
Oracle® Fusion Middleware
Developing Applications with the WebLogic
Security Service

15c (15.1.1.0.0)
G31581-01
October 2025

Oracle Fusion Middleware Developing Applications with the WebLogic Security Service, 15c (15.1.1.0.0)

G31581-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility ii

Diversity and Inclusion ii

Related Information ii

Conventions iv

1 WebLogic Security Programming Overview

What Is Security? 1

WebLogic Remote Console and Security 2

Types of Security Supported by WebLogic Server 2

Authentication 2

Authorization 2

Jakarta Security 3

Security APIs 3

JAAS Client Application APIs 3

Java JAAS Client Application APIs 3

WebLogic JAAS Client Application APIs 4

SSL Client Application APIs 4

Java SSL Client Application APIs 4

WebLogic SSL Client Application APIs 4

Other APIs 5

2 Securing Web Applications

Authentication With Web Browsers 1

User Name and Password Authentication 2

Digital Certificate Authentication 3

Multiple Web Applications, Cookies, and Authentication 5

Using Secure Cookies to Prevent Session Stealing 5

Configuring the Session Cookie as a Secure Cookie 5

Using the AuthCookie _WL_AUTHCOOKIE_JSESSIONID 6

Developing Secure Web Applications 7

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of vi

Developing BASIC Authentication Web Applications 7

Using HttpSessionListener to Account for Browser Caching of Credentials 11

Understanding BASIC Authentication with Unsecured Resources 12

Setting the enforce-valid-basic-auth-credentials Flag 13

Check the Value of enforce-valid-basic-auth-credentials 13

Developing FORM Authentication Web Applications 14

Using Identity Assertion for Web Application Authentication 19

Using Two-Way SSL for Web Application Authentication 19

Providing a Fallback Mechanism for Authentication Methods 20

Configuration 20

Developing Swing-Based Authentication Web Applications 20

Deploying Web Applications 21

Using Declarative Security With Web Applications 22

Web Application Security-Related Deployment Descriptors 23

web.xml Deployment Descriptors 23

auth-constraint 23

security-constraint 24

security-role 25

security-role-ref 26

user-data-constraint 26

web-resource-collection 27

weblogic.xml Deployment Descriptors 28

externally-defined 28

run-as-principal-name 30

run-as-role-assignment 30

security-permission 31

security-permission-spec 31

security-role-assignment 32

Using Programmatic Security With Web Applications 33

Jakarta Security SecurityContext Methods 33

Servlet HttpServletRequest Methods 33

getUserPrincipal 34

isUserInRole 34

Authenticating Users Programmatically 35

Using the Jakarta Security SecurityContext Interface 36

Using the Programmatic Authentication API 36

Change the User's Session ID at Login 36

3 Using JAAS Authentication in Java Clients

JAAS and WebLogic Server 1

JAAS Authentication Development Environment 2

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of vi

JAAS Authentication APIs 3

JAAS Client Application Components 5

WebLogic LoginModule Implementation 7

JVM-Wide Default User and the runAs() Method 7

Writing a Client Application Using JAAS Authentication 8

Using JNDI Authentication 11

Java Client JAAS Authentication Code Examples 12

4 Using SSL Authentication in Java Clients

JSSE and WebLogic Server 1

Using JNDI Authentication 2

SSL Certificate Authentication Development Environment 4

SSL Authentication APIs 4

SSL Client Application Components 6

Writing Applications that Use SSL 7

Communicating Securely From WebLogic Server to Other WebLogic Servers 8

Writing SSL Clients 8

SSLClient Sample 8

SSLSocketClient Sample 9

Using Two-Way SSL Authentication 10

Two-Way SSL Authentication with JNDI 11

Writing a User Name Mapper 14

Using Two-Way SSL Authentication Between WebLogic Server Instances 15

Using Two-Way SSL Authentication with Servlets 16

Using a Custom Host Name Verifier 17

Using a Trust Manager 18

Using the CertPath Trust Manager 20

Using a Handshake Completed Listener 20

Using an SSLContext 21

Using URLs to Make Outbound SSL Connections 21

SSL Client Code Examples 23

5 Securing EJBs

Jakarta EE Architecture Security Model 1

Declarative Security 1

Declarative Authorization Via Annotations 2

Programmatic Security 2

Declarative Versus Programmatic Authorization 3

Using Declarative Security With EJBs 3

Implementing Declarative Security Via Metadata Annotations 3

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iii of vi

Security-Related Annotation Code Examples 4

Implementing Declarative Security Via Deployment Descriptors 4

EJB Security-Related Deployment Descriptors 6

ejb-jar.xml Deployment Descriptors 6

method 6

method-permission 7

role-name 8

run-as 8

security-identity 8

security-role 9

security-role-ref 9

unchecked 10

use-caller-identity 10

weblogic-ejb-jar.xml Deployment Descriptors 11

client-authentication 11

client-cert-authentication 12

confidentiality 12

externally-defined 12

identity-assertion 14

iiop-security-descriptor 15

integrity 15

principal-name 16

role-name 16

run-as-identity-principal 16

run-as-principal-name 18

run-as-role-assignment 18

security-permission 20

security-permission-spec 20

security-role-assignment 21

transport-requirements 21

Using Programmatic Security With EJBs 21

SecurityContext Interface Methods 22

EJBContext Interface Methods 22

6 Using Network Connection Filters

The Benefits of Using Network Connection Filters 1

Network Connection Filter API 1

Connection Filter Interfaces 2

ConnectionFilter Interface 2

ConnectionFilterRulesListener Interface 2

Connection Filter Classes 3

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iv of vi

ConnectionFilterImpl Class 3

ConnectionEvent Class 3

Guidelines for Writing Connection Filter Rules 3

Connection Filter Rules Syntax 3

Types of Connection Filter Rules 4

How Connection Filter Rules are Evaluated 5

Configuring the WebLogic Connection Filter 5

Developing Custom Connection Filters 5

7 Using Java Security Features to Protect WebLogic Resources

Using Jakarta Security to Protect WebLogic Resources 1

Using the Java Security Manager to Protect WebLogic Resources 2

Setting Up the Java Security Manager 2

Modifying your Custom Policy File for General Use 3

Setting Application-Type Security Policies 4

Setting Application-Specific Security Policies 5

Using Printing Security Manager 5

Printing Security Manager Startup Arguments 6

Starting WebLogic Server With Printing Security Manager 6

Writing Output Files 7

Using Jakarta Authorization 7

Comparing the WebLogic JACC Provider with the WebLogic Authorization Provider 8

Enabling the WebLogic JACC Provider 9

8 SAML APIs

SAML API Description 1

Configuring SAML SSO Attribute Support 2

What Are SAML SSO Attributes? 3

APIs for SAML Attributes 3

SAML 2.0 Basic Attribute Profile Required 3

Passing Multiple Attributes to SAML Credential Mappers 4

How to Implement SAML Attributes 4

Examples of the SAML 2.0 Attribute Interfaces 6

Example Custom SAML 2.0 Credential Attribute Mapper 6

Custom SAML 2.0 Identity Asserter Attribute Mapper 8

Make the Custom SAML Credential Attribute Mapper Class Available in the Console 10

Make the Custom SAML Identity Asserter Class Available in the Console 11

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page v of vi

9 Using CertPath Building and Validation

CertPath Building 1

Instantiate a CertPathSelector 1

Instantiate a CertPathBuilderParameters 2

Use the JDK CertPathBuilder Interface 3

Example Code Flow for Looking Up a Certificate Chain 3

CertPath Validation 4

Instantiate a CertPathValidatorParameters 4

Use the JDK CertPathValidator Interface 5

Example Code Flow for Validating a Certificate Chain 6

10

Using Jakarta Authentication for a Web Application

Overview of Jakarta Authentication 1

Do You Need to Implement an Authentication Configuration Provider? 2

Do You Need to Implement a Principal Validation Provider? 2

Implement a SAM 3

Configure Jakarta Authentication for the Deployed Web Application 3

11

Using Jakarta Security

Overview of Jakarta Security in WebLogic Server 1

About the HttpAuthenticationMechanism Interface 2

HttpAuthenticationMechanism Interface Methods 3

HttpAuthenticationMechanism Interface Annotations 3

About the Identity Store Interfaces 3

IdentityStore Interface 4

IdentityStoreHandler 4

IdentityStore Interface Methods 4

RememberMeIdentityStore Interface 5

Usage Requirements 6

A Deprecated Security APIs

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page vi of vi

Preface

This document explains how to use the WebLogic Server security programming features.

Audience
This document is intended for the following audiences:

• Application Developers

Java programmers who focus on developing client applications, adding security to Web
applications and EJBs. They work with other engineering, Quality Assurance (QA), and
database teams to implement security features. Application developers have in-depth/
working knowledge of Java (including Jakarta Platform, Enterprise Edition (Jakarta EE)
components such as servlets/JSPs and JSSE) and Java security.

Application developers use the WebLogic security and Java security application
programming interfaces (APIs) to secure their applications. Therefore, this document
provides instructions for using those APIs for securing Web applications, Java applications,
and EJBs.

• Security Developers

Developers who focus on defining the system architecture and infrastructure for security
products that integrate into WebLogic Server and on developing custom security providers
for use with WebLogic Server. They work with application architects to ensure that the
security architecture is implemented according to design and that no security holes are
introduced. They also work with WebLogic Server administrators to ensure that security is
properly configured. Security developers have a solid understanding of security concepts,
including authentication, authorization, auditing (AAA), in-depth knowledge of Java
(including Java Management eXtensions (JMX), and working knowledge of WebLogic
Server and security provider functionality.

Security developers use the Security Service Provider Interfaces (SSPIs) to develop
custom security providers for use with WebLogic Server. This document does not address
this task; for information on how to use the SSPIs to develop custom security providers,
see Overview of the Development Process in Developing Security Providers for Oracle
WebLogic Server.

• Server Administrators

Administrators who work closely with application architects to design a security scheme for
the server and the applications running on the server, to identify potential security risks,
and to propose configurations that prevent security problems. Related responsibilities may
include maintaining critical production systems, configuring and managing security realms,
implementing authentication and authorization schemes for server and application
resources, upgrading security features, and maintaining security provider databases.
WebLogic Server administrators have in-depth knowledge of the Java security
architecture, including Web application and EJB security, Public Key security, and SSL.

• Application Administrators

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of iv

Administrators who work with WebLogic Server administrators to implement and maintain
security configurations and authentication and authorization schemes, and to set up and
maintain access to deployed application resources in defined security realms. Application
administrators have general knowledge of security concepts and the Java Security
architecture. They understand Java, XML, deployment descriptors, and can identify
security events in server and audit logs.

While administrators typically use WebLogic Remote Console to deploy, configure, and
manage applications when they put the applications into production, application developers
may also use WebLogic Remote Console to test their applications before they are put into
production. At a minimum, testing requires that applications be deployed and configured.
This document does not cover some aspects of administration as it relates to security,
rather, it references Administering Security for Oracle WebLogic Server, Securing
Resources Using Roles and Policies for Oracle WebLogic Server, and Oracle WebLogic
Remote Console Online Help for descriptions of how to use WebLogic Remote Console to
perform security tasks.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Information
In addition to this document, Developing Applications with the WebLogic Security Service, the
following documents provide information on the WebLogic Security Service:

• Understanding Security for Oracle WebLogic Server—This document summarizes the
features of the WebLogic Security Service and presents an overview of the architecture
and capabilities of the WebLogic Security Service. It is the starting point for understanding
the WebLogic Security Service.

• Securing a Production Environment for Oracle WebLogic Server— This document
highlights essential security measures for you to consider before you deploy WebLogic
Server into a production environment.

Preface

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of iv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Developing Security Providers for Oracle WebLogic Server—This document provides
security vendors and application developers with the information needed to develop
custom security providers that can be used with WebLogic Server.

• Administering Security for Oracle WebLogic Server—This document explains how to
configure security for WebLogic Server.

• Securing Resources Using Roles and Policies for Oracle WebLogic Server—This
document introduces the various types of WebLogic resources, and provides information
that allows you to secure these resources using WebLogic Server.

• Oracle WebLogic Remote Console Online Help—This document describes how to use the
WebLogic Remote Console to perform security tasks.

• Java API Reference for Oracle WebLogic Server —This document includes reference
documentation for the WebLogic security packages that are provided with and supported
by the WebLogic Server software.

Security Samples and Tutorials
In addition to the documents listed in Related Information, Oracle provides a rich set of code
examples and sample applications that show several approaches to learning about and
working with WebLogic Server. These examples and sample applications are available through
a separate WebLogic Server examples installer.

For more information about the WebLogic Server code examples, see Sample Applications
and Code Examples in Understanding Oracle WebLogic Server.

Security Examples in the WebLogic Server Distribution

The following examples illustrate WebLogic Server security features:

• Java Authentication and Authorization Service (JAAS)

• SAML 2.0 For Web SSO Scenario

• Outbound and Two-way SSL

The WebLogic Server installation also includes an example demonstrating the use of the built-
in database identity store functionality provided by the Jakarta Security specification. This
example is located in the EXAMPLES_HOME\examples\src\examples\javaee8\security
directory.

The security tasks and code examples provided in this document assume that you are using
the WebLogic security providers that are included in the WebLogic Server distribution, not
custom security providers. The usage of the WebLogic security APIs does not change if you
elect to use custom security providers, however, the management procedures of your custom
security providers may be different.

Note

This document does not provide comprehensive instructions on how to configure
WebLogic Security providers or custom security providers. For information on
configuring WebLogic security providers and custom security providers, see
Configuring Security Providers in Administering Security for Oracle WebLogic Server.

Preface

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iii of iv

New and Changed WebLogic Server Features
For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iv of iv

1
WebLogic Security Programming Overview

Oracle WebLogic Server supports the ability to incorporate standard Java security technologies
such as the Java Authentication and Authorization Service (JAAS), Java Secure Sockets
Extensions (JSSE), Java Cryptography Architecture and Java Cryptography Extensions (JCE),
the Jakarta Authentication, and Jakarta Security specifications in hosted applications, such as
web applications, web services, EJB, and more, and includes support for implementing
declarative and programmatic authorization in those applications.

• What Is Security?

• WebLogic Remote Console and Security

• Types of Security Supported by WebLogic Server

• Security APIs

What Is Security?
Security refers to techniques for ensuring that data stored in a computer or passed between
computers is not compromised.Most security measures involve proof material and data
encryption. Proof material is typically a secret word or phrase that gives a user access to a
particular application or system. Data encryption is the translation of data into a form that
cannot be interpreted without holding or supplying the same secret.
Distributed applications, such as those used for electronic commerce (e-commerce), offer
many access points at which malicious people can intercept data, disrupt operations, or
generate fraudulent input. As a business becomes more distributed the probability of security
breaches increases. Accordingly, as a business distributes its applications, it becomes
increasingly important for the distributed computing software upon which such applications are
built to provide security.

An application server resides in the sensitive layer between end users and your valuable data
and resources. Oracle WebLogic Server provides authentication, authorization, and encryption
services with which you can guard these resources. These services cannot provide protection,
however, from an intruder who gains access by discovering and exploiting a weakness in your
deployment environment.

Therefore, whether you deploy WebLogic Server on the Internet or on an intranet, it is a good
idea to hire an independent security expert to go over your security plan and procedures, audit
your installed systems, and recommend improvements.

Another good strategy is to read as much as possible about security issues and appropriate
security measures. The document Securing a Production Environment for Oracle WebLogic
Serverhighlights essential security measures for you to consider before you deploy WebLogic
Server into a production environment. The document Securing Resources Using Roles and
Policies for Oracle WebLogic Serverintroduces the various types of WebLogic resources, and
provides information that allows you to secure these resources using WebLogic Server. For the
latest information about securing Web servers, Oracle also recommends reading the Security
Improvement Modules, Security Practices, and Technical Implementations information
(http://www.cert.org/) available from the CERT™ Coordination Center operated by
Carnegie Mellon University.

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 6

http://www.cert.org/

Oracle suggests that you apply the remedies recommended in our security advisories. In the
event of a problem with an Oracle product, Oracle distributes an advisory and instructions with
the appropriate course of action. If you are responsible for security related issues at your site,
please register to receive future notifications.

WebLogic Remote Console and Security
You can use the WebLogic Remote Console to define and edit deployment descriptors for Web
Applications, EJBs, Jakarta Connectors, and Enterprise Applications.This document,
Developing Applications with the WebLogic Security Service, does not describe how to use the
WebLogic Remote Console to configure security. For information on how to use the WebLogic
Remote Console to define and edit deployment descriptors, see Securing Resources Using
Roles and Policies for Oracle WebLogic Server and Administering Security for Oracle
WebLogic Server.

Types of Security Supported by WebLogic Server
WebLogic Server supports security mechanisms such as authentication, authorization, and
Jakarta EE security in deployed applications.

• Authentication

• Authorization

• Jakarta Security

Authentication
Authentication is the mechanism by which callers and service providers prove that they are
acting on behalf of specific users or systems. Authentication answers the question, "Who are
you?" using credentials. When the proof is bidirectional, it is referred to as mutual
authentication.

WebLogic Server supports username and password authentication and certificate
authentication. For certificate authentication, WebLogic Server supports both one-way and two-
way SSL (Secure Sockets Layer) authentication. Two-way SSL authentication is a form of
mutual authentication.

In WebLogic Server, Authentication providers are used to prove the identity of users or system
processes. Authentication providers also remember, transport, and make identity information
available to various components of a system (via subjects) when needed. You can configure
the Authentication providers using the Web application and EJB deployment descriptor files, or
WebLogic Remote Console, or a combination of both.

Authorization
Authorization is the process whereby the interactions between users and WebLogic resources
are controlled, based on user identity or other information. In other words, authorization
answers the question, "What can you access?"

In WebLogic Server, a WebLogic Authorization provider is used to limit the interactions
between users and WebLogic resources to ensure integrity, confidentiality, and availability. You
can configure the Authorization provider using the Web application and EJB deployment
descriptor files, or WebLogic Remote Console, or a combination of both.

Chapter 1
WebLogic Remote Console and Security

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 6

WebLogic Server also supports the use of programmatic authorization (also referred to in this
document as programmatic security) to limit the interactions between users and WebLogic
resources.

Jakarta Security
For implementation and use of user authentication and authorization, WebLogic Server utilizes
the security services of the JDK and Jakarta EE components. These security services are
based on standardized, modular components. WebLogic Server implements these Java
security service methods according to the standard, and adds extensions that handle many
details of application behavior automatically, without requiring additional programming.

WebLogic Server supports the Jakarta Security specification (https://jakarta.ee/
specifications/security/) , which defines portable, plug-in interfaces for HTTP
authentication and identity stores, and an injectable SecurityContext interface that provides
an API for programmatic security. You can use the built-in implementations of the plug-in SPIs,
or write custom implementations.

Security APIs
WebLogic Server supports and implements several security packages and classes. You use
these packages to secure interactions between WebLogic Server and client applications, EJBs,
and Web applications.

The following topics are covered in this section:

• JAAS Client Application APIs

• SSL Client Application APIs

• Other APIs

Note

Several of the WebLogic security packages, classes, and methods are deprecated in
this release of WebLogic Server. For more detailed information on deprecated
packages and classes, see Deprecated Security APIs.

JAAS Client Application APIs
You use Java APIs and WebLogic APIs to write client applications that use JAAS
authentication.

The following topics are covered in this section:

• Java JAAS Client Application APIs

• WebLogic JAAS Client Application APIs

Java JAAS Client Application APIs
You use the following Java APIs to write JAAS client applications. The APIs are available at
Java SE and JDK API Specification .

• javax.naming

Chapter 1
Security APIs

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 6

https://jakarta.ee/specifications/security/
https://jakarta.ee/specifications/security/
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

• javax.security.auth

• javax.security.auth.callback

• javax.security.auth.login

• javax.security.auth.spi

For information on how to use these APIs, see JAAS Authentication APIs.

WebLogic JAAS Client Application APIs
You use the following WebLogic APIs to write JAAS client applications:

• weblogic.security

• weblogic.security.auth

• weblogic.security.auth.callback

For information on how to use these APIs, see JAAS Authentication APIs.

SSL Client Application APIs
You use Java and WebLogic APIs to write client applications that use SSL authentication:

The following topics are covered in this section:

• Java SSL Client Application APIs

• WebLogic SSL Client Application APIs

Java SSL Client Application APIs
You use the following Java APIs (available from Java SE and JDK API Specification and
Jakarta EE Platform API) to write SSL client applications:

• java.security

• java.security.cert

• javax.crypto

• javax.naming

• javax.net

• javax.security

• jakarta.servlet

• jakarta.servet.http

WebLogic Server also supports the javax.net.SSL API (see Java SE and JDK API
Specification), but Oracle recommends that you use the weblogic.security.SSL package
when you use SSL with WebLogic Server.

For information on how to use these APIs, see SSL Authentication APIs.

WebLogic SSL Client Application APIs
You use the following WebLogic APIs to write SSL client applications.

• weblogic.net.http

Chapter 1
Security APIs

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 6

https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

• weblogic.security.SSL

For information on how to use these APIs, see SSL Authentication APIs.

Other APIs
Additionally, you use the following APIs to develop WebLogic Server applications:

• weblogic.security.jacc

This API provides the RoleMapper interface. If you implement Jakarta Authorization
(formerly JACC), you can use this package with the jakarta.security.jacc package. For
information about the WebLogic JACC provider, see Using Jakarta Authorization. For
information about developing a Jakarta Authorization provider, see the
jakarta.security.jacc package Javadoc at https://jakarta.ee/specifications/
platform/9.1/apidocs/jakarta/security/jacc/package-summary.

• weblogic.security.net

This API provides interfaces and classes that are used to implement network connection
filters. Network connection filters allow or deny connections to Oracle WebLogic Server
based on attributes such as the IP address, domain, or protocol of the initiator of the
network connection. For more information about how to use this API, see Using Network
Connection Filters.

• weblogic.security.pk

This API provides interfaces and classes to build and validate certification paths. See
Using CertPath Building and Validation for information on using this API to build and
validate certificate chains.

See the java.security.cert package in Java SE and JDK API Specification for additional
information on certificates and certificate paths.

• com.bea.security.saml2.providers

This API provides interfaces and classes that are used to perform mapping of user and
group information to Security Assertion Markup Language (SAML) assertions, and to
cache and retrieve SAML assertions.

SAML is an XML-based framework for exchanging security information. WebLogic Server
supports SAML v2.0, including the Browser/Post and Browser/Artifact profiles. SAML
authorization is not supported.

For more information about SAML, see http://www.oasis-open.org.

• weblogic.security.service

This API includes interfaces, classes, and exceptions that support security providers. The
WebLogic Security Framework consists of interfaces, classes, and exceptions provided by
this API. The interfaces, classes, and exceptions in this API should be used in conjunction
with those in the weblogic.security.spi package. For more information about how to use
this API, see Security Providers and WebLogic Resources in Developing Security
Providers for Oracle WebLogic Server.

• weblogic.security.services

This API provides the server-side authentication class. This class is used to perform a local
login to the server. It provides login methods that are used with CallbackHandlers to
authenticate the user and return credentials using the default security realm.

• weblogic.security.spi

Chapter 1
Security APIs

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 6

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/security/jacc/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/security/jacc/package-summary
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
http://www.oasis-open.org

This package provides the Security Service Provider Interfaces (SSPIs). It provides
interfaces, classes, and exceptions that are used for developing custom security providers.
In many cases, these interfaces, classes, and exceptions should be used in conjunction
with those in the weblogic.security.service API. You implement interfaces, classes, and
exceptions from this package to create runtime classes for security providers. For more
information about how to use the SSPIs, see Security Services Provider Interfaces (SSPIs)
in Developing Security Providers for Oracle WebLogic Server.

• weblogic.servlet.security

This API provides a server-side API that supports programmatic authentication from within
a servlet application. For more about how to use this API, see Using the Programmatic
Authentication API.

Chapter 1
Security APIs

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 6

2
Securing Web Applications

Oracle WebLogic Server supports the Jakarta EE architecture security model for securing Web
applications, which includes support for declarative authorization (also referred to as
declarative security) and programmatic authorization (also referred to as programmatic
security).

• Authentication With Web Browsers

• Multiple Web Applications, Cookies, and Authentication

• Developing Secure Web Applications

• Using Declarative Security With Web Applications

• Web Application Security-Related Deployment Descriptors

• Using Programmatic Security With Web Applications

• Using the Programmatic Authentication API

Note

You can use deployment descriptor files and WebLogic Remote Console to secure
Web applications. This document describes how to use deployment descriptor files.
For information on using WebLogic Remote Console to secure Web applications, see
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

To implement programmatic authorization in Web applications, WebLogic Server supports the
use of:

• The Servlet HttpServletRequest.isUserInRole and
HttpServletRequest.getUserPrincipal methods

• The security-role-ref element in deployment descriptors

• The Jakarta Security SecurityContext.getCallerPrincipal,
SecurityContext.getPrincipalsByType, SecurityContext.isCallerInRole, and
SecurityContext.hasAccessToWebResource methods

Authentication With Web Browsers
Web browsers can connect to WebLogic Server over either a HyperText Transfer Protocol
(HTTP) port or an HTTP with SSL (HTTPS) port. WebLogic Server uses encryption and digital
certificate authentication when Web browsers connect to the server using the HTTPS port.

The benefits of using an HTTPS port versus an HTTP port are two-fold. With HTTPS
connections:

• All communication on the network between the Web browser and the server is encrypted.
None of the communication, including the user name and password, is in clear text.

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 37

• As a minimum authentication requirement, the server is required to present a digital
certificate to the Web browser client to prove its identity.

If the server is configured for two-way SSL authentication, both the server and client are
required to present a digital certificate to each other to prove their identity.

User Name and Password Authentication
WebLogic Server performs user name and password authentication when users use a Web
browser to connect to the server via the HTTP port. In this scenario, the browser and an
instance of WebLogic Server interact in the following manner to authenticate a user (see
Figure 2-1):

1. A user invokes a WebLogic resource in Oracle WebLogic Server by entering the URL for
that resource in a Web browser. The HTTP URL contains the HTTP listen port, for
example, http://myserver:7001.

2. The Web server in Oracle WebLogic Server receives the request.

Note

Oracle WebLogic Server provides its own Web server but also supports the use of
Apache Server, Microsoft Internet Information Server, and Java System Web
Server as Web servers.

3. The Web server determines whether the WebLogic resource is protected by a security
policy. If the WebLogic resource is protected, the Web server uses the established HTTP
connection to request a user name and password from the user.

4. When the user's Web browser receives the request from the Web server, it prompts the
user for a user name and password.

5. The Web browser sends the request to the Web server again, along with the user name
and password.

6. The Web server forwards the request to the Web server plug-in. Oracle WebLogic Server
provides the following plug-ins for Web servers:

• Apache-WebLogic Server plug-in

• Java System Web Server plug-in

• Internet Information Server (IIS) plug-in

The Web server plug-in performs authentication by sending the request, via the HTTP
protocol, to Oracle WebLogic Server, along with the authentication data (user name and
password) received from the user.

7. Upon successful authentication, Oracle WebLogic Server proceeds to determine whether
the user is authorized to access the WebLogic resource.

8. Before invoking a method on the WebLogic resource, the WebLogic Server instance
performs a security authorization check. During this check, the server security extracts the
user's credentials from the security context, determines the user's security role, compares
the user's security role to the security policy for the requested WebLogic resource, and
verifies that the user is authorized to invoke the method on the WebLogic resource.

9. If authorization succeeds, the server fulfills the request.

Chapter 2
Authentication With Web Browsers

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 37

Figure 2-1 Secure Login for Web Browsers

Digital Certificate Authentication
WebLogic Server uses encryption and digital certificate authentication when Web browser
users connect to the server via the HTTPS port. In this scenario, the browser and WebLogic
Server instance interact in the following manner to authenticate and authorize a user (see
Figure 2-1):

1. A user invokes a WebLogic resource in Oracle WebLogic Server by entering the URL for
that resource in a Web browser. The HTTPS URL contains the SSL listen port, for
example, https://myserver:7002.

2. The Web server in Oracle WebLogic Server receives the request.

Note

Oracle WebLogic Server provides its own Web server but also supports the use of
Apache Server, Microsoft Internet Information Server, and Java System Web
Server as Web servers.

3. The Web server checks whether the WebLogic resource is protected by a security policy. If
the WebLogic resource is protected, the Web server uses the established HTTPS
connection to request a user name and password from the user.

4. When the user's Web browser receives the request from Oracle WebLogic Server, it
prompts the user for a user name and password. (This step is optional.)

5. The Web browser sends the request again, along with the user name and password. (Only
supplied if requested by the server.)

6. WebLogic Server presents its digital certificate to the Web browser.

Chapter 2
Authentication With Web Browsers

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 37

7. The Web browser checks that the server's name used in the URL (for example, myserver)
matches the name in the digital certificate and that the digital certificate was issued by a
trusted third party, that is, a trusted CA

8. If two-way SSL authentication is in force on the server, the server requests a digital
certificate from the client.

Note

Even though WebLogic Server cannot be configured to enforce the full two-way
SSL handshake with 1.0 Web Server proxy plug-ins, proxy plug-ins can be
configured to provide the client certificate to the server if it is needed. To do this,
configure the proxy plug-in to export the client certificate in the HTTP Header for
WebLogic Server. For instructions on how to configure proxy plug-ins to export the
client certificate to WebLogic Server, see the configuration information for the
specific plug-in in Using Oracle WebLogic Server Proxy Plug-Ins.

The latest plug-ins provide two-way SSL support for verifying client identity. Two-
way SSL is automatically enforced when WebLogic Server requests the client
certificate during the handshake process. See Configuring Two-Way SSL Between
the Plug-In and Oracle WebLogic Server in Using Oracle WebLogic Server Proxy
Plug-Ins.

9. The Web server forwards the request to the Web server plug-in. If secure proxy is set (this
is the case if the HTTPS protocol is being used), the Web server plug-in also performs
authentication by sending the request, via the HTTPS protocol, to the WebLogic resource
in Oracle WebLogic Server, along with the authentication data (user name and password)
received from the user.

Note

When using two-way SSL authentication, you can also configure the server to do
identity assertion based on the client's certificate, where, instead of supplying a
user name and password, the server extracts the user name and password from
the client's certificate.

10. Upon successful authentication, Oracle WebLogic Server proceeds to determine whether
the user is authorized to access the WebLogic resource.

11. Before invoking a method on the WebLogic resource, the server performs a security
authorization check. During this check, the server extracts the user's credentials from the
security context, determines the user's security role, compares the user's security role to
the security policy for the requested WebLogic resource, and verifies that the user is
authorized to invoke the method on the WebLogic resource.

12. If authorization succeeds, the server fulfills the request.

See the following topics:

• Configuring SSL

• Installing and Configuring the Apache HTTP Server Plug-In

• Installing and Configuring the Microsoft IIS Plug-In

Chapter 2
Authentication With Web Browsers

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 37

Multiple Web Applications, Cookies, and Authentication
By default, WebLogic Server assigns the same cookie name (JSESSIONID) to all Web
applications. When you use any type of authentication, all Web applications that use the same
cookie name use a single sign-on for authentication. Once a user is authenticated, that
authentication is valid for requests to any Web Application that uses the same cookie name.
The user is not prompted again for authentication.

If you want to require separate authentication for a Web application, you can specify a unique
cookie name or cookie path for the Web application. Specify the cookie name using the
CookieName parameter and the cookie path with the CookiePath parameter, defined in the
weblogic.xml <session-descriptor> element. See session-descriptor in Administering Server
Startup and Shutdown for Oracle WebLogic Server.

If you want to retain the cookie name and still require independent authentication for each Web
application, you can set the cookie path parameter (CookiePath) differently for each Web
application.

However, note that a common Web security problem is session stealing. WebLogic Server
provides two features, or methods, that Web site designers can use to prevent session
stealing, described in Using Secure Cookies to Prevent Session Stealing.

Using Secure Cookies to Prevent Session Stealing
Session stealing happens when an attacker manages to get a copy of your session cookie,
generally while the cookie is being transmitted over the network. This can only occur when the
data is being sent in clear-text; that is, the cookie is not encrypted. WebLogic Server provides
two features for securing session cookies.

• Configuring the Session Cookie as a Secure Cookie

• Using the AuthCookie _WL_AUTHCOOKIE_JSESSIONID

Note

These two features work correctly when the SSL request is terminated at WebLogic
Server. Proxy architectures that terminate the SSL connection at a Web server plug-in
or hardware load balancer can enable the WeblogicPluginEnabled attribute for these
features to work, but doing so exposes the session cookie behind the proxy.

Configuring the Session Cookie as a Secure Cookie
You can prevent session stealing by configuring the application to use HTTPS. When
communication with WebLogic Server is secured by SSL, you can have WebLogic Server
make the session cookie secure by specifying the <cookie-secure> element in the
weblogic.xml deployment descriptor and setting its value to true. A secure cookie indicates to
the Web browser that the cookie should be sent using only a secure protocol, such as SSL.

Note that it is possible for an application with code running in the browser — for example, an
applet — to make non-HTTP outbound connections. In such connections, the browser sends
the session cookie. However, by specifying the <cookie-http-only> element in weblogic.xml,
you constrain the browser to send the cookie only over an HTTP connection — the cookie is
made inaccessible to applications or other protocols running in the browser. So if you specify

Chapter 2
Multiple Web Applications, Cookies, and Authentication

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 37

<cookie-http-only> in conjunction with <cookie-secure>, you ensure that session cookies
are sent only over HTTPS.

For more information about the <cookie-secure> and <cookie-http-only> elements, see
weblogic.xml Deployment Descriptor Elements in Developing Web Applications, Servlets, and
JSPs for Oracle WebLogic Server.

Using the AuthCookie _WL_AUTHCOOKIE_JSESSIONID
WebLogic Server allows a user to securely access HTTPS resources in a session that was
initiated using HTTP, without loss of session data. To enable this feature, ensure that
WebAppContainerMBean.AuthCookieEnabled is set to true.

AuthCookieEnabled is enabled by default. If it is disabled, you can use WebLogic Remote
Console to re-enable it:

1. In the Edit Tree, go to Environment, then Domain.

2. On the Web Application tab, turn on the Auth Cookie Enabled option.

3. Save and commit your changes.

When AuthCookieEnabled is set to true, the WebLogic Server instance sends a new secure
cookie, _WL_AUTHCOOKIE_JSESSIONID, to the browser when authenticating via an HTTPS
connection. Once the secure cookie is set, the session is allowed to access other security-
constrained HTTPS resources only if the cookie is sent from the browser.

Thus, WebLogic Server uses two cookies: the JSESSIONID cookie and the
_WL_AUTHCOOKIE_JSESSIONID cookie. By default, the JSESSIONID cookie is never secure, but
the _WL_AUTHCOOKIE_JSESSIONID cookie is always secure. A secure cookie is only sent when
an encrypted communication channel is in use. Assuming a standard HTTPS login (HTTPS is
an encrypted HTTP connection), your browser gets both cookies.

For subsequent HTTP access, you are considered authenticated if you have a valid
JSESSIONID cookie, but for HTTPS access, you must have both cookies to be considered
authenticated. If you only have the JSESSIONID cookie, you must re-authenticate.

With this feature enabled, once you have logged in over HTTPS, the secure cookie is only sent
encrypted over the network and therefore can never be stolen in transit. The JSESSIONID
cookie is still subject to in-transit hijacking. Therefore, a Web site designer can ensure that
session stealing is not a problem by making all sensitive data require HTTPS. While the HTTP
session cookie is still vulnerable to being stolen and used, all sensitive operations require the
_WL_AUTHCOOKIE_JSESSIONID, which cannot be stolen, so those operations are protected.

You can also specify a cookie name for JSESSIONID or _WL_AUTHCOOKIE_JSESSIONID using the
CookieName parameter defined in the weblogic.xml deployment descriptor's <session-
descriptor> element, as follows:

<session-descriptor>
 <cookie-name>FOOAPPID</cookie-name>
</session-descriptor>

In this case, Weblogic Server will not use JSESSIONID and _WL_AUTHCOOKIE_JSESSIONID, but
FOOAPPID and _WL_AUTHCOOKIE_FOOAPPID to serve the same purpose, as shown in Table 2-1.

Chapter 2
Multiple Web Applications, Cookies, and Authentication

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 37

Table 2-1 WebLogic Server Cookies

User-Specified in Deployment
Descriptor

HTTP Session HTTPS Session

No - uses the JSESSIONID default JSESSIONID _WL_AUTHCOOKIE_JSESSIONI
D

Yes - specified as FOOAPPID FOOAPPID _WL_AUTHCOOKIE_FOOAPPID

Developing Secure Web Applications
WebLogic Server supports three types of authentication for Web browsers: BASIC, FORM, and
CLIENT-CERT.

The following sections cover the different ways to use these types of authentication:

• Developing BASIC Authentication Web Applications

• Understanding BASIC Authentication with Unsecured Resources

• Developing FORM Authentication Web Applications

• Using Identity Assertion for Web Application Authentication

• Using Two-Way SSL for Web Application Authentication

• Providing a Fallback Mechanism for Authentication Methods

• Developing Swing-Based Authentication Web Applications

• Deploying Web Applications

An alternative way to perform user authentication, including BASIC, FORM, and Custom
FORM authentication, is to use the HttpAuthenticationMechanism as described in Using
Jakarta Security.

