Oracle® Fusion Middleware
Developing Applications with the WebLogic
Security Service

15¢ (15.1.1.0.0)
(G31581-01
October 2025

ORACLE"

Oracle Fusion Middleware Developing Applications with the WebLogic Security Service, 15¢ (15.1.1.0.0)
G31581-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience

Documentation Accessibility
Diversity and Inclusion
Related Information
Conventions

1 WebLogic Security Programming Overview

What Is Security?
WebLogic Remote Console and Security
Types of Security Supported by WebLogic Server
Authentication
Authorization
Jakarta Security
Security APIs
JAAS Client Application APIs
Java JAAS Client Application APIs
WebLogic JAAS Client Application APIs
SSL Client Application APIs
Java SSL Client Application APIs
WebLogic SSL Client Application APIs
Other APIs

2 Securing Web Applications

a b~ A A D O W W WDNDNDNDMNDNDNDNEPRE

Authentication With Web Browsers
User Name and Password Authentication
Digital Certificate Authentication
Multiple Web Applications, Cookies, and Authentication
Using Secure Cookies to Prevent Session Stealing
Configuring the Session Cookie as a Secure Cookie
Using the AuthCookie WL AUTHCOOKIE_JSESSIONID
Developing Secure Web Applications

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

~N o o1 o o W

October 8, 2025
Page i of vi

Developing BASIC Authentication Web Applications 7

Using HttpSessionListener to Account for Browser Caching of Credentials 11
Understanding BASIC Authentication with Unsecured Resources 12
Setting the enforce-valid-basic-auth-credentials Flag 13

Check the Value of enforce-valid-basic-auth-credentials 13
Developing FORM Authentication Web Applications 14
Using Identity Assertion for Web Application Authentication 19
Using Two-Way SSL for Web Application Authentication 19
Providing a Fallback Mechanism for Authentication Methods 20
Configuration 20
Developing Swing-Based Authentication Web Applications 20
Deploying Web Applications 21
Using Declarative Security With Web Applications 22
Web Application Security-Related Deployment Descriptors 23
web.xml Deployment Descriptors 23
auth-constraint 23
security-constraint 24
security-role 25
security-role-ref 26
user-data-constraint 26
web-resource-collection 27
weblogic.xml Deployment Descriptors 28
externally-defined 28
run-as-principal-name 30
run-as-role-assignment 30
security-permission 31
security-permission-spec 31
security-role-assignment 32

Using Programmatic Security With Web Applications 33
Jakarta Security SecurityContext Methods 33
Servlet HttpServletRequest Methods 33
getUserPrincipal 34
isUserinRole 34
Authenticating Users Programmatically 35
Using the Jakarta Security SecurityContext Interface 36
Using the Programmatic Authentication API 36
Change the User's Session ID at Login 36

3 Using JAAS Authentication in Java Clients

JAAS and WebLogic Server 1
JAAS Authentication Development Environment

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page ii of vi

JAAS Authentication APIs 3
JAAS Client Application Components 5
WebLogic LoginModule Implementation 7
JVM-Wide Default User and the runAs() Method 7
Writing a Client Application Using JAAS Authentication 8
Using JNDI Authentication 11
Java Client JAAS Authentication Code Examples 12
4 Using SSL Authentication in Java Clients

JSSE and WebLogic Server 1
Using JNDI Authentication 2
SSL Certificate Authentication Development Environment 4
SSL Authentication APIs 4
SSL Client Application Components 6
Writing Applications that Use SSL 7
Communicating Securely From WebLogic Server to Other WebLogic Servers 8
Writing SSL Clients 8
SSLClient Sample 8
SSLSocketClient Sample 9

Using Two-Way SSL Authentication 10
Two-Way SSL Authentication with JNDI 11

Writing a User Name Mapper 14

Using Two-Way SSL Authentication Between WebLogic Server Instances 15

Using Two-Way SSL Authentication with Servlets 16

Using a Custom Host Name Verifier 17
Using a Trust Manager 18
Using the CertPath Trust Manager 20
Using a Handshake Completed Listener 20
Using an SSLContext 21
Using URLs to Make Outbound SSL Connections 21
SSL Client Code Examples 23

5 Securing EJBs

Jakarta EE Architecture Security Model 1
Declarative Security 1
Declarative Authorization Via Annotations 2
Programmatic Security 2
Declarative Versus Programmatic Authorization 3
Using Declarative Security With EJBs 3
Implementing Declarative Security Via Metadata Annotations 3

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page iii of vi

Security-Related Annotation Code Examples 4
Implementing Declarative Security Via Deployment Descriptors 4
EJB Security-Related Deployment Descriptors 6
ejb-jar.xml Deployment Descriptors 6
method 6
method-permission 7
role-name 8

run-as 8
security-identity 8
security-role 9
security-role-ref 9
unchecked 10
use-caller-identity 10
weblogic-ejb-jar.xml Deployment Descriptors 11
client-authentication 11
client-cert-authentication 12
confidentiality 12
externally-defined 12
identity-assertion 14
ilop-security-descriptor 15
integrity 15
principal-name 16
role-name 16
run-as-identity-principal 16
run-as-principal-name 18
run-as-role-assignment 18
security-permission 20
security-permission-spec 20
security-role-assignment 21
transport-requirements 21

Using Programmatic Security With EJBs 21
SecurityContext Interface Methods 22
EJBContext Interface Methods 22

6 Using Network Connection Filters

The Benefits of Using Network Connection Filters 1
Network Connection Filter API 1
Connection Filter Interfaces 2
ConnectionFilter Interface 2
ConnectionFilterRulesListener Interface 2
Connection Filter Classes 3

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iv of vi

ConnectionFilterimpl Class
ConnectionEvent Class
Guidelines for Writing Connection Filter Rules
Connection Filter Rules Syntax
Types of Connection Filter Rules
How Connection Filter Rules are Evaluated
Configuring the WebLogic Connection Filter

o o1 o W W W W

Developing Custom Connection Filters

7 Using Java Security Features to Protect WebLogic Resources

Using Jakarta Security to Protect WebLogic Resources
Using the Java Security Manager to Protect WebLogic Resources
Setting Up the Java Security Manager
Modifying your Custom Policy File for General Use
Setting Application-Type Security Policies
Setting Application-Specific Security Policies
Using Printing Security Manager
Printing Security Manager Startup Arguments
Starting WebLogic Server With Printing Security Manager
Writing Output Files
Using Jakarta Authorization
Comparing the WebLogic JACC Provider with the WebLogic Authorization Provider
Enabling the WebLogic JACC Provider

© 00 N N O O O o A W NN P

3 SAML APIs

SAML API Description
Configuring SAML SSO Attribute Support
What Are SAML SSO Attributes?
APIs for SAML Attributes
SAML 2.0 Basic Attribute Profile Required
Passing Multiple Attributes to SAML Credential Mappers
How to Implement SAML Attributes
Examples of the SAML 2.0 Attribute Interfaces
Example Custom SAML 2.0 Credential Attribute Mapper
Custom SAML 2.0 Identity Asserter Attribute Mapper
Make the Custom SAML Credential Attribute Mapper Class Available in the Console

0 oo~ A W W WDNPR

P
P o

Make the Custom SAML Identity Asserter Class Available in the Console

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page v of vi

10

11

Using CertPath Building and Validation

CertPath Building

Instantiate a CertPathSelector

Instantiate a CertPathBuilderParameters

Use the JDK CertPathBuilder Interface

Example Code Flow for Looking Up a Certificate Chain
CertPath Validation

Instantiate a CertPathValidatorParameters

Use the JDK CertPathValidator Interface

Example Code Flow for Validating a Certificate Chain

Using Jakarta Authentication for a Web Application

oA BM WWNPR PR

Overview of Jakarta Authentication

Do You Need to Implement an Authentication Configuration Provider?
Do You Need to Implement a Principal Validation Provider?
Implement a SAM

Configure Jakarta Authentication for the Deployed Web Application

Using Jakarta Security

W W NN

Overview of Jakarta Security in WebLogic Server
About the HttpAuthenticationMechanism Interface
HttpAuthenticationMechanism Interface Methods
HttpAuthenticationMechanism Interface Annotations
About the Identity Store Interfaces
IdentityStore Interface
IdentityStoreHandler
IdentityStore Interface Methods
RememberMeldentityStore Interface
Usage Requirements

Deprecated Security APIs

o O A DDA W WWDNPR

Developing Applications with the WebLogic Security Service

G31581-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page vi of vi

ORACLE

Preface

Audience

This document explains how to use the WebLogic Server security programming features.

This document is intended for the following audiences:

Application Developers

Java programmers who focus on developing client applications, adding security to Web
applications and EJBs. They work with other engineering, Quality Assurance (QA), and
database teams to implement security features. Application developers have in-depth/
working knowledge of Java (including Jakarta Platform, Enterprise Edition (Jakarta EE)
components such as servlets/JSPs and JSSE) and Java security.

Application developers use the WebLogic security and Java security application
programming interfaces (APIs) to secure their applications. Therefore, this document
provides instructions for using those APIs for securing Web applications, Java applications,
and EJBs.

Security Developers

Developers who focus on defining the system architecture and infrastructure for security
products that integrate into WebLogic Server and on developing custom security providers
for use with WebLogic Server. They work with application architects to ensure that the
security architecture is implemented according to design and that no security holes are
introduced. They also work with WebLogic Server administrators to ensure that security is
properly configured. Security developers have a solid understanding of security concepts,
including authentication, authorization, auditing (AAA), in-depth knowledge of Java
(including Java Management eXtensions (JMX), and working knowledge of WebLogic
Server and security provider functionality.

Security developers use the Security Service Provider Interfaces (SSPIs) to develop
custom security providers for use with WebLogic Server. This document does not address
this task; for information on how to use the SSPIs to develop custom security providers,
see Overview of the Development Process in Developing Security Providers for Oracle
WebLogic Server.

Server Administrators

Administrators who work closely with application architects to design a security scheme for
the server and the applications running on the server, to identify potential security risks,
and to propose configurations that prevent security problems. Related responsibilities may
include maintaining critical production systems, configuring and managing security realms,
implementing authentication and authorization schemes for server and application
resources, upgrading security features, and maintaining security provider databases.
WebLogic Server administrators have in-depth knowledge of the Java security
architecture, including Web application and EJB security, Public Key security, and SSL.

Application Administrators

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of iv

ORACLE

Preface

Administrators who work with WebLogic Server administrators to implement and maintain
security configurations and authentication and authorization schemes, and to set up and
maintain access to deployed application resources in defined security realms. Application
administrators have general knowledge of security concepts and the Java Security
architecture. They understand Java, XML, deployment descriptors, and can identify
security events in server and audit logs.

While administrators typically use WebLogic Remote Console to deploy, configure, and
manage applications when they put the applications into production, application developers
may also use WebLogic Remote Console to test their applications before they are put into
production. At a minimum, testing requires that applications be deployed and configured.
This document does not cover some aspects of administration as it relates to security,
rather, it references Administering Security for Oracle WebLogic Server, Securing
Resources Using Roles and Policies for Oracle WebLogic Server, and Oracle WebLogic
Remote Console Online Help for descriptions of how to use WebLogic Remote Console to
perform security tasks.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at ht t p: / / www. or acl e. coni pl s/t opi ¢/ | ookup?ct x=acc&i d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit ht t p: / / ww. or acl e. com pl s/t opi ¢/ | ookup?

ct x=acc&i d=i nfo or visithttp://www. oracl e. com pl s/t opic/lookup?ctx=acc& d=trs if you
are hearing impaired.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Information

In addition to this document, Developing Applications with the WebLogic Security Service, the
following documents provide information on the WebLogic Security Service:

e Understanding Security for Oracle WebLogic Server—This document summarizes the
features of the WebLogic Security Service and presents an overview of the architecture
and capabilities of the WebLogic Security Service. It is the starting point for understanding
the WebLogic Security Service.

e Securing a Production Environment for Oracle WebLogic Server— This document
highlights essential security measures for you to consider before you deploy WebLogic
Server into a production environment.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page ii of iv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE

Preface

» Developing Security Providers for Oracle WebLogic Server—This document provides
security vendors and application developers with the information needed to develop
custom security providers that can be used with WebLogic Server.

* Administering Security for Oracle WebLogic Server—This document explains how to
configure security for WebLogic Server.

e Securing Resources Using Roles and Policies for Oracle WebLogic Server—This
document introduces the various types of WebLogic resources, and provides information
that allows you to secure these resources using WebLogic Server.

* Oracle WebLogic Remote Console Online Help—This document describes how to use the
WebLogic Remote Console to perform security tasks.

« Java API Reference for Oracle WebLogic Server —This document includes reference
documentation for the WebLogic security packages that are provided with and supported
by the WebLogic Server software.

Security Samples and Tutorials

In addition to the documents listed in Related Information, Oracle provides a rich set of code
examples and sample applications that show several approaches to learning about and
working with WebLogic Server. These examples and sample applications are available through
a separate WebLogic Server examples installer.

For more information about the WebLogic Server code examples, see Sample Applications
and Code Examples in Understanding Oracle WebLogic Server.

Security Examples in the WebLogic Server Distribution
The following examples illustrate WebLogic Server security features:

» Java Authentication and Authorization Service (JAAS)
* SAML 2.0 For Web SSO Scenario
e Outbound and Two-way SSL

The WebLogic Server installation also includes an example demonstrating the use of the built-
in database identity store functionality provided by the Jakarta Security specification. This
example is located in the EXAMPLES _HOVE\ exanpl es\ sr c\ exanpl es\ j avaee8\ security
directory.

The security tasks and code examples provided in this document assume that you are using
the WebLogic security providers that are included in the WebLogic Server distribution, not
custom security providers. The usage of the WebLogic security APIs does not change if you
elect to use custom security providers, however, the management procedures of your custom
security providers may be different.

@® Note

This document does not provide comprehensive instructions on how to configure
WebLogic Security providers or custom security providers. For information on
configuring WebLogic security providers and custom security providers, see
Configuring Security Providers in Administering Security for Oracle WebLogic Server.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page iii of iv

ORACLE
Preface

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page iv of iv

WebLogic Security Programming Overview

Oracle WebLogic Server supports the ability to incorporate standard Java security technologies
such as the Java Authentication and Authorization Service (JAAS), Java Secure Sockets
Extensions (JSSE), Java Cryptography Architecture and Java Cryptography Extensions (JCE),
the Jakarta Authentication, and Jakarta Security specifications in hosted applications, such as
web applications, web services, EJB, and more, and includes support for implementing
declarative and programmatic authorization in those applications.

What Is Security?

WebLogic Remote Console and Security

* Types of Security Supported by WeblLogic Server
e Security APIs

What Is Security?

Security refers to techniques for ensuring that data stored in a computer or passed between
computers is not compromised.Most security measures involve proof material and data
encryption. Proof material is typically a secret word or phrase that gives a user access to a
particular application or system. Data encryption is the translation of data into a form that
cannot be interpreted without holding or supplying the same secret.

Distributed applications, such as those used for electronic commerce (e-commerce), offer
many access points at which malicious people can intercept data, disrupt operations, or
generate fraudulent input. As a business becomes more distributed the probability of security
breaches increases. Accordingly, as a business distributes its applications, it becomes
increasingly important for the distributed computing software upon which such applications are
built to provide security.

An application server resides in the sensitive layer between end users and your valuable data
and resources. Oracle WebLogic Server provides authentication, authorization, and encryption
services with which you can guard these resources. These services cannot provide protection,
however, from an intruder who gains access by discovering and exploiting a weakness in your
deployment environment.

Therefore, whether you deploy WebLogic Server on the Internet or on an intranet, it is a good
idea to hire an independent security expert to go over your security plan and procedures, audit
your installed systems, and recommend improvements.

Another good strategy is to read as much as possible about security issues and appropriate
security measures. The document Securing a Production Environment for Oracle WebLogic
Serverhighlights essential security measures for you to consider before you deploy WebLogic
Server into a production environment. The document Securing Resources Using Roles and
Policies for Oracle WebLogic Serverintroduces the various types of WebLogic resources, and
provides information that allows you to secure these resources using WebLogic Server. For the
latest information about securing Web servers, Oracle also recommends reading the Security
Improvement Modules, Security Practices, and Technical Implementations information
(http://ww. cert.org/) available from the CERT™ Coordination Center operated by
Carnegie Mellon University.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 6

http://www.cert.org/

ORACLE Chapter 1
WebLogic Remote Console and Security

Oracle suggests that you apply the remedies recommended in our security advisories. In the
event of a problem with an Oracle product, Oracle distributes an advisory and instructions with
the appropriate course of action. If you are responsible for security related issues at your site,
please register to receive future notifications.

