
Oracle® Fusion Middleware
Developing and Securing RESTful Web
Services for Oracle WebLogic Server

15c (15.1.1.0.0)
G31580-01
October 2025

Oracle Fusion Middleware Developing and Securing RESTful Web Services for Oracle WebLogic Server, 15c
(15.1.1.0.0)

G31580-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation ii

Conventions ii

1 Introduction to RESTful Web Services

Introduction to the REST Architectural Style 1

What are RESTful Web Services? 2

Standards Supported for RESTful Web Service Development on WebLogic Server 2

Roadmap for Implementing RESTful Web Services 3

Learn More About RESTful Web Services 4

2 Developing RESTful Web Services

About RESTful Web Service Development 1

Summary of Tasks to Develop RESTful Web Services 2

Example of a RESTful Web Service 2

Defining the Root Resource Class 3

Defining the Relative URI of the Root Resource and Subresources 3

How to Define the Relative URI of the Resource Class (@Path) 4

How to Define the Relative URI of Subresources (@Path) 4

What Happens at Runtime: How the Base URI is Constructed 5

Mapping Incoming HTTP Requests to Java Methods 6

About the Jersey Bookmark Sample 7

How to Transmit a Representation of the Resource (@GET) 7

How to Create or Update the Representation of the Resource (@PUT) 8

How to Delete a Representation of the Resource (@DELETE) 9

How to Create, Update, or Perform an Action on a Representation of the Resource
(@POST) 10

Customizing Media Types for the Request and Response Messages 10

How To Customize Media Types for the Request Message (@Consumes) 11

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page i of iii

How To Customize Media Types for the Response Message (@Produces) 11

What Happens At Runtime: How the Resource Method Is Selected for Response
Messages 12

Extracting Information From the Request Message 12

How to Extract Variable Information from the Request URI (@PathParam) 13

How to Extract Request Parameters (@QueryParam) 13

How to Define the DefaultValue (@DefaultValue) 14

Enabling the Encoding Parameter Values (@Encoded) 15

Building Custom Response Messages 15

Mapping HTTP Request and Response Entity Bodies Using Entity Providers 18

Accessing the Application Context 19

Building URIs 20

Using Conditional GETs 21

Accessing the WADL 22

More Advanced RESTful Web Service Tasks 22

3 Developing RESTful Web Service Clients

Summary of Tasks to Develop RESTful Web Service Clients 1

Example of a RESTful Web Service Client 1

Invoking a RESTful Web Service from a Standalone Client 2

Using the Reactive JAX-RS Client API 3

4 Building, Packaging, and Deploying RESTful Web Service Applications

Building RESTful Web Service Applications 1

Packaging RESTful Web Service Applications 1

Packaging With an Application Subclass 2

Packaging With a Servlet 2

How to Package the RESTful Web Service Application with Servlet 3.0 3

How to Package the RESTful Web Service Application with Pre-3.0 Servlet
Descriptors 5

Packaging as a Default Resource 6

Deploying RESTful Web Service Applications 7

5 Securing RESTful Web Services and Clients

About RESTful Web Service Security 1

Securing RESTful Web Services Using web.xml 1

Securing RESTful Web Services Using SecurityContext 2

Securing RESTful Web Services Using Java Security Annotations 3

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page ii of iii

6 Testing RESTful Web Services

7 Monitoring RESTful Web Services and Clients

About Monitoring RESTful Web Services 1

Monitoring RESTful Web Services Using WLST 2

Enabling the Tracing Feature 5

Disabling RESTful Web Service Application Monitoring 5

Disabling Monitoring for a RESTful Web Service Application Using Jersey Property 6

Disabling Monitoring for a RESTful Web Service Application Using WebLogic
Configuration MBean 7

Disabling RESTful Web Service Application Monitoring for a WebLogic Domain 8

Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service Application 9

8 Using Server-Sent Events in WebLogic Server

Overview of Server-Sent Events (SSE) 1

Using Server-Sent Events 1

Understanding the WebLogic Server-Sent Events API 2

Sample Applications for Server-Sent Events 2

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page iii of iii

Preface

This documentation describes how to develop Jakarta Enterprise web services for Oracle
WebLogic Server 15c.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documentation

• Conventions

Audience
This documentation is written for software developers who want develop Jakarta Enterprise
web services for Oracle WebLogic Server 15c that conform to the Representational State
Transfer (REST) architectural style using Jakarta RESTful Web Services (JAX-RS).

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Documentation
New and Changed WebLogic Server Features

For a comprehensive listing of the new and changed WebLogic Server features introduced in
this release, see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page ii of ii

1
Introduction to RESTful Web Services

RESTful web services are Jakarta Enterprise web services that you develop to conform to the
Representational State Transfer (REST) architectural style using Jakarta RESTful Web
Services (JAX-RS).

• Introduction to the REST Architectural Style
REST describes any simple interface that transmits data over a standardized interface
(such as HTTP) without an additional messaging layer, such as Simple Object Access
Protocol (SOAP). REST is an architectural style—not a toolkit—that provides a set of
design rules for creating stateless services that are viewed as resources, or sources of
specific information (data and functionality). Each resource can be identified by its unique
Uniform Resource Identifiers (URIs).

• What are RESTful Web Services?
RESTful web services are services that are built according to REST principles and, as
such, are designed to work well on the Web.

• Standards Supported for RESTful Web Service Development on WebLogic Server

• Roadmap for Implementing RESTful Web Services

• Learn More About RESTful Web Services

Introduction to the REST Architectural Style
REST describes any simple interface that transmits data over a standardized interface (such
as HTTP) without an additional messaging layer, such as Simple Object Access Protocol
(SOAP). REST is an architectural style—not a toolkit—that provides a set of design rules for
creating stateless services that are viewed as resources, or sources of specific information
(data and functionality). Each resource can be identified by its unique Uniform Resource
Identifiers (URIs).

A client accesses a resource using the URI and a standardized fixed set of methods, and a
representation of the resource is returned. A representation of a resource is typically a
document that captures the current or intended state of a resource. The client is said to
transfer state with each new resource representation.

Table 1-1 defines a set of constraints defined by the REST architectural style that must be
adhered to in order for an application to be considered "RESTful."

Table 1-1 Constraints of the REST Architectural Style

Constraint Description

Addressability Identifies all resources using a uniform resource identifier (URI). In the English language,
URIs would be the equivalent of a noun.

Uniform interface Enables the access of a resource using a uniform interface, such as HTTP methods (GET,
POST, PUT, and DELETE). Applying the English language analogy, these methods would be
considered verbs, describing the actions that are applicable to the named resource.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 4

Table 1-1 (Cont.) Constraints of the REST Architectural Style

Constraint Description

Client-server architecture Separates clients and servers into interface requirements and data storage requirements.
This architecture improves portability of the user interface across multiple platforms and
scalability by simplifying server components.

Stateless interaction Uses a stateless communication protocol, typically Hypertext Transport Protocol (HTTP). All
requests must contain all of the information required for a particular request. Session state is
stored on the client only.

This interactive style improves:

• Visibility—Single request provides the full details of the request.
• Reliability—Eases recovery from partial failures.
• Scalability—Not having to store state enables the server to free resources quickly.

Cacheable Enables the caching of client responses. Responses must be identified as cacheable or non-
cacheable. Caching eliminates some interactions, improving efficiency, scalability, and
perceived performance.

Layered system Enables client to connect to an intermediary server rather than directly to the end server
(without the client's knowledge). Use of intermediary servers improve system scalability by
offering load balancing and shared caching.

What are RESTful Web Services?
RESTful web services are services that are built according to REST principles and, as such,
are designed to work well on the Web.

RESTful web services conform to the architectural style constraints defined in Table 1-1.
Typically, RESTful web services are built on the HTTP protocol and implement operations that
map to the common HTTP methods, such as GET, POST, PUT, and DELETE to retrieve,
create, update, and delete resources, respectively.

Standards Supported for RESTful Web Service Development on
WebLogic Server

The Jakarta RESTful Web Services specification provides support for creating web services
according to REST architectural style. Jakarta RESTful Web Services use annotations to
simplify the development of RESTful web services. By simply adding annotations to your web
service, you can define the resources and the actions that can be performed on those
resources. The Jakarta RESTful Web Services specification is part of the Jakarta EE Platform
full profile, and is integrated with Contexts and Dependency Injection (CDI) for the Jakarta EE
Platform (CDI), Jakarta Enterprise Beans (EJB) technology, and Jakarta Servlet technology.
WebLogic Server 15.1.1.0.0 supports the following Jakarta RESTful Web Services
specification:

• Jakarta RESTful Web Services 3.0

• Jersey 3.0.18

Chapter 1
What are RESTful Web Services?

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 4

Note

Jersey support is provided by default in this release of WebLogic Server. Registration
as a shared library is no longer required.

Jersey includes the following functionality:

• Jersey

• Jakarta RESTful Web Services

• JSON processing and streaming

Table 1-2 lists key features delivered with Jersey.

Table 1-2 Key Features in Jersey

Key Feature Description

Client API Communicate with RESTful web services in a standard way. The Client API facilitates the
consumption of a web service exposed via HTTP protocol and enables developers to
concisely and efficiently implement portable client-side solutions that leverage existing and
well established client-side HTTP connector implementations.

For complete details, see:

• Client API in Jersey 3.0.18 User Guide
• Accessing REST Resources with the JAX-RS Client API in The Jakarta EE Tutorial

Asynchronous
communication

Invoke and process requests asynchronously.

For complete details, see:

• Asynchronous Services and Clients in the Jersey 3.0.18 User Guide
• Advanced Features of the Client API in The Jakarta EE Tutorial

Filters and interceptors Using filters, modify inbound and outbound requests and responses., such as header
information. Using interceptors, modify entity input and output streams. Filters and
interceptors can be used on both the client and server side.

For complete details, see Filters and Interceptors in the Jersey 3.0.18 User Guide .

For more information about JAX-RS and samples, see Learn More About RESTful Web
Services.

Roadmap for Implementing RESTful Web Services
Review a roadmap of common tasks for developing, packaging and deploying, securing, and
monitoring RESTful web services and clients. These tasks are listed in Table 1-3.

Table 1-3 Roadmap for Implementing RESTful Web Services and Clients

Task More Information

Develop RESTful web services. Developing RESTful Web Services

Develop clients to invoke the RESTful web
services.

Summary of Tasks to Develop RESTful Web Service Clients

Package and deploy RESTful web services. • Packaging With an Application Subclass
• Packaging With a Servlet
• Packaging as a Default Resource

Chapter 1
Roadmap for Implementing RESTful Web Services

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 4

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/client.html
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/websvcs/rest-client/rest-client.html
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/async.html
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/websvcs/rest-client/rest-client.html#_advanced_features_of_the_client_api
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/filters-and-interceptors.html

Table 1-3 (Cont.) Roadmap for Implementing RESTful Web Services and Clients

Task More Information

Secure RESTful web services. • Securing RESTful Web Services Using web.xml
• Securing RESTful Web Services Using SecurityContext
• Securing RESTful Web Services Using Java Security Annotations

Test RESTful web services. Testing RESTful Web Services

Monitor RESTful web services. Monitoring RESTful Web Services and Clients

(Optional) Migrate existing applications from
earlier Jersey versions.

Migration Guide in Jersey 3.0.18 User Guide

Learn More About RESTful Web Services
For additional information about RESTful web services, review the resources in Table 1-4.

Table 1-4 Resources for More Information

Resource Link

Jersey User Guide Jersey 3.0.18 User Guide

Jersey API Javadoc Jersey 3.0.18 API Documentation

Community Wiki for Project
Jersey

https://jersey.github.io/

Jakarta RESTful Web
Services Specification

https://jakarta.ee/specifications/restful-ws/

JAX-RS API Javadoc https://jakartaee.github.io/rest/apidocs/

JAX-RS Project https://github.com/jakartaee/rest

RESTful Web Services (JAX-
RS) sample

Sample Application and Code Examples in Understanding Oracle WebLogic Server.

The Jakarta EE Tutorial:
Building RESTful Web
Services With JAX-RS

https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/websvcs/rest/
rest.html

"Representational State
Transfer (REST)" in
Architectural Styles and the
Design of Network-based
Software Architectures
(Dissertation by Roy Fielding)

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Chapter 1
Learn More About RESTful Web Services

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 4

https://eclipse-ee4j.github.io/jersey.github.io/documentation/latest30x/migration.html
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/index.html
https://eclipse-ee4j.github.io/jersey.github.io/apidocs/3.0.18/jersey/index.html
https://jersey.github.io/
https://jakarta.ee/specifications/restful-ws/
https://jakartaee.github.io/rest/apidocs/
https://github.com/jakartaee/rest
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/websvcs/rest/rest.html
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/websvcs/rest/rest.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

2
Developing RESTful Web Services

To develop Jakarta Enterprise web services that conform to the Representational State
Transfer (REST) architectural style using Jakarta RESTful Web Services (JAX-RS), you
perform tasks such as defining the root resource class, mapping incoming HTTP requests to
Java methods, customizing media types for requests and responses, and more.

• About RESTful Web Service Development

• Defining the Root Resource Class

• Defining the Relative URI of the Root Resource and Subresources

• Mapping Incoming HTTP Requests to Java Methods

• Customizing Media Types for the Request and Response Messages

• Extracting Information From the Request Message

• Building Custom Response Messages
Instead of the default response codes, you can customize the response codes returned or
include additional metadata information in the response.

• Mapping HTTP Request and Response Entity Bodies Using Entity Providers

• Accessing the Application Context

• Building URIs

• Using Conditional GETs
A conditional GET enables you to evaluate one or more preconditions before processing a
GET request. If the preconditions are met, a Not Modified (304) response can be
returned rather than the normal response, potentially reducing bandwidth and improving
server performance.

• Accessing the WADL
The Web Application Description Language (WADL) is an XML-based file format that
describes your RESTful web services application. By default, a basic WADL is generated
at runtime and can be accessed from your RESTful web service by issuing a GET on the /
application.wadl resource at the base URI of your RESTful application.

