EE 9.1 APl Documentation .

The following sections provide more information about the JAX-RS annotations used for
mapping HTTP requests to Java methods.

« About the Jersey Bookmark Sample

« How to Transmit a Representation of the Resource (QGET)

« How to Create or Update the Representation of the Resource (@PUT)

« How to Delete a Representation of the Resource (@QDELETE)

« How to Create, Update, or Perform an Action on a Representation of the Resource

(@POST)

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/head
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/options
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/httpmethod

ORACLE Chapter 2
Mapping Incoming HTTP Requests to Java Methods

About the Jersey Bookmark Sample

The examples referenced in the following sections are excerpted from the bookmark sample
that is delivered with Jersey (JAX-RS RI). The bookmark sample provides a Web application
that maintains users and the browser bookmarks that they set.

The following table summarizes the resource classes in the sample, their associated URI path,
and the HTTP methods demonstrated by each class.

Table 2-3 About the Jersey Bookmark Sample
__|

Resource Class URI Path HTTP Methods Demonstrated
User sResource [users GET

User Resour ce [users/{userid} GET, PUT, DELETE

Bookmar ksResour ce [users/{userid}/bookmarks GET, POST

Bookmar kResour ce [users/{userid}/bookmarks/{bm d} GET. PUT, DELETE

The bookmark sample, and other Jersey samples, can be accessed in one of the following
ways:

e Accessing the bookmark sample at htt ps: //repol. maven. or g/ maven?2/ or g/ gl assfi sh/
j ersey/ exanpl es/ bookmar k/

* Browsing the Maven repositories for all Jersey examples, including a WebLogic Server-
specific example bundle for each version, at: htt ps: //repol. maven. or g/ maven2/ or g/
gl assfish/jersey/bundl es/jersey-exanpl es/

How to Transmit a Representation of the Resource (QGET)

The j akarta. ws. rs. GET annotation transmits a representation of the resource identified by the
URI to the client. The format or the representation returned in the response entity-body might
be HTML, plain text, JPEG, and so on. See the @&ET annotation in the Jakarta EE 9.1
Specification APIs.

In Example 2-5, the annotated Java method, get Booknar kAsJsonAr r ay, from the
Bookmar ksResour ce class in the Jersey bookmark sample, will process HTTP GET requests.
See About the Jersey Bookmark Sample.

Example 2-5 Mapping the HTTP GET Request to a Java Method (BookmarksResource Class)

import jakarta.ws.rs.GET;
i mport jakarta.ws.rs.Produces;
import jakarta.ws.rs.Path;

public class BookmarksResource {

@ath("{bmd: .+}")
publ i c Bookmar kResour ce get Booknar k(@at hParan{"bni d") String bmd) {
return new Booknar kResource(urilnfo, em
user Resour ce. get UserEntity(), bmd);

}
@GET

@r oduces(Medi aType. APPLI CATI ON_JSQON)

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 22

https://repo1.maven.org/maven2/org/glassfish/jersey/examples/bookmark/
https://repo1.maven.org/maven2/org/glassfish/jersey/examples/bookmark/
https://repo1.maven.org/maven2/org/glassfish/jersey/bundles/jersey-examples/
https://repo1.maven.org/maven2/org/glassfish/jersey/bundles/jersey-examples/
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/get

ORACLE Chapter 2
Mapping Incoming HTTP Requests to Java Methods

public JSONArray getBookmarksAsJsonArray() {
JSONArray uriArray = new JSONArray();
for (BookmarkEntity booknarkEntity : getBookmarks()) {
Uri Bui l der ub = urilnfo.getAbsol utePat hBuil der();
URl bookmarkUri = ub.
pat h(bookmar kEnt i ty. get Booknar kEntityPK().getBmd()).
bui 1 d();
uri Array. put (booknarkUri.toASCI I String());
}

return uriArray;

In Example 2-6, the annotated Java method, get Booknar k, from the Bookmar kResour ce class in
the Jersey bookmark sample, will process HTTP GET requests. This example shows how to
process the JSON object that is returned. See About the Jersey Bookmark Sample.

Example 2-6 Mapping the HTTP GET Request to a Java Method (BookmarkResource Class)
import jakarta.ws.rs.GET;
i mport jakarta.ws.rs.Produces;
import jakarta.ws.rs.Path;
public class BookmarkResource {
@GET
@r oduces(Medi aType. APPLI CATI ON_JSQON)

publ i c JSONObj ect get Bookmark() {
return asJson();

}
publ i c JSONObj ect asJson() {
try {
return new JSONObj ect ()
.put ("userid", bookmarkEntity.getBookmarkEntityPK().getUserid())
. put ("sdesc", bookmarkEntity.get Sdesc())
.put ("l desc", bookmarkEntity.getLdesc())
.put("uri", bookmarkEntity.getUri());
} catch (JSONException je){
return null;
}
}

}

How to Create or Update the Representation of the Resource (QPUT)

The j akarta. ws. rs. PUT annotation creates or updates the representation of the specified
resource identified by the URI. See the @UT annotation in the Jakarta EE 9.1 Specification
APIs.

In Example 2-7, the annotated Java method, put Booknar k, from the Bookmar kResour ce class in
the Jersey bookmark sample, will process HTTP PUT requests and update the specified
bookmark. See About the Jersey Bookmark Sample.

Example 2-7 Mapping the HTTP PUT Request to a Java Method

import jakarta.ws.rs.PUT;
import jakarta.ws.rs.Produces;

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/put

ORACLE’

Chapter 2

Mapping Incoming HTTP Requests to Java Methods

import jakarta.ws.rs. Path;
publ i c class BookmarkResource {
. @PUT
@onsunes(Medi aType. APPLI CATI ON_JSON)

public voi d put Booknar k(JSONObj ect jsonEntity) throws JSONException {

bookmar kEntity. set Ldesc(j sonEntity.getString("ldesc"));
bookmar kEntity. set Sdesc(j sonEntity.getString("sdesc"));
bookmar kEntity. set Updat ed(new Date());
Transact i onManager . manage(new Transactional (en) {
public void transact() {
em ner ge(bookmar kEntity);

)

}

How to Delete a Representation of the Resource (@DELETE)

The j akarta. ws. rs. DELETE annotation deletes the representation of the specified resource
identified by the URI. The response entity-body may return a status message or may be empty.

See the @ELETE annotation in the Jakarta EE 9.1 Specification APIs.

In Example 2-8, the annotated Java method, del et eBookmar k, from the Bookmar kResour ce
class in the Jersey bookmark sample, will process HTTP DELETE requests, and delete the

specified bookmark. See About the Jersey Bookmark Sample.

Example 2-8 Mapping the HTTP DELETE Request to a Java Method

import jakarta.ws.rs.DELETE;
inport jakarta.ws.rs.Produces;
import jakarta.ws.rs. Path;

public class BookmarkResource {

@DELETE
public void del et eBookmark() {

Transacti onManager . manage(new Transactional (en) {
public void transact() {

UserEntity userEntity = bookmarkEntity.getUserEntity();
userEntity. get Bookmar kEntityCol | ection().renove(bookmarkEntity);
em nmerge(userEntity);

em renmove(bookmarkEntity);

)

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/delete

ORACLE Chapter 2
Customizing Media Types for the Request and Response Messages

How to Create, Update, or Perform an Action on a Representation of the
Resource (@POST)

The j akarta. ws. rs. POST annotation creates, updates, or performs an action on the
representation of the specified resource identified by the URI. See the @QOST annotation in the
Jakarta EE 9.1 Specification APIs.

In Example 2-9, the annotated Java method, post For m from the Bookmar ksResour ce class in
the Jersey bookmark sample, will process HTTP POST requests, and update the specified
information. See About the Jersey Bookmark Sample.

Example 2-9 Mapping the HTTP POST Request to a Java Method

import jakarta.ws.rs.POST;
inport jakarta.ws.rs.Produces;

publ i ¢ class BookmarksResource {
"~ @POST
@onsumes(Medi aType. APPLI CATI ON_JSON)
publ i ¢ Response post For n{ JSONCbj ect bookmark) throws JSONException {

final BookmarkEntity bookmarkEntity = new
Bookmar kEnt i t y(get Bookmar kI d(bookmar k. get String("uri")),

user Resource. get UserEntity().getUserid());

bookmar kEntity. set Uri (bookmark. get String("uri"));

bookmar kEntity. set Updat ed(new Date());

bookmar kEnt i ty. set Sdesc(bookmark. get String("sdesc"));

bookmar kEntity. set Ldesc(bookmark. get String("ldesc"));

user Resour ce. get User Entity(). get Bookmar kEntityCol | ection().add(bookmarkEntity);

Transact i onManager . manage(new Transactional (en) {
public void transact() {

em nmer ge(user Resour ce. get UserEntity());

)

URI bookmarkUri = urilnfo.getAbsol utePat hBui | der ().
pat h(booknar kEntity. get Bookmar KEnt it yPK(). get Bni d()).
bui 1d();

return Response. created(bookmarkUri). build();

}

Customizing Media Types for the Request and Response
Messages

To customize the media types for request and response messages, add the
jakarta.ws. rs. Consunes or j akarta.ws. rs. Produces annotation at the class level of the
resource. This task is described in the following sections:

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/post

ORACLE Chapter 2
Customizing Media Types for the Request and Response Messages

* How To Customize Media Types for the Request Message (@Consumes)

 How To Customize Media Types for the Response Message (@Produces)

* What Happens At Runtime: How the Resource Method Is Selected for Response
Messages

How To Customize Media Types for the Request Message (@Consumes)

The j akarta. ws. rs. Consumes annotation enables you to specify the MIME media types of
representations a resource can consume that were sent from the client. The @onsunes
annotation can be specified at both the class and method levels and more than one media type
can be declared in the same @onsunes declaration.

If there are no methods in a resource that can consume the specified MIME media types, the
runtime returns an HTTP 415 Unsupported Media Type error.

See the @onsunes annotation in the Jakarta EE 9.1 Specification APIs.

In Example 2-10, the @onsumes annotation defined for the Java class, hel | oWr | d, specifies
that the class produces messages using the t ext/ pl ai n MIME media type.

Example 2-10 Customizing the Media Types for the Request Message Using @Consumes

package sanpl es. consunes;

import jakarta.ws.rs.Consumes;
import jakarta.ws.rs.PCST;
import jakarta.ws.rs.Path;

@ath("/hel | oworl d")
public class helloWrld {

@0osT

@Consumes(*'text/plain')

public void postMessage(String nessage) {
/] Store the nessage

}

}

How To Customize Media Types for the Response Message (@Produces)

The j akarta. ws.rs. Produces annotation enables you to specify the MIME media types of
representations a resource can produce and send back to the client. The @r oduces annotation
can be specified at both the class and method levels and more than one media type can be
declared in the same @r oduces declaration.

If there are no methods in a resource that can produce the specified MIME media types, the
runtime returns an HTTP 406 Not Accept abl e error.

See the @r oduces annotation in the Jakarta EE 9.1 Specification APIs.

In Example 2-11, the @r oduces annotation specified for the Java class, SoneResour ce,
specifies that the class produces messages using the t ext/ pl ai n MIME media type. The
doGet AsPI ai nText method defaults to the MIME media type specified at the class level. The
doGet AsHt M method overrides the class-level setting and specifies that the method produces
HTML rather than plain text.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/consumes
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/produces

ORACLE Chapter 2
Extracting Information From the Request Message

Example 2-11 Customizing the Media Types for the Response Using @Produces

package sanpl es. produces;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.Path;

@rat h("/ myResour ce")
@Produces(text/plain'™)
public class SomeResource {
@ET
public String doGet AsPlainText() { ... }

@ET
@Produces(*'text/html™)
public String doGetAsHtnm () { ... }

}

What Happens At Runtime: How the Resource Method Is Selected for
Response Messages

If a resource class is capable of producing more that one MIME media type, then the resource
method that is selected corresponds to the acceptable media type declared in the Accept
header of the HTTP request. In Example 2-11, if the Accept header is Accept: text/htn,
then the doGet AsPl ai nText method is invoked.