WebLogic Remote Console and Security

You can use the WebLogic Remote Console to define and edit deployment descriptors for Web
Applications, EJBs, Jakarta Connectors, and Enterprise Applications.This document,
Developing Applications with the WebLogic Security Service, does not describe how to use the
WebLogic Remote Console to configure security. For information on how to use the WebLogic
Remote Console to define and edit deployment descriptors, see Securing Resources Using
Roles and Policies for Oracle WebLogic Server and Administering Security for Oracle
WebLogic Server.

Types of Security Supported by WebLogic Server

WebLogic Server supports security mechanisms such as authentication, authorization, and
Jakarta EE security in deployed applications.

e Authentication

e Authorization

e Jakarta Security

Authentication

Authentication is the mechanism by which callers and service providers prove that they are
acting on behalf of specific users or systems. Authentication answers the question, "Who are
you?" using credentials. When the proof is bidirectional, it is referred to as mutual
authentication.

WebLogic Server supports username and password authentication and certificate
authentication. For certificate authentication, WebLogic Server supports both one-way and two-
way SSL (Secure Sockets Layer) authentication. Two-way SSL authentication is a form of
mutual authentication.

In WebLogic Server, Authentication providers are used to prove the identity of users or system
processes. Authentication providers also remember, transport, and make identity information
available to various components of a system (via subjects) when needed. You can configure
the Authentication providers using the Web application and EJB deployment descriptor files, or
WebLogic Remote Console, or a combination of both.

Authorization

Authorization is the process whereby the interactions between users and WebLogic resources
are controlled, based on user identity or other information. In other words, authorization
answers the question, "What can you access?"

In WebLogic Server, a WebLogic Authorization provider is used to limit the interactions
between users and WebLogic resources to ensure integrity, confidentiality, and availability. You
can configure the Authorization provider using the Web application and EJB deployment
descriptor files, or WebLogic Remote Console, or a combination of both.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 6

ORACLE’

Chapter 1
Security APIs

WebLogic Server also supports the use of programmatic authorization (also referred to in this
document as programmatic security) to limit the interactions between users and WebLogic
resources.

Jakarta Security

For implementation and use of user authentication and authorization, WebLogic Server utilizes
the security services of the JDK and Jakarta EE components. These security services are
based on standardized, modular components. WebLogic Server implements these Java
security service methods according to the standard, and adds extensions that handle many
details of application behavior automatically, without requiring additional programming.

WebLogic Server supports the Jakarta Security specification (htt ps: //j akart a. ee/
specifications/securityl), which defines portable, plug-in interfaces for HTTP
authentication and identity stores, and an injectable Securi t yCont ext interface that provides
an API for programmatic security. You can use the built-in implementations of the plug-in SPlIs,
or write custom implementations.

Security APIs

WebLogic Server supports and implements several security packages and classes. You use
these packages to secure interactions between WebLogic Server and client applications, EJBs,
and Web applications.

The following topics are covered in this section:
* JAAS Client Application APIs

e SSL Client Application APIs
e Other APIs

@® Note

Several of the WebLogic security packages, classes, and methods are deprecated in
this release of WebLogic Server. For more detailed information on deprecated
packages and classes, see Deprecated Security APIs.

JAAS Client Application APIs

You use Java APls and WebLogic APIs to write client applications that use JAAS
authentication.

The following topics are covered in this section:

« Java JAAS Client Application APIs
« WebLogic JAAS Client Application APIs

Java JAAS Client Application APIs

You use the following Java APIs to write JAAS client applications. The APIs are available at
Java SE and JDK API Specification .

e javax.naming

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 6

https://jakarta.ee/specifications/security/
https://jakarta.ee/specifications/security/
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

ORACLE’

* javax.security.auth
* javax.security.auth.callback
* javax.security.auth.login

* javax.security.auth.spi

For information on how to use these APIs, see JAAS Authentication APIs.

WebLogic JAAS Client Application APIs

You use the following WebLogic APIs to write JAAS client applications:

- weblogic.security

» weblogic.security.auth

» weblogic.security.auth.callback

For information on how to use these APIls, see JAAS Authentication APIs.

SSL Client Application APIs

Chapter 1
Security APIs

You use Java and WebLogic APIs to write client applications that use SSL authentication:

The following topics are covered in this section:

» Java SSL Client Application APIs
« WebLogic SSL Client Application APls

Java SSL Client Application APIs

You use the following Java APIs (available from Java SE and JDK API| Specification and

Jakarta EE Platform API) to write SSL client applications:

* java.security

* java.security.cert
e javax.crypto

* javax.naming

* javax.net

* javax.security

* jakarta.servlet

e jakarta.servet.http

WebLogic Server also supports the javax.net.SSL API (see Java SE and JDK API

Specification), but Oracle recommends that you use the webl ogi c. security. SSL package

when you use SSL with WebLogic Server.

For information on how to use these APls, see SSL Authentication APIs.

WebLogic SSL Client Application APIs

You use the following WebLogic APIs to write SSL client applications.

« weblogic.net.http

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025

Page 4 of 6

https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

ORACLE’

Chapter 1
Security APIs

weblogic.security.SSL

For information on how to use these APIs, see SSL Authentication APIs.

Other APIs

Additionally, you use the following APIs to develop WebLogic Server applications:

webl ogi c. security.jacc

This API provides the Rol eMapper interface. If you implement Jakarta Authorization
(formerly JACC), you can use this package with the j akart a. security. j acc package. For
information about the WebLogic JACC provider, see Using Jakarta Authorization. For
information about developing a Jakarta Authorization provider, see the
jakarta.security.jacc package Javadoc at https://jakarta. ee/ specifications/
platforn 9.1/ apidocs/jakartalsecurity/jacc/package-sunmmary.

webl ogi c. security. net

This API provides interfaces and classes that are used to implement network connection
filters. Network connection filters allow or deny connections to Oracle WebLogic Server
based on attributes such as the IP address, domain, or protocol of the initiator of the
network connection. For more information about how to use this API, see Using Network
Connection Filters.

webl ogi c. security. pk

This API provides interfaces and classes to build and validate certification paths. See
Using CertPath Building and Validation for information on using this API to build and
validate certificate chains.

See the j ava. security. cert package in Java SE and JDK API Specification for additional
information on certificates and certificate paths.

com bea. security.sanl 2. providers

This API provides interfaces and classes that are used to perform mapping of user and
group information to Security Assertion Markup Language (SAML) assertions, and to
cache and retrieve SAML assertions.

SAML is an XML-based framework for exchanging security information. WebLogic Server
supports SAML v2.0, including the Browser/Post and Browser/Artifact profiles. SAML
authorization is not supported.

For more information about SAML, see http://ww. 0asi S- open. or g.

webl ogi c. security. service

This API includes interfaces, classes, and exceptions that support security providers. The
WebLogic Security Framework consists of interfaces, classes, and exceptions provided by
this API. The interfaces, classes, and exceptions in this APl should be used in conjunction
with those in the webl ogi c. security. spi package. For more information about how to use
this API, see Security Providers and WebLogic Resources in Developing Security
Providers for Oracle WebLogic Server.

webl ogi c. security. services

This API provides the server-side authentication class. This class is used to perform a local
login to the server. It provides login methods that are used with CallbackHandlers to
authenticate the user and return credentials using the default security realm.

webl ogi c. security. spi

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 6

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/security/jacc/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/security/jacc/package-summary
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
http://www.oasis-open.org

ORACLE Chapter 1
Security APIs

This package provides the Security Service Provider Interfaces (SSPIs). It provides
interfaces, classes, and exceptions that are used for developing custom security providers.
In many cases, these interfaces, classes, and exceptions should be used in conjunction
with those in the webl ogi c. security. servi ce API. You implement interfaces, classes, and
exceptions from this package to create runtime classes for security providers. For more
information about how to use the SSPIs, see Security Services Provider Interfaces (SSPIs)
in Developing Security Providers for Oracle WebLogic Server.

e weblogic.servlet.security

This API provides a server-side API that supports programmatic authentication from within
a servlet application. For more about how to use this API, see Using the Programmatic
Authentication API.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 6

Securing Web Applications

Oracle WebLogic Server supports the Jakarta EE architecture security model for securing Web
applications, which includes support for declarative authorization (also referred to as
declarative security) and programmatic authorization (also referred to as programmatic
security).

« Authentication With Web Browsers

* Multiple Web Applications, Cookies, and Authentication

* Developing Secure Web Applications

* Using Declarative Security With Web Applications

« Web Application Security-Related Deployment Descriptors

e Using Programmatic Security With Web Applications

e Using the Programmatic Authentication API

@® Note

You can use deployment descriptor files and WebLogic Remote Console to secure
Web applications. This document describes how to use deployment descriptor files.
For information on using WebLogic Remote Console to secure Web applications, see
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

To implement programmatic authorization in Web applications, WebLogic Server supports the
use of:

* The Servlet Ht t pSer vl et Request . i sUser | nRol e and
Ht t pSer vl et Request . get User Pri nci pal methods

e Thesecurity-rol e-ref elementin deployment descriptors

e The Jakarta Security Securi t yCont ext. get Cal | er Pri nci pal ,
SecurityContext. get Principal sByType, SecurityContext.isCallerlnRole,and
Securi tyCont ext . hasAccessToWebResour ce methods

Authentication With Web Browsers

Web browsers can connect to WebLogic Server over either a HyperText Transfer Protocol
(HTTP) port or an HTTP with SSL (HTTPS) port. WebLogic Server uses encryption and digital
certificate authentication when Web browsers connect to the server using the HTTPS port.

The benefits of using an HTTPS port versus an HTTP port are two-fold. With HTTPS
connections:

e All communication on the network between the Web browser and the server is encrypted.
None of the communication, including the user name and password, is in clear text.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 37

ORACLE Chapter 2
Authentication With Web Browsers

« As a minimum authentication requirement, the server is required to present a digital
certificate to the Web browser client to prove its identity.

If the server is configured for two-way SSL authentication, both the server and client are
required to present a digital certificate to each other to prove their identity.

User Name and Password Authentication

WebLogic Server performs user name and password authentication when users use a Web
browser to connect to the server via the HTTP port. In this scenario, the browser and an
instance of WebLogic Server interact in the following manner to authenticate a user (see
Figure 2-1):

1. A userinvokes a WebLogic resource in Oracle WebLogic Server by entering the URL for
that resource in a Web browser. The HTTP URL contains the HTTP listen port, for
example, http://nyserver: 7001.

2. The Web server in Oracle WebLogic Server receives the request.

® Note

Oracle WebLogic Server provides its own Web server but also supports the use of
Apache Server, Microsoft Internet Information Server, and Java System Web
Server as Web servers.

3. The Web server determines whether the WebLogic resource is protected by a security
policy. If the WebLogic resource is protected, the Web server uses the established HTTP
connection to request a user name and password from the user.

4. When the user's Web browser receives the request from the Web server, it prompts the
user for a user name and password.

5. The Web browser sends the request to the Web server again, along with the user name
and password.

6. The Web server forwards the request to the Web server plug-in. Oracle WebLogic Server
provides the following plug-ins for Web servers:

* Apache-WebLogic Server plug-in
e Java System Web Server plug-in
* Internet Information Server (IIS) plug-in

The Web server plug-in performs authentication by sending the request, via the HTTP
protocol, to Oracle WebLogic Server, along with the authentication data (user name and
password) received from the user.

7. Upon successful authentication, Oracle WebLogic Server proceeds to determine whether
the user is authorized to access the WebLogic resource.

8. Before invoking a method on the WebLogic resource, the WebLogic Server instance
performs a security authorization check. During this check, the server security extracts the
user's credentials from the security context, determines the user's security role, compares
the user's security role to the security policy for the requested WebLogic resource, and
verifies that the user is authorized to invoke the method on the WebLogic resource.

9. If authorization succeeds, the server fulfills the request.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 37

ORACLE’

Chapter 2
Authentication With Web Browsers

Figure 2-1 Secure Login for Web Browsers

waa

Web Browser

—"_lQ— —

WebLogic Server
— = :
= @ Security Realm
=
Users, Groups,
Web Server Security Roles, and
Security Policies
- L N :
¢ Y . g e S
]| =
WebLogic
Web Server Servlet
Plug-in Engine Resources

Mote: Username/Password authentication can be required for HTTP and one-way S5L authentication.
HTTPS connections can be configured for one-way or two-way SSL authentication.

Digital Certificate Authentication

WebLogic Server uses encryption and digital certificate authentication when Web browser
users connect to the server via the HTTPS port. In this scenario, the browser and WebLogic
Server instance interact in the following manner to authenticate and authorize a user (see
Figure 2-1):

1.

A user invokes a WebLogic resource in Oracle WebLogic Server by entering the URL for
that resource in a Web browser. The HTTPS URL contains the SSL listen port, for
example, https://nyserver: 7002.

The Web server in Oracle WebLogic Server receives the request.

® Note

Oracle WebLogic Server provides its own Web server but also supports the use of
Apache Server, Microsoft Internet Information Server, and Java System Web
Server as Web servers.

The Web server checks whether the WebLogic resource is protected by a security policy. If
the WebLogic resource is protected, the Web server uses the established HTTPS
connection to request a user name and password from the user.

When the user's Web browser receives the request from Oracle WebLogic Server, it
prompts the user for a user name and password. (This step is optional.)

The Web browser sends the request again, along with the user name and password. (Only
supplied if requested by the server.)

WebLogic Server presents its digital certificate to the Web browser.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 37

ORACLE

10.

11.

12.

Chapter 2
Authentication With Web Browsers

The Web browser checks that the server's name used in the URL (for example, nyserver)
matches the name in the digital certificate and that the digital certificate was issued by a
trusted third party, that is, a trusted CA

If two-way SSL authentication is in force on the server, the server requests a digital
certificate from the client.

@® Note

Even though WebLogic Server cannot be configured to enforce the full two-way
SSL handshake with 1.0 Web Server proxy plug-ins, proxy plug-ins can be
configured to provide the client certificate to the server if it is needed. To do this,
configure the proxy plug-in to export the client certificate in the HTTP Header for
WebLogic Server. For instructions on how to configure proxy plug-ins to export the
client certificate to WebLogic Server, see the configuration information for the
specific plug-in in Using Oracle WebLogic Server Proxy Plug-Ins.

The latest plug-ins provide two-way SSL support for verifying client identity. Two-
way SSL is automatically enforced when WebLogic Server requests the client
certificate during the handshake process. See Configuring Two-Way SSL Between
the Plug-In and Oracle WebLogic Server in Using Oracle WebLogic Server Proxy
Plug-Ins.

The Web server forwards the request to the Web server plug-in. If secure proxy is set (this
is the case if the HTTPS protocol is being used), the Web server plug-in also performs
authentication by sending the request, via the HTTPS protocol, to the WebLogic resource
in Oracle WebLogic Server, along with the authentication data (user name and password)
received from the user.

@® Note

When using two-way SSL authentication, you can also configure the server to do
identity assertion based on the client's certificate, where, instead of supplying a
user name and password, the server extracts the user name and password from
the client's certificate.

Upon successful authentication, Oracle WebLogic Server proceeds to determine whether
the user is authorized to access the WebLogic resource.

Before invoking a method on the WebLogic resource, the server performs a security
authorization check. During this check, the server extracts the user's credentials from the
security context, determines the user's security role, compares the user's security role to
the security policy for the requested WebLogic resource, and verifies that the user is
authorized to invoke the method on the WebLogic resource.

If authorization succeeds, the server fulfills the request.

See the following topics:

Configuring SSL
Installing and Configuring the Apache HTTP Server Plug-In
Installing and Configuring the Microsoft IIS Plug-In

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 37

ORACLE Chapter 2
Multiple Web Applications, Cookies, and Authentication

Multiple Web Applications, Cookies, and Authentication

By default, WebLogic Server assigns the same cookie hame (JSESSI ONI D) to all Web
applications. When you use any type of authentication, all Web applications that use the same
cookie name use a single sign-on for authentication. Once a user is authenticated, that
authentication is valid for requests to any Web Application that uses the same cookie name.
The user is not prompted again for authentication.

If you want to require separate authentication for a Web application, you can specify a unique
cookie name or cookie path for the Web application. Specify the cookie name using the

Cooki eNamre parameter and the cookie path with the Cooki ePat h parameter, defined in the

webl ogi c. xm <sessi on-descri pt or > element. See session-descriptor in Administering Server
Startup and Shutdown for Oracle WebLogic Server.

If you want to retain the cookie name and still require independent authentication for each Web
application, you can set the cookie path parameter (Cooki ePat h) differently for each Web
application.

However, note that a common Web security problem is session stealing. WebLogic Server
provides two features, or methods, that Web site designers can use to prevent session
stealing, described in Using Secure Cookies to Prevent Session Stealing.

Using Secure Cookies to Prevent Session Stealing

Session stealing happens when an attacker manages to get a copy of your session cookie,
generally while the cookie is being transmitted over the network. This can only occur when the
data is being sent in clear-text; that is, the cookie is not encrypted. WebLogic Server provides
two features for securing session cookies.