• More Advanced RESTful Web Service Tasks

About RESTful Web Service Development
JAX-RS is a Java programming language API that uses annotations to simplify the
development of RESTful web services. JAX-RS annotations are runtime annotations. When
you deploy the Jakarta EE application archive containing JAX-RS resource classes to
WebLogic Server, as described in Building, Packaging, and Deploying RESTful Web Service
Applications , the runtime configures the resources, generates the helper classes and artifacts,
and exposes the resource to clients.
For information about developing RESTful web services using Oracle JDeveloper, see
Creating RESTful Web Services and Clients in Developing Applications with Oracle
JDeveloper.

The following sections provide more information about RESTful web service development:

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 22

• Summary of Tasks to Develop RESTful Web Services

• Example of a RESTful Web Service

Summary of Tasks to Develop RESTful Web Services
Table 2-1 summarizes a subset of the tasks that are required to develop RESTful web service
using JAX-RS annotations. For more information about advanced tasks, see More Advanced
RESTful Web Service Tasks.

Note

In addition to the development tasks described in Table 2-1, you may wish to take
advantage of features available with Jersey when developing your RESTful web
services. For a list of key features, see Table 1-2.

Table 2-1 Summary of Tasks to Develop RESTful Web Services

Task More Information

Define the root resource class. Defining the Root Resource Class

Define the relative URI of the root resource class and its
methods using the @Path annotation.

If you define the @Path annotation using a variable, you can
assign a value to it using the @PathParam annotation.

Defining the Relative URI of the Root Resource and
Subresources

Map incoming HTTP requests to your Java methods using
@GET, @POST, @PUT, or @DELETE, to get, create, update, or
delete representations of the resource, respectively.

Mapping Incoming HTTP Requests to Java Methods

Customize the request and response messages, as required,
to specify the MIME media types of representations a
resource can produce and consume.

Customizing Media Types for the Request and Response
Messages

Extract information from the request. Extracting Information From the Request Message

Build custom response messages to customize response
codes or include additional metadata.

Building Custom Response Messages

Access information about the application deployment context
or the context of individual requests.

Accessing the Application Context

Build new or extend existing resource URIs. Building URIs

Evaluate one or more preconditions before processing a GET
request, potentially reducing bandwidth and improving server
performance.

Using Conditional GETs

Access the WADL. Accessing the WADL

Optionally, create a class that extends
jakarta.ws.rs.core.Application to define the
components of a RESTful web service application
deployment and provides additional metadata.

Packaging With an Application Subclass

Secure your RESTful web services. Securing RESTful Web Services and Clients

Example of a RESTful Web Service
Example 2-1 provides a simple example of a RESTful web service. In this example:

Chapter 2
About RESTful Web Service Development

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 22

• The helloWorld class is a resource with a relative URI path defined as /helloworld. At
runtime, if the context root for the WAR file is defined as http://examples.com, the full
URI to access the resource is http://examples.com/helloworld. See Defining the
Relative URI of the Root Resource and Subresources.

• The sayHello method supports the HTTP GET method. See Mapping Incoming HTTP
Requests to Java Methods.

• The sayHello method produces content of the MIME media type text/plain. See
Customizing Media Types for the Request and Response Messages.

Additional examples are listed in Learn More About RESTful Web Services.

Example 2-1 Simple RESTful Web Service

package samples.helloworld;

import jakarta.ws.rs.GET;
import jakarta.ws.rs.Path;
import jakarta.ws.rs.Produces;

// Specifies the path to the RESTful service
@Path("/helloworld")
public class helloWorld {

 // Specifies that the method processes HTTP GET requests
 @GET
 @Produces("text/plain")
 public String sayHello() {
 return "Hello World!";
 }
}

Defining the Root Resource Class
A root resource class is a Plain Old Java Object (POJO) that meets specific annotation
requirements. The root resource class must satisfy one or both of the following statements:

• Is annotated with @Path. See Defining the Relative URI of the Root Resource and
Subresources.

• Has at least one method annotated with @Path or with a request method designator, such
as @GET, @POST, @PUT, or @DELETE. A resource method is a method in the resource class
that is annotated using a request method designator. See Mapping Incoming HTTP
Requests to Java Methods.

Defining the Relative URI of the Root Resource and
Subresources

Add the jakarta.ws.rs.Path annotation at the class level of the resource to define the relative
URI of the RESTful web service. Such classes are referred to as root resource classes. You
can add @Path on methods of the root resource class as well, to define subresources to group
specific functionality.
The following sections describe how to define the relative URI of the root resource and
subresources:

• How to Define the Relative URI of the Resource Class (@Path)

• How to Define the Relative URI of Subresources (@Path)

Chapter 2
Defining the Root Resource Class

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 22

• What Happens at Runtime: How the Base URI is Constructed

How to Define the Relative URI of the Resource Class (@Path)
The @Path annotation defines the relative URI path for the resource, and can be defined as a
constant or variable value (referred to as "URI path template"). You can add the @Path
annotation at the class or method level.

To define the URI as a constant value, pass a constant value to the @Path annotation.
Preceding and ending slashes (/) are optional.

In Example 2-2, the relative URI for the resource class is defined as the constant value, /
helloworld.

Example 2-2 Defining the Relative URI as a Constant Value

package samples.helloworld;
import jakarta.ws.rs.Path;
...
// Specifies the path to the RESTful service
@Path("/helloworld")
public class helloWorld {. . .}

To define the URI as a URI path template, pass one or more variable values enclosed in
braces in the @Path annotation. Then, you can use the jakarta.ws.rs.PathParam annotation
to extract variable information from the request URI, defined by the @Path annotation, and
initialize the value of the method parameter, as described in How to Extract Variable
Information from the Request URI (@PathParam).

In Example 2-3, the relative URI for the resource class is defined using a variable, enclosed in
braces, for example, /users/{username}.

Example 2-3 Defining the Relative URI as a Variable Value

package samples.helloworld;

import jakarta.ws.rs.Path;
...
// Specifies the path to the RESTful service
@Path("/users/{username}")
public class helloWorld {. . .}
}

To further customize the variable, you can override the default regular expression of "[^/]+?" by
specifying the expected regular expression as part of the variable definition. For example:

@Path("users/{username: [a-zA-Z][a-zA-Z_0-9]}")

In this example, the username variable will match only user names that begin with one
uppercase or lowercase letter followed by zero or more alphanumeric characters or the
underscore character. If the user name does not match the requirements, a 404 (Not Found)
response will be sent to the client.

See the @Path annotation in the Jakarta EE 9.1 API Documentation .

How to Define the Relative URI of Subresources (@Path)
Add the jakarta.ws.rs.Path annotation to the method of a resource to define a subresource.
Subresources enable users to group specific functionality for a resource.

Chapter 2
Defining the Relative URI of the Root Resource and Subresources

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/path

In Example 2-4, if the request path of the URI is users/list, then the getUserList
subresource method is matched and a list of users is returned.

Example 2-4 Defining a Subresource

package samples.helloworld;

import jakarta.ws.rs.GET;
import jakarta.ws.rs.Path;

// Specifies the path to the RESTful service
@Path("/users")
public class UserResource {
. . .
 @GET

 @Path("/list")

 public String getUserList() {
 ...
 }
}

What Happens at Runtime: How the Base URI is Constructed
The base URI is constructed as follows:

http://myHostName/contextPath/servletURI/resourceURI

• myHostName—DNS name mapped to the Web Server. You can replace this with host:port
which specifies the name of the machine running WebLogic Server and the port used to
listen for requests.

• contextPath—Name of the standalone Web application. The Web application name is
specified in the META-INF/application.xml deployment descriptor in an EAR file or the
weblogic.xml deployment descriptor in a WAR file. If not specified, it defaults to the name
of the WAR file minus the .war extension. See context-root in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

• servletURI—Base URI for the servlet context path. This path is configured as part of the
packaging options defined in Table 4-1. Specifically, you can define the servlet context path
by:

– Updating the web.xml deployment descriptor to define the servlet mapping.

– Adding a jakarta.ws.rs.ApplicationPath annotation to the class that extends
jakarta.ws.rs.core.Application, if defined.

If the servlet context path is configured using both options above, then the servlet mapping
takes precedence. If you do not configure the servlet context path in your configuration
using either of the options specified above, the WebLogic Server provides a default
RESTful web service application context path, resources. See Building, Packaging, and
Deploying RESTful Web Service Applications .

• resourceURI—@Path value specified for the resource or subresource. This path may be
constructed from multiple resources and subresources @Path values.

In Example 2-2, at runtime, if the context path for the WAR file is defined as rest and the
default URI for the servlet (resources) is in effect, the base URI to access the resource is
http://myServer:7001/rest/resources/helloworld.

Chapter 2
Defining the Relative URI of the Root Resource and Subresources

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 22

In Example 2-3, at runtime, the base URI will be constructed based on the value specified for
the variable. For example, if the user entered johnsmith as the username, the base URI to
access the resource is http://myServer:7001/rest/resources/users/johnsmith.

Mapping Incoming HTTP Requests to Java Methods
JAX-RS uses Jakarta annotations to map an incoming HTTP request to a Java method.
Table 2-2 lists the annotations available, which map to the similarly named HTTP methods.

Table 2-2 jakarta.ws.rs Annotations for Mapping HTTP Requests to Java Methods

Annotation Description Idempotent

@GET Transmits a representation of the resource identified by the URI to the client. The
format might be HTML, plain text, JPEG, and so on. See How to Transmit a
Representation of the Resource (@GET).

Yes

@PUT Creates or updates the representation of the specified resource identified by the
URI. See How to Create or Update the Representation of the Resource (@PUT).

Yes

@DELETE Deletes the representation of the resource identified by the URI. See How to Delete
a Representation of the Resource (@DELETE).

Yes

@POST Creates, updates, or performs an action on the representation of the specified
resource identified by the URI. See How to Create, Update, or Perform an Action
on a Representation of the Resource (@POST).

No

@HEAD Returns the response headers only, and not the actual resource (that is, no
message body). This is useful to save bandwidth to check characteristics of a
resource without actually downloading it. See the @HEAD annotation in the Jakarta
EE 9.1 API Documentation .

The HEAD method is implemented automatically if not implemented explicitly. In this
case, the runtime invokes the implemented GET method, if present, and ignores the
response entity, if set.

Yes

@OPTIONS Returns the communication options that are available on the request/response
chain for the specified resource identified by the URI. The Allow response header
will be set to the set of HTTP methods supported by the resource and the WADL
file is returned. See the @OPTIONS annotation in the Jakarta EE 9.1 API
Documentation .

The OPTIONS method is implemented automatically if not implemented explicitly. In
this case, the Allow response header is set to the set of HTTP methods supported
by the resource and the WADL describing the resource is returned.

Yes

@HttpMethod Indicates that the annotated method should be used to handle HTTP requests. See
the @HttpMethod annotation in the Jakarta EE 9.1 API Documentation .

N/A

The following sections provide more information about the JAX-RS annotations used for
mapping HTTP requests to Java methods.

• About the Jersey Bookmark Sample

• How to Transmit a Representation of the Resource (@GET)

• How to Create or Update the Representation of the Resource (@PUT)

• How to Delete a Representation of the Resource (@DELETE)

• How to Create, Update, or Perform an Action on a Representation of the Resource
(@POST)

Chapter 2
Mapping Incoming HTTP Requests to Java Methods

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/head
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/options
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/httpmethod

About the Jersey Bookmark Sample
The examples referenced in the following sections are excerpted from the bookmark sample
that is delivered with Jersey (JAX-RS RI). The bookmark sample provides a Web application
that maintains users and the browser bookmarks that they set.

The following table summarizes the resource classes in the sample, their associated URI path,
and the HTTP methods demonstrated by each class.

Table 2-3 About the Jersey Bookmark Sample

Resource Class URI Path HTTP Methods Demonstrated

UsersResource /users GET

UserResource /users/{userid} GET, PUT, DELETE

BookmarksResource /users/{userid}/bookmarks GET, POST

BookmarkResource /users/{userid}/bookmarks/{bmid} GET. PUT, DELETE

The bookmark sample, and other Jersey samples, can be accessed in one of the following
ways:

• Accessing the bookmark sample at https://repo1.maven.org/maven2/org/glassfish/
jersey/examples/bookmark/

• Browsing the Maven repositories for all Jersey examples, including a WebLogic Server-
specific example bundle for each version, at: https://repo1.maven.org/maven2/org/
glassfish/jersey/bundles/jersey-examples/

How to Transmit a Representation of the Resource (@GET)
The jakarta.ws.rs.GET annotation transmits a representation of the resource identified by the
URI to the client. The format or the representation returned in the response entity-body might
be HTML, plain text, JPEG, and so on. See the @GET annotation in the Jakarta EE 9.1
Specification APIs.

In Example 2-5, the annotated Java method, getBookmarkAsJsonArray, from the
BookmarksResource class in the Jersey bookmark sample, will process HTTP GET requests.
See About the Jersey Bookmark Sample.

Example 2-5 Mapping the HTTP GET Request to a Java Method (BookmarksResource Class)

import jakarta.ws.rs.GET;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.Path;
...
public class BookmarksResource {
...
 @Path("{bmid: .+}")
 public BookmarkResource getBookmark(@PathParam("bmid") String bmid) {
 return new BookmarkResource(uriInfo, em,
 userResource.getUserEntity(), bmid);
 }
 @GET

 @Produces(MediaType.APPLICATION_JSON)

Chapter 2
Mapping Incoming HTTP Requests to Java Methods

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 22

https://repo1.maven.org/maven2/org/glassfish/jersey/examples/bookmark/
https://repo1.maven.org/maven2/org/glassfish/jersey/examples/bookmark/
https://repo1.maven.org/maven2/org/glassfish/jersey/bundles/jersey-examples/
https://repo1.maven.org/maven2/org/glassfish/jersey/bundles/jersey-examples/
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/get

 public JSONArray getBookmarksAsJsonArray() {
 JSONArray uriArray = new JSONArray();
 for (BookmarkEntity bookmarkEntity : getBookmarks()) {
 UriBuilder ub = uriInfo.getAbsolutePathBuilder();
 URI bookmarkUri = ub.
 path(bookmarkEntity.getBookmarkEntityPK().getBmid()).
 build();
 uriArray.put(bookmarkUri.toASCIIString());
 }
 return uriArray;
 }
...
}

In Example 2-6, the annotated Java method, getBookmark, from the BookmarkResource class in
the Jersey bookmark sample, will process HTTP GET requests. This example shows how to
process the JSON object that is returned. See About the Jersey Bookmark Sample.