Note

The Jakarta Security specification requires that group principal names are mapped to
roles of the same name by default. In WebLogic Server, if the security-role-
assignment element in the weblogic.xml deployment descriptor does not declare a
mapping between a security role and one or more principals in the WebLogic Server
security realm, then the role name is used as the default principal.

Developing BASIC Authentication Web Applications
With basic authentication, the Web browser pops up a login screen in response to a WebLogic
resource request. The login screen prompts the user for a user name and password.
Figure 2-2 shows a typical login screen.

Chapter 2
Developing Secure Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 37

Figure 2-2 Authentication Login Screen

Note

See Understanding BASIC Authentication with Unsecured Resources for important
information about how unsecured resources are handled.

To develop a Web application that provides basic authentication, perform these steps:

1. Create the web.xml deployment descriptor. In this file you include the following information
(see Example 2-1):

a. Define the welcome file. The welcome file name is welcome.jsp.

b. Define a security constraint for each set of Web application resources, that is, URL
resources, that you plan to protect. Each set of resources share a common URL. URL
resources such as HTML pages, JSPs, and servlets are the most commonly protected,
but other types of URL resources are supported. In Example 2-1, the URL pattern
points to the welcome.jsp file located in the Web application's top-level directory; the
HTTP methods that are allowed to access the URL resource, POST and GET; and the
security role name, webuser.

Note

When specifying security role names, observe the following conventions and
restrictions:

• The proper syntax for a security role name is as defined for an Nmtoken in
the Extensible Markup Language (XML) recommendation available on the
Web at: http://www.w3.org/TR/REC-xml#NT-Nmtoken.

• Do not use blank spaces, commas, hyphens, or any characters in this
comma-separated list: \t, < >, #, |, &, ~, ?, (), { }.

• Security role names are case sensitive.

• The suggested convention for security role names is that they be singular.

c. Use the <login-config> tag to define the type of authentication you want to use and
the security realm to which the security constraints will be applied. In Example 2-1, the
BASIC type is specified and the realm is the default realm, which means that the

Chapter 2
Developing Secure Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 37

http://www.w3.org/TR/REC-xml#NT-Nmtoken

security constraints will apply to the active security realm when the WebLogic Server
instance boots.

d. Define one or more security roles and map them to your security constraints. In our
sample, only one security role, webuser, is defined in the security constraint so only
one security role name is defined here (see the <security-role> tag in Example 2-1).
However, any number of security roles can be defined.

2. Create the weblogic.xml deployment descriptor. In this file you map security role names to
users and groups. Example 2-2 shows a sample weblogic.xml file that maps the webuser
security role defined in the <security-role> tag in the web.xml file to a group named
myGroup. Note that principals can be users or groups, so the <principal-tag> can be
used for either. With this configuration, WebLogic Server will only allow users in myGroup
to access the protected URL resource—welcome.jsp.

Note

Starting in version 9.0, the default role mapping behavior is to create empty role
mappings when none are specified in weblogic.xml. In version 8.x, if you did not
include a weblogic.xml file, or included the file but did not include mappings for all
security roles, security roles without mappings defaulted to any user or group
whose name matched the role name. For information on role mapping behavior
and backward compatibility settings, see Understanding the Combined Role
Mapping Enabled Setting in Securing Resources Using Roles and Policies for
Oracle WebLogic Server.

3. Create a file that produces the Welcome screen that displays when the user enters a user
name and password and is granted access. Example 2-3 shows a sample welcome.jsp
file. Figure 2-3 shows the Welcome screen.

Note

In Example 2-3, notice that the JSP is calling an API (request.getRemoteUser()) to
get the name of the user that logged in. A different API,
weblogic.security.Security.getCurrentSubject(), could be used instead. To use this
API to get the name of the user, use it with the SubjectUtils API as follows:

String username = weblogic.security.SubjectUtils.getUsername
weblogic.security.Security.getCurrentSubject());

Chapter 2
Developing Secure Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 37

Figure 2-3 Welcome Screen

4. Start WebLogic Server and define the users and groups that will have access to the URL
resource. In the weblogic.xml file (see Example 2-2), the <principal-name> tag defines
myGroup as the group that has access to the welcome.jsp. Therefore, use WebLogic
Remote Console to define the myGroup group, define a user, and add that user to the
myGroup group. For information on adding users and groups, see Users, Groups, and
Security Roles in Securing Resources Using Roles and Policies for Oracle WebLogic
Server.

5. Deploy the Web application and use the user defined in the previous step to access the
protected URL resource.

a. For deployment instructions, see Deploying Web Applications.

b. Open a Web browser and enter this URL:

http://localhost:7001/basicauth/welcome.jsp

c. Enter the user name and password. The Welcome screen displays.

Example 2-1 Basic Authentication web.xml File

<?xml version='1.0' encoding='UTF-8'?>
<web-app version="4.0" xmlns="http://xmlns.jcp.org/xml/ns/javaee" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://
xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd">
 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Success</web-resource-name>
 <url-pattern>/welcome.jsp</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>webuser</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>

Chapter 2
Developing Secure Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 37

 <auth-method>BASIC</auth-method>
 <realm-name>default</realm-name>
 </login-config>
 <security-role>
 <role-name>webuser</role-name>
 </security-role>
</web-app>

Example 2-2 BASIC Authentication weblogic.xml File

<?xml version='1.0' encoding='UTF-8'?>
<weblogic-web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://
xmlns.oracle.com/weblogic/weblogic-web-app"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-web-app http://
xmlns.oracle.com/weblogic/weblogic-web-app/1.4/weblogic-web-app.xsd">
 <security-role-assignment>
 <role-name>webuser</role-name>
 <principal-name>myGroup</principal-name>
 </security-role-assignment>
</weblogic-web-app>

Example 2-3 BASIC Authentication welcome.jsp File

<html>
 <head>
 <title>Browser Based Authentication Example Welcome Page</title>
 </head>
 <h1> Browser Based Authentication Example Welcome Page </h1>
 <p> Welcome <%= request.getRemoteUser() %>!
 </blockquote>
 </body>
</html>

Using HttpSessionListener to Account for Browser Caching of Credentials
The browser caches user credentials and frequently re-sends them to the server automatically.
This can give the appearance that WebLogic Server sessions are not being destroyed after
logout or timeout. Depending on the browser, the credentials can be cached just for the current
browser session, or across browser sessions.

You can validate that a WebLogic Server's session was destroyed by creating a class that
implements the jakarta.servlet.http.HttpSessionListener interface. Implementations of
this interface are notified of changes to the list of active sessions in a web application. To
receive notification events, the implementation class must be configured in the deployment
descriptor for the web application in web.xml.

To configure a session listener class:

1. Open the web.xml deployment descriptor of the Web application for which you are creating
a session listener class in a text editor. The web.xml file is located in the WEB-INF
directory of your Web application.

2. Add an event declaration using the listener element of the web.xml deployment descriptor.
The event declaration defines the event listener class that is invoked when the event
occurs. For example:

<listener>
 <listener-class>myApp.MySessionListener</listener-class>
</listener>

Chapter 2
Developing Secure Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 37

See Configuring an Event Listener Class in Developing Web Applications, Servlets, and
JSPs for Oracle WebLogic Server for additional information and guidelines.

Write and deploy the session listener class. The example shown in Example 2-4 uses a simple
counter to track the session count.

Example 2-4 Tracking the Session Count

package myApp;
import jakarta.servlet.http.HttpSessionListener;
import jakarta.servlet.http.HttpSessionEvent;
public class MySessionListener implements HttpSessionListener {
 private static int sessionCount = 0;

 public void sessionCreated(HttpSessionEvent se) {
 sessionCount++;
 // Write to a log or do some other processing.
 }
 public void sessionDestroyed(HttpSessionEvent se) {
 if(sessionCount > 0)
 sessionCount--;
 //Write to a log or do some other processing.
 }
}

Understanding BASIC Authentication with Unsecured Resources
For WebLogic Server versions 9.2 and later, client requests that use HTTP BASIC
authentication must pass WebLogic Server authentication, even if access control is not
enabled on the target resource.

The setting of the Security Configuration MBean flag enforce-valid-basic-auth-credentials
determines this behavior. (The DomainMBean can return the new Security Configuration
MBean for the domain.) It specifies whether or not the system should allow requests with
invalid HTTP BASIC authentication credentials to access unsecured resources.

Note

The Security Configuration MBean provides domain-wide security configuration
information. The enforce-valid-basic-auth-credentials flag effects the entire domain.

The enforce-valid-basic-auth-credentials flag is true by default, and WebLogic Server
authentication is performed. If authentication fails, the request is rejected. WebLogic Server
must therefore have knowledge of the user and password.

You may want to change the default behavior if you rely on an alternate authentication
mechanism. For example, you might use a backend web service to authenticate the client, and
WebLogic Server does not need to know about the user. With the default authentication
enforcement enabled, the web service can do its own authentication, but only if WebLogic
Server authentication first succeeds.

If you explicitly set the enforce-valid-basic-auth-credentials flag to false, WebLogic Server does
not perform authentication for HTTP BASIC authentication client requests for which access
control was not enabled for the target resource.

In the previous example of a backend web service that authenticates the client, the web
service can then perform its own authentication without WebLogic Server having knowledge of
the user.

Chapter 2
Developing Secure Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 37

Setting the enforce-valid-basic-auth-credentials Flag
To set the enforce-valid-basic-auth-credentials flag, perform the following steps:

1. Add the <enforce-valid-basic-auth-credentials> element to config.xml within the
<security-configuration> element.

:
<enforce-valid-basic-auth-credentials>false</enforce-valid-basic-auth-credentials>
 </security-configuration>

2. Start or restart all of the servers in the domain.

Check the Value of enforce-valid-basic-auth-credentials
You can use either WebLogic Remote Console or WSLST to check the value of the enforce-
valid-basic-auth-credentials setting in a running server. Remember that enforce-valid-basic-
auth-credentials is a domain-wide setting.

In WebLogic Remote Console, go to the Edit Tree perspective, then Environment, then
Domain. On the Security tab, click Show Advanced Fields to view the Enforce Valid Basic Auth
Credentials option.

The WLST session shown in Example 2-5 demonstrates how to check the value of the
enforce-valid-basic-auth-credentials flag in a sample running server.

Example 2-5 Checking the Value of enforce-valid-basic-auth-credentials

wls:/offline> connect('','','t3://host:port')
Please enter your username :adminuser
Please enter your password :
Connecting to t3://host:port with userid adminuser ...
Successfully connected to Admin Server 'examplesServer' that belongs to domain '
wl_server'.
wls:/wl_server/serverConfig> cd('SecurityConfiguration')

wls:/wl_server/serverConfig/SecurityConfiguration> ls()
dr-- wl_server
wls:/wl_server/serverConfig/SecurityConfiguration> cd('wl_server')
wls:/wl_server/serverConfig/SecurityConfiguration/wl_server> ls()
dr-- DefaultRealm
dr-- Realms
-r-- AnonymousAdminLookupEnabled false
-r-- CompatibilityConnectionFiltersEnabled false
-r-- ConnectionFilter null
-r-- ConnectionFilterRules null
-r-- ConnectionLoggerEnabled false
-r-- ConsoleFullDelegationEnabled false
-r-- Credential ******
-r-- CredentialEncrypted ******
-r-- CrossDomainSecurityEnabled false
-r-- DowngradeUntrustedPrincipals false
-r-- EnforceStrictURLPattern true
-r-- EnforceValidBasicAuthCredentials false
:
:

Chapter 2
Developing Secure Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 37

Developing FORM Authentication Web Applications
When using FORM authentication with Web applications, you provide a custom login screen
that the Web browser displays in response to a Web application resource request and an error
screen that displays if the login fails. The login screen can be generated using an HTML page,
JSP, or servlet. The benefit of form-based login is that you have complete control over these
screens so that you can design them to meet the requirements of your application or enterprise
policy/guideline.

The login screen prompts the user for a user name and password. Figure 2-4 shows a typical
login screen generated using a JSP and Example 2-6 shows the source code.

Figure 2-4 Form-Based Login Screen (login.jsp)

Figure 2-5 shows a typical login error screen generated using HTML and Example 2-7 shows
the source code.

Chapter 2
Developing Secure Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 37

Figure 2-5 Login Error Screen

To develop a Web application that provides FORM authentication, perform these steps:

1. Create the web.xml deployment descriptor and include the following information:

a. Define the welcome file. The welcome file name is welcome.jsp.

b. Define a security constraint for each set of URL resources that you plan to protect.
Each set of URL resources share a common URL. URL resources such as HTML
pages, JSPs, and servlets are the most commonly protected, but other types of URL
resources are supported. In the sample web.xml file provided in the following steps,
the URL pattern points to /admin/edit.jsp, thus protecting the edit.jsp file located in
the Web application's admin sub-directory, defines the HTTP method that is allowed to
access the URL resource, GET, and defines the security role name, admin.

Note

Do not use hyphens in security role names. Security role names with hyphens
cannot be modified in WebLogic Remote Console. Also, the suggested
convention for security role names is that they be singular.

c. Define the type of authentication you want to use and the security realm to which the
security constraints will be applied. In this case, the FORM type is specified and no
realm is specified, so the realm is the default realm, which means that the security
constraints will apply to the security realm that is activated when a WebLogic Server
instance boots.

d. Define one or more security roles and map them to your security constraints. In our
sample, only one security role, admin, is defined in the security constraint so only one

Chapter 2
Developing Secure Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 37

security role name is defined here. However, any number of security roles can be
defined. The following is a sample web.xml file.

<?xml version='1.0' encoding='UTF-8'?>
<web-app xmlns="http://xmlns.jcp.org/xml/ns/j2ee" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
<web-app>
 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>AdminPages</web-resource-name>
 <description>
 These pages are only accessible by authorized
 administrators.
 </description>
 <url-pattern>/admin/edit.jsp</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description>
 These are the roles who have access.
 </description>
 <role-name>
 admin
 </role-name>
 </auth-constraint>
 <user-data-constraint>
 <description>
 This is how the user data must be transmitted.
 </description>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/fail_login.html</form-error-page>
 </form-login-config>
 </login-config>
 <security-role>
 <description>
 An administrator
 </description>
 <role-name>
 admin
 </role-name>
 </security-role>
</web-app>

2. Create the weblogic.xml deployment descriptor as shown in the following example. In this
file, you map security role names to users and groups. The following example shows a
sample weblogic.xml file that maps the admin security role defined in the <security-
role> tag in the web.xml file to the group supportGroup. With this configuration, WebLogic

Chapter 2
Developing Secure Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 37

Server will only allow users in the supportGroup group to access the protected WebLogic
resource.

<?xml version='1.0' encoding='UTF-8'?>
<weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<weblogic-web-app>
 <security-role-assignment>
 <role-name>admin</role-name>
 <principal-name>supportGroup</principal-name>
 </security-role-assignment>
</weblogic-web-app>

However, you can use WebLogic Remote Console to modify the Web application's security
role so that other groups can be allowed to access the protected WebLogic resource.

3. Create a Web application file that produces the welcome screen when the user requests
the protected Web application resource by entering the URL. The following example shows
a sample welcome.jsp file. Figure 2-3 shows the Welcome screen.

<html>
 <head>
 <title>Security login example</title>
 </head>
 <%
 String bgcolor;
 if ((bgcolor=(String)application.getAttribute("Background")) ==
 null)
 {
 bgcolor="#cccccc";
 }
 %>
 <body bgcolor=<%="\""+bgcolor+"\""%>>
 <blockquote>

 <h1> Security Login Example </h1>
 <p> Welcome <%= request.getRemoteUser() %>!
 <p> If you are an administrator, you can configure the background
 color of the Web Application.

 Configure background.
 <% if (request.getRemoteUser() != null) { %>
 <p> Click here to logout.
 <% } %>
 </blockquote>
 </body>
</html>

Chapter 2
Developing Secure Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 37

Note

In Example 2-3, notice that the JSP is calling an API (request.getRemoteUser()) to
get the name of the user that logged in. A different API,
weblogic.security.Security.getCurrentSubject(), could be used instead. To use this
API to get the name of the user, use it with the SubjectUtils API as follows:

String username = weblogic.security.SubjectUtils.getUsername
weblogic.security.Security.getCurrentSubject());

4. Start WebLogic Server and define the users and groups that will have access to the URL
resource. In the sample weblogic.xml file, the <role-name> tag defines admin as the
group that has access to the edit.jsp file and defines the user, 'joe' as a member of that
group. Therefore, use WebLogic Remote Console to define the admin group, and define
the user 'joe' and add 'joe' to the admin group. You can also define other users and add
them to the group to grant them access to the protected WebLogic resource. For
information on adding users and groups, see Users, Groups, and Security Roles in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

5. Deploy the Web application and use the user defined in the previous step to access the
protected Web application resource.

a. For deployment instructions, see Deploying Web Applications.

b. Open a Web browser and enter this URL:

http://hostname:7001/security/welcome.jsp

c. Enter the user name and password. The Welcome screen displays.

Example 2-6 Form-Based Login Screen Source Code (login.jsp)

<html>
 <head>)
 <title>Security WebApp login page</title>
 </head>
 <body bgcolor="#cccccc">
 <blockquote>

 <h2>Please enter your user name and password:</h2>
 <p>
 <form method="POST" action="j_security_check">
 <table border=1>
 <tr>
 <td>Username:</td>
 <td><input type="text" name="j_username"></td>
 </tr>
 <tr>
 <td>Password:</td>
 <td><input type="password" name="j_password"></td>
 </tr>
 <tr>
 <td colspan=2 align=right><input type=submit
 value="Submit"></td>
 </tr>
 </table>
 </form>
 </blockquote>
 </body>
</html>

Chapter 2
Developing Secure Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 37

Example 2-7 Login Error Screen Source Code

<html>
 <head>
 <title>Login failed</title>
 </head>
 <body bgcolor=#ffffff>
 <blockquote>

 <h2>Sorry, your user name and password were not recognized.</h2>
 <p>
 Return to welcome page or
 logout

 </blockquote>
 </body>
</html>

Using Identity Assertion for Web Application Authentication
You use identity assertion in Web applications to verify client identities for authentication
purposes. When using identity assertion, the following requirements must be met:

1. The authentication type must be set to CLIENT-CERT.

2. An Identity Assertion provider must be configured in the server. If the Web browser or Java
client requests a WebLogic Server resource protected by a security policy, WebLogic
Server requires that the Web browser or Java client have an identity. The WebLogic
Identity Assertion provider maps the token from a Web browser or Java client to a user in a
WebLogic Server security realm. For information on how to configure an Identity Assertion
provider, see Configuring Identity Assertion Providers in Administering Security for Oracle
WebLogic Server.

3. The user corresponding to the token's value must be defined in the server's security realm;
otherwise the client will not be allowed to access a protected WebLogic resource. For
information on configuring users on the server, see Users, Groups, and Security Roles in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Using Two-Way SSL for Web Application Authentication
You use two-way SSL in Web applications to verify that clients are whom they claim to be.
When using two-way SSL, the following requirements must be met:

1. The authentication type must be set to CLIENT-CERT.

2. The server must be configured for two-way SSL. For information on using SSL and digital
certificates, see Using SSL Authentication in Java Clients. For information on configuring
SSL on the server, see Configuring SSL in Administering Security for Oracle WebLogic
Server.

3. The client must use HTTPS to access the Web application on the server.

4. An Identity Assertion provider must be configured in the server. If the Web browser or Java
client requests a WebLogic Server resource protected by a security policy, WebLogic
Server requires that the Web browser or Java client have an identity. The WebLogic
Identity Assertion provider allows you to enable a user name mapper in the server that
maps the digital certificate of a Web browser or Java client to a user in a WebLogic Server
security realm. For information on how to configure security providers, see Configuring
WebLogic Security Providers in Administering Security for Oracle WebLogic Server.

Chapter 2
Developing Secure Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 19 of 37

5. The user corresponding to the Subject's Distinguished Name (SubjectDN) attribute in the
client's digital certificate must be defined in the server's security realm; otherwise the client
will not be allowed to access a protected WebLogic resource. For information on
configuring users on the server, see Users, Groups, and Security Roles in Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

Note

When you use SSL authentication, it is not necessary to use web.xml and
weblogic.xml files to specify server configuration because you use WebLogic
Remote Console to specify the server's SSL configuration.

Providing a Fallback Mechanism for Authentication Methods
The Jakarta Servlet 5.0 specification (https://jakarta.ee/specifications/servlet/) allows
you to define the authentication method (BASIC, FORM, etc.) to be used in a Web application.
WebLogic Server provides an auth-method security module that allows you to define multiple
authentication methods (as a comma separated list), so the container can provide a fall-back
mechanism. Authentication will be attempted in the order the values are defined in the auth-
method list.

For example, you can define the following auth-method list in the login-config element of
your web.xml file:

<login-config>
 <auth-method>CLIENT-CERT,BASIC</auth-method>
</login-config>

Then the container will first try to authenticate by looking at the CLIENT-CERT value. If that
should fail, the container will challenge the user-agent for BASIC authentication.

If either FORM or BASIC are configured, then they must exist at the end of the list since they
require a round-trip communication with the user. However, both FORM and BASIC cannot
exist together in the list of auth-method values.

Configuration
The auth-method authentication security can be configured in two ways:

• Define a comma separated list of auth-method values in the login-config element of your
web.xml file.

• Define the auth-method values as a comma separated list on the RealmMBean and in the
login-config element of your web.xml use the REALM value, then the Web application
will pick up the authentication methods from the security realm.

WebLogic Java Management Extensions (JMX) enables you to access the RealmMBean to
create and manage the security resources. For more information, see Overview of WebLogic
Server Subsystem MBeans in Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server.

Developing Swing-Based Authentication Web Applications
Web browsers can also be used to run graphical user interfaces (GUIs) that were developed
using Java Foundation Classes (JFC) Swing components.

Chapter 2
Developing Secure Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 20 of 37

https://jakarta.ee/specifications/servlet/

For information on how to create a graphical user interface (GUI) for applications and applets
using the Swing components, see the Creating a GUI with JFC/Swing tutorial (also known as
The Swing Tutorial). You can access this tutorial on the Web at http://docs.oracle.com/
javase/tutorial/uiswing/.

After you have developed your Swing-based GUI, refer to Developing FORM Authentication
Web Applications and use the Swing-based screens to perform the steps required to develop a
Web application that provides FORM authentication.

Note

When developing a Swing-based GUI, do not rely on the Java Virtual Machine-wide
user for child threads of the swing event thread. This is not Jakarta EE compliant and
does not work in thin clients, or in IIOP in general. Instead, take either of the following
approaches:

• Make sure an InitialContext is created before any Swing artifacts.

• Or, use the Java Authentication and Authorization Service (JAAS) to log in and
then use the Security.runAs() method inside the Swing event thread and its
children.

Deploying Web Applications
To deploy a Web application on a server running in development mode, perform the following
steps:

Note

For more information about deploying Web applications in either development of
production mode, see Deploying Applications and Modules with weblogic.deployer in
Deploying Applications to Oracle WebLogic Server.

1. Set up a directory structure for the Web application's files. Figure 2-6 shows the directory
structure for the Web application named basicauth. The top-level directory must be
assigned the name of the Web application and the sub-directory must be named WEB-INF.

Chapter 2
Developing Secure Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 21 of 37

http://docs.oracle.com/javase/tutorial/uiswing/
http://docs.oracle.com/javase/tutorial/uiswing/

Figure 2-6 Basicauth Web Application Directory Structure

2. To deploy the Web application in exploded directory format, that is, not in the Java archive
(jar) format, simply move your directory to the applications directory on your server. For
example, you would deploy the basicauth Web application in the following location:

ORACLE_HOME\user_projects\domains\mydomain\applications\basicauth

If the WebLogic Server instance is running, the application should auto-deploy. Use
WebLogic Remote Console to verify that the application deployed.

If the WebLogic Server instance is not running, the Web application should auto-deploy
when you start the server.

3. If you have not done so already, use WebLogic Remote Console to configure the users
and groups that will have access to the Web application. To determine the users and
groups that are allowed access to the protected WebLogic resource, examine the
weblogic.xml file. For example, the weblogic.xml file for the basicauth sample (see
Example 2-2) defines myGroup as the only group to have access to the welcome.jsp file.

For more information on deploying secure Web applications, see Deploying Applications and
Modules with weblogic.deployer in Deploying Applications to Oracle WebLogic Server.

Using Declarative Security With Web Applications
WebLogic Server supports three different ways to implement declarative security web
applications. You can define policies and roles using WebLogic Remote Console, you can use
Jakarta Authorization to configure a Java permission-based security model, or you can
configure security entirely within the web application's deployment descriptor files.

For information about using Jakarta Authorization, see Using Jakarta Authorization. The topics
that follow explain how to configure security in web application's deployment descriptors.

Which of these three methods is used is defined by the Jakarta Authorization flags and the
security model. (Security models are described in Options for Securing EJB and Web
Application Resources in Securing Resources Using Roles and Policies for Oracle WebLogic
Server.)

To implement declarative security in Web applications, you can use deployment descriptors
(web.xml and weblogic.xml) to define security requirements. The deployment descriptors map
the application's logical security requirements to its runtime definitions. And at runtime, the
servlet container uses the security definitions to enforce the requirements. For a discussion of
using deployment descriptors, see Developing Secure Web Applications.

Chapter 2
Using Declarative Security With Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 22 of 37

For information about how to use deployment descriptors and the externally-defined
element to configure security in Web applications declaratively, see externally-defined.

WebLogic Server supports several deployment descriptor elements that are used in the
web.xml and weblogic.xml files to define security requirements in Web applications.

Web Application Security-Related Deployment Descriptors
WebLogic Server supports several deployment descriptor elements that are used in the
web.xml and weblogic.xm files to define security requirements in Web applications.

• web.xml Deployment Descriptors

• weblogic.xml Deployment Descriptors

web.xml Deployment Descriptors
The following web.xml security-related deployment descriptor elements are supported by
WebLogic Server:

• auth-constraint

• security-constraint

• security-role

• security-role-ref

• user-data-constraint

• web-resource-collection

auth-constraint
The optional auth-constraint element defines which groups or principals have access to the
collection of Web resources defined in this security constraint.

Note

Any resource that is protected by an auth-constraint element should also be
protected by a Table 2-6 with a <transport-guarantee> of INTEGRAL or CONFIDENTIAL.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection when the
user is authenticated using the INTEGRAL or CONFIDENTIAL transport guarantee,
thereby ensuring that all communication on the network between the Web browser
and the server is encrypted and that none of the communication, including a user
name and password, is in clear text.

Requiring SSL also means that WebLogic Server uses two cookies: the JSESSIONID
cookie and the encrypted _WL_AUTHCOOKIE_JSESSIONID cookie, as described in Using
Secure Cookies to Prevent Session Stealing.

The following table describes the elements you can define within an auth-constraint element.

Chapter 2
Web Application Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 23 of 37

Table 2-2 auth-constraint Element

Element Required/Optional Description

<description> Optional A text description of this security constraint.

<role-name> Optional Defines which security roles can access resources defined in
this <security-constraint>. Security role names are
mapped to principals using the <security-role-ref>
element. See security-role-ref.

Used Within
The auth-constraint element is used within the security-constraint element.

Example
See Example 2-8 for an example of how to use the auth-constraint element in a web.xml file.

security-constraint
The security-constraint element is used in the web.xml file to define the access privileges to
a collection of resources defined by the web-resource-collection element.

Note

Any resource that is protected by an auth-constraint element should also be
protected by a Table 2-6 with a <transport-guarantee> of INTEGRAL or CONFIDENTIAL.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection when the
user is authenticated using the INTEGRAL or CONFIDENTIAL transport guarantee,
thereby ensuring that all communication on the network between the Web browser
and the server is encrypted and that none of the communication, including a user
name and password, is in clear text.

Requiring SSL also means that WebLogic Server uses two cookies: the JSESSIONID
cookie and the encrypted _WL_AUTHCOOKIE_JSESSIONID cookie, as described in Using
Secure Cookies to Prevent Session Stealing.

The following table describes the elements you can define within a security-constraint
element.

Table 2-3 security-constraint Element

Element Required/Optional Description

<web-resource-
collection>

Required Defines the components of the Web Application to which this
security constraint is applied. See web-resource-collection.

<auth-
constraint>

Optional Defines which groups or principals have access to the
collection of web resources defined in this security constraint.
See auth-constraint.

<user-data-
constraint>

Optional Defines defines how data communicated between the client
and the server should be protected. See user-data-constraint.

Chapter 2
Web Application Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 24 of 37

Example
Example 2-8 shows how to use the security-constraint element to defined security for the
SecureOrdersEast resource in a web.xml file.

Example 2-8 Security Constraint Example

web.xml entries:
<security-constraint>
 <web-resource-collection>
 <web-resource-name>SecureOrdersEast</web-resource-name>
 <description>
 Security constraint for
 resources in the orders/east directory
 </description>
 <url-pattern>/orders/east/*</url-pattern>
 <http-method>POST</http-method>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description>
 constraint for east coast sales
 </description>
 <role-name>east</role-name>
 <role-name>manager</role-name>
 </auth-constraint>
 <user-data-constraint>
 <description>SSL not required</description>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
</security-constraint>
...

security-role
The security-role element contains the definition of a security role. The definition consists of
an optional description of the security role, and the security role name.

The following table describes the elements you can define within a security-role element.

Table 2-4 security-role Element

Element Required/Optional Description

<description> Optional A text description of this security role.

<role-name> Required The role name. The name you use here must have a
corresponding entry in the WebLogic-specific deployment
descriptor, weblogic.xml, which maps roles to principals in
the security realm. See security-role-assignment.

Example
See Example 2-11 for an example of how to use the security-role element in a web.xml file.

Chapter 2
Web Application Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 25 of 37

security-role-ref
The security-role-ref element links a security role name defined by <security-role> to an
alternative role name that is hard-coded in the servlet logic. This extra layer of abstraction
allows the servlet to be configured at deployment without changing servlet code.

The following table describes the elements you can define within a security-role-ref
element.

Table 2-5 security-role-ref Element

Element Required/Optional Description

<description> Optional Text description of the role.

<role-name> Required Defines the name of the security role or principal that is used
in the servlet code.

<role-link> Required Defines the name of the security role that is defined in a
<security-role> element later in the deployment
descriptor.

Example
See isUserInRole for an example of how to use the security-role-ref element in a web.xml
file.

user-data-constraint
The user-data-constraint element defines how data communicated between the client and
the server should be protected.

Note

Any resource that is protected by an auth-constraint element should also be
protected by a Table 2-6 with a <transport-guarantee> of INTEGRAL or CONFIDENTIAL.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection when the
user is authenticated using the INTEGRAL or CONFIDENTIAL transport guarantee,
thereby ensuring that all communication on the network between the Web browser
and the server is encrypted and that none of the communication, including a user
name and password, is in clear text.

Requiring SSL also means that WebLogic Server uses two cookies: the JSESSIONID
cookie and the encrypted _WL_AUTHCOOKIE_JSESSIONID cookie, as described in Using
Secure Cookies to Prevent Session Stealing.

The following table describes the elements you can define within a user-data-constraint
element.

Chapter 2
Web Application Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 26 of 37

Table 2-6 user-data-constraint Element

Element Required/Optional Description

<description> Optional A text description.

<transport-
guarantee>

Required Specifies data security requirements for communications
between the client and the server.

Range of values:

• NONE—The application does not require any transport
guarantees.

• INTEGRAL—The application requires that the data be
sent between the client and server in such a way that it
cannot be changed in transit.

• CONFIDENTIAL—The application requires that data be
transmitted so as to prevent other entities from observing
the contents of the transmission.

WebLogic Server establishes a Secure Sockets Layer (SSL)
connection when the user is authenticated using the
INTEGRAL or CONFIDENTIAL transport guarantee.

Used Within
The user-data-constraint element is used within the security-constraint element.

Example
See Example 2-8 for an example of how to use the user-data-constraint element in a
web.xml file.

web-resource-collection
The web-resource-collection element identifies a subset of the resources and HTTP methods
on those resources within a Web application to which a security constraint applies. If no HTTP
methods are specified, the security constraint applies to all HTTP methods.

The following table describes the elements you can define within a web-resource-collection
element.

Table 2-7 web-resource-collection Element

Element Required/Optional Description

<web-resource-
name>

Required The name of this web resource collection.

<description>
Optional Text description of the Web resource.

<url-pattern>
Required The mapping, or location, of the Web resource collection.

URL patterns must use the syntax defined in the Java Servlet
Specification (https://jakarta.ee/specifications/
servlet/).

The pattern <url-pattern>/</url-pattern> applies the
security constraint to the entire Web application.

Chapter 2
Web Application Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 27 of 37

https://jakarta.ee/specifications/servlet/
https://jakarta.ee/specifications/servlet/

Table 2-7 (Cont.) web-resource-collection Element

Element Required/Optional Description

<http-method>
Optional The HTTP methods to which the security constraint applies

when clients attempt to access the Web resource collection. If
no HTTP methods are specified, then the security constraint
applies to all HTTP methods.

Specifying an HTTP method here limits the reach of the
security constraint. Unless you have a particular requirement
to specify an HTTP method, for security reasons you should
not set this element.

Used Within
The web-resource-collection element is used within the security-constraint element.

Example
See Example 2-8 for an example of how to use the web-resource-collection element in a
web.xml file.

weblogic.xml Deployment Descriptors
The following weblogic.xml security-related deployment descriptor elements are supported by
WebLogic Server:

• externally-defined

• run-as-principal-name

• run-as-role-assignment

• security-permission

• security-permission-spec

• security-role-assignment

For additional information on weblogic.xml deployment descriptors, see XML Deployment
Descriptors in Developing Applications for Oracle WebLogic Server.

For additional information on the weblogic.xml elements, see weblogic.xml Deployment
Descriptor Elements in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic
Server.

externally-defined
The externally-defined element lets you explicitly indicate that you want the security roles
defined by the role-name element in the web.xml deployment descriptors to use the mappings
specified in WebLogic Remote Console. The element gives you the flexibility of not having to
specify a specific security role mapping for each security role defined in the deployment
descriptors for a particular Web application. Therefore, within the same security realm,
deployment descriptors can be used to specify and modify security for some applications while
WebLogic Remote Console can be used to specify and modify security for others.

The role mapping behavior for a server depends on which security deployment model is
selected in WebLogic Remote Console. For information on security deployment models, see

Chapter 2
Web Application Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 28 of 37

Options for Securing EJB and Web Application Resources in Securing Resources Using Roles
and Policies for Oracle WebLogic Server.

Note

When specifying security role names, observe the following conventions and
restrictions:

• The proper syntax for a security role name is as defined for an Nmtoken in the
Extensible Markup Language (XML) recommendation available on the Web at:
http://www.w3.org/TR/REC-xml#NT-Nmtoken.

• Do not use blank spaces, commas, hyphens, or any characters in this comma-
separated list: \t, < >, #, |, &, ~, ?, (), { }.

• Security role names are case sensitive.

• The suggested convention for security role names is that they be singular.

Used Within
The externally-defined element is used within the security-role-assignment element.

Example
Example 2-9 and Example 2-10 show by comparison how to use the externally-defined
element in the weblogic.xml file. In Example 2-10, the specification of the "webuser"
externally-defined element in the weblogic.xml means that for security to be correctly
configured on the getReceipts method, the principals for webuser will have to be created in
WebLogic Remote Console.

Note

If you need to list a significant number of principals, consider specifying groups instead
of users. There are performance issues if you specify too many users.

Example 2-9 Using the web.xml and weblogic.xml Files to Map Security Roles and
Principals to a Security Realm

web.xml entries:
<web-app>
 ...
 <security-role>
 <role-name>webuser</role-name>
 </security-role>
 ...
</web-app>
<weblogic.xml entries:
<weblogic-web-app>
 <security-role-assignment>
 <role-name>webuser</role-name>
 <principal-name>myGroup</principal-name>
 <principal-name>Bill</principal-name>
 <principal-name>Mary</principal-name>

Chapter 2
Web Application Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 29 of 37

http://www.w3.org/TR/REC-xml#NT-Nmtoken

 </security-role-assignment>
</weblogic-web-app>

Example 2-10 Using the externally-defined tag in Web Application Deployment
Descriptors

web.xml entries:
<web-app>
 ...
 <security-role>
 <role-name>webuser</role-name>
 </security-role>
 ...
</web-app>
<weblogic.xml entries:
<weblogic-web-app>
 <security-role-assignment>
 <role-name>webuser</role-name>
 <externally-defined/>
 </security-role-assignment>

For information about how to use WebLogic Remote Console to configure security for Web
applications, see Securing Web Applications and EJBs in Securing Resources Using Roles
and Policies for Oracle WebLogic Server.

run-as-principal-name
The run-as-principal-name element specifies the name of a principal to use for a security
role defined by a run-as element in the companion web.xml file.

Used Within
The run-as-principal-name element is used within a run-as-role-assignment element.

Example
For an example of how to use the run-as-principal-name element, see Example 2-11.

run-as-role-assignment
The run-as-role-assignment element maps a given role name, defined by a role-name
element in the companion web.xml file, to a valid user name in the system. The value can be
overridden for a given servlet by the run-as-principal-name element in the servlet-descriptor.
If the run-as-role-assignment element is absent for a given role name, the Web application
container chooses the first principal-name defined in the security-role-assignment element.

The following table describes the elements you can define within a run-as-role-assignment
element.