If multiple MIME media types are included in the @r oduces annotation and both are
acceptable to the client, the first media type specified is used. In Example 2-11, if the Accept
header is Accept: application/htm, application/text,thenthe doGet AsH ml method is
invoked and the appl i cati on/ ht M MIME media type is used as it is listed first in the list.

Extracting Information From the Request Message

The j akarta. ws. rs package defines a set of annotations that enable you extract information
from the request message to inject into parameters of your Java method. These annotations
are listed and described in Table 2-4.

Table 2-4 jakarta.ws.rs Annotations for Extracting Information From the Request Message

Annotation Description

@eanPar am Inject aggregated request parameters into a single bean. See the @eanPar amannotation in the
Jakarta EE 9.1 APl Documentation .

For additional usage information, see Parameter Annotations (@*Param) in the Jersey 3.0.18 User
Guide .

@Cooki eParam Extract information from the HTTP cookie-related headers to initialize the value of a method
parameter. See the @ooki ePar amannotation in the Jakarta EE 9.1 APl Documentation .

@ef aul t Val ue Define the default value of the request metadata that is bound using one of the following
annotations: @ooki ePar am @or nPar am @Header Par am @vht ri xPar am @Pat hPar am or
@uer yPar am See How to Define the DefaultValue (@DefaultValue).

@ncoded Enable encoding of a parameter value that is bound using one of the following annotations:
@or nPar am @vat ri xPar am @at hPar am or @uer yPar am See Enabling the Encoding
Parameter Values (@Encoded).

@-or mPar am Extract information from an HTML form of the type appl i cati on/ x- ww f or m ur | encoded. See
the @or nPar amannotation in the Jakarta EE 9.1 APl Documentation .

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/beanparam
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/jaxrs-resources.html#d0e2271
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/cookieparam
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/formparam

ORACLE Chapter 2
Extracting Information From the Request Message

Table 2-4 (Cont.) jakarta.ws.rs Annotations for Extracting Information From the Request Message

- ___|]
Annotation Description

@Header Par am Extract information from the HTTP headers to initialize the value of a method parameter. See the
@Header Par amannotation in the Jakarta EE 9.1 APl Documentation .

@t ri xParam Extract information from the URI path segments to initialize the value of a method parameter. See
the @At r i xPar amannotation in the Jakarta EE 9.1 APl Documentation .

@Pat hPar am Define the relative URI as a variable value (referred to as "URI path template"). See How to Extract
Variable Information from the Request URI (@PathParam).

@uer yPar am Extract information from the query portion of the request URI to initialize the value of a method
parameter. See How to Extract Request Parameters (@QueryParam).

 How to Extract Variable Information from the Request URI (@ PathParam)

* How to Extract Request Parameters (@QueryParam)

* How to Define the DefaultValue (@DefaultValue)

« Enabling the Encoding Parameter Values (@Encoded)

How to Extract Variable Information from the Request URI (@PathParam)

Add the j akart a. ws. rs. Pat hPar amannotation to the method parameter of a resource to
extract the variable information from the request URI and initialize the value of the method
parameter. You can define a default value for the variable value using the @ef aul t Val ue
annotation, as described in How to Define the DefaultValue (@DefaultValue).

In Example 2-12, the @at hPar amannotation assigns the value of the user nanme variable that is
defined as part of the URI path by the @at h annotation to the user Nane method parameter.

Example 2-12 Extracting Variable Information From the Request URI

package sanpl es. hel | owor| d;

import jakarta.ws.rs.GET,;

import jakarta.ws.rs.Path;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.PathParam;

/1 Specifies the path to the RESTful service
@rat h("/users")
public class helloWrld {

. .@;ET
@at h("/{usernanme}")

@roduces("text/xm")
public String getUser(@PathParam(*'username™) String userNanme) {

}
}

How to Extract Request Parameters (@QueryParam)

Add the j akarta. ws. rs. Quer yPar amannotation to the method parameter of a resource to
extract information from the query portion of the request URI and initialize the value of the
method parameter.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/headerparam
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/matrixparam

ORACLE

Chapter 2
Extracting Information From the Request Message

The type of the annotated method parameter can be any of the following:
e Primitive type (i nt, char, byt e, and so on)

e User-defined type

* Constructor that accepts a single String argument

e Static method named val ueO or f ronStri ng that accepts a single String argument (for
example, i nteger. val ueCf (String))

e List<T>, Set<T>, or Sort edSet <T>

If the @uer yPar amannotation is specified but the associated query parameter is not present in
the request, then the parameter value will set as an empty collection for Li st, Set or

Sort edSet , the Java-defined default for primitive types, and NULL for all other object types.
Alternatively, you can define a default value for the parameter using the @ef aul t Val ue
annotation, as described in How to Define the DefaultValue (@DefaultValue).

See the @uer yPar amannotation in the Jakarta EE 9.1 Specification APIs.

In Example 2-13, if the st ep query parameter exists in the query component of the request
URI, the value will be assigned to the st ep method parameter as an integer value. If the value
cannot be parsed as an integer value, then a 400 (O ient Error) response is returned. If the
st ep query parameter does not exist in the query component of the request URI, then the
value is set to NULL.

Example 2-13 Extracting Request Parameters (@QueryParam)

import jakarta.ws.rs. Path;
import jakarta.ws.rs.GET,;
import jakarta.ws.rs.QueryParam;

@rat h(" smoot h")

@ET

publ i c Response snoot h(@QueryParam(*'step™) int step)

{1
}

How to Define the DefaultValue (@DefaultValue)

Add the j akarta. ws. rs. Def aul t Val ue annotation to define the default value of the request
metadata that is bound using one of the following annotations: @ooki ePar am @or nPar am
@-eader Param @vat ri xPar am @at hPar am or @uer yPar am See the @ef aul t Val ue annotation
in the Jakarta EE 9.1 Specification APIs.

In Example 2-14, if the st ep query parameter does not exist in the query component of the
request URI, the default value of 2 will be assigned to the st ep parameter.

Example 2-14 Defining the Default Value (@DefaultValue)

import jakarta.ws.rs.Path;
import jakarta.ws.rs.GET,
import jakarta.ws.rs.QueryParam;

~ @ath("smoot h*)

@xET

publ i ¢ Response snoot h(@DefaultvValue(*'2™) @ueryParan{"step") int step)

{...}

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/queryparam
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/defaultvalue

ORACLE Chapter 2
Building Custom Response Messages

Enabling the Encoding Parameter Values (@Encoded)

Add the j akarta. ws. rs. Encoded annotation at the class or method level to enable the
encoding of a parameter value that is bound using one of the following annotations:

@or nParam @t ri xPar am @at hPar am or @uer yPar am If specified at the class level,
parameters for all methods in the class will be encoded. See the @ncoded annotation in the
Jakarta EE 9.1 Specification APIs.

In Example 2-15, the @ncoded annotation enables the encoding of parameter values bound
using the @at hPar amannotation.

Example 2-15 Encoding Parameter Values

package sanpl es. hel | oworl d;

import jakarta.ws.rs.GET,
import jakarta.ws.rs. Path;
i mport jakarta.ws.rs.Produces;
i mport jakarta.ws.rs. PathParam

import jakarta.ws.rs.Encoded;

/1 Specifies the path to the RESTful service
@ath("/users")
public class helloWrld {

@ET
@at h("/{usernane}")
@roduces("text/xm")

@Encoded

public String getUser(@Pat hParan("username") String userName) {

}
}

Building Custom Response Messages

Instead of the default response codes, you can customize the response codes returned or
include additional metadata information in the response.

By default, JAX-RS responds to HTTP requests using the default response codes defined in
the HTTP specification, such as 200 K for a successful GET request and 201 CREATED for a
successful PUT request.

For example, you might want to include the Locat i on header to specify the URI to the newly
created resource. You can modify the response message returned using the
jakarta.ws.rs. core. Response class.

An application can extend the Response class directly or use one of the static Response
methods to create a jakarta.ws.rs.core.Response.ResponseBuilder instance and build the
Response instance. The methods you can use are defined in Table 2-5. For more information,
see the Response methods in the Jakarta EE 9.1 Specification APIs.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/encoded
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/core/response

ORACLE Chapter 2
Building Custom Response Messages

Table 2-5 Creating a Response Instance Using the ResponseBuilder Class

Method

Description

created()

Creates a new ResponseBui | der instance and sets the Locat i on header to the specified
value.

fromResponse()

Creates a new ResponseBui | der instance and copies an existing response.

noCont ent ()

Creates a new ResponseBui | der instance and defines an empty response.

not Accept abl e()

Creates a new ResponseBui | der instance and defines a unacceptable response.

not Modi fi ed()

Creates a new ResponseBui | der instance and returns a not-modified status.

ok()

Creates a new ResponseBui | der instance and returns an OK status.

seeQt her ()

Creates a new ResponseBui | der instance for a redirection.

serverError()

Creates a new ResponseBui | der instance and returns a server error status.

status()

Creates a new ResponseBui | der instance and returns the specified status.

t enpor aryRedi rect () Creates a new ResponseBui | der instance for a temporary redirection.

Table 2-6 Resp

Once you create a ResponseBui | der instance, you can call the methods defined in Table 2-6 to
build a custom response. Then, call the bui | d() method to create the final Response instance.
See the Response. ResponseBui | der methods in the Jakarta EE 9.1 Specification APIs.

onseBuilder Methods for Building a Custom Response

Method Description
allow() Sets the list of allowed methods for the resource.
bui I d() Creates the Response instance from the current ResponseBui | der instance.

cacheControl ()

Sets the cache control.

cl one()

Create a copy of the ResponseBui | der to preserve its state.

cont ent Locat i on() Sets the content location.
cooki e() Add cookies to the response.
encodi ng() Sets the message entity content encoding.
entity() Defines the entity.

expires() Sets the expiration date.
header () Adds a header to the response.
| anguage() Sets the language.

[ast Modi fied() Set the last modified date.
[ink() Adds a link header.

l'inks() Adds one or more link headers.
[ocation() Sets the location.

newl nst ance()

Creates a new ResponseBui | der instance.

replaceAl |l () Replaces all existing headers with the newly supplied headers.
status() Sets the status.
tag() Sets an entity tag.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 16 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/core/response.responsebuilder

ORACLE Chapter 2
Building Custom Response Messages

Table 2-6 (Cont.) ResponseBuilder Methods for Building a Custom Response

Method Description

type() Sets the response media type.

variant () Set representation metadata.

variants() Add a Var y header that lists the available variants.

Example 2-16 shows how to build a Response instance using ResponseBui | der . In this
example, the standard status code of 200 Kis returned and the media type of the response is
settotext/htm . A call to the bui | d() method creates the final Response instance.

Example 2-16 Building a Custom Response

import jakarta.ws.rs. Path;

import jakarta.ws.rs.GET,

i mport jakarta.ws.rs. PathParam

import jakarta.ws.rs.core.Response;

import jakarta.ws.rs.core.ResponseBuilder;

@ath("/content")
public class getDocs {
@ET
@ath("{id}")
public Response get HTM.Doc(@at hParm("i d") int docld)
{
Docunent document = ...;
ResponseBuilder response = Response.ok(document);
response.type(‘"text/html™);
return response.build();

If you wish to build an HTTP response using a generic type, to avoid type erasure at runtime
you need to create a j akarta. ws.rs. core. Generi cEntity object to preserve the generic type.
See the Generi cEntity methods in the Jakarta EE 9.1 Specification APIs.