Example 2-6 Mapping the HTTP GET Request to a Java Method (BookmarkResource Class)

import jakarta.ws.rs.GET;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.Path;
...
public class BookmarkResource {
...
 @GET

 @Produces(MediaType.APPLICATION_JSON)

 public JSONObject getBookmark() {
 return asJson();
 }
...
 public JSONObject asJson() {
 try {
 return new JSONObject()
 .put("userid", bookmarkEntity.getBookmarkEntityPK().getUserid())
 .put("sdesc", bookmarkEntity.getSdesc())
 .put("ldesc", bookmarkEntity.getLdesc())
 .put("uri", bookmarkEntity.getUri());
 } catch (JSONException je){
 return null;
 }
 }
}

How to Create or Update the Representation of the Resource (@PUT)
The jakarta.ws.rs.PUT annotation creates or updates the representation of the specified
resource identified by the URI. See the @PUT annotation in the Jakarta EE 9.1 Specification
APIs.

In Example 2-7, the annotated Java method, putBookmark, from the BookmarkResource class in
the Jersey bookmark sample, will process HTTP PUT requests and update the specified
bookmark. See About the Jersey Bookmark Sample.

Example 2-7 Mapping the HTTP PUT Request to a Java Method

import jakarta.ws.rs.PUT;
import jakarta.ws.rs.Produces;

Chapter 2
Mapping Incoming HTTP Requests to Java Methods

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/put

import jakarta.ws.rs.Path;
...
public class BookmarkResource {
...
 @PUT

 @Consumes(MediaType.APPLICATION_JSON)

 public void putBookmark(JSONObject jsonEntity) throws JSONException {

 bookmarkEntity.setLdesc(jsonEntity.getString("ldesc"));
 bookmarkEntity.setSdesc(jsonEntity.getString("sdesc"));
 bookmarkEntity.setUpdated(new Date());

 TransactionManager.manage(new Transactional(em) {

 public void transact() {

 em.merge(bookmarkEntity);
 }});
 }

}

How to Delete a Representation of the Resource (@DELETE)
The jakarta.ws.rs.DELETE annotation deletes the representation of the specified resource
identified by the URI. The response entity-body may return a status message or may be empty.
See the @DELETE annotation in the Jakarta EE 9.1 Specification APIs.

In Example 2-8, the annotated Java method, deleteBookmark, from the BookmarkResource
class in the Jersey bookmark sample, will process HTTP DELETE requests, and delete the
specified bookmark. See About the Jersey Bookmark Sample.

Example 2-8 Mapping the HTTP DELETE Request to a Java Method

import jakarta.ws.rs.DELETE;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.Path;
...
public class BookmarkResource {
...
 @DELETE
 public void deleteBookmark() {

 TransactionManager.manage(new Transactional(em) {

 public void transact() {

 UserEntity userEntity = bookmarkEntity.getUserEntity();
 userEntity.getBookmarkEntityCollection().remove(bookmarkEntity);
 em.merge(userEntity);
 em.remove(bookmarkEntity);
 }});
 }
}

Chapter 2
Mapping Incoming HTTP Requests to Java Methods

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/delete

How to Create, Update, or Perform an Action on a Representation of the
Resource (@POST)

The jakarta.ws.rs.POST annotation creates, updates, or performs an action on the
representation of the specified resource identified by the URI. See the @POST annotation in the
Jakarta EE 9.1 Specification APIs.

In Example 2-9, the annotated Java method, postForm, from the BookmarksResource class in
the Jersey bookmark sample, will process HTTP POST requests, and update the specified
information. See About the Jersey Bookmark Sample.

Example 2-9 Mapping the HTTP POST Request to a Java Method

import jakarta.ws.rs.POST;
import jakarta.ws.rs.Produces;
...
public class BookmarksResource {
...
 @POST

 @Consumes(MediaType.APPLICATION_JSON)

 public Response postForm(JSONObject bookmark) throws JSONException {

 final BookmarkEntity bookmarkEntity = new
BookmarkEntity(getBookmarkId(bookmark.getString("uri")),

 userResource.getUserEntity().getUserid());

 bookmarkEntity.setUri(bookmark.getString("uri"));
 bookmarkEntity.setUpdated(new Date());
 bookmarkEntity.setSdesc(bookmark.getString("sdesc"));
 bookmarkEntity.setLdesc(bookmark.getString("ldesc"));
 userResource.getUserEntity().getBookmarkEntityCollection().add(bookmarkEntity);

 TransactionManager.manage(new Transactional(em) {

 public void transact() {

 em.merge(userResource.getUserEntity());
 }});

 URI bookmarkUri = uriInfo.getAbsolutePathBuilder().
 path(bookmarkEntity.getBookmarkEntityPK().getBmid()).
 build();
 return Response.created(bookmarkUri).build();
 }
}

Customizing Media Types for the Request and Response
Messages

To customize the media types for request and response messages, add the
jakarta.ws.rs.Consumes or jakarta.ws.rs.Produces annotation at the class level of the
resource. This task is described in the following sections:

Chapter 2
Customizing Media Types for the Request and Response Messages

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/post

• How To Customize Media Types for the Request Message (@Consumes)

• How To Customize Media Types for the Response Message (@Produces)

• What Happens At Runtime: How the Resource Method Is Selected for Response
Messages

How To Customize Media Types for the Request Message (@Consumes)
The jakarta.ws.rs.Consumes annotation enables you to specify the MIME media types of
representations a resource can consume that were sent from the client. The @Consumes
annotation can be specified at both the class and method levels and more than one media type
can be declared in the same @Consumes declaration.

If there are no methods in a resource that can consume the specified MIME media types, the
runtime returns an HTTP 415 Unsupported Media Type error.

See the @Consumes annotation in the Jakarta EE 9.1 Specification APIs.

In Example 2-10, the @Consumes annotation defined for the Java class, helloWorld, specifies
that the class produces messages using the text/plain MIME media type.

Example 2-10 Customizing the Media Types for the Request Message Using @Consumes

package samples.consumes;

import jakarta.ws.rs.Consumes;
import jakarta.ws.rs.POST;
import jakarta.ws.rs.Path;
...
@Path("/helloworld")
public class helloWorld {
...
 @POST
 @Consumes("text/plain")
 public void postMessage(String message) {
 // Store the message
 }
}

How To Customize Media Types for the Response Message (@Produces)
The jakarta.ws.rs.Produces annotation enables you to specify the MIME media types of
representations a resource can produce and send back to the client. The @Produces annotation
can be specified at both the class and method levels and more than one media type can be
declared in the same @Produces declaration.

If there are no methods in a resource that can produce the specified MIME media types, the
runtime returns an HTTP 406 Not Acceptable error.

See the @Produces annotation in the Jakarta EE 9.1 Specification APIs.

In Example 2-11, the @Produces annotation specified for the Java class, SomeResource,
specifies that the class produces messages using the text/plain MIME media type. The
doGetAsPlainText method defaults to the MIME media type specified at the class level. The
doGetAsHtml method overrides the class-level setting and specifies that the method produces
HTML rather than plain text.

Chapter 2
Customizing Media Types for the Request and Response Messages

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 11 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/consumes
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/produces

Example 2-11 Customizing the Media Types for the Response Using @Produces

package samples.produces;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.Path;

@Path("/myResource")
@Produces("text/plain")
public class SomeResource {
 @GET
 public String doGetAsPlainText() { ... }

 @GET
 @Produces("text/html")
 public String doGetAsHtml() { ... }
}

What Happens At Runtime: How the Resource Method Is Selected for
Response Messages

If a resource class is capable of producing more that one MIME media type, then the resource
method that is selected corresponds to the acceptable media type declared in the Accept
header of the HTTP request. In Example 2-11, if the Accept header is Accept: text/html,
then the doGetAsPlainText method is invoked.

If multiple MIME media types are included in the @Produces annotation and both are
acceptable to the client, the first media type specified is used. In Example 2-11, if the Accept
header is Accept: application/html, application/text, then the doGetAsHtml method is
invoked and the application/html MIME media type is used as it is listed first in the list.

Extracting Information From the Request Message
The jakarta.ws.rs package defines a set of annotations that enable you extract information
from the request message to inject into parameters of your Java method. These annotations
are listed and described in Table 2-4.

Table 2-4 jakarta.ws.rs Annotations for Extracting Information From the Request Message

Annotation Description

@BeanParam Inject aggregated request parameters into a single bean. See the @BeanParam annotation in the
Jakarta EE 9.1 API Documentation .

For additional usage information, see Parameter Annotations (@*Param) in the Jersey 3.0.18 User
Guide .

@CookieParam Extract information from the HTTP cookie-related headers to initialize the value of a method
parameter. See the @CookieParam annotation in the Jakarta EE 9.1 API Documentation .

@DefaultValue Define the default value of the request metadata that is bound using one of the following
annotations: @CookieParam, @FormParam, @HeaderParam, @MatrixParam, @PathParam, or
@QueryParam. See How to Define the DefaultValue (@DefaultValue).

@Encoded Enable encoding of a parameter value that is bound using one of the following annotations:
@FormParam, @MatrixParam, @PathParam, or @QueryParam. See Enabling the Encoding
Parameter Values (@Encoded).

@FormParam Extract information from an HTML form of the type application/x-www-form-urlencoded. See
the @FormParam annotation in the Jakarta EE 9.1 API Documentation .

Chapter 2
Extracting Information From the Request Message

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 12 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/beanparam
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/jaxrs-resources.html#d0e2271
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/cookieparam
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/formparam

Table 2-4 (Cont.) jakarta.ws.rs Annotations for Extracting Information From the Request Message

Annotation Description

@HeaderParam Extract information from the HTTP headers to initialize the value of a method parameter. See the
@HeaderParam annotation in the Jakarta EE 9.1 API Documentation .

@MatrixParam Extract information from the URI path segments to initialize the value of a method parameter. See
the @MatrixParam annotation in the Jakarta EE 9.1 API Documentation .

@PathParam Define the relative URI as a variable value (referred to as "URI path template"). See How to Extract
Variable Information from the Request URI (@PathParam).

@QueryParam Extract information from the query portion of the request URI to initialize the value of a method
parameter. See How to Extract Request Parameters (@QueryParam).

• How to Extract Variable Information from the Request URI (@PathParam)

• How to Extract Request Parameters (@QueryParam)

• How to Define the DefaultValue (@DefaultValue)

• Enabling the Encoding Parameter Values (@Encoded)

How to Extract Variable Information from the Request URI (@PathParam)
Add the jakarta.ws.rs.PathParam annotation to the method parameter of a resource to
extract the variable information from the request URI and initialize the value of the method
parameter. You can define a default value for the variable value using the @DefaultValue
annotation, as described in How to Define the DefaultValue (@DefaultValue).

In Example 2-12, the @PathParam annotation assigns the value of the username variable that is
defined as part of the URI path by the @Path annotation to the userName method parameter.

Example 2-12 Extracting Variable Information From the Request URI

package samples.helloworld;

import jakarta.ws.rs.GET;
import jakarta.ws.rs.Path;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.PathParam;

// Specifies the path to the RESTful service
@Path("/users")
public class helloWorld {
. . .
 @GET
 @Path("/{username}")
 @Produces("text/xml")
 public String getUser(@PathParam("username") String userName) {
 ...
 }
}

How to Extract Request Parameters (@QueryParam)
Add the jakarta.ws.rs.QueryParam annotation to the method parameter of a resource to
extract information from the query portion of the request URI and initialize the value of the
method parameter.

Chapter 2
Extracting Information From the Request Message

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 13 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/headerparam
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/matrixparam

The type of the annotated method parameter can be any of the following:

• Primitive type (int, char, byte, and so on)

• User-defined type

• Constructor that accepts a single String argument

• Static method named valueOf or fromString that accepts a single String argument (for
example, integer.valueOf(String))

• List<T>, Set<T>, or SortedSet<T>

If the @QueryParam annotation is specified but the associated query parameter is not present in
the request, then the parameter value will set as an empty collection for List, Set or
SortedSet, the Java-defined default for primitive types, and NULL for all other object types.
Alternatively, you can define a default value for the parameter using the @DefaultValue
annotation, as described in How to Define the DefaultValue (@DefaultValue).

See the @QueryParam annotation in the Jakarta EE 9.1 Specification APIs.

In Example 2-13, if the step query parameter exists in the query component of the request
URI, the value will be assigned to the step method parameter as an integer value. If the value
cannot be parsed as an integer value, then a 400 (Client Error) response is returned. If the
step query parameter does not exist in the query component of the request URI, then the
value is set to NULL.

Example 2-13 Extracting Request Parameters (@QueryParam)

import jakarta.ws.rs.Path;
import jakarta.ws.rs.GET;
import jakarta.ws.rs.QueryParam;
...
 @Path("smooth")
 @GET
 public Response smooth(@QueryParam("step") int step)
 { ... }
}

How to Define the DefaultValue (@DefaultValue)
Add the jakarta.ws.rs.DefaultValue annotation to define the default value of the request
metadata that is bound using one of the following annotations: @CookieParam, @FormParam,
@HeaderParam, @MatrixParam, @PathParam, or @QueryParam. See the @DefaultValue annotation
in the Jakarta EE 9.1 Specification APIs.

In Example 2-14, if the step query parameter does not exist in the query component of the
request URI, the default value of 2 will be assigned to the step parameter.