Table 2-8 run-as-role-assignment Element

Element Required/Optional Description

<role-name> Required Specifies the name of a security role name specified in a
run-as element in the companion web.xml file.

<run-as-
principal-name>

Required Specifies a principal for the security role name defined in a
run-as element in the companion web.xml file.

Chapter 2
Web Application Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 30 of 37

Example:
Example 2-11 shows how to use the run-as-role-assignment element to have the
SnoopServlet always execute as a user joe.

Example 2-11 run-as-role-assignment Element Example

web.xml:
 <servlet>
 <servlet-name>SnoopServlet</servlet-name>
 <servlet-class>extra.SnoopServlet</servlet-class>
 <run-as>
 <role-name>runasrole</role-name>
 </run-as>
 </servlet>
 <security-role>
 <role-name>runasrole</role-name>
 </security-role>
weblogic.xml:
 <weblogic-web-app>
 <run-as-role-assignment>
 <role-name>runasrole</role-name>
 <run-as-principal-name>joe</run-as-principal-name>
 </run-as-role-assignment>
 </weblogic-web-app>

security-permission
The security-permission element specifies a security permission that is associated with a
Jakarta EE Sandbox.

Example
For an example of how to used the security-permission element, see Example 2-12.

security-permission-spec
The security-permission-spec element specifies a single security permission based on the
Security policy file syntax. Refer to the Default Policy Implementation and Policy File Syntax
section in Java SE Security Developer's Guide for the implementation of the security
permission specification.

Note

Disregard the optional codebase and signedBy clauses.

Used Within
The security-permission-spec element is used within the security-permission element.

Example
Example 2-12 shows how to use the security-permission-spec element to grant permission to
the java.net.SocketPermission class.

Chapter 2
Web Application Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 31 of 37

https://docs.oracle.com/en/java/javase/17/security/index.html

Example 2-12 security-permission-spec Element Example

<weblogic-web-app>
 <security-permission>
 <description>Optional explanation goes here</description>
 <security-permission-spec>
<!--
A single grant statement following the syntax of
http://xmlns.jcp.org/j2se/1.5.0/docs/guide/security/PolicyFiles.html#FileSyntax,
without the "codebase" and "signedBy" clauses, goes here. For example:
-->
 grant {
 permission java.net.SocketPermission "*", "resolve";
 };
 </security-permission-spec>
 </security-permission>
</weblogic-web-app>

In Example 2-12, permission java.net.SocketPermission is the permission class name, "*"
represents the target name, and resolve indicates the action (resolve host/IP name service
lookups).

security-role-assignment
The security-role-assignment element declares a mapping between a security role and one
or more principals in the WebLogic Server security realm.

Note

For information on using the security-role-assignment element in a weblogic-
application.xml deployment descriptor for an enterprise application, see Enterprise
Application Deployment Descriptor Elements in Developing Applications for Oracle
WebLogic Server.

Example
Example 2-13 shows how to use the security-role-assignment element to assign principals
to the PayrollAdmin role.

Note

If you need to list a significant number of principals, consider specifying groups instead
of users. There are performance issues if you specify too many users.

Example 2-13 security-role-assignment Element Example

<weblogic-web-app>
 <security-role-assignment>
 <role-name>PayrollAdmin</role-name>
 <principal-name>Tanya</principal-name>
 <principal-name>Fred</principal-name>
 <principal-name>system</principal-name>
 </security-role-assignment>
</weblogic-web-app>

Chapter 2
Web Application Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 32 of 37

Using Programmatic Security With Web Applications
You can write your servlets to access users and security roles programmatically using methods
defined in the Jakarta Security specification SecurityContext interface and the Servlet
HttpServletRequest interface.

These sections describe the methods in more detail:

• Jakarta Security SecurityContext Methods

• Servlet HttpServletRequest Methods

Jakarta Security SecurityContext Methods
WebLogic Server supports these Jakarta Security SecurityContext methods in the Servlet
(including Webservice) and EJB containers, as specified in the Java specification:

• getCallerPrincipal() - Use this method to retrieve the Principal representing the caller.
This is the container-specific representation of the caller principal. The type may differ from
the type of the caller principal originally established by an HttpAuthenticationMechanism.
This method returns null for an unauthenticated caller in either the Servlet Container or the
EJB Container.

• getPrincipalsByType() - Use this method to retrieve all principals of the given type. It can
be used to retrieve an application-specific caller principal established during authentication.
This method is primarily useful when the container’s caller principal is a different type than
the application caller principal, and the application needs specific information behavior
available only from the application principal. This method returns an empty Set if the caller
is unauthenticated, or if the requested type is not found.

• isCallerInRole() - Use this method to check if the authenticated caller is included in the
specified logical application "role". The method takes a String argument that represents the
specific role to be verified.

• hasAccessToWebResource() - Use this method to determine if the caller has access to the
specified web resource for the specified HTTP methods, as determined by the security
constraints configured for the application. The resource parameter is a URLPatternSpec, as
defined by the Jakarta Authorization specification (https://jakarta.ee/specifications/
authorization), that identifies an application-specific web resource. This method can be
used to check access to resources in the current application only — it cannot be called
cross-application, or cross-container, to check access to resources in a different
application.

• authenticate() - Use this method to signal to the container that it should start the
authentication process with the caller.

Servlet HttpServletRequest Methods
You can write your servlets to access users and security roles programmatically in your servlet
code by using the jakarta.servlet.http.HttpServletRequest.getUserPrincipal and
jakarta.servlet.http.HttpServletRequest.isUserInRole(String role) methods.

• getUserPrincipal

• isUserInRole

Chapter 2
Using Programmatic Security With Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 33 of 37

https://jakarta.ee/specifications/authorization/
https://jakarta.ee/specifications/authorization/

getUserPrincipal
You use the getUserPrincipal() method to determine the current user of the Web application.
This method returns a WLSUser Principal if one exists in the current user. In the case of
multiple WLSUser Principals, the method returns the first in the ordering defined by the
Subject.getPrincipals().iterator() method. If there are no WLSUser Principals, then the
getUserPrincipal() method returns the first non-WLSGroup Principal. If there are no
Principals or all Principals are of type WLSGroup, this method returns null. This behavior is
identical to the semantics of the weblogic.security.SubjectUtils.getUserPrincipal()
method.

For more information about how to use the getUserPrincipal() method, see Jakarta EE
Platform API.

isUserInRole
The jakarta.servlet.http.HttpServletRequest.isUserInRole(String role) method
returns a boolean indicating whether the authenticated user is granted the specified logical
security "role." If the user has not been authenticated, this method returns false.

The isUserInRole() method maps security roles to the group names in the security realm.
The following example shows the elements that are used with the <servlet> element to define
the security role in the web.xml file.

Begin web.xml entries:
...
<servlet>
 <security-role-ref>
 <role-name>user-rolename</role-name>
 <role-link>rolename-link</role-link>
 </security-role-ref>
</servlet>
<security-role>
 <role-name>rolename-link</role-name>
</security-role>
...
Begin weblogic.xml entries:
...
<security-role-assignment>
 <role-name>rolename-link</role-name>
 <principal-name>groupname</principal>
 <principal-name>username</principal>
</security-role-assignment>
...

In this example, the string role is mapped to the name supplied in the <role-name> element,
which is nested inside the <security-role-ref> element of a <servlet> declaration in the
web.xml deployment descriptor. The <role-name> element defines the name of the security
role or principal (the user or group) that is used in the servlet code. The <role-link>
element maps to a <role-name> defined in the <security-role-assignment> element in the
weblogic.xml deployment descriptor.

Chapter 2
Using Programmatic Security With Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 34 of 37

https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary

Note

When specifying security role names, observe the following conventions and
restrictions:

• The proper syntax for a security role name is as defined for an Nmtoken in the
Extensible Markup Language (XML) recommendation available on the Web at:
http://www.w3.org/TR/REC-xml#NT-Nmtoken.

• Do not use blank spaces, commas, hyphens, or any characters in this comma-
separated list: \t, < >, #, |, &, ~, ?, (), { }.

• Security role names are case sensitive.

• The suggested convention for security role names is that they be singular.

For example, if the client has successfully logged in as user Bill with the security role of
manager, the following method would return true:

request.isUserInRole("manager")

Example 2-14 provides an example.

Example 2-14 Example of Security Role Mapping

Servlet code:
out.println("Is the user a Manager? " +
 request.isUserInRole("manager"));
web.xml entries:
<servlet>
. . .
 <role-name>manager</role-name>
 <role-link>mgr</role-link>
. . .
</servlet>
<security-role>
 <role-name>mgr</role-name>
</security-role>
weblogic.xml entries:
<security-role-assignment>
 <role-name>mgr</role-name>
 <principal-name>bostonManagers</principal-name>
 <principal-name>Bill</principal-name>
 <principal-name>Ralph</principal-name>
</security-role-ref>

Authenticating Users Programmatically
WebLogic Server supports programmatic authentication within a servlet application using the
Jakarta Security SecurityContext interface or the WebLogic Server ServletAuthentication
API.

Topics

• Using the Jakarta Security SecurityContext Interface

• Using the Programmatic Authentication API

Chapter 2
Authenticating Users Programmatically

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 35 of 37

http://www.w3.org/TR/REC-xml#NT-Nmtoken

Using the Jakarta Security SecurityContext Interface
WebLogic Server supports the authenticate method of the Jakarta Security SecurityContext
interface for authenticating users. The authenticate method is enabled by default in the
Servlet container, and is useful when you need a portable authentication solution.

You use the authenticate() method in the application to signal to the container that it should
start the authentication process with the caller. This method can only be used in a valid
ServletContext because it requires that HttpServletRequest and HttpServletResponse
parameters are passed in.

Using the Programmatic Authentication API
WebLogic Server provides a server-side
weblogic.servlet.security.ServletAuthentication API that supports programmatic
authentication from within a servlet application.

You can use the weblogic.servlet.security.ServletAuthentication API to authenticate
and log in the user. Once the login is completed, it appears as if the user logged in using the
standard mechanism.

You have the option of using either of two WebLogic-supplied classes with the
ServletAuthentication API, the weblogic.security.SimpleCallbackHandler class or the
weblogic.security.URLCallbackHandler class. For more information on these classes, see
Java API Reference for Oracle WebLogic Server.

Example 2-15 shows an example that uses SimpleCallbackHandler. Example 2-16 shows an
example that uses URLCallbackHandler.

Example 2-15 Programmatic Authentication Code Fragment Using the
SimpleCallbackHandler Class

CallbackHandler handler = new SimpleCallbackHandler(username,
 password);
Subject mySubject =
 weblogic.security.services.Authentication.login(handler);
weblogic.servlet.security.ServletAuthentication.runAs(mySubject, request);
// Where request is the httpservletrequest object.

Example 2-16 Programmatic Authentication Code Fragment Using the
URLCallbackHandler Class

CallbackHandler handler = new URLCallbackHandler(username,
 password);
Subject mySubject =
 weblogic.security.services.Authentication.login(handler);
weblogic.servlet.security.ServletAuthentication.runAs(mySubject, request);
// Where request is the httpservletrequest object.

Change the User's Session ID at Login
When an HttpSession is created in a servlet, it is associated with a unique ID. The browser
must provide this session ID with its request in order for the server to find the session data
again.

In order to avoid a type of attack called "session fixation," you should change the user's
session ID at login. To do this, call the generateNewSessionID method of
weblogic.servlet.security.ServletAuthentication after you call the login method.

Chapter 2
Authenticating Users Programmatically

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 36 of 37

The generateNewSessionID method moves all current session information into a completely
different session ID and associates this session with this new ID.

Note

The session itself does not change, only its identifier.

It is possible that legacy applications might depend on the session ID remaining the same
before and after login. Calling generateNewSessionID would break such an application. Oracle
recommends that you do not build this dependency into your application. However, if you do, or
if you are dealing with a legacy application of this type, Oracle recommends that you use SSL
to protect all access to the application.

Note that, by default, the WebLogic container automatically regenerates IDs for non-
programmatic logins.

See ServletAuthentication for additional information about the generateNewSessionID()
method.

Chapter 2
Authenticating Users Programmatically

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 37 of 37

3
Using JAAS Authentication in Java Clients

Oracle WebLogic Server provides support for using JAAS authentication in Java clients. Learn
how to implement this type of authentication.

• JAAS and WebLogic Server

• JAAS Authentication Development Environment

• Writing a Client Application Using JAAS Authentication

• Using JNDI Authentication

• Java Client JAAS Authentication Code Examples

The sections refer to sample code which is included in the WebLogic Server distribution at:

EXAMPLES_HOME\src\examples\security\jaas

The EXAMPLES_HOME directory can be found at ORACLE_HOME\wlserver\samples\server.

The jaas directory contains an instructions.html file, ant build files, a sample_jaas.config
file, and the following Java files:

• BaseClient.java

• BaseClientConstants.java

• SampleAction.java

• SampleCallbackHandler.java

• SampleClient.java

• TradeResult.java

• TraderBean.java

You will need to look at the examples when reading the information in the following sections.

JAAS and WebLogic Server
The Java Authentication and Authorization Service (JAAS) is a standard extension to the
security in the JDK. JAAS provides the ability to enforce access controls based on user
identity. WebLogic Server provides JAAS as an alternative to the JNDI authentication
mechanism. There are certain considerations when using JAAS authentication.

WebLogic Server clients use the authentication portion of the standard JAAS only. The JAAS
LoginContext provides support for the ordered execution of all configured authentication
provider LoginModule instances and is responsible for the management of the completion
status of each configured provider.

Note the following considerations when using JAAS authentication for Java clients:

• WebLogic Server clients can either use the JNDI login or JAAS login for authentication,
however JAAS login is the preferred method.

• While JAAS is the preferred method of authentication, the WebLogic-supplied LoginModule
(weblogic.security.auth.login.UsernamePasswordLoginModule) only supports

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 12

username and password authentication. Thus, for client certificate authentication (also
referred to as two-way SSL authentication), you should use JNDI. To use JAAS for client
certificate authentication, you must write a custom LoginModule that does certificate
authentication.

Note

If you write your own LoginModule for use with WebLogic Server clients, have it
call weblogic.security.auth.Authenticate.authenticate() to perform the login.

• To perform a JAAS login from a remote Java client (that is, the Java client is not a
WebLogic Server client), you may use the WebLogic-supplied LoginModule to perform the
login. However, if you elect not to use the WebLogic-supplied LoginModule but decide to
write your own instead, you must have it call the
weblogic.security.auth.Authenticate.authenticate() method to perform the login.

• If you are using a remote, or perimeter, login system such as Security Assertion Markup
Language (SAML), you do not need to call
weblogic.security.auth.Authenticate.authenticate(). You only need to call the
authenticate() method if you are using WebLogic Server to perform the logon.

Note

WebLogic Server provides full container support for JAAS authentication and
supports full use of JAAS authentication and authorization in application code.

• Within WebLogic Server, JAAS is called to perform the login. Each Authentication provider
includes a LoginModule. This is true for servlet logins as well as Java client logins via JNDI
or JAAS. The method WebLogic Server calls internally to perform the JAAS logon is
weblogic.security.auth.Authentication.authenticate(). When using the Authenticate
class, weblogic.security.SimpleCallbackHandler may be a useful helper class.

• While WebLogic Server does not protect any resources using JAAS authorization (it uses
WebLogic security), you can use JAAS authorization in application code to protect the
application's own resources.

For more information about JAAS, see the JAAS documentation at http://www.oracle.com/
technetwork/java/javase/jaas/index.html.

JAAS Authentication Development Environment
WebLogic Server uses the JAAS classes to reliably and securely authenticate to the server.
JAAS implements a Java version of the Pluggable Authentication Module (PAM) framework,
which permits applications to remain independent from underlying authentication technologies.
Therefore, the PAM framework allows the use of new or updated authentication technologies
without requiring modifications to a Java application.

WebLogic Server uses JAAS for remote Java client authentication, and internally for
authentication. Therefore, only developers of custom Authentication providers and developers
of remote Java client applications need to be involved with JAAS directly. Users of Web
browser clients or developers of within-container Java client applications (for example, those
calling an EJB from a servlet) do not require direct use or knowledge of JAAS.

Chapter 3
JAAS Authentication Development Environment

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 12

http://www.oracle.com/technetwork/java/javase/jaas/index.html
http://www.oracle.com/technetwork/java/javase/jaas/index.html

Note

In order to implement security in a WebLogic client you must install the WebLogic
Server software distribution kit on the Java client.

The following topics are covered in this section:

• JAAS Authentication APIs

• JAAS Client Application Components

• WebLogic LoginModule Implementation

JAAS Authentication APIs
To implement Java clients that use JAAS authentication on WebLogic Server, you use a
combination of Jakarta EE application programming interfaces (APIs) and WebLogic APIs.

Table 3-1 lists and describes the Java API packages used to implement JAAS authentication.
The information in Table 3-1 is taken from the Java API documentation and annotated to add
WebLogic Server specific information. For more information on the Java APIs, see the
Javadocs at Java SE and JDK API Specification and Jakarta EE Platform API.

Table 3-1 lists and describes the WebLogic APIs used to implement JAAS authentication. See
Java API Reference for Oracle WebLogic Server.

Table 3-1 Java JAAS APIs

Java JAAS API Description

javax.security.auth.Sub
ject in Java SE and JDK API
Specification

The Subject class represents the source of the request, and can be an
individual user or a group. The Subject object is created only after the
subject is successfully logged in.

javax.security.auth.log
in.LoginContext in Java
SE and JDK API Specification

The LoginContext class describes the basic methods used to
authenticate Subjects and provides a way to develop an application
independent of the underlying authentication technology. A
Configuration specifies the authentication technology, or
LoginModule, to be used with a particular application. Therefore,
different LoginModules can be plugged in under an application without
requiring any modifications to the application itself.

After the caller instantiates a LoginContext, it invokes the login
method to authenticate a Subject. This login method invokes the
login method from each of the LoginModules configured for the name
specified by the caller.

If the login method returns without throwing an exception, then the
overall authentication succeeded. The caller can then retrieve the newly
authenticated Subject by invoking the getSubject method. Principals
and credentials associated with the Subject may be retrieved by
invoking the Subject's respective getPrincipals,
getPublicCredentials, and getPrivateCredentials methods.

To log the Subject out, the caller invokes the logout method. As with
the login method, this logout method invokes the logout method for
each LoginModule configured for this LoginContext.

For a sample implementation of this class, see Writing a Client
Application Using JAAS Authentication.

Chapter 3
JAAS Authentication Development Environment

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 12

https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

Table 3-1 (Cont.) Java JAAS APIs

Java JAAS API Description

javax.security.auth.log
in.Configuration in Java
SE and JDK API Specification

This is an abstract class for representing the configuration of
LoginModules under an application. The Configuration specifies
which LoginModules should be used for a particular application, and in
what order the LoginModules should be invoked. This abstract class
needs to be subclassed to provide an implementation which reads and
loads the actual configuration.

In WebLogic Server, use a login configuration file instead of this class.
For a sample configuration file, see Writing a Client Application Using
JAAS Authentication. By default, WebLogic Server uses the
configuration class, which reads from a configuration file.

javax.security.auth.spi
.LoginModule in Java SE
and JDK API Specification

LoginModule describes the interface implemented by authentication
technology providers. LoginModules are plugged in under applications
to provide a particular type of authentication.

While application developers write to the LoginContext API,
authentication technology providers implement the LoginModule
interface. A configuration specifies the LoginModule(s) to be used with a
particular login application. Therefore, different LoginModules can be
plugged in under the application without requiring any modifications to
the application itself.

Note: WebLogic Server provides an implementation of the LoginModule
(weblogic.security.auth.login.

UsernamePasswordLoginModule). Oracle recommends that you use
this implementation for JAAS authentication in WebLogic Server Java
clients; however, you can develop your own LoginModule.

javax.security.auth.cal
lback.Callback in Java SE
and JDK API Specification

Implementations of this interface are passed to a CallbackHandler,
allowing underlying security services to interact with a calling application
to retrieve specific authentication data, such as usernames and
passwords, or to display information such as error and warning
messages.

Callback implementations do not retrieve or display the information
requested by underlying security services. Callback implementations
simply provide the means to pass such requests to applications, and for
applications to return requested information to the underlying security
services.

javax.security.auth.cal
lback.CallbackHandler in
Java SE and JDK API
Specification

An application implements a CallbackHandler and passes it to
underlying security services so that they can interact with the application
to retrieve specific authentication data, such as usernames and
passwords, or to display information such as error and warning
messages.

CallbackHandlers are implemented in an application-dependent
fashion.

Underlying security services make requests for different types of
information by passing individual Callbacks to the CallbackHandler.
The CallbackHandler implementation decides how to retrieve and
display information depending on the Callbacks passed to it. For
example, if the underlying service needs a username and password to
authenticate a user, it uses a NameCallback and PasswordCallback.
The CallbackHandler can then choose to prompt for a username and
password serially, or to prompt for both in a single window.

Chapter 3
JAAS Authentication Development Environment

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 12

https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

Table 3-2 WebLogic JAAS APIs

WebLogic JAAS API Description

weblogic.security.auth.Authen
ticate

An authentication class used to authenticate user credentials.

The WebLogic implementation of the LoginModule,
(weblogic.security.auth.login.

UsernamePasswordLoginModule, uses this class to authenticate a
user and add Principals to the Subject. Developers who write
LoginModules must also use this class for the same purpose.

weblogic.security.auth.Callbac
k.ContextHandlerCallback

Underlying security services use this class to instantiate and pass a
ContextHandlerCallback to the invokeCallback method of a
CallbackHandler to retrieve the ContextHandler related to this
security operation. If no ContextHandler is associated with this
operation, the
javax.security.auth.callback.UnsupportedCallbackexceptio
n is thrown.

This callback passes the ContextHandler to LoginModule.login()
methods.

weblogic.security.auth.Callbac
k.GroupCallback

Underlying security services use this class to instantiate and pass a
GroupCallback to the invokeCallback method of a
CallbackHandler to retrieve group information.

weblogic.security.auth.Callbac
k.URLCallback

Underlying security services use this class to instantiate and pass a
URLCallback to the invokeCallback method of a CallbackHandler
to retrieve URL information.

The WebLogic implementation of the LoginModule,
(weblogic.security.auth.login.

UsernamePasswordLoginModule, uses this class.

Note: Application developers should not use this class to retrieve URL
information. Instead, they should use the
weblogic.security.URLCallbackHandler.

weblogic.security.Security This class implements the WebLogic Server client runAs methods.
Client applications use the runAs methods to associate their Subject
identity with the PrivilegedAction or PrivilegedExceptionAction
that they execute.

For a sample implementation, see Writing a Client Application Using
JAAS Authentication.

weblogic.security.URLCallbac
kHandler

The class used by application developers for returning a username,
password and URL. Application developers should use this class to
handle the URLCallback to retrieve URL information.

JAAS Client Application Components
At a minimum, a JAAS authentication client application includes the following components:

• Java client

The Java client instantiates a LoginContext object and invokes the login by calling the
object's login() method. The login() method calls methods in each LoginModule to
perform the login and authentication.

The LoginContext also instantiates a new empty javax.security.auth.Subject object
(which represents the user or service being authenticated), constructs the configured
LoginModule, and initializes it with this new Subject and CallbackHandler.

Chapter 3
JAAS Authentication Development Environment

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 12

The LoginContext subsequently retrieves the authenticated Subject by calling the
LoginContext's getSubject method. The LoginContext uses the
weblogic.security.Security.runAs() method to associate the Subject identity with the
PrivilegedAction or PrivilegedExceptionAction to be executed on behalf of the user
identity.

• LoginModule

The LoginModule uses the CallbackHandler to obtain the user name and password and
determines whether that name and password are the ones required.

If authentication is successful, the LoginModule populates the Subject with a Principal
representing the user. The Principal the LoginModule places in the Subject is an instance
of Principal, which is a class implementing the java.security.Principal interface.

You can write LoginModule files that perform different types of authentication, including
username/password authentication and certificate authentication. A client application can
include one LoginModule (the minimum requirement) or several LoginModules.

Note

Use of the JAAS javax.security.auth.Subject.doAs methods in WebLogic
Server applications do not associate the Subject with the client actions. You can
use the doAs methods to implement Jakarta EE security in WebLogic Server
applications, but such usage is independent of the need to use the
Security.runAs() method.

• Callbackhandler

The CallbackHandler implements the javax.security.auth.callback.CallbackHandler
interface. The LoginModule uses the CallbackHandler to communicate with the user and
obtain the requested information, such as the username and password.

• Configuration file

This file configures the LoginModule(s) used in the application. It specifies the location of
the LoginModule(s) and, if there are multiple LoginModules, the order in which they are
executed. This file enables Java applications to remain independent from the
authentication technologies, which are defined and implemented using the LoginModule.

• Action file

This file defines the operations that the client application will perform.

• ant build script (build.xml)

This script compiles all the files required for the application and deploys them to the
WebLogic Server applications directories.

For a complete working JAAS authentication client that implements the components described
here, see the JAAS sample application in EXAMPLES_HOME\src\examples\security\jaas,
where EXAMPLES_HOME represents the directory in which the WebLogic Server code examples
are configured and can be found at ORACLE_HOME\wlserver\samples\server. For more
information about the WebLogic Server code examples, see Sample Applications and Code
Examples in Understanding Oracle WebLogic Server.

For more information on the basics of JAAS authentication, see JAAS Authentication Tutorial in
Java SE Security Developer's Guide .

Chapter 3
JAAS Authentication Development Environment

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 12

https://docs.oracle.com/en/java/javase/17/security/index.html

WebLogic LoginModule Implementation
The WebLogic implementation of the LoginModule class
(UsernamePasswordLoginModule.class) is provided in the WebLogic Server distribution in the
weblogic.jar file, located in the WL_HOME\server\lib directory.

Note

WebLogic Server supports all callback types defined by JAAS as well as all callback
types that extend the JAAS specification.

The WebLogic Server UsernamePasswordLoginModule checks for existing system user
authentication definitions prior to execution, and does nothing if they are already defined.

For more information about implementing JAAS LoginModules, see the LoginModule
Developer's Guide in Java SE Security Developer's Guide .

JVM-Wide Default User and the runAs() Method
The first time you use the WebLogic Server implementation of the LoginModule
(weblogic.security.auth.login.UsernamePasswordLoginModule) to log on, the specified
user becomes the machine-wide default user for the JVM (Java virtual machine). When you
execute the weblogic.security.Security.runAs() method, it associates the specified
Subject with the current thread's access permissions and then executes the action. If a
specified Subject represents a non-privileged user (users who are not assigned to any groups
are considered non-privileged), the JVM-wide default user is used. Therefore, it is important
make sure that the runAs() method specifies the desired Subject. You can do this using one
of the following options:

• Option 1: If the client has control of main(), implement the wrapper code shown in
Example 3-1 in the client code.

• Option 2: If the client does not have control of main(), implement the wrapper code shown
in Example 3-1 on each thread's run() method.

Example 3-1 runAs() Method Wrapper Code

import java.security.PrivilegedAction;
import javax.security.auth.Subject;
import weblogic.security.Security;

public class client
{
 public static void main(String[] args)
 {
 Security.runAs(new Subject(),
 new PrivilegedAction() {
 public Object run() {
 //
 //If implementing in client code, main() goes here.
 //
 return null;
 }
 });

Chapter 3
JAAS Authentication Development Environment

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 12

https://docs.oracle.com/en/java/javase/17/security/index.html

 }
}

Writing a Client Application Using JAAS Authentication
To use JAAS in a WebLogic Server Java client for authentication, you implement the
LoginModule and the CallbackHandler classes, write a configuration file that specifies which
LoginModule classes to use, and perform other tasks.

Perform the following procedure to use JAAS in a WebLogic Server Java client to authenticate
a subject:

1. Implement LoginModule classes for the authentication mechanisms you want to use with
WebLogic Server. You will need a LoginModule class for each type of authentication
mechanism. You can have multiple LoginModule classes for a single WebLogic Server
deployment.

Note

Oracle recommends that you use the implementation of the LoginModule provided
by WebLogic Server
(weblogic.security.auth.login.UsernamePasswordLoginModule) for username/
password authentication. You can write your own LoginModule for username/
password authentication, however, do not attempt to modify the WebLogic Server
LoginModule and reuse it. If you write your own LoginModule, you must have it
call the weblogic.security.auth.Authenticate.authenticate() method to perform the
login. If you use a remote login mechanism such as SAML, you do not need to call
the authenticate() method. You only need to call authenticate() if you are using
WebLogic Server to perform the logon.

The weblogic.security.auth.Authenticate class uses a JNDI Environment object for
initial context as described in Table 3-1.

2. Implement the CallbackHandler class that the LoginModule will use to communicate with
the user and obtain the requested information, such as the username, password, and URL.
The URL can be the URL of a WebLogic cluster, providing the client with the benefits of
server failover. The WebLogic Server distribution provides a SampleCallbackHandler
which is used in the JAAS client sample. The SampleCallbackHandler.java code is
available as part of the distribution in the directory
EXAMPLES_HOME\src\examples\security\jaas. The EXAMPLES_HOME directory can be found
at ORACLE_HOME\wlserver\samples\server.

Note

Instead of implementing your own CallbackHandler class, you can use either of
two WebLogic-supplied CallbackHandler classes,
weblogic.security.SimpleCallbackHandler or
weblogic.security.URLCallbackHandler. For more information on these classes,
see Java API Reference for Oracle WebLogic Server.

3. Write a configuration file that specifies which LoginModule classes to use for your
WebLogic Server and in which order the LoginModule classes should be invoked. See the

Chapter 3
Writing a Client Application Using JAAS Authentication

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 12

following sample configuration file used in the JAAS client sample provided in the
WebLogic Server distribution.

/** Login Configuration for the JAAS Sample Application **/
Sample {
 weblogic.security.auth.login.UsernamePasswordLoginModule
 required debug=false;
};

4. In the Java client, write code to instantiate a LoginContext. The LoginContext consults the
configuration file, sample_jaas.config, to load the default LoginModule configured for
WebLogic Server. See the following sample LoginContext instantiation.

...
import javax.security.auth.login.LoginContext;
...
 LoginContext loginContext = null;
 try
 {
 // Create LoginContext; specify username/password login module
 loginContext = new LoginContext("Sample",
 new SampleCallbackHandler(username, password, url));
 }

Note

If you use another means to authenticate the user, such as an Identity Assertion
provider or a remote instance of WebLogic Server, the default LoginModule is
determined by the remote source.

5. Invoke the login() method of the LoginContext instance. The login() method invokes all
the loaded LoginModules. Each LoginModule attempts to authenticate the subject. If the
configured login conditions are not met, the LoginContext throws a LoginException. See
the following example of the login() method.

...
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;
import javax.security.auth.login.FailedLoginException;
import javax.security.auth.login.AccountExpiredException;
import javax.security.auth.login.CredentialExpiredException;
...
 /**
 * Attempt authentication
 */
 try
 {
 // If we return without an exception, authentication succeeded
 loginContext.login();
 }
 catch(FailedLoginException fle)
 {
 System.out.println("Authentication Failed, " +

Chapter 3
Writing a Client Application Using JAAS Authentication

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 12

 fle.getMessage());
 System.exit(-1);
 }
 catch(AccountExpiredException aee)
 {
 System.out.println("Authentication Failed: Account Expired");
 System.exit(-1);
 }
 catch(CredentialExpiredException cee)
 {
 System.out.println("Authentication Failed: Credentials
 Expired");
 System.exit(-1);
 }
 catch(Exception e)
 {
 System.out.println("Authentication Failed: Unexpected
 Exception, " + e.getMessage());
 e.printStackTrace();
 System.exit(-1);
 }

6. Write code in the Java client to retrieve the authenticated Subject from the LoginContext
instance using the javax.security.auth.Subject.getSubject() method and call the
action as the Subject. Upon successful authentication of a Subject, access controls can be
placed upon that Subject by invoking the weblogic.security.Security.runAs() method.
The runAs() method associates the specified Subject with the current thread's access
permissions and then executes the action. See the following example implementation of
the getSubject() and runAs() methods.

...
/**
 * Retrieve authenticated subject, perform SampleAction as Subject
 */
 Subject subject = loginContext.getSubject();
 SampleAction sampleAction = new SampleAction(url);
 Security.runAs(subject, sampleAction);
 System.exit(0);
...

Note

Use of the JAAS javax.security.auth.Subject.doAs methods in WebLogic
Server applications do not associate the Subject with the client actions. You can
use the doAs methods to implement Jakarta EE security in WebLogic Server
applications, but such usage is independent of the need to use the
Security.runAs() method.

7. Write code to execute an action if the Subject has the required privileges. Oracle provides
a sample implementation, SampleAction, of the java.security.PrivilegedAction class
that executes an EJB to trade stocks. The SampleAction.java code is available as part of
the distribution in the directory EXAMPLES_HOME\src\examples\security\jaas, where

Chapter 3
Writing a Client Application Using JAAS Authentication

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 12

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured, and can be found at ORACLE_HOME\wlserver\samples\server.

8. Invoke the logout() method of the LoginContext instance. The logout() method closes
the user's session and clear the Subject. See the following example of the login()
method.

...
import javax.security.auth.login.LoginContext;
...
try
 {
 System.out.println("logging out...");
 loginContext.logout();
 }

Note

The LoginModule.logout() method is never called for a WebLogic Authentication
provider or a custom Authentication provider, because once the Principals are
created and placed into a Subject, the WebLogic Security Framework no longer
controls the lifecycle of the Subject. Therefore, code that creates the JAAS
LoginContext to log in and obtain the Subject should also call the LoginContext to
log out. Calling LoginContext.logout() results in the clearing of the Principals from
the Subject.

Using JNDI Authentication
Java clients use the Java Naming and Directory Interface (JNDI) to pass credentials to
WebLogic Server. To do this, a Java client establishes a connection with Oracle WebLogic
Server by getting a JNDI InitialContext.and uses InitialContext to look up the resources it
needs in the Oracle WebLogic Server JNDI tree.

.

Note

JAAS is the preferred method of authentication, however, the WebLogic Authentication
provider's LoginModule supports only user name and password authentication. Thus,
for client certificate authentication (also referred to as two-way SSL authentication),
you should use JNDI. To use JAAS for client certificate authentication, you must write
a custom Authentication provider whose LoginModule does certificate authentication.
For information on how to write LoginModules, see LoginModule Developer's Guide in
Java SE Security Developer's Guide .

To specify a user and the user's credentials, set the JNDI properties listed in Table 3-1.

Chapter 3
Using JNDI Authentication

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 12

https://docs.oracle.com/en/java/javase/17/security/index.html

Table 3-3 JNDI Properties for Authentication

Property Meaning

INITIAL_CONTEXT_FACTORY Provides an entry point into the Oracle WebLogic Server
environment. The class weblogic.jndi.WLInitialContextFactory is
the JNDI SPI for Oracle WebLogic Server.

PROVIDER_URL Specifies the host and port of the WebLogic Server that provides
the name service. For example: t3://weblogic:7001.

SECURITY_PRINCIPAL Specifies the identity of the user when that user authenticates to
the default (active) security realm.

SECURITY_CREDENTIALS Specifies the credentials of the user when that user authenticates
to the default (active) security realm.

These properties are stored in a hash table that is passed to the InitialContext constructor.
Example 3-2 illustrates how to use JNDI authentication in a Java client running on WebLogic
Server.

Note

For information on JNDI contexts and threads and how to avoid potential JNDI context
problems, see JNDI Contexts and Threads and How to Avoid Potential JNDI Context
Problems in Developing JNDI Applications for Oracle WebLogic Server.

Example 3-2 Example of Authentication

...
Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 env.put(Context.PROVIDER_URL, "t3://weblogic:7001");
 env.put(Context.SECURITY_PRINCIPAL, "javaclient");
 env.put(Context.SECURITY_CREDENTIALS, "javaclientpassword");
 ctx = new InitialContext(env);

Java Client JAAS Authentication Code Examples
The WebLogic Server product provides a complete working JAAS authentication sample.The
sample provided by WebLogic Server is located in
EXAMPLES_HOME\src\examples\security\jaas, where EXAMPLES_HOME represents the directory
in which the WebLogic Server code examples are configured and can be found at
ORACLE_HOME\wlserver\samples\server. For a description of the sample and instructions on
how to build, configure, and run this sample, see the package.html file in the sample directory.
You can modify this code example and reuse it.

Chapter 3
Java Client JAAS Authentication Code Examples

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 12

4
Using SSL Authentication in Java Clients

The Java Secure Socket Extension (JSSE) is a set of packages that support and implement
the SSL and TLS protocols. Oracle WebLogic Server provides Secure Sockets Layer (SSL)
support for encrypting data transmitted between WebLogic Server clients and servers, Java
clients, Web browsers, and other servers. Learn how to implement SSL and digital certificate
authentication in Java clients.

• JSSE and WebLogic Server

• Using JNDI Authentication

• SSL Certificate Authentication Development Environment

• Writing Applications that Use SSL

• SSL Client Code Examples

The sections refer to sample code which is optionally included in the WebLogic Server
distribution at:

EXAMPLES_HOME\src\examples\security\sslclient

The EXAMPLES_HOME directory can be found at
ORACLE_HOME\wlserver\samples\server\examples.

The sslclient directory contains an instructions.html file, ant build files, and the following
Java and JavaServer Pages (.jsp) files:

• MyListener.java

• NulledHostnameVerifier.java

• NulledTrustManager.java

• SSLClient.java

• SSLClientServlet.java

• SSLSocketClient.java

• SnoopServlet.jsp

You will need to look at the examples when reading the information in the following sections.