Example 2-17 provides an example of how to build an HTTP response using Generi cEntity to
preserve the generic type.

Example 2-17 Building a Custom Response Using a Generic Type

import jakarta.ws.rs.Path;

import jakarta.ws.rs.GET,

i mport jakarta.ws.rs. PathParam

inport jakarta.ws.rs.core. Response;

i mport jakarta.ws.rs.core.ResponseBuil der;
jakarta.ws.rs.core.GenericEntity;

@ath("/content")
public class getDocs {
@ET
@ath("{id}")
publ i ¢ Response get HTM.Doc(@at hParn{"i d") int docld)
{

Docunent document = ...;
List<String> list = new ArrayList<String>();
GenericEntity<List<String>> entity = new GenericEntity<List<String>>(list) {};

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 17 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/core/genericentity

ORACLE Chapter 2
Mapping HTTP Request and Response Entity Bodies Using Entity Providers

ResponseBui | der response = Response. ok(docunent);
response.entity(entity);
return response. build();

}
}

Mapping HTTP Request and Response Entity Bodies Using
Entity Providers

HTTP request and response entity bodies automatically support a set of Java types that can be
utilized by your RESTful web service. These Java types are listed in Table 2-7.

Table 2-7 Java Types Supported for HTTP Request and Response Entity Bodies

Java Type Supported Media Types

byte[] All media types (*/¥)

java.lang. String All media types (*/*)

java.io. I nputStream All media types (*/*)

j ava.io. Reader All media types (*/¥)

java.io.File All media types (*/*)

j akarta.activation. DataSource All media types (*/*)

j avax. xn . transform Source XML media types (t ext/ xm , appl i cati on/ xm , and appl i cati on/
*+xm) and JSON media types (appl i cati on/j son, application/
*+j son)

j akarta. xm . bi nd. JAXBEl enent and XML media types (t ext/xn , appl i cation/xn , and appl i cati on/
application-supplied JAXB classes *+xn)

Mul tival uedMap<String, String> Form content (appl i cati on/ x- ww« f or m ur | encoded)

St ream ngQut put All media types (*/*), MessageBodyW i t er only

If your RESTful web service utilizes a type that is not listed in Table 2-7, you must define an
entity provider, by implementing one of the interfaces defined in Table 2-8, to map HTTP
request and response entity bodies to method parameters and return types.

Table 2-8 Entity Providers for Mapping HTTP Request and Response Entity Bodies to Method
Parameters and Return Types

Entity Provider Description
jakarta.ws.rs.ext.Mess Maps an HTTP request entity body to a method parameter for an HTTP request. Optionally,
ageBodyReader you can use the @onsunes annotation to specify the MIME media types supported for the
entity provider, as described in Customizing Media Types for the Request and Response
Messages.
For example:
@onsumes("appl i cati on/ x- wwwf orm url encoded")
@vrovi der
public class FornReader inplenents MessageBodyReader <NaneVal uePair> { ... }

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 18 of 22

ORACLE Chapter 2
Accessing the Application Context

Table 2-8 (Cont.) Entity Providers for Mapping HTTP Request and Response Entity Bodies to Method
Parameters and Return Types

Entity Provider Description
jakarta.ws.rs.ext.Mess Maps the return value to an HTTP response entity body for an HTTP response. Optionally,
ageBodyWi ter you can use the @r oduces annotation to specify the MIME media types supported for the

entity provider, as described in Customizing Media Types for the Request and Response

Messages.

For example:

@roduces("text/htm™")

@vrovi der

public class FormNfiter inplenments

MessageBodyW it er <Hasht abl e<String, String>> { ... }
® Note

Jersey JSON provides a set of JAX-RS MessageBodyReader and MessageBodyW i t er
providers distributed with the Jersey JSON extension modules. See JSON in the
Jersey 3.0.18 User Guide .

The following code excerpt provides an example of a class that contains a method (get C ass)
that returns a custom type, and that requires you to write an entity provider.

public class Cassl

{
public String hello() { return "Hello"; }

public O ass2 getd ass(String name) { return new O ass2(); };

}
public class C ass2
{
public dass2() { }
}

Accessing the Application Context

The j akarta. ws.rs. core. Cont ext annotation enables you to access information about the
application deployment context and the context of individual requests. Table 2-9 summarizes
the context types that you can access using the @ont ext annotation. For more information,
see the @ont ext annotation in the Jakarta EE 8 Specification APIs.

Table 2-9 Context Types

Use this context type . .. To...

Ht t pHeader s Access HTTP header information.

Provi ders Lookup Provider instances based on a set of search criteria.

Request Determine the best matching representation variant and to evaluate whether the current

state of the resource matches any preconditions defined. See Using Conditional GETs.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 19 of 22

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/media.html#json
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/core/context

ORACLE Chapter 2
Building URIs

Table 2-9 (Cont.) Context Types

- ___|]
Use this context type.. .. To...

Securi t yCont ext Access the security context and secure the RESTful web service. See Securing RESTful
Web Services Using SecurityContext.

Urilnfo Access application and request URI information. See Building URIs.

Building URIs

You can use j akarta.ws.rs. core. Ui | nfo to access application and request URI information.

Specifically, Uri | nf o can be used to return the following information:

» Deployed application's base URI
e Request URI relative to the base URI
e Absolute path URI (with or without the query parameters)

Using Uri | nf o, you can return a URI or j akarta. ws.rs. core. Uri Bui | der instance.
Uri Bui | der simplifies the process of building URIs, and can be used to build new or extend
existing URIs.

The Uri Bui | der methods perform contextual encoding of characters not permitted in the
corresponding URI component based on the following rules:

e application/x-wwformurl encoded media type for query parameters, as defined in
"Forms" in the HTML specification at the following URL: ht t p: / / www. W3. or g/ TR/ ht mi 4/
interact/forms. htm#h-17.13.4.1

e RFC 3986 for all other components, as defined at the following URL: htt p: //
www. i etf.org/rfc/rfc3986.txt

Example 2-18 shows how to obtain an instance of Uri | nf o using @ont ext and use it to return
an absolute path of the request URI as a Uri Bui | der instance. Then, using Uri Bui | der build a
URI for a specific user resource by adding the user ID as a path segment and store it in an
array. In this example, the Uri | nf o instance is injected into a class field. This example is
excerpted from the bookmark sample, as described in About the Jersey Bookmark Sample.

Example 2-18 Building URIs

import jakarta.ws.rs.Path;

import jakarta.ws.rs.GET,

inport jakarta.ws.rs.Produces;

import jakarta.ws.rs.core.UriBuilder;
import jakarta.ws.rs.core.Urilnfo;
import jakarta.ws.rs.core.Context;

@rat h("/users/™")
public class UsersResource {

@Context Urilnfo urilnfo;

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 20 of 22

http://www.w3.org/TR/html4/interact/forms.html#h-17.13.4.1
http://www.w3.org/TR/html4/interact/forms.html#h-17.13.4.1
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt

ORACLE Chapter 2
Using Conditional GETs

@roduces("application/json")
public JSONArray getUsersAsJsonArray() {
JSONArray uriArray = new JSONArray();
for (UserEntity userEntity : getUsers()) {
UriBuilder ub = urilnfo.getAbsolutePathBuilder();

URI userUri = ub
.path(userEntity.getUserid())
LbuildQ);

uriArray.put(userUri.toASCIIString());
}

return uriArray;

}

Using Conditional GETs

A conditional GET enables you to evaluate one or more preconditions before processing a
GET request. If the preconditions are met, a Not Mdified (304) response can be returned
rather than the normal response, potentially reducing bandwidth and improving server
performance.

JAX-RS provides the j akarta. ws. rs. core. Request contextual interface enabling you to
perform conditional GETs. You call the eval uat ePrecondi ti ons() method and pass a
jakarta.ws.rs.core. EntityTag, the last modified timestamp (as ajava. util . Dat e object), or
both. The values are compared to the | f - None- Mat ch or | f - Not - Modi f i ed headers,
respectively, if these headers are sent with the request.

If headers are included with the request and the precondition values match the header values,
then the eval uat ePrecondi ti ons() methods returns a predefined ResponseBui | der response
with a status code of Not Mbdi fi ed (304). If the precondition values do no match, the

eval uat ePrecondi tions() method returns null and the normal response is returned, with 200,
X status.

Example 2-19 shows how to pass the Enti t yTag to the eval uat ePrecondi ti ons() method and
build the response based on whether the preconditions are met.

Example 2-19 Using Conditional GETs

@rat h("/ enpl oyee/ {j oi ni ngdat e}")
public class Enpl oyee {

Dat e j oi ni ngdat e;
publi c Enpl oyee(@at hParan("j oi ni ngdate") Date joiningdate, @Context Request req,
@ontext Urilnfo ui) {

this.joiningdate = joiningdate;

this.tag = conmput eEntityTag(ui.get RequestUri());
if (req.getMethod().equal s("GET")) {
Response.ResponseBuilder rb = req.evaluatePreconditions(tag);
/'l Preconditions net
if (rb = null) {
return rb_build();
}

/1l Preconditions not net

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 21 of 22

ORACLE Chapter 2
Accessing the WADL

rb = Response.ok();
rb.tag(tag);
return rb.buildQ);

}

Accessing the WADL

The Web Application Description Language (WADL) is an XML-based file format that describes
your RESTful web services application. By default, a basic WADL is generated at runtime and
can be accessed from your RESTful web service by issuing a GET on the / appl i cati on. wadl
resource at the base URI of your RESTful application.

For example:

CGET http://<path_to_REST_app>/application. wad

Alternatively, you can use the OPTI ONS method to return the WADL for particular resource.

Example 2-20 shows an example of a WADL for the simple RESTful web service shown in
Example 2-1.

Example 2-20 Example of a WADL

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<application xm ns="http://research. sun. com wadl / 2006/ 10" >
<doc xm ns:jersey="http://jersey.dev.java.net/"
j ersey: generat edBy="Jersey: 0.10-ea- SNAPSHOT 08/27/2008 08:24 PM'/>
<resources base="http://l ocal host: 9998/ ">
<resource path="/hel | oworl d">
<met hod nane="CET" id="sayHel | 0">
<response>
<representation nedi aType="text/plain"/>
</ response>
</ met hod>
</resource>
</resources>
</ application>

More Advanced RESTful Web Service Tasks

The Jersey 3.0.18 User Guide provides information about more advanced RESTful web
service development tasks:

e Context and Dependency Injection (CDI)

« Enterprise Java Beans (EJB)
« JSON
« XML

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 22 of 22

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/index.html
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/deployment.html#deployment.javaee.cdi
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/deployment.html#deployment.javaee.ejb
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/media.html#json
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/media.html#xml

Developing RESTful Web Service Clients

You can develop Jakarta EE web service clients that conform to the Representational State
Transfer (REST) architectural style using the Jersey 3.x Jakarta RESTful Web Services
specification.

This chapter includes the following sections:

Summary of Tasks to Develop RESTful Web Service Clients
« Example of a RESTful Web Service Client

* Invoking a RESTful Web Service from a Standalone Client
When invoking a RESTful web service from an environment that does not have Oracle
Fusion Middleware or WebLogic Server installed locally, and without the entire set of
Oracle Fusion Middleware or WebLogic Server classes in the CLASSPATH, you can use
the standalone client JAR file when invoking the web service.

* Using the Reactive JAX-RS Client API
The Reactive Client API is part of the Jakarta RESTful Web Services specification.

Summary of Tasks to Develop RESTful Web Service Clients

Some of the tasks required to develop a RESTful web service client include creating the client
class, targeting a web resource, identifying resources on the target, and more. The following
table summarizes a subset of the tasks that are required to develop RESTful web service
clients using Jersey.