Example 2-14 Defining the Default Value (@DefaultValue)

import jakarta.ws.rs.Path;
import jakarta.ws.rs.GET;
import jakarta.ws.rs.QueryParam;
...
 @Path("smooth")
 @GET
 public Response smooth(@DefaultValue("2") @QueryParam("step") int step)
 { ... }
}

Chapter 2
Extracting Information From the Request Message

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 14 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/queryparam
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/defaultvalue

Enabling the Encoding Parameter Values (@Encoded)
Add the jakarta.ws.rs.Encoded annotation at the class or method level to enable the
encoding of a parameter value that is bound using one of the following annotations:
@FormParam, @MatrixParam, @PathParam, or @QueryParam. If specified at the class level,
parameters for all methods in the class will be encoded. See the @Encoded annotation in the
Jakarta EE 9.1 Specification APIs.

In Example 2-15, the @Encoded annotation enables the encoding of parameter values bound
using the @PathParam annotation.

Example 2-15 Encoding Parameter Values

package samples.helloworld;

import jakarta.ws.rs.GET;
import jakarta.ws.rs.Path;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.PathParam;

import jakarta.ws.rs.Encoded;

// Specifies the path to the RESTful service
@Path("/users")
public class helloWorld {
. . .
 @GET
 @Path("/{username}")
 @Produces("text/xml")

 @Encoded

 public String getUser(@PathParam("username") String userName) {
 ...
 }
}

Building Custom Response Messages
Instead of the default response codes, you can customize the response codes returned or
include additional metadata information in the response.

By default, JAX-RS responds to HTTP requests using the default response codes defined in
the HTTP specification, such as 200 OK for a successful GET request and 201 CREATED for a
successful PUT request.

For example, you might want to include the Location header to specify the URI to the newly
created resource. You can modify the response message returned using the
jakarta.ws.rs.core.Response class.

An application can extend the Response class directly or use one of the static Response
methods to create a jakarta.ws.rs.core.Response.ResponseBuilder instance and build the
Response instance. The methods you can use are defined in Table 2-5. For more information,
see the Response methods in the Jakarta EE 9.1 Specification APIs.

Chapter 2
Building Custom Response Messages

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 15 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/encoded
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/core/response

Table 2-5 Creating a Response Instance Using the ResponseBuilder Class

Method Description

created() Creates a new ResponseBuilder instance and sets the Location header to the specified
value.

fromResponse() Creates a new ResponseBuilder instance and copies an existing response.

noContent() Creates a new ResponseBuilder instance and defines an empty response.

notAcceptable() Creates a new ResponseBuilder instance and defines a unacceptable response.

notModified() Creates a new ResponseBuilder instance and returns a not-modified status.

ok() Creates a new ResponseBuilder instance and returns an OK status.

seeOther() Creates a new ResponseBuilder instance for a redirection.

serverError() Creates a new ResponseBuilder instance and returns a server error status.

status() Creates a new ResponseBuilder instance and returns the specified status.

temporaryRedirect() Creates a new ResponseBuilder instance for a temporary redirection.

Once you create a ResponseBuilder instance, you can call the methods defined in Table 2-6 to
build a custom response. Then, call the build() method to create the final Response instance.
See the Response.ResponseBuilder methods in the Jakarta EE 9.1 Specification APIs.

Table 2-6 ResponseBuilder Methods for Building a Custom Response

Method Description

allow() Sets the list of allowed methods for the resource.

build() Creates the Response instance from the current ResponseBuilder instance.

cacheControl() Sets the cache control.

clone() Create a copy of the ResponseBuilder to preserve its state.

contentLocation() Sets the content location.

cookie() Add cookies to the response.

encoding() Sets the message entity content encoding.

entity() Defines the entity.

expires() Sets the expiration date.

header() Adds a header to the response.

language() Sets the language.

lastModified() Set the last modified date.

link() Adds a link header.

links() Adds one or more link headers.

location() Sets the location.

newInstance() Creates a new ResponseBuilder instance.

replaceAll() Replaces all existing headers with the newly supplied headers.

status() Sets the status.

tag() Sets an entity tag.

Chapter 2
Building Custom Response Messages

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 16 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/core/response.responsebuilder

Table 2-6 (Cont.) ResponseBuilder Methods for Building a Custom Response

Method Description

type() Sets the response media type.

variant() Set representation metadata.

variants() Add a Vary header that lists the available variants.

Example 2-16 shows how to build a Response instance using ResponseBuilder. In this
example, the standard status code of 200 OK is returned and the media type of the response is
set to text/html. A call to the build() method creates the final Response instance.

Example 2-16 Building a Custom Response

import jakarta.ws.rs.Path;
import jakarta.ws.rs.GET;
import jakarta.ws.rs.PathParam;
import jakarta.ws.rs.core.Response;
import jakarta.ws.rs.core.ResponseBuilder;
...
@Path("/content")
public class getDocs {
 @GET
 @Path("{id}")
 public Response getHTMLDoc(@PathParm("id") int docId)
 {
 Document document = ...;
 ResponseBuilder response = Response.ok(document);
 response.type("text/html");
 return response.build();
 }
}

If you wish to build an HTTP response using a generic type, to avoid type erasure at runtime
you need to create a jakarta.ws.rs.core.GenericEntity object to preserve the generic type.
See the GenericEntity methods in the Jakarta EE 9.1 Specification APIs.

Example 2-17 provides an example of how to build an HTTP response using GenericEntity to
preserve the generic type.

Example 2-17 Building a Custom Response Using a Generic Type

import jakarta.ws.rs.Path;
import jakarta.ws.rs.GET;
import jakarta.ws.rs.PathParam;
import jakarta.ws.rs.core.Response;
import jakarta.ws.rs.core.ResponseBuilder;
jakarta.ws.rs.core.GenericEntity;
...
@Path("/content")
public class getDocs {
 @GET
 @Path("{id}")
 public Response getHTMLDoc(@PathParm("id") int docId)
 {
 Document document = ...;
 List<String> list = new ArrayList<String>();
 GenericEntity<List<String>> entity = new GenericEntity<List<String>>(list) {};
 ...

Chapter 2
Building Custom Response Messages

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 17 of 22

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/core/genericentity

 ResponseBuilder response = Response.ok(document);
 response.entity(entity);
 return response.build();
 }
}

Mapping HTTP Request and Response Entity Bodies Using
Entity Providers

HTTP request and response entity bodies automatically support a set of Java types that can be
utilized by your RESTful web service. These Java types are listed in Table 2-7.

Table 2-7 Java Types Supported for HTTP Request and Response Entity Bodies

Java Type Supported Media Types

byte[] All media types (*/*)

java.lang.String All media types (*/*)

java.io.InputStream All media types (*/*)

java.io.Reader All media types (*/*)

java.io.File All media types (*/*)

jakarta.activation.DataSource All media types (*/*)

javax.xml.transform.Source XML media types (text/xml, application/xml, and application/
*+xml) and JSON media types (application/json, application/
*+json)

jakarta.xml.bind.JAXBElement and
application-supplied JAXB classes

XML media types (text/xml, application/xml, and application/
*+xml)

MultivaluedMap<String,String> Form content (application/x-www-form-urlencoded)

StreamingOutput All media types (*/*), MessageBodyWriter only

If your RESTful web service utilizes a type that is not listed in Table 2-7, you must define an
entity provider, by implementing one of the interfaces defined in Table 2-8, to map HTTP
request and response entity bodies to method parameters and return types.

Table 2-8 Entity Providers for Mapping HTTP Request and Response Entity Bodies to Method
Parameters and Return Types

Entity Provider Description

jakarta.ws.rs.ext.Mess
ageBodyReader

Maps an HTTP request entity body to a method parameter for an HTTP request. Optionally,
you can use the @Consumes annotation to specify the MIME media types supported for the
entity provider, as described in Customizing Media Types for the Request and Response
Messages.

For example:

@Consumes("application/x-www-form-urlencoded")
@Provider
public class FormReader implements MessageBodyReader<NameValuePair> { ... }

Chapter 2
Mapping HTTP Request and Response Entity Bodies Using Entity Providers

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 18 of 22

Table 2-8 (Cont.) Entity Providers for Mapping HTTP Request and Response Entity Bodies to Method
Parameters and Return Types

Entity Provider Description

jakarta.ws.rs.ext.Mess
ageBodyWriter

Maps the return value to an HTTP response entity body for an HTTP response. Optionally,
you can use the @Produces annotation to specify the MIME media types supported for the
entity provider, as described in Customizing Media Types for the Request and Response
Messages.

For example:

@Produces("text/html")
@Provider
public class FormWriter implements
 MessageBodyWriter<Hashtable<String, String>> { ... }

Note

Jersey JSON provides a set of JAX-RS MessageBodyReader and MessageBodyWriter
providers distributed with the Jersey JSON extension modules. See JSON in the
Jersey 3.0.18 User Guide .

The following code excerpt provides an example of a class that contains a method (getClass)
that returns a custom type, and that requires you to write an entity provider.

public class Class1
{
 public String hello() { return "Hello"; }
 public Class2 getClass(String name) { return new Class2(); };
}

public class Class2
{
 public Class2() { }
}

Accessing the Application Context
The jakarta.ws.rs.core.Context annotation enables you to access information about the
application deployment context and the context of individual requests. Table 2-9 summarizes
the context types that you can access using the @Context annotation. For more information,
see the @Context annotation in the Jakarta EE 8 Specification APIs.

Table 2-9 Context Types

Use this context type . . . To . . .

HttpHeaders Access HTTP header information.

Providers Lookup Provider instances based on a set of search criteria.

Request Determine the best matching representation variant and to evaluate whether the current
state of the resource matches any preconditions defined. See Using Conditional GETs.

Chapter 2
Accessing the Application Context

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 19 of 22

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/media.html#json
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/core/context

Table 2-9 (Cont.) Context Types

Use this context type . . . To . . .

SecurityContext Access the security context and secure the RESTful web service. See Securing RESTful
Web Services Using SecurityContext.

UriInfo Access application and request URI information. See Building URIs.

Building URIs
You can use jakarta.ws.rs.core.UriInfo to access application and request URI information.

Specifically, UriInfo can be used to return the following information:

• Deployed application's base URI

• Request URI relative to the base URI

• Absolute path URI (with or without the query parameters)

Using UriInfo, you can return a URI or jakarta.ws.rs.core.UriBuilder instance.
UriBuilder simplifies the process of building URIs, and can be used to build new or extend
existing URIs.

The UriBuilder methods perform contextual encoding of characters not permitted in the
corresponding URI component based on the following rules:

• application/x-www-form-urlencoded media type for query parameters, as defined in
"Forms" in the HTML specification at the following URL: http://www.w3.org/TR/html4/
interact/forms.html#h-17.13.4.1

• RFC 3986 for all other components, as defined at the following URL: http://
www.ietf.org/rfc/rfc3986.txt

Example 2-18 shows how to obtain an instance of UriInfo using @Context and use it to return
an absolute path of the request URI as a UriBuilder instance. Then, using UriBuilder build a
URI for a specific user resource by adding the user ID as a path segment and store it in an
array. In this example, the UriInfo instance is injected into a class field. This example is
excerpted from the bookmark sample, as described in About the Jersey Bookmark Sample.

Example 2-18 Building URIs

import jakarta.ws.rs.Path;
import jakarta.ws.rs.GET;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.core.UriBuilder;
import jakarta.ws.rs.core.UriInfo;
import jakarta.ws.rs.core.Context;
...
@Path("/users/")
public class UsersResource {

 @Context UriInfo uriInfo;

 ...

 @GET

Chapter 2
Building URIs

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 20 of 22

http://www.w3.org/TR/html4/interact/forms.html#h-17.13.4.1
http://www.w3.org/TR/html4/interact/forms.html#h-17.13.4.1
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt

 @Produces("application/json")
 public JSONArray getUsersAsJsonArray() {
 JSONArray uriArray = new JSONArray();
 for (UserEntity userEntity : getUsers()) {
 UriBuilder ub = uriInfo.getAbsolutePathBuilder();

 URI userUri = ub

 .path(userEntity.getUserid())

 .build();

 uriArray.put(userUri.toASCIIString());
 }
 return uriArray;
 }
}

Using Conditional GETs
A conditional GET enables you to evaluate one or more preconditions before processing a
GET request. If the preconditions are met, a Not Modified (304) response can be returned
rather than the normal response, potentially reducing bandwidth and improving server
performance.

JAX-RS provides the jakarta.ws.rs.core.Request contextual interface enabling you to
perform conditional GETs. You call the evaluatePreconditions() method and pass a
jakarta.ws.rs.core.EntityTag, the last modified timestamp (as a java.util.Date object), or
both. The values are compared to the If-None-Match or If-Not-Modified headers,
respectively, if these headers are sent with the request.

If headers are included with the request and the precondition values match the header values,
then the evaluatePreconditions() methods returns a predefined ResponseBuilder response
with a status code of Not Modified (304). If the precondition values do no match, the
evaluatePreconditions() method returns null and the normal response is returned, with 200,
OK status.

Example 2-19 shows how to pass the EntityTag to the evaluatePreconditions() method and
build the response based on whether the preconditions are met.

Example 2-19 Using Conditional GETs

...
@Path("/employee/{joiningdate}")
public class Employee {

 Date joiningdate;
 public Employee(@PathParam("joiningdate") Date joiningdate, @Context Request req,
 @Context UriInfo ui) {

 this.joiningdate = joiningdate;
 ...
 this.tag = computeEntityTag(ui.getRequestUri());
 if (req.getMethod().equals("GET")) {
 Response.ResponseBuilder rb = req.evaluatePreconditions(tag);
 // Preconditions met
 if (rb != null) {
 return rb.build();
 }
 // Preconditions not met

Chapter 2
Using Conditional GETs

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 21 of 22

 rb = Response.ok();
 rb.tag(tag);
 return rb.build();
 }
 }
}

Accessing the WADL
The Web Application Description Language (WADL) is an XML-based file format that describes
your RESTful web services application. By default, a basic WADL is generated at runtime and
can be accessed from your RESTful web service by issuing a GET on the /application.wadl
resource at the base URI of your RESTful application.

For example:

GET http://<path_to_REST_app>/application.wadl

Alternatively, you can use the OPTIONS method to return the WADL for particular resource.

Example 2-20 shows an example of a WADL for the simple RESTful web service shown in
Example 2-1.