JSSE and WebLogic Server
There are certain restrictions when using SSL in WebLogic server-side applications.

The JSSE implementation of WebLogic Server can be used by WebLogic clients, but is not
required. Other JSSE implementations can be used for their client-side code outside the server
as well.

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 23

Note

JSSE is the only SSL implementation that is supported. The Certicom-based SSL
implementation is removed and is no longer supported in WebLogic Server.

The following restrictions apply when using SSL in WebLogic server-side applications:

• The use of other (third-party) JSSE implementations to develop WebLogic Server
applications is not supported. The SSL implementation that WebLogic Server uses is static
to the server configuration and is not replaceable by customer applications.

• The WebLogic implementation of JSSE does support JCE Cryptographic Service Providers
(CSPs); however, due to the inconsistent provider support for JCE, Oracle cannot
guarantee that untested providers will work out of the box. Oracle has tested WebLogic
Server with the following providers:

– The default JCE provider (SunJCE provider). See the Java Cryptography Architecture
(JCA) Reference Guide and How to Implement a Provider in the Java Cryptography
Architecture sections in Java SE Security Developer's Guide for information about the
SunJCE provider.

– The Jipher JCE provider. See Using the Jipher JCE Provider in Administering Security
for Oracle WebLogic Server.

Other providers may work with WebLogic Server, but an untested provider is not likely to
work out of the box. For more information on using the JCE providers supported by
WebLogic Server, see Using JCE Providers with WebLogic Server in Administering
Security for Oracle WebLogic Server.

WebLogic Server uses the HTTPS port for Secure Sockets Layer (SSL) encrypted
communication; only SSL can be used on that port.

Note

In order to implement security in a WebLogic client, you must install the WebLogic
Server software distribution kit on the Java client.

Note

Although JSSE supports Server Name Indication (SNI) in its SSL implementation,
WebLogic Server does not support SNI.

Using JNDI Authentication
Java clients use the Java Naming and Directory Interface (JNDI) to pass credentials to
WebLogic Server. A Java client establishes a connection with Oracle WebLogic Server by
getting a JNDI InitialContext. The Java client then uses the InitialContext to look up the
resources it needs in the Oracle WebLogic Server JNDI tree.

Chapter 4
Using JNDI Authentication

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 23

https://docs.oracle.com/en/java/javase/17/security/index.html

Note

JAAS is the preferred method of authentication; however, the Authentication provider's
LoginModule supports only username and password authentication. Thus, for client
certificate authentication (also referred to as two-way SSL authentication), you should
use JNDI. To use JAAS for client certificate authentication, you must write a custom
Authentication provider whose LoginModule does certificate authentication.

To specify a user and the user's credentials, set the JNDI properties listed in Table 4-1.

Table 4-1 JNDI Properties Used for Authentication

Property Meaning

INITIAL_CONTEXT_FACTO
RY

Provides an entry point into the Oracle WebLogic Server environment. The
class weblogic.jndi.WLInitialContextFactory is the JNDI SPI for Oracle
WebLogic Server.

PROVIDER_URL
Specifies the host and port of the WebLogic Server that provides the name
service. For example: t3s://weblogic:7002.

(t3s is a WebLogic Server proprietary version of SSL.)

SECURITY_PRINCIPAL
Specifies the identity of the user when that user authenticates to the default
(active) security realm.

SECURITY_CREDENTIALS
Specifies the credentials of the user when that user authenticates to the
default (active) security realm.

These properties are stored in a hash table which is passed to the InitialContext
constructor.

Example 4-1 demonstrates how to use one-way SSL certificate authentication in a Java client.
For a two-SSL authentication code example, see Example 4-4.

Note

For information on JNDI contexts and threads and how to avoid potential JNDI context
problems, see JNDI Contexts and Threads and How to Avoid Potential JNDI Context
Problems in Developing JNDI Applications for Oracle WebLogic Server.

Example 4-1 Example One-Way SSL Authentication Using JNDI

...
Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 env.put(Context.PROVIDER_URL, "t3s://weblogic:7002");
 env.put(Context.SECURITY_PRINCIPAL, "javaclient");
 env.put(Context.SECURITY_CREDENTIALS, "javaclientpassword");
 Context ctx = new InitialContext(env);

Chapter 4
Using JNDI Authentication

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 23

SSL Certificate Authentication Development Environment
To implement SSL authentication in WebLogic Server, you can use a combination of Java
application programming interfaces (APIs) and WebLogic APIs. There are certain components
of SSL client application such as, HostnameVerifier and TrustManager, that facilitate the
implementation of SSL in WebLogic Server.

The following topics are covered in this section:

• SSL Authentication APIs

• SSL Client Application Components

SSL Authentication APIs
To implement Java clients that use SSL authentication on WebLogic Server, use a combination
of Java application programming interfaces (APIs) and WebLogic APIs.

Table 4-2 lists and describes the Java APIs packages used to implement certificate
authentication. The information in this table is taken from the Java API documentation and
annotated to add WebLogic Server specific information. For more information on the Java
APIs, see the Javadocs at Java SE and JDK API Specification and Jakarta EE Platform API.

Table 4-3 lists and describes the WebLogic APIs used to implement certificate authentication.
See Java API Reference for Oracle WebLogic Server.

Table 4-2 Java Certificate APIs

Java Certificate APIs Description

javax.crypto in the
Java SE and JDK API
Specification

This package provides the classes and interfaces for cryptographic
operations. The cryptographic operations defined in this package include
encryption, key generation and key agreement, and Message Authentication
Code (MAC) generation.

Support for encryption includes symmetric, asymmetric, block, and stream
ciphers. This package also supports secure streams and sealed objects.

Many classes provided in this package are provider-based (see the
java.security.Provider class). The class itself defines a programming
interface to which applications may be written. The implementations
themselves may then be written by independent third-party vendors and
plugged in seamlessly as needed. Therefore, application developers can take
advantage of any number of provider-based implementations without having
to add or rewrite code.

javax.net in the Java
SE and JDK API
Specification

This package provides classes for networking applications. These classes
include factories for creating sockets. Using socket factories you can
encapsulate socket creation and configuration behavior.

javax.net.SSL in the
Java SE and JDK API
Specification

While the classes and interfaces in this package are supported by WebLogic
Server, Oracle recommends that you use the weblogic.security.SSL
package when you use SSL with WebLogic Server.

java.security.cert
in the Java SE and JDK
API Specification

This package provides classes and interfaces for parsing and managing
certificates, certificate revocation lists (CRLs), and certification paths. It
contains support for X.509 v3 certificates and X.509 v2 CRLs.

Chapter 4
SSL Certificate Authentication Development Environment

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 23

https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

Table 4-2 (Cont.) Java Certificate APIs

Java Certificate APIs Description

java.security.KeySt
ore in the Java SE and
JDK API Specification

This class represents an in-memory collection of keys and certificates. It is
used to manage two types of keystore entries:

• Key Entry

This type of keystore entry holds cryptographic key information, which is
stored in a protected format to prevent unauthorized access.

Typically, a key stored in this type of entry is a secret key, or a private key
accompanied by the certificate chain for the corresponding public key.

Private keys and certificate chains are used by a given entity for self-
authentication. Applications for this authentication include software
distribution organizations that sign JAR files as part of releasing and/or
licensing software.

• Trusted Certificate Entry

This type of entry contains a single public key certificate belonging to
another party. It is called a trusted certificate because the keystore owner
trusts that the public key in the certificate indeed belongs to the identity
identified by the subject (owner) of the certificate.

This type of entry can be used to authenticate other parties.

java.security.Priva
teKey in the Java SE
and JDK API
Specification

A private key. This interface contains no methods or constants. It merely
serves to group (and provide type safety for) all private key interfaces.

Note: The specialized private key interfaces extend this interface. For
example, see the DSAPrivateKey interface in
java.security.interfaces.

java.security.Provi
der in the Java SE and
JDK API Specification

This class represents a "Cryptographic Service Provider" for the Java Security
API, where a provider implements some or all parts of Java Security,
including:

• Algorithms (such as DSA, RSA, MD5 or SHA-1).
• Key generation, conversion, and management facilities (such as for

algorithm-specific keys).
Each provider has a name and a version number, and is configured in each
runtime it is installed in.

To supply implementations of cryptographic services, a team of developers or
a third-party vendor writes the implementation code and creates a subclass of
the Provider class.

jakarta.servlet.htt
p.HttpServletReques
t in Jakarta EE Platform
API

This interface extends the ServletRequest interface to provide request
information for HTTP servlets.

The servlet container creates an HttpServletRequest object and passes it
as an argument to the servlet's service methods (doGet, doPost, and so
on.).

jakarta.servlet.htt
p.HttpServletRespon
se in Jakarta EE
Platform API

This interface extends the ServletResponse interface to provide HTTP-
specific functionality in sending a response. For example, it has methods to
access HTTP headers and cookies.

The servlet container creates an HttpServletRequest object and passes it
as an argument to the servlet's service methods (doGet, doPost, and so
on.).

jakarta.servlet.Ser
vletOutputStream in
Jakarta EE Platform API

This class provides an output stream for sending binary data to the client. A
ServletOutputStream object is normally retrieved via the
ServletResponse.getOutputStream() method.

This is an abstract class that the servlet container implements. Subclasses of
this class must implement the java.io.OutputStream.write(int)
method.

Chapter 4
SSL Certificate Authentication Development Environment

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 23

https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary

Table 4-2 (Cont.) Java Certificate APIs

Java Certificate APIs Description

jakarta.servlet.Ser
vletResponse in
Jakarta EE Platform API

This class defines an object to assist a servlet in sending a response to the
client. The servlet container creates a ServletResponse object and passes
it as an argument to the servlet's service methods (doGet, doPost, and so
on.).

Table 4-3 WebLogic Certificate APIs

WebLogic Certificate
APIs

Description

weblogic.net.http.HttpsU
RLConnection

This class is used to represent a HTTP with SSL (HTTPS) connection to a
remote object. Use this class to make an outbound SSL connection from a
WebLogic Server acting as a client to another WebLogic Server.

weblogic.security.SSL.H
ostnameVerifier

During an SSL handshake, hostname verification establishes that the
hostname in the URL matches the hostname in the server's identification; this
verification is necessary to prevent man-in-the-middle attacks.

WebLogic Server provides a certificate-based implementation of
HostnameVerifier which is used by default, and which verifies that the URL
hostname matches the CN field value of the server certificate.

You can replace the default hostname verifier with a custom hostname verifier
using WebLogic Remote Console. This will affect the default for SSL clients
running on the server using the WebLogic SSL APIs. In addition, WebLogic
SSL APIs such as HttpsURLConnection, and SSLContext allow the explicit
setting of a custom HostnameVerifier.

weblogic.security.SSL.Tr
ustManager

This interface permits the user to override certain validation errors in the
peer's certificate chain and allow the handshake to continue. This interface
also permits the user to perform additional validation on the peer certificate
chain and interrupt the handshake if need be.

weblogic.security.SSL.C
ertPathTrustManager

This class makes use of the configured CertPathValidation providers to
perform extra validation; for example, revocation checking.

By default, CertPathTrustManager is installed but configured not to call the
CertPathValidators (controlled by the SSLMBean attributes
InboundCertificateValidation and OutboundCertificateValidation).

Applications that install a custom TrustManager will replace
CertPathTrustManager. An application that wants to use a custom
TrustManager, and call the CertPathProviders at the same time, can delegate
to a CertPathTrustManager from its custom TrustManager.

weblogic.security.SSL.S
SLContext

This class holds all of the state information shared across all sockets created
under that context.

weblogic.security.SSL.S
SLSocketFactory

This class provides the API for creating SSL sockets.

weblogic.security.SSL.S
SLValidationConstants

This class defines context element names. SSL performs some built-in
validation before it calls one or more CertPathValidator objects to perform
additional validation. A validator can reduce the amount of validation it must
do by discovering what validation has already been done.

SSL Client Application Components
At a minimum, an SSL client application includes the following components:

Chapter 4
SSL Certificate Authentication Development Environment

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 23

https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary

• Java client

Typically, a Java client performs these functions:

– Initializes an SSLContext with client identity, trust, a HostnameVerifier, and a
TrustManager.

– Loads a keystore and retrieves the private key and certificate chain

– Uses an SSLSocketFactory

– Uses HTTPS to connect to a JSP served by an instance of WebLogic Server

• HostnameVerifier

The HostnameVerifier implements the weblogic.security.SSL.HostnameVerifier
interface.

• HandshakeCompletedListener

The HandshakeCompletedListener implements the
javax.net.ssl.HandshakeCompletedListener interface. It is used by the SSL client to
receive notifications about the completion of an SSL handshake on a given SSL
connection.

• TrustManager

The TrustManager implements the weblogic.security.SSL.TrustManager interface.

For a complete working SSL authentication client that implements the components described
here, see the SSLClient sample application in
EXAMPLES_HOME\src\examples\security\sslclient, where EXAMPLES_HOME represents the
directory in which the WebLogic Server code examples are configured and can be found at
ORACLE_HOME\wlserver\samples\server.

For more information on JSSE authentication, see Java Secure Socket Extension (JSSE)
Reference Guide in Java SE Security Developer's Guide .

Writing Applications that Use SSL
When you write an application that uses SSL, consider how the application will be used and
the special requirements it has for secure communication, such as whether the application is
hosted on a WebLogic Server instance acting as a client to another WebLogic Server instance.
Other considerations include whether you need to use two-way SSL, a custom host name
verifier, a Trust Manager, or other security artifacts.

• Communicating Securely From WebLogic Server to Other WebLogic Servers

• Writing SSL Clients

• Using Two-Way SSL Authentication

• Using a Custom Host Name Verifier

• Using a Trust Manager

• Using an SSLContext

• Using URLs to Make Outbound SSL Connections

Chapter 4
Writing Applications that Use SSL

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 23

https://docs.oracle.com/en/java/javase/17/security/index.html

Communicating Securely From WebLogic Server to Other WebLogic
Servers

You can use a URL object to make an outbound SSL connection from a WebLogic Server
instance acting as a client to another WebLogic Server instance. The
weblogic.net.http.HttpsURLConnection class provides a way to specify the security context
information for a client, including the digital certificate and private key of the client.

The weblogic.net.http.HttpsURLConnection class provides methods for determining the
negotiated cipher suite, getting/setting a hostname verifier, getting the server's certificate chain,
and getting/setting an SSLSocketFactory in order to create new SSL sockets.

The SSLClient code example uses the weblogic.net.http.HttpsURLConnection class to
make an outbound SSL connection. The SSLClient code example is available in the
examples.security.sslclient package in
EXAMPLES_HOME\src\examples\security\sslclient, where EXAMPLES_HOME represents the
directory in which the WebLogic Server code examples are configured and can be found at
ORACLE_HOME\wlserver\samples\server.

Writing SSL Clients
This section uses examples to show how to write various types of SSL clients. Examples of the
following types of SSL clients are provided:

• SSLClient Sample

• SSLSocketClient Sample

• Using Two-Way SSL Authentication

SSLClient Sample
The SSLClient sample demonstrates how to use the WebLogic SSL library to make outgoing
SSL connections using URL and URLConnection objects. It shows both how to do this from a
stand-alone application as well as from a servlet in WebLogic Server.

Note

WebLogic Server acting as an SSL client uses the server's identity certificate for
outgoing SSL connections. Applications running on WebLogic Server and using the
previously described SSL APIs do not share the server's identity certificates by default,
only the trust.

Example 4-2 shows code fragments from the SSLClient example; the complete example is
located in the EXAMPLES_HOME\src\examples\security\sslclient directory in the
SSLClient.java file.

The EXAMPLES_HOME directory can be found at ORACLE_HOME\wlserver\samples\server.

Example 4-2 SSLClient Sample Code Fragments

package examples.security.sslclient;

import java.io.*;

Chapter 4
Writing Applications that Use SSL

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 23

import java.net.URL;
import java.security.Provider;
import jakarta.servlet.ServletOutputStream;
...
 /*
 * This method contains an example of how to use the URL and
 * URLConnection objects to create a new SSL connection, using
 * WebLogic SSL client classes.
 */
 public void wlsURLConnect(String host, String port,
 String sport, String query,
 OutputStream out)
 throws Exception {
...
 URL wlsUrl = null;
 try {
 wlsUrl = new URL("http", host, Integer.valueOf(port).intValue(),
 query);
 weblogic.net.http.HttpURLConnection connection =
 new weblogic.net.http.HttpURLConnection(wlsUrl);
 tryConnection(connection, out);
 }
...
 wlsUrl = new URL("https", host, Integer.valueOf(sport).intValue(),
 query);
 weblogic.net.http.HttpsURLConnection sconnection =
 new weblogic.net.http.HttpsURLConnection(wlsUrl);
...

SSLSocketClient Sample
The SSLSocketClient sample demonstrates how to use SSL sockets to go directly to the
secure port to connect to a JSP served by an instance of WebLogic Server and display the
results of that connection. It shows how to implement the following functions:

• Initializing an SSLContext with client identity, a HostnameVerifier, and a TrustManager

• Loading a keystore and retrieving the private key and certificate chain

• Using an SSLSocketFactory

• Using HTTPS to connect to a JSP served by WebLogic Server

• Implementing the javax.net.ssl.HandshakeCompletedListener interface

• Creating a dummy implementation of the weblogic.security.SSL.HostnameVerifier
class to verify that the server the example connects to is running on the desired host

Example 4-3 shows code fragments from the SSLSocketClient example; the complete example
is located in the EXAMPLES_HOME\src\examples\security\sslclient directory in the
SSLSocketClient.java file. (The SSLClientServlet example in the sslclient directory is a
simple servlet wrapper of the SSLClient example.) The EXAMPLES_HOME directory can be found
at ORACLE_HOME\wlserver\samples\server.

Example 4-3 SSLSocketClient Sample Code Fragments

package examples.security.sslclient;

import java.io.*;
import java.security.KeyStore;
import java.security.PrivateKey;
import java.security.cert.Certificate;
import javax.net.ssl.HandshakeCompletedListener;

Chapter 4
Writing Applications that Use SSL

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 23

import javax.net.ssl.SSLSocket;
import weblogic.security.SSL.HostnameVerifier;
import weblogic.security.SSL.SSLContext;
import weblogic.security.SSL.SSLSocketFactory;
import weblogic.security.SSL.TrustManager;
...
 SSLContext sslCtx = SSLContext.getInstance("https");
 File KeyStoreFile = new File ("mykeystore");
...
 // Open the keystore, retrieve the private key, and certificate chain
 KeyStore ks = KeyStore.getInstance("jks");
 ks.load(new FileInputStream("mykeystore"), null);
 PrivateKey key = (PrivateKey)ks.getKey("mykey",
 "testkey".toCharArray());
 Certificate [] certChain = ks.getCertificateChain("mykey");
 sslCtx.loadLocalIdentity(certChain, key);
 HostnameVerifier hVerifier = null;
 if (argv.length < 3)
 hVerifier = new NulledHostnameVerifier();
 else
 hVerifier = (HostnameVerifier)
 Class.forName(argv[2]).newInstance();

 sslCtx.setHostnameVerifier(hVerifier);
 TrustManager tManager = new NulledTrustManager();
 sslCtx.setTrustManager(tManager);
 System.out.println(" Creating new SSLSocketFactory with SSLContext");
 SSLSocketFactory sslSF = (SSLSocketFactory)
 sslCtx.getSocketFactory();
 System.out.println(" Creating and opening new SSLSocket with
 SSLSocketFactory");
 // using createSocket(String hostname, int port)
 SSLSocket sslSock = (SSLSocket) sslSF.createSocket(argv[0],
 new Integer(argv[1]).intValue());
 System.out.println(" SSLSocket created");
 HandshakeCompletedListener mListener = null;
 mListener = new MyListener();
 sslSock.addHandshakeCompletedListener(new MyListener());
 ...

Using Two-Way SSL Authentication
When using certificate authentication, Oracle WebLogic Server sends a digital certificate to the
requesting client. The client examines the digital certificate to ensure that it is authentic, has
not expired, and matches the Oracle WebLogic Server instance that presented it.

With two-way SSL authentication (a form of mutual authentication), the requesting client also
presents a digital certificate to Oracle WebLogic Server. When the instance of WebLogic
Server is configured for two-way SSL authentication, requesting clients are required to present
digital certificates from a specified set of certificate authorities. Oracle WebLogic Server
accepts only digital certificates that are signed by trusted certificate authorities.

For information on how to configure WebLogic Server for two-way SSL authentication, see the
Configuring SSL in Administering Security for Oracle WebLogic Server.

The following sections describe the different ways two-way SSL authentication can be
implemented in WebLogic Server.

• Two-Way SSL Authentication with JNDI

• Using Two-Way SSL Authentication Between WebLogic Server Instances

Chapter 4
Writing Applications that Use SSL

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 23

• Using Two-Way SSL Authentication with Servlets

Two-Way SSL Authentication with JNDI
When using JNDI for two-way SSL authentication in a Java client, use the setSSLContext()
method in the WebLogic JNDI Environment class to set the SSLContext onto the current
thread for client authentication.

To use setSSLContext(SSLContext sslctx), you pass an SSLContext, with a client certificate
created from trustManager and keyManager, to the server using JNDI when the server is
configured for two-way SSL. See Class SSLContext in Java SE and JDK API Specification .

Note

Invoking the setSSLContext method requires the WebLogic thin T3 client
(wlthint3client.jar).

setSSLClientCertificate() and setSSLClientKeyPassword() have been deprecated
in this release.

Example 4-4 demonstrates how to use the setSSLContext() method for two-way SSL
authentication in a Java client.

Example 4-4 Example of a Two-Way SSL Authentication Client That Uses JNDI
Environment setSSLContext Method

import weblogic.jndi.Environment;

import javax.naming.Context;
import javax.net.ssl.KeyManager;
import javax.net.ssl.KeyManagerFactory;
import javax.net.ssl.SSLContext;
import javax.net.ssl.TrustManager;
import javax.net.ssl.TrustManagerFactory;
import java.security.KeyStore;
import java.security.PrivateKey;
import java.security.SecureRandom;

public class JNDISSLContextClient {
 public static void main(String[] args) throws Exception {
 Context jndiContext = null;
 SSLContext sslContext = null;

 try {
 String identityKeyStore = "path_to_the_identity_keystore";
 String identityKeyStoreType = "type of the identity keystore, e.g. JKS";
 String identityKSPwd = "password_of_the_identity_keystore";
 String alias = "alias_of_identity_certificate_entry";
 String aliasPwd = "pass_word_of_the_alias";
 String trustKeyStore = "path_to_the_identity_keystore";
 String trustKeyStoreType = "type of the trust keystore, e.g. JKS";
 String trustKSPwd = "password_of_the_identity_keystore";

Chapter 4
Writing Applications that Use SSL

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 23

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/javax/net/ssl/SSLContext.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

 sslContext = createSSLContext(identityKeyStore, identityKeyStoreType,
identityKSPwd, alias, aliasPwd, trustKeyStore, trustKeyStoreType, trustKSPwd);

 Environment env = new Environment();
 String url = "t3s://localhost:7002";
 env.setProviderUrl(url);
 // The next two set methods are optional if you are using
 // a UserNameMapper interface.
 env.setSecurityPrincipal("system");
 env.setSecurityCredentials("weblogic");

 env.setSSLContext(sslContext);

env.setInitialContextFactory(Environment.DEFAULT_INITIAL_CONTEXT_FACTORY);

 jndiContext = env.getInitialContext();
 Object ejbObj = jndiContext.lookup("ejb");
 // ...
 } finally {
 if (jndiContext != null) jndiContext.close();
 }
 }

 /**
 *
 * @param identityKeyStore the identity keystore, which might contain more
than one entry
 * @param identityKeyStoreType
 * @param identityKeyStorePassword
 * @param identityAlias
 * @param identityAliasPassword
 * @param trustKeyStore
 * @param trustKeyStoreType
 * @param trustKeyStorePassword
 * @param trustKeyStorePassword
 * @return an SSLContext created from the input parameters
 */
 private static SSLContext createSSLContext(String identityKeyStore, String
identityKeyStoreType, String identityKeyStorePassword, String identityAlias,
String identityAliasPassword,
 String trustKeyStore, String
trustKeyStoreType, String trustKeyStorePassword) throws Exception {
 //Read the private key and certificate entry under the given alias
 KeyStore identityKS = KeyStore.getInstance(identityKeyStoreType);
 identityKS.load(new java.io.FileInputStream(identityKeyStore),
identityKeyStorePassword.toCharArray());
 KeyStore.Entry entry = identityKS.getEntry(identityAlias, new
KeyStore.PasswordProtection(identityAliasPassword.toCharArray()));

 //KeyStore instance used for the ssl context
 KeyStore keystore = KeyStore.getInstance(KeyStore.getDefaultType());
 keystore.load(null, null);

 PrivateKey key = ((KeyStore.PrivateKeyEntry)entry).getPrivateKey();
 java.security.cert.Certificate[] cert =
((KeyStore.PrivateKeyEntry)entry).getCertificateChain();

Chapter 4
Writing Applications that Use SSL

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 23

 byte[] pwd = new byte[10];
 new SecureRandom().nextBytes(pwd);
 char[] entryPassword = new String(pwd).toCharArray();
 byte[] alias = new byte[10];
 new SecureRandom().nextBytes(alias);
 keystore.setKeyEntry(new String(alias), key, entryPassword, cert);
 KeyManagerFactory kmf =
KeyManagerFactory.getInstance(KeyManagerFactory.getDefaultAlgorithm());
 kmf.init(keystore, entryPassword);
 KeyManager[] keyManagers = kmf.getKeyManagers();

 KeyStore truststore;
 truststore = KeyStore.getInstance(trustKeyStoreType);
 truststore.load(new java.io.FileInputStream(trustKeyStore),
trustKeyStorePassword.toCharArray());
 TrustManagerFactory tmf =
TrustManagerFactory.getInstance(TrustManagerFactory.getDefaultAlgorithm());
 tmf.init(truststore);
 TrustManager[] trustManagers = tmf.getTrustManagers();

 SSLContext sslContext = SSLContext.getInstance("TLS");
 sslContext.init(keyManagers, trustManagers, null);

 return sslContext;
 }
}

Note

Security provider plug-ins are loaded from the system classpath. The system
classpath must specify the implementation of a custom
weblogic.security.providers.authentication.UserNameMapper interface.

If you have not configured an Identity Assertion provider that performs certificate-based
authentication, a Java client running in a JVM with an SSL connection can change the Oracle
WebLogic Server user identity by creating a new JNDI InitialContext and supplying a new
user name and password in the JNDI SECURITY_PRINCIPAL and SECURITY_CREDENTIALS
properties. Any digital certificates passed by the Java client after the SSL connection is made
are not used. The new Oracle WebLogic Server user continues to use the SSL connection
negotiated with the initial user's digital certificate.

If you have configured an Identity Assertion provider that performs certificate-based
authentication, Oracle WebLogic Server passes the digital certificate from the Java client to the
class that implements the UserNameMapper interface and the UserNameMapper class maps the
digital certificate to a Oracle WebLogic Server user name. Therefore, if you want to set a new
user identity when you use the certificate-based identity assertion, you cannot change the
identity. This is because the digital certificate is processed only at the time of the first
connection request from the JVM for each Environment.

Chapter 4
Writing Applications that Use SSL

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 23

Note

Multiple, concurrent, user logins to WebLogic Server from a single client JVM when
using two-way SSL and JNDI is not supported. If multiple logins are executed on
different threads, the results are undeterminable and might result in one user's
requests being executed on another user's login, thereby allowing one user to access
another user's data. WebLogic Server does not support multiple, concurrent,
certificate-based logins from a single client JVM. For information on JNDI contexts and
threads and how to avoid potential JNDI context problems, see JNDI Contexts and
Threads and How to Avoid Potential JNDI Context Problems in Developing JNDI
Applications for Oracle WebLogic Server.

When the JNDI getInitialContext() method is called, the Java client and Oracle WebLogic
Server execute mutual authentication in the same way that a Web browser performs mutual
authentication to get a secure Web server connection. An exception is thrown if the digital
certificates cannot be validated or if the Java client's digital certificate cannot be authenticated
in the default (active) security realm. The authenticated user object is stored on the Java
client's server thread and is used for checking the permissions governing the Java client's
access to any protected WebLogic resources.

When you use the WebLogic JNDI Environment class, you must create a new Environment
object for each call to the getInitialContext() method. Once you specify a User object and
security credentials, both the user and their associated credentials remain set in the
Environment object. If you try to reset them and then call the JNDI getInitialContext()
method, the original user and credentials are used.

When you use two-way SSL authentication from a Java client, Oracle WebLogic Server gets a
unique Java Virtual Machine (JVM) ID for each client JVM so that the connection between the
Java client and Oracle WebLogic Server is constant. Unless the connection times out from lack
of activity, it persists as long as the JVM for the Java client continues to execute. The only way
a Java client can negotiate a new SSL connection reliably is by stopping its JVM and running
another instance of the JVM.

The code in Example 4-4 generates a call to the WebLogic Identity Assertion provider that
implements the weblogic.security.providers.authentication.UserNameMapper interface.
The class that implements the UserNameMapper interface returns a user object if the digital
certificate is valid. Oracle WebLogic Server stores this authenticated user object on the Java
client's thread in Oracle WebLogic Server and uses it for subsequent authorization requests
when the thread attempts to use WebLogic resources protected by the default (active) security
realm.

Writing a User Name Mapper
When using two-way SSL, WebLogic Server verifies the digital certificate of the Web browser
or Java client when establishing an SSL connection. However, the digital certificate does not
identify the Web browser or Java client as a user in the WebLogic Server security realm. If the
Web browser or Java client requests a WebLogic Server resource protected by a security
policy, WebLogic Server requires the Web browser or Java client to have an identity. To handle
this requirement, the WebLogic Identity Assertion provider allows you to enable a user name
mapper that maps the digital certificate of a Web browser or Java client to a user in a
WebLogic Server security realm. The user name mapper must be an implementation the
weblogic.security.providers.authentication.UserNameMapper interface.

Chapter 4
Writing Applications that Use SSL

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 23

You have the option of the using the default implementation of the
weblogic.security.providers.authentication.UserNameMapper interface,
DefaultUserNameMapperImpl, or developing your own implementation.

The WebLogic Identity Assertion provider can call the implementation of the UserNameMapper
interface for the following types of identity assertion token types:

• X.509 digital certificates passed via the SSL handshake

• X.509 digital certificates passed via CSIv2

• X.501 distinguished names passed via CSIv2

If you need to map different types of certificates, write your own implementation of the
UserNameMapper interface.

To implement a UserNameMapper interface that maps a digital certificate to a user name, write a
UserNameMapper class that performs the following operations:

1. Instantiates the UserNameMapper implementation class.

2. Creates the UserNameMapper interface implementation.

3. Uses the mapCertificateToUserName() method to map a certificate to a user name based
on a certificate chain presented by the client.

4. Maps a string attribute type to the corresponding Attribute Value Assertion field type.

Security provider plug-ins are loaded from the system classpath. The system classpath must
specify the implementation of the weblogic.security.providers.authentication.UserNameMapper
interface.

Using Two-Way SSL Authentication Between WebLogic Server Instances
You can use two-way SSL authentication in server-to-server communication in which one
WebLogic Server instance is acting as the client of another WebLogic Server instance. Using
two-way SSL authentication in server-to-server communication enables you to have
dependable, highly-secure connections, even without the more common client/server
environment.

Example 4-5 shows an example of how to establish a secure connection from a servlet running
in one instance of WebLogic Server to a second WebLogic Server instance called
server2.weblogic.com.

• setProviderURL—specifies the URL of the Oracle WebLogic Server instance acting as the
SSL server. The WebLogic Server instance acting as SSL client calls this method. The
URL specifies the t3s protocol which is a WebLogic Server proprietary protocol built on the
SSL protocol. The SSL protocol protects the connection and communication between the
two WebLogic Servers instances.

• setSSLClientCertificate—specifies the private key and certificate chain to use for the
SSL connection. You use this method to specify an input stream array that consists of a
private key (which is the first input stream in the array) and a chain of X.509 certificates
(which make up the remaining input streams in the array). Each certificate in the chain of
certificates is the issuer of the certificate preceding it in the chain.

Note

setSSLClientCertificate(InputStream[] chain) is deprecated in this release

Chapter 4
Writing Applications that Use SSL

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 23

• setSSLServerName—specifies the name of the Oracle WebLogic Server instance acting as
the SSL server. When the SSL server presents its digital certificate to the WebLogic Server
acting as the SSL client, the name specified using the setSSLServerName method is
compared to the common name field in the digital certificate. In order for hostname
verification to succeed, the names must match. This parameter is used to prevent man-in-
the-middle attacks.

• setSSLRootCAFingerprint—specifies digital codes that represent a set of trusted
certificate authorities, thus specifying trust based on a trusted certificate fingerprint. The
root certificate in the certificate chain received from the WebLogic Server instance acting
as the SSL server has to match one of the fingerprints specified with this method in order
to be trusted. This parameter is used to prevent man-in-the-middle attacks. It provides an
addition to the default level of trust, which for clients running on WebLogic Server is that
specified by the WebLogic Server trust configuration.

Note

For information on JNDI contexts and threads and how to avoid potential JNDI
context problems, see JNDI Contexts and Threads and How to Avoid Potential
JNDI Context Problems in Developing JNDI Applications for Oracle WebLogic
Server.

Example 4-5 Establishing a Secure Connection to Another WebLogic Server Instance

FileInputStream [] f = new FileInputStream[3];
 f[0]= new FileInputStream("demokey.pem");
 f[1]= new FileInputStream("democert.pem");
 f[2]= new FileInputStream("ca.pem");
Environment e = new Environment ();
e.setProviderURL("t3s://server2.weblogic.com:443");
e.setSSLClientCertificate(f);
e.setSSLServerName("server2.weblogic.com");
e.setSSLRootCAFingerprints("ac45e2d1ce492252acc27ee5c345ef26");

e.setInitialContextFactory
("weblogic.jndi.WLInitialContextFactory");
Context ctx = new InitialContext(e.getProperties())

In Example 4-5, the WebLogic JNDI Environment class creates a hash table to store the
following parameters:

Using Two-Way SSL Authentication with Servlets
To authenticate Java clients in a servlet (or any other server-side Java class), you must check
whether the client presented a digital certificate and if so, whether the certificate was issued by
a trusted certificate authority. The servlet developer is responsible for asking whether the Java
client has a valid digital certificate. When developing servlets with the WebLogic Servlet API,
you must access information about the SSL connection through the getAttribute() method
of the HTTPServletRequest object.

The following attributes are supported in WebLogic Server servlets:

• jakarta.servlet.request.X509Certificate

• java.security.cert.X509Certificate []—returns an array of the X.509 certificate.

• jakarta.servlet.request.cipher_suite—returns a string representing the cipher suite
used by HTTPS.

Chapter 4
Writing Applications that Use SSL

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 23

• jakarta.servlet.request.key_size— returns an integer (0, 40, 56, 128, 168)
representing the bit size of the symmetric (bulk encryption) key algorithm.

• weblogic.servlet.request.SSLSession

• javax.net.ssl.SSLSession—returns the SSL session object that contains the cipher suite
and the dates on which the object was created and last used.

You have access to the user information defined in the digital certificates. When you get the
jakarta.servlet.request.X509Certificate attribute, it is an array of type
java.security.cert.X509Certificate. You simply cast the array to that type and examine
the certificates.

A digital certificate includes information, such as the following:

• The name of the subject (holder, owner) and other identification information required to
verify the unique identity of the subject.

• The subject's public key

• The name of the certificate authority that issued the digital certificate

• A serial number

• The validity period (or lifetime) of the digital certificate (as defined by a start date and an
end date)

Using a Custom Host Name Verifier
A host name verifier validates that the host to which an SSL connection is made is the
intended or authorized party. A host name verifier is useful when a WebLogic client or a
WebLogic Server instance is acting as an SSL client to another application server. It helps
prevent man-in-the-middle attacks.

Note

Demonstration digital certificates are generated during installation so they do contain
the host name of the system on which the WebLogic Server software installed.
Therefore, you should leave host name verification on when using the demonstration
certificates for development or testing purposes.

By default, WebLogic Server, as a function of the SSL handshake, compares the CN field of
the SSL server certificate Subject DN with the host name in the URL used to connect to the
server. If these names do not match, the SSL connection is dropped.

The dropping of the SSL connection is caused by the SSL client, which validates the host
name of the server against the digital certificate of the server. If anything but the default
behavior is desired, you can either turn off host name verification or register a custom host
name verifier. Turning off host name verification leaves the SSL connections vulnerable to
man-in-the-middle attacks.

You can turn off host name verification in the following ways:

• In WebLogic Remote Console, specify None in the Hostname Verification field that is
located on the Advanced Options pane under the SSL tab for the server (for example,
myserver).

• On the command line of the SSL client, enter the following argument:

Chapter 4
Writing Applications that Use SSL

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 23

-Dweblogic.security.SSL.ignoreHostnameVerification=true

You can write a custom host name verifier. The weblogic.security.SSL.HostnameVerifier
interface provides a callback mechanism so that implementers of this interface can supply a
policy on whether the connection to the URL's host name should be allowed. The policy can be
certificate-based or can depend on other authentication schemes.