Table 3-1 Summary of Tasks to Develop RESTful Web Service Clients

Task More Information

Create and configure an instance of the Creating and configuring a Client instance in Jersey 3.0.18

jakarta.ws.rs.client.dient class. User Guide

Target the Web resource. Targeting a web resource in Jersey 3.0.18 User Guide

Identify resources on WebTarget. Identifying resource on WebTarget in Jersey 3.0.18 User
Guide

Invoke an HTTP request. Invoking @ HTTP request in Jersey 3.0.18 User Guide

For information about developing RESTful web service clients using Oracle JDeveloper, see
Creating RESTful Web Services and Clients in Developing Applications with Oracle
JDeveloper.

Example of a RESTful Web Service Client

You can learn more about how to create a RESTful web service client by viewing an
example.The following is a simple example that shows how a client can be used to call the
RESTful web service defined in Example 2-1. In this example:

« The dient instance is created and a \\ebTar get defined.

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 3

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/client.html#d0e4374
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/client.html#d0e4558
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/client.html#d0e4626
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/client.html#d0e4702

ORACLE’

Chapter 3
Invoking a RESTful Web Service from a Standalone Client

e The resource path is defined to access the Web resource.
e The Invocation. Buil der is used to send a get request to the resource.
* The response is returned as a String value.

Example 3-1 Simple RESTful Web Service Client Using Jersey (Jakarta RESTful Web
Services specification)

package sanpl es. hel l oworld. client;

i mport jakarta.
i mport jakarta.
i mport jakarta.
i mport jakarta.
i mport jakarta.
i mport jakarta.

rs.client.dient;
rs.client.dientBuilder;
rs.client.lnvocation;
rs.client.WbTarget;
rs.core. Medi aType;
rs.core. Response;

555555

public class helloWrlddient{

public static void nain(String[] args) {
Cient client = dientBuilder.newClient();
WebTarget target = client.target("http://local host: 7101/ restservice");
\WebTar get resour ce\eebTar get ;
resourceWebTarget = target. path("resources/helloworld");
I nvocati on. Bui | der invocati onBuil der;
i nvocationBui |l der = resourceWbTar get. request (

Medi aType. TEXT_PLAI N _TYPE) ;

Response response = invocationBuil der.get();
Systemout. println(response.getStatus());
Systemout. println(response.readEntity(String.class));

For complete details, see Client API in Jersey 3.0.18 User Guide .

Invoking a RESTful Web Service from a Standalone Client

When invoking a RESTful web service from an environment that does not have Oracle Fusion
Middleware or WebLogic Server installed locally, and without the entire set of Oracle Fusion
Middleware or WebLogic Server classes in the CLASSPATH, you can use the standalone client
JAR file when invoking the web service.

The standalone RESTful web service client JAR supports basic JAX-RS client-side
functionality and OWSM security policies.

To use the standalone RESTful web service client JAR file with your client application, perform
the following steps:

1. Create a Java SE client using your favorite IDE, such as Oracle JDeveloper. See
Developing and Securing Web Services in Developing Applications with Oracle
JDeveloper.

2. Copy the file ORACLE_HOVE/ or acl e_conmon/ nodul es/ cl i ent s/
comoracle.jersey.fmu client.jar from the computer hosting Oracle Fusion
Middleware to the client computer, where ORACLE_HOME is the directory you specified as
Oracle Home when you installed Oracle Fusion Middleware.

For example, you might copy the file into the directory that contains other classes used by
your client application.

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 3

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/client.html

ORACLE

Chapter 3
Using the Reactive JAX-RS Client API

3. Add the JAR file to your CLASSPATH.

® Note

Ensure that your CLASSPATH includes the JAR file that contains the Ant classes
(ant.jar) as a subset are used by the standalone client JAR files. This JAR file is
typically located in the | i b directory of the Ant distribution.

Using the Reactive JAX-RS Client API

The Reactive Client APl is part of the Jakarta RESTful Web Services specification.

All invocations in the client API are set in synchronous mode by default. In synchronous
processing, each request is processed in a single HTTP thread. After the processing is
finished, the thread is returned back to the pool. This approach can result in taking more time
to complete and unnecessary blocking of the resources.

Asynchronous programming in JAX-RS enables client to unblock certain threads by pushing
the work to background threads which can be monitored and joined at a later time. The
resources are used optimally to achieve quick response time.

In JAX-RS, you can achieve asynchronous programming by providing an instance of

I nvocati onCal | back, which also enables a more reactive programming style in which the
user-provided code reacts only when a certain event has occurred. Callback works well for
simple cases but the coding becomes complex when multiple events come into play. To make
the asynchronous programming more readable, a new interface Conpl eti onSt age is
introduced for managing large number of methods dedicated for asynchronous computations.

See Usage and Extension Modules in Jersey 3.0.18 User Guide for more information about the
different types of invokers based on CompletionStage.

See Reactive JAX-RS Client API in Jersey 3.0.18 User Guide for more detailed information.

® Note
In WebLogic Server, the following reactive libraries are not supported:
* RxJava (Observable)
¢ RxJava (Flowable)

* Cuava (ListenableFuture)

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 3

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/rx-client.html#d0e6099
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/rx-client.html

Building, Packaging, and Deploying RESTful
Web Service Applications

Oracle WebLogic Server provides the components and utilities you need to package and
deploy Jakarta EE web services that conform to the Representational State Transfer (REST)
architectural style using the Jersey 3.x Jakarta RESTful Web Services specification.

This chapter includes the following sections:

e Building RESTful Web Service Applications

» Packaging RESTful Web Service Applications
All RESTful web service applications must be packaged as part of a web application. If
your web service is implemented as an EJB, it must be packaged and deployed within a
WAR.

 Deploying RESTful Web Service Applications

Building RESTful Web Service Applications

You can build your RESTful web service and client applications using the compilation tools,
such as Apache Ant, Maven, or your favorite IDE, such as Oracle JDeveloper.See Overview of
WebLogic Server Application Development in Developing Applications for Oracle WebL ogic
Server. For more information about JDeveloper, see Building Java Projects in Developing
Applications with Oracle JDeveloper.

Packaging RESTful Web Service Applications

All RESTful web service applications must be packaged as part of a web application. If your
web service is implemented as an EJB, it must be packaged and deployed within a WAR.

Table 4-1 summarizes the specific packaging options available for RESTful web service
applications.

Table 4-1 Packaging Options for RESTful Web Service Applications

Packaging Option Description

Application subclass Define a class that extends j akarta. ws. rs. core. Appl i cati on to define the components

of a RESTful web service application deployment and provide additional metadata. You can
add ajakarta.ws.rs. Appl i cati onPat h annotation to the subclass to configure the
servlet context path.

See Packaging With an Application Subclass.

Servlet

Update the web. xm deployment descriptor to configure the servlet and mappings. The
method used depends on whether your Web application is using Servlet 3.0 or earlier. See
Packaging With a Servlet.

Default resource

If you do not configure the servlet context path in your configuration using either of the
options specified above, the WebLogic Server provides a default RESTful web service
application servlet context path, r esour ces. See Packaging as a Default Resource.

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE Chapter 4
Packaging RESTful Web Service Applications

» Packaging With an Application Subclass

Packaging With a Servlet

» Packaging as a Default Resource

Packaging With an Application Subclass

In this packaging scenario, you create a class that extends j akarta. ws.rs. core. Application
to define the components of a RESTful web service application deployment and provides
additional metadata. See | akarta.ws.rs. core. Application in the Jakarta EE 9.1
Specification APIs.

Within the Appl i cat i on subclass, override the get Cl asses() and get Si ngl et ons() methods,
as required, to return the list of RESTful web service resources. A resource is bound to the
Appl i cat i on subclass that returns it.

Note that an error is returned if both methods return the same resource.

Use the j akarta. ws.rs. Appl i cati onPat h annotation to define the base URI pattern that gets
mapped to the servlet. For more information about how this information is used in the base URI
of the resource, see What Happens at Runtime: How the Base URI is Constructed. See the
@\ppl i cati onPat h annotation in the Jakarta EE 9.1 Specification APIs.

For simple deployments, no web. xm deployment descriptor is required. For more complex
deployments, for example to secure the web service or specify initialization parameters, you
can package a web. xm deployment descriptor with your application, as described in
Packaging With a Servlet.

Example 4-1 provides an example of a class that extends j akarta. ws.rs. core. Application
and uses the @\ppl i cati onPat h annotation to define the base URI of the resource.

Example 4-1 Example of a Class that Extends jakarta.ws.rs.core.Application

import jakarta.ws.rs.core.Application;
jakarta.ws.rs. ApplicationPat h;

@\ppl i cationPat h("resources")
public class MyApplication extends Application {
public Set<C ass<?>> getC asses() {
Set <0 ass<?>> s = new HashSet <0 ass<?>>();
s. add(Hel | oWor | dResour ce. cl ass) ;
return s;

Alternatively, use the following API to scan for root resource and provider classes for a
specified classpath or a set of package names:

e org.glassfish.jersey.server. ResourceConfig, as described in JAX-RS Application
Model in Jersey 3.0.18 User Guide .

Packaging With a Servlet

The following sections describe how to package the RESTful web service application with a
servlet using the web. xm deployment descriptor, based on whether your Web application is
using Servlet 3.0 or earlier.

The web. xni file is located in the VEB- | NF directory in the root directory of your application
archive. For more information about the web. xm deployment descriptor, see web.xml

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 7

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/core/application
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/applicationpath
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/deployment.html#environmenmt.appmodel
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/deployment.html#environmenmt.appmodel

ORACLE’

Chapter 4
Packaging RESTful Web Service Applications

Deployment Descriptor Elements in Developing Web Applications, Servlets, and JSPs for
Oracle WebLogic Server.

How to Package the RESTful Web Service Application with Servlet 3.0

How to Package the RESTful Web Service Application with Pre-3.0 Servlet Descriptors

How to Package the RESTful Web Service Application with Servlet 3.0

To package the RESTful Web Service application with Servlet 3.0, update the web. xni
deployment descriptor to define the elements defined in the following sections. The elements
vary depending on whether you include in the package a class that extends
jakarta.ws.rs.core. Application.

For more information about any of the elements, see servlet in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

Packaging the RESTful Web Service Application Using web.xml With Application Subclass

Packaging the RESTful Web Service Application Using web.xml Without Application

Subclass

Packaging the RESTful Web Service Application Using web.xml With Application Subclass

If a class that extends j akarta. ws. rs. core. Appl i cati on is packaged with web. xnl , then
define the elements as described in Table 4-2. For an example, see Example 4-2.

Table 4-2 Packaging the RESTful Web Service Application Using web.xml With Application Subclass

Element

Description

<servl et - name>

Set this element to the fully qualified name of the class that extends
jakarta.ws.rs.core. Application. You can specify multiple servlet entries to define multiple
Appl i cat i on subclass names.

<servl| et-cl ass>

Not required.

<init-paranp

Not required.

<servl et - mappi ng>

Set as the base URI pattern that gets mapped to the servlet.
If not specified, one of the following values are used, in order of precedence:

e @pplicationPat h annotation value defined in the j akart a. ws. rs. core. Application
subclass. For example:

package test;
@\ppl i cationPath("res")
public class MyJaxRsApplication extends java.ws.rs.core.Application

See Packaging With an Application Subclass.
* The value resour ces. This is the default base URI pattern for RESTful web service
applications. See Packaging as a Default Resource.
If both the <ser vl et - nappi ng> and @\ppl i cat i onPat h are specified, the <ser vl et -
mappi ng> takes precedence.

For more information about how this information is used in the base URI of the resource, see
What Happens at Runtime: How the Base URI is Constructed.