Example 2-20 Example of a WADL

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application xmlns="http://research.sun.com/wadl/2006/10">
 <doc xmlns:jersey="http://jersey.dev.java.net/"
 jersey:generatedBy="Jersey: 0.10-ea-SNAPSHOT 08/27/2008 08:24 PM"/>
 <resources base="http://localhost:9998/">
 <resource path="/helloworld">
 <method name="GET" id="sayHello">
 <response>
 <representation mediaType="text/plain"/>
 </response>
 </method>
 </resource>
 </resources>
</application>

More Advanced RESTful Web Service Tasks
The Jersey 3.0.18 User Guide provides information about more advanced RESTful web
service development tasks:

• Context and Dependency Injection (CDI)

• Enterprise Java Beans (EJB)

• JSON

• XML

Chapter 2
Accessing the WADL

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 22 of 22

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/index.html
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/deployment.html#deployment.javaee.cdi
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/deployment.html#deployment.javaee.ejb
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/media.html#json
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/media.html#xml

3
Developing RESTful Web Service Clients

You can develop Jakarta EE web service clients that conform to the Representational State
Transfer (REST) architectural style using the Jersey 3.x Jakarta RESTful Web Services
specification.

This chapter includes the following sections:

• Summary of Tasks to Develop RESTful Web Service Clients

• Example of a RESTful Web Service Client

• Invoking a RESTful Web Service from a Standalone Client
When invoking a RESTful web service from an environment that does not have Oracle
Fusion Middleware or WebLogic Server installed locally, and without the entire set of
Oracle Fusion Middleware or WebLogic Server classes in the CLASSPATH, you can use
the standalone client JAR file when invoking the web service.

• Using the Reactive JAX-RS Client API
The Reactive Client API is part of the Jakarta RESTful Web Services specification.

Summary of Tasks to Develop RESTful Web Service Clients
Some of the tasks required to develop a RESTful web service client include creating the client
class, targeting a web resource, identifying resources on the target, and more. The following
table summarizes a subset of the tasks that are required to develop RESTful web service
clients using Jersey.

Table 3-1 Summary of Tasks to Develop RESTful Web Service Clients

Task More Information

Create and configure an instance of the
jakarta.ws.rs.client.Client class.

Creating and configuring a Client instance in Jersey 3.0.18
User Guide

Target the Web resource. Targeting a web resource in Jersey 3.0.18 User Guide

Identify resources on WebTarget. Identifying resource on WebTarget in Jersey 3.0.18 User
Guide

Invoke an HTTP request. Invoking a HTTP request in Jersey 3.0.18 User Guide

For information about developing RESTful web service clients using Oracle JDeveloper, see
Creating RESTful Web Services and Clients in Developing Applications with Oracle
JDeveloper.

Example of a RESTful Web Service Client
You can learn more about how to create a RESTful web service client by viewing an
example.The following is a simple example that shows how a client can be used to call the
RESTful web service defined in Example 2-1. In this example:

• The Client instance is created and a WebTarget defined.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 3

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/client.html#d0e4374
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/client.html#d0e4558
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/client.html#d0e4626
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/client.html#d0e4702

• The resource path is defined to access the Web resource.

• The Invocation.Builder is used to send a get request to the resource.

• The response is returned as a String value.

Example 3-1 Simple RESTful Web Service Client Using Jersey (Jakarta RESTful Web
Services specification)

package samples.helloworld.client;
...
import jakarta.ws.rs.client.Client;
import jakarta.ws.rs.client.ClientBuilder;
import jakarta.ws.rs.client.Invocation;
import jakarta.ws.rs.client.WebTarget;
import jakarta.ws.rs.core.MediaType;
import jakarta.ws.rs.core.Response;

public class helloWorldClient{
 public static void main(String[] args) {
 Client client = ClientBuilder.newClient();
 WebTarget target = client.target("http://localhost:7101/restservice");
 WebTarget resourceWebTarget;
 resourceWebTarget = target.path("resources/helloworld");
 Invocation.Builder invocationBuilder;
 invocationBuilder = resourceWebTarget.request(
 MediaType.TEXT_PLAIN_TYPE);
 Response response = invocationBuilder.get();
 System.out.println(response.getStatus());
 System.out.println(response.readEntity(String.class));
...
 }
...
}

For complete details, see Client API in Jersey 3.0.18 User Guide .

Invoking a RESTful Web Service from a Standalone Client
When invoking a RESTful web service from an environment that does not have Oracle Fusion
Middleware or WebLogic Server installed locally, and without the entire set of Oracle Fusion
Middleware or WebLogic Server classes in the CLASSPATH, you can use the standalone client
JAR file when invoking the web service.

The standalone RESTful web service client JAR supports basic JAX-RS client-side
functionality and OWSM security policies.

To use the standalone RESTful web service client JAR file with your client application, perform
the following steps:

1. Create a Java SE client using your favorite IDE, such as Oracle JDeveloper. See
Developing and Securing Web Services in Developing Applications with Oracle
JDeveloper.

2. Copy the file ORACLE_HOME/oracle_common/modules/clients/
com.oracle.jersey.fmw.client.jar from the computer hosting Oracle Fusion
Middleware to the client computer, where ORACLE_HOME is the directory you specified as
Oracle Home when you installed Oracle Fusion Middleware.

For example, you might copy the file into the directory that contains other classes used by
your client application.

Chapter 3
Invoking a RESTful Web Service from a Standalone Client

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 3

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/client.html

3. Add the JAR file to your CLASSPATH.

Note

Ensure that your CLASSPATH includes the JAR file that contains the Ant classes
(ant.jar) as a subset are used by the standalone client JAR files. This JAR file is
typically located in the lib directory of the Ant distribution.

Using the Reactive JAX-RS Client API
The Reactive Client API is part of the Jakarta RESTful Web Services specification.

All invocations in the client API are set in synchronous mode by default. In synchronous
processing, each request is processed in a single HTTP thread. After the processing is
finished, the thread is returned back to the pool. This approach can result in taking more time
to complete and unnecessary blocking of the resources.

Asynchronous programming in JAX-RS enables client to unblock certain threads by pushing
the work to background threads which can be monitored and joined at a later time. The
resources are used optimally to achieve quick response time.

In JAX-RS, you can achieve asynchronous programming by providing an instance of
InvocationCallback, which also enables a more reactive programming style in which the
user-provided code reacts only when a certain event has occurred. Callback works well for
simple cases but the coding becomes complex when multiple events come into play. To make
the asynchronous programming more readable, a new interface CompletionStage is
introduced for managing large number of methods dedicated for asynchronous computations.

See Usage and Extension Modules in Jersey 3.0.18 User Guide for more information about the
different types of invokers based on CompletionStage.

See Reactive JAX-RS Client API in Jersey 3.0.18 User Guide for more detailed information.

Note

In WebLogic Server, the following reactive libraries are not supported:

• RxJava (Observable)

• RxJava (Flowable)

• Guava (ListenableFuture)

Chapter 3
Using the Reactive JAX-RS Client API

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 3

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/rx-client.html#d0e6099
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/rx-client.html

4
Building, Packaging, and Deploying RESTful
Web Service Applications

Oracle WebLogic Server provides the components and utilities you need to package and
deploy Jakarta EE web services that conform to the Representational State Transfer (REST)
architectural style using the Jersey 3.x Jakarta RESTful Web Services specification.

This chapter includes the following sections:

• Building RESTful Web Service Applications

• Packaging RESTful Web Service Applications
All RESTful web service applications must be packaged as part of a web application. If
your web service is implemented as an EJB, it must be packaged and deployed within a
WAR.

• Deploying RESTful Web Service Applications

Building RESTful Web Service Applications
You can build your RESTful web service and client applications using the compilation tools,
such as Apache Ant, Maven, or your favorite IDE, such as Oracle JDeveloper.See Overview of
WebLogic Server Application Development in Developing Applications for Oracle WebLogic
Server. For more information about JDeveloper, see Building Java Projects in Developing
Applications with Oracle JDeveloper.

Packaging RESTful Web Service Applications
All RESTful web service applications must be packaged as part of a web application. If your
web service is implemented as an EJB, it must be packaged and deployed within a WAR.

Table 4-1 summarizes the specific packaging options available for RESTful web service
applications.

Table 4-1 Packaging Options for RESTful Web Service Applications

Packaging Option Description

Application subclass Define a class that extends jakarta.ws.rs.core.Application to define the components
of a RESTful web service application deployment and provide additional metadata. You can
add a jakarta.ws.rs.ApplicationPath annotation to the subclass to configure the
servlet context path.

See Packaging With an Application Subclass.

Servlet Update the web.xml deployment descriptor to configure the servlet and mappings. The
method used depends on whether your Web application is using Servlet 3.0 or earlier. See
Packaging With a Servlet.

Default resource If you do not configure the servlet context path in your configuration using either of the
options specified above, the WebLogic Server provides a default RESTful web service
application servlet context path, resources. See Packaging as a Default Resource.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 7

• Packaging With an Application Subclass

• Packaging With a Servlet

• Packaging as a Default Resource

Packaging With an Application Subclass
In this packaging scenario, you create a class that extends jakarta.ws.rs.core.Application
to define the components of a RESTful web service application deployment and provides
additional metadata. See jakarta.ws.rs.core.Application in the Jakarta EE 9.1
Specification APIs.

Within the Application subclass, override the getClasses() and getSingletons() methods,
as required, to return the list of RESTful web service resources. A resource is bound to the
Application subclass that returns it.

Note that an error is returned if both methods return the same resource.

Use the jakarta.ws.rs.ApplicationPath annotation to define the base URI pattern that gets
mapped to the servlet. For more information about how this information is used in the base URI
of the resource, see What Happens at Runtime: How the Base URI is Constructed. See the
@ApplicationPath annotation in the Jakarta EE 9.1 Specification APIs.

For simple deployments, no web.xml deployment descriptor is required. For more complex
deployments, for example to secure the web service or specify initialization parameters, you
can package a web.xml deployment descriptor with your application, as described in
Packaging With a Servlet.

Example 4-1 provides an example of a class that extends jakarta.ws.rs.core.Application
and uses the @ApplicationPath annotation to define the base URI of the resource.

Example 4-1 Example of a Class that Extends jakarta.ws.rs.core.Application

import jakarta.ws.rs.core.Application;
jakarta.ws.rs.ApplicationPath;
...
@ApplicationPath("resources")
public class MyApplication extends Application {
 public Set<Class<?>> getClasses() {
 Set<Class<?>> s = new HashSet<Class<?>>();
 s.add(HelloWorldResource.class);
 return s;
 }
}

Alternatively, use the following API to scan for root resource and provider classes for a
specified classpath or a set of package names:

• org.glassfish.jersey.server.ResourceConfig, as described in JAX-RS Application
Model in Jersey 3.0.18 User Guide .

Packaging With a Servlet
The following sections describe how to package the RESTful web service application with a
servlet using the web.xml deployment descriptor, based on whether your Web application is
using Servlet 3.0 or earlier.

The web.xml file is located in the WEB-INF directory in the root directory of your application
archive. For more information about the web.xml deployment descriptor, see web.xml

Chapter 4
Packaging RESTful Web Service Applications

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 7

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/core/application
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/applicationpath
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/deployment.html#environmenmt.appmodel
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/deployment.html#environmenmt.appmodel

Deployment Descriptor Elements in Developing Web Applications, Servlets, and JSPs for
Oracle WebLogic Server.

• How to Package the RESTful Web Service Application with Servlet 3.0

• How to Package the RESTful Web Service Application with Pre-3.0 Servlet Descriptors

How to Package the RESTful Web Service Application with Servlet 3.0
To package the RESTful Web Service application with Servlet 3.0, update the web.xml
deployment descriptor to define the elements defined in the following sections. The elements
vary depending on whether you include in the package a class that extends
jakarta.ws.rs.core.Application.

For more information about any of the elements, see servlet in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

• Packaging the RESTful Web Service Application Using web.xml With Application Subclass

• Packaging the RESTful Web Service Application Using web.xml Without Application
Subclass

Packaging the RESTful Web Service Application Using web.xml With Application Subclass
If a class that extends jakarta.ws.rs.core.Application is packaged with web.xml, then
define the elements as described in Table 4-2. For an example, see Example 4-2.

Table 4-2 Packaging the RESTful Web Service Application Using web.xml With Application Subclass

Element Description

<servlet-name> Set this element to the fully qualified name of the class that extends
jakarta.ws.rs.core.Application. You can specify multiple servlet entries to define multiple
Application subclass names.

<servlet-class> Not required.

<init-param> Not required.

<servlet-mapping> Set as the base URI pattern that gets mapped to the servlet.

If not specified, one of the following values are used, in order of precedence:

• @ApplicationPath annotation value defined in the jakarta.ws.rs.core.Application
subclass. For example:

package test;
@ApplicationPath("res")
public class MyJaxRsApplication extends java.ws.rs.core.Application
...

See Packaging With an Application Subclass.
• The value resources. This is the default base URI pattern for RESTful web service

applications. See Packaging as a Default Resource.
If both the <servlet-mapping> and @ApplicationPath are specified, the <servlet-
mapping> takes precedence.

For more information about how this information is used in the base URI of the resource, see
What Happens at Runtime: How the Base URI is Constructed.

The following example demonstrates how to update the web.xml file if a class that extends
jakarta.ws.rs.core.Application is packaged with web.xml.

Chapter 4
Packaging RESTful Web Service Applications

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 7

Example 4-2 Updating web.xml for Servlet 3.0 If Application Subclass is in Package

<web-app>
 <servlet>
 <servlet-name>org.foo.rest.MyApplication</servlet-name>
 </servlet>
 ...
 <servlet-mapping>
 <servlet-name>org.foo.rest.MyApplication</servlet-name>
 <url-pattern>/resources</url-pattern>
 </servlet-mapping>
 ...
</web-app>

Packaging the RESTful Web Service Application Using web.xml Without Application Subclass
If a class that extends jakarta.ws.rs.core.Application is not packaged with web.xml, then
define the elements as described in Table 4-3.

Note

In this scenario, you cannot support multiple RESTful web service applications.