To use a custom host name verifier, create a class that implements the
weblogic.security.SSL.HostnameVerifier interface and define the methods that capture
information about the server's security identity.

Note

This interface takes new style certificates and replaces the
weblogic.security.SSL.HostnameVerifierJSSE interface, which is deprecated.

Before you can use a custom host name verifier, you need to specify the class for your
implementation in the following ways:

• In WebLogic Remote Console, set the SSL.HostName Verifier field on the SSL tab under
Server: Security configuration to the name of a class that implements this interface. The
specified class must have a public no-arg constructor.

• On the command line, enter the following argument:

-Dweblogic.security.SSL.hostnameVerifier=hostnameverifier

The value for hostnameverifier is the name of the class that implements the custom host
name verifier.

Example 4-6 shows code fragments from the NulledHostnameVerifier example; the complete
example is located in the EXAMPLES_HOME\src\examples\security\sslclient directory in the
NulledHostnameVerifier.java file. The EXAMPLES_HOME directory can be found at
ORACLE_HOME\wlserver\samples\server. This code example contains a
NulledHostnameVerifier class which always returns true for the comparison. The sample
allows the WebLogic SSL client to connect to any SSL server regardless of the server's host
name and digital certificate SubjectDN comparison.

Example 4-6 Hostname Verifier Sample Code Fragment

public class NulledHostnameVerifier implements
 weblogic.security.SSL.HostnameVerifier {
 public boolean verify(String urlHostname, javax.net.ssl.SSLSession session) {
 return true;
 }
}

Using a Trust Manager
The weblogic.security.SSL.TrustManager interface provides the ability to:

• Ignore specific certificate validation errors

• Perform additional validation on the peer certificate chain

Chapter 4
Writing Applications that Use SSL

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 23

Note

This interface takes new style certificates and replaces the
weblogic.security.SSL.TrustManagerJSSE interface, which is deprecated.

When an SSL client connects to an instance of WebLogic Server, the server presents its digital
certificate chain to the client for authentication. That chain could contain an invalid digital
certificate. The SSL specification says that the client should drop the SSL connection upon
discovery of an invalid certificate. You can use a custom implementation of the TrustManager
interface to control when to continue or discontinue an SSL handshake. Using a trust manager,
you can ignore certain validation errors, optionally perform custom validation checks, and then
decide whether or not to continue the handshake.

Use the weblogic.security.SSL.TrustManager interface to create a trust manager. The
interface contains a set of error codes for certificate verification. You can also perform
additional validation on the peer certificate and interrupt the SSL handshake if need be. After a
digital certificate has been verified, the weblogic.security.SSL.TrustManager interface uses
a callback function to override the result of verifying the digital certificate. You can associate an
instance of a trust manager with an SSL context through the setTrustManager() method.

You can only set up a trust manger programmatically; its use cannot be defined through
WebLogic Remote Console or on the command-line.

Note

Depending on the checks performed, use of a trust manager may potentially impact
performance.

Example 4-7 shows code fragments from the NulledTrustManager example; the complete
example is located in the EXAMPLES_HOME\src\examples\security\sslclient directory in the
NulledTrustManager.java file. The EXAMPLES_HOME directory can be found at
ORACLE_HOME\wlserver\samples\server. The SSLSocketClient example uses the custom trust
manager. The SSLSocketClient shows how to set up a new SSL connection by using an SSL
context with the trust manager.

Example 4-7 NulledTrustManager Sample Code Fragments

package examples.security.sslclient;

import weblogic.security.SSL.TrustManager;
import java.security.cert.X509Certificate;
...
public class NulledTrustManager implements TrustManager{
 public boolean certificateCallback(X509Certificate[] o, int validateErr) {
 System.out.println(" --- Do Not Use In Production ---\n" +
 " By using this NulledTrustManager, the trust in" +
 " the server's identity is completely lost.\n"
+ " --------------------------------");
 for (int i=0; i<o.length; i++)
 System.out.println(" certificate " + i + " -- " + o[i].toString());
 return true;
 }
}

Chapter 4
Writing Applications that Use SSL

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 19 of 23

Using the CertPath Trust Manager
The CertPathTrustManager, weblogic.security.SSL.CertPathTrustManager, makes use of
the default security realm's configured CertPath validation providers to perform extra validation
such as revocation checking.

By default, application code using outbound SSL in the server has access only to the built-in
SSL certificate validation. However, application code can specify the CertPathTrustManager in
order to access any additional certificate validation that the administrator has configured for the
server. If you want your application code to also run the CertPath validators, the application
code should use the CertPathTrustManager.

There are three ways to use this class:

• The Trust Manager calls the configured CertPathValidators only if the administrator has set
a switch on the SSLMBean stating that outbound SSL should use the validators. That is,
the application completely delegates validation to whatever the administrator configures.
You use the setUseConfiguredSSLValidation() method for this purpose. This is the
default.

• The Trust Manager always calls any configured CertPathValidators. You use the
setBuiltinSSLValidationAndCertPathValidators() method for this purpose.

• The Trust Manager never calls any configured CertPathValidators. You use the
setBuiltinSSLValidationOnly() method for this purpose.

Using a Handshake Completed Listener
The jakarta.net.ssl.HandshakeCompletedListener interface defines how an SSL client
receives notifications about the completion of an SSL protocol handshake on a given SSL
connection. Example 4-8 shows code fragments from the MyListener example; the complete
example is located in the EXAMPLES_HOME\src\examples\security\sslclient directory in the
MyListener.java file. The EXAMPLES_HOME directory can be found at
ORACLE_HOME\wlserver\samples\server.

Example 4-8 MyListener (HandshakeCompletedListener) Sample Code Fragments

package examples.security.sslclient;

import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.FileInputStream;
import javax.net.ssl.HandshakeCompletedListener;
import java.util.Hashtable;
import javax.net.ssl.SSLSession;
...
 public class MyListener implements HandshakeCompletedListener
 {
 public void handshakeCompleted(javax.net.ssl.HandshakeCompletedEvent
 event)
 {
 SSLSession session = event.getSession();
 System.out.println("Handshake Completed with peer " +
 session.getPeerHost());
 System.out.println(" cipher: " + session.getCipherSuite());
 Certificate[] certs = null;
 try

Chapter 4
Writing Applications that Use SSL

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 20 of 23

 {
 certs = session.getPeerCertificates();
 }
 catch (SSLPeerUnverifiedException puv)
 {
 certs = null;
 }
 if (certs != null)
 {
 System.out.println(" peer certificates:");
 for (int z=0; z<certs.length; z++)
 System.out.println(" certs["+z+"]: " + certs[z]);
 }
 else
 {
 System.out.println("No peer certificates presented");
 }
 }
 }

Using an SSLContext
The SSLContext class is used to programmatically configure SSL and to retain SSL session
information. Each instance can be configured with the keys, certificate chains, and trusted CA
certificates that will be used to perform authentication. SSL sockets created with the same
SSLContext and used to connect to the same SSL server could potentially reuse SSL session
information. Whether the session information is actually reused depends on the SSL server.

For more information on session caching see SSL Session Behavior in Administering Security
for Oracle WebLogic Server. To associate an instance of a trust manager class with its SSL
context, use the weblogic.security.SSL.SSLContext.setTrustManager() method.

You can only set up an SSL context programmatically; you cannot use WebLogic Remote
Console or the command line. A Java new expression or the getInstance() method of the
SSLContext class can create an SSLContext object. The getInstance() method is static and it
generates a new SSLContext object that implements the specified secure socket protocol. An
example of using the SSLContext class is provided in the SSLSocketClient.java sample in
EXAMPLES_HOME\src\examples\security\sslclient, where EXAMPLES_HOME represents the
directory in which the WebLogic Server code examples are configured and can be found at
ORACLE_HOME\wlserver\samples\server. The SSLSocketClient example shows how to create
a new SSL socket factory that will create a new SSL socket using SSLContext.

Example 4-9 shows a sample instantiation using the getInstance() method.

Example 4-9 SSL Context Code Example

import weblogic.security.SSL.SSLContext;
 SSLcontext sslctx = SSLContext.getInstance ("https")

Using URLs to Make Outbound SSL Connections
You can use a URL object to make an outbound SSL connection from a WebLogic Server
instance acting as a client to another WebLogic Server instance. WebLogic Server supports
both one-way and two-way SSL authentication for outbound SSL connections.

For one-way SSL authentication, you use the java.net.URL, java.net.URLConnection, and
java.net.HTTPURLConnection classes to make outbound SSL connections using URL objects.
Example 4-10 shows a simpleURL class that supports both HTTP and HTTPS URLs and that
only uses these Java classes (that is, no WebLogic classes are required). To use the

Chapter 4
Writing Applications that Use SSL

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 21 of 23

simpleURL class for one-way SSL authentication (HTTPS) on WebLogic Server, all that is
required is that "weblogic.net" be defined in the system property for
java.protocols.handler.pkgs.

Note

Because the simpleURL sample shown in Example 4-10 defaults trust and hostname
checking, this sample requires that you connect to a real Web server that is trusted
and that passes hostname checking by default. Otherwise, you must override trust and
hostname checking on the command line.

Example 4-10 One-Way SSL Authentication URL Outbound SSL Connection Class That
Uses Java Classes Only

import java.net.URL;
import java.net.URLConnection;
import java.net.HttpURLConnection;
import java.io.IOException;
public class simpleURL
{
 public static void main (String [] argv)
 {
 if (argv.length != 1)
 {
 System.out.println("Please provide a URL to connect to");
 System.exit(-1);
 }
 setupHandler();
 connectToURL(argv[0]);
 }
 private static void setupHandler()
 {
 java.util.Properties p = System.getProperties();
 String s = p.getProperty("java.protocol.handler.pkgs");
 if (s == null)
 s = "weblogic.net";
 else if (s.indexOf("weblogic.net") == -1)
 s += "|weblogic.net";
 p.put("java.protocol.handler.pkgs", s);
 System.setProperties(p);
 }
 private static void connectToURL(String theURLSpec)
 {
 try
 {
 URL theURL = new URL(theURLSpec);
 URLConnection urlConnection = theURL.openConnection();
 HttpURLConnection connection = null;
 if (!(urlConnection instanceof HttpURLConnection))
 {
 System.out.println("The URL is not using HTTP/HTTPS: " +
 theURLSpec);
 return;
 }
 connection = (HttpURLConnection) urlConnection;
 connection.connect();
 String responseStr = "\t\t" +
 connection.getResponseCode() + " -- " +

Chapter 4
Writing Applications that Use SSL

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 22 of 23

 connection.getResponseMessage() + "\n\t\t" +
 connection.getContent().getClass().getName() + "\n";
 connection.disconnect();
 System.out.println(responseStr);
 }
 catch (IOException ioe)
 {
 System.out.println("Failure processing URL: " + theURLSpec);
 ioe.printStackTrace();
 }
 }
}

For two-way SSL authentication, the weblogic.net.http.HttpsURLConnection class provides
a way to specify the security context information for a client, including the digital certificate and
private key of the client. Instances of this class represent an HTTPS connection to a remote
object.

The SSLClient sample code demonstrates using the WebLogic URL object to make an
outbound SSL connection (see Example 4-11). The code example shown in Example 4-11 is
excerpted from the SSLClient.java file in the
EXAMPLES_HOME\src\examples\security\sslclient directory. The EXAMPLES_HOME directory
can be found at ORACLE_HOME\wlserver\samples\server.

Note

loadLocalIdentity(InputStream certStream, InputStream keyStream, char[]
password) is deprecated in this release.

Example 4-11 WebLogic Two-Way SSL Authentication URL Outbound SSL Connection
Code Example

wlsUrl = new URL("https", host, Integer.valueOf(sport).intValue(),
 query);
weblogic.net.http.HttpsURLConnection sconnection =
 new weblogic.net.http.HttpsURLConnection(wlsUrl);
...
InputStream [] ins = new InputStream[2];
 ins[0] = new FileInputStream("clientkey.pem");
 ins[1] = new FileInputStream("client2certs.pem");
 String pwd = "clientkey";
 sconnection.loadLocalIdentity(ins[0], ins[1], pwd.toCharArray());

SSL Client Code Examples
The WebLogic Server product provides a complete working SSL authentication sample.The
sample provided by WebLogic Server is located in
EXAMPLES_HOME\src\examples\security\sslclient, where EXAMPLES_HOME represents the
directory in which the WebLogic Server code examples are configured and can be found at
ORACLE_HOME\wlserver\samples\server. For a description of the sample and instructions on
how to build, configure, and run this sample, see the package.html file in the sample directory.
You can modify this code example and reuse it.

Chapter 4
SSL Client Code Examples

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 23 of 23

5
Securing EJBs

Oracle WebLogic Server supports the Jakarta EE architecture security model for securing
EJBs, which includes support for declarative authorization (also referred to in this document as
declarative security) and programmatic authorization (also referred to in this document as
programmatic security).

• Jakarta EE Architecture Security Model

• Using Declarative Security With EJBs

• EJB Security-Related Deployment Descriptors

• Using Programmatic Security With EJBs

Note

You can use metadata annotations, deployment descriptor files, WebLogic
Remote Console, and Jakarta Authorization to secure EJBs. For information on
using WebLogic Remote Console to secure EJBs, see Options for Securing Web
Application and EJB Resources in Securing Resources Using Roles and Policies
for Oracle WebLogic Server. For information on Jakarta Authorization, see Using
Jakarta Authorization.

Jakarta EE Architecture Security Model
Enterprise tier and web tier applications are made up of components that are deployed into
various containers. These components are combined to build a multitier enterprise application.
Security for components is provided by their containers. A container provides two kinds of
security: declarative and programmatic.

The Jakarta EE Platform includes a Jakarta Security specification that defines portable, plug-in
interfaces for authentication and identity stores, and a new injectable-type SecurityContext
interface that provides an access point for programmatic security. You can use the built-in
implementations of these APIs, or define custom implementations.

See Introduction to Security in the Jakarta EE Platform in The Jakarta EE Tutorial for complete
details about the Jakarta EE security architecture.

Declarative Security
The Jakarta EE Tutorial states that declarative security expresses an application component's
security requirements by using either deployment descriptors or annotations.

A deployment descriptor is an XML file that is external to the application and that expresses an
application's security structure, including security roles, access control, and authentication
requirements.

Annotations, also called metadata, are used to specify information about security within a class
file. When the application is deployed, this information can be either used by or overridden by
the application deployment descriptor. Annotations save you from having to write declarative

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 23

https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/security/security-intro/security-intro.html

information inside XML descriptors. Instead, you simply put annotations on the code, and the
required information gets generated. In the tutorial, annotations are used for securing
applications wherever possible.

Declarative Authorization Via Annotations
As of EJB 3.x, to make the deployer's task easier, the application developer can define security
roles. Developers can specify security metadata annotations directly in the EJB bean class to
identify the roles that are allowed to invoke all, or a subset, of the EJB's methods.

As stated in the Securing an Enterprise Bean Using Declarative Security section of the The
Jakarta EE Tutorial, "Declarative security enables the application developer to specify which
users are authorized to access which methods of the enterprise beans and to authenticate
these users with basic, or user name/password, authentication. Frequently, the person who is
developing an enterprise application is not the same person who is responsible for deploying
the application. An application developer who uses declarative security to define method
permissions and authentication mechanisms is passing along to the deployer a security view of
the enterprise beans contained in the EJB JAR. When a security view is passed on to the
deployer, he or she uses this information to define method permissions for security roles. If you
don't define a security view, the deployer will have to determine what each business method
does to determine which users are authorized to call each method."

At deployment time, the deployer then creates these security roles if they do not already exist
and maps users to these roles using WebLogic Remote Console to update the security realm.
For details, see Security Roles in Oracle WebLogic Remote Console Online Help. The
deployer can also map any security roles to users using the weblogic-ejb-jar.xml
deployment descriptor.

Note

Deployment descriptor elements always override their annotation counterparts. In the
case of conflicts, the deployment descriptor value overrides the annotation value.

The Jakarta Security specification requires that group principal names are mapped to
roles of the same name by default. In WebLogic Server, if the security-role-assignment
element in the weblogic-ejb-jar.xml deployment descriptor does not declare a
mapping between a security role and one or more principals in the WebLogic Server
security realm, then the role name is used as the default principal.

Programmatic Security
The Jakarta EE Tutorial states that for an enterprise bean, code embedded in a business
method can be used to access a caller's identity programmatically and uses this information to
make security decisions. Programmatic security is useful when declarative security alone is not
sufficient to express the security model of an application. The APIs for programmatic security
consist of methods of the Jakarta EE 9.1 SecurityContext interface, EJBContext interface,
and the HttpServletRequest interface. These methods allow components to make business-
logic decisions based on the security role of the caller or remote user.

The section Securing an Enterprise Bean Programmatically in The Jakarta EE Tutorial states
that, in general, security management should be enforced by the container in a manner that is
transparent to the enterprise bean's business methods. The security APIs described in this
section should be used only in the less frequent situations in which the enterprise bean

Chapter 5
Jakarta EE Architecture Security Model

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 23

https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/security/security-jakartaee/security-jakartaee.html#_securing_an_enterprise_bean_using_declarative_security
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/security/security-jakartaee/security-jakartaee.html#_securing_an_enterprise_bean_programmatically

business methods need to access the security context information, such as when you want to
restrict access to a particular time of day.

The SecurityContext interface, as described in the Jakarta Security specification, defines
three methods that allow the bean provider to access security information about the enterprise
bean’s caller: getCallerPrincipal, getPrincipalsByType, and isCallerInRole.

The jakarta.ejb.EJBContext interface provides two methods that allow the bean provider to
access security information about the enterprise bean's caller: getCallerPrincipal and
getPrincipalsByType.

Note that the newer SecurityContext API duplicates some functions of the EJBContext API
because it is intended to provide a consistent API across containers. See Using Programmatic
Security With EJBs.

Declarative Versus Programmatic Authorization
Programmatic security is used by security-aware applications when declarative security alone
is not sufficient to express the security model of the application. When choosing the security
model that works best for you, consider who is responsible for managing security in your
organization. Developers are most familiar with the application components they build, but they
might not necessarily be familiar with the deployment environment in which those components
run. In addition, as security policies change, it is more economical to reconfigure security
declaratively instead of rebuilding, retesting, and redeploying applications, which may be
necessary when making programmatic security updates.

As described in Declarative Authorization Via Annotations, to make the deployer's task easier,
the application developer can specify security metadata annotations directly in the EJB bean
class to identify the roles that are allowed to invoke all, or a subset, of the EJB's methods.
However, deployment descriptor elements always override their annotation counterparts, which
gives the deployer final control.

Using Declarative Security With EJBs
You can implement declarative security using the security providers using WebLogic Remote
Console, or by using Jakarta Authorization. You also use deployment descriptors and metadata
annotations for implementing declarative security.

There are three ways to implement declarative security:

1. Security providers using WebLogic Remote Console, as described in Securing Resources
Using Roles and Policies for Oracle WebLogic Server.

2. Jakarta Authorization, as described in Using Jakarta Authorization.

3. Deployment descriptors and metadata annotations, which are discussed in this section.

Which of these three methods is used is defined by the Jakarta Authorization flags and the
security model. (Security models are described in Options for Securing EJB and Web
Application Resources in Securing Resources Using Roles and Policies for Oracle WebLogic
Server)

Implementing Declarative Security Via Metadata Annotations
As of EJB 3.0, (see What Was New and Changed in EJB 3.0 in Developing Jakarta Enterprise
Beans for Oracle WebLogic Server), you are no longer required to create the deployment
descriptor files (such as ejb-jar.xml). You can now use metadata annotations in the bean file
itself to configure metadata.

Chapter 5
Using Declarative Security With EJBs

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 23

You can still use XML deployment descriptors in addition to, or instead of, the metadata
annotations if you so choose.

Note

Deployment descriptor elements always override their annotation counterparts. In the
case of conflicts, the deployment descriptor value overrides the annotation value.

To use metadata annotations:

1. Use the metadata annotations feature and create an annotated EJB bean file.

2. At deployment time, the deployer must then create these security roles if they do not
already exist and map users to these roles using WebLogic Remote Console to update the
security realm. See Security Roles in Oracle WebLogic Remote Console Online Help.

The annotations are part of the jakarta.annotation.security package. The following security-
related annotations are available:

• jakarta.annotation.security.DeclareRoles — Explicitly lists the security roles that will be
used to secure the EJB.

• jakarta.annotation.security.RolesAllowed — Specifies the security roles that are allowed to
invoke all the methods of the EJB (when specified at the class-level) or a particular method
(when specified at the method-level.)

• jakarta.annotation.security.DenyAll — Specifies that the annotated method can not be
invoked by any role.

• jakarta.annotation.security.PermitAll — Specifies that the annotated method can be
invoked by all roles.

• jakarta.annotation.security.RunAs — Specifies the role which runs the EJB. By default, the
EJB runs as the user who actually invokes it.

Security-Related Annotation Code Examples
The section Securing Access to the EJB in Developing Jakarta Enterprise Beans for Oracle
WebLogic Server provides an example of a simple stateless session EJB that uses all of the
security-related annotations.

The section Specifying Authorized Users by Declaring Security Roles in the Jakarta EE Tutorial
also discusses how to use annotations to specify the method permissions for the methods of a
bean class, with accompanying code examples.

Implementing Declarative Security Via Deployment Descriptors
To implement declarative security in EJBs you can use deployment descriptors (ejb-jar.xml
and weblogic-ejb-jar.xml) to define the security requirements. Example 5-1 shows examples
of how to use the ejb-jar.xml and weblogic-ejb-jar.xml deployment descriptors to map
security role names to a security realm. The deployment descriptors map the application's
logical security requirements to its runtime definitions. And at runtime, the EJB container uses
the security definitions to enforce the requirements.

To configure security in the EJB deployment descriptors, perform the following steps (see
Example 5-1):

Chapter 5
Using Declarative Security With EJBs

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 23

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/annotation/security/package-summary
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/security/security-jakartaee/security-jakartaee.html#_specifying_authorized_users_by_declaring_security_roles

1. Use a text editor to create ejb-jar.xml and weblogic-ejb-jar.xml deployment descriptor
files.

2. In the ejb-jar.xml file, define the security role name, the EJB name, and the method
name.

Note

The proper syntax for a security role name is as defined for an Nmtoken in the
Extensible Markup Language (XML) recommendation available on the Web at:
http://www.w3.org/TR/REC-xml#NT-Nmtoken.

When specifying security role names, observe the following conventions and
restrictions:

• Do not use blank spaces, commas, hyphens, or any characters in this comma-
separated list: \t, < >, #, |, &, ~, ?, (), { }.

• Security role names are case sensitive.

• The suggested convention for security role names is that they be singular.

For more information on configuring security in the ejb-jar.xml file, see the EJB
Specification at https://jakarta.ee/specifications/enterprise-beans/.

3. In the WebLogic-specific EJB deployment descriptor file, weblogic-ejb-jar.xml, define
the security role name and link it to one or more principals (users or groups) in a security
realm.

For more information on configuring security in the weblogic-ejb-jar.xml file, see
weblogic-ejb-jar.xml Deployment Descriptor Reference in Developing Jakarta Enterprise
Beans Using Deployment Descriptors.

Example 5-1 Using ejb-jar.xml and weblogic-ejb-jar.xml Files to Map Security Role
Names to a Security Realm

ejb-jar.xml entries:
 ...
<assembly-descriptor>
 <security-role>
 <role-name>manger</role-name>
 </security-role>
 <security-role>
 <role-name>east</role-name>
 </security-role>
 <method-permission>
 <role-name>manager</role-name>
 <role-name>east</role-name>
 <method>
 <ejb-name>accountsPayable</ejb-name>
 <method-name>getReceipts</method-name>
 </method>
 </method-permission>
 ...
</assembly-descriptor>
 ...
weblogic-ejb-jar.xml entries:
 <security-role-assignment>
 <role-name>manager</role-name>
 <principal-name>al</principal-name>
 <principal-name>george</principal-name>

Chapter 5
Using Declarative Security With EJBs

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 23

http://www.w3.org/TR/REC-xml#NT-Nmtoken
https://jakarta.ee/specifications/enterprise-beans/

 <principal-name>ralph</principal-name>
 </security-role-assignment>
 ...

EJB Security-Related Deployment Descriptors
WebLogic Server supports several deployment descriptor elements that are used in the ejb-
jar.xml and weblogic-ejb-jar.xml files to define security requirements in EJBs.

• ejb-jar.xml Deployment Descriptors

• weblogic-ejb-jar.xml Deployment Descriptors

ejb-jar.xml Deployment Descriptors
The following ejb-jar.xml deployment descriptor elements are used to define security
requirements in WebLogic Server:

• method

• method-permission

• role-name

• run-as

• security-identity

• security-role

• security-role-ref

• unchecked

• use-caller-identity

method
The method element is used to denote a method of an enterprise bean's home or component
interface, or, in the case of a message-driven bean, the bean's onMessage method, or a set of
methods.

The following table describes the elements you can define within an method element.

Table 5-1 method Element

Element Required/
Optional

Description

<description> Optional A text description of the method.

<ejb-name> Required Specifies the name of one of the enterprise beans declared
in the ejb-jar.xml file.

<method-intf> Optional Allows you to distinguish between a method with the same
signature that is multiply defined across both the home and
component interfaces of the enterprise bean.

<method-name> Required Specifies a name of an enterprise bean method or the
asterisk (*) character. The asterisk is used when the
element denotes all the methods of an enterprise bean's
component and home interfaces.

Chapter 5
EJB Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 23

Table 5-1 (Cont.) method Element

Element Required/
Optional

Description

<method-params> Optional Contains a list of the fully-qualified Java type names of the
method parameters.

Used Within
The method element is used within the method-permission element.

Example
For an example of how to use the method element, see Example 5-1.

method-permission
The method-permission element specifies that one or more security roles are allowed to
invoke one or more enterprise bean methods. The method-permission element consists of an
optional description, a list of security role names or an indicator to state that the method is
unchecked for authorization, and a list of method elements.

The security roles used in the method-permission element must be defined in the security-
role elements of the deployment descriptor, and the methods must be methods defined in the
enterprise bean's component and/or home interfaces.

The following table describes the elements you can define within a method-permission
element.

Table 5-2 method-permission Element

Element Required/Optional Description

<description> Optional A text description of this security constraint.

<role-name> or
<unchecked>

Required The role-name element or the unchecked element must be
specified.

The role-name element contains the name of a security role.
The name must conform to the lexical rules for an NMTOKEN.

The unchecked element specifies that a method is not
checked for authorization by the container prior to invocation
of the method.

<method> Required Specifies a method of an enterprise bean's home or
component interface, or, in the case of a message-driven
bean, the bean's onMessage method, or a set of methods.

Used Within
The method-permission element is used within the assembly-descriptor element.

Example
For an example of how to use the method-permission element, see Example 5-1.

Chapter 5
EJB Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 23

role-name
The role-name element contains the name of a security role. The name must conform to the
lexical rules for an NMTOKEN.

Used Within
The role-name element is used within the method-permission, run-as, security-role, and
security-role-ref elements.

Example
For an example of how to use the role-name element, see Example 5-1.

run-as
The run-as element specifies the run-as identity to be used for the execution of the enterprise
bean. It contains an optional description, and the name of a security role.

Used Within
The run-as element is used within the security-identity element.

Example
For an example of how to use the run-as element, see Example 5-8.

security-identity
The security-identity element specifies whether the caller's security identity is to be used
for the execution of the methods of the enterprise bean or whether a specific run-as identity is
to be used. It contains an optional description and a specification of the security identity to be
used.

The following table describes the elements you can define within an security-identity
element.

Table 5-3 security-identity Element

Element Required/Optional Description

<description> Optional A text description of the security identity.

<use-caller-
identity> or
<run-as>

Required The use-caller-identity element or the run-as element
must be specified.

The use-caller-identity element specifies that the
caller's security identity be used as the security identity for the
execution of the enterprise bean's methods.

The run-as element specifies the run-as identity to be used for
the execution of the enterprise bean. It contains an optional
description, and the name of a security role.

Chapter 5
EJB Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 23

Used Within
The security-identity element is used within the entity, message-driven, and session
elements.

Example
For an example of how to use the security-identity element, see Example 5-3 and
Example 5-8.

security-role
The security-role element contains the definition of a security role. The definition consists of
an optional description of the security role, and the security role name.

Used Within
The security-role element is used within the assembly-descriptor element.

Example
For an example of how to use the assembly-descriptor element, see Example 5-1.

security-role-ref
The security-role-ref element contains the declaration of a security role reference in the
enterprise bean's code. The declaration consists of an optional description, the security role
name used in the code, and an optional link to a security role. If the security role is not
specified, the Deployer must choose an appropriate security role.

The value of the role-name element must be the String used as the parameter to the
EJBContext.isCallerInRole(String roleName) method or the
HttpServletRequest.isUserInRole(String role) method.

Used Within
The security-role-ref element is used within the entity and session elements.

Example
For an example of how to use the security-role-ref element, see Example 5-2.

Example 5-2 Security-role-ref Element Example

<!DOC<weblogic-ejb-jar xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/90
http://www.bea.com/ns/weblogic/90/weblogic-ejb-jar.xsd">
<ejb-jar>
 <enterprise-beans>
 ...
 <session>
 <ejb-name>SecuritySLEJB</ejb-name>
 <home>weblogic.ejb20.security.SecuritySLHome</home>
 <remote>weblogic.ejb20.security.SecuritySL</remote>
 <ejb-class>weblogic.ejb20.security.SecuritySLBean</ejb-class>

Chapter 5
EJB Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 23

 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <security-role-ref>
 <role-name>rolenamedifffromlink</role-name>
 <role-link>role121SL</role-link>
 </security-role-ref>
 <security-role-ref>
 <role-name>roleForRemotes</role-name>
 <role-link>roleForRemotes</role-link>
 </security-role-ref>
 <security-role-ref>
 <role-name>roleForLocalAndRemote</role-name>
 <role-link>roleForLocalAndRemote</role-link>
 </security-role-ref>
 </session>
 ...
 </enterprise-beans>
</ejb-jar>

unchecked
The unchecked element specifies that a method is not checked for authorization by the
container prior to invocation of the method.

Used Within
The unchecked element is used within the method-permission element.

Example
For an example of how to use the unchecked element, see Example 5-1.

use-caller-identity
The use-caller-identity element specifies that the caller's security identity be used as the
security identity for the execution of the enterprise bean's methods.

Used Within
The use-caller-identity element is used within the security-identity element.

Example
For an example of how to use the use-caller-identity element, see Example 5-3.

Example 5-3 use-caller-identity Element Example

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>SecurityEJB</ejb-name>
 <home>weblogic.ejb20.SecuritySLHome</home>
 <remote>weblogic.ejb20.SecuritySL</remote>
 <local-home>
 weblogic.ejb20.SecurityLocalSLHome
 </local-home>
 <local>weblogic.ejb20.SecurityLocalSL</local>
 <ejb-class>weblogic.ejb20.SecuritySLBean</ejb-class>
 <session-type>Stateless</session-type>

Chapter 5
EJB Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 23

 <transaction-type>Container</transaction-type>
 </session>
 <message-driven>
 <ejb-name>SecurityEJB</ejb-name>
 <ejb-class>weblogic.ejb20.SecuritySLBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </message-driven>
 </enterprise-beans>
</ejb-jar>

weblogic-ejb-jar.xml Deployment Descriptors
The following weblogic-ejb-jar.xml deployment descriptor elements are used to define
security requirements in WebLogic Server:

• client-authentication

• client-cert-authentication

• confidentiality

• externally-defined

• identity-assertion

• iiop-security-descriptor

• integrity

• principal-name

• role-name

• run-as-identity-principal

• run-as-principal-name

• run-as-role-assignment

• security-permission

• security-permission-spec

• security-role-assignment

• transport-requirements

client-authentication
The client-authentication element specifies whether the EJB supports or requires client
authentication.

The following table defines the possible settings.

Table 5-4 client-authentication Element

Setting Definition

none Client authentication is not supported.

supported Client authentication is supported, but not required.

required Client authentication is required.

Chapter 5
EJB Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 23

Example
For an example of how to use the client-authentication element, see Example 5-6.

client-cert-authentication
The client-cert-authentication element specifies whether the EJB supports or requires
client certificate authentication at the transport level.

The following table defines the possible settings.

Table 5-5 client-cert-authentication Element

Setting Definition

none Client certificate authentication is not supported.

supported Client certificate authentication is supported, but not required.

required Client certificate authentication is required.

Example
For an example of how to use the client-cert-authentication element, see Example 5-10.

confidentiality
The confidentiality element specifies the transport confidentiality requirements for the EJB.
Using the confidentiality element ensures that the data is sent between the client and
server in such a way as to prevent other entities from observing the contents.

The following table defines the possible settings.

Table 5-6 confidentiality Element

Setting Definition

none Confidentiality is not supported.

supported Confidentiality is supported, but not required.

required Confidentiality is required.

Example
For an example of how to use the confidentiality element, see Example 5-10 .

externally-defined
The externally-defined element lets you explicitly indicate that you want the security roles
defined by the role-name element in the weblogic-ejb-jar.xml deployment descriptors to use
the mappings specified in WebLogic Remote Console. The element gives you the flexibility of
not having to specify a specific security role mapping for each security role defined in the
deployment descriptors for a particular Web application. Therefore, within the same security
realm, deployment descriptors can be used to specify and modify security for some
applications while WebLogic Remote Console can be used to specify and modify security for
others.

Chapter 5
EJB Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 23

Note

Starting in version 9.0, the default role mapping behavior is to create empty role
mappings when none are specified. In version 8.1, EJB required that role mappings be
defined in the weblogic-ejb-jar.xml descriptor or deployment would fail. With 9.0, EJB
and WebApp behavior are consistent in creating empty role mappings.

For information on role mapping behavior and backward compatibility settings, see the
section Understanding the Combined Role Mapping Enabled Setting in Securing
Resources Using Roles and Policies for Oracle WebLogic Server. The role mapping
behavior for a server depends on which security deployment model is selected in
WebLogic Remote Console. For information on security deployment models, see
Options for Securing EJB and Web Application Resources in Securing Resources
Using Roles and Policies for Oracle WebLogic Server.

When specifying security role names, observe the following conventions and restrictions:

• The proper syntax for a security role name is as defined for an Nmtoken in the Extensible
Markup Language (XML) recommendation available on the Web at: http://
www.w3.org/TR/REC-xml#NT-Nmtoken.

• Do not use blank spaces, commas, hyphens, or any characters in this comma-separated
list: \t, < >, #, |, &, ~, ?, (), { }.

• Security role names are case sensitive.

• The suggested convention for security role names is that they be singular.

Example 5-4 and Example 5-5 show by comparison how to use the externally-defined
element in the weblogic-ejb-jar.xml file. In Example 5-5, the specification of the "manager"
externally-defined element in the weblogic-ejb-jar.xml means that for security to be
correctly configured on the getReceipts method, the principals for manager will have to be
created in WebLogic Remote Console.

Example 5-4 Using the ejb-jar.xml and weblogic-ejb-jar.xml Deployment Descriptors to
Map Security Roles in EJBs

ejb-jar.xml entries:
 ...
<assembly-descriptor>
 <security-role>
 <role-name>manger</role-name>
 </security-role>
 <security-role>
 <role-name>east</role-name>
 </security-role>
 <method-permission>
 <role-name>manager</role-name>
 <role-name>east</role-name>
 <method>
 <ejb-name>accountsPayable</ejb-name>
 <method-name>getReceipts</method-name>
 </method>
 </method-permission>
 ...
</assembly-descriptor>
 ...
weblogic-ejb-jar.xml entries:
 <security-role-assignment>

Chapter 5
EJB Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 23

http://www.w3.org/TR/REC-xml#NT-Nmtoken
http://www.w3.org/TR/REC-xml#NT-Nmtoken

 <role-name>manager</role-name>
 <principal-name>joe</principal-name>
 <principal-name>Bill</principal-name>
 <principal-name>Mary</principal-name>
 ...
</security-role-assignment>
 ...

Example 5-5 Using the externally-defined Element in EJB Deployment Descriptors for
Role Mapping

ejb-jar.xml entries:
 ...
<assembly-descriptor>
 <security-role>
 <role-name>manger</role-name>
 </security-role>
 <security-role>
 <role-name>east</role-name>
 </security-role>
 <method-permission>
 <role-name>manager</role-name>
 <role-name>east</role-name>
 <method>
 <ejb-name>accountsPayable</ejb-name>
 <method-name>getReceipts</method-name>
 </method>
 </method-permission>
 ...
</assembly-descriptor>
 ...
weblogic-ejb-jar.xml entries:
 <security-role-assignment>
 <role-name>manager</role-name>
 <externally-defined/>
 ...
 </security-role-assignment>
 ...

For more information on using WebLogic Remote Console to configure security for EJBs, see
Options for Securing EJB and Web Application Resources in Securing Resources Using Roles
and Policies for Oracle WebLogic Server.

identity-assertion
The identity-assertion element specifies whether the EJB supports identity assertion.

The following table defines the possible settings.

Table 5-7 identity-assertion Element

Setting Definition

none Identity assertion is not supported

supported Identity assertion is supported, but not required.

required Identity assertion is required.

Chapter 5
EJB Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 23

Used Within
The identity-assertion element is used with the iiop-security-descriptor element.