* Configuring the Session Cookie as a Secure Cookie
¢ Using the AuthCookie WL AUTHCOOKIE JSESSIONID

@® Note

These two features work correctly when the SSL request is terminated at WebLogic
Server. Proxy architectures that terminate the SSL connection at a Web server plug-in
or hardware load balancer can enable the Wbl ogi cPl ugi nEnabl ed attribute for these
features to work, but doing so exposes the session cookie behind the proxy.

Configuring the Session Cookie as a Secure Cookie

You can prevent session stealing by configuring the application to use HTTPS. When
communication with WebLogic Server is secured by SSL, you can have WebLogic Server
make the session cookie secure by specifying the <cooki e- secur e> element in the

webl ogi c. xm deployment descriptor and setting its value to t r ue. A secure cookie indicates to
the Web browser that the cookie should be sent using only a secure protocol, such as SSL.

Note that it is possible for an application with code running in the browser — for example, an
applet — to make non-HTTP outbound connections. In such connections, the browser sends
the session cookie. However, by specifying the <cooki e- ht t p- onl y> element in webl ogi ¢. xni
you constrain the browser to send the cookie only over an HTTP connection — the cookie is
made inaccessible to applications or other protocols running in the browser. So if you specify

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 37

ORACLE

Chapter 2
Multiple Web Applications, Cookies, and Authentication

<cooki e- htt p- onl y> in conjunction with <cooki e- secur e>, you ensure that session cookies
are sent only over HTTPS.

For more information about the <cooki e- secur e> and <cooki e- ht t p- onl y> elements, see
weblogic.xml Deployment Descriptor Elements in Developing Web Applications, Serviets, and
JSPs for Oracle WebLogic Server.

Using the AuthCookie WL AUTHCOOKIE_JSESSIONID

WebLogic Server allows a user to securely access HTTPS resources in a session that was
initiated using HTTP, without loss of session data. To enable this feature, ensure that
VebAppCont ai ner MBean. Aut hCooki eEnabl ed is set to t r ue.

Aut hCooki eEnabl ed is enabled by default. If it is disabled, you can use WebLogic Remote
Console to re-enable it:

1. Inthe Edit Tree, go to Environment, then Domain.
2. Onthe Web Application tab, turn on the Auth Cookie Enabled option.
3. Save and commit your changes.

When Aut hCooki eEnabl ed is set to t r ue, the WebLogic Server instance sends a new secure
cookie, W._AUTHCOOKI E_JSESSI ONI D, to the browser when authenticating via an HTTPS
connection. Once the secure cookie is set, the session is allowed to access other security-
constrained HTTPS resources only if the cookie is sent from the browser.

Thus, WebLogic Server uses two cookies: the JSESSI ONI D cookie and the

_W._AUTHCOOKI E_JSESSI ONI D cookie. By default, the JSESSI ONI D cookie is never secure, but
the W._AUTHCOOKI E_JSESSI ONI D cookie is always secure. A secure cookie is only sent when
an encrypted communication channel is in use. Assuming a standard HTTPS login (HTTPS is
an encrypted HTTP connection), your browser gets both cookies.

For subsequent HTTP access, you are considered authenticated if you have a valid
JSESSI ONI D cookie, but for HTTPS access, you must have both cookies to be considered
authenticated. If you only have the JSESSI ONI D cookie, you must re-authenticate.

With this feature enabled, once you have logged in over HTTPS, the secure cookie is only sent
encrypted over the network and therefore can never be stolen in transit. The JSESSI ONI D
cookie is still subject to in-transit hijacking. Therefore, a Web site designer can ensure that
session stealing is not a problem by making all sensitive data require HTTPS. While the HTTP
session cookie is still vulnerable to being stolen and used, all sensitive operations require the
_WL_AUTHCOKI E_JSESSI ONI D, which cannot be stolen, so those operations are protected.

You can also specify a cookie name for JSESSI ONI D or _W._ AUTHCOCKI E_JSESSI ONI D using the
Cooki eNamre parameter defined in the webl ogi ¢c. xml deployment descriptor's <sessi on-
descri pt or > element, as follows:

<sessi on-descri pt or >
<cooki e- name>FOQAPPI D</ cooki e- name>
</ sessi on-descri ptor>

In this case, Weblogic Server will not use JSESSI ONI Dand _W._ AUTHCOOKI E_JSESSI ONI D, but
FOOAPPI Dand _W._ AUTHCOOKI E_FOOAPPI D to serve the same purpose, as shown in Table 2-1.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 37

ORACLE Chapter 2
Developing Secure Web Applications

Table 2-1 WebLogic Server Cookies

User-Specified in Deployment HTTP Session HTTPS Session

Descriptor

No - uses the JSESSI ONI D default JSESSI ONI D _W._AUTHCOOKI E_JSESSI ONI
D

Yes - specified as FOOAPPI D FOQAPPI D _W._AUTHCOOKI E_FOQCAPPI D

Developing Secure Web Applications

WebLogic Server supports three types of authentication for Web browsers: BASIC, FORM, and
CLIENT-CERT.

The following sections cover the different ways to use these types of authentication:

» Developing BASIC Authentication Web Applications

« Understanding BASIC Authentication with Unsecured Resources

» Developing FORM Authentication Web Applications

e Using Identity Assertion for Web Application Authentication

e Using Two-Way SSL for Web Application Authentication

* Providing a Fallback Mechanism for Authentication Methods

» Developing Swing-Based Authentication Web Applications

» Deploying Web Applications

An alternative way to perform user authentication, including BASIC, FORM, and Custom
FORM authentication, is to use the Ht t pAut henti cat i onMechani smas described in Using

Jakarta Security.

® Note

The Jakarta Security specification requires that group principal names are mapped to
roles of the same name by default. In WebLogic Server, if the security-rol e-

assi gnment element in the webl ogi c. xm deployment descriptor does not declare a
mapping between a security role and one or more principals in the WebLogic Server
security realm, then the role name is used as the default principal.

Developing BASIC Authentication Web Applications

With basic authentication, the Web browser pops up a login screen in response to a WebLogic
resource request. The login screen prompts the user for a user name and password.
Figure 2-2 shows a typical login screen.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 37

ORACLE Chapter 2
Developing Secure Web Applications

Figure 2-2 Authentication Login Screen

Username and Password Hequired |

E nter uzermame for default at powiz: 7007

Izer Mame: I

Paszword: I

k. I Cancel

@® Note

See Understanding BASIC Authentication with Unsecured Resources for important
information about how unsecured resources are handled.

To develop a Web application that provides basic authentication, perform these steps:

1. Create the web. xml deployment descriptor. In this file you include the following information
(see Example 2-1):
a. Define the welcome file. The welcome file name is wel cone. j sp.

b. Define a security constraint for each set of Web application resources, that is, URL
resources, that you plan to protect. Each set of resources share a common URL. URL
resources such as HTML pages, JSPs, and servlets are the most commonly protected,
but other types of URL resources are supported. In Example 2-1, the URL pattern
points to the wel cone. j sp file located in the Web application's top-level directory; the
HTTP methods that are allowed to access the URL resource, POST and GET; and the
security role name, webuser .

@® Note

When specifying security role names, observe the following conventions and
restrictions:

* The proper syntax for a security role name is as defined for an Nmtoken in
the Extensible Markup Language (XML) recommendation available on the
Web at: ht t p: // www. w3. or g/ TR/ REC- xm #NT- Nnt oken.

* Do not use blank spaces, commas, hyphens, or any characters in this
comma-separated list: \t, <>, #, |, & ~, 2, (), {}.

e Security role names are case sensitive.

e The suggested convention for security role names is that they be singular.

c. Use the <l ogi n- confi g> tag to define the type of authentication you want to use and
the security realm to which the security constraints will be applied. In Example 2-1, the
BASIC type is specified and the realm is the default realm, which means that the

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 37

http://www.w3.org/TR/REC-xml#NT-Nmtoken

ORACLE

Chapter 2
Developing Secure Web Applications

security constraints will apply to the active security realm when the WebLogic Server
instance boots.

Define one or more security roles and map them to your security constraints. In our
sample, only one security role, webuser, is defined in the security constraint so only
one security role name is defined here (see the <security-rol e>tag in Example 2-1).
However, any number of security roles can be defined.

Create the webl ogi c. xm deployment descriptor. In this file you map security role names to
users and groups. Example 2-2 shows a sample weblogic.xml file that maps the webuser
security role defined in the <securi ty-rol e> tag in the web.xml file to a group named
myGroup. Note that principals can be users or groups, so the <pri nci pal -t ag> can be
used for either. With this configuration, WebLogic Server will only allow users in myGroup
to access the protected URL resource—welcome.jsp.

® Note

Starting in version 9.0, the default role mapping behavior is to create empty role
mappings when none are specified in weblogic.xml. In version 8.x, if you did not
include a weblogic.xml file, or included the file but did not include mappings for all
security roles, security roles without mappings defaulted to any user or group
whose name matched the role name. For information on role mapping behavior
and backward compatibility settings, see Understanding the Combined Role
Mapping Enabled Setting in Securing Resources Using Roles and Policies for
Oracle WebLogic Server.

Create a file that produces the Welcome screen that displays when the user enters a user
name and password and is granted access. Example 2-3 shows a sample wel cone. j sp
file. Figure 2-3 shows the Welcome screen.

@® Note

In Example 2-3, notice that the JSP is calling an API (request.getRemoteUser()) to
get the name of the user that logged in. A different API,
weblogic.security.Security.getCurrentSubject(), could be used instead. To use this
API to get the name of the user, use it with the SubjectUtils API as follows:

String username = webl ogi c. security. SubjectUils.getUsernane
webl ogi c. security. Security. getCurrent Subject());

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 37

ORACLE Chapter 2
Developing Secure Web Applications

Figure 2-3 Welcome Screen

; Browser Based Authentication Example Welcome Page - Mic... =] E3

J File Edit “iew Favortes | Toolz Help |

]@,-»,@ »

Back Faryard Stop Fefresh

J.-“-‘-.Eh:lress @ kittp: /flocalhost: 7001 AbasicauthAwelzome jsp j & Go J Lirks **
I « 274N | Sesrch |- | B sonyvao Offers ~ >

s

Browser Based Authentication
Example Welcome Page

Vifeloome Leed! j

&] Dore - | B Local intranet ,j,:

4. Start WebLogic Server and define the users and groups that will have access to the URL
resource. In the webl ogi c. xm file (see Example 2-2), the <pri nci pal - nane> tag defines
myGroup as the group that has access to the wel cone. j sp. Therefore, use WebLogic
Remote Console to define the nyG oup group, define a user, and add that user to the
myG oup group. For information on adding users and groups, see Users, Groups, and
Security Roles in Securing Resources Using Roles and Policies for Oracle WebLogic
Server.

5. Deploy the Web application and use the user defined in the previous step to access the
protected URL resource.

a. For deployment instructions, see Deploying Web Applications.

b. Open a Web browser and enter this URL:
http://1ocal host: 7001/ basi caut h/ wel cone. j sp
c. Enter the user name and password. The Welcome screen displays.
Example 2-1 Basic Authentication web.xml File

<?xm version="1.0" encodi ng=" UTF-8' 7>
<web-app version="4.0" xm ns="http://xmns.jcp.org/ xm/ns/javaee" xmns:xsi="http://
www. W3. or g/ 2001/ XMLSchema- i nst ance”
xsi:schemalLocation="http://xmns.jcp.org/xm/ns/javaee http://
xm ns.jcp.org/ xm /ns/javaeel/ web-app_4_0. xsd" >
<wel cone-file-list>
<wel cone-fil e>wel cone. j sp</wel corme-file>
</wel come-file-list>
<security-constraint>
<web- resour ce-col | ecti on>
<web- r esour ce- name>Success</ web- r esour ce- nane>
<url -pattern>/wel cone.jsp</url-pattern>
<ht t p- met hod>GET</ ht t p- met hod>
<ht t p- net hod>POST</ ht t p- met hod>
</ web-resour ce-col | ecti on>
<aut h- const r ai nt >
<r ol e- name>webuser </ r ol e- name>
</ aut h-constraint>
</security-constraint>
<l ogi n-confi g>

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 37

ORACLE Chapter 2
Developing Secure Web Applications

<aut h- met hod>BASI C</ aut h- et hod>
<r eal m name>def aul t </ r eal m nane>
</l ogi n-confi g>
<security-role>
<rol e- nane>webuser </ r ol e- nane>
</security-rol e>
</ web- app>

Example 2-2 BASIC Authentication weblogic.xml File

<?xm version="1.0" encodi ng=' UTF-8' 7>
<webl ogi c- web-app xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance" xm ns="http://
xm ns. oracl e. com webl ogi ¢/ webl ogi c- web- app"
xsi:schemalLocation="http://xn ns. oracl e. conf webl ogi ¢/ webl ogi c-web-app http://
xm ns. or acl e. conl webl ogi ¢/ webl ogi c- web- app/ 1. 4/ webl ogi c- web- app. xsd" >
<security-rol e-assi gnment >
<rol e- name>webuser </ r ol e- nane>
<princi pal - name>nyG oup</ pri nci pal - name>
</security-rol e-assi gnnent >
</ webl ogi c- web- app>

Example 2-3 BASIC Authentication welcome.jsp File

<htm >
<head>
<title>Browser Based Authentication Exanple Wl cone Page</title>
</ head>
<h1> Browser Based Authentication Exanple Wl come Page </hl>
<p> Wl come <% request.get Renotelser() %!
</ bl ockquot e>
</ body>
</ htm >

Using HttpSessionListener to Account for Browser Caching of Credentials

The browser caches user credentials and frequently re-sends them to the server automatically.
This can give the appearance that WebLogic Server sessions are not being destroyed after
logout or timeout. Depending on the browser, the credentials can be cached just for the current
browser session, or across browser sessions.

You can validate that a WebLogic Server's session was destroyed by creating a class that
implements the j akarta. servl et. http. H t pSessi onLi st ener interface. Implementations of
this interface are notified of changes to the list of active sessions in a web application. To
receive notification events, the implementation class must be configured in the deployment
descriptor for the web application in web. xnl .

To configure a session listener class:

1. Open the web. xm deployment descriptor of the Web application for which you are creating
a session listener class in a text editor. The web. xn file is located in the WEB-INF
directory of your Web application.

2. Add an event declaration using the listener element of the web.xml deployment descriptor.
The event declaration defines the event listener class that is invoked when the event
occurs. For example:

<li stener>
<listener-class>nyApp. MySessi onLi stener</listener-class>
</listener>

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 37

ORACLE

Chapter 2
Developing Secure Web Applications

See Configuring an Event Listener Class in Developing Web Applications, Servlets, and
JSPs for Oracle WebLogic Server for additional information and guidelines.

Write and deploy the session listener class. The example shown in Example 2-4 uses a simple
counter to track the session count.

Example 2-4 Tracking the Session Count

package nmyApp;

import jakarta.servlet.http.HtpSessionListener;

import jakarta.servlet.http.HtpSessionEvent;

public class MySessionListener inplements HtpSessionListener {
private static int sessionCount = O;

public void sessionCreated(HttpSessionEvent se) {
sessi onCount ++;
/l Wite to a log or do sone other processing.

public void sessionDestroyed(HttpSessi onEvent se) {
i f(sessionCount > 0)
sessi onCount - - ;
/IWite to a log or do some other processing.

}

Understanding BASIC Authentication with Unsecured Resources

For WebLogic Server versions 9.2 and later, client requests that use HTTP BASIC
authentication must pass WebLogic Server authentication, even if access control is not
enabled on the target resource.

The setting of the Security Configuration MBean flag enforce-valid-basic-auth-credentials
determines this behavior. (The DomainMBean can return the new Security Configuration
MBean for the domain.) It specifies whether or not the system should allow requests with
invalid HTTP BASIC authentication credentials to access unsecured resources.

@® Note

The Security Configuration MBean provides domain-wide security configuration
information. The enforce-valid-basic-auth-credentials flag effects the entire domain.

The enforce-valid-basic-auth-credentials flag is true by default, and WebLogic Server
authentication is performed. If authentication fails, the request is rejected. WebLogic Server
must therefore have knowledge of the user and password.

You may want to change the default behavior if you rely on an alternate authentication
mechanism. For example, you might use a backend web service to authenticate the client, and
WebLogic Server does not need to know about the user. With the default authentication
enforcement enabled, the web service can do its own authentication, but only if WebLogic
Server authentication first succeeds.

If you explicitly set the enforce-valid-basic-auth-credentials flag to false, WebLogic Server does
not perform authentication for HTTP BASIC authentication client requests for which access
control was not enabled for the target resource.