The following example demonstrates how to update the web. xn file if a class that extends
jakarta.ws.rs.core. Application is packaged with web. xni .

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE Chapter 4
Packaging RESTful Web Service Applications

Example 4-2 Updating web.xml for Servlet 3.0 If Application Subclass is in Package

<web- app>
<servl et>
<servl et - name>or g. f 0o. rest. MyAppl i cati on</ servl et - nane>
</servlet>

.<.s'erv| et - mappi ng>
<servl et - name>or g. f 0o. rest. MyAppl i cati on</ servl et - nane>
<url-pattern>/resources</url-pattern>
</ servl et - mappi ng>
</ Web ;’ipp>
Packaging the RESTful Web Service Application Using web.xml Without Application Subclass

If a class that extends j akarta. ws. rs. core. Appl i cation is not packaged with web. xm , then
define the elements as described in Table 4-3.

® Note

In this scenario, you cannot support multiple RESTful web service applications.

Table 4-3 Packaging the RESTful Web Service Application Using web.xml Without Application
Subclass

Element Description
<servl et - name> Set this element to the desired serviet name.
<servl et-class> Set this element to or g. gl assfi sh. j ersey. servl et. Servl et Cont ai ner to delegate all Web

requests to the Jersey servlet.

<init-paran» Not required.

<servl et -mappi ng> Set as the base URI pattern that gets mapped to the servlet. If not specified, this value defaults to
resour ces. See Packaging as a Default Resource.

For more information about how this information is used in the base URI of the resource, see
What Happens at Runtime: How the Base URI is Constructed.

The following example demonstrates how to update the web. xn file if a class that extends
jakarta.ws.rs.core. Application is not packaged with web. xm .

@ Note

The Jakarta RESTful Web Services specification requires the RESTful Web Service
application using the web. xm without the Application subclass for Servlet 3.0 to set
the servl et-nane to j akarta. ws. rs. Appl i cati on as described in the Jersey 3.0.18
User Guide . The packaging method defined in this section is not supported by the
Jakarta RESTful Web Services specification.

Example 4-3 Updating web.xml for Servlet 3.0 If Application Subclass is Not in Package

<web- app>
<servl et>
<servl et -name>Jersey Wb Application</servlet-nane>

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 7

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/deployment.html#deployment.servlet.5.pluggability
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/deployment.html#deployment.servlet.5.pluggability

ORACLE Chapter 4
Packaging RESTful Web Service Applications

<servl et-class>org. gl assfish.jersey.servlet. Servl et Container</servl et-class>
</servlet>
<servl et - mappi ng>
<servl et-name>Jersey Web Application</servlet-nane>
<url-pattern>/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

How to Package the RESTful Web Service Application with Pre-3.0 Servlet
Descriptors

Table 4-4 describes the elements to update in the web. xml deployment descriptor to package
the RESTful web service application with a pre-3.0 servlet.

Table 4-4 Packaging the RESTful Web Service Application with Pre-3.0 Servlet Descriptors

Element Description
<servl et - nane> Set this element to the desired servlet name.
<servl et-class> Set this element to or g. gl assfi sh. j ersey. servl et. Servl et Cont ai ner to delegate all Web

requests to the Jersey servlet.

<init-paranp Set this element to define the class that extends the j akarta. ws. rs. core. Appl i cati on:

<init-paranmp
<par am nane>
jakarta.ws.rs. Application
</ par am nane>
<param val ue>
Appl i cati onSubcl assNane
</ param val ue>
</init-paranm

Alternatively, you can specify the packages to be scanned for resources and providers, as follows:

<init-paranmp
<par am nane>
jersey.config.server. provider. packages
</ par am nane>
<param val ue>
projectl
</ param val ue>
</init-paranm
<init-paranmp
<par am nane>
jersey.config.server. provider.scanning. recursive
</ par am name>
<par am val ue>
fal se
</ param val ue>
</init-paran

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE Chapter 4
Packaging RESTful Web Service Applications

Table 4-4 (Cont.) Packaging the RESTful Web Service Application with Pre-3.0 Servlet Descriptors

- __|]
Element Description

<servl et -mappi ng> Set as the base URI pattern that gets mapped to the servlet.
If not specified, one of the following values are used, in order of precedence:

e @pplicationPat h annotation value defined in the j akart a. ws. rs. core. Application
subclass. For example:

package test;
@\ppl i cationPath("res")
public class MyJaxRsApplication extends java.ws.rs.core. Application

See Packaging With an Application Subclass.
* The value resour ces. This is the default base URI pattern for RESTful web service
applications. See Packaging as a Default Resource.
If both the <ser vl et - mappi ng> and @\ppl i cat i onPat h are specified, the <ser vl et -
mappi ng> takes precedence.

For more information about how this information is used in the base URI of the resource, see
What Happens at Runtime: How the Base URI is Constructed.

The following example demonstrates how to update the web. xn file if a class that extends
jakarta.ws.rs.core. Application is not packaged with web. xm .

Example 4-4 Updating web.xml for Pre-3.0 Servlets

<web- app>
<servl et>
<servl et-name>Jersey Web Application</servlet-nane>
<servl et-class>org. gl assfish.jersey.servlet. Servl et Container</servl et-class>
<init-paranp
<par am name>j er sey. confi g. server. provi der. packages</ par am name>
<par am val ue>org. f 00. nyr esour ces, or g. bar. ot herr esour ces</ param val ue>
</init-param
<init-paranp
<par am name>j er sey. confi g. server. provi der. scanni ng. r ecur si ve</ par am nanme>
<par am val ue>f al se</ param val ue>
</init-param

</se.r;/|' et>
</we'b: épp>
Packaging as a Default Resource

By default, WebLogic Server defines a default RESTful web service application context path,
resour ces. The default RESTful web service application context path is used if the following
are true:

* You did not update the web. xm deployment descriptor to include a Servlet mapping, as
described in Packaging With a Servlet.

e The @\ppl i cati onPat h annotation is not defined in the j akarta. ws.rs. core. Application
subclass, as described in Packaging With an Application Subclass.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE Chapter 4
Deploying RESTful Web Service Applications

@® Note

If a servlet is already registered at the default context path, then a warning is issued.

For example, if the relative URI of the root resource class for the RESTful web service
application is defined as @&at h(' / hel | owor| d') and the default RESTful web service
application context path is used, then the RESTful web service application resource will be
available at:

http://<host >: <port >/ <cont ext Pat h>/ resour ces/ hel | owor | d

Deploying RESTful Web Service Applications

Application deployment refers to the process of making an application or module available for
processing client requests in a WebLogic domain. For information about deploying a web
application, see Understanding WebLogic Server Deployment in Deploying Applications to
Oracle WebLogic Server.

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 7

Securing RESTful Web Services and Clients

Oracle WebLogic Server fully supports the means to secure Jakarta EE web services that
conform to the Representational State Transfer (REST) architectural style using the JAX-RS
reference implementation (RI).

This chapter includes the following sections:

About RESTful Web Service Security

e Securing RESTful Web Services Using web.xml

e Securing RESTful Web Services Using SecurityContext

* Securing RESTful Web Services Using Java Security Annotations

About RESTful Web Service Security

You can secure your RESTful web services so that they can support authentication,
authorization, or encryption. You can use one of the following methods:

e Updating the web. xm deployment descriptor to access information about the authenticated
users. See Securing RESTful Web Services Using web.xml.

e« Usingthejakarta.ws.rs.core. SecurityContext interface to access security-related
information for a request. See Securing RESTful Web Services Using SecurityContext.

* Applying annotations to your JAX-RS classes. See Securing RESTful Web Services Using
Java Security Annotations.

For information about developing RESTful web service clients using Oracle JDeveloper, see
How to Attach Policies to RESTful Web Services and Clients in Developing Applications with
Oracle JDeveloper.

Securing RESTful Web Services Using web.xml

You secure RESTful web services using the web. xm deployment descriptor as you would for
other Jakarta EE Web applications. For complete details, see:

* Developing Secure Web Applications in Developing Applications with the WebLogic
Security Service.

« Securing Web Applications in The Jakarta EE Tutorial .

For example, to secure your RESTful web service using basic authentication, perform the
following steps:

1. Define a <security-constraint > for each set of RESTful resources (URIs) that you plan
to protect.

2. Use the <l ogi n- confi g> element to define the type of authentication you want to use and
the security realm to which the security constraints will be applied.

3. Define one or more security roles using the <security-rol e>tag and map them to the
security constraints defined in step 1. See security-role in Developing Applications with the
WebLogic Security Service.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 4

https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/security/security-webtier/security-webtier.html#_overview_of_securing_web_applications

ORACLE Chapter 5
Securing RESTful Web Services Using SecurityContext

4. To enable encryption, add the <user - dat a- const r ai nt > element and set the <transport -
guar ant ee> subelement to CONFI DENTI AL. See user-data-constraint in Developing
Applications with the WebLogic Security Service.

Example 5-1 Securing RESTful Web Services Using Basic Authentication

The following example demonstrates how to secure a Jersey Jakarta RESTful Web Service
using basic authentication.

<web- app>
<servl et>
<servl et - nane>Rest Ser vl et </ ser vl et - name>

<servl et-class>org. gl assfish.jersey.servlet. Servl et Contai ner</servl et-class>

</servlet>
<servl et - mappi ng>
<servl et - nane>Rest Ser vl et </ ser vl et - name>
<url-pattern>/*</url-pattern>
</ servl et - mappi ng>
<security-constraint>
<web- resource-col | ection>
<web- r esour ce- nane>0r der s</ web- r esour ce- nane>
<url-pattern>/orders</url-pattern>
<ht t p- net hod>GET</ ht t p- met hod>
<ht t p- met hod>PCOST</ ht t p- met hod>
</ web-resource-col | ection>
<aut h-constraint >
<rol e- nane>adni n</ r ol e- name>
</ aut h-constraint >
</ security-constraint>
<l ogi n-confi g>
<aut h- net hod>BASI C</ aut h- et hod>
<real m name>def aul t </ r eal m nane>
</l ogi n-confi g>
<security-rol e>
<rol e-nane>adm n</rol e- nane>
</security-rol e>
</ web- app>

Securing RESTful Web Services Using SecurityContext

The jakarta.ws.rs.core. SecurityContext interface provides access to security-related
information for a request. The Securi t yCont ext provides functionality similar to
jakarta.servlet.http. HtpServl et Request, enabling you to access the following security-
related information:

e java.security.Principal object containing the name of the user making the request.

e Authentication type used to secure the resource, such as BASI C AUTH, FORM AUTH, and
CLI ENT_CERT_AUTH.

e Whether the authenticated user is included in a particular role.
e Whether the request was made using a secure channel, such as HTTPS.

You access the SecurityCont ext by injecting an instance into a class field, setter method, or
method parameter using the j akarta. ws. rs. core. Cont ext annotation.

For more information, see the following topics in the Jakarta EE 9.1 Specification APIs:

e SecurityContext interface

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 4

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/core/securitycontext

ORACLE Chapter 5
Securing RESTful Web Services Using Java Security Annotations

e (@ont ext annotation

Example 5-2 shows how to inject an instance of Securi t yCont ext into the sc method
parameter using the @ont ext annotation, and check whether the authorized user is included
in the adm n role before returning the response.