Table 4-3 Packaging the RESTful Web Service Application Using web.xml Without Application
Subclass

Element Description

<servlet-name> Set this element to the desired servlet name.

<servlet-class> Set this element to org.glassfish.jersey.servlet.ServletContainer to delegate all Web
requests to the Jersey servlet.

<init-param> Not required.

<servlet-mapping> Set as the base URI pattern that gets mapped to the servlet. If not specified, this value defaults to
resources. See Packaging as a Default Resource.

For more information about how this information is used in the base URI of the resource, see
What Happens at Runtime: How the Base URI is Constructed.

The following example demonstrates how to update the web.xml file if a class that extends
jakarta.ws.rs.core.Application is not packaged with web.xml.

Note

The Jakarta RESTful Web Services specification requires the RESTful Web Service
application using the web.xml without the Application subclass for Servlet 3.0 to set
the servlet-name to jakarta.ws.rs.Application as described in the Jersey 3.0.18
User Guide . The packaging method defined in this section is not supported by the
Jakarta RESTful Web Services specification.

Example 4-3 Updating web.xml for Servlet 3.0 If Application Subclass is Not in Package

<web-app>
 <servlet>
 <servlet-name>Jersey Web Application</servlet-name>

Chapter 4
Packaging RESTful Web Service Applications

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 7

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/deployment.html#deployment.servlet.5.pluggability
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/deployment.html#deployment.servlet.5.pluggability

 <servlet-class>org.glassfish.jersey.servlet.ServletContainer</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Jersey Web Application</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

How to Package the RESTful Web Service Application with Pre-3.0 Servlet
Descriptors

Table 4-4 describes the elements to update in the web.xml deployment descriptor to package
the RESTful web service application with a pre-3.0 servlet.

Table 4-4 Packaging the RESTful Web Service Application with Pre-3.0 Servlet Descriptors

Element Description

<servlet-name> Set this element to the desired servlet name.

<servlet-class> Set this element to org.glassfish.jersey.servlet.ServletContainer to delegate all Web
requests to the Jersey servlet.

<init-param> Set this element to define the class that extends the jakarta.ws.rs.core.Application:

<init-param>
 <param-name>
 jakarta.ws.rs.Application
 </param-name>
 <param-value>
 ApplicationSubclassName
 </param-value>
</init-param>

Alternatively, you can specify the packages to be scanned for resources and providers, as follows:

<init-param>
 <param-name>
 jersey.config.server.provider.packages
 </param-name>
 <param-value>
 project1
 </param-value>
</init-param>
<init-param>
 <param-name>
 jersey.config.server.provider.scanning.recursive
 </param-name>
 <param-value>
 false
 </param-value>
</init-param>

Chapter 4
Packaging RESTful Web Service Applications

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 7

Table 4-4 (Cont.) Packaging the RESTful Web Service Application with Pre-3.0 Servlet Descriptors

Element Description

<servlet-mapping> Set as the base URI pattern that gets mapped to the servlet.

If not specified, one of the following values are used, in order of precedence:

• @ApplicationPath annotation value defined in the jakarta.ws.rs.core.Application
subclass. For example:

package test;
@ApplicationPath("res")
public class MyJaxRsApplication extends java.ws.rs.core.Application
...

See Packaging With an Application Subclass.
• The value resources. This is the default base URI pattern for RESTful web service

applications. See Packaging as a Default Resource.
If both the <servlet-mapping> and @ApplicationPath are specified, the <servlet-
mapping> takes precedence.

For more information about how this information is used in the base URI of the resource, see
What Happens at Runtime: How the Base URI is Constructed.

The following example demonstrates how to update the web.xml file if a class that extends
jakarta.ws.rs.core.Application is not packaged with web.xml.

Example 4-4 Updating web.xml for Pre-3.0 Servlets

<web-app>
 <servlet>
 <servlet-name>Jersey Web Application</servlet-name>
 <servlet-class>org.glassfish.jersey.servlet.ServletContainer</servlet-class>
 <init-param>
 <param-name>jersey.config.server.provider.packages</param-name>
 <param-value>org.foo.myresources,org.bar.otherresources</param-value>
 </init-param>
 <init-param>
 <param-name>jersey.config.server.provider.scanning.recursive</param-name>
 <param-value>false</param-value>
 </init-param>
 ...
 </servlet>
 ...
</web-app>

Packaging as a Default Resource
By default, WebLogic Server defines a default RESTful web service application context path,
resources. The default RESTful web service application context path is used if the following
are true:

• You did not update the web.xml deployment descriptor to include a Servlet mapping, as
described in Packaging With a Servlet.

• The @ApplicationPath annotation is not defined in the jakarta.ws.rs.core.Application
subclass, as described in Packaging With an Application Subclass.

Chapter 4
Packaging RESTful Web Service Applications

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 7

Note

If a servlet is already registered at the default context path, then a warning is issued.

For example, if the relative URI of the root resource class for the RESTful web service
application is defined as @Path('/helloworld') and the default RESTful web service
application context path is used, then the RESTful web service application resource will be
available at:

http://<host>:<port>/<contextPath>/resources/helloworld

Deploying RESTful Web Service Applications
Application deployment refers to the process of making an application or module available for
processing client requests in a WebLogic domain. For information about deploying a web
application, see Understanding WebLogic Server Deployment in Deploying Applications to
Oracle WebLogic Server.

Chapter 4
Deploying RESTful Web Service Applications

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 7

5
Securing RESTful Web Services and Clients

Oracle WebLogic Server fully supports the means to secure Jakarta EE web services that
conform to the Representational State Transfer (REST) architectural style using the JAX-RS
reference implementation (RI).

This chapter includes the following sections:

• About RESTful Web Service Security

• Securing RESTful Web Services Using web.xml

• Securing RESTful Web Services Using SecurityContext

• Securing RESTful Web Services Using Java Security Annotations

About RESTful Web Service Security
You can secure your RESTful web services so that they can support authentication,
authorization, or encryption. You can use one of the following methods:

• Updating the web.xml deployment descriptor to access information about the authenticated
users. See Securing RESTful Web Services Using web.xml.

• Using the jakarta.ws.rs.core.SecurityContext interface to access security-related
information for a request. See Securing RESTful Web Services Using SecurityContext.

• Applying annotations to your JAX-RS classes. See Securing RESTful Web Services Using
Java Security Annotations.

For information about developing RESTful web service clients using Oracle JDeveloper, see
How to Attach Policies to RESTful Web Services and Clients in Developing Applications with
Oracle JDeveloper.

Securing RESTful Web Services Using web.xml
You secure RESTful web services using the web.xml deployment descriptor as you would for
other Jakarta EE Web applications. For complete details, see:

• Developing Secure Web Applications in Developing Applications with the WebLogic
Security Service.

• Securing Web Applications in The Jakarta EE Tutorial .

For example, to secure your RESTful web service using basic authentication, perform the
following steps:

1. Define a <security-constraint> for each set of RESTful resources (URIs) that you plan
to protect.

2. Use the <login-config> element to define the type of authentication you want to use and
the security realm to which the security constraints will be applied.

3. Define one or more security roles using the <security-role> tag and map them to the
security constraints defined in step 1. See security-role in Developing Applications with the
WebLogic Security Service.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 4

https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/security/security-webtier/security-webtier.html#_overview_of_securing_web_applications

4. To enable encryption, add the <user-data-constraint> element and set the <transport-
guarantee> subelement to CONFIDENTIAL. See user-data-constraint in Developing
Applications with the WebLogic Security Service.

Example 5-1 Securing RESTful Web Services Using Basic Authentication

The following example demonstrates how to secure a Jersey Jakarta RESTful Web Service
using basic authentication.

<web-app>
 <servlet>
 <servlet-name>RestServlet</servlet-name>

 <servlet-class>org.glassfish.jersey.servlet.ServletContainer</servlet-class>

 </servlet>
 <servlet-mapping>
 <servlet-name>RestServlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Orders</web-resource-name>
 <url-pattern>/orders</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>default</realm-name>
 </login-config>
 <security-role>
 <role-name>admin</role-name>
 </security-role>
</web-app>

Securing RESTful Web Services Using SecurityContext
The jakarta.ws.rs.core.SecurityContext interface provides access to security-related
information for a request. The SecurityContext provides functionality similar to
jakarta.servlet.http.HttpServletRequest, enabling you to access the following security-
related information:

• java.security.Principal object containing the name of the user making the request.

• Authentication type used to secure the resource, such as BASIC_AUTH, FORM_AUTH, and
CLIENT_CERT_AUTH.

• Whether the authenticated user is included in a particular role.

• Whether the request was made using a secure channel, such as HTTPS.

You access the SecurityContext by injecting an instance into a class field, setter method, or
method parameter using the jakarta.ws.rs.core.Context annotation.

For more information, see the following topics in the Jakarta EE 9.1 Specification APIs:

• SecurityContext interface

Chapter 5
Securing RESTful Web Services Using SecurityContext

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 4

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/core/securitycontext

• @Context annotation

Example 5-2 shows how to inject an instance of SecurityContext into the sc method
parameter using the @Context annotation, and check whether the authorized user is included
in the admin role before returning the response.

Example 5-2 Securing RESTful Web Service Using SecurityContext

package samples.helloworld;

import jakarta.ws.rs.GET;
import jakarta.ws.rs.Path;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.core.SecurityContext;
import jakarta.ws.rs.core.Context;

...

@Path("/stateless")
@Stateless(name = "JaxRSStatelessEJB")
public class StlsEJBApp {
...
 @GET
 @Produces("text/plain;charset=UTF-8")
 @Path("/hello")
 public String sayHello(@Context SecurityContext sc) {
 if (sc.isUserInRole("admin")) return "Hello World!";
 throw new SecurityException("User is unauthorized.");
 }

Securing RESTful Web Services Using Java Security
Annotations

The jakarta.annotation.security package provides annotations that you can use to secure
your RESTful web services.These annotations are defined in Table 5-1.

Table 5-1 Annotations for Securing RESTful Web Services

Annotation Description

@DenyAll Specifies that no security roles are allowed to invoke the specified methods.

@PermitAll Specifies that all security roles are allowed to invoke the specified methods.

@RolesAllowed Specifies the list of security roles that are allowed to invoke the methods in the application.

Before you can use the annotations defined in Table 5-1, you must register the roles-allowed
feature, as described in Securing JAX-RS resources with standard jakarta.annotation.security
annotations in the Jersey 3.0.18 User Guide .

Example 5-3 shows how to define the security roles that are allowed, by default, to access the
methods defined in the helloWorld class. The sayHello method is annotated with the
@RolesAllows annotation to override the default and only allow users that belong to the ADMIN
security role.

Example 5-3 Securing RESTful Web Service Using Java Security Annotations

package samples.helloworld;

import jakarta.ws.rs.GET;

Chapter 5
Securing RESTful Web Services Using Java Security Annotations

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 4

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/core/context
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/security.html#d0e13080
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/security.html#d0e13080

import jakarta.ws.rs.Path;
import jakarta.ws.rs.Produces;
import jakarta.annotation.Security.RolesAllowed;

@Path("/helloworld")
@RolesAllowed({"ADMIN", "ORG1"})
public class helloWorld {

 @GET
 @Path("sayHello")
 @Produces("text/plain")
 @RolesAllows("ADMIN")
 public String sayHello() {
 return "Hello World!";
 }
}

See also:

• Specifying Authorized Users by Declaring Security Roles in The Jakarta EE Tutorial

• jakarta.annotation.security Javadoc

Chapter 5
Securing RESTful Web Services Using Java Security Annotations

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 4

https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/security/security-jakartaee/security-jakartaee.html#_specifying_authorized_users_by_declaring_security_roles
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/annotation/security/package-frame

6
Testing RESTful Web Services

After you have deployed a Web application that contains a RESTful web service to Oracle
WebLogic Server, you can test your application. This chapter describes how to test Jakarta EE
web services that conform to the Representational State Transfer (REST) architectural style
using Java API for RESTful Web Services (JAX-RS).
Table 6-1 lists the methods that can be employed to test your RESTful web service.

Table 6-1 Methods for Testing RESTful Web Services

Method Description

WebLogic Remote Console To validate the application deployment and construct the URL to view the WADL file, see Test
Application Deployment in the Oracle WebLogic Remote Console Online Help.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 1

7
Monitoring RESTful Web Services and Clients

Oracle WebLogic Server supports a number of ways to monitor Jakarta EE web services that
conform to the Representational State Transfer (REST) architectural style using JAX-RS.

This chapter includes the following sections:

• About Monitoring RESTful Web Services

• Monitoring RESTful Web Services Using WLST

• Enabling the Tracing Feature

• Disabling RESTful Web Service Application Monitoring
You can disable monitoring for an individual Jersey Jakarta RESTful Web Services
application, or globally for an entire WebLogic domain.

• Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service Application

About Monitoring RESTful Web Services
WebLogic Server provides several runtime MBeans that capture runtime information and let
you monitor runtime statistics for your RESTful web service applications.Application monitoring
is useful when you need to identify the performance hotspots in your JAX-RS application,
observe execution statistics of particular resources, or listen to application or request lifecycle
events.
You can use the methods defined in Table 7-1 to monitor your RESTful web service
applications.

Table 7-1 Methods for Monitoring RESTful Web Services

Method Description

WebLogic Scripting Tool (WLST) Access runtime information and monitor runtime statistics, as
described in Monitoring RESTful Web Services Using WLST.

Logging filter Monitor how a request is processed and dispatched to Jersey
Jakarta RESTful Web Services components, as described in
Enabling the Tracing Feature.

In addition to the monitoring methods described in Table 7-1, Jersey (Jakarta RESTful Web
Services) provides additional monitoring features, including support for event listeners and
statistics monitoring. See Monitoring Jersey Applications in the Jersey 3.0.18 User Guide .

Note

RESTful web service monitoring is enabled by default. In some cases, this may result
in increased memory consumption. You can disable the monitoring feature at the
domain level, and at the application level. See Disabling RESTful Web Service
Application Monitoring.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 11

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/monitoring_tracing.html#monitoring

Monitoring RESTful Web Services Using WLST
You can use WLST to monitor the runtime MBeans that capture runtime information and
runtime statistics for your RESTful web service applications.These MBeans are listed and
described in Table 7-2.