In the previous example of a backend web service that authenticates the client, the web
service can then perform its own authentication without WebLogic Server having knowledge of
the user.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 37

ORACLE’

Chapter 2
Developing Secure Web Applications

Setting the enforce-valid-basic-auth-credentials Flag

To set the enforce-valid-basic-auth-credentials flag, perform the following steps:

1. Add the <enforce-valid-basic-auth-credential s>elementto config.xm within the
<security-configuration>element.

<enforce-valid-basic-aut h-credential s>fal se</enforce-valid-basi c-auth-credential s>
</security-configuration>

2. Start or restart all of the servers in the domain.

Check the Value of enforce-valid-basic-auth-credentials

You can use either WebLogic Remote Console or WSLST to check the value of the enforce-
valid-basic-auth-credentials setting in a running server. Remember that enf or ce- val i d- basi c-
aut h-credenti al s is a domain-wide setting.

In WebLogic Remote Console, go to the Edit Tree perspective, then Environment, then
Domain. On the Security tab, click Show Advanced Fields to view the Enforce Valid Basic Auth
Credentials option.

The WLST session shown in Example 2-5 demonstrates how to check the value of the
enforce-valid-basic-auth-credentials flag in a sample running server.

Example 2-5 Checking the Value of enforce-valid-basic-auth-credentials

w s:/offline> connect('',"","t3://host:port")

Pl ease enter your username :adm nuser

Pl ease enter your password :

Connecting to t3://host:port with userid adm nuser ...

Successfully connected to Admin Server 'exanplesServer' that belongs to domain '
W _server'.

W s:/w _server/serverConfig> cd(' SecurityConfiguration')

W s:/w _server/serverConfig/ SecurityConfiguration> |s()

dr-- w _server

w s:/w _server/serverConfig/ SecurityConfiguration> cd('w _server')
W s:/w _server/serverConfig/ SecurityConfiguration/w _server> |s()

Developing Applications with the WebLogic Security Service

G31581-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

dr-- Def aul t Real m

dr-- Real ns

-T- AnonynousAdni nLookupEnabl ed fal se
-T- Conpati bili tyConnecti onFil t er sEnabl ed fal se
-r-- ConnectionFilter nul |
-r-- ConnectionFilterRul es nul |
-r-- Connect i onLogger Enabl ed fal se
-r-- Consol eFul | Del egat i onEnabl ed fal se
-r-- Credenti al *hk Rk K
-r-- Credenti al Encrypt ed FrE KKK
-r-- CrossDomai nSecuri t yEnabl ed fal se
-r-- Downgr adeUnt r ust edPri nci pal s fal se
-r-- EnforceStrict URLPattern true
-r- Enf or ceVal i dBasi cAut hCredenti al s fal se

October 8, 2025
Page 13 of 37

ORACLE Chapter 2
Developing Secure Web Applications

Developing FORM Authentication Web Applications

When using FORM authentication with Web applications, you provide a custom login screen
that the Web browser displays in response to a Web application resource request and an error
screen that displays if the login fails. The login screen can be generated using an HTML page,
JSP, or servlet. The benefit of form-based login is that you have complete control over these
screens so that you can design them to meet the requirements of your application or enterprise
policy/guideline.

The login screen prompts the user for a user name and password. Figure 2-4 shows a typical
login screen generated using a JSP and Example 2-6 shows the source code.

Figure 2-4 Form-Based Login Screen (login.jsp)

+t— Security Webapp login page - Netscape : £ |I:I|£|

File Edit Wew Go Communicator Help

=

ﬁ@i\a.ﬁ@dﬂi

Back Fomward Feload Home Search Metzcape Frirt Security

g%lnstantMessage wiebbd ail Radio Feople rellow Pages Downiload

Wt " Bookmarks \j{. Location: Ia"a"ln:nc:alhn:nst:?lilm Fzecurnityflogin.jsp j ﬁ' What's Related

Please enter your
username and password:

TTzernarme;

Pazsword:

aubmit |

El#l Dacument: Done S| e 94 AR G - 5

Figure 2-5 shows a typical login error screen generated using HTML and Example 2-7 shows
the source code.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 37

ORACLE’

Chapter 2
Developing Secure Web Applications

Figure 2-5 Login Error Screen

Login failed - Netscape . - 101 x|

File Edit Mew Go Communicator Help

-

v« 2 3 B o b S SN

Back Formard Reload Home Search Metzcape Frirt Security,

J%Instanthdessage Wwiebhd ail Radio People “fellow Pages Dianwnloa

W‘ " Bookmarks \g& Lu:u:atiu:un:lt:?[l[ﬂ Szecunby/zecurity_check, j ﬁ"’w’hat's Related

Sorry, your username and
password were not
recognized.

Return to welcome page or logout

= (== Document: Dane =| e G AR EE] N 4

To develop a Web application that provides FORM authentication, perform these steps:
1. Create the web. xml deployment descriptor and include the following information:
a. Define the welcome file. The welcome file name is wel cone. j sp.

b. Define a security constraint for each set of URL resources that you plan to protect.
Each set of URL resources share a common URL. URL resources such as HTML
pages, JSPs, and servlets are the most commonly protected, but other types of URL
resources are supported. In the sample web. xn1 file provided in the following steps,
the URL pattern points to /admin/edit.jsp, thus protecting the edi t . j sp file located in
the Web application's adm n sub-directory, defines the HTTP method that is allowed to
access the URL resource, GET, and defines the security role name, adni n.

@ Note

Do not use hyphens in security role names. Security role names with hyphens
cannot be modified in WebLogic Remote Console. Also, the suggested
convention for security role names is that they be singular.

c. Define the type of authentication you want to use and the security realm to which the
security constraints will be applied. In this case, the FORMtype is specified and no
realm is specified, so the realm is the default realm, which means that the security
constraints will apply to the security realm that is activated when a WebLogic Server
instance boots.

d. Define one or more security roles and map them to your security constraints. In our
sample, only one security role, admi n, is defined in the security constraint so only one

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 37

ORACLE Chapter 2
Developing Secure Web Applications

security role name is defined here. However, any number of security roles can be
defined. The following is a sample web. xm file.

<?xm version="1.0" encodi ng=" UTF- 8" ?>
<web-app xm ns="http://xnmns.jcp.org/ xm/ns/j2ee" xmns:xsi="http://
www, W3. or g/ 2001/ XM_Schena- i nst ance" >
<web- app>
<wel come-file-list>
<wel come-fil e>wel cone. j sp</ wel comre-fil e>
</wel cone-file-list>
<security-constraint>
<web-resour ce-col | ecti on>
<web- r esour ce- name>Adm nPages</ web-r esour ce- nane>
<descri ption>
These pages are only accessible by authorized
adnmini strators.
</ description>
<url-pattern>/admn/edit.jsp</url-pattern>
<ht t p- met hod>CGET</ ht t p- net hod>
</ web-resource-col | ecti on>
<aut h-constrai nt >
<descri ption>
These are the rol es who have access.
</ description>
<rol e- nane>
adnmin
</rol e-nane>
</ aut h-const rai nt >
<user - dat a- const r ai nt >
<descri ption>
This is how the user data must be transnitted
</ description>
<transport - guar ant ee>NONE</ t r anspor t - guar ant ee>
</ user-dat a- constrai nt >
</security-constraint>
<l ogi n-config>
<aut h- met hod>FORMWK/ aut h- net hod>
<forml ogi n-config>
<form | ogi n- page>/1 ogi n. j sp</f or m | ogi n- page>
<formerror-page>/fail_login. htm</formerror-page>
</form ogin-config>
</l ogi n-config>
<security-rol e>
<descri ption>
An admi ni strator
</ description>
<rol e- name>
admn
</rol e- nane>
</security-rol e>
</ web- app>

2. Create the webl ogi ¢. xm deployment descriptor as shown in the following example. In this
file, you map security role names to users and groups. The following example shows a
sample webl ogi c. xnl file that maps the adni n security role defined in the <security-
rol e> tag in the web. xn file to the group supportGroup. With this configuration, WebLogic

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 16 of 37

ORACLE

Chapter 2
Developing Secure Web Applications

Server will only allow users in the supportGroup group to access the protected WebLogic
resource.

<?xm version="1.0" encoding="UTF-8" ?>
<webl ogi c-web-app xm ns="http://ww. bea. conf ns/ webl ogi ¢/ 90"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" >
<webl ogi c- web- app>
<security-rol e-assi gnment >
<rol e- name>adni n</r ol e- name>
<pri nci pal - name>support Group</ pri nci pal - name>
</security-rol e-assi gnnent >
</ webl ogi c- web- app>

However, you can use WebLogic Remote Console to modify the Web application's security
role so that other groups can be allowed to access the protected WebLogic resource.

Create a Web application file that produces the welcome screen when the user requests
the protected Web application resource by entering the URL. The following example shows
a sample wel cone. j sp file. Figure 2-3 shows the Welcome screen.

<htn >

<head>
<title>Security login example</title>

</ head>

<%
String bgcolor;
if ((bgcolor=(String)application.getAttribute("Background")) ==

nul l)

{

}
%
<body bgcol or=<%"\""+bgcol or +"\ " " %>
<bl ockquot e>
<ing src=Button_Final web.gif align=right>
<h1l> Security Login Exanple </hl>
<p> Wl cone <% request.get RenoteUser() %!
<p> |f you are an administrator, you can configure the background
color of the Wb Application.

 Configure background.
<%if (request.getRenoteUser() !'=null) { %
<p> Cdick here to l ogout.
<%} %
</ bl ockquot e>
</ body>
</htni>

bgcol or="#ccccec";

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 17 of 37

ORACLE

Chapter 2
Developing Secure Web Applications

@® Note

In Example 2-3, notice that the JSP is calling an API (request.getRemoteUser()) to
get the name of the user that logged in. A different API,
weblogic.security.Security.getCurrentSubject(), could be used instead. To use this
API to get the name of the user, use it with the SubjectUtils API as follows:

String username = webl ogi c. security. SubjectUils. getUsernane
webl ogi c. security. Security. getCurrent Subject());

4. Start WebLogic Server and define the users and groups that will have access to the URL

resource. In the sample webl ogi c. xm file, the <r ol e- name> tag defines admin as the
group that has access to the edi t . j sp file and defines the user, 'joe' as a member of that
group. Therefore, use WebLogic Remote Console to define the admin group, and define
the user 'joe' and add ‘joe' to the admin group. You can also define other users and add
them to the group to grant them access to the protected WebLogic resource. For
information on adding users and groups, see Users, Groups, and Security Roles in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Deploy the Web application and use the user defined in the previous step to access the
protected Web application resource.

a. For deployment instructions, see Deploying Web Applications.

b. Open a Web browser and enter this URL:
http://host name: 7001/ securi ty/ wel cone. j sp

c. Enter the user name and password. The Welcome screen displays.

Example 2-6 Form-Based Login Screen Source Code (login.jsp)

<htm >

<head>)
<title>Security WebApp | ogin page</title>
</ head>
<body bgcol or="#cccccc">
<bl ockquot e>
<ing src=Button_Final _web.gif align=right>
<h2>P| ease enter your user name and password: </ h2>
<p>
<f orm net hod="POST" action="j _security_check">
<tabl e border=1>
<tr>
<t d>User nane: </ td>
<td><input type="text" nanme="j_username"></td>
</tr>
<tr>
<t d>Password: </td>
<td><i nput type="password" nanme="j _password"></td>
</tr>
<tr>
<td col span=2 al i gn=right ><i nput type=submit
val ue="Subni t"></td>
</tr>
</tabl e>
</fornmp
</ bl ockquot e>
</ body>

</htn >

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 18 of 37

ORACLE

Chapter 2
Developing Secure Web Applications

Example 2-7 Login Error Screen Source Code

<htm >

<head>

<title>Login failed</title>

</ head>

<body bgcol or=#ffffff>

<bl ockquot e>

<ing src=/security/Button_Final _web.gif align=right>

<h2>Sorry, your user name and password were not recognized. </ h2>
<p>

Return to wel conme page or

l ogout </ a>

</ b>
</ bl ockquot e>
</ body>

</htn >

Using Identity Assertion for Web Application Authentication

You use identity assertion in Web applications to verify client identities for authentication
purposes. When using identity assertion, the following requirements must be met:

1.
2.

The authentication type must be set to CLIENT-CERT.

An ldentity Assertion provider must be configured in the server. If the Web browser or Java
client requests a WebLogic Server resource protected by a security policy, WebLogic
Server requires that the Web browser or Java client have an identity. The WebLogic
Identity Assertion provider maps the token from a Web browser or Java client to a user in a
WebLogic Server security realm. For information on how to configure an Identity Assertion
provider, see Configuring ldentity Assertion Providers in Administering Security for Oracle
WebLogic Server.

The user corresponding to the token's value must be defined in the server's security realm;
otherwise the client will not be allowed to access a protected WebLogic resource. For
information on configuring users on the server, see Users, Groups, and Security Roles in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Using Two-Way SSL for Web Application Authentication

You use two-way SSL in Web applications to verify that clients are whom they claim to be.
When using two-way SSL, the following requirements must be met:

1.
2.

The authentication type must be set to CLIENT-CERT.

The server must be configured for two-way SSL. For information on using SSL and digital
certificates, see Using SSL Authentication in Java Clients. For information on configuring
SSL on the server, see Configuring SSL in Administering Security for Oracle WebLogic
Server.

The client must use HTTPS to access the Web application on the server.

An Ildentity Assertion provider must be configured in the server. If the Web browser or Java
client requests a WebLogic Server resource protected by a security policy, WebLogic
Server requires that the Web browser or Java client have an identity. The WebLogic
Identity Assertion provider allows you to enable a user name mapper in the server that
maps the digital certificate of a Web browser or Java client to a user in a WebLogic Server
security realm. For information on how to configure security providers, see Configuring
WebLogic Security Providers in Administering Security for Oracle WebLogic Server.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 19 of 37

ORACLE

Chapter 2
Developing Secure Web Applications

5. The user corresponding to the Subject's Distinguished Name (SubjectDN) attribute in the
client's digital certificate must be defined in the server's security realm; otherwise the client
will not be allowed to access a protected WebLogic resource. For information on
configuring users on the server, see Users, Groups, and Security Roles in Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

® Note

When you use SSL authentication, it is not necessary to use web.xml and
weblogic.xml files to specify server configuration because you use WebLogic
Remote Console to specify the server's SSL configuration.

Providing a Fallback Mechanism for Authentication Methods

Configuration

The Jakarta Servlet 5.0 specification (https://j akarta. ee/ specifications/servlet/) allows
you to define the authentication method (BASIC, FORM, etc.) to be used in a Web application.
WebLogic Server provides an aut h- net hod security module that allows you to define multiple
authentication methods (as a comma separated list), so the container can provide a fall-back
mechanism. Authentication will be attempted in the order the values are defined in the aut h-
met hod list.

For example, you can define the following aut h- net hod list in the | ogi n- confi g element of
your web. xn file:

<l ogi n-confi g>
<aut h- net hod>CLI ENT- CERT, BASI C</ aut h- met hod>
</l ogi n-confi g>

Then the container will first try to authenticate by looking at the CLIENT-CERT value. If that
should fail, the container will challenge the user-agent for BASIC authentication.

If either FORM or BASIC are configured, then they must exist at the end of the list since they
require a round-trip communication with the user. However, both FORM and BASIC cannot
exist together in the list of aut h- net hod values.

The aut h- met hod authentication security can be configured in two ways:

» Define a comma separated list of aut h- net hod values in the | ogi n- confi g element of your
web. xm file.

« Define the aut h- net hod values as a comma separated list on the Real mvBean and in the
| ogi n- confi g element of your web. xm use the REALM value, then the Web application
will pick up the authentication methods from the security realm.

WebLogic Java Management Extensions (JMX) enables you to access the RealmMBean to
create and manage the security resources. For more information, see Overview of WebLogic
Server Subsystem MBeans in Developing Custom Management Ultilities Using JMX for Oracle
WebLogic Server.

Developing Swing-Based Authentication Web Applications

Web browsers can also be used to run graphical user interfaces (GUIs) that were developed
using Java Foundation Classes (JFC) Swing components.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 20 of 37

https://jakarta.ee/specifications/servlet/

ORACLE

Chapter 2
Developing Secure Web Applications

For information on how to create a graphical user interface (GUI) for applications and applets
using the Swing components, see the Creating a GUI with JFC/Swing tutorial (also known as
The Swing Tutorial). You can access this tutorial on the Web at htt p: // docs. or acl e. cont
javase/tutorial /ui swing/.

After you have developed your Swing-based GUI, refer to Developing FORM Authentication
Web Applications and use the Swing-based screens to perform the steps required to develop a
Web application that provides FORM authentication.

@® Note

When developing a Swing-based GUI, do not rely on the Java Virtual Machine-wide
user for child threads of the swing event thread. This is not Jakarta EE compliant and
does not work in thin clients, or in IIOP in general. Instead, take either of the following
approaches:

* Make sure an InitialContext is created before any Swing artifacts.