Example
For an example of how to the identity-assertion element, see Example 5-6.

iiop-security-descriptor
The iiop-security-descriptor element specifies security configuration parameters at the
bean-level. These parameters determine the IIOP security information contained in the
interoperable object reference (IOR).

Example
For an example of how to use the iiop-security-descriptor element, see Example 5-6.

Example 5-6 iiop-security-descriptor Element Example

<weblogic-enterprise-bean>
 <iiop-security-descriptor>
 <transport-requirements>
 <confidentiality>supported</confidentiality>
 <integrity>supported</integrity>
 <client-cert-authorization>
 supported
 </client-cert-authentication>
 </transport-requirements>
 <client-authentication>supported<client-authentication>
 <identity-assertion>supported</identity-assertion>
 </iiop-security-descriptor>
</weblogic-enterprise-bean>

integrity
The integrity element specifies the transport integrity requirements for the EJB. Using the
integrity element ensures that the data is sent between the client and server in such a way that
it cannot be changed in transit.

The following table defines the possible settings.

Table 5-8 integrity Element

Setting Definition

none Integrity is not supported.

supported Integrity is supported, but not required.

required Integrity is required.

Used Within
The integrity element is used within the transport-requirements element.

Chapter 5
EJB Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 23

Example
For an example of how to use the integrity element, see Example 5-10.

principal-name
The principal-name element specifies the name of the principal in the WebLogic Server
security realm that applies to role name specified in the security-role-assignment element. At
least one principal is required in the security-role-assignment element. You may define
more than one principal-name for each role name.

Note

If you need to list a significant number of principals, consider specifying groups instead
of users. There are performance issues if you specify too many users.

Used Within
The mk,?"{>L" -name element is used within the security-role-assignment element.

Example
For an example of how to use the principal-name element, see Example 5-1.

role-name
The role-name element identifies an application role name that the EJB provider placed in the
companion ejb-jar.xml file. Subsequent principal-name elements in the stanza map
WebLogic Server principals to the specified role-name.

Used Within
The role-name element is used within the security-role-assignment element.

Example
For an example of how to use the role-name element, see Example 5-1.

run-as-identity-principal
The run-as-identity-principal element specifies which security principal name is to be
used as the run-as principal for a bean that has specified a security-identity run-as role-name
in its ejb-jar deployment descriptor. For an explanation about how run-as role-names are
mapped to run-as-identity-principals (or run-as-principal-names, see run-as-role-assignment.

Note

Deprecated: The run-as-identity-principal element is deprecated in WebLogic
Server 8.1. Use the run-as-principal-name element instead.

Chapter 5
EJB Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 23

Used Within
The run-as-identity-principal element is used within the run-as-role-assignment
element.

Example
For an example of how to use the run-as-identity-principal element, see Example 5-7.

Example 5-7 run-as-identity-principal Element Example

ebj-jar.xml:
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>Caller2EJB</ejb-name>
 <home>weblogic.ejb11.security.CallerBeanHome</home>
 <remote>weblogic.ejb11.security.CallerBeanRemote</remote>
 <ejb-class>weblogic.ejb11.security.CallerBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 <ejb-ref><ejb-ref-name>Callee2Bean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>weblogic.ejb11.security.CalleeBeanHome</home>
 <remote>weblogic.ejb11.security.CalleeBeanRemote</remote>
 </ejb-ref>
 <security-role-ref>
 <role-name>users1</role-name>
 <role-link>users1</role-link>
 </security-role-ref>
 <security-identity>
 <run-as>
 <role-name>users2</role-name>
 </run-as>
 </security-identity>
 </session>
 </enterprise-beans>
</ejb-jar>
woblogic-ejb-jar.xml:
<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>Caller2EJB</ejb-name>
 <reference-descriptor>
 <ejb-reference-description>
 <ejb-ref-name>Callee2Bean</ejb-ref-name>
 <jndi-name>security.Callee2Bean</jndi-name>
 </ejb-reference-description>
 </reference-descriptor>
 <run-as-identity-principal>wsUser3</run-as-identity-principal>
 </weblogic-enterprise-bean>
 <security-role-assignment>
 <role-name>user</role-name>
 <principal-name>wsUser2</principal-name>
 <principal-name>wsUser3</principal-name>
 <principal-name>wsUser4</principal-name>
 </security-role-assignment>
</weblogic-ejb-jar>

Chapter 5
EJB Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 23

run-as-principal-name
The run-as-principal-name element specifies which security principal name is to be used as
the run-as principal for a bean that has specified a security-identity run-as role-name in its ejb-
jar deployment descriptor. For an explanation of how the run-as role-names map to run-as-
principal-names, see run-as-role-assignment.

Used Within
The run-as-principal-name element is used within the run-as-role-assignment element.

Example
For an example of how to use the run-as-principal-name element, see Example 5-8.

run-as-role-assignment
The run-as-role-assignment element is used to map a given security-identity run-as role-
name that is specified in the ejb-jar.xml file to a run-as-principal-name specified in the
weblogic-ejb-jar.xml file. The value of the run-as-principal-name element for a given role-
name is scoped to all beans in the ejb-jar.xml file that use the specified role-name as their
security-identity. The value of the run-as-principal-name element specified in weblogic-ejb-
jar.xml file can be overridden at the individual bean level by specifying a run-as-principal-
name element under that bean's weblogic-enterprise-bean element.

Note

For a given bean, if there is no run-as-principal-name element specified in either a
run-as-role-assignment element or in a bean specific run-as-principal-name
element, then the EJB container will choose the first principal-name of a security user
in the weblogic-enterprise-bean security-role-assignment element for the role-
name and use that principal-name as the run-as-principal-name.

Example
For an example of how to use the run-as-role-assignment element, see Example 5-8.

Example 5-8 run-as-role-assignment Element Example

In the ejb-jar.xml file:
// Beans "A_EJB_with_runAs_role_X" and "B_EJB_with_runAs_role_X"
// specify a security-identity run-as role-name "runAs_role_X".
// Bean "C_EJB_with_runAs_role_Y" specifies a security-identity
// run-as role-name "runAs_role_Y".
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>SecurityEJB</ejb-name>
 <home>weblogic.ejb20.SecuritySLHome</home>
 <remote>weblogic.ejb20.SecuritySL</remote>
 <local-home>
 weblogic.ejb20.SecurityLocalSLHome
 </local-home>
 <local>weblogic.ejb20.SecurityLocalSL</local>

Chapter 5
EJB Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 23

 <ejb-class>weblogic.ejb20.SecuritySLBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 <message-driven>
 <ejb-name>SecurityEJB</ejb-name>
 <ejb-class>weblogic.ejb20.SecuritySLBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <security-identity>
 <run-as>
 <role-name>runAs_role_X</role-name>
 </run-as>
 </security-identity>
 <security-identity>
 <run-as>
 <role-name>runAs_role_Y</role-name>
 </run-as>
 </security-identity>
 </message-driven>
 </enterprise-beans>
</ejb-jar>

weblogic-ejb-jar file:

<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>A_EJB_with_runAs_role_X</ejb-name>
 </weblogic-enterprise-bean>
 <weblogic-enterprise-bean>
 <ejb-name>B_EJB_with_runAs_role_X</ejb-name>
 <run-as-principal-name>Joe</run-as-principal-name>
 </weblogic-enterprise-bean>
 <weblogic-enterprise-bean>
 <ejb-name>C_EJB_with_runAs_role_Y</ejb-name>
 </weblogic-enterprise-bean>
 <security-role-assignment>
 <role-name>runAs_role_Y</role-name>
 <principal-name>Harry</principal-name>
 <principal-name>John</principal-name>
 </security-role-assignment>
 <run-as-role-assignment>
 <role-name>runAs_role_X</role-name>
 <run-as-principal-name>Fred</run-as-principal-name>
 </run-as-role-assignment>
</weblogic-ejb-jar>

Each of the three beans shown in Example 5-8 will choose a different principal name to run as.

• A_EJB_with_runAs_role_X

This bean's run-as role-name is runAs_role_X. The jar-scoped <run-as-role-
assignment> mapping will be used to look up the name of the principal to use. The <run-
as-role-assignment> mapping specifies that for <role-name> runAs_role_X we are to use
<run-as-principal-name> Fred. Therefore, Fred is the principal name that will be used.

• B_EJB_with_runAs_role_X

This bean's run-as role-name is also runAs_role_X. This bean will not use the jar scoped
<run-as-role-assignment> to look up the name of the principal to use because that value
is overridden by this bean's <weblogic-enterprise-bean> <run-as-principal-name>
value Joe. Therefore Joe is the principal name that will be used.

• C_EJB_with_runAs_role_Y

Chapter 5
EJB Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 19 of 23

This bean's run-as role-name is runAs_role_Y. There is no explicit mapping of
runAs_role_Y to a run-as principal name, that is, there is no jar scoped <run-as-role-
assignment> for runAs_role_Y nor is there a bean scoped <run-as-principal-name>
specified in this bean's <weblogic-enterprise-bean>. To determine the principal name to
use, the <security-role-assignment> for <role-name> runAs_role_Y is examined. The
first <principal-name> corresponding to a user that is not a Group is chosen. Therefore,
Harry is the principal name that will be used.

security-permission
The security-permission element specifies a security permission that is associated with a
Jakarta EE Sandbox.

Example
For an example of how to use the security-permission element, see Example 5-9.

security-permission-spec
The security-permission-spec element specifies a single security permission based on the
Security policy file syntax.

For the implementation of the security permission specification, see Default Policy
Implementation and Policy File Syntax section in Java SE Security Developer's Guide .

Note

Disregard the optional codebase and signedBy clauses.

Used Within
The security-permission-spec element is used within the security-permission element.

Example
For an example of how to use the security-permission-spec element, see Example 5-9.

Example 5-9 security-permission-spec Element Example

<weblogic-ejb-jar>
 <security-permission>
 <description>Optional explanation goes here</description>
 <security-permission-spec>
<!
A single grant statement following the syntax of
http://xmlns.jcp.org/j2se/1.5.0/docs/guide/security/PolicyFiles.html#FileSyntax,
without the codebase and signedBy clauses, goes here. For example:
-->
 grant {
 permission java.net.SocketPermission *, resolve;
 };
 </security-permission-spec>
 </security-permission>
</weblogic-ejb-jar>

Chapter 5
EJB Security-Related Deployment Descriptors

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 20 of 23

https://docs.oracle.com/en/java/javase/17/security/index.html

In Example 5-9, permission java.net.SocketPermission is the permission class name, "*"
represents the target name, and resolve (resolve host/IP name service lookups) indicates the
action.

security-role-assignment
The security-role-assignment element maps application roles in the ejb-jar.xml file to the
names of security principals available in WebLogic Server.

Note

For information on using the security-role-assignment element in a weblogic-
application.xml deployment descriptor for an enterprise application, see Enterprise
Application Deployment Descriptor Elements in Developing Applications for Oracle
WebLogic Server.

Example
For an example of how to use the security-role-assignment element, see Example 5-1.

transport-requirements
The transport-requirements element defines the transport requirements for the EJB.

Used Within
The transport-requirements element is used within the iiop-security-descriptor element.

Example
For an example of how to use the transport-requirements element, see Example 5-10.

Example 5-10 transport-requirements Element Example

<weblogic-enterprise-bean>
 <iiop-security-descriptor>
 <transport-requirements>
 <confidentiality>supported</confidentiality>
 <integrity>supported</integrity>
 <client-cert-authorization>
 supported
 </client-cert-authentication>
</transport-requirements>
 </iiop-security-descriptor>
<weblogic-enterprise-bean>

Using Programmatic Security With EJBs
To implement programmatic security in EJBs, WebLogic Server supports the use of the Jakarta
Security getCallerPrincipal, getPrincipalsByType, and isCallerInRole methods of the
SecurityContext interface, and the getCallerPrincipal and isCallerInRole methods of the
jakarta.ejb.EJBContext interface.

The following sections describe these methods in more detail:

Chapter 5
Using Programmatic Security With EJBs

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 21 of 23

• SecurityContext Interface Methods

• EJBContext Interface Methods

SecurityContext Interface Methods
The SecurityContext interface, as specified in the Jakarta Security specification, defines three
methods that allow the bean provider to access security information about the enterprise
bean’s caller:

• getCallerPrincipal() retrieves the Principal that represents the name of the
authenticated caller. This is the container-specific representation of the caller principal. The
type may differ from the type of the caller principal originally established by an
HttpAuthenticationMechanism. This method returns null for an unauthenticated caller in
either the Servlet Container or the EJB Container. Note that this behavior differs from the
behavior of the EJBContext.getCallerPrincipal() method, which returns a special
principal to represent an anonymous caller.

• getPrincipalsByType() retrieves all principals of the given type from the authenticated
callers subject. This method returns an empty Set if the caller is unauthenticated, or if the
requested type is not found.

Where both a container caller principal and an application caller principal are present, the
value returned by getName() is the same for both principals.

• isCallerInRole() takes a String argument that represents the specific role to be verified.
The result must be the same as if the corresponding container-specific call had been made
(for example EJBContext.isCallerInRole()).

EJBContext Interface Methods
The jakarta.ejb.EJBContext interface defines two methods that allow the bean provider to
access security information about the enterprise bean’s caller:

• getCallerPrincipal allows the enterprise bean methods to obtain the current caller
principal's name. The methods might, for example, use the name as a key to information in
a database. This method never returns null. Instead, it returns a principal with a special
username to indicate an anonymous/unauthenticated caller. Note that this behavior differs
from the behavior of the SecurityContext.getCallerPrincipal() method, which returns
null for an unauthenticated caller.

In WebLogic Server, you use the getCallerPrincipal() method to determine the caller of
the EJB. The jakarta.ejb.EJBContext.getCallerPrincipal() method returns a WLSUser
Principal if one exists in the Subject of the calling user. In the case of multiple WLSUser
Principals, the method returns the first in the ordering defined by the
Subject.getPrincipals().iterator() method. If there are no WLSUser Principals, then
the getCallerPrincipal() method returns the first non-WLSGroup Principal. If there are
no Principals or all Principals are of type WLSGroup, this method returns
weblogic.security.WLSPrincipals.getAnonymousUserPrincipal(). This behavior is
similar to the semantics of weblogic.security.SubjectUtils.getUserPrincipal()
except that SubjectUtils.getUserPrincipal() returns a null whereas
EJBContext.getCallerPrincipal()returns
WLSPrincipals.getAnonmyousUserPrincipal().

• isCallerInRole allows the developer to code the security checks that cannot be easily
defined using method permissions. Such a check might impose a role-based limit on a
request, or it might depend on information stored in the database. The enterprise bean
code can use the isCallerInRole method to test whether the current caller has been

Chapter 5
Using Programmatic Security With EJBs

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 22 of 23

assigned to a given security role. Security roles are defined by the bean provider or the
application assembler and are assigned by the deployer to principals or principal groups
that exist in the operational environment.

In WebLogic Server, the isCallerInRole() method is used to determine if the caller (the
current user) has been assigned a security role that is authorized to perform actions on the
WebLogic resources in that thread of execution. For example, the method
jakarta.ejb.EJBContext.isCallerInRole("admin")will return true if the current user
has admin privileges.

For information about using these methods, see the Jakarta Enterprise Beans (EJB)
specification.

Chapter 5
Using Programmatic Security With EJBs

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 23 of 23

https://jakarta.ee/specifications/enterprise-beans/
https://jakarta.ee/specifications/enterprise-beans/

6
Using Network Connection Filters

Network connection filters can be used to protect WebLogic resources on individual servers,
server clusters, or an entire internal network. Learn how to implement network connection
filters in Oracle WebLogic Server.

• The Benefits of Using Network Connection Filters

• Network Connection Filter API

• Guidelines for Writing Connection Filter Rules

• Configuring the WebLogic Connection Filter

• Developing Custom Connection Filters

The Benefits of Using Network Connection Filters
Network connection filters act as a firewall that can be used to allow or deny access to servers
in your WebLogic domain based on certain protocols, network addresses and DNS node
names.Security roles and security policies let you secure WebLogic resources at the domain
level, the application level, and the application-component level. Connection filters let you deny
access at the network level. Thus, the network connection filters provide an additional layer of
security at the network level. Connection filters can be used to protect server resources on
individual servers, server clusters, or an entire internal network.
Connection filters are particularly useful for controlling access through the Administration port.
Depending on your network firewall configuration, you might be able to use a connection filter
to further restrict administration access. A typical use is to restrict access to the Administration
port to only the servers and machines in the domain. Even if an attacker gets access to a
machine inside the firewall, they will not be able to perform administration operations unless
they are on one of the permitted machines.

Network connection filters are a type of firewall in that they can be configured to filter on
protocols, IP addresses, and DNS node names. For example, you can deny any non-SSL
connections originating outside of your corporate network. This would ensure that all access
from systems on the Internet would be secure.

Network Connection Filter API
Connection filter rules allow you to limit the number of network connections that are accepted.
Learn how to create effective connection filter rules and how they are evaluated.

The weblogic.security.net API package provides interfaces and classes for developing
network connection filters. It also includes a class, ConnectionFilterImpl, which is a ready-to-
use implementation of a network connection filter. See Java API Reference for Oracle
WebLogic Server for complete reference information on the network connection filter API.

This section covers the following topics:

• Connection Filter Interfaces

• Connection Filter Classes

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 6

Connection Filter Interfaces
To implement connection filtering, write a class that implements the connection filter interfaces.
The following weblogic.security.net interfaces are provided for implementing connection
filters:

• ConnectionFilter Interface

• ConnectionFilterRulesListener Interface

ConnectionFilter Interface
This interface defines the accept() method, which is used to implement connection filtering. To
program the server to perform connection filtering, instantiate a class that implements this
interface and then configure that class in WebLogic Remote Console. This interface is the
minimum implementation requirement for connection filtering.

Note

Implementing this interface alone does not permit the use of WebLogic Remote
Console to enter and modify filtering rules to restrict client connections; you must use
some other form (such as a flat file, which is defined in WebLogic Remote Console) for
that purpose. To use WebLogic Remote Console to enter and modify filtering rules,
you must also implement the ConnectionFilterRulesListener interface. For a
description of the ConnectionFilterRulesListener interface, see
ConnectionFilterRulesListener Interface.

ConnectionFilterRulesListener Interface
The server uses this interface to determine whether the rules specified in WebLogic Remote
Console in the ConnectionFilterRules field are valid during startup and at runtime.

Note

You can implement this interface or just use the WebLogic connection filter
implementation, weblogic.security.net.ConnectionFilterImpl, which is provided as part
of the WebLogic Server product.

This interface defines two methods that are used to implement connection filtering: setRules()
and checkRules(). Implementing this interface in addition to the ConnectionFilter interface
allows the use of WebLogic Remote Console to enter filtering rules to restrict client
connections.

Note

In order to enter and edit connection filtering rules in WebLogic Remote Console, you
must implement the ConnectionFilterRulesListener interface; otherwise some other
means must be used. For example, you could use a flat file.

Chapter 6
Network Connection Filter API

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 6

Connection Filter Classes
Two weblogic.security.net classes are provided for implementing connection filters:

• ConnectionFilterImpl Class

• ConnectionEvent Class

ConnectionFilterImpl Class
This class is the WebLogic connection filter implementation of the ConnectionFilter and
ConnectionFilterRulesListener interfaces. Once configured using WebLogic Remote
Console, this connection filter accepts all incoming connections by default, and also provides
static factory methods that allow the server to obtain the current connection filter. To use this
connection to deny access, simply enter connection filter rules using the WebLogic Remote
Console.

This class is provided as part of the WebLogic Server product. To configure this class for use,
see Configuring the WebLogic Connection Filter.

ConnectionEvent Class
This is the class from which all event state objects are derived. All events are constructed with
a reference to the object, that is, the source that is logically deemed to be the object upon
which a specific event initially occurred. To create a new ConnectionEvent instance,
applications use the methods provided by this class: getLocalAddress(), getLocalPort(),
getRemoteAddress(), getRemotePort(), and hashcode().

Guidelines for Writing Connection Filter Rules
There are certain guidelines for writing connection filter rules. If you do not specify connection
rules, then all connections are accepted.

Depending on how you implement connection filtering, connection filter rules can be written in
a flat file or input directly on the WebLogic Remote Console.

The following sections provide information and guidelines for writing connection filter rules:

• Connection Filter Rules Syntax

• Types of Connection Filter Rules

• How Connection Filter Rules are Evaluated

Connection Filter Rules Syntax
The syntax of connection filter rules is as follows:

• Each rule must be written on a single line.

• Tokens in a rule are separated by white space.

• A pound sign (#) is the comment character. Everything after a pound sign on a line is
ignored.

• Whitespace before or after a rule is ignored.

• Lines consisting only of whitespace or comments are skipped.

Chapter 6
Guidelines for Writing Connection Filter Rules

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 6

The format of filter rules differ depending on whether you are using a filter file to enter the filter
rules or you enter the filter rules in WebLogic Remote Console.

• When entering the filter rules in WebLogic Remote Console, enter them in the following
format:

targetAddress localAddress localPort action protocols

• When specifying rules in the filter file, enter them in the following format:

targetAddress action protocols

– targetAddress specifies one or more systems to filter.

– localAddress defines the host address of the WebLogic Server instance. (If you
specify an asterisk (*), the match returns all local IP addresses.)

– localPort defines the port on which the WebLogic Server instance is listening. (If you
specify an asterisk (*), the match returns all available ports on the server).

– action specifies the action to perform. This value must be allow or deny.

– protocols is the list of protocol names to match. The following protocols may be
specified: http, https, t3, t3s, ldap, ldaps, iiop, iiops, and com. (Although the giop,
giops, and dcom protocol names are still supported, their use is deprecated as of
release 9.0; you should use the equivalent iiop, iiops, and com protocol names.)

Note

The SecurityConfigurationMBean provides a
CompatibilityConnectionFiltersEnabled attribute for enabling compatibility with
previous connection filters.

– If no protocol is defined, all protocols will match a rule.

Types of Connection Filter Rules
Two types of filter rules are recognized:

• Fast rules

A fast rule applies to a hostname or IP address with an optional netmask. If a hostname
corresponds to multiple IP addresses, multiple rules are generated (in no particular order).
Netmasks can be specified either in numeric or dotted-quad form. For example:

dialup-555-1212.pa.example.net 127.0.0.1 7001 deny t3 t3s #http(s) OK
192.168.81.0/255.255.254.0 127.0.0.1 8001 allow #23-bit netmask
192.168.0.0/16 127.0.0.1 8002 deny #like /255.255.0.0

Hostnames for fast rules are looked up once at startup of the WebLogic Server instance.
While this design greatly reduces overhead at connect time, it can result in the filter
obtaining out of date information about what addresses correspond to a hostname. Oracle
recommends using numeric IP addresses instead.

• Slow rules

A slow rule applies to part of a domain name. Because a slow rule requires a connect-time
DNS lookup on the client-side in order to perform a match, it may take much longer to run
than a fast rule. Slow rules are also subject to DNS spoofing. Slow rules are specified as
follows:

Chapter 6
Guidelines for Writing Connection Filter Rules

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 6

*.script-kiddiez.org 127.0.0.1 7001 deny

An asterisk only matches at the head of a pattern. If you specify an asterisk anywhere else
in a rule, it is treated as part of the pattern. Note that the pattern will never match a domain
name since an asterisk is not a legal part of a domain name.

How Connection Filter Rules are Evaluated
When a client connects to WebLogic Server, the rules are evaluated in the order in which they
were written. The first rule to match determines how the connection is treated. If no rules
match, the connection is permitted.

To further protect your server and only allow connections from certain addresses, specify the
last rule as:

0.0.0.0/0 * * deny

With this as the last rule, only connections that are allowed by preceding rules are allowed, all
others are denied. For example, if you specify the following rules:

<Remote IP Address> * * allow https
0.0.0.0/0 * * deny

Only machines with the Remote IP Address are allowed to access the instance of WebLogic
Server running connection filter. All other systems are denied access.

Note

The default connection filter implementation interprets a target address of 0 (0.0.0.0/0)
as meaning "the rule should apply to all IP addresses." By design, the default filter
does not evaluate the port or the local address, just the action. To clearly specify
restrictions when using the default filter, modify the rules.

Another option is to implement a custom connection filter.

Configuring the WebLogic Connection Filter
WebLogic Server provides an out-of-the-box network connection filter, which you can configure
using the WebLogic Remote Console.

Developing Custom Connection Filters
If you do not want to use the WebLogic connection filter and want to develop you own, you can
use the application programming interface (API) provided in the weblogic.security.net
package to do so.

For a description of the weblogic.security.net package, see Network Connection Filter API.

To develop custom connection filters with Oracle WebLogic Server, perform the following
steps:

1. Write a class that implements the ConnectionFilter interface (minimum requirement).

Chapter 6
Configuring the WebLogic Connection Filter

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 6

Or, optionally, if you want to use WebLogic Remote Console to enter and modify the
connection filtering rules directly, write a class that implements both the ConnectionFilter
interface and the ConnectionFilterRulesListener interface.

2. If you choose the minimum requirement in step 1 (only implementing the
ConnectionFilter interface), enter the connection filtering rules in a flat file and define the
location of the flat file in the class that implements the ConnectionFilter interface. Then
use WebLogic Remote Console to configure the class in WebLogic Server. For instructions
for configuring the class in WebLogic Remote Console, see Using Connection Filters in
Administering Security for Oracle WebLogic Server.

3. If you choose to implement both interfaces in step 1, use WebLogic Remote Console to
configure the class and to enter the connection filtering rules. For instructions on
configuring the class inWebLogic Remote Console, see Using Connection Filters in
Administering Security for Oracle WebLogic Server.

Note that if connection filtering is implemented when a Java or Web browser client tries to
connect to a WebLogic Server instance, The WebLogic Server instance constructs a
ConnectionEvent object and passes it to the accept() method of your connection filter class.
The connection filter class examines the ConnectionEvent object and accepts the connection
by returning, or denies the connection by throwing a FilterException.

Both implemented classes (the class that implements only the ConnectionFilter interface and
the class that implements both the ConnectionFilter interface and the
ConnectionFilterRulesListener interface) must call the accept() method after gathering
information about the client connection. However, if you only implement the ConnectionFilter
interface, the information gathered includes the remote IP address and the connection
protocol: http, https, t3, t3s, ldap, ldaps, iiop, iiops, or com. If you implement both
interfaces, the information gathered includes the remote IP address, remote port number, local
IP address, local port number and the connection protocol.

Chapter 6
Developing Custom Connection Filters

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 6

7
Using Java Security Features to Protect
WebLogic Resources

To protect WebLogic resources, Oracle WebLogic Server supports the use of Java security
artifacts, such as Jakarta security, Java Security Manager, and Jakarta Authorization.

• Using Jakarta Security to Protect WebLogic Resources

• Using the Java Security Manager to Protect WebLogic Resources

• Using Jakarta Authorization

Using Jakarta Security to Protect WebLogic Resources
You can use Jakarta Security to protect URL (Web), EJBs, and Connector components.
Additionally, WebLogic Server extends the connector model of specifying additional security
policies in the deployment descriptor to the URL and EJB components.

The connector specification provides for deployment descriptors to specify additional security
policies using the <security-permission> tag (see Example 7-1):

Example 7-1 Security-Permission Tag Sample

<security-permission>
<description> Optional explanation goes here </description>
<security-permission-spec>
<!--
A single grant statement following the syntax of http://xmlns.jcp.org/j2se/1.4.2/docs/
guide/security/PolicyFiles.html#FileSyntax
without the "codebase" and "signedBy" clauses goes here. For example:
-->
grant {
permission java.net.SocketPermission "*", "resolve";
};
</security-permission-spec>
</security-permission>

Besides support of the <security-permission> tag in the rar.xml file, WebLogic Server adds
the <security-permission> tag to the weblogic.xml and weblogic-ejb-jar.xml files. This
extends the connector model to the two other application types, Web applications and EJBs,
provides a uniform interface to security policies across all component types, and anticipates
future Jakarta EE specification changes.

Note

Jakarta EE has requirements for Java security default permissions for different
application types (see the Jakarta EE specification) as does the Jakarta Connector
Architecture specification.

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 10

Using the Java Security Manager to Protect WebLogic
Resources

You can set up the Java Security Manager to be used with WebLogic Server to provide
additional protection for resources running in a Java Virtual Machine (JVM). You can also use
Printing Security Manager which is an enhancement to the Java Security Manager.

Note

The Java Security Manager was deprecated in JDK 17 and will be removed in a future
release. WebLogic Server will display warnings if you start a server with the Java
Security Manager enabled.

WebLogic Server will no longer support the Java Security Manager after it is removed
from the JDK.

Using a Java Security Manager is an optional security step. The following sections describe
how to use the Java Security Manager with WebLogic Server:

• Setting Up the Java Security Manager

• Using Printing Security Manager

For more information on Java Security Manager, see the Java Security Web page at http://
docs.oracle.com/javase/8/docs/technotes/guides/security/index.html.

Setting Up the Java Security Manager
When you run WebLogic Server, WebLogic Server can use the Java Security Manager, which
prevents untrusted code from performing actions that are restricted by the Java security policy
file.

The JVM has security mechanisms built into it that allow you to define restrictions to code
through a Java security policy file. The Java Security Manager uses the Java security policy
file to enforce a set of permissions granted to classes. The permissions allow specified classes
running in that instance of the JVM to permit or not permit certain runtime operations. In many
cases, where the threat model does not include malicious code being run in the JVM, the Java
Security Manager is unnecessary. However, when untrusted third-parties use WebLogic Server
and untrusted classes are being run, the Java Security Manager may be useful.

To use the Java Security Manager with WebLogic Server, specify the -Djava.security.policy
and -Djava.security.manager arguments when starting WebLogic Server. The -
Djava.security.policy argument specifies a filename (using a relative or fully-qualified
pathname) that contains Java security policies. If you're using Java Security Manager with
WebLogic Server, then you must also specify the -Dweblogic.Name argument when starting
WebLogic Server from the command line using the java weblogic.Server command. For
example:

java -Dweblogic.Name=server-name
 -Djava.security.manager
 -Djava.security.policy[=]=filename
 weblogic.Server

Chapter 7
Using the Java Security Manager to Protect WebLogic Resources

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 10

http://docs.oracle.com/javase/8/docs/technotes/guides/security/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/index.html

WebLogic Server provides a sample Java security policy file located at
WL_HOME\server\lib\weblogic.policy. Do not edit this file because it may be overwritten by
Patch Set Updates (PSU). Instead, use it as a model to create your own security policy file.
Consider concatenating the sample weblogic.policy file with your custom security policy file
to automatically obtain any updates delivered in the PSU.

Note

This sample policy file is not complete and is not sufficient to start WebLogic Server
without modifications. When you create your own custom policy file, make sure that
you add various permissions based on your configuration in order for WebLogic
Server and all applications to work properly.

Pay particular attention if you apply patches. If you apply patches that include code
with system privileges, you may need to make associated changes to any custom
Java policy file you are using.

For example, to successfully start WebLogic Server and deploy an application using WebLogic
Remote Console, you might need to add permissions such as the following to your custom
policy file:

permission java.util.PropertyPermission '*', 'read';
permission java.lang.RuntimePermission '*';
permission java.io.FilePermission ' <<ALL FILES>>', 'read,write';
permission javax.management.MBeanPermission '*', '*';

If you enable the Java Security Manager but do not specify a security policy file, the Java
Security Manager uses the default security policies defined in the java.policy file in
the $JAVA_HOME\jre\lib\security directory.

Define security policies for the Java Security Manager in one of the following ways:

• Modifying your Custom Policy File for General Use

• Setting Application-Type Security Policies

• Setting Application-Specific Security Policies

Modifying your Custom Policy File for General Use
To use the Java Security Manager security policy file with your WebLogic Server deployment,
you must specify the location of a custom policy file to the Java Security Manager when you
start WebLogic Server. To do this, set the following arguments on the Java command line you
use to start the server:

• java.security.manager tells the JVM to use a Java security policy file.

• java.security.policy tells the JVM the location of the Java security policy file to use.
The argument is the fully qualified name of the Java security policy, which in this case,
might be example.policy.

For example:

java...-Djava.security.manager \
 -Djava.security.policy==C:\weblogic\example.policy

Chapter 7
Using the Java Security Manager to Protect WebLogic Resources

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 10

Note

Be sure to use == instead of = when specifying the java.security.policy argument so
that only the example.policy file is used by the Java Security Manager. The ==
causes the example.policy file to override any default security policy. A single equal
sign (=) appends the example.policy file to an existing security policy.

If you have extra directories in your CLASSPATH or if you are deploying applications in extra
directories, add specific permissions for those directories to your example.policy file.

Oracle recommends taking the following precautions when using a policy file:

• Do not make your changes to the WL_HOME\server\lib\weblogic.policy file directly as
subsequent Patch Set Updates (PSUs) will overwrite your changes. Instead, create a
custom policy file based off of WL_HOME\server\lib\weblogic.policy and apply your
changes to the custom policy file. Consider configuring your custom policy file to
automatically pull in the contents of WL_HOME\server\lib\weblogic.policy so you can get
any changes from the PSU automatically.

• Make a backup copy of your custom policy file and put the backup copy in a secure
location.

• Set the permissions on the custom policy file via the operating system such that the
administrator of the WebLogic Server deployment has write and read privileges and no
other users have access to the file.

Note

The Java Security Manager is partially disabled during the booting of
Administration and Managed Servers. During the boot sequence, the current Java
Security Manager is disabled and replaced with a variation of the Java Security
Manager that has the checkRead() method disabled. While disabling this method
greatly improves the performance of the boot sequence, it also minimally
diminishes security. The startup classes for WebLogic Server are run with this
partially disabled Java Security Manager and therefore the classes need to be
carefully scrutinized for security considerations involving the reading of files.

For more information about the Java Security Manager, see the Javadoc for the
java.lang.SecurityManager class, available at http://docs.oracle.com/javase/8/
docs/api/java/lang/SecurityManager.html.

Setting Application-Type Security Policies
Set default security policies for servlets, EJBs, and Jakarta Connector Architecture resource
adapters in the Java security policy file. The default security policies for servlets, EJBs, and
resource adapters are defined in the Java security policy file under the following codebases:

• Servlets—"file:/weblogic/application/defaults/Web"

• EJBs—"file:/weblogic/application/defaults/EJB"

• Resource adapters—"file:/weblogic/application/defaults/Connector"

Chapter 7
Using the Java Security Manager to Protect WebLogic Resources

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 10

http://docs.oracle.com/javase/8/docs/api/java/lang/SecurityManager.html
http://docs.oracle.com/javase/8/docs/api/java/lang/SecurityManager.html

Note

These security policies apply to all servlets, EJBs, and resource adapters
deployed in the particular instance of WebLogic Server.

Setting Application-Specific Security Policies
Set security policies for a specific servlet, EJB, or resource adapter by adding security policies
to their deployment descriptors. Deployment descriptors are defined in the following files:

• Servlets—weblogic.xml

• EJBs—weblogic-ejb-jar.xml

• Resource adapters—rar.xml

Note

The security policies for resource adapters follow the Jakarta EE standard while
the security policies for servlets and EJBs follow the WebLogic Server extension
to the Jakarta EE standard.

Example 7-2 shows the syntax for adding a security policy to a deployment descriptor:

Note

The <security-permission-spec> tag cannot currently be added to a weblogic-
application.xml file, you are limited to using this tag within a weblogic-ejb-jar.xml,
rar.xml, or weblogic.xml file. Also, variables are not supported in the <security-
permission-spec> attribute.

Example 7-2 Security Policy Syntax

<security-permission>
 <description>
 Allow getting the J2EEJ2SETest4 property
 </description>
 <security-permission-spec>
 grant {
 permission java.util.PropertyPermission "welcome.J2EEJ2SETest4","read";
 };
 </security-permission-spec>
</security-permission>

Using Printing Security Manager
Printing Security Manager is an enhancement to the Java Security Manager. You can use
Printing Security Manager to identify all of the required permissions for any Java application
running under Java Security Manager. Unlike The Java Security Manager, which identifies
needed permissions one at a time, the Printing Security Manager identifies all of the needed
permissions without intervention.

Chapter 7
Using the Java Security Manager to Protect WebLogic Resources

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 10

For more information on Java Security Manager, see the Java Security Web page at http://
docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html.

Note

Do not use Printing Security Manager in production environments. It is intended solely
for development to identify missing permissions.

It does not prevent untrusted code operations.

Printing Security Manager Startup Arguments
To use the Java Security Manager with WebLogic Server, you specify two arguments when
starting WebLogic Server:

• -Djava.security.manager=weblogic.security.psm.PrintingSecurityManager

The -Djava.security.manager argument tells WebLogic Server which Java Security
Manager to start, in this case the Printing Security Manager.

• -Djava.security.policy

The -Djava.security.policy argument specifies a file name (using a relative or fully-
qualified path name) that contains Java security policies. WebLogic Server provides a
sample Java security policy file located at WL_HOME\server\lib\weblogic.policy. Do not
use this file directly because it may be overwritten by Patch Set Updates (PSU). Instead,
use it as a model to create your own security policy file. Consider concatenating the
sample weblogic.policy file with your custom security policy file to automatically obtain
any updates delivered in the PSU.

By default, the startWebLogic script already includes the -Djava.security.policy
property, which is set to WL_HOME/server/lib/weblogic.policy. Update the -
Djava.security.policy to specify the file location of your custom policy file.