Table 7-2 Runtime MBeans for Monitoring RESTful Web Services

Runtime MBean Description

ExceptionMapperStatistic
s

Displays monitoring information about the RESTful web service
application exception mapper executions. See
JaxRsExceptionMapperStatisticsRuntimeMBean in MBean Reference
for Oracle WebLogic Server.

JaxRsApplication Displays monitoring information for the RESTful web service
application. See JaxRsApplicationRuntimeBean in MBean Reference
for Oracle WebLogic Server.

RequestStatistics Displays monitoring information about requests executed by the
RESTful web service application. The statistics apply to all requests
handled by the application and are not bound to any specific resource
or resource method. See JaxRsExecutionStatisticsRuntimeMBean in
MBean Reference for Oracle WebLogic Server.

ResourceConfig Displays monitoring information about the RESTful web service
application resource configuration. See
JaxRsResourceConfigTypeRuntimeBean inMBean Reference for
Oracle WebLogic Server.

Note: The JaxRsResourceConfigTypeRuntimeBean is deprecated
in this release of WebLogic Server. You should use the Properties
and ApplicationClass attributes of the
JaxRsApplicationRuntimeMBean instead. See
JaxRsApplicationRuntimeBean inMBean Reference for Oracle
WebLogic Server.

ResponseStatistics Displays monitoring information about responses created by the
RESTful web service application. The statistics apply to all responses
created by the application and are not bound to any specific resource
or resource method. See JaxRsResponseStatisticsRuntimeMBean in
MBean Reference for Oracle WebLogic Server.

RootResources Displays monitoring information about the RESTful web service
resource. Any object that is managed by a container (such as EJB) will
have application scope. All other resources by default will have request
scope. See JaxRsResourceRuntimeMBeanin MBean Reference for
Oracle WebLogic Server.

Note: This MBean is deprecated in this release of WebLogic Server.
You should use RootResourcesByClass instead.

RootResourcesByClass Displays monitoring information for each resource class that is
deployed in the RESTful web service application. One resource class
can serve requests matched to different URIs. The array contains
resource classes that are registered in the resource model plus
resource classes of sub resources returned from sub resource
locators. See JaxRsResourceRuntimeMBean inMBean Reference for
Oracle WebLogic Server.

RootResourcesbyURI Displays monitoring information for each URI that is exposed in the
RESTful web service application. See JaxRsUriRuntimeMBean in
MBean Reference for Oracle WebLogic Server.

Chapter 7
Monitoring RESTful Web Services Using WLST

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 11

Table 7-2 (Cont.) Runtime MBeans for Monitoring RESTful Web Services

Runtime MBean Description

Servlet Displays monitoring information for the servlet that hosts the RESTful
web service application. See ServletRuntimeMBean in MBean
Reference for Oracle WebLogic Server.

To monitor RESTful web services using WLST, perform the steps provided in the following
procedure.

In this procedure, the example steps provided demonstrate how to monitor the JAX-RS 2.0
Asynchronous Processing sample delivered with the WebLogic Server Samples Server,
described at Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

1. Invoke WLST, as described in "Invoking WLST" in Understanding the WebLogic Scripting
Tool.

For example:

c:\Oracle\oracle_common\common\bin> wlst

2. Connect to the Administration Server instance, as described in connect in WLST
Command Reference for Oracle WebLogic Server.

For example:

wls:/offline> connect('weblogic','password','t3://localhost:8001')

3. Navigate to the server runtime MBean, as described in serverRuntime in WLST Command
Reference for Oracle WebLogic Server.

For example:

wls:/samples/serverConfig> serverRuntime()

Location changed to serverRuntime tree. This is a read-only tree
with ServerRuntimeMBean as the root.
For more help, use help('serverRuntime')

wls:/samples/serverRuntime>

4. Navigate to the Web application component runtime MBean.

For example, to navigate to runtime MBean for the application named jaxrs-async:

wls:/samples/serverRuntime> cd('ApplicationRuntimes/jaxrs-async')
wls:/samples/serverRuntime/ApplicationRuntimes/jaxrs-async> cd('ComponentRuntimes')
wls:/samples/serverRuntime/ApplicationRuntimes/jaxrs/ComponentRuntimes> cd
('AdminServer_/jaxrs-async')

5. Navigate to the application runtime MBean for the RESTful web service request statistics.

For example:

wls:/samples/serverRuntime/ApplicationRuntimes/jaxrs-async/ComponentRuntimes> cd
('AdminServer_/jaxrs-async'
wls:/samples_domain/serverRuntime/ApplicationRuntimes/jaxrs-async/ComponentRuntimes/
AdminServer_/jaxrs-async>
cd ('JaxRsApplications/examples.javaee7.jaxrs.async.MessageApplication/
RequestStatistics/
examples.javaee7.jaxrs.async.MessageApplication_RequestStatistics')

Chapter 7
Monitoring RESTful Web Services Using WLST

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 11

6. Review the monitoring information displayed for the RESTful web service application. See
JaxRsApplicationRuntimeBean in MBean Reference for Oracle WebLogic Server.

For example:

wls:/samples/serverRuntime/ApplicationRuntimes/jaxrs-async/ComponentRuntimes/
AdminServer_/jaxrs-async
/JaxRsApplications/examples.javaee7.jaxrs.async.MessageApplication/RequestStatistics
/examples.javaee7.jaxrs.async.MessageApplication_RequestStatistics>
ls()
-r-- AvgTimeLast15m -1
-r-- AvgTimeLast15s -1
-r-- AvgTimeLast1h -1
-r-- AvgTimeLast1m -1
-r-- AvgTimeLast1s -1
-r-- AvgTimeTotal 0
-r-- MaxTimeLast15m -1
-r-- MaxTimeLast15s -1
-r-- MaxTimeLast1h -1
-r-- MaxTimeLast1m -1
-r-- MaxTimeLast1s -1
-r-- MaxTimeTotal 0
-r-- MinTimeLast15m -1
-r-- MinTimeLast15s -1
-r-- MinTimeLast1h -1
-r-- MinTimeLast1m -1
-r-- MinTimeLast1s -1
-r-- MinTimeTotal 0
-r-- Name
examples.javaee7.jaxrs.async.MessageApplication_RequestStatisti
cs
-r-- RequestCountLast15m 0
-r-- RequestCountLast15s 0
-r-- RequestCountLast1h 0
-r-- RequestCountLast1m 0
-r-- RequestCountLast1s 0
-r-- RequestCountTotal 0
-r-- RequestRateLast15m 0.0
-r-- RequestRateLast15s 0.0
-r-- RequestRateLast1h 0.0
-r-- RequestRateLast1m 0.0
-r-- RequestRateLast1s 0.0
-r-- RequestRateTotal 0.0
-r-- Type JaxRsExecutionStatisticsRuntime

wls:/samples/serverRuntime/ApplicationRuntimes/jaxrs-async/ComponentRuntimes/
AdminServer_/jaxrs-async
/JaxRsApplications/examples.javaee7.jaxrs.async.MessageApplication/RequestStatistics
/examples.javaee7.jaxrs.async.MessageApplication_RequestStatistics>

7. Navigate to any of the other runtime MBeans described in Table 7-2 to view additional
monitoring information.

8. Exit WLST, as described in Exiting WLST in Understanding the WebLogic Scripting Tool.

For example:

wls:/samples/serverRuntime/ApplicationRuntimes/jaxrs-async/ComponentRuntimes/
AdminServer_/jaxrs-async
/JaxRsApplications/examples.javaee7.jaxrs.async.MessageApplication/RequestStatistics
/examples.javaee7.jaxrs.async.MessageApplication_RequestStatistics>exit()
Exiting WebLogic Scripting Tool.
c:\>

Chapter 7
Monitoring RESTful Web Services Using WLST

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 11

Enabling the Tracing Feature
The Jersey tracing feature provides useful information that describes how a request is
processed and dispatched to Jersey Jakarta RESTful Web Services components. Trace
messages are output in the same order as they occur, so the numbering is useful to
reconstruct the tracing order.
When enabled, the Jersey tracing facility collects useful information for individual requests from
all components of the Jakarta RESTful Web Services server-side request processing pipeline.
The information collected may provide vital details for troubleshooting your Jersey or JAX-RS
application.

The tracing information for a single request is returned to the requesting client in the HTTP
headers of the response. In addition, the information is logged on the server-side using a
dedicated Java Logger instance.

For more information about enabling the Jersey tracing facility, see Tracing Support in Jersey
3.0.18 User Guide .

Disabling RESTful Web Service Application Monitoring
You can disable monitoring for an individual Jersey Jakarta RESTful Web Services application,
or globally for an entire WebLogic domain.

For example, you can disable monitoring in the following ways:

• At the application level, you can set a WebLogic Server-specific Jersey application
property, jersey.config.wls.server.monitoring.enabled. See Disabling Monitoring for
a RESTful Web Service Application Using Jersey Property.

• At both the application level and at the domain level, you can disable monitoring using a
WebLogic Configuration MBean,
WebAppComponentMBean.JaxRsMonitoringDefaultBehavior. See Disabling Monitoring for
a RESTful Web Service Application Using WebLogic Configuration MBean and Disabling
RESTful Web Service Application Monitoring for a WebLogic Domain.

WebLogic Server uses the following algorithm to determine whether monitoring should be
enabled or disabled for each application.

1. WebLogic Server checks the JAX-RS application property
jersey.config.wls.server.monitoring.enabled.

If it is set for the application, then WebLogic Server uses this value to determine if
monitoring should be enabled or disabled for the application. If this value is not set, it
proceeds to the next step.

2. WebLogic Server checks the configuration MBean
WebAppComponentMBean.JaxRsMonitoringDefaultBehavior property for the individual
application.

If it is set for the application, then WebLogic Server uses this value to determine if
monitoring should be enabled or disabled for the application. If this value is not set, it
proceeds to the next step.

3. WebLogic Server checks the configuration MBean
WebAppContainerMBean.JaxRsMonitoringDefaultBehavior property setting for the
domain.

Chapter 7
Enabling the Tracing Feature

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 11

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/monitoring_tracing.html#tracing

If it is set for the domain, then WebLogic Server uses this value to determine if monitoring
should be enabled or disabled for the application. If this value is not set, it proceeds to the
next step.

4. WebLogic Server uses the default setting, which is to enable Jakarta RESTful Web
Services monitoring for the application if none of the configuration properties in the
previous steps have been set.

• Disabling Monitoring for a RESTful Web Service Application Using Jersey Property

• Disabling Monitoring for a RESTful Web Service Application Using WebLogic Configuration
MBean

• Disabling RESTful Web Service Application Monitoring for a WebLogic Domain

Disabling Monitoring for a RESTful Web Service Application Using Jersey
Property

Jersey supports the following WebLogic Server-specific property that you can use to disable
application monitoring for an individual RESTful web service application:

jersey.config.wls.server.monitoring.enabled

Setting this property to false disables monitoring in the application. You can set this property
programmatically in the Jakarta RESTful Web Services application subclass code, or
declaratively using Servlet init parameters specified in the web.xml as shown in the following
examples.

For convenience, the property name is stored in the
weblogic.jaxrs.server.WeblogicServerProperties.MONITORING_ENABLED constant field.

Example 7-1 provides an example of how you can disable monitoring programmatically in a
RESTful web service application by extending the JAX-RS Application class.

Example 7-1 Disable Application Monitoring Programmatically by Extending the JAX-
RS Application Class

ApplicationPath("/")
public class MyApplication extends Application {

 public Map<String, Object> getProperties() {
 final Map<String, Object> properties = new HashMap<>();
 // Disable JAX-RS Application monitoring (and WLS console monitoring) for this
internal application.
 properties.put(weblogic.jaxrs.server.WeblogicServerProperties.MONITORING_ENABLED,
false);

 return properties;
 }
}

Example 7-2 provides an example of how you can disable monitoring programmatically in a
RESTful web service application by extending the JAX-RS Jersey ResourceConfig class.

Example 7-2 Disable Application Monitoring Programmatically by Extending the
Jersey ResourceConfig Class

@ApplicationPath("/")
public class MyApplication extends ResourceConfig {

 public MyApplication() {

Chapter 7
Disabling RESTful Web Service Application Monitoring

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 11

 // ...

 // Disable JAX-RS Application monitoring (and WLS console monitoring) for this
internal application.
 property(weblogic.jaxrs.server.WeblogicServerProperties.MONITORING_ENABLED, false);
 }

 // ...
}

Example 7-3 provides an example of how you can disable monitoring declaratively using
Servlet init parameters specified in the web.xml.

Example 7-3 Disable Application Monitoring Declaratively Using Servlet Init
Parameters in web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app version="2.5"
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://
xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">

 <servlet>
 <servlet-name>com.examples.MyApplication</servlet-name>
 ...
 <init-param>
 <param-name>jersey.config.wls.server.monitoring.enabled</param-name>
 <param-value>false</param-value>
 </init-param>
 ...
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>com.examples.MyApplication</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

Disabling Monitoring for a RESTful Web Service Application Using
WebLogic Configuration MBean

After you have deployed a RESTful web service application on WebLogic Server, you can
disable monitoring of the application by using WLST, for example, to set the
JaxRsMonitoringDefaultBehavior property to false on its WebAppComponentMBean:

webAppComponentMBean.setJaxRsMonitoringDefaultBehavior("false")

This is a per-application property that is internally used by Jersey/WebLogic integration code to
determine the state of the default monitoring behavior in the JAX-RS application:

• If set to true, monitoring for the JAX-RS application is enabled.

• If set to false, monitoring for the JAX-RS application is disabled.

• If the property is not set, then the domain-level Web Application Container property
WebAppContainerMBean.isJaxRsMonitoringDefaultBehavior()) is used as a fall-back.

Chapter 7
Disabling RESTful Web Service Application Monitoring

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 11

Note

The value of this application-specific property (if set) overrides the value of domain-
level configuration property.

By default the value is not explicitly set.