Example 5-2 Securing RESTful Web Service Using SecurityContext

package sanpl es. hel | owor| d;

import jakarta.ws.rs.GET,

import jakarta.ws.rs. Path;

i mport jakarta.ws.rs.Produces;

import jakarta.ws.rs.core.SecurityContext;
import jakarta.ws.rs.core.Context;

@ath("/statel ess")
@t at el ess(nane = "JaxRSSt at el essEJB")
public class StlsEJBApp {

@ET

@r oduces("text/plain;charset=UTF-8")

@ath("/hello")

public String sayHel | o(@Context SecurityContext sc) {
if (sc.isUserInRole(admin™)) return "Hello World!";
t hrow new SecurityException("User is unauthorized.");

}

Securing RESTful Web Services Using Java Security
Annotations

The j akarta. annot ati on. security package provides annotations that you can use to secure
your RESTful web services.These annotations are defined in Table 5-1.

Table 5-1 Annotations for Securing RESTful Web Services

Annotation Description

@enyAl | Specifies that no security roles are allowed to invoke the specified methods.

@ermtAll Specifies that all security roles are allowed to invoke the specified methods.

@Rol esAl | owed Specifies the list of security roles that are allowed to invoke the methods in the application.

Before you can use the annotations defined in Table 5-1, you must register the roles-allowed
feature, as described in Securing JAX-RS resources with standard jakarta.annotation.security
annotations in the Jersey 3.0.18 User Guide .

Example 5-3 shows how to define the security roles that are allowed, by default, to access the
methods defined in the hel | oWor | d class. The sayHel | o0 method is annotated with the

@rol esAl | ows annotation to override the default and only allow users that belong to the ADM N
security role.

Example 5-3 Securing RESTful Web Service Using Java Security Annotations

package sanpl es. hel | oworl d;

import jakarta.ws.rs.GET,;

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 4

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/core/context
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/security.html#d0e13080
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/security.html#d0e13080

ORACLE Chapter 5
Securing RESTful Web Services Using Java Security Annotations

import jakarta.ws.rs. Path;
i mport jakarta.ws.rs.Produces;
import jakarta.annotation.Security.RolesAllowed;

@at h("/ hel I owor | d")
@RolesAl lowed ({""ADMIN", "ORG1"})
public class helloWrld {

@ET

@at h("sayHel | 0")

@roduces("text/plain")

@olesAllows(""ADMIN™)

public String sayHello() {
return "Hello World!";

}

See also:

e Specifying Authorized Users by Declaring Security Roles in The Jakarta EE Tutorial

e jakarta.annotation.security Javadoc

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 4

https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/security/security-jakartaee/security-jakartaee.html#_specifying_authorized_users_by_declaring_security_roles
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/annotation/security/package-frame

Testing RESTful Web Services

After you have deployed a Web application that contains a RESTful web service to Oracle
WebLogic Server, you can test your application. This chapter describes how to test Jakarta EE
web services that conform to the Representational State Transfer (REST) architectural style
using Java API for RESTful Web Services (JAX-RS).

Table 6-1 lists the methods that can be employed to test your RESTful web service.

Table 6-1 Methods for Testing RESTful Web Services

Method Description

WebLogic Remote Console To validate the application deployment and construct the URL to view the WADL file, see Test
Application Deployment in the Oracle WebLogic Remote Console Online Help.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 1

Monitoring RESTful Web Services and Clients

Oracle WebLogic Server supports a number of ways to monitor Jakarta EE web services that
conform to the Representational State Transfer (REST) architectural style using JAX-RS.

This chapter includes the following sections:

* About Monitoring RESTful Web Services
¢ Monitoring RESTful Web Services Using WLST

* Enabling the Tracing Feature

» Disabling RESTful Web Service Application Monitoring
You can disable monitoring for an individual Jersey Jakarta RESTful Web Services
application, or globally for an entire WebLogic domain.

 Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service Application

About Monitoring RESTful Web Services

WebLogic Server provides several runtime MBeans that capture runtime information and let
you monitor runtime statistics for your RESTful web service applications.Application monitoring
is useful when you need to identify the performance hotspots in your JAX-RS application,
observe execution statistics of particular resources, or listen to application or request lifecycle
events.

You can use the methods defined in Table 7-1 to monitor your RESTful web service
applications.

Table 7-1 Methods for Monitoring RESTful Web Services

- ___|]
Method Description

WebLogic Scripting Tool (WLST) Access runtime information and monitor runtime statistics, as
described in Monitoring RESTful Web Services Using WLST.

Logging filter Monitor how a request is processed and dispatched to Jersey
Jakarta RESTful Web Services components, as described in
Enabling the Tracing Feature.

In addition to the monitoring methods described in Table 7-1, Jersey (Jakarta RESTful Web
Services) provides additional monitoring features, including support for event listeners and
statistics monitoring. See Monitoring Jersey Applications in the Jersey 3.0.18 User Guide .

@® Note

RESTful web service monitoring is enabled by default. In some cases, this may result
in increased memory consumption. You can disable the monitoring feature at the
domain level, and at the application level. See Disabling RESTful Web Service
Application Monitoring.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 11

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/monitoring_tracing.html#monitoring

ORACLE’

Chapter 7
Monitoring RESTful Web Services Using WLST

Monitoring RESTful Web Services Using WLST

You can use WLST to monitor the runtime MBeans that capture runtime information and
runtime statistics for your RESTful web service applications. These MBeans are listed and

described in Table 7-2.

Table 7-2 Runtime MBeans for Monitoring RESTful Web Services

Runtime MBean

Description

Excepti onMapper Statistic
S

Displays monitoring information about the RESTful web service
application exception mapper executions. See
JaxRsExceptionMapperStatisticsRuntimeMBean in MBean Reference
for Oracle WebLogic Server.

JaxRsAppl i cation

Displays monitoring information for the RESTful web service
application. See JaxRsApplicationRuntimeBean in MBean Reference
for Oracle WebLogic Server.

Request Stati stics

Displays monitoring information about requests executed by the
RESTful web service application. The statistics apply to all requests
handled by the application and are not bound to any specific resource
or resource method. See JaxRsExecutionStatisticsRuntimeMBean in
MBean Reference for Oracle WebLogic Server.

Resour ceConfig

Displays monitoring information about the RESTful web service
application resource configuration. See
JaxRsResourceConfigTypeRuntimeBean inMBean Reference for
Oracle WebLogic Server.

Note: The JaxRsResour ceConfi gTypeRunt i meBean is deprecated
in this release of WebLogic Server. You should use the Properti es
and Appl i cati ond ass attributes of the

JaxRsAppl i cati onRunt i meMBean instead. See
JaxRsApplicationRuntimeBean inMBean Reference for Oracle
WebLogic Server.

ResponseStati stics

Displays monitoring information about responses created by the
RESTful web service application. The statistics apply to all responses
created by the application and are not bound to any specific resource
or resource method. See JaxRsResponseStatisticsRuntimeMBean in
MBean Reference for Oracle WebLogic Server.

Root Resour ces

Displays monitoring information about the RESTful web service
resource. Any object that is managed by a container (such as EJB) will
have application scope. All other resources by default will have request
scope. See JaxRsResourceRuntimeMBeanin MBean Reference for
Oracle WebLogic Server.

Note: This MBean is deprecated in this release of WebLogic Server.
You should use RootResourcesByClass instead.

Root Resour cesByC ass

Displays monitoring information for each resource class that is
deployed in the RESTful web service application. One resource class
can serve requests matched to different URIs. The array contains
resource classes that are registered in the resource model plus
resource classes of sub resources returned from sub resource
locators. See JaxRsResourceRuntimeMBean inMBean Reference for
Oracle WebLogic Server.

Root Resour cesbyURI

Displays monitoring information for each URI that is exposed in the
RESTful web service application. See JaxRsUriRuntimeMBean in
MBean Reference for Oracle WebLogic Server.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 11

ORACLE

Chapter 7
Monitoring RESTful Web Services Using WLST

Table 7-2 (Cont.) Runtime MBeans for Monitoring RESTful Web Services

. ___|
Runtime MBean Description

Servl et Displays monitoring information for the servlet that hosts the RESTful

web service application. See ServletRuntimeMBean in MBean
Reference for Oracle WebLogic Server.

To monitor RESTful web services using WLST, perform the steps provided in the following
procedure.

In this procedure, the example steps provided demonstrate how to monitor the JAX-RS 2.0
Asynchronous Processing sample delivered with the WebLogic Server Samples Server,
described at Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

1.

Invoke WLST, as described in "Invoking WLST" in Understanding the WebLogic Scripting
Tool.

For example:
c:\Oracl e\ oracl e_conmon\ common\ bi n> wlst

Connect to the Administration Server instance, as described in connect in WLST
Command Reference for Oracle WebLogic Server.

For example:
W s:/of fline> connect("weblogic™, "password®, "t3://localhost:8001")

Navigate to the server runtime MBean, as described in serverRuntime in WLST Command
Reference for Oracle WebLogic Server.

For example:

W s: /sanpl es/ server Confi g> serverRuntime()

Location changed to serverRuntine tree. This is a read-only tree
W th ServerRuntimeMBean as the root.
For more hel p,

use hel p(' serverRuntine')

W s: / sanpl es/ server Runt i ne>
Navigate to the Web application component runtime MBean.
For example, to navigate to runtime MBean for the application named j axr s- async:

W s:/sanpl es/ server Runti me> cd("ApplicationRuntimes/jaxrs-async")

W s: / sanpl es/ server Runti me/ Appl i cati onRunti mes/j axrs-async> cd("ComponentRuntimes"™)
w s:/sanpl es/ server Runt i me/ Appl i cati onRunt i mes/j axr s/ Conponent Runt i nes> cd
("AdminServer_/jaxrs-async")

Navigate to the application runtime MBean for the RESTful web service request statistics.
For example:

w s: / sanpl es/ server Runti nme/ Appl i cati onRunti mes/j axrs-async/ Conponent Runti nes> cd
("AdminServer_/jaxrs-async"

W s:/sanpl es_donmai n/ server Runti me/ Appl i cati onRunt i nes/j axrs-async/ Conponent Runt i nes/
Admi nServer _/j axrs-async>

cd ("JaxRsApplications/examples.javaee7.jaxrs.async.MessageApplication/
RequestStatistics/

examples. javaee7. jaxrs.async.MessageApplication_RequestStatistics®)

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 11

ORACLE

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

Chapter 7
Monitoring RESTful Web Services Using WLST

Review the monitoring information displayed for the RESTful web service application. See
JaxRsApplicationRuntimeBean in MBean Reference for Oracle WebLogic Server.

For example:

W s:/sanpl es/ server Runti me/ Appl i cati onRunti mes/j axrs-async/ Conponent Runt i mes/

Adnmi nServer _/j axrs-async

/ JaxRsAppl i cati ons/ exanpl es. j avaee7. j axrs. async. MessageAppl i cati on/ Request Stati stics
/ exanpl es. j avaee7. j axrs. async. MessageAppl i cati on_Request Stati stics>

-1
-1
-1
-1
-1
0

-1
-1
-1
-1
-1
0

-1
-1
-1
-1
-1
0

exanpl es. j avaee?. j axrs. async. MessageAppl i cati on_Request Stati sti

1sO

-r-- AvgTi neLast 156m
-r-- AvgTi nelLast 15s

-r-- AvgTi nelLast 1h

-r-- AvgTineLast 1m

-r-- AvgTi nelLast 1s

-r-- AvgTi meTot al

-r-- MaxTi meLast 15m
-r-- MaxTi nmeLast 15s

-r-- MaxTi neLast 1h

-r-- MaxTi neLast 1m

-r-- MaxTi neLast 1s

-r-- MaxTi meTot al

-r-- M nTi neLast 15m
-r-- M nTi neLast 15s

-r-- M nTi neLast 1h

-r-- M nTi neLast 1m

-r-- M nTi neLast 1s

-r-- M nTi meTot al

-r-- Nane

cs

-r-- Request Count Last 15m
-r-- Request Count Last 15s
-r-- Request Count Last 1h
-r-- Request Count Last 1m
-r-- Request Count Last 1s
-r-- Request Count Tot al
-r-- Request Rat eLast 15m
-r-- Request Rat eLast 15s
-r-- Request Rat eLast 1h
-r-- RequestRat eLast 1m
-r-- RequestRat eLast 1s
-r-- Request Rat eTot al
-r-- Type

O OO oo

o

0
0
0
0
0
0
0.
0
0
0
0
0
J

axRsExecutionStatisticsRuntine

W s:/sanpl es/ server Runti me/ Appl i cati onRunti mes/j axrs-async/ Conponent Runt i mes/

Adnmi nServer _/j axrs-async

/ JaxRsAppl i cati ons/ exanpl es. j avaee7. j axrs. async. MessageAppl i cati on/ Request Stati stics
/ exanpl es. j avaee7. j axrs. async. MessageAppl i cati on_Request Stati stics>

Navigate to any of the other runtime MBeans described in Table 7-2 to view additional

monitoring information.