Note

The sample policy file at WL_HOME\server\lib\weblogic.policy is not complete and
is not sufficient to start WebLogic Server without first being modified. When you create
your own custom policy file, make sure that you add various permissions based on
your configuration in order for WebLogic Server and all applications to work properly.

See the following sections:

• Modifying your Custom Policy File for General Use

• Setting Application-Type Security Policies

• Setting Application-Specific Security Policies

Starting WebLogic Server With Printing Security Manager
To start WebLogic Server with the Printing Security Manager from a UNIX shell, pass the
following argument to the startWebLogic.sh script in DOMAIN_HOME. This example uses the
default weblogic.policy Java policy file from startWeblogic.sh.

Chapter 7
Using the Java Security Manager to Protect WebLogic Resources

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 10

http://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html

startWeblogic.sh
-Djava.security.manager=weblogic.security.psm.PrintingSecurityManager

For a Windows system without a UNIX shell, first set the startup options in JAVA_OPTIONS,
and then use the startWebLogic.cmd script in DOMAIN_HOME to start WebLogic Server. This
example uses the default weblogic.policy Java policy file from startWeblogic.cmd.

$ set JAVA_OPTIONS=-Djava.security.manager=weblogic.security.psm.PrintingSecurityManager

$ DOMAIN_HOME\startWeblogic.cmd

Writing Output Files
Printing Security Manager generates output that lists which code source needs which
permissions. It also generates a policy grant that you can copy and paste into the policy file.

By default, output is to System.out. You can configure output files via two arguments:

• -Doracle.weblogic.security.manager.printing.file=psm_perms.txt

• -
Doracle.weblogic.security.manager.printing.generated.grants.file=psm_grants.tx
t

The value of the first system argument is a file to which Printing Security Manager writes all
missing-permission messages. The value of the second argument is a file to which Printing
Security Manager writes the missing policy grants.

For example, for a Windows system without a UNIX shell, add the argument to
JAVA_OPTIONS:

$ set JAVA_OPTIONS=-Djava.security.manager=weblogic.security.psm.PrintingSecurityManager
-Doracle.weblogic.security.manager.printing.file=psm_perms.txt

$ startWeblogic.cmd

If you do not specify the full path for the output files, they are created in DOMAIN_HOME.

Using Jakarta Authorization
Jakarta Authorization provides an alternate authorization mechanism for the EJB and servlet
containers in a WebLogic Server domain. You can enable the WebLogic JACC provider by
specifying certain system property-value pairs.

The Jakarta Authorization specification is part of the Jakarta EE Platform. Jakarta
Authorization extends the Java permission-based security model to EJBs and servlets. Jakarta
Authorization is defined at https://jakarta.ee/specifications/authorization/. Jakarta Authorization
was previously known as Java Authorization Contract for Containers (JACC).

As shown in Table 7-2, when Jakarta Authorization is configured, the WebLogic Security
framework access decisions, adjudication, and role mapping functions are not used for EJB
and servlet authorization decisions.

WebLogic Server implements a Jakarta Authorization provider which, although fully compliant
with the Jakarta Authorization specification, is not as optimized as the WebLogic Authorization
provider. The Jakarta Authorization classes are used for rendering access decisions. Because
the Jakarta Authorization specification does not define how to address role mapping,
WebLogic JACC classes are used for role-to-principal mapping.

Chapter 7
Using Jakarta Authorization

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 10

https://jakarta.ee/specifications/authorization/

Note

The Jakarta Authorization classes used by WebLogic Server do not include an
implementation of a Policy object for rendering decisions but instead rely on the
java.security.Policy object (see Java SE and JDK API Specification).

This section discusses the following topics:

• Comparing the WebLogic JACC Provider with the WebLogic Authorization Provider

• Enabling the WebLogic JACC Provider

Table 7-2 shows which providers are used for role mapping when JACC is enabled.

Table 7-1 When Jakarta Authorization is Enabled

Status Provider used for EJB/
Servlet Authorization
and Role Mapping

Provider used for all
other Authorization and
Role Mapping

EJB/Servlet Roles and
Policies Can be
Viewed and Modified
by WebLogic Remote
Console

Jakarta
Authorization is
enabled

JACC provider WebLogic Security
Framework providers

No

Jakarta
Authorization is not
enabled

WebLogic Security
Framework providers

WebLogic Security
Framework providers

Yes, depending on
settings

Note

In a domain, either enable Jakarta Authorization on all servers or on none. The reason
is that Jakarta Authorization is server-specific, while the WebLogic Security
Framework is realm/domain specific. If you enable Jakarta Authorization, either by
using the WebLogic JACC provider or (recommended) by creating your own Jakarta
Authorization provider, you are responsible for keeping EJB and servlet authorization
policies synchronized across the domain. For example, applications are redeployed
each time a server boots. If a server configured for Jakarta Authorization reboots
without specifying the Jakarta Authorization options on the command line, the server
uses the default WebLogic Authorization provider for EJB and servlet role mapping
and authorization decisions.

Comparing the WebLogic JACC Provider with the WebLogic Authorization
Provider

The WebLogic JACC provider fully complies with the Jakarta Authorization specification;
however, it does not support dynamic role mapping, nor does it address authorization
decisions for resources other than EJBs and servlets. For better performance, and for more
flexibility regarding security features, Oracle recommends using SSPI-based providers.

Table 7-2 compares the features provided by the WebLogic JACC provider with those of the
WebLogic Authorization provider.

Chapter 7
Using Jakarta Authorization

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 10

https://docs.oracle.com/en/java/javase/17/docs/api/index.html

Table 7-2 Comparing the WebLogic JACC Provider with the WebLogic Authorization
Provider

WebLogic JACC Provider WebLogic Authorization Provider

Implements the Jakarta Authorization specification Value-added security framework

Addresses only EJB and servlet deployment/
authorization decisions

Addresses deployment/authorization decisions

Uses the java.security.Policy object to
render decisions

Allows for multiple authorization/role providers

Static role mapping at deployment time Dynamic role mapping

Jakarta EE permissions control access Entitlements engine controls access

Role and role-to-principal mappings are modifiable
only through deployment descriptors

Roles and role-to-principal mappings are
modifiable through deployment descriptors and
WebLogic Remote Console

Enabling the WebLogic JACC Provider
In the command that starts WebLogic Server, you can enable the WebLogic JACC provider by
specifying the following system property/value pairs:

• Property:

jakarta.security.jacc.PolicyConfigurationFactory.provider

Value:

weblogic.security.jacc.simpleprovider.PolicyConfigurationFactoryImpl

• Property:

jakarta.security.jacc.policy.provider

Value:

weblogic.security.jacc.simpleprovider.SimpleJACCPolicy

• Property:

weblogic.security.jacc.RoleMapperFactory.provider

Value:

weblogic.security.jacc.simpleprovider.RoleMapperFactoryImpl

Note

If the system properties, -
Djakarta.security.jacc.PolicyConfigurationFactory.provider and -
Djakarta.security.jacc.policy.provider are specified, then WebLogic Server
automatically initializes the default RoleMapperFactory property. Therefore, you do not
need to specify the weblogic.security.jacc.RoleMapperFactory.provider system
property to enable the WebLogic JACC provider.

For example, assuming a properly configured weblogic.policy file, the following command
line enables the WebLogic JACC provider:

Chapter 7
Using Jakarta Authorization

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 10

./startWebLogic.sh -Djakarta.security.jacc.policy.provider=\
weblogic.security.jacc.simpleprovider.SimpleJACCPolicy \
-Djakarta.security.jacc.PolicyConfigurationFactory.provider=\
weblogic.security.jacc.simpleprovider.PolicyConfigurationFactoryImpl \

Chapter 7
Using Jakarta Authorization

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 10

8
SAML APIs

Oracle WebLogic Server supports the use of Security Assertion Markup Language (SAML)
APIs. SAML is an XML-based protocol for exchanging security information between software
entities on the Web. SAML security is based on the interaction of asserting and relying
parties.SAML provides single sign-on capabilities; users can authenticate at one location and
then access service providers at other locations without having to log in multiple times.
WebLogic Server supports SAML 2.0. The WebLogic Server implementation:

• Supports the HTTP POST, HTTP Artifact, and HTTP Redirect bindings for the Web SSO
profile for SAML 2.0.

• Supports SAML authentication and attribute statements (does not support SAML
authorization statements)

For a general description of SAML and SAML assertions in a WebLogic Server environment,
see Security Assertion Markup Language (SAML) in Understanding Security for Oracle
WebLogic Server.

For information on configuring a SAML credential mapping provider, see Configuring a SAML
2.0 Credential Mapping Provider for SAML 2.0 in Administering Security for Oracle WebLogic
Server.

For access to the SAML specifications, go to http://www.oasis-open.org. Also see the
Security Assertion Markup Language (SAML) 2.0 Technical Overview (http://www.oasis-
open.org/committees/download.php/11511/sstc-saml-tech-overview-2.0-draft-03.pdf).

This chapter includes the following sections:

• SAML API Description

• Configuring SAML SSO Attribute Support

SAML API Description
Learn about the WebLogic SAML APIs that you can use to implement SAML in WebLogic
Server.

Table 8-1 lists the WebLogic SAML 2.0 APIs. See the Javadoc for details.

Table 8-1 WebLogic SAML 2.0 APIs

WebLogic SAML 2.0 APIs Description

com.bea.security.saml2.provid
ers

Provides interfaces and classes for the configuration, control, and
monitoring of SAML 2.0 security providers in a WebLogic security realm.

SAML2AttributeInfo A class that represents a single attribute of a SAML 2.0 Assertion
AttributeStatement.

SAML2AttributeStatementInfo A class that represents an AttributeStatement in a SAML 2.0 Assertion.

SAML2CredentialAttributeMa
pper

Interface used to perform mapping from Subject to SAML 2.0 Assertion
attributes.

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 11

http://www.oasis-open.org
http://www.oasis-open.org/committees/download.php/11511/sstc-saml-tech-overview-2.0-draft-03.pdf
http://www.oasis-open.org/committees/download.php/11511/sstc-saml-tech-overview-2.0-draft-03.pdf

Table 8-1 (Cont.) WebLogic SAML 2.0 APIs

WebLogic SAML 2.0 APIs Description

SAML2CredentialNameMapp
er

Interface used to perform the mapping of user and group information to
SAML 2.0 assertions.

SAML2IdentityAsserterAttribut
eMapper

Interface used to perform mapping from SAML 2.0 Attribute Statement to
Attribute Principals.

SAML2IdentityAsserterName
Mapper

Interface used to perform the mapping of user information contained in a
SAML 2.0 assertion to a local user name.

SAML2NameMapperInfo The SAML2NameMapperInfo is used to represent user name and group
information contained in SAML 2.0 assertions.

com.bea.security.saml2.provid
ers.registry

Abstract interfaces for SAML 2.0 Identity Provider and Service Provider
partners and metadata.

BindingClientPartner Binding Client partner is a partner that supports backend channel
communication.

IdPPartner Abstract representation of a SAML 2.0 Identity Provider partner.

Endpoint Abstract representation of a SAML 2.0 service endpoint.

IndexedEndpoint This class represents the end point that could be indexed, like Artifact
Resolution Service's end point.

MetadataPartner Metadata partner contains contact information for the partner, which is
mainly required by the SAML 2.0 metadata profile.

Partner Abstract representation of a SAML 2.0 partner. This interface defines
mandatory information for a partner.

SPPartner Abstract representation of a SAML 2.0 Service Provider partner.

WebSSOIdPPartner Abstract representation of a SAML 2.0 Identity Provider partner for Web
SSO profile.

WebSSOPartner Abstract representation of a SAML 2.0 partner for Web SSO profile.

WebSSOSPPartner Abstract representation of a SAML 2.0 Service Provider partner for Web
SSO profile.

WSSIdPPartner Abstract representation of a SAML 2.0 Identity Provider partner for WSS
SAML Token profile.

WSSPartner Abstract representation of a SAML 2.0 partner for WSS SAML Token
profile.

WSSSPPartner Abstract representation of a SAML 2.0 Service Provider partner for WSS
SAML Token profile. It has no specific attributes/methods.

Configuring SAML SSO Attribute Support
A SAML assertion is a piece of data produced by a SAML authority regarding either an act of
authentication performed on a subject, attribute information about the subject, or authorization
data applying to the subject with respect to a specified resource. You can configure SAML SSO
attributes to be used with SAML 2.0.

This section describes the following topics:

• What Are SAML SSO Attributes?

• APIs for SAML Attributes

• SAML 2.0 Basic Attribute Profile Required

Chapter 8
Configuring SAML SSO Attribute Support

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 11

• Passing Multiple Attributes to SAML Credential Mappers

• How to Implement SAML Attributes

• Examples of the SAML 2.0 Attribute Interfaces

• Make the Custom SAML Credential Attribute Mapper Class Available in the Console

• Make the Custom SAML Identity Asserter Class Available in the Console

What Are SAML SSO Attributes?
The SAML specification (see http://www.oasis-open.org) allows additional, unspecified
information about a particular subject to be exchanged between SAML partners as attribute
statements in an assertion. A SAML attribute assertion is therefore a particular type of SAML
assertion that conveys site-determined information about attributes of a Subject.

The SAML 2.0 Credential Mapping provider and Identity Assertion provider mechanisms
support the use of a custom attribute mapper that can obtain additional attributes (other than
group information) to be written into SAML assertions, and to then map attributes from
incoming SAML assertions.

To do this:

• The SAML credential mapper (on the SAML Identity Provider site) determines how to
package the attributes based on the existence of this custom attribute mapper.

• The SAML identity asserter (on the SAML Service Provider site) determines how to get the
attributes based on the configuration of the custom name mapper.

• The Java Subject is used to make the attributes extracted from assertions available to
applications. This requires that the SAML Authentication provider be configured and the
virtual user be enabled on a SAML partner.

APIs for SAML Attributes
Use the following SAML 2.0 attribute APIs:

• SAML2AttributeInfo

• SAML2AttributeStatementInfo

• SAML2CredentialAttributeMapper

• SAML2IdentityAsserterAttributeMapper

Subsequent sections describe the use of these SAML attribute APIs.

SAML 2.0 Basic Attribute Profile Required
SAML 1.1 does not prescribe the name format of the SAML attribute.

However, only the SAML 2.0 Basic Attribute Profile is supported for SAML 2.0. Only attributes
with the urn:oasis:names:tc:SAML:2.0:attrname-format:basic name format in
SAML2AttributeInfo are written into a SAML 2.0 assertion.

The urn:oasis:names:tc:SAML:2.0:attrname-format:basic name format is the default, so
you need not set it.

If you do set the name format, you must specify urn:oasis:names:tc:SAML:2.0:attrname-
format:basic in the SAML2.AttributeInfo.setAttributeNameFormat method, as follows:

Chapter 8
Configuring SAML SSO Attribute Support

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 11

http://www.oasis-open.org

SAML2AttributeInfo attrInfo = new SAML2AttributeInfo(
"AttributeWithSingleValue", "ValueOfAttributeWithSingleValue");
attrInfo.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-format:basic");
attrs.add(attrInfo);

Passing Multiple Attributes to SAML Credential Mappers
When the configured attribute mapper is called, it returns
Collection<SAML2AttributeStatementInfo>. You can specify multiple attribute statements,
each containing multiple attributes, each possibly having multiple attribute values.

An example of doing this is as follows:

private Collection<SAML2AttributeStatementInfo> getAttributeStatementInfo(
Subject subject, ContextHandler handlers) {
Collection<SAML2AttributeInfo> attrs = new ArrayList<SAML2AttributeInfo>();

SAML2AttributeInfo attrInfo = new SAML2AttributeInfo(
"AttributeWithSingleValue", "ValueOfAttributeWithSingleValue");
attrInfo.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-format:basic");
attrs.add(attrInfo);

ArrayList<String> v = new ArrayList<String>();
v.add("Value1OfAttributeWithMultipleValue");
v.add("Value2OfAttributeWithMultipleValue");
v.add("Value3OfAttributeWithMultipleValue");
SAML2AttributeInfo attrInfo1 = new SAML2AttributeInfo(
"AttributeWithMultipleValue", v);
attrInfo1.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-format:basic");

attrs.add(attrInfo1);

SAML2AttributeInfo attrInfo2 = new SAML2AttributeInfo(
"AttributeWithInvalidNameFormat",
"ValueOfAttributeWithInvalidNameFormatValue");
attrInfo2.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-
format:unspecified");
attrs.add(attrInfo2);

SAML2AttributeInfo attrInfo3 = new SAML2AttributeInfo(
"AttributeWithNullValue", "null");
attrInfo3.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-format:basic");
attrs.add(attrInfo3);
:
:
Collection<SAML2AttributeStatementInfo> attrStatements = new
ArrayList<SAML2AttributeStatementInfo>();
attrStatements.add(new SAML2AttributeStatementInfo(attrs));
attrStatements.add(new SAML2AttributeStatementInfo(attrs1));
return attrStatements;
}

How to Implement SAML Attributes
This section walks through the process you follow to implement SAML attributes.

Chapter 8
Configuring SAML SSO Attribute Support

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 11

Note

This section uses the SAML 2.0 interface names for the purpose of example.

From the SAML credential mapping (Identity Provider) site:

1. Instantiate the SAML2AttributeInfo and SAML2AttributeStatementInfo classes.

Implement the SAML2CredentialAttributeMapper interface.

Also implement the SAML2CredentialNameMapper interface in the same implementation.
(The SAML2CredentialAttributeMapper and SAML2CredentialNameMapper interfaces must
both be in the same implementation.)

By implementing the SAML2CredentialNameMapper interface, you can then use WebLogic
Remote Console to set the NameMapperClassName attribute to the class name of your
SAML2CredentialAttributeMapper instance.

2. Use WebLogic Remote Console to configure your new custom attribute mapper on a
SAML provider, or on each individual partner, using the NameMapperClassName attribute of
the SAML Credential Mapping provider to identify it. See Make the Custom SAML
Credential Attribute Mapper Class Available in the Console .

3. The SAML Credential Mapping provider determines if the configured custom name mapper
is an implementation of the attribute mapping interface and, if so, calls your custom
attribute mapping interface to obtain attribute values to write to the generated SAML
assertions.

4. The SAML Credential Mapping provider does not validate the attribute names or values
obtained from your custom attribute mapper.

Any attribute with a non-null attribute name is written to the attribute statements in the
SAML assertion. An attribute with a null or empty attribute name is ignored, and
subsequent attributes are processed.

If an attribute has multiple values, each value appears as an <AttributeValue> element of
a single <Attribute> in SAML attribute statements.

For SAML 2.0, null or empty attribute values are handled based on Assertions and the
Protocols for the OASIS SAML V2.0 March 2005 (http://docs.oasis-open.org/
security/saml/v2.0/saml-core-2.0-os.pdf).

An attribute with a name format other than urn:oasis:names:tc:SAML:2.0:attrname-
format:basic is skipped.

From the SAML Identity Assertion (Service Provider) site:

1. Implement the SAML2IdentityAsserterAttributeMapper and
SAML2IdentityAsserterNameMapper interfaces in the same implementation. (The
SAML2IdentityAsserterAttributeMapper and SAML2IdentityAsserterNameMapper
interfaces must both be in the same implementation.)

By implementing the SAML2IdentityAsserterNameMapper interface, you can then use
WebLogic Remote Console to set the NameMapperClassName attribute to the class name of
your SAML2IdentityAsserterAttributeMapper instance.

2. Use WebLogic Remote Console to configure the SAML Identity Assertion provider, as
described in Make the Custom SAML Identity Asserter Class Available in the Console. Set
the NameMapperClassName attribute to the class name of your custom
SAML2IdentityAsserterAttributeMapper instance.

Chapter 8
Configuring SAML SSO Attribute Support

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 11

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

The SAML Identity Assertion provider processes <AttributeStatement> elements of the
incoming SAML assertions and constructs a collection of SAML attribute statements.

3. The SAML Identity Assertion provider determines if the configured custom name mapper
implements the SAML2IdentityAsserterAttributeMapper interface. If it does, the SAML
Identity Assertion provider calls the mapAttributeInfo method to obtain the SAML
assertion's attributes.

Your mapAttributeInfo method takes a Collection of SAMLAttributeStatementInfo
instances that represent the attributes of attribute statements in a SAML Assertion, and
maps the desired attributes in any application specific way.

4. The SAML IdentityAssertion provider makes the attributes from a SAML assertion available
to consumers via the Java Subject. This requires that the SAML Authentication provider be
configured and the virtual user be enabled on a SAML partner.

The attributes returned by the mapper are stored as subject principals or private
credentials, depending on the class type of the mapped attributes. Specifically, if the
mapper returns a collection of Principal objects, the mapped attributes are stored into the
subject principal set. Otherwise, the subject private credential set is used to carry the
mapped attributes.

The consuming code needs to know the class type of the object that the mapper uses to
represent attributes added to the subject, as shown in Example 8-2.

5. The SAML Identity Assertion provider checks the ContextHandler and attribute mapper.
(This walk through assumes the presence of the attribute mapper as stated in Step 4).

Note

If both the ContextHandler and attribute mapper are present and configured, the
attributes are instead made available to Web services via the ContextHandler, as
described in Securing WebLogic Web Services for Oracle WebLogic Server.

Examples of the SAML 2.0 Attribute Interfaces
This section provides examples of implementing the SAML 2.0 attribute interfaces that allow
writing additional attributes into SAML assertions.

Example Custom SAML 2.0 Credential Attribute Mapper
Example 8-1 shows an example of a single class that implements both the
SAML2CredentialNameMapper interface and the SAML2CredentialAttributeMapper interface.

Example 8-1 SAML 2.0 Credential Attribute Mapper

public class CustomSAML2CredentialAttributeMapperImpl implements
SAML2CredentialNameMapper, SAML2CredentialAttributeMapper {
private String nameQualifier = null;

public Collection<SAML2AttributeStatementInfo> mapAttributes(
Subject subject, ContextHandler handler) {
return getAttributeStatementInfo(subject, handler);
}
 /**
 * same as SAML2NameMapperImpl
 */
 public SAML2NameMapperInfo mapName(String name, ContextHandler handler) {

Chapter 8
Configuring SAML SSO Attribute Support

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 11

 System.out
 .println("CustomSAML2CredentialAttributeMapperImpl:mapName
: Mapped name: qualifier: "
 + nameQualifier + ", name: " + name);
 return new SAML2NameMapperInfo(nameQualifier, name, null);
 }

 /**
 * same as SAML2NameMapperImpl
 */
 public synchronized void setNameQualifier(String nameQualifier) {
 this.nameQualifier = nameQualifier;
 }

 /**
 * same as SAML2NameMapperImpl
 */
 public SAML2NameMapperInfo mapSubject(Subject subject,
 ContextHandler handler) {

 // Provider checks for null Subject...
 Set subjects = subject.getPrincipals(WLSUser.class);
 Set groups = subject.getPrincipals(WLSGroup.class);
 String userName = null;
 Set<String> groupStrings = new java.util.HashSet();

 if (subjects == null || subjects.size() == 0) {
 System.out
 .println("CustomSAML2CredentialAttributeMapperImp
l:mapSubject: No valid WLSUser pricipals found in Subject, returning null");
 return null;
 }

 if (groups == null || groups.size() == 0) {
 System.out
 .println("CustomSAML2CredentialAttributeMapperImp
l:mapSubject: No valid WLSGroup pricipals found in Subject, continuing");
 }
 else{
 java.util.Iterator<WLSGroup> it = groups.iterator();
 while(it.hasNext()){
 WLSGroup wg = it.next();
 groupStrings.add(wg.getName());
 }
 }

 if (subjects.size() != 1) {
 System.out
 .println("CustomSAML2CredentialAttributeMapperImp
l:mapSubject: More than one WLSUser principal found in Subject, taking first user only");
 }

 userName = ((WLSUser) subjects.iterator().next()).getName();
 if (userName == null || userName.equals("")) {
 System.out
 .println("CustomSAML2CredentialAttributeMapperImp
l:mapSubject: Username string is null or empty, returning null");
 return null;
 }

 // Return mapping information...
 System.out

Chapter 8
Configuring SAML SSO Attribute Support

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 11

TRACE.info("CustomSAML2CredentialAttributeMapperImpl:mapSubject: Mapped subject:
qualifier: "
 + nameQualifier
 + ", name: "
 + userName
 + ", groups: "
 + groups);

 SAML2NameMapperInfo saml2NameMapperInfo = new
 SAML2NameMapperInfo(nameQualifier, userName, groupStrings);
 //SAML2NameMapperInfo saml2NameMapperInfo = new
 SAML2NameMapperInfo(nameQualifier, userName, groups);

 return new SAML2NameMapperInfo(nameQualifier, userName, groups);
 }

private Collection<SAML2AttributeStatementInfo> getAttributeStatementInfo(
Subject subject, ContextHandler handlers) {
Collection<SAML2AttributeInfo> attrs = new ArrayList<SAML2AttributeInfo>();

SAML2AttributeInfo attrInfo = new SAML2AttributeInfo(
"AttributeWithSingleValue", "ValueOfAttributeWithSingleValue");
attrInfo.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-format:basic");
attrs.add(attrInfo);

ArrayList<String> v = new ArrayList<String>();
v.add("Value1OfAttributeWithMultipleValue");
v.add("Value2OfAttributeWithMultipleValue");
v.add("Value3OfAttributeWithMultipleValue");
SAML2AttributeInfo attrInfo1 = new SAML2AttributeInfo(
"AttributeWithMultipleValue", v);
attrInfo.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-format:basic");

attrs.add(attrInfo1);
:
:
Collection<SAML2AttributeStatementInfo> attrStatements = new
ArrayList<SAML2AttributeStatementInfo>();
attrStatements.add(new SAML2AttributeStatementInfo(attrs));
attrStatements.add(new SAML2AttributeStatementInfo(attrs1));
return attrStatements;
}
}

Use WebLogic Remote Console to configure the User Name Mapper class name to the fully-
qualified class name of this mapper implementation, as described in Make the Custom SAML
Credential Attribute Mapper Class Available in the Console .

The attributes encapsulated in the collection of SAML2AttributeStatementInfo objects
returned by the custom mapper implementation are included in the generated assertions by the
SAML 2.0 Credential Mapping provider.

Custom SAML 2.0 Identity Asserter Attribute Mapper
Example 8-2 shows an example implementation of SAML2IdentityAsserterNameMapper and
SAML2IdentityAsserterAttributeMapper.

Chapter 8
Configuring SAML SSO Attribute Support

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 11

Example 8-2 Custom SAML 2.0 Identity Asserter Attribute Mapper

public class CustomSAML2IdentityAsserterAttributeMapperImpl implements
SAML2IdentityAsserterNameMapper, SAML2IdentityAsserterAttributeMapper {
/**
 * same as SAML2NameMapperImpl
 */
public String mapNameInfo(SAML2NameMapperInfo info, ContextHandler handler) {
// Get the user name ...
String userName = info.getName();
System.out
.println("CustomSAML2IdentityAsserterAttributeMapperImpl:mapNameInfo: returning name: "
+ userName);
return userName;
}
}
:
:
public Collection<Object> mapAttributeInfo0(
Collection<SAML2AttributeStatementInfo> attrStmtInfos,
ContextHandler contextHandler) {
if (attrStmtInfos == null || attrStmtInfos.size() == 0) {
System.out
.println("CustomIAAttributeMapperImpl: attrStmtInfos has no elements");
return null;
}

Collection<Object> customAttrs = new ArrayList<Object>();

for (SAML2AttributeStatementInfo stmtInfo : attrStmtInfos) {
Collection<SAML2AttributeInfo> attrs = stmtInfo.getAttributeInfo();
if (attrs == null || attrs.size() == 0) {
System.out
.println("CustomIAAttributeMapperImpl: no attribute in statement: "
+ stmtInfo.toString());
} else {
for (SAML2AttributeInfo attr : attrs) {
if (attr.getAttributeName().equals("AttributeWithSingleValue")){
 CustomPrincipal customAttr1 = new CustomPrincipal(attr
.getAttributeName(), attr.getAttributeNameFormat(),
attr.getAttributeValues());
 customAttrs.add(customAttr1);
}else{
String customAttr = new StringBuffer().append(
attr.getAttributeName()).append(",").append(
attr.getAttributeValues()).toString();
customAttrs.add(customAttr);
}
}
}
}
return customAttrs;
}

public Collection<Principal> mapAttributeInfo(
Collection<SAML2AttributeStatementInfo> attrStmtInfos,
ContextHandler contextHandler) {
if (attrStmtInfos == null || attrStmtInfos.size() == 0) {
System.out
.println("CustomIAAttributeMapperImpl: attrStmtInfos has no elements");
return null;
}

Chapter 8
Configuring SAML SSO Attribute Support

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 11

Collection<Principal> pals = new ArrayList<Principal>();

for (SAML2AttributeStatementInfo stmtInfo : attrStmtInfos) {
Collection<SAML2AttributeInfo> attrs = stmtInfo.getAttributeInfo();
if (attrs == null || attrs.size() == 0) {
System.out
.println("CustomIAAttributeMapperImpl: no attribute in statement: "
+ stmtInfo.toString());
} else {
for (SAML2AttributeInfo attr : attrs) {
CustomPrincipal pal = new CustomPrincipal(attr
.getAttributeName(), attr.getAttributeNameFormat(),
attr.getAttributeValues());
pals.add(pal);
}
}
}
return pals;
}

The SAML 2.0 IdentityAssertion provider makes the attributes from a SAML assertion available
to consumers via the subject.

Use WebLogic Remote Console to configure the User Name Mapper class name to the fully-
qualified class name of this mapper implementation, as described in Make the Custom SAML
Identity Asserter Class Available in the Console.

If you are allowing virtual users to log in via SAML, you need to create and configure an
instance of the SAML Authentication provider. See Configuring the SAML Authentication
Provider.

If the virtual user is enabled and SAML Authenticator provider configured, the attributes
returned by the custom attribute mapper are added into the subject.

The attributes returned by the mapper are stored as subject principals or private credentials,
depending on the class type of the mapped attributes. Specifically, if the mapper returns a
collection of Principal objects, the mapped attributes are stored into the subject principal set.
Otherwise, the subject private credential set is used to carry the mapped attributes. The
example code shows both approaches.

Your application code needs to know the class type of the object that the mapper uses to
represent attributes added to the subject. Applications can retrieve the SAML attributes from
the subject private credential or principal set, given the class type that the customer attribute
mapper uses to represent the attributes.

Make the Custom SAML Credential Attribute Mapper Class Available in the
Console

To have the SAML Credential Mapping provider use your SAML2CredentialAttributeMapper
(SAML 2.0) instance, use WebLogic Remote Console to set the existing NameMapperClassName
attribute to the class name of this SAML2CredentialAttributeMapper instance.

That is, you use the WebLogic Remote Console field for the name mapper class name attribute
to specify the class name of the SAML2CredentialAttributeMapper instance in the active
security realm.

To use a custom user name mapper with the WebLogic SAML Credential Mapping provider

Chapter 8
Configuring SAML SSO Attribute Support

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 11

1. In WebLogic Remote Console, go to the Edit Tree, then Security, then Realms, then
myRealm, then Credential Mappers, select the name of a SAML Credential Mapping
Version 2 provider.

2. On the SAML Credential Mapper V2 Parameters tab, in the Name Mapper Class Name
field, enter the class name of your SAML2CredentialAttributeMapper implementation. The
class name must be in the system classpath.

3. Click Save.

Make the Custom SAML Identity Asserter Class Available in the Console
To have the SAML Identity Assertion provider use this
SAML2IdentityAsserterAttributeMapper (SAML 2.0) instance, you can use WebLogic
Remote Console to set the existing NameMapperClassName attribute to the class name of this
SAML2IdentityAsserterAttributeMapper instance.

That is, you use the Console control for the name mapper class name attribute to specify the
class name of the SAML2IdentityAsserterAttributeMapper instance in the active security
realm.

To use a custom user name mapper with the WebLogic SAML Identity Asserter provider:

1. In WebLogic Remote Console, go to the Edit Tree, then Security, then Realms, then
myRealm, then Authentication Providers, select the name of a SAML Identity Asserter
Version 2 provider.

2. On the SAML Identity Asserter V2 Parameters tab, in the Name Mapper Class Name
field, enter the class name of your SAML2IdentityAsserterAttributeMapper
implementation. The class name must be in the system classpath.

3. Click Save.

Chapter 8
Configuring SAML SSO Attribute Support

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 11

9
Using CertPath Building and Validation

The WebLogic Security service provides the Certificate Lookup and Validation (CLV) API that
finds and validates X509 certificate chains. Use the CertPath providers provided by Oracle
WebLogic Server to build and validate certificate chains, or any custom CertPath providers.
A CertPath is a JDK class that stores a certificate chain in memory. The term CertPath is also
used to refer to the JDK architecture and framework that is used to locate and validate
certificate chains. The CLV framework extends and completes the JDK CertPath functionality.
CertPath providers rely on a tightly coupled integration of WebLogic and JDK interfaces.

This chapter includes the following sections:

• CertPath Building

• CertPath Validation

• Instantiate a CertPathSelector

• Instantiate a CertPathBuilderParameters

• Use the JDK CertPathBuilder Interface

• Instantiate a CertPathValidatorParameters

• Use the JDK CertPathValidator Interface

CertPath Building
To use a CertPath Builder in your application, you must perform a sequence of steps such as,
instantiating a CertPathSelector object, instantiating a CertPathBuilderParameters object,
and implementing the JDK CertPathBuilder interface.

1. Instantiate a CertPathSelector

2. Instantiate a CertPathBuilderParameters

3. Use the JDK CertPathBuilder Interface

Instantiate a CertPathSelector
The CertPathSelector interface (weblogic.security.pk.CertPathSelector) contains the
selection criteria for locating and validating a certification path. Because there are many ways
to look up certification paths, a derived class is created for each type of selection criteria.

Each selector class has one or more methods to retrieve the selection data and a constructor.

The classes in weblogic.security.pk that implement the CertPathSelector interface, one for
each supported type of certificate chain lookup, are as follows:

• EndCertificateSelector – used to find and validate a certificate chain given its end
certificate.

• IssuerDNSerialNumberSelector – used to find and validate a certificate chain from its end
certificate's issuer DN and serial number.

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 6

• SubjectDNSelector – used to find and validate a certificate chain from its end certificate's
subject DN.

• SubjectKeyIdentifierSelector – used to find and validate a certificate chain from its end
certificate's subject key identifier (an optional field in X509 certificates).

Note

The selectors that are supported depend on the configured CertPath providers.
The configured CertPath providers are determined by the administrator.

The WebLogic CertPath provider uses only the EndCertificateSelector selector.

Example 9-1 shows an example of choosing a selector.

Example 9-1 Make a certificate chain selector

// you already have the end certificate
// and want to use it to lookup and
// validate the corresponding chain
X509Certificate endCertificate = ...
// make a cert chain selector
CertPathSelector selector = new EndCertificateSelector(endCertificate);

Instantiate a CertPathBuilderParameters
You pass an instance of CertPathBuilderParameters as the CertPathParameters object to the
JDK's CertPathBuilder.build() method.

The following constructor and method are provided:

• CertPathBuilderParameters

public CertPathBuilderParameters(String realmName,
 CertPathSelector selector,
 X509Certificate[]
 trustedCAs,
 ContextHandler context)

Constructs a CertPathBuilderParameters object.

You must provide the realm name. To do this, get the domain's
SecurityConfigurationMBean. Then, get the SecurityConfigurationMBean's default realm
attribute, which is a realm MBean. Finally, get the realm MBean's name attribute. You must
use the runtime JMX MBean server to get the realm name.

You must provide the selector. You use one of the
weblogic.security.pk.CertPathSelector interfaces derived classes, described in
Instantiate a CertPathSelector to specify the selection criteria for locating and validating a
certification path.

Specify trusted CAs if you have them. Otherwise, the server's trusted CAs are used. These
are just a hint to the configured CertPath builder and CertPath validators which, depending
on their lookup/validation algorithm, may or may not use these trusted CAs.

ContextHandler is used to pass in an optional list of name/value pairs that the configured
CertPathBuilder and CertPathValidators may use to look up and validate the chain. It is
symmetrical with the context handler passed to other types of security providers. Setting
context to null indicates that there are no context parameters.

Chapter 9
CertPath Building

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 6

• clone

Object clone()

This interface is not cloneable.

Example 9-2 shows an example of passing an instance of CertPathBuilderParameters.

Example 9-2 Pass An Instance of CertPathBuilderParameters

// make a cert chain selector
CertPathSelector selector = new EndCertificateSelector(endCertificate);
String realm = _;
// create and populate a context handler if desired, or null
ContextHandler context = _;
// pass in a list of trusted CAs if desired, or null
X509Certificate[] trustedCAs = _;
// make the params
CertPathBuilderParams params =
new CertPathBuilderParameters(realm, selector, context, trustedCAs);

Use the JDK CertPathBuilder Interface
The java.security.cert.CertPathBuilder class is the base class for creating the
CertPathBuilder object. To use the JDK CertPathBuilder interface, do the following:

1. Call the static CertPathBuilder.getInstance method to retrieve the CLV framework's
CertPathBuilder. You must specify WLSCertPathBuilder as the algorithm name that's
passed to the call.

2. Once the CertPathBuilder object has been obtained, call the "build" method on the
returned CertPathBuilder. This method takes one argument - a CertPathParameters that
indicates which chain to find and how it should be validated.