* Or, use the Java Authentication and Authorization Service (JAAS) to log in and
then use the Security.runAs() method inside the Swing event thread and its
children.

Deploying Web Applications

To deploy a Web application on a server running in development mode, perform the following
steps:

@® Note

For more information about deploying Web applications in either development of
production mode, see Deploying Applications and Modules with weblogic.deployer in
Deploying Applications to Oracle WebLogic Server.

1. Set up a directory structure for the Web application’s files. Figure 2-6 shows the directory
structure for the Web application named basi caut h. The top-level directory must be
assigned the name of the Web application and the sub-directory must be named WEB- | NF.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 21 of 37

http://docs.oracle.com/javase/tutorial/uiswing/
http://docs.oracle.com/javase/tutorial/uiswing/

ORACLE Chapter 2
Using Declarative Security With Web Applications

Figure 2-6 Basicauth Web Application Directory Structure

basicauth Directory
Welsome.jsp

WEB-INF Subdirectory
> web.xml
weblogic.xml

2. To deploy the Web application in exploded directory format, that is, not in the Java archive
(jar) format, simply move your directory to the appl i cati ons directory on your server. For
example, you would deploy the basi caut h Web application in the following location:

ORACLE_HOWE\ user _pr oj ect s\ domai ns\ mydomai n\ appl i cati ons\ basi cauth

If the WebLogic Server instance is running, the application should auto-deploy. Use
WebLogic Remote Console to verify that the application deployed.

If the WebLogic Server instance is not running, the Web application should auto-deploy
when you start the server.

3. If you have not done so already, use WebLogic Remote Console to configure the users
and groups that will have access to the Web application. To determine the users and
groups that are allowed access to the protected WebLogic resource, examine the
webl ogi c. xn file. For example, the webl ogi c. xm file for the basi caut h sample (see
Example 2-2) defines nyG oup as the only group to have access to the wel cone. j sp file.

For more information on deploying secure Web applications, see Deploying Applications and
Modules with weblogic.deployer in Deploying Applications to Oracle WebLogic Server.

Using Declarative Security With Web Applications

WebLogic Server supports three different ways to implement declarative security web
applications. You can define policies and roles using WebLogic Remote Console, you can use
Jakarta Authorization to configure a Java permission-based security model, or you can
configure security entirely within the web application's deployment descriptor files.

For information about using Jakarta Authorization, see Using Jakarta Authorization. The topics
that follow explain how to configure security in web application's deployment descriptors.

Which of these three methods is used is defined by the Jakarta Authorization flags and the
security model. (Security models are described in Options for Securing EJB and Web
Application Resources in Securing Resources Using Roles and Policies for Oracle WebLogic
Server.)

To implement declarative security in Web applications, you can use deployment descriptors
(web. xm and webl ogi ¢. xnl) to define security requirements. The deployment descriptors map
the application's logical security requirements to its runtime definitions. And at runtime, the
servlet container uses the security definitions to enforce the requirements. For a discussion of
using deployment descriptors, see Developing Secure Web Applications.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 22 of 37

ORACLE Chapter 2
Web Application Security-Related Deployment Descriptors

For information about how to use deployment descriptors and the ext er nal | y- def i ned
element to configure security in Web applications declaratively, see externally-defined.

WebLogic Server supports several deployment descriptor elements that are used in the
web. xn and webl ogi c. xni files to define security requirements in Web applications.

Web Application Security-Related Deployment Descriptors

WebLogic Server supports several deployment descriptor elements that are used in the
web. xm and webl ogi c. xmfiles to define security requirements in Web applications.

e web.xml Deployment Descriptors

« weblogic.xml Deployment Descriptors

web.xml Deployment Descriptors

The following web. xn security-related deployment descriptor elements are supported by
WebLogic Server:

e auth-constraint
e security-constraint
e security-role

e security-role-ref
e user-data-constraint

» web-resource-collection

auth-constraint

The optional aut h- const rai nt element defines which groups or principals have access to the
collection of Web resources defined in this security constraint.

® Note

Any resource that is protected by an aut h- const rai nt element should also be
protected by a Table 2-6 with a <transport - guar ant ee> of | NTEGRAL or CONFI DENTI AL.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection when the
user is authenticated using the | NTEGRAL or CONFI DENTI AL transport guarantee,
thereby ensuring that all communication on the network between the Web browser
and the server is encrypted and that none of the communication, including a user
name and password, is in clear text.

Requiring SSL also means that WebLogic Server uses two cookies: the JSESSI ONI D
cookie and the encrypted W._AUTHCOOKI E_JSESSI ONI D cookie, as described in Using
Secure Cookies to Prevent Session Stealing.

The following table describes the elements you can define within an aut h- const rai nt element.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 23 of 37

ORACLE

Used Within

Example

Chapter 2
Web Application Security-Related Deployment Descriptors

Table 2-2 auth-constraint Element

Element Required/Optional Description
<description> Optional A text description of this security constraint.
<rol e- nane> Optional Defines which security roles can access resources defined in

this <securi ty- const rai nt >. Security role names are
mapped to principals using the <security-rol e-ref>
element. See security-role-ref.

The aut h- constrai nt element is used within the security-constrai nt element.

See Example 2-8 for an example of how to use the aut h- constrai nt element in a web. xn file.

security-constraint

The security-constraint elementis used in the web. xmi file to define the access privileges to
a collection of resources defined by the web- resour ce-col | ecti on element.

@® Note

Any resource that is protected by an aut h- const rai nt element should also be
protected by a Table 2-6 with a <t ransport - guar ant ee> of | NTEGRAL or CONFI DENTI AL.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection when the
user is authenticated using the | NTEGRAL or CONFI DENTI AL transport guarantee,
thereby ensuring that all communication on the network between the Web browser
and the server is encrypted and that none of the communication, including a user
name and password, is in clear text.

Requiring SSL also means that WebLogic Server uses two cookies: the JSESSI ONI D
cookie and the encrypted W. AUTHCOOKI E_JSESSI ONI D cookie, as described in Using
Secure Cookies to Prevent Session Stealing.

The following table describes the elements you can define within a securi ty-constrai nt
element.

Table 2-3 security-constraint Element

Element Required/Optional Description

<web-resource- Required Defines the components of the Web Application to which this

col | ection> security constraint is applied. See web-resource-collection.

<aut h- Optional Defines which groups or principals have access to the

constraint> collection of web resources defined in this security constraint.
See auth-constraint.

<user - dat a- Optional Defines defines how data communicated between the client

constraint> and the server should be protected. See user-data-constraint.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 24 of 37

ORACLE

Example

security-role

Example

Chapter 2
Web Application Security-Related Deployment Descriptors

Example 2-8 shows how to use the security-constrai nt element to defined security for the
SecureOrdersEast resource in a web. xni file.

Example 2-8 Security Constraint Example

web. xm entries
<security-constraint>
<web-r esour ce-col | ection>
<web- r esour ce- name>Secur eOr der sEast </ web- r esour ce- nanme>
<descri ption>
Security constraint for
resources in the orders/east directory
</ description>
<url-pattern>/orders/east/*</url-pattern>
<ht t p- met hod>PCOST</ ht t p- met hod>
<ht t p- net hod>GET</ ht t p- met hod>
</ web- resource-col | ecti on>
<aut h-constraint >
<descri ption>
constraint for east coast sales
</ description>
<rol e- nane>east </ r ol e- nane>
<r ol e- name>manager </ r ol e- name>
</ aut h-constrai nt>
<user-dat a-constraint>
<descri ption>SSL not required</description>
<transport - guar ant ee>NONE</ t r ansport - guar ant ee>
</ user-dat a- constrai nt >
</security-constraint>

The security-rol e element contains the definition of a security role. The definition consists of
an optional description of the security role, and the security role name.

The following table describes the elements you can define within a security-rol e element.

Table 2-4 security-role Element
|

Element Required/Optional Description
<description> Optional A text description of this security role.
<rol e- nane> Required The role name. The name you use here must have a

corresponding entry in the WebLogic-specific deployment
descriptor, webl ogi ¢. xnl , which maps roles to principals in
the security realm. See security-role-assignment.

See Example 2-11 for an example of how to use the security-rol e elementin aweb. xn file.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 25 of 37

ORACLE Chapter 2
Web Application Security-Related Deployment Descriptors

security-role-ref

The security-rol e-ref element links a security role name defined by <security-rol e>to an
alternative role name that is hard-coded in the servlet logic. This extra layer of abstraction
allows the servlet to be configured at deployment without changing servlet code.

The following table describes the elements you can define within a security-rol e-ref
element.

Table 2-5 security-role-ref Element

Element Required/Optional Description

<descri ption> Optional Text description of the role.

<rol e- nane> Required Defines the name of the security role or principal that is used
in the servlet code.

<rol e-1ink> Required Defines the name of the security role that is defined in a
<security-rol e>element later in the deployment
descriptor.

Example

See isUserInRole for an example of how to use the security-rol e-ref elementin aweb. xm
file.

user-data-constraint

The user - dat a- const r ai nt element defines how data communicated between the client and
the server should be protected.

@® Note

Any resource that is protected by an aut h- const rai nt element should also be
protected by a Table 2-6 with a <transport - guar ant ee> of | NTEGRAL or CONFI DENTI AL.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection when the
user is authenticated using the | NTEGRAL or CONFI DENTI AL transport guarantee,
thereby ensuring that all communication on the network between the Web browser
and the server is encrypted and that none of the communication, including a user
name and password, is in clear text.

Requiring SSL also means that WebLogic Server uses two cookies: the JSESSI ONI D
cookie and the encrypted W._AUTHCOOKI E_JSESSI ONI D cookie, as described in Using
Secure Cookies to Prevent Session Stealing.

The following table describes the elements you can define within a user - dat a- const r ai nt
element.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 26 of 37

ORACLE

Chapter 2
Web Application Security-Related Deployment Descriptors

Table 2-6 user-data-constraint Element

. ___|
Element Required/Optional Description

<description> Optional

A text description.

<transport- Required
guar ant ee>

Specifies data security requirements for communications
between the client and the server.

Range of values:

* NONE—The application does not require any transport
guarantees.

e | NTEGRAL—The application requires that the data be
sent between the client and server in such a way that it
cannot be changed in transit.

« CONFI DENTI AL—The application requires that data be
transmitted so as to prevent other entities from observing
the contents of the transmission.

WebLogic Server establishes a Secure Sockets Layer (SSL)

connection when the user is authenticated using the

| NTEGRAL or CONFI DENTI AL transport guarantee.

Used Within

The user - dat a- constrai nt element is used within the securi ty-constrai nt element.

Example

See Example 2-8 for an example of how to use the user - dat a- constrai nt elementin a

web. xm file.

web-resource-collection

The web-resour ce- col | ecti on element identifies a subset of the resources and HTTP methods
on those resources within a Web application to which a security constraint applies. If no HTTP
methods are specified, the security constraint applies to all HTTP methods.

The following table describes the elements you can define within a web-r esour ce- col | ecti on

element.

Table 2-7 web-resource-collection Element

Element Required/Optional Description
<veb- r esour ce- Required The name of this web resource collection.
nane>
<description> Optional Text description of the Web resource.
Required The mapping, or location, of the Web resource collection.

<url-pattern>

URL patterns must use the syntax defined in the Java Servlet
Specification (ht t ps: //j akarta. ee/ speci fi cations/
servlet/).

The pattern <ur | - patt ern>/ </ url - pat t er n> applies the
security constraint to the entire Web application.

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 27 of 37

https://jakarta.ee/specifications/servlet/
https://jakarta.ee/specifications/servlet/

ORACLE

Used Within

Example

Chapter 2
Web Application Security-Related Deployment Descriptors

Table 2-7 (Cont.) web-resource-collection Element

. ___|
Element Required/Optional Description

Optional The HTTP methods to which the security constraint applies
when clients attempt to access the Web resource collection. If
no HTTP methods are specified, then the security constraint
applies to all HTTP methods.

Specifying an HTTP method here limits the reach of the
security constraint. Unless you have a particular requirement
to specify an HTTP method, for security reasons you should
not set this element.

<ht t p- met hod>

The web-resour ce-col | ecti on element is used within the security-constrai nt element.

See Example 2-8 for an example of how to use the web- r esour ce- col | ecti on elementin a
web. xm file.

weblogic.xml Deployment Descriptors

The following webl ogi ¢. xm security-related deployment descriptor elements are supported by
WebLogic Server:

« externally-defined

e run-as-principal-name

e run-as-role-assignment

e security-permission

e security-permission-spec

e security-role-assignment

For additional information on webl ogi c. xm deployment descriptors, see XML Deployment
Descriptors in Developing Applications for Oracle WebLogic Server.

For additional information on the webl ogi c. xm elements, see weblogic.xml Deployment
Descriptor Elements in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic
Server.

externally-defined

The ext ernal | y- def i ned element lets you explicitly indicate that you want the security roles
defined by the r ol e- nane element in the web. xnm deployment descriptors to use the mappings
specified in WebLogic Remote Console. The element gives you the flexibility of not having to
specify a specific security role mapping for each security role defined in the deployment
descriptors for a particular Web application. Therefore, within the same security realm,
deployment descriptors can be used to specify and modify security for some applications while
WebLogic Remote Console can be used to specify and modify security for others.

The role mapping behavior for a server depends on which security deployment model is
selected in WebLogic Remote Console. For information on security deployment models, see

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 28 of 37

ORACLE

Chapter 2
Web Application Security-Related Deployment Descriptors

Options for Securing EJB and Web Application Resources in Securing Resources Using Roles
and Policies for Oracle WebLogic Server.

® Note

When specifying security role names, observe the following conventions and
restrictions:

Used Within

The proper syntax for a security role name is as defined for an Nmtoken in the
Extensible Markup Language (XML) recommendation available on the Web at:
http: // ww. w3. or g/ TR REC- xm #NT- Nt oken.

Do not use blank spaces, commas, hyphens, or any characters in this comma-
separated list: \t, <>, #, |, & ~, 2, (), { }

Security role names are case sensitive.

The suggested convention for security role names is that they be singular.

The ext ernal | y- defi ned element is used within the security-rol e-assi gnment element.

Example

Example 2-9 and Example 2-10 show by comparison how to use the ext ernal | y- def i ned

el ement in the webl ogi c. xn file. In Example 2-10, the specification of the "webuser"

ext ernal | y- defi ned element in the webl ogi c. xmM means that for security to be correctly
configured on the get Recei pt s method, the principals for webuser will have to be created in
WebLogic Remote Console.

@® Note

If you need to list a significant number of principals, consider specifying groups instead
of users. There are performance issues if you specify too many users.

Example 2-9 Using the web.xml and weblogic.xml Files to Map Security Roles and
Principals to a Security Realm

web. xm entries:

<web- app>

<security-role>
<rol e- nane>webuser </ r ol e- nane>
</security-rol e>

</ web- app>

<webl ogi c. xm entries:

<webl ogi c- web- app>
<security-rol e-assi gnment >

<rol e- nane>webuser </ r ol e- nane>

<princi pal - name>nyG oup</ pri nci pal - nane>
<princi pal -name>Bi | | </ pri nci pal - nane>
<princi pal - name>Mar y</ pri nci pal - nane>

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 29 of 37

http://www.w3.org/TR/REC-xml#NT-Nmtoken

ORACLE Chapter 2
Web Application Security-Related Deployment Descriptors

</security-rol e-assi gnnent >
</ webl ogi c- web- app>

Example 2-10 Using the externally-defined tag in Web Application Deployment
Descriptors

web. xm entries:
<web- app>

<security-rol e>
<rol e- nane>webuser </ r ol e- nanme>
</security-rol e>

</ web- app>
<webl ogi c. xm entries:
<webl ogi c- web- app>
<security-rol e-assi gnment >
<r ol e- name>webuser </ r ol e- nane>
<external | y-defined/ >
</security-rol e-assi gnnent >

For information about how to use WebLogic Remote Console to configure security for Web
applications, see Securing Web Applications and EJBs in Securing Resources Using Roles
and Policies for Oracle WebLogic Server.

run-as-principal-name

The run-as- pri nci pal - name element specifies the name of a principal to use for a security
role defined by a r un- as element in the companion web. xni file.

Used Within

The run-as- princi pal - name element is used within a r un- as-r ol e- assi gnnent element.

Example

For an example of how to use the run- as- pri nci pal - name element, see Example 2-11.

run-as-role-assignment

The run-as-rol e-assi gnnment element maps a given role name, defined by a r ol e- nare
element in the companion web. xni file, to a valid user name in the system. The value can be
overridden for a given servlet by the run- as- pri nci pal - nane element in the servlet-descriptor.
If the run- as-rol e-assi gnment element is absent for a given role name, the Web application
container chooses the first principal-name defined in the security-rol e-assi gnment element.