Exit WLST, as described in Exiting WLST in Understanding the WebLogic Scripting Tool.

For example:

W s:/sanpl es/ server Runti me/ Appl i cati onRunti mes/j axrs-async/ Conponent Runt i mes/

Admi nServer _/j axrs-async

/ JaxRsAppl i cati ons/ exanpl es. j avaee7. j axrs. async. MessageAppl i cati on/ Request Stati stics
/ exanpl es. j avaee7. j axrs. async. MessageAppl i cati on_Request Stati sti cs>exit()

Exiting WebLogic Scripting Tool.
c:\>

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 11

ORACLE’

Chapter 7
Enabling the Tracing Feature

Enabling the Tracing Feature

The Jersey tracing feature provides useful information that describes how a request is
processed and dispatched to Jersey Jakarta RESTful Web Services components. Trace
messages are output in the same order as they occur, so the numbering is useful to
reconstruct the tracing order.

When enabled, the Jersey tracing facility collects useful information for individual requests from
all components of the Jakarta RESTful Web Services server-side request processing pipeline.
The information collected may provide vital details for troubleshooting your Jersey or JAX-RS
application.

The tracing information for a single request is returned to the requesting client in the HTTP
headers of the response. In addition, the information is logged on the server-side using a
dedicated Java Logger instance.

For more information about enabling the Jersey tracing facility, see Tracing Support in Jersey
3.0.18 User Guide .

Disabling RESTful Web Service Application Monitoring

You can disable monitoring for an individual Jersey Jakarta RESTful Web Services application,
or globally for an entire WebLogic domain.

For example, you can disable monitoring in the following ways:

e At the application level, you can set a WebLogic Server-specific Jersey application
property, j ersey. confi g. w s. server. nonitoring. enabl ed. See Disabling Monitoring for
a RESTful Web Service Application Using Jersey Property.

e At both the application level and at the domain level, you can disable monitoring using a
WebLogic Configuration MBean,
WebAppConponent MBean. JaxRshoni t ori ngDef aul t Behavi or . See Disabling Monitoring for
a RESTful Web Service Application Using WebLogic Configuration MBean and Disabling
RESTful Web Service Application Monitoring for a WebLogic Domain.

WebLogic Server uses the following algorithm to determine whether monitoring should be
enabled or disabled for each application.

1. WebLogic Server checks the JAX-RS application property
jersey.config.w s.server.nonitoring.enabl ed.

If it is set for the application, then WebLogic Server uses this value to determine if
monitoring should be enabled or disabled for the application. If this value is not set, it
proceeds to the next step.

2. WebLogic Server checks the configuration MBean
WebAppConponent MBean. JaxRsMoni t or i ngDef aul t Behavi or property for the individual
application.

If it is set for the application, then WebLogic Server uses this value to determine if
monitoring should be enabled or disabled for the application. If this value is not set, it
proceeds to the next step.

3. WebLogic Server checks the configuration MBean
VebAppCont ai ner MBean. JaxRsMoni t ori ngDef aul t Behavi or property setting for the
domain.

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 11

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/monitoring_tracing.html#tracing

ORACLE’

Chapter 7
Disabling RESTful Web Service Application Monitoring

If it is set for the domain, then WebLogic Server uses this value to determine if monitoring
should be enabled or disabled for the application. If this value is not set, it proceeds to the
next step.

4. WebLogic Server uses the default setting, which is to enable Jakarta RESTful Web
Services monitoring for the application if none of the configuration properties in the
previous steps have been set.

« Disabling Monitoring for a RESTful Web Service Application Using Jersey Property

« Disabling Monitoring for a RESTful Web Service Application Using WebLogic Configuration
MBean

» Disabling RESTful Web Service Application Monitoring for a WeblLogic Domain

Disabling Monitoring for a RESTful Web Service Application Using Jersey

Property

Jersey supports the following WebLogic Server-specific property that you can use to disable
application monitoring for an individual RESTful web service application:

jersey.config.w s.server.nonitoring.enabl ed

Setting this property to f al se disables monitoring in the application. You can set this property
programmatically in the Jakarta RESTful Web Services application subclass code, or
declaratively using Servlet init parameters specified in the web. xml as shown in the following
examples.

For convenience, the property name is stored in the
webl ogi c. j axrs. server. Wbl ogi cServer Properties. MONI TORI NG_ENABLED constant field.

Example 7-1 provides an example of how you can disable monitoring programmatically in a
RESTful web service application by extending the JAX-RS Application class.

Example 7-1 Disable Application Monitoring Programmatically by Extending the JAX-
RS Application Class

ApplicationPath("/")
public class MyApplication extends Application {

public Map<String, Object> getProperties() {
final Map<String, Object> properties = new HashMap<>();
/1 Disable JAX-RS Application monitoring (and WS consol e monitoring) for this
internal application.
properties._put(weblogic.jaxrs.server.WeblogicServerProperties MONITORING_ENABLED,
false);

return properties;

}
}

Example 7-2 provides an example of how you can disable monitoring programmatically in a
RESTful web service application by extending the JAX-RS Jersey Resour ceConfi g class.

Example 7-2 Disable Application Monitoring Programmatically by Extending the
Jersey ResourceConfig Class

@\ppl i cationPath("/")
public class MyApplication extends ResourceConfig {

public MyApplication() {

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 11

ORACLE Chapter 7
Disabling RESTful Web Service Application Monitoring

...

/1 Disable JAX-RS Application nonitoring (and WS console nonitoring) for this
internal application.
property(weblogic. jaxrs.server.WeblogicServerProperties.MONITORING_ENABLED, false);

...
}

Example 7-3 provides an example of how you can disable monitoring declaratively using
Servlet init parameters specified in the web. xn .

Example 7-3 Disable Application Monitoring Declaratively Using Servlet Init
Parameters in web.xml

<?xm version="1.0" encodi ng="1S0O 8859-1"?>
<web- app version="2.5"
xm ns="http://xmns.jcp.org/xm/ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi:schemalLocation="http://xnmns.jcp.org/xm/ns/javaee http://
xm ns.jcp.org/ xm/ns/javaeel/ web-app_3_1. xsd">

<servlet>
<servl et - name>com exanpl es. MyAppl i cati on</ servl et - name>

<init-param>
<param-name>jersey.config.wls.server.monitoring.enabled</param-name>
<param-value>false</param-value>

</init-param>

<| oad- on- st art up>1</| oad- on- st ar t up>
</servlet>

<servl et - mappi ng>
<servl et - nanme>com exanpl es. MyAppl i cati on</ servl et - name>
<url-pattern>/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

Disabling Monitoring for a RESTful Web Service Application Using
WebLogic Configuration MBean

After you have deployed a RESTful web service application on WebLogic Server, you can
disable monitoring of the application by using WLST, for example, to set the
JaxRsMoni t ori ngDef aul t Behavi or property to f al se on its WebAppConponent MBean:

webAppConponent MBean. set JaxRsMoni t or i ngDef aul t Behavi or ("f al se")

This is a per-application property that is internally used by Jersey/WebLogic integration code to
determine the state of the default monitoring behavior in the JAX-RS application:

e |If settotrue, monitoring for the JAX-RS application is enabled.
« If settofal se, monitoring for the JAX-RS application is disabled.

e If the property is not set, then the domain-level Web Application Container property
WebAppCont ai ner MBean. i sJaxRsMoni t ori ngDef aul t Behavi or ()) is used as a fall-back.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 11

ORACLE

Chapter 7
Disabling RESTful Web Service Application Monitoring

@® Note

The value of this application-specific property (if set) overrides the value of domain-
level configuration property.

By default the value is not explicitly set.

Disabling RESTful Web Service Application Monitoring for a WebLogic

Domain

Application monitoring is enabled by default for all RESTful web service applications deployed
to a WebLogic domain. It is possible to reverse this default behavior in a WebLogic domain and
disable JAX-RS monitoring for all RESTful web service applications deployed in the domain
(unless overridden by an application-specific configuration) by setting the

JaxRsMoni t ori ngDef aul t Behavi or property on WebAppCont ai ner MBean to f al se:

VebAppCont ai ner MBean. set JaxRsMbni t or i ngDef aul t Behavi or ("f al se")

This Web Application Container property is a domain-level property used by Jersey/WebLogic
integration code to determine the behavior of monitoring in JAX-RS applications at the domain
level:

* Ifsettotrue (or not set), then JAX-RS monitoring is enabled (if not overridden by
properties set directly in an application). By default this property is not set explicitly and
monitoring is enabled.

e If settofal se, then monitoring for all JAX-RS applications is disabled by default for the
given domain.

® Note

You can override this domain-level setting in each JAX-RS application by setting
similar properties, WebAppConponent MBean#i sJaxRsMbni t or i ngDef aul t Behavi or ()),
at the application level. See Disabling Monitoring for a RESTful Web Service
Application Using WebLogic Configuration MBean.

You can update the WebAppCont ai ner MBean. JaxRsMoni t ori ngDef aul t Behavi or property for
the domain using WLST commands before starting the domain, or before deploying any
applications, as shown in Example 7-4.

Example 7-4 provides a sample WLST script that disables JAX-RS monitoring for the entire
domain by default.

Example 7-4 Sample WLST Script for Disabling JAX-RS Monitoring at Domain Level

connect (<user>, <password>)

edit()

startEdit()

cd(" WebAppCont ai ner/ <donai n_name>/")

cno. set JaxRshoni t ori ngDef aul t Behavi or (f al se)
activate()

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 11

ORACLE’

Chapter 7
Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service Application

@® Note

You must restart the domain after you disable monitoring to ensure that all previously
deployed applications are redeployed with the new setting.

[Example 7-5 shows a section of the resulting domain configuration document at DOVAI N_NAVE/
confi g/ config.xm after you have changed the j ax-rs-nmoni t ori ng- def aul t - behavi or
setting to f al se.

Example 7-5 config.xml file with JAX-RS Monitoring Disabled at the Domain Level

<?xm version="1.0" encodi ng=' UTF-8' 7>
<domain ...>
<name>mydomain</ nane>

<web- app- cont ai ner >
<jax-rs-monitoring-default-behavior>false
</jax-rs-monitoring-default-behavior>
</ web- app- cont ai ner >

</ donai n>

@® Note

Although it is possible to do so, Oracle does not recommend editing the confi g. xm
file directly. See Domain Configuration Files in Understanding Domain Configuration
for Oracle WebLogic Server.

Enable Monitoring of Synthetic Jersey Resources in a RESTful
Web Service Application

When a RESTful web service application is deployed on WebLogic Server, the Jersey runtime
(to satisfy JAX-RS specification requirements) introspects all the application resources and
eventually extends the resource model of the application with additional synthetic resources
and/or resource methods. For example, synthetic resources and resource methods are added
to support:

* Resources exposing the WADL for the entire JAX-RS application, as well as a partial
WADL for any deployed resource.