Disabling RESTful Web Service Application Monitoring for a WebLogic
Domain

Application monitoring is enabled by default for all RESTful web service applications deployed
to a WebLogic domain. It is possible to reverse this default behavior in a WebLogic domain and
disable JAX-RS monitoring for all RESTful web service applications deployed in the domain
(unless overridden by an application-specific configuration) by setting the
JaxRsMonitoringDefaultBehavior property on WebAppContainerMBean to false:

WebAppContainerMBean.setJaxRsMonitoringDefaultBehavior("false")

This Web Application Container property is a domain-level property used by Jersey/WebLogic
integration code to determine the behavior of monitoring in JAX-RS applications at the domain
level:

• If set to true (or not set), then JAX-RS monitoring is enabled (if not overridden by
properties set directly in an application). By default this property is not set explicitly and
monitoring is enabled.

• If set to false, then monitoring for all JAX-RS applications is disabled by default for the
given domain.

Note

You can override this domain-level setting in each JAX-RS application by setting
similar properties, WebAppComponentMBean#isJaxRsMonitoringDefaultBehavior()),
at the application level. See Disabling Monitoring for a RESTful Web Service
Application Using WebLogic Configuration MBean.

You can update the WebAppContainerMBean.JaxRsMonitoringDefaultBehavior property for
the domain using WLST commands before starting the domain, or before deploying any
applications, as shown in Example 7-4.

Example 7-4 provides a sample WLST script that disables JAX-RS monitoring for the entire
domain by default.

Example 7-4 Sample WLST Script for Disabling JAX-RS Monitoring at Domain Level

connect(<user>, <password>)
edit()
startEdit()
cd("WebAppContainer/<domain_name>/")
cmo.setJaxRsMonitoringDefaultBehavior(false)
activate()

Chapter 7
Disabling RESTful Web Service Application Monitoring

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 11

Note

You must restart the domain after you disable monitoring to ensure that all previously
deployed applications are redeployed with the new setting.

[Example 7-5 shows a section of the resulting domain configuration document at DOMAIN_NAME/
config/config.xml after you have changed the jax-rs-monitoring-default-behavior
setting to false.

Example 7-5 config.xml file with JAX-RS Monitoring Disabled at the Domain Level

<?xml version='1.0' encoding='UTF-8'?>
<domain ...>
 <name>mydomain</name>
 ...
 <web-app-container>
 <jax-rs-monitoring-default-behavior>false
</jax-rs-monitoring-default-behavior>
 </web-app-container>
 ...
</domain>

Note

Although it is possible to do so, Oracle does not recommend editing the config.xml
file directly. See Domain Configuration Files in Understanding Domain Configuration
for Oracle WebLogic Server.

Enable Monitoring of Synthetic Jersey Resources in a RESTful
Web Service Application

When a RESTful web service application is deployed on WebLogic Server, the Jersey runtime
(to satisfy JAX-RS specification requirements) introspects all the application resources and
eventually extends the resource model of the application with additional synthetic resources
and/or resource methods. For example, synthetic resources and resource methods are added
to support:

• Resources exposing the WADL for the entire JAX-RS application, as well as a partial
WADL for any deployed resource.

• OPTIONS method handlers for each resource or resource method of the JAX-RS
application.

• HEAD method handlers for each resource or resource method of the JAX-RS application.

Depending on the application, it is possible that quite a lot of additional synthetic resources
may get added to a deployed application. For performance reasons, WebLogic Server, by
default, does not expose runtime MBeans for these extended synthetic resources and resource
methods.

You can set this property programmatically in the JAX-RS application subclass code, or
declaratively using Servlet init parameters specified in the web.xml as shown in the following
examples.

Chapter 7
Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service Application

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 11

For convenience, the property name is stored in the
weblogic.jaxrs.server.WeblogicServerProperties.MONITORING_EXTENDED_ENABLED
constant field.

Example 7-6 provides an example of how you can enable monitoring for synthetic resources
programmatically in a JAX-RS application by extending the JAX-RS Application class.

Example 7-6 Enable Synthetic Monitoring Programmatically by Extending the JAX-RS
Application Class

@ApplicationPath("/")
public class MyApplication extends Application {

 public Map<String, Object> getProperties() {
 final Map<String, Object> properties = new HashMap<>();
 // Expose MBeans for extended JAX-RS resources and resource methods

properties.put(weblogic.jaxrs.server.WeblogicServerProperties.MONITORING_EXTENDED_ENABLED
, true);

 return properties;
 }
}

Example 7-7 provides an example of how you can enable monitoring of synthetic resources
programmatically in a JAX-RS/Jersey application by extending the JAX-RS Jersey
ResourceConfig class.

Example 7-7 Enable Synthetic Monitoring Programmatically by Extending the Jersey
ResourceConfig Class

@ApplicationPath("/")
public class MyApplication extends ResourceConfig {

 public MyApplication() {
 // ...

 // Expose MBeans for extended JAX-RS resources and resource methods
 property(weblogic.jaxrs.server.WeblogicServerProperties.MONITORING_EXTENDED_ENABLED,
true);
 }

 // ...
}

Example 7-8 provides an example of how you can enable monitoring of synthetic resources
declaratively using Servlet init parameters specified in the web.xml.

Example 7-8 Enable Synthetic Monitoring Declaratively Using Servlet Init Parameters
in web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app version="2.5"
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://
xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">

 <servlet>
 <servlet-name>com.examples.MyApplication</servlet-name>
 ...

Chapter 7
Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service Application

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 11

 <init-param>
 <param-name>jersey.config.wls.server.monitoring.extended.enabled</param-name>
 <param-value>true</param-value>
 </init-param>
 ...
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>com.examples.MyApplication</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

Chapter 7
Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service Application

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 11 of 11

8
Using Server-Sent Events in WebLogic Server

Oracle WebLogic Server supports server-sent events through the integration of the Eclipse
Jersey library.The Jersey library provides the Reference Implementation (RI) of Jakarta
RESTful Web Services.
This chapter includes the following sections:

• Overview of Server-Sent Events (SSE)

• Using Server-Sent Events
Server-sent events are used to push notifications asynchronously to the client over
standard HTTP protocol.

• Understanding the WebLogic Server-Sent Events API

• Sample Applications for Server-Sent Events

Overview of Server-Sent Events (SSE)
Server-sent events enable servers to push data to web pages over standard HTTP or HTTPS
through a unidirectional client-server connection. In the server-sent events communication
model, the browser client establishes the initial connection, and the server provides the data
and sends it to the client. For general information about server-sent events, see the Server-
Sent Events W3C Candidate Recommendation.
Server-sent events are part of the HTML 5 specification, which also includes WebSocket
technology. Both communication models enable servers to send data to clients unsolicited.
However, server-sent events establish one-way communication from server to clients, while a
WebSocket connection provides a bidirectional, full-duplex communication channel between
servers and clients, promoting user interaction through two-way communication. The following
key differences exist between WebSocket and server-sent events technologies:

• Server-sent events can only push data to the client, while WebSocket technology can both
send and receive data from a client.

• The simpler server-sent events communication model is better suited for server-only
updates, while WebSocket technology requires additional programming for server-only
updates.

• Server-sent events are sent over standard HTTP and therefore do not require any special
protocol or server implementation to work. WebSocket technology requires the server to
understand the WebSocket protocol to successfully upgrade an HTTP connection to a
WebSocket connection.

For more information about WebSocket technology, see Using the WebSocket Protocol in
WebLogic Server in Developing Applications for Oracle WebLogic Server.

Using Server-Sent Events
Server-sent events are used to push notifications asynchronously to the client over standard
HTTP protocol.

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 2

http://www.w3.org/TR/eventsource/
http://www.w3.org/TR/eventsource/
http://www.w3.org/TR/html5/

From JAX-RS 2.1, the server-sent event APIs are defined in the jakarta.ws.rs.sse package.
This package includes the interfaces Sse, SseEventSink, SseEvent, SseBroadcaster, and
SseEventSource for server-sent events.

The server-sent events server API is used to accept connections and send events to one or
more clients. From the server side, an instance that implements the interface SseEventSink
corresponds to a single client HTTP connection.

You can also configure the applications to send events to multiple clients simultaneously using
the SseBroadcaster interface. The interface enables to send events to all registered event
outputs.

From the client side, the interface SseEventSource is used to open a connection to the Web
Target that is configured with a resource location. The clients must request the opening of a
server-sent event connection using the media type text/event-stream in the Accept header.
The established connection is persistent and can be re-used to send multiple events from the
server.

Understanding the WebLogic Server-Sent Events API
WebLogic Server supports server-sent events through the integration of the Eclipse Jersey.
The use of server-sent events through Jersey is supported only in Jakarta RESTful Web
Services resources.
From JAX-RS 2.1, the server-sent event APIs are defined in the jakarta.ws.rs.sse package.
This package includes the interfaces Sse, SseEventSink, SseEvent, SseBroadcaster, and
SseEventSource for server-sent events.

For more information about server-sent events in Jersey, see Server-Sent Events (SSE)
Support in the Jersey 3.0.18 User Guide .

The WebLogic Server Server-Sent Events API is in the package
org.glassfish.jersey.media.sse. For information about the interfaces and classes included
in this package, see the API documentation for jakarta.ws.rs.sse in the Jakarta EE 9.1 API
Documentation .

Sample Applications for Server-Sent Events
Sample applications for server-sent events are available through the Jersey project. Refer to
the following locations:

• https://github.com/eclipse-ee4j/jersey/tree/master/examples/server-sent-
events-jaxrs

• https://github.com/eclipse-ee4j/jersey/tree/master/examples/sse-item-store-
jaxrs-webapp

• https://github.com/eclipse-ee4j/jersey/tree/master/examples/sse-twitter-
aggregator

Chapter 8
Understanding the WebLogic Server-Sent Events API

Developing and Securing RESTful Web Services for Oracle WebLogic Server
G31580-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 2

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/sse.html
https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.18/sse.html
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ws/rs/sse/package-frame
https://github.com/eclipse-ee4j/jersey/tree/master/examples/server-sent-events-jaxrs
https://github.com/eclipse-ee4j/jersey/tree/master/examples/server-sent-events-jaxrs
https://github.com/eclipse-ee4j/jersey/tree/master/examples/sse-item-store-jaxrs-webapp
https://github.com/eclipse-ee4j/jersey/tree/master/examples/sse-item-store-jaxrs-webapp
https://github.com/eclipse-ee4j/jersey/tree/master/examples/sse-twitter-aggregator
https://github.com/eclipse-ee4j/jersey/tree/master/examples/sse-twitter-aggregator

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Introduction to RESTful Web Services
	Introduction to the REST Architectural Style
	What are RESTful Web Services?
	Standards Supported for RESTful Web Service Development on WebLogic Server
	Roadmap for Implementing RESTful Web Services
	Learn More About RESTful Web Services

	2 Developing RESTful Web Services
	About RESTful Web Service Development
	Summary of Tasks to Develop RESTful Web Services
	Example of a RESTful Web Service

	Defining the Root Resource Class
	Defining the Relative URI of the Root Resource and Subresources
	How to Define the Relative URI of the Resource Class (@Path)
	How to Define the Relative URI of Subresources (@Path)
	What Happens at Runtime: How the Base URI is Constructed

	Mapping Incoming HTTP Requests to Java Methods
	About the Jersey Bookmark Sample
	How to Transmit a Representation of the Resource (@GET)
	How to Create or Update the Representation of the Resource (@PUT)
	How to Delete a Representation of the Resource (@DELETE)
	How to Create, Update, or Perform an Action on a Representation of the Resource (@POST)

	Customizing Media Types for the Request and Response Messages
	How To Customize Media Types for the Request Message (@Consumes)
	How To Customize Media Types for the Response Message (@Produces)
	What Happens At Runtime: How the Resource Method Is Selected for Response Messages

	Extracting Information From the Request Message
	How to Extract Variable Information from the Request URI (@PathParam)
	How to Extract Request Parameters (@QueryParam)
	How to Define the DefaultValue (@DefaultValue)
	Enabling the Encoding Parameter Values (@Encoded)

	Building Custom Response Messages
	Mapping HTTP Request and Response Entity Bodies Using Entity Providers
	Accessing the Application Context
	Building URIs
	Using Conditional GETs
	Accessing the WADL
	More Advanced RESTful Web Service Tasks

	3 Developing RESTful Web Service Clients
	Summary of Tasks to Develop RESTful Web Service Clients
	Example of a RESTful Web Service Client
	Invoking a RESTful Web Service from a Standalone Client
	Using the Reactive JAX-RS Client API

	4 Building, Packaging, and Deploying RESTful Web Service Applications
	Building RESTful Web Service Applications
	Packaging RESTful Web Service Applications
	Packaging With an Application Subclass
	Packaging With a Servlet
	How to Package the RESTful Web Service Application with Servlet 3.0
	Packaging the RESTful Web Service Application Using web.xml With Application Subclass
	Packaging the RESTful Web Service Application Using web.xml Without Application Subclass

	How to Package the RESTful Web Service Application with Pre-3.0 Servlet Descriptors

	Packaging as a Default Resource

	Deploying RESTful Web Service Applications

	5 Securing RESTful Web Services and Clients
	About RESTful Web Service Security
	Securing RESTful Web Services Using web.xml
	Securing RESTful Web Services Using SecurityContext
	Securing RESTful Web Services Using Java Security Annotations

	6 Testing RESTful Web Services
	7 Monitoring RESTful Web Services and Clients
	About Monitoring RESTful Web Services
	Monitoring RESTful Web Services Using WLST
	Enabling the Tracing Feature
	Disabling RESTful Web Service Application Monitoring
	Disabling Monitoring for a RESTful Web Service Application Using Jersey Property
	Disabling Monitoring for a RESTful Web Service Application Using WebLogic Configuration MBean
	Disabling RESTful Web Service Application Monitoring for a WebLogic Domain

	Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service Application

	8 Using Server-Sent Events in WebLogic Server
	Overview of Server-Sent Events (SSE)
	Using Server-Sent Events
	Understanding the WebLogic Server-Sent Events API
	Sample Applications for Server-Sent Events