The following table describes the elements you can define within a r un- as-r ol e- assi gnnent
element.

Table 2-8 run-as-role-assignment Element
|

Element Required/Optional Description

<rol e- nane> Required Specifies the name of a security role name specified in a
run-as element in the companion web. xni file.

<run-as- Required Specifies a principal for the security role name defined in a

princi pal - name> run- as element in the companion web. xni file.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 30 of 37

ORACLE Chapter 2
Web Application Security-Related Deployment Descriptors

Example:

Example 2-11 shows how to use the r un- as- r ol e- assi gnnent element to have the
SnoopSer vl et always execute as a user j oe.

Example 2-11 run-as-role-assignment Element Example

web. xni :
<servl et >
<servl et - nanme>SnoopSer vl et </ ser vl et - name>
<servl et -cl ass>extra. SnoopServl et </ servl et-cl ass>
<run-as>
<rol e- nane>r unasr ol e</ r ol e- name>
</run-as>
</servlet>
<security-rol e>
<r ol e- nane>r unasr ol e</r ol e- nane>
</security-rol e>
webl ogi c. xm :
<webl ogi c- web- app>
<run-as-rol e-assi gnnent >
<rol e- nane>r unasr ol e</r ol e- nane>
<run-as- princi pal - nane>j oe</ run- as- pri nci pal - nane>
</run-as-rol e-assi gnnent >
</ webl ogi c- web- app>

security-permission

The securi ty- perm ssi on element specifies a security permission that is associated with a
Jakarta EE Sandbox.

Example

For an example of how to used the securi t y- per ni ssi on element, see Example 2-12.

security-permission-spec

The security-permission-spec element specifies a single security permission based on the
Security policy file syntax. Refer to the Default Policy Implementation and Policy File Syntax
section in Java SE Security Developer's Guide for the implementation of the security
permission specification.

@® Note

Disregard the optional codebase and signedBy clauses.

Used Within

The security-permission- spec element is used within the securi ty- perm ssi on element.

Example

Example 2-12 shows how to use the security-permission-spec element to grant permission to
the j ava. net. Socket Per mi ssi on class.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 31 of 37

https://docs.oracle.com/en/java/javase/17/security/index.html

ORACLE Chapter 2
Web Application Security-Related Deployment Descriptors

Example 2-12 security-permission-spec Element Example

<webl ogi c- web- app>
<security-perm ssi on>
<description>Optional explanation goes here</description>
<security-perm ssi on-spec>
<l--
A single grant statement followi ng the syntax of
http://xmns.jcp.org/j2sel/ 1. 5.0/ docs/ gui de/ security/ PolicyFiles.htm #Fi | eSynt ax,
W thout the "codebase" and "signedBy" clauses, goes here. For exanple
-->
grant {
perm ssion java.net. Socket Permi ssion "*", "resolve";
3
</ security-pernission-spec>
</ security-pernission>
</ webl ogi c- web- app>

In Example 2-12, permission j ava. net . Socket Per ni ssi on is the permission class name, "*"
represents the target name, and resolve indicates the action (resolve host/IP hame service
lookups).

security-role-assignment

The security-rol e-assi gnnent element declares a mapping between a security role and one
or more principals in the WebLogic Server security realm.

@® Note

For information on using the security-role-assignment element in a weblogic-
application.xml deployment descriptor for an enterprise application, see Enterprise
Application Deployment Descriptor Elements in Developing Applications for Oracle
WebLogic Server.

Example

Example 2-13 shows how to use the security-rol e-assi gnnent element to assign principals
to the Payr ol | Admi n role.

@® Note

If you need to list a significant number of principals, consider specifying groups instead
of users. There are performance issues if you specify too many users.

Example 2-13 security-role-assignment Element Example

<webl ogi c- web- app>
<security-rol e-assi gnment >
<rol e- nane>Payr ol | Adni n</r ol e- nane>
<princi pal - name>Tanya</ pri nci pal - name>
<pri nci pal - name>Fr ed</ pri nci pal - name>
<princi pal - nane>syst enx/ pri nci pal - name>
</security-rol e-assi gnnent >
</ webl ogi c- web- app>

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 32 of 37

ORACLE’

Chapter 2
Using Programmatic Security With Web Applications

Using Programmatic Security With Web Applications

You can write your servlets to access users and security roles programmatically using methods
defined in the Jakarta Security specification Securi t yCont ext interface and the Servlet
Ht t pSer vl et Request interface.

These sections describe the methods in more detail:

Jakarta Security SecurityContext Methods

Servlet HttpServletRequest Methods

Jakarta Security SecurityContext Methods

WebLogic Server supports these Jakarta Security SecurityContext methods in the Servlet
(including Webservice) and EJB containers, as specified in the Java specification:

get Cal I er Princi pal () - Use this method to retrieve the Principal representing the caller.
This is the container-specific representation of the caller principal. The type may differ from
the type of the caller principal originally established by an Ht t pAut hent i cat i onMechani sm
This method returns null for an unauthenticated caller in either the Servlet Container or the
EJB Container.

get Princi pal sByType() - Use this method to retrieve all principals of the given type. It can
be used to retrieve an application-specific caller principal established during authentication.
This method is primarily useful when the container’s caller principal is a different type than
the application caller principal, and the application needs specific information behavior
available only from the application principal. This method returns an empty Set if the caller
is unauthenticated, or if the requested type is not found.

i sCal | erl nRol e() - Use this method to check if the authenticated caller is included in the
specified logical application "role". The method takes a String argument that represents the
specific role to be verified.

hasAccessToWebResour ce() - Use this method to determine if the caller has access to the
specified web resource for the specified HTTP methods, as determined by the security
constraints configured for the application. The resource parameter is a URLPat t er nSpec, as
defined by the Jakarta Authorization specification (https://jakarta.ee/specifications/
authorization), that identifies an application-specific web resource. This method can be
used to check access to resources in the current application only — it cannot be called
cross-application, or cross-container, to check access to resources in a different
application.

aut henticat e() - Use this method to signal to the container that it should start the
authentication process with the caller.

Servlet HttpServletRequest Methods

You can write your servlets to access users and security roles programmatically in your servlet
code by using the jakarta.servlet. http. HtpServl et Request. get User Princi pal and
jakarta.servlet.http. HtpServl et Request.isUserlnRole(String role) methods.

getUserPrincipal

isUserInRole

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 33 of 37

https://jakarta.ee/specifications/authorization/
https://jakarta.ee/specifications/authorization/

ORACLE

Chapter 2
Using Programmatic Security With Web Applications

getUserPrincipal

iIsUserInRole

You use the get User Pri nci pal () method to determine the current user of the Web application.
This method returns a W.SUser Pri nci pal if one exists in the current user. In the case of
multiple W.SUser Princi pal s, the method returns the first in the ordering defined by the

Subj ect . get Principal s().iterator() method. If there are no W.SUser Princi pal s, then the
get User Pri nci pal () method returns the first non-W.SGr oup Pri nci pal . If there are no

Princi pal s or all Princi pal s are of type W.SG oup, this method returns nul | . This behavior is
identical to the semantics of the webl ogi c. security. Subject Utils. get UserPrinci pal ()
method.

For more information about how to use the get User Pri nci pal () method, see Jakarta EE
Platform API.

The jakarta.servlet.http. HtpServl et Request.isUserlnRol e(String rol e) method
returns a boolean indicating whether the authenticated user is granted the specified logical
security "role." If the user has not been authenticated, this method returns false.

The i sUser | nRol e() method maps security roles to the group names in the security realm.
The following example shows the elements that are used with the <ser vl et > element to define
the security role in the web. xm file.

Begi n web. xm entries:
<servl et >
<security-role-ref>
<rol e- nane>user - r ol ename</ r ol e- name>
<rol e-1ink>rol enane-1ink</rol e-1ink>
</security-rol e-ref>
</servlet>
<security-rol e>

<rol e- name>r ol enane- | i nk</rol e- name>
</security-rol e>

Begi n webl ogi c. xn entries:

<security-rol e-assi gnnent >
<rol e- name>r ol ename- | i nk</r ol e- nane>
<pri nci pal - name>gr oupname</ pri nci pal >
<pri nci pal - name>user nane</ pri nci pal >
</security-rol e-assi gnnent >

In this example, the string r ol e is mapped to the name supplied in the <r ol e- nane> element,
which is nested inside the <security-rol e-ref> element of a <ser vl et > declaration in the
web. xm deployment descriptor. The <r ol e- nane> element defines the name of the security
role or princi pal (the user or group) that is used in the servlet code. The <rol e- | i nk>
element maps to a <r ol e- nane> defined in the <security-rol e-assi gnnent > element in the
webl ogi c. xm deployment descriptor.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 34 of 37

https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary

ORACLE Chapter 2
Authenticating Users Programmatically

@® Note

When specifying security role names, observe the following conventions and
restrictions:

* The proper syntax for a security role name is as defined for an Nmtoken in the
Extensible Markup Language (XML) recommendation available on the Web at:
htt p: // ww. w3. or g/ TR REC- xm #NT- Nnt oken.

» Do not use blank spaces, commas, hyphens, or any characters in this comma-
separated list: \t, <>, #, |, & ~, 2, (), { }.

* Security role names are case sensitive.

* The suggested convention for security role names is that they be singular.

For example, if the client has successfully logged in as user Bi | | with the security role of
manager , the following method would return true:

request.isUserlnRol e("manager")

Example 2-14 provides an example.
Example 2-14 Example of Security Role Mapping

Servl et code:

out.println("ls the user a Manager? " +
request.isUser | nRol e("manager"));

web. xm entries:

<servl et>

<r ol e- name>manager </ r ol e- nane>
<rol e-link>mgr</role-link>

</servlet>
<security-rol e>
<r ol e- name>ngr </ r ol e- nane>
</security-rol e>
webl ogi c. xm entries
<security-rol e-assi gnnent >
<r ol e- name>ngr </ r ol e- nane>
<pri nci pal - name>bost onManager s</ pri nci pal - nane>
<princi pal - name>Bi | | </ pri nci pal - name>
<pri nci pal - name>Ral ph</ pri nci pal - name>
</security-role-ref>

Authenticating Users Programmatically

WebLogic Server supports programmatic authentication within a servlet application using the
Jakarta Security Securi t yCont ext interface or the WebLogic Server Servl et Aut henti cati on
API.

Topics

e Using the Jakarta Security SecurityContext Interface

* Using the Programmatic Authentication API

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 35 of 37

http://www.w3.org/TR/REC-xml#NT-Nmtoken

ORACLE Chapter 2
Authenticating Users Programmatically

Using the Jakarta Security SecurityContext Interface

WebLogic Server supports the aut hent i cat e method of the Jakarta Security Securi t yCont ext
interface for authenticating users. The aut hent i cat e method is enabled by default in the
Servlet container, and is useful when you need a portable authentication solution.

You use the aut henti cat e() method in the application to signal to the container that it should
start the authentication process with the caller. This method can only be used in a valid

Servl et Cont ext because it requires that Ht t pSer vl et Request and Ht t pSer vl et Response
parameters are passed in.

Using the Programmatic Authentication AP

WebLogic Server provides a server-side
webl ogi c. servl et.security. Servl et Aut henti cati on API that supports programmatic
authentication from within a servlet application.

You can use the webl ogi c. servl et. security. Servl et Aut henti cati on API to authenticate
and log in the user. Once the login is completed, it appears as if the user logged in using the
standard mechanism.

You have the option of using either of two WebLogic-supplied classes with the

Servl et Aut henti cati on API, the webl ogi c. security. Si npl eCal | backHandl er class or the
webl ogi c. security. URLCal | backHandl er class. For more information on these classes, see
Java API Reference for Oracle WebLogic Server.

Example 2-15 shows an example that uses Si npl eCal | backHandl er . Example 2-16 shows an
example that uses URLCal | backHandl er .

Example 2-15 Programmatic Authentication Code Fragment Using the
SimpleCallbackHandler Class

Cal | backHandl er handl er = new Si npl eCal | backHandl er (user nane,
passwor d) ;
Subj ect nySubject =
webl ogi c. security. services. Authentication. | ogi n(handl er);
webl ogi c. servl et.security. Servl et Authenti cation. runAs(nySubj ect, request);
/1 Where request is the httpservletrequest object.

Example 2-16 Programmatic Authentication Code Fragment Using the
URLCallbackHandler Class

Cal | backHandl er handl er = new URLCal | backHandl er (user nane,
password) ;
Subj ect mySubj ect =
webl ogi c. security. services. Authentication. | ogi n(handl er);
webl ogi c. servl et. security. Servl et Aut henti cation. runAs(nySubject, request);
/1 \Were request is the httpservletrequest object.

Change the User's Session ID at Login

When an HttpSession is created in a servlet, it is associated with a unique ID. The browser
must provide this session ID with its request in order for the server to find the session data
again.

In order to avoid a type of attack called "session fixation," you should change the user's
session ID at login. To do this, call the gener at eNewSessi onl D method of
webl ogi c. servl et. security. Servl et Aut henti cati on after you call the | ogi n method.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 36 of 37

ORACLE

Chapter 2
Authenticating Users Programmatically

The gener at eNewSessi onl D method moves all current session information into a completely
different session ID and associates this session with this new ID.

@® Note

The session itself does not change, only its identifier.

It is possible that legacy applications might depend on the session ID remaining the same
before and after login. Calling gener at eNewSessi onl Dwould break such an application. Oracle
recommends that you do not build this dependency into your application. However, if you do, or
if you are dealing with a legacy application of this type, Oracle recommends that you use SSL
to protect all access to the application.

Note that, by default, the WebLogic container automatically regenerates I1Ds for non-
programmatic logins.

See Servl et Aut hent i cat i on for additional information about the gener at eNewSessi onl I)
method.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 37 of 37

Using JAAS Authentication in Java Clients

Oracle WebLogic Server provides support for using JAAS authentication in Java clients. Learn
how to implement this type of authentication.

« JAAS and WebLogic Server

 JAAS Authentication Development Environment

* Writing a Client Application Using JAAS Authentication

e Using JNDI Authentication

« Java Client JAAS Authentication Code Examples

The sections refer to sample code which is included in the WebLogic Server distribution at:

EXAMPLES_HOME\ st c\ exanpl es\ security\jaas

The EXAMPLES HOME directory can be found at ORACLE_HOVE\ Wl ser ver\ sanpl es\ server.

The j aas directory contains an i nstructions. htm file, ant build files, a sanpl e_j aas. config
file, and the following Java files:

e Basedient.java

° BasedientConstants.java

e Sanpl eAction.java

e Sanpl eCal | backHandl er . j ava
e Sanpledient.java

e TradeResult.java

e TraderBean.java

You will need to look at the examples when reading the information in the following sections.

JAAS and WebLogic Server

The Java Authentication and Authorization Service (JAAS) is a standard extension to the
security in the JDK. JAAS provides the ability to enforce access controls based on user
identity. WebLogic Server provides JAAS as an alternative to the JNDI authentication
mechanism. There are certain considerations when using JAAS authentication.

WebLogic Server clients use the authentication portion of the standard JAAS only. The JAAS
LoginContext provides support for the ordered execution of all configured authentication
provider LoginModule instances and is responsible for the management of the completion
status of each configured provider.

Note the following considerations when using JAAS authentication for Java clients:

e WebLogic Server clients can either use the JNDI login or JAAS login for authentication,
however JAAS login is the preferred method.

« While JAAS is the preferred method of authentication, the WebLogic-supplied LoginModule
(webl ogi c. security. auth. | ogin. User nanePasswor dLogi nMbdul €) only supports

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 12

ORACLE Chapter 3
JAAS Authentication Development Environment

username and password authentication. Thus, for client certificate authentication (also
referred to as two-way SSL authentication), you should use JNDI. To use JAAS for client
certificate authentication, you must write a custom LoginModule that does certificate
authentication.

® Note

If you write your own LoginModule for use with WebLogic Server clients, have it
call weblogic.security.auth.Authenticate.authenticate() to perform the login.

* To perform a JAAS login from a remote Java client (that is, the Java client is not a
WebLogic Server client), you may use the WebLogic-supplied LoginModule to perform the
login. However, if you elect not to use the WebLogic-supplied LoginModule but decide to
write your own instead, you must have it call the
webl ogi c. security. aut h. Aut henti cat e. aut henti cat e() method to perform the login.

e If you are using a remote, or perimeter, login system such as Security Assertion Markup
Language (SAML), you do not need to call
webl ogi c. security. aut h. Aut henticate. aut henticate(). You only need to call the
aut henti cat e() method if you are using WebLogic Server to perform the logon.