« OPTIONS method handlers for each resource or resource method of the JAX-RS
application.

 HEAD method handlers for each resource or resource method of the JAX-RS application.

Depending on the application, it is possible that quite a lot of additional synthetic resources
may get added to a deployed application. For performance reasons, WebLogic Server, by
default, does not expose runtime MBeans for these extended synthetic resources and resource
methods.

You can set this property programmatically in the JAX-RS application subclass code, or
declaratively using Servlet init parameters specified in the web. xml as shown in the following
examples.

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 11

ORACLE

Chapter 7
Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service Application

For convenience, the property name is stored in the
webl ogi c. j axrs. server. \Webl ogi cServer Properties. MONI TORI NG_EXTENDED_ENABLED
constant field.

Example 7-6 provides an example of how you can enable monitoring for synthetic resources
programmatically in a JAX-RS application by extending the JAX-RS Application class.

Example 7-6 Enable Synthetic Monitoring Programmatically by Extending the JAX-RS
Application Class

@\ppl i cationPath("/")
public class M/Application extends Application {

public Map<String, Object> getProperties() {
final Map<String, Cbject> properties = new HashMap<>();
/'l Expose MBeans for extended JAX-RS resources and resource nethods

properties.put(weblogic.jaxrs.server.WeblogicServerProperties.MONITORING_EXTENDED ENABLED
, true);

return properties;

}
}

Example 7-7 provides an example of how you can enable monitoring of synthetic resources
programmatically in a JAX-RS/Jersey application by extending the JAX-RS Jersey
Resour ceConfi g class.

Example 7-7 Enable Synthetic Monitoring Programmatically by Extending the Jersey
ResourceConfig Class

@\ppl i cationPath("/")
public class MyApplication extends ResourceConfig {

public MyApplication() {
...

/| Expose MBeans for extended JAX-RS resources and resource nethods
property(weblogic.jaxrs.server.WeblogicServerProperties.MONITORING_EXTENDED ENABLED,
true);

}

...
}

Example 7-8 provides an example of how you can enable monitoring of synthetic resources
declaratively using Servlet init parameters specified in the web. xnl .

Example 7-8 Enable Synthetic Monitoring Declaratively Using Servlet Init Parameters
in web.xml

<?xm version="1.0" encodi ng="1S0 8859-1"?>

<web- app version="2.5"
xm ns="http://xmns.jcp.org/ xm/ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi:schemalLocation="http://xnmns.jcp.org/xm/ns/javaee http://
xm ns. jcp.org/ xm/ns/javaeel/ web-app_3_1. xsd" >

<servl et>
<servl et - nanme>com exanpl es. MAppl i cati on</ servl et - name>

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 11

ORACLE Chapter 7
Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service Application

<init-param>
<param-name>jersey.config.wls.server.monitoring.extended.enabled</param-name>
<param-value>true</param-value>

</init-param>

<l oad- on- st art up>1</| oad- on- start up>
</servlet>

<servl et - mappi ng>
<servl et - name>com exanpl es. MAppl i cati on</ servl et - name>
<url-pattern>/ *</url-pattern>
</ servl et - mappi ng>
</ web- app>

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 11

Using Server-Sent Events in WebLogic Server

Oracle WebLogic Server supports server-sent events through the integration of the Eclipse
Jersey library. The Jersey library provides the Reference Implementation (RI) of Jakarta
RESTful Web Services.

This chapter includes the following sections:

¢ Qverview of Server-Sent Events (SSE)

* Using Server-Sent Events
Server-sent events are used to push notifications asynchronously to the client over
standard HTTP protocol.

¢ Understanding the WebLogic Server-Sent Events API

« Sample Applications for Server-Sent Events

Overview of Server-Sent Events (SSE)

Server-sent events enable servers to push data to web pages over standard HTTP or HTTPS
through a unidirectional client-server connection. In the server-sent events communication
model, the browser client establishes the initial connection, and the server provides the data
and sends it to the client. For general information about server-sent events, see the Server-
Sent Events W3C Candidate Recommendation.

Server-sent events are part of the HTML 5 specification, which also includes WebSocket
technology. Both communication models enable servers to send data to clients unsolicited.
However, server-sent events establish one-way communication from server to clients, while a
WebSocket connection provides a bidirectional, full-duplex communication channel between
servers and clients, promoting user interaction through two-way communication. The following
key differences exist between WebSocket and server-sent events technologies:

e Server-sent events can only push data to the client, while WebSocket technology can both
send and receive data from a client.

e The simpler server-sent events communication model is better suited for server-only
updates, while WebSocket technology requires additional programming for server-only
updates.

* Server-sent events are sent over standard HTTP and therefore do not require any special
protocol or server implementation to work. WebSocket technology requires the server to
understand the WebSocket protocol to successfully upgrade an HTTP connection to a
WebSocket connection.

For more information about WebSocket technology, see Using the WebSocket Protocol in
WebLogic Server in Developing Applications for Oracle WebLogic Server.

Using Server-Sent Events

Server-sent events are used to push notifications asynchronously to the client over standard
HTTP protocol.

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 2

http://www.w3.org/TR/eventsource/
http://www.w3.org/TR/eventsource/
http://www.w3.org/TR/html5/

ORACLE’

Chapter 8
Understanding the WebLogic Server-Sent Events API

From JAX-RS 2.1, the server-sent event APIs are defined in the j akart a. ws. rs. sse package.
This package includes the interfaces Sse, SseEvent Si nk, SseEvent , SseBr oadcast er, and
SseEvent Sour ce for server-sent events.

The server-sent events server API is used to accept connections and send events to one or
more clients. From the server side, an instance that implements the interface SseEvent Si nk
corresponds to a single client HTTP connection.

You can also configure the applications to send events to multiple clients simultaneously using
the SseBroadcast er interface. The interface enables to send events to all registered event
outputs.

From the client side, the interface SseEvent Sour ce is used to open a connection to the Wb
Tar get that is configured with a resource location. The clients must request the opening of a
server-sent event connection using the media type t ext / event - st r eamin the Accept header.
The established connection is persistent and can be re-used to send multiple events from the
server.

Understanding the WebLogic Server-Sent Events AP

WebLogic Server supports server-sent events through the integration of the Eclipse Jersey.
The use of server-sent events through Jersey is supported only in Jakarta RESTful Web
Services resources.

From JAX-RS 2.1, the server-sent event APIs are defined in the j akarta. ws. rs. sse package.
This package includes the interfaces Sse, SseEvent Si nk, SseEvent , SseBr oadcast er, and
SseEvent Sour ce for server-sent events.

For more information about server-sent events in Jersey, see Server-Sent Events (SSE)
Support in the Jersey 3.0.18 User Guide .

The WebLogic Server Server-Sent Events API is in the package

org. gl assfish.jersey. medi a. sse. For information about the interfaces and classes included
in this package, see the APl documentation for | akarta. ws. rs. sse in the Jakarta EE 9.1 API
Documentation .

Sample Applications for Server-Sent Events

Sample applications for server-sent events are available through the Jersey project. Refer to

the following locations:

e https://qgithub.con eclipse-eedj/jersey/tree/ master/exanpl es/server-sent-
events-jaxrs

e https://qgithub.com eclipse-eedj/jersey/treel/ master/exanpl es/sse-itemstore-
j axrs- webapp

e https://github.conl eclipse-eedj/jersey/treel/ master/exanpl es/sse-twtter-
aggregator

Developing and Securing RESTful Web Services for Oracle WebLogic Server

G31580-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 2

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/sse.html
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/sse.html
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/sse/package-frame
https://github.com/eclipse-ee4j/jersey/tree/master/examples/server-sent-events-jaxrs
https://github.com/eclipse-ee4j/jersey/tree/master/examples/server-sent-events-jaxrs
https://github.com/eclipse-ee4j/jersey/tree/master/examples/sse-item-store-jaxrs-webapp
https://github.com/eclipse-ee4j/jersey/tree/master/examples/sse-item-store-jaxrs-webapp
https://github.com/eclipse-ee4j/jersey/tree/master/examples/sse-twitter-aggregator
https://github.com/eclipse-ee4j/jersey/tree/master/examples/sse-twitter-aggregator

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Introduction to RESTful Web Services
	Introduction to the REST Architectural Style
	What are RESTful Web Services?
	Standards Supported for RESTful Web Service Development on WebLogic Server
	Roadmap for Implementing RESTful Web Services
	Learn More About RESTful Web Services

	2 Developing RESTful Web Services
	About RESTful Web Service Development
	Summary of Tasks to Develop RESTful Web Services
	Example of a RESTful Web Service

	Defining the Root Resource Class
	Defining the Relative URI of the Root Resource and Subresources
	How to Define the Relative URI of the Resource Class (@Path)
	How to Define the Relative URI of Subresources (@Path)
	What Happens at Runtime: How the Base URI is Constructed

	Mapping Incoming HTTP Requests to Java Methods
	About the Jersey Bookmark Sample
	How to Transmit a Representation of the Resource (@GET)
	How to Create or Update the Representation of the Resource (@PUT)
	How to Delete a Representation of the Resource (@DELETE)
	How to Create, Update, or Perform an Action on a Representation of the Resource (@POST)

	Customizing Media Types for the Request and Response Messages
	How To Customize Media Types for the Request Message (@Consumes)
	How To Customize Media Types for the Response Message (@Produces)
	What Happens At Runtime: How the Resource Method Is Selected for Response Messages

	Extracting Information From the Request Message
	How to Extract Variable Information from the Request URI (@PathParam)
	How to Extract Request Parameters (@QueryParam)
	How to Define the DefaultValue (@DefaultValue)
	Enabling the Encoding Parameter Values (@Encoded)

	Building Custom Response Messages
	Mapping HTTP Request and Response Entity Bodies Using Entity Providers
	Accessing the Application Context
	Building URIs
	Using Conditional GETs
	Accessing the WADL
	More Advanced RESTful Web Service Tasks

	3 Developing RESTful Web Service Clients
	Summary of Tasks to Develop RESTful Web Service Clients
	Example of a RESTful Web Service Client
	Invoking a RESTful Web Service from a Standalone Client
	Using the Reactive JAX-RS Client API

	4 Building, Packaging, and Deploying RESTful Web Service Applications
	Building RESTful Web Service Applications
	Packaging RESTful Web Service Applications
	Packaging With an Application Subclass
	Packaging With a Servlet
	How to Package the RESTful Web Service Application with Servlet 3.0
	Packaging the RESTful Web Service Application Using web.xml With Application Subclass
	Packaging the RESTful Web Service Application Using web.xml Without Application Subclass

	How to Package the RESTful Web Service Application with Pre-3.0 Servlet Descriptors

	Packaging as a Default Resource

	Deploying RESTful Web Service Applications

	5 Securing RESTful Web Services and Clients
	About RESTful Web Service Security
	Securing RESTful Web Services Using web.xml
	Securing RESTful Web Services Using SecurityContext
	Securing RESTful Web Services Using Java Security Annotations

	6 Testing RESTful Web Services
	7 Monitoring RESTful Web Services and Clients
	About Monitoring RESTful Web Services
	Monitoring RESTful Web Services Using WLST
	Enabling the Tracing Feature
	Disabling RESTful Web Service Application Monitoring
	Disabling Monitoring for a RESTful Web Service Application Using Jersey Property
	Disabling Monitoring for a RESTful Web Service Application Using WebLogic Configuration MBean
	Disabling RESTful Web Service Application Monitoring for a WebLogic Domain

	Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service Application

	8 Using Server-Sent Events in WebLogic Server
	Overview of Server-Sent Events (SSE)
	Using Server-Sent Events
	Understanding the WebLogic Server-Sent Events API
	Sample Applications for Server-Sent Events