You must pass an instance of weblogic.security.pk.CertPathBuilderParameters as the
CertPathParameters object to the JDK's CertPathBuilder.build() method, as described in
Instantiate a CertPathBuilderParameters.

3. If successful, the result (including the CertPath that was built) is returned in an object that
implements the CertPathBuilderResult interface. The builder determines how much of
the CertPath is returned.

4. If not successful, the CertPathBuilder build method throws
InvalidAlgorithmParameterException if the params is not a WebLogic
CertPathBuilderParameters, if the configured CertPathBuilder does not support the
selector, or if the realm name does not match the realm name of the default realm from
when the server was booted.

The CertPathBuilder build method throws CertPathBuilderException if the cert path
could not be located or if the located cert path is not valid

Example Code Flow for Looking Up a Certificate Chain
Example 9-3 Looking up a Certificate Chain

import weblogic.security.pk.CertPathBuilderParameters;
import weblogic.security.pk.CertPathSelector;
import weblogic.security.pk.EndCertificateSelector;
import weblogic.security.service.ContextHandler;
import java.security.cert.CertPath;
import java.security.cert.CertPathBuilder;
import java.security.cert.X509Certificate;

Chapter 9
CertPath Building

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 6

// you already have the end certificate
// and want to use it to lookup and
// validate the corresponding chain
X509Certificate endCertificate = ...

// make a cert chain selector
CertPathSelector selector = new EndCertificateSelector(endCertificate);

String realm = _;

// create and populate a context handler if desired
ContextHandler context = _;

// pass in a list of trusted CAs if desired
X509Certificate[] trustedCAs = _;

// make the params
CertPathBuilderParams params =
new CertPathBuilderParameters(realm, selector, context, trustedCAs);
// get the WLS CertPathBuilder
CertPathBuilder builder =
CertPathBuilder.getInstance("WLSCertPathBuilder");

// use it to look up and validate the chain
CertPath certpath = builder.build(params).getCertPath();
X509Certificate[] chain =
certpath.getCertificates().toArray(new X509Certificate[0]);

CertPath Validation
To use a CertPath Validator in your application, you must instantiate a
CertPathValidatorParameters and use the JDK CertPathValidator interface.

1. Instantiate a CertPathValidatorParameters

2. Use the JDK CertPathValidator Interface

Instantiate a CertPathValidatorParameters
You pass an instance of CertPathValidatorParameters as the CertPathParameters object to
the JDK's CertPathValidator.validate() method.

The following constructor and method are provided:

• CertPathValidatorParameters

public CertPathValidatorParameters(String realmName,
 X509Certificate[] trustedCAs,
 ContextHandler context)

Constructs a CertPathValidatorParameters.

You must provide the realm name. To do this, get the domain's
SecurityConfigurationMBean. Then, get the default realm attribute of the
SecurityConfigurationMBean, which is a realm MBean. Finally, get the realm MBean's
name attribute. You must use the runtime JMX MBean server to get the realm name.

Specify trusted CAs if you have them. Otherwise, the server's trusted CAs are used. These
are just a hint to the configured CertPath builder and CertPath validators which, depending
on their lookup/validation algorithm, may or may not use these trusted CAs.

Chapter 9
CertPath Validation

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 6

ContextHandler is used to pass in an optional list of name/value pairs that the configured
CertPathBuilder and CertPathValidators may use to look up and validate the chain. It is
symmetrical with the context handler passed to other types of security providers. Setting
context to null indicates that there are no context parameters.

• clone

Object clone()

This interface is not cloneable.

Example 9-4 shows an example of passing an instance of CertPathValidatorParameters.

Example 9-4 Pass an Instance of CertPathValidatorParameters

// get the WLS CertPathValidator
CertPathValidator validator =
CertPathValidator.getInstance("WLSCertPathValidator");

String realm = _;

// create and populate a context handler if desired, or null
ContextHandler context = _;

// pass in a list of trusted CAs if desired, or null
X509Certificate[] trustedCAs = _;

// make the params (for the default security realm)
CertPathValidatorParams params =
new CertPathValidatorParams(realm, context, trustedCAs);

Use the JDK CertPathValidator Interface
The java.security.cert.CertPathValidator class is the base class for creating a
CertPathValidator object. To use the JDK CertPathValidator interface, do the following:

1. Call the static CertPathValidator.getInstance method to retrieve the CLV framework's
CertPathValidator. You must specify WLSCertPathValidator as the algorithm name that's
passed to the call.

2. Once the CertPathValidator object has been obtained, call the validate method on the
returned CertPathValidator. This method takes one argument - a CertPathParameters that
indicates how it should be validated.

You must pass an instance of weblogic.security.pk.CertPathValidatorParameters as
the CertPathParameters object to the JDK's CertPathValidator.validate() method, as
described in Instantiate a CertPathValidatorParameters.

3. If successful, the result is returned in an object that implements the
CertPathValidatorResult interface.

4. If not successful, the CertPathValidator.validate() method throws
InvalidAlgorithmParameterException if params is not a WebLogic
CertPathValidatorParameters or if the realm name does not match the realm name of the
default realm from when the server was booted.

The CertPathValidator validate method throws CertPathValidatorException if the
certificates in the CertPath are not ordered (the end certificate must be the first cert) or if
the CertPath is not valid.

Chapter 9
CertPath Validation

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 6

Example Code Flow for Validating a Certificate Chain
Example 9-5 Performing Extra Validation

import weblogic.security.pk.CertPathValidatorParams;
import weblogic.security.service.ContextHandler;
import java.security.cert.CertPath;
import java.security.cert.CertPathValidator;
import java.security.cert.X509Certificate;

// you already have an unvalidated X509 certificate chain
// and you want to get it validated
X509Certificate[] chain = ...

// convert the chain to a CertPath
CertPathFactory factory = CertPathFactory.getInstance("X509");
ArrayList list = new ArrayList(chain.length);
for (int i = 0; i < chain.length; i++) {
list.add(chain[i]);
}
CertPath certPath = factory.generateCertPath(list);

// get the WLS CertPathValidator
CertPathValidator validator =
CertPathValidator.getInstance("WLSCertPathValidator");

String realm = _;

// create and populate a context handler if desired, or null
ContextHandler context = _;

// pass in a list of trusted CAs if desired, or null
X509Certificate[] trustedCAs = _;

// make the params (for the default security realm)
CertPathValidatorParams params =
new CertPathValidatorParams(realm, context, trustedCAs);

// use it to validate the chain
validator.validate(certPath, params);

Chapter 9
CertPath Validation

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 6

10
Using Jakarta Authentication for a Web
Application

Oracle WebLogic Server supports the use of Jakarta Authentication to configure an
Authentication Configuration Provider for a Web application and using that instead of the
default WebLogic Server authentication mechanism for that Web application. Learn how to
configure Jakarta Authentication for the deployed web application.
Jakarta Authentication was previously called Java Authentication Service Provider Interface for
Containers (JASPIC).

• Overview of Jakarta Authentication

• Do You Need to Implement an Authentication Configuration Provider?

• Do You Need to Implement a Principal Validation Provider?

• Implement a SAM

• Configure Jakarta Authentication for the Deployed Web Application

This section assumes that you are familiar with a basic overview of Jakarta Authentication, as
described in Jakarta Authentication Security in Understanding Security for Oracle WebLogic
Server.

Overview of Jakarta Authentication
The Authentication Configuration provider in Jakarta Authentication assumes responsibility for
authenticating the user credentials for a Web application and returning a subject. It
authenticates incoming Web application messages and returns the identity (the expected
subject) established as a result of the message authentication to WebLogic Server.

The Jakarta Authentication programming model is described in the Jakarta Authentication
specification, https://jakarta.ee/specifications/authentication/. It defines a service provider
interface (SPI) by which authentication providers that implement message authentication
mechanisms can be integrated in server Web application message processing containers or
runtimes.

WebLogic Server allows you to use Jakarta Authentication to delegate authentication for Web
applications to your configured Authentication Configuration providers. You do not have to
modify your Web application code to use Jakarta Authentication. Instead, you use WebLogic
Remote Console or WLST to enable Jakarta Authentication for the Web application post
deployment.

For each of your deployed Web applications in the domain, determine whether you want
Jakarta Authentication to be disabled (the default), or select one of your configured
Authentication Configuration providers to authenticate the user credentials and return a valid
subject. If you configure an Authentication Configuration provider for a Web application, it is
used instead of the WLS authentication mechanism for that Web application. You should
therefore exercise care when you specify an Authentication Configuration provider to make
sure that it satisfies your security authentication needs.

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 4

https://jakarta.ee/specifications/authentication/

Do You Need to Implement an Authentication Configuration
Provider?

If you have a specific requirement that is not addressed by the default WebLogic
Authentication provider, then you can implement your own Authentication Configuration
provider.

You can use either the default WebLogic Server Authentication Configuration provider, or you
can implement your own. To use the default WebLogic Server Authentication Configuration
provider and configure it, see the steps described in Configuring Jakarta Authentication
Security in Administering Security for Oracle WebLogic Server.

As described in the Jakarta Authentication specification, https://jakarta.ee/specifications/
authentication/, the Authentication Configuration provider (called "authentication context
configuration provider" in the specification) is an implementation of the
jakarta.security.auth.message.config.AuthConfigProvider interface.

The Authentication Configuration provider provides a configuration mechanism used to define
the registered Server Authentication Modules (SAM's) and bindings to applications that require
protection from unauthenticated/authorized access.

Do You Need to Implement a Principal Validation Provider?
Authentication providers rely on Principal Validation providers to sign and verify the authenticity
of principals (users and groups) contained within a subject. The Principal Validation provider,
thus, prevents malicious individuals from tampering with the principals stored in a subject.

Principals are sent to the specified Principal Validation provider, which signs the principals and
then returns them to the client application via WebLogic Server. Whenever the principals stored
within the subject are required for other security operations, the same Principal Validation
provider will verify that the principals stored within the subject have not been modified since
they were signed.

Such verification provides an additional level of trust and may reduce the likelihood of
malicious principal tampering. The authenticity of the subject's principals is also verified when
making authorization decisions.

You must therefore use a Principal Validation provider as described in Principal Validation
Providers.

Whether you use the existing WebLogic Principal Validation provider or implement a custom
Principal Validation provider depends on the type of principals you are using:

• WebLogic Server principals — The WebLogic Principal Validation provider includes
implementations of the WLSUser and WLSGroup interfaces, named WLSUserImpl and
WLSGroupImpl. These are located in the weblogic.security.principal package.

It also includes an implementation of the PrincipalValidator SSPI called
PrincipalValidatorImpl (located in the com.bea.common.security.provider package).
To use this class, make the PrincipalValidatorImpl class the runtime class for your
Principal Validation provider. See the PrincipalValidator SSPI for usage information.

• Custom Principals — If you have your own validation scheme and do not want to use the
WebLogic Principal Validation provider, or if you want to provide validation for principals
other than WebLogic Server principals, then you need to develop a custom Principal
Validation provider.

Chapter 10
Do You Need to Implement an Authentication Configuration Provider?

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 4

https://jakarta.ee/specifications/authentication/
https://jakarta.ee/specifications/authentication/

Note

If you add custom principals, you must add a Principal Validation provider or
authorization fails. The WebLogic Server security framework performs principal
validation as part of authorization. (The only exception is if you are using Jakarta
Authorization for authorization. Even in the case of Jakarta Authorization, if your
Web application or EJB accesses any other server resource (for example, JDBC),
WebLogic Server authorization and principal validation are used.)

In this case, you must also develop an Authentication provider. The
AuthenticationProviderV2 SSPI includes a method called getPrincipalValidator in
which you specify the Principal Validation provider's runtime class. WebLogic Server uses
this method to get the Principal Validation provider. (In this use, the other methods can
return null.)

Both options are described in Principal Validation Providers in Developing Security Providers
for Oracle WebLogic Server.

Implement a SAM
A key step in adding an authentication mechanism to a compatible server-side message
processing runtime is acquiring a Server Authentication Module (SAM) that implements the
desired authentication mechanism.

You must implement your own SAM that works with the default WebLogic Server
Authentication Configuration provider, or with your own Authentication Configuration provider.

The SAM represents the implementation of a server-side authentication provider that is
compliant with Jakarta Authentication. As described in the Jakarta Authentication specification
https://jakarta.ee/specifications/authentication/, a SAM implements the
jakarta.security.auth.message.module.ServerAuthModule interface and is invoked by
WebLogic Server at predetermined points in the message processing model.

Note

A sample SAM implementation is described in Adding Authentication Mechanisms to
the Servlet Container in the GlassFish Server Open Source Edition Application
Development Guide. Although written from the GlassFish Server perspective, the tips
for writing a SAM, and the sample SAM itself, are instructive.

Configure Jakarta Authentication for the Deployed Web
Application

To configure Jakarta Authentication for your deployed Web application, you must add the jar for
your SAM to the system classpath using the command line, enable Jakarta Authentication in
your domain using WebLogic Remote Console, and configure the desired Authentication
Configuration provider to specify the classname of the SAM.

Perform the following steps to configure Jakarta Authentication for a Web application:

Chapter 10
Implement a SAM

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 4

https://jakarta.ee/specifications/authentication/
https://javaee.github.io/glassfish/doc/5.0/application-development-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/application-development-guide.pdf

1. Add the jar for your SAM to the system classpath via the startup scripts or the command
line used to start the WebLogic Server instance.

If you also configured a custom Authentication Configuration provider, you must add the jar
for your custom Authentication Configuration provider to the system classpath via the
startup scripts or the command line used to start the WebLogic Server instance.

2. Enable Jakarta Authentication in the domain, as described in Configuring Jakarta
Authentication Security in Administering Security for Oracle WebLogic Server.

3. Configure the WebLogic Server Authentication Configuration provider or the custom
Authentication Configuration provider to specify the classname of the SAM as described in
Configuring Jakarta Authentication Security in Administering Security for Oracle WebLogic
Server.

4. Configure Jakarta Authentication for the application as described in Configure JASPIC for
a Web Application in Oracle WebLogic Remote Console Online Help.

Chapter 10
Configure Jakarta Authentication for the Deployed Web Application

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 4

11
Using Jakarta Security

The Jakarta Security specification defines portable, plug-in interfaces for HTTP authentication
and identity stores, and an injectable SecurityContext interface that provides an API for
programmatic security. You can use the built-in implementations of the plug-in SPIs, or write
custom implementations.

Using Jakarta Security, you can define all of the security information directly within the
application. Bundling the security configuration in the application instead of configuring it
externally improves the management of the application’s lifecycle, especially in a world of
Docker-hosted microservices that are distributed in containers.

• Overview of Jakarta Security in WebLogic Server

• About the HttpAuthenticationMechanism Interface

• About the Identity Store Interfaces

• Usage Requirements

Overview of Jakarta Security in WebLogic Server
Oracle WebLogic Server supports the Jakarta Security specification which defines portable
authentication mechanisms (such as HttpAuthenticationMechanism and IdentityStore), and
an an access point for programmatic security using the SecurityContext interface. In
WebLogic Server, these authentication mechanisms are supported in the web container, and
the SecurityContext interfaces are supported in the Servlet and EJB containers.

The programming model for Jakarta Security is defined in the specification at https://
jakarta.ee/specifications/security/. WebLogic Server supports the plug-in interface for
authentication, HttpAuthenticationMechanism, and includes built-in support for the BASIC,
FORM, and Custom FORM authentication mechanisms defined in the specification. WebLogic
Server also supports the RememberMeIdentityStore interface, and built-in implementations of
the IdentityStore interface (LDAP identity store and Database identity store) as well as the
custom identity store.

The SecurityContext interfaces for web applications and EJBs are described in Authenticating
Users Programmatically and Using Programmatic Security With EJBs, respectively.

The HttpAuthenticationMechanism interface is designed to capitalize on the strengths of
existing Servlet and authentication mechanisms from Jakarta Authentication. An
HttpAuthenticationMechanism is a CDI bean, and is therefore made available to the container
automatically by CDI (see Using Contexts and Dependency Injection for the Jakarta EE
Platform in Developing Applications for Oracle WebLogic Server for more information on CDI
support). The container is responsible for placing the HttpAuthenticationMechanism into
service. The IdentityStore interface is intended primarily for use by
HttpAuthenticationMechanism implementations, but could in theory be used by other types of
authentication mechanisms (such as a Jakarta Authentication ServerAuthModule).
HttpAuthenticationMechanism implementations are not required to use IdentityStore —
they can authenticate users in any manner they choose — but the IdentityStore interface is
a useful and convenient mechanism.

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 6

https://jakarta.ee/specifications/security/
https://jakarta.ee/specifications/security/

A significant advantage of using the HttpAuthenticationMechanism and IdentityStore
interfaces over the declarative mechanisms defined by the Servlet specification is that they
allow an application to control the identity stores that it authenticates against in a standard,
portable way. Because implementations of these SPI interfaces are CDI beans, applications
can provide implementations that support application-specific authentication mechanisms, or
validate user credentials against application-specific identity stores, simply by including them in
a bean archive that is part of the deployed application.

About the HttpAuthenticationMechanism Interface
The HttpAuthenticationMechanism interface defines an SPI for writing authentication
mechanisms that can be provided with an application and deployed using CDI. Developers can
write their own implementations of HttpAuthenticationMechanism to support specific
authentication token types or protocols. There are also several built-in authentication
mechanisms that perform BASIC, FORM, and Custom FORM authentication.

The built-in authentication mechanisms are enabled and configured using annotations that,
when used, make the corresponding built-in mechanism available as a CDI bean. The Jakarta
Security specification also supports the use of Expression Language 4.0 in these annotations
to allow dynamic configuration. For more information about Java Expression Language (EL),
see the Expression Language specification at https://jakarta.ee/specifications/expression-
language/.The annotations for the built-in authentication mechanisms are as follows:

• BasicAuthenticationMechanismDefinition — implements BASIC authentication that
conforms to the behavior of the servlet container when BASIC <auth-method> is declared
in web.xml. In BASIC authentication, the web client obtains the user name and the
password from the user and transmits them to the web server. The web server then
authenticates the user in the specified realm.

• FormAuthenticationMechanismDefinition — implements FORM authentication that
conforms to the behavior of the servlet container when the FORM <auth-method> is
declared in web.xml. FORM Based Authentication introduces a required form-based
authentication mechanism that allows a developer to control the look and feel of the login
screens. The web application deployment descriptor contains entries for a login form and
error page. The login form must contain fields for entering a user name and password.

• CustomFormAuthenticationMechanismDefinition — implements a modified version of
FORM authentication. In WebLogic Server, the difference is that authentication occurs by
invoking SecurityContext.authenticate() using the credentials the application collected.

An implementation of HttpAuthenticationMechanism must be a CDI bean to be recognized
and deployed at runtime, and is assumed to be application scoped. During bean discovery, the
servlet container looks for a bean that implements HttpAuthenticationMechanism — there
should be only one per application — and, if found, arranges for it to be deployed to
authenticate the application’s callers.

The servlet container leverages Jakarta Authentication, to deploy authentication mechanisms.
The container provides a Jakarta Authentication Server Auth Module (SAM) that can delegate
to an HttpAuthenticationMechanism, and arranges for that "bridge" SAM to be registered with
the Jakarta Authentication AuthConfigFactory. At runtime, normal Jakarta Authentication
processing invokes the bridge SAM, which then delegates to the
HttpAuthenticationMechanism to perform the authentication and drive any necessary dialog
with the caller, or with third parties involved in the authentication protocol flow.

Chapter 11
About the HttpAuthenticationMechanism Interface

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 6

https://jakarta.ee/specifications/expression-language/
https://jakarta.ee/specifications/expression-language/

HttpAuthenticationMechanism Interface Methods
The HttpAuthenticationMechanism interface defines three interface methods, which
correspond to the three methods defined by the Jakarta Authentication ServerAuth interface.

When one of the Jakarta Authentication methods is invoked on the bridge SAM, it delegates to
the corresponding method of the HttpAuthenticationMechanism. Although the method names
are identical, the method signatures are not; the bridge SAM maps back and forth between the
parameters passed to it by the Jakarta Authentication framework, and the parameters
expected by an HttpAuthenticationMechanism.

The three HttpAuthenticationMechanism interface methods are as follows:

• validateRequest() — validate an incoming request and authenticate the caller.

• secureResponse() — secure a response message. This method is optional if the default is
sufficient.

• cleanSubject() — clear the provided Subject of principals and credentials. This method is
optional if the default is sufficient.

Only the validateRequest() method must be implemented by an
HttpAuthenticationMechanism; the interface includes default implementations for
secureResponse() and cleanSubject() that will often be sufficient.

HttpAuthenticationMechanism Interface Annotations
You can use the following annotations to add additional behaviors to an
HttpAuthenticationMechanism:

• AutoApplySession — provides an application with a way to declaratively enable Jakarta
Authentication jakarta.servlet.http.registerSession behavior for an authentication
mechanism, and automatically apply it for every request.

• LoginToContinue — provides an application with the ability to declaratively add "login to
continue" functionality to an authentication mechanism. The annotation is also used to
configure the login page, error page, and redirect/forward behavior for the built-in form-
based authentication mechanisms.

• RememberMe - specifies that a RememberMe identity store should be used to enable
RememberMe functionality for the authentication mechanism. To use RememberMe, the
application must provide its implementation of HAM and annotate the HAM with the
RememberMe annotation.

About the Identity Store Interfaces
In WebLogic Server, all built-in authentication mechanisms need to be authenticated using an
identity store. The Jakarta Security specification defines two identity store interfaces,
IdentityStore and RememberMeIdentityStore. The IdentityStore interface defines methods
for validating a caller's credentials, such as username and password, and returning group
membership information. The RememberMeIdentityStore interface is a variation on the
IdentityStore interface intended specifically to address cases where the identity of an
authenticated user should be remembered for an extended period of time.

The following topics describe the identity store interfaces in more detail:

• IdentityStore Interface

Chapter 11
About the Identity Store Interfaces

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 6

• RememberMeIdentityStore Interface

IdentityStore Interface
The IdentityStore interface defines an SPI for interacting with identity stores, which are
directories or databases containing user account information. An implementation of the
IdentityStore interface can validate users' credentials, provide information about the groups
they belong to, or both. Most often, an IdentityStore implementation will interact with an
external identity store — an LDAP server, for example — to perform the actual credential
validation and group lookups, but an IdentityStore may also manage user account data
itself.

There are two built-in implementations of IdentityStore: an LDAP identity store, and a
Database identity store. These identity stores delegate to external stores that must already
exist; the IdentityStore implementations do not provide or manage the external store. Use
the following annotations to configure communication between the IdentityStore interface
and an external store:

• LdapIdentityStoreDefinition — configures an identity store with the parameters
necessary to communicate with an external LDAP server, validate user credentials, and/or
lookup user groups.

• DatabaseIdentityStoreDefinition — configures an identity store with the parameters
necessary to connect to an external database, validate user credentials, and/or lookup
user groups. You must supply a PasswordHash implementation when configuring a
Database Identity Store.

An application can provide its own custom identity store, or use the built-in LDAP or database
identity stores. WebLogic Server provides an optional example demonstrating the use of a
built-in database identity store. For more information about the WebLogic Server code
examples, see Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

An implementation of IdentityStore must be a CDI bean to be recognized and deployed at
runtime, and is assumed to be application scoped. Multiple implementations of IdentityStore
may be present. If so, they are invoked under the control of an IdentityStoreHandler.

IdentityStoreHandler
Authentication mechanisms do not interact with IdentityStore directly; instead, they call an
IdentityStoreHandler. An implementation of the IdentityStoreHandler interface provides a
single method, validate(Credential), which, when invoked, iterates over the available
IdentityStores and returns an aggregated result. An IdentityStoreHandler must also be a CDI
bean, and is assumed to be application scoped. At runtime, an authentication mechanism
injects the IdentityStoreHandler and invokes on it. The IdentityStoreHandler, in turn, looks
up the available IdentityStores and invokes on them to determine the aggregate result.

There is a built-in IdentityStoreHandler that implements a standard algorithm defined by the
Jakarta Security specification. An application may also supply its own IdentityStoreHandler,
which can use any desired algorithm to select and invoke on IdentityStores, and return an
aggregated (or non-aggregated) result.

IdentityStore Interface Methods
The IdentityStore interface has four methods:

• validate(Credential) — validate a Credential, and return the result of that validation.

Chapter 11
About the Identity Store Interfaces

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 6

• getCallerGroups(CredentialValidationResult) — return the groups associated with the
caller indicated by the supplied CredentialValidationResult, which represents the result
of a previous, successful validation.

• validationTypes() — returns a Set of validation types (one or more of VALIDATE,
PROVIDE_GROUPS) that indicate the operations supported by this instance of the
IdentityStore.

• priority() — returns a positive integer representing the self-declared priority of this
IdentityStore. Lower values represent higher priority.

Because getCallerGroups() is a sensitive operation — it can return information about arbitrary
users, and does not require that the caller provide the user’s credential or proof of identity —
the caller should have the IdentityStorePermission("getGroups") permission. For this
permission check to be performed, ensure that the Java Security Manager is enabled. See
Using the Java Security Manager to Protect WebLogic Resources.

RememberMeIdentityStore Interface

The RememberMeIdentityStore interface represents a special type of identity store. It is not
directly related to the IdentityStore interface; that is, it does not implement or extend it. It
does, however, perform a similar, albeit specialized, function. You use the
RememberMeIdentityStore interface when an application wants to "remember" a user’s
authenticated session for an extended period, so that the caller can return to the application
periodically without needing to present primary authentication credentials each time. For
example, a web site may remember you when you visit, and prompt for your password only
periodically, perhaps once every two weeks, as long as you don’t explicitly log out.

RememberMe works as follows:

• When a request from an unauthenicated user is received, the user is authenticated using
an HttpAuthenticationMechanism that is provided by the application (this is required —
RememberMeIdentityStore can only be used in conjunction with an application-supplied
HttpAuthenticationMechanism).

• After authentication, the configured RememberMeIdentityStore saves information about the
user’s authenticated identity, so that it can be restored later, and generates a long-lived
"remember me" login token that is sent back to the client, perhaps as a cookie.

• On a subsequent visit to the application, the client presents the login token. The
RememberMeIdentityStore then validates the token and returns the stored user identity,
which is then established as the user’s authenticated identity. If the token is invalid or
expired, it is discarded, the user is authenticated normally again, and a new login token is
generated.

The RememberMeIdentityStore interface defines the following methods:

• generateLoginToken(CallerPrincipal caller, Set<String> groups) — generate a
login token for a newly authenticated user, and associate it with the provided caller/group
information.

• removeLoginToken(String token) — remove the (presumably expired or invalid) login
token and any associated caller/group information.

• validate(RememberMeCredential credential) — validate the supplied credential, and, if
valid, return the associated caller/group information. (RememberMeCredential is
essentially just a holder for a login token).

An implementation of RememberMeIdentityStore must be a CDI bean, and is assumed to be
application scoped. You configure a RememberMeIdentityStore by adding a RememberMe

Chapter 11
About the Identity Store Interfaces

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 6

annotation to an application’s HttpAuthenticationMechanism, which indicates that a
RememberMeIdentityStore is in use, and provides related configuration parameters. A
container-supplied interceptor then intercepts calls to the HttpAuthenticationMechanism,
invokes the RememberMeIdentityStore as necessary before and after calls to the
authentication mechanism, and ensures that the user’s identity is correctly set for the session.
See the Jakarta Security specification for a detailed description of the required interceptor
behavior.

Implementations of RememberMeIdentityStore should take care to manage tokens and user
identity information securely. For example, login tokens should not contain sensitive user
information, like credentials or sensitive attributes, to avoid exposing that information if an
attacker were able to gain access to the token — even an encrypted token is potentially
vulnerable to an attacker with sufficient time/resources. Similarly, tokens should be encrypted/
signed wherever possible, and sent only over secure channels (HTTPS). User identity
information managed by a RememberMeIdentityStore should be stored as securely as possible
(but does not necessarily need to be reliably persisted — the only impact of a "forgotten"
session is that the user will be prompted to log in again).

Usage Requirements
Using the Jakarta Security authentication mechanisms does not require any specific
configuration, but you must ensure that other functionality, such as Jakarta Authentication and
CDI, is enabled.

To use the Jakarta Security features in WebLogic Server, note the following requirements:

• Web applications must include the beans.xml deployment descriptor file in the application's
WAR or EAR file, as specified by the CDI specification. Because the
HttpAuthenticationMechanism and IdentityStore interfaces are implemented as CDI
beans, they are visible to the container through CDI.

• The metadata-complete attribute in the web.xml file for the web applications must NOT be
set to true. The default in WebLogic Server is false.

• Jakarta Authentication must be enabled at the domain level. By default, Jakarta
Authentication is enabled for a domain in WebLogic Server.

Chapter 11
Usage Requirements

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 6

https://jakarta.ee/specifications/security/

A
Deprecated Security APIs

Some or all of the Security interfaces, classes, and exceptions in the WebLogic security
packages, weblogic.security.service and weblogic.security.SSL, were deprecated prior
to the current release of Oracle WebLogic Server. For specific information on the interfaces,
classes, and exceptions deprecated in each package, see the Java API Reference for Oracle
WebLogic Server.

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-1 of A-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Information
	Security Samples and Tutorials
	New and Changed WebLogic Server Features

	Conventions

	1 WebLogic Security Programming Overview
	What Is Security?
	WebLogic Remote Console and Security
	Types of Security Supported by WebLogic Server
	Authentication
	Authorization
	Jakarta Security

	Security APIs
	JAAS Client Application APIs
	Java JAAS Client Application APIs
	WebLogic JAAS Client Application APIs

	SSL Client Application APIs
	Java SSL Client Application APIs
	WebLogic SSL Client Application APIs

	Other APIs

	2 Securing Web Applications
	Authentication With Web Browsers
	User Name and Password Authentication
	Digital Certificate Authentication

	Multiple Web Applications, Cookies, and Authentication
	Using Secure Cookies to Prevent Session Stealing
	Configuring the Session Cookie as a Secure Cookie
	Using the AuthCookie _WL_AUTHCOOKIE_JSESSIONID

	Developing Secure Web Applications
	Developing BASIC Authentication Web Applications
	Using HttpSessionListener to Account for Browser Caching of Credentials

	Understanding BASIC Authentication with Unsecured Resources
	Setting the enforce-valid-basic-auth-credentials Flag
	Check the Value of enforce-valid-basic-auth-credentials

	Developing FORM Authentication Web Applications
	Using Identity Assertion for Web Application Authentication
	Using Two-Way SSL for Web Application Authentication
	Providing a Fallback Mechanism for Authentication Methods
	Configuration

	Developing Swing-Based Authentication Web Applications
	Deploying Web Applications

	Using Declarative Security With Web Applications
	Web Application Security-Related Deployment Descriptors
	web.xml Deployment Descriptors
	auth-constraint
	Used Within
	Example

	security-constraint
	Example

	security-role
	Example

	security-role-ref
	Example

	user-data-constraint
	Used Within
	Example

	web-resource-collection
	Used Within
	Example

	weblogic.xml Deployment Descriptors
	externally-defined
	Used Within
	Example

	run-as-principal-name
	Used Within
	Example

	run-as-role-assignment
	Example:

	security-permission
	Example

	security-permission-spec
	Used Within
	Example

	security-role-assignment
	Example

	Using Programmatic Security With Web Applications
	Jakarta Security SecurityContext Methods
	Servlet HttpServletRequest Methods
	getUserPrincipal
	isUserInRole

	Authenticating Users Programmatically
	Using the Jakarta Security SecurityContext Interface
	Using the Programmatic Authentication API
	Change the User's Session ID at Login

	3 Using JAAS Authentication in Java Clients
	JAAS and WebLogic Server
	JAAS Authentication Development Environment
	JAAS Authentication APIs
	JAAS Client Application Components
	WebLogic LoginModule Implementation
	JVM-Wide Default User and the runAs() Method

	Writing a Client Application Using JAAS Authentication
	Using JNDI Authentication
	Java Client JAAS Authentication Code Examples

	4 Using SSL Authentication in Java Clients
	JSSE and WebLogic Server
	Using JNDI Authentication
	SSL Certificate Authentication Development Environment
	SSL Authentication APIs
	SSL Client Application Components

	Writing Applications that Use SSL
	Communicating Securely From WebLogic Server to Other WebLogic Servers
	Writing SSL Clients
	SSLClient Sample
	SSLSocketClient Sample

	Using Two-Way SSL Authentication
	Two-Way SSL Authentication with JNDI
	Writing a User Name Mapper
	Using Two-Way SSL Authentication Between WebLogic Server Instances
	Using Two-Way SSL Authentication with Servlets

	Using a Custom Host Name Verifier
	Using a Trust Manager
	Using the CertPath Trust Manager
	Using a Handshake Completed Listener
	Using an SSLContext
	Using URLs to Make Outbound SSL Connections

	SSL Client Code Examples

	5 Securing EJBs
	Jakarta EE Architecture Security Model
	Declarative Security
	Declarative Authorization Via Annotations

	Programmatic Security
	Declarative Versus Programmatic Authorization

	Using Declarative Security With EJBs
	Implementing Declarative Security Via Metadata Annotations
	Security-Related Annotation Code Examples

	Implementing Declarative Security Via Deployment Descriptors

	EJB Security-Related Deployment Descriptors
	ejb-jar.xml Deployment Descriptors
	method
	Used Within
	Example

	method-permission
	Used Within
	Example

	role-name
	Used Within
	Example

	run-as
	Used Within
	Example

	security-identity
	Used Within
	Example

	security-role
	Used Within
	Example

	security-role-ref
	Used Within
	Example

	unchecked
	Used Within
	Example

	use-caller-identity
	Used Within
	Example

	weblogic-ejb-jar.xml Deployment Descriptors
	client-authentication
	Example

	client-cert-authentication
	Example

	confidentiality
	Example

	externally-defined
	identity-assertion
	Used Within
	Example

	iiop-security-descriptor
	Example

	integrity
	Used Within
	Example

	principal-name
	Used Within
	Example

	role-name
	Used Within
	Example

	run-as-identity-principal
	Used Within
	Example

	run-as-principal-name
	Used Within
	Example

	run-as-role-assignment
	Example

	security-permission
	Example

	security-permission-spec
	Used Within
	Example

	security-role-assignment
	Example

	transport-requirements
	Used Within
	Example

	Using Programmatic Security With EJBs
	SecurityContext Interface Methods
	EJBContext Interface Methods

	6 Using Network Connection Filters
	The Benefits of Using Network Connection Filters
	Network Connection Filter API
	Connection Filter Interfaces
	ConnectionFilter Interface
	ConnectionFilterRulesListener Interface

	Connection Filter Classes
	ConnectionFilterImpl Class
	ConnectionEvent Class

	Guidelines for Writing Connection Filter Rules
	Connection Filter Rules Syntax
	Types of Connection Filter Rules
	How Connection Filter Rules are Evaluated

	Configuring the WebLogic Connection Filter
	Developing Custom Connection Filters

	7 Using Java Security Features to Protect WebLogic Resources
	Using Jakarta Security to Protect WebLogic Resources
	Using the Java Security Manager to Protect WebLogic Resources
	Setting Up the Java Security Manager
	Modifying your Custom Policy File for General Use
	Setting Application-Type Security Policies
	Setting Application-Specific Security Policies

	Using Printing Security Manager
	Printing Security Manager Startup Arguments
	Starting WebLogic Server With Printing Security Manager
	Writing Output Files

	Using Jakarta Authorization
	Comparing the WebLogic JACC Provider with the WebLogic Authorization Provider
	Enabling the WebLogic JACC Provider

	8 SAML APIs
	SAML API Description
	Configuring SAML SSO Attribute Support
	What Are SAML SSO Attributes?
	APIs for SAML Attributes
	SAML 2.0 Basic Attribute Profile Required
	Passing Multiple Attributes to SAML Credential Mappers
	How to Implement SAML Attributes
	Examples of the SAML 2.0 Attribute Interfaces
	Example Custom SAML 2.0 Credential Attribute Mapper
	Custom SAML 2.0 Identity Asserter Attribute Mapper

	Make the Custom SAML Credential Attribute Mapper Class Available in the Console
	Make the Custom SAML Identity Asserter Class Available in the Console

	9 Using CertPath Building and Validation
	CertPath Building
	Instantiate a CertPathSelector
	Instantiate a CertPathBuilderParameters
	Use the JDK CertPathBuilder Interface
	Example Code Flow for Looking Up a Certificate Chain

	CertPath Validation
	Instantiate a CertPathValidatorParameters
	Use the JDK CertPathValidator Interface
	Example Code Flow for Validating a Certificate Chain

	10 Using Jakarta Authentication for a Web Application
	Overview of Jakarta Authentication
	Do You Need to Implement an Authentication Configuration Provider?
	Do You Need to Implement a Principal Validation Provider?
	Implement a SAM
	Configure Jakarta Authentication for the Deployed Web Application

	11 Using Jakarta Security
	Overview of Jakarta Security in WebLogic Server
	About the HttpAuthenticationMechanism Interface
	HttpAuthenticationMechanism Interface Methods
	HttpAuthenticationMechanism Interface Annotations

	About the Identity Store Interfaces
	IdentityStore Interface
	IdentityStoreHandler
	IdentityStore Interface Methods

	RememberMeIdentityStore Interface

	Usage Requirements

	A Deprecated Security APIs