@® Note

WebLogic Server provides full container support for JAAS authentication and
supports full use of JAAS authentication and authorization in application code.

e Within WebLogic Server, JAAS is called to perform the login. Each Authentication provider
includes a LoginModule. This is true for servlet logins as well as Java client logins via JNDI
or JAAS. The method WebLogic Server calls internally to perform the JAAS logon is
webl ogi c. security. aut h. Aut hentication. aut henti cat e(). When using the Authenticate
class, webl ogi c. securi ty. Si npl eCal | backHandl er may be a useful helper class.

« While WebLogic Server does not protect any resources using JAAS authorization (it uses
WebLogic security), you can use JAAS authorization in application code to protect the
application's own resources.

For more information about JAAS, see the JAAS documentation at ht t p: / / ww. or acl e. conl
technetwork/javal j avase/jaas/index. htm .

JAAS Authentication Development Environment

WebLogic Server uses the JAAS classes to reliably and securely authenticate to the server.
JAAS implements a Java version of the Pluggable Authentication Module (PAM) framework,
which permits applications to remain independent from underlying authentication technologies.
Therefore, the PAM framework allows the use of new or updated authentication technologies
without requiring modifications to a Java application.

WebLogic Server uses JAAS for remote Java client authentication, and internally for
authentication. Therefore, only developers of custom Authentication providers and developers
of remote Java client applications need to be involved with JAAS directly. Users of Web
browser clients or developers of within-container Java client applications (for example, those
calling an EJB from a servlet) do not require direct use or knowledge of JAAS.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 12

http://www.oracle.com/technetwork/java/javase/jaas/index.html
http://www.oracle.com/technetwork/java/javase/jaas/index.html

ORACLE

@® Note

Chapter 3
JAAS Authentication Development Environment

In order to implement security in a WebLogic client you must install the WebLogic
Server software distribution kit on the Java client.

The following topics are covered in this section:

« JAAS Authentication APIs

» JAAS Client Application Components

WebLogic LoginModule Implementation

JAAS Authentication APIs

To implement Java clients that use JAAS authentication on WebLogic Server, you use a
combination of Jakarta EE application programming interfaces (APIs) and WebLogic APIs.

Table 3-1 lists and describes the Java API packages used to implement JAAS authentication.
The information in Table 3-1 is taken from the Java APl documentation and annotated to add
WebLogic Server specific information. For more information on the Java APIs, see the
Javadocs at Java SE and JDK API Specification and Jakarta EE Platform API.

Table 3-1 lists and describes the WebLogic APIs used to implement JAAS authentication. See
Java API Reference for Oracle WebLogic Server.

Table 3-1 Java JAAS APIs
]

Java JAAS API

Description

j avax. security.auth. Sub
j ect in Java SE and JDK API

Specification

The Subj ect class represents the source of the request, and can be an
individual user or a group. The Subj ect object is created only after the
subject is successfully logged in.

j avax.security. auth. | og
i n. Logi nCont ext in Java
SE and JDK API Specification

The Logi nCont ext class describes the basic methods used to
authenticate Subj ect s and provides a way to develop an application
independent of the underlying authentication technology. A

Conf i gur at i on specifies the authentication technology, or
LoginModule, to be used with a particular application. Therefore,
different LoginModules can be plugged in under an application without
requiring any modifications to the application itself.

After the caller instantiates a Logi nCont ext , it invokes the | ogi n
method to authenticate a Subj ect . This | ogi n method invokes the

| ogi n method from each of the LoginModules configured for the name
specified by the caller.

If the | 0gi n method returns without throwing an exception, then the
overall authentication succeeded. The caller can then retrieve the newly
authenticated Subj ect by invoking the get Subj ect method. Principals
and credentials associated with the Subj ect may be retrieved by
invoking the Subj ect 's respective get Pri nci pal s,

get Publ i cCredenti al s, and get Pri vat eCredenti al s methods.

To log the Subj ect out, the caller invokes the | ogout method. As with
the | 0gi n method, this | ogout method invokes the | ogout method for
each LoginModule configured for this Logi nCont ext .

For a sample implementation of this class, see Writing a Client
Application Using JAAS Authentication.

Developing Applications with the WebLogic Security Service

G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 12

https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

ORACLE

Chapter 3
JAAS Authentication Development Environment

Table 3-1 (Cont.) Java JAAS APIs
]

Java JAAS API

Description

j avax.security. auth. | og
i n. ConfigurationinJava
SE and JDK API Specification

This is an abstract class for representing the configuration of
LoginModules under an application. The Conf i gur at i on specifies
which LoginModules should be used for a particular application, and in
what order the LoginModules should be invoked. This abstract class
needs to be subclassed to provide an implementation which reads and
loads the actual configuration.

In WebLogic Server, use a login configuration file instead of this class.
For a sample configuration file, see Writing a Client Application Using
JAAS Authentication. By default, WebLogic Server uses the
configuration class, which reads from a configuration file.

j avax. security. auth. spi
. Logi nMbdul e in Java SE
and JDK API Specification

Logi nMbdul e describes the interface implemented by authentication
technology providers. Logi nMbdul es are plugged in under applications
to provide a particular type of authentication.

While application developers write to the Logi nCont ext API,
authentication technology providers implement the LoginModule
interface. A configuration specifies the LoginModule(s) to be used with a
particular login application. Therefore, different LoginModules can be
plugged in under the application without requiring any modifications to
the application itself.

Note: WebLogic Server provides an implementation of the LoginModule
(webl ogi c. security.auth.login.

User namePasswor dLogi nModul e). Oracle recommends that you use
this implementation for JAAS authentication in WebLogic Server Java
clients; however, you can develop your own LoginModule.

j avax. security.auth. cal
| back. Cal | back in Java SE
and JDK API Specification

Implementations of this interface are passed to a Cal | backHandl er,
allowing underlying security services to interact with a calling application
to retrieve specific authentication data, such as usernames and
passwords, or to display information such as error and warning
messages.

Cal | back implementations do not retrieve or display the information
requested by underlying security services. Cal | back implementations
simply provide the means to pass such requests to applications, and for
applications to return requested information to the underlying security
services.

j avax. security. auth. cal
| back. Cal | backHandl er in
Java SE and JDK API
Specification

An application implements a Cal | backHandl er and passes it to
underlying security services so that they can interact with the application
to retrieve specific authentication data, such as usernames and
passwords, or to display information such as error and warning
messages.

Cal | backHandl er s are implemented in an application-dependent
fashion.

Underlying security services make requests for different types of
information by passing individual Cal | backs to the Cal | backHandl er.
The Cal | backHandl er implementation decides how to retrieve and
display information depending on the Cal | backs passed to it. For
example, if the underlying service needs a username and password to
authenticate a user, it uses a NameCal | back and Passwor dCal | back.
The Cal | backHandl er can then choose to prompt for a username and
password serially, or to prompt for both in a single window.

Developing Applications with the WebLogic Security Service

G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 12

https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

ORACLE’

Chapter 3
JAAS Authentication Development Environment

Table 3-2 WebLogic JAAS APIs
|

WebLogic JAAS API

Description

weblogic.security.auth.Authen
ticate

An authentication class used to authenticate user credentials.
The WebLogic implementation of the LoginModule,
(webl ogi c. security.auth.login.

User namePasswor dLogi nMbdul e, uses this class to authenticate a
user and add Pri nci pal s to the Subj ect . Developers who write
LoginModules must also use this class for the same purpose.

weblogic.security.auth.Callbac
k.ContextHandlerCallback

Underlying security services use this class to instantiate and pass a
Cont ext Handl er Cal | back to the i nvokeCal | back method of a

Cal | backHandl er to retrieve the ContextHandler related to this
security operation. If no ContextHandler is associated with this
operation, the

j avax. security.auth. cal I back. UnsupportedCal | backexcepti o
n is thrown.

This callback passes the ContextHandler to LoginModule.login()
methods.

weblogic.security.auth.Callbac
k.GroupCallback

Underlying security services use this class to instantiate and pass a
G oupCal | back to the i nvokeCal | back method of a
Cal | backHandl er to retrieve group information.

weblogic.security.auth.Callbac
k.URLCallback

Underlying security services use this class to instantiate and pass a
URLCal | back to the i nvokeCal | back method of a Cal | backHandl er
to retrieve URL information.

The WebLogic implementation of the Logi nhbdul e,

(webl ogi c. security.auth.login.

User namePasswor dLogi nMbdul e, uses this class.

Note: Application developers should not use this class to retrieve URL
information. Instead, they should use the
weblogic.security. URLCallbackHandler.

weblogic.security.Security

This class implements the WebLogic Server client r unAs methods.
Client applications use the r unAs methods to associate their Subj ect
identity with the Pri vi | egedActi on or Pri vi | egedExcepti onActi on
that they execute.

For a sample implementation, see Writing a Client Application Using
JAAS Authentication.

weblogic.security. URLCallbac
kHandler

The class used by application developers for returning a user nane,
passwor d and URL. Application developers should use this class to
handle the URLCal | back to retrieve URL information.

JAAS Client Application Components

At a minimum, a JAAS authentication client application includes the following components:

e Java client

The Java client instantiates a Logi nCont ext object and invokes the login by calling the
object's | ogi n() method. The | ogi n() method calls methods in each LoginModule to
perform the login and authentication.

The LoginContext also instantiates a new empty j avax. security. aut h. Subj ect object
(which represents the user or service being authenticated), constructs the configured
LoginModule, and initializes it with this new Subj ect and Cal | backHandl er.

Developing Applications with the WebLogic Security Service

G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 12

ORACLE

Chapter 3
JAAS Authentication Development Environment

The LoginContext subsequently retrieves the authenticated Subject by calling the
LoginContext's get Subj ect method. The LoginContext uses the

webl ogi c. security. Security.runAs() method to associate the Subj ect identity with the
PrivilegedAction orPrivil egedExceptionAction to be executed on behalf of the user
identity.

LoginModule

The LoginModule uses the Cal | backHandl er to obtain the user name and password and
determines whether that name and password are the ones required.

If authentication is successful, the LoginModule populates the Subject with a Principal
representing the user. The Principal the LoginModule places in the Subject is an instance
of Pri nci pal , which is a class implementing the j ava. security. Princi pal interface.

You can write LoginModule files that perform different types of authentication, including
username/password authentication and certificate authentication. A client application can
include one LoginModule (the minimum requirement) or several LoginModules.

® Note

Use of the JAAS j avax. security. aut h. Subj ect . doAs methods in WebLogic
Server applications do not associate the Subject with the client actions. You can
use the doAs methods to implement Jakarta EE security in WebLogic Server
applications, but such usage is independent of the need to use the

Security. runAs() method.

Callbackhandler

The Cal | backHandl er implements the j avax. security. aut h. cal | back. Cal | backHandl er
interface. The LoginModule uses the Cal | backHandl er to communicate with the user and
obtain the requested information, such as the username and password.

Configuration file

This file configures the LoginModule(s) used in the application. It specifies the location of
the LoginModule(s) and, if there are multiple LoginModules, the order in which they are
executed. This file enables Java applications to remain independent from the
authentication technologies, which are defined and implemented using the LoginModule.

Action file
This file defines the operations that the client application will perform.
ant build script (bui | d. xm)

This script compiles all the files required for the application and deploys them to the
WebLogic Server applications directories.

For a complete working JAAS authentication client that implements the components described
here, see the JAAS sample application in EXAMPLES_HOME\ sr ¢\ exanpl es\ security\j aas,
where EXAMPLES HOME represents the directory in which the WebLogic Server code examples
are configured and can be found at ORACLE_HOVE\ Wl ser ver\ sanpl es\ server. For more
information about the WebLogic Server code examples, see Sample Applications and Code
Examples in Understanding Oracle WebLogic Server.

For more information on the basics of JAAS authentication, see JAAS Authentication Tutorial in
Java SE Security Developer's Guide .

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 12

https://docs.oracle.com/en/java/javase/17/security/index.html

ORACLE

Chapter 3
JAAS Authentication Development Environment

WebLogic LoginModule Implementation

The WebLogic implementation of the Logi nMdul e class
(User nanePasswor dLogi nMbdul e. cl ass) is provided in the WebLogic Server distribution in the
webl ogi c. j ar file, located in the W._HOVE\ server\ | i b directory.

@ Note

WebLogic Server supports all callback types defined by JAAS as well as all callback
types that extend the JAAS specification.

The WebLogic Server User namePasswor dLogi nMbdul e checks for existing system user
authentication definitions prior to execution, and does nothing if they are already defined.

For more information about implementing JAAS LoginModules, see the LoginModule
Developer's Guide in Java SE Security Developer's Guide .

JVM-Wide Default User and the runAs() Method

The first time you use the WebLogic Server implementation of the LoginModule

(webl ogi c. security. auth. | ogin. User namePasswor dLogi nvbdul e) to log on, the specified
user becomes the machine-wide default user for the JVM (Java virtual machine). When you
execute the webl ogi c. security. Security.runAs() method, it associates the specified

Subj ect with the current thread's access permissions and then executes the action. If a
specified Subj ect represents a non-privileged user (users who are not assigned to any groups
are considered non-privileged), the JVM-wide default user is used. Therefore, it is important
make sure that the runAs() method specifies the desired Subj ect . You can do this using one
of the following options:

e QOption 1: If the client has control of mai n(), implement the wrapper code shown in
Example 3-1 in the client code.

e Option 2: If the client does not have control of nai n() , implement the wrapper code shown
in Example 3-1 on each thread's run() method.

Example 3-1 runAs() Method Wrapper Code

import java.security.PrivilegedAction;
i mport javax.security.auth. Subject;
i mport webl ogi c. security. Security;

public class client
{
public static void main(String[] args)
{
Security.runAs(new Subject (),
new PrivilegedAction() {
public Qbject run() {
/1
[11f inplementing in client code, main() goes here.
/1
return null;
1
1

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 12

https://docs.oracle.com/en/java/javase/17/security/index.html

ORACLE

}

Chapter 3
Writing a Client Application Using JAAS Authentication

Writing a Client Application Using JAAS Authentication

To use JAAS in a WebLogic Server Java client for authentication, you implement the
Logi nMbdul e and the Cal | backHandl er classes, write a configuration file that specifies which
LoginModule classes to use, and perform other tasks.

Perform the following procedure to use JAAS in a WebLogic Server Java client to authenticate
a subject:

1.

Implement Logi nMbdul e classes for the authentication mechanisms you want to use with
WebLogic Server. You will need a LoginModule class for each type of authentication
mechanism. You can have multiple LoginModule classes for a single WebLogic Server
deployment.

@ Note

Oracle recommends that you use the implementation of the LoginModule provided
by WebLogic Server
(weblogic.security.auth.login.UsernamePasswordLoginModule) for username/
password authentication. You can write your own LoginModule for username/
password authentication, however, do not attempt to modify the WebLogic Server
LoginModule and reuse it. If you write your own LoginModule, you must have it
call the weblogic.security.auth.Authenticate.authenticate() method to perform the
login. If you use a remote login mechanism such as SAML, you do not need to call
the authenticate() method. You only need to call authenticate() if you are using
WebLogic Server to perform the logon.

The webl ogi c. security. auth. Aut henti cat e class uses a JNDI Environment object for
initial context as described in Table 3-1.

Implement the Cal | backHandl er class that the LoginModule will use to communicate with
the user and obtain the requested information, such as the username, password, and URL.
The URL can be the URL of a WebLogic cluster, providing the client with the benefits of
server failover. The WebLogic Server distribution provides a Sanpl eCal | backHand! er
which is used in the JAAS client sample. The Sanpl eCal | backHandl er. j ava code is
available as part of the distribution in the directory

EXAMPLES HOME\ sr c\ exanpl es\ security\jaas. The EXAMPLES HOME directory can be found
at ORACLE_HOVE\ W ser ver\ sanpl es\ server.

@® Note

Instead of implementing your own CallbackHandler class, you can use either of
two WebLogic-supplied CallbackHandler classes,
weblogic.security.SimpleCallbackHandler or

weblogic.security. URLCallbackHandler. For more information on these classes,
see Java API Reference for Oracle WebLogic Server.

3. Write a configuration file that specifies which LoginModule classes to use for your

WebLogic Server and in which order the LoginModule classes should be invoked. See the

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 12

ORACLE Chapter 3
Writing a Client Application Using JAAS Authentication

following sample configuration file used in the JAAS client sample provided in the
WebLogic Server distribution.

/** Login Configuration for the JAAS Sanple Application **/
Sanpl e {
webl ogi c. security. auth. | ogin. User nanePasswor dLogi nMobdul e
required debug=fal se;

b

4. In the Java client, write code to instantiate a Logi nCont ext . The Logi nCont ext consults the
configuration file, sanpl e_j aas. confi g, to load the default LoginModule configured for
WebLogic Server. See the following sample Logi nCont ext instantiation.

i nport javax.security.auth.login.LoginContext;

Logi nCont ext | ogi nContext = null;
try
{

Il Create LoginContext; specify username/password |ogin nodul e
| ogi nCont ext = new Logi nCont ext (" Sanpl e",
new Sanpl eCal | backHandl er (user name, password, url));

@® Note

If you use another means to authenticate the user, such as an ldentity Assertion
provider or a remote instance of WebLogic Server, the default LoginModule is
determined by the remote source.

5. Invoke the | ogi n() method of the Logi nCont ext instance. The | ogi n() method invokes all
the loaded LoginModules. Each LoginModule attempts to authenticate the subject. If the
configured login conditions are not met, the Logi nCont ext throws a Logi nExcepti on. See
the following example of the | ogi n() method.

i nport javax.security.auth.login.LoginContext;

i nport javax.security.auth.|ogin.Logi nException;

i nport javax.security.auth.login.FailedLogi nException;

i nport javax.security.auth.login.Account Expi redExcepti on;

i nport javax.security.auth.|ogin.Credential ExpiredException;

/**
* Attenpt authentication
*/
try

/1 1f we return without an exception, authentication succeeded
[ogi nContext.login();

cat ch(Fai | edLogi nException fle)
{

Systemout.println("Authentication Failed, " +

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 12

ORACLE

Chapter 3
Writing a Client Application Using JAAS Authentication

fle.get Message());
Systemexit(-1);
}
cat ch(Account Expi redException aee)
{
Systemout. println("Authentication Failed: Account Expired");
Systemexit(-1);

}
cat ch(Credenti al Expi redException cee)
{
Systemout. println("Authentication Failed: Credentials
Expired");
Systemexit(-1);
}
cat ch(Exception e)
{

Systemout. println("Authentication Failed: Unexpected
Exception, " + e.get Message());
e.printStackTrace();
Systemexit(-1);
}

Write code in the Java client to retrieve the authenticated Subject from the Logi nCont ext
instance using the j avax. security. aut h. Subj ect . get Subj ect () method and call the
action as the Subject. Upon successful authentication of a Subject, access controls can be
placed upon that Subject by invoking the webl ogi c. security. Security.runAs() method.
The runAs() method associates the specified Subject with the current thread's access
permissions and then executes the action. See the following example implementation of
the get Subj ect () and runAs() methods.

/**
* Retrieve authenticated subject, perform Sanpl eAction as Subject
*/
Subj ect subject = |ogi nContext. get Subject();
Sanpl eAction sanpl eAction = new Sanpl eAction(url);
Security. runAs(subject, sanpleAction);
Systemexit(0);

@® Note

Use of the JAAS | avax. securi ty. aut h. Subj ect . doAs methods in WebLogic
Server applications do not associate the Subject with the client actions. You can
use the doAs methods to implement Jakarta EE security in WebLogic Server
applications, but such usage is independent of the need to use the

Security. runAs() method.

Write code to execute an action if the Subject has the required privileges. Oracle provides
a sample implementation, Sanpl eActi on, of the j ava. security. Privil egedActi on class
that executes an EJB to trade stocks. The Sanpl eActi on. j ava code is available as part of
the distribution in the directory EXAMPLES_HOVE\ sr c\ exanpl es\ securi ty\j aas, where

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 12

ORACLE Chapter 3
Using JNDI Authentication

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured, and can be found at ORACLE_HOVE\ Wi ser ver\ sanpl es\ server.

8. Invoke the | ogout () method of the Logi nCont ext instance. The | ogout () method closes
the user's session and clear the Subj ect . See the following example of the | ogi n()
method.

i nport javax.security.auth.login.LoginContext;

try

{
Systemout.println("logging out...");
| ogi nCont ext . | ogout () ;

}

® Note

The LoginModule.logout() method is never called for a WebLogic Authentication
provider or a custom Authentication provider, because once the Principals are
created and placed into a Subject, the WebLogic Security Framework no longer
controls the lifecycle of the Subject. Therefore, code that creates the JAAS
LoginContext to log in and obtain the Subject should also call the LoginContext to
log out. Calling LoginContext.logout() results in the clearing of the Principals from
the Subject.

Using JNDI Authentication

Java clients use the Java Naming and Directory Interface (JNDI) to pass credentials to
WebLogic Server. To do this, a Java client establishes a connection with Oracle WebLogic
Server by getting a JNDI | ni ti al Cont ext .and uses | ni ti al Cont ext to look up the resources it
needs in the Oracle WebLogic Server JNDI tree.

@® Note

JAAS is the preferred method of authentication, however, the WebLogic Authentication
provider's LoginModule supports only user name and password authentication. Thus,
for client certificate authentication (also referred to as two-way SSL authentication),
you should use JNDI. To use JAAS for client certificate authentication, you must write
a custom Authentication provider whose LoginModule does certificate authentication.
For information on how to write LoginModules, see LoginModule Developer's Guide in
Java SE Security Developer's Guide .

To specify a user and the user's credentials, set the JNDI properties listed in Table 3-1.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 12

https://docs.oracle.com/en/java/javase/17/security/index.html

ORACLE’

Chapter 3
Java Client JAAS Authentication Code Examples

Table 3-3 JNDI Properties for Authentication

__|
Property Meaning

I NI TI AL_CONTEXT_FACTORY Provides an entry point into the Oracle WebLogic Server

environment. The class weblogic.jndi.WLInitialContextFactory is
the JNDI SPI for Oracle WebLogic Server.

PROVI DER_URL Specifies the host and port of the WebLogic Server that provides

the name service. For example: t 3: // webl ogi c: 7001.

SECURI TY_PRI NCI PAL Specifies the identity of the user when that user authenticates to

the default (active) security realm.

SECURI TY_CREDENTI ALS Specifies the credentials of the user when that user authenticates

to the default (active) security realm.

These properties are stored in a hash table that is passed to the | ni ti al Cont ext constructor.
Example 3-2 illustrates how to use JNDI authentication in a Java client running on WebLogic
Server.

@® Note

For information on JNDI contexts and threads and how to avoid potential JNDI context
problems, see JNDI Contexts and Threads and How to Avoid Potential INDI Context
Problems in Developing JNDI Applications for Oracle WebLogic Server.

Example 3-2 Example of Authentication

Hasht abl e env = new Hasht abl e();

env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY,
"webl ogi c.jndi . W.Initial ContextFactory");
env. put (Cont ext. PROVIDER _URL, "t3://webl ogic:7001");
env. put (Cont ext . SECURI TY_PRI NCI PAL, "javaclient");
env. put (Cont ext . SECURI TY_CREDENTI ALS, "j avacl i ent password");
ctx = new Initial Context(env);

Java Client JAAS Authentication Code Examples

The WebLogic Server product provides a complete working JAAS authentication sample.The
sample provided by WebLogic Server is located in

EXAMPLES HOME\ st c\ exanpl es\ security\jaas, where EXAMPLES HOVE represents the directory
in which the WebLogic Server code examples are configured and can be found at
ORACLE_HOVE\ W server\ sanpl es\ server. For a description of the sample and instructions on
how to build, configure, and run this sample, see the package. ht m file in the sample directory.
You can modify this code example and reuse it.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 12

Using SSL Authentication in Java Clients

The Java Secure Socket Extension (JSSE) is a set of packages that support and implement
the SSL and TLS protocols. Oracle WebLogic Server provides Secure Sockets Layer (SSL)
support for encrypting data transmitted between WebLogic Server clients and servers, Java
clients, Web browsers, and other servers. Learn how to implement SSL and digital certificate
authentication in Java clients.

 JSSE and WebLogic Server
e Using JNDI Authentication

* SSL Certificate Authentication Development Environment

» Writing Applications that Use SSL

e SSL Client Code Examples

The sections refer to sample code which is optionally included in the WebLogic Server
distribution at:

EXAMPLES_HOME\ st c\ exanpl es\ security\sslclient

The EXAMPLES HOME directory can be found at
ORACLE_HOVE\ W server\ sanpl es\ server\ exanpl es.

The ssl cli ent directory contains aninstructions. htni file, ant build files, and the following
Java and JavaServer Pages (. j sp) files:

e MlListener.java

e Null edHost naneVerifier.java
e Null edTrust Manager.j ava

e SSLCient.java

e SSLCientServlet.java

e SSLSocketCient.java

e SnoopServlet.jsp

You will need to look at the examples when reading the information in the following sections.

JSSE and WebLogic Server

There are certain restrictions when using SSL in WebLogic server-side applications.

The JSSE implementation of WebLogic Server can be used by WebLogic clients, but is not
required. Other JSSE implementations can be used for their client-side code outside the server
as well.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 23

ORACLE

Chapter 4
Using JNDI Authentication

@® Note

JSSE is the only SSL implementation that is supported. The Certicom-based SSL
implementation is removed and is no longer supported in WebLogic Server.

The following restrictions apply when using SSL in WebLogic server-side applications:

The use of other (third-party) JSSE implementations to develop WebLogic Server
applications is not supported. The SSL implementation that WebLogic Server uses is static
to the server configuration and is not replaceable by customer applications.

The WebLogic implementation of JSSE does support JCE Cryptographic Service Providers
(CSPs); however, due to the inconsistent provider support for JCE, Oracle cannot
guarantee that untested providers will work out of the box. Oracle has tested WebLogic
Server with the following providers:

— The default JCE provider (SunJCE provider). See the Java Cryptography Architecture
(JCA) Reference Guide and How to Implement a Provider in the Java Cryptography
Architecture sections in Java SE Security Developer's Guide for information about the
SunJCE provider.

— The Jipher JCE provider. See Using the Jipher JCE Provider in Administering Security
for Oracle WebLogic Server.

Other providers may work with WebLogic Server, but an untested provider is not likely to
work out of the box. For more information on using the JCE providers supported by
WebLogic Server, see Using JCE Providers with WebLogic Server in Administering
Security for Oracle WebLogic Server.

WebLogic Server uses the HTTPS port for Secure Sockets Layer (SSL) encrypted
communication; only SSL can be used on that port.

@® Note

In order to implement security in a WebLogic client, you must install the WebLogic
Server software distribution kit on the Java client.

@® Note

Although JSSE supports Server Name Indication (SNI) in its SSL implementation,
WebLogic Server does not support SNI.

Using JNDI Authentication

Java clients use the Java Naming and Directory Interface (JNDI) to pass credentials to
WebLogic Server. A Java client establishes a connection with Oracle WebLogic Server by
getting a JNDI | ni ti al Cont ext. The Java client then uses the | ni ti al Cont ext to look up the
resources it needs in the Oracle WebLogic Server JNDI tree.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 23

https://docs.oracle.com/en/java/javase/17/security/index.html

ORACLE

Chapter 4
Using JNDI Authentication

@® Note

JAAS is the preferred method of authentication; however, the Authentication provider's
LoginModule supports only username and password authentication. Thus, for client
certificate authentication (also referred to as two-way SSL authentication), you should
use JNDI. To use JAAS for client certificate authentication, you must write a custom
Authentication provider whose LoginModule does certificate authentication.

To specify a user and the user's credentials, set the JNDI properties listed in Table 4-1.

Table 4-1 JNDI Properties Used for Authentication

. __|
Property Meaning

I NI TI AL_CONTEXT_FACTO

RY

Provides an entry point into the Oracle WebLogic Server environment. The
class weblogic.jndi.WLInitialContextFactory is the JNDI SPI for Oracle
WebLogic Server.

PROVI DER_URL

Specifies the host and port of the WebLogic Server that provides the name
service. For example: t 3s://webl ogi c: 7002.

(t3s is a WebLogic Server proprietary version of SSL.)

SECURI TY_PRI NCI PAL Specifies the identity of the user when that user authenticates to the default

(active) security realm.

SECURI TY_CREDENTI ALS

Specifies the credentials of the user when that user authenticates to the
default (active) security realm.

These properties are stored in a hash table which is passed to the I ni ti al Cont ext
constructor.

Example 4-1 demonstrates how to use one-way SSL certificate authentication in a Java client.
For a two-SSL authentication code example, see Example 4-4.

@ Note

For information on JNDI contexts and threads and how to avoid potential INDI context
problems, see JNDI Contexts and Threads and How to Avoid Potential INDI Context
Problems in Developing JNDI Applications for Oracle WebLogic Server.

Example 4-1 Example One-Way SSL Authentication Using JNDI

Hasht abl e env = new Hashtabl e();

env. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY,
"webl ogi c.jndi. W.Initial ContextFactory");
env. put (Cont ext . PROVI DER_URL, "t3s://webl ogi c: 7002");
env. put (Cont ext. SECURI TY_PRI NCl PAL, "javaclient");
env. put (Cont ext . SECURI TY_CREDENTI ALS, "j avacl i ent password");
Context ctx = new Initial Context(env);

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 23

ORACLE’

Chapter 4
SSL Certificate Authentication Development Environment

SSL Certificate Authentication Development Environment

To implement SSL authentication in WebLogic Server, you can use a combination of Java
application programming interfaces (APIs) and WebLogic APIs. There are certain components
of SSL client application such as, HostnameVerifier and TrustManager, that facilitate the
implementation of SSL in WebLogic Server.

The following topics are covered in this section:

e SSL Authentication APIs

e« SSL Client Application Components

SSL Authentication APIs

To implement Java clients that use SSL authentication on WebLogic Server, use a combination
of Java application programming interfaces (APIs) and WebLogic APIs.

Table 4-2 lists and describes the Java APIs packages used to implement certificate
authentication. The information in this table is taken from the Java APl documentation and
annotated to add WebLogic Server specific information. For more information on the Java
APIs, see the Javadocs at Java SE and JDK API Specification and Jakarta EE Platform API.

Table 4-3 lists and describes the WebLogic APIs used to implement certificate authentication.
See Java API Reference for Oracle WebLogic Server.

Table 4-2 Java Certificate APIs

__|]
Java Certificate APIs Description

j avax. crypto in the This package provides the classes and interfaces for cryptographic

Java SE and JDK API operations. The cryptographic operations defined in this package include

Specification encryption, key generation and key agreement, and Message Authentication
Code (MAC) generation.

Support for encryption includes symmetric, asymmetric, block, and stream
ciphers. This package also supports secure streams and sealed objects.

Many classes provided in this package are provider-based (see the

j ava. security. Provider class). The class itself defines a programming
interface to which applications may be written. The implementations
themselves may then be written by independent third-party vendors and
plugged in seamlessly as needed. Therefore, application developers can take
advantage of any number of provider-based implementations without having
to add or rewrite code.

j avax. net inthe Java This package provides classes for networking applications. These classes

SE and JDK API include factories for creating sockets. Using socket factories you can
Specification encapsulate socket creation and configuration behavior.

javax. net.SSLinthe While the classes and interfaces in this package are supported by WebLogic
Java SE and JDK API Server, Oracle recommends that you use the webl ogi c. security. SSL
Specification package when you use SSL with WebLogic Server.

java.security.cert This package provides classes and interfaces for parsing and managing
in the Java SE and JDK certificates, certificate revocation lists (CRLs), and certification paths. It
API Specification contains support for X.509 v3 certificates and X.509 v2 CRLs.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 23

https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

ORACLE

Chapter 4
SSL Certificate Authentication Development Environment

Table 4-2 (Cont.) Java Certificate APIs

Java Certificate APIs

Description

java. security. KeySt
or e in the Java SE and
JDK API Specification

This class represents an in-memory collection of keys and certificates. It is
used to manage two types of keystore entries:

. Key Entry

This type of keystore entry holds cryptographic key information, which is
stored in a protected format to prevent unauthorized access.

Typically, a key stored in this type of entry is a secret key, or a private key
accompanied by the certificate chain for the corresponding public key.

Private keys and certificate chains are used by a given entity for self-
authentication. Applications for this authentication include software
distribution organizations that sign JAR files as part of releasing and/or
licensing software.

e Trusted Certificate Entry
This type of entry contains a single public key certificate belonging to
another party. It is called a trusted certificate because the keystore owner
trusts that the public key in the certificate indeed belongs to the identity
identified by the subject (owner) of the certificate.

This type of entry can be used to authenticate other parties.

java.security.Priva
t eKey in the Java SE
and JDK API
Specification

A private key. This interface contains no methods or constants. It merely
serves to group (and provide type safety for) all private key interfaces.

Note: The specialized private key interfaces extend this interface. For
example, see the DSAPr i vat eKey interface in
java.security.interfaces.

java.security. Provi
der inthe Java SE and
JDK API Specification

This class represents a "Cryptographic Service Provider" for the Java Security

API, where a provider implements some or all parts of Java Security,

including:

* Algorithms (such as DSA, RSA, MD5 or SHA-1).

* Key generation, conversion, and management facilities (such as for
algorithm-specific keys).

Each provider has a name and a version number, and is configured in each

runtime it is installed in.

To supply implementations of cryptographic services, a team of developers or
a third-party vendor writes the implementation code and creates a subclass of
the Provi der class.

jakarta.servlet.htt
p. H t pServl et Reques
t in Jakarta EE Platform
API|

This interface extends the Ser vl et Request interface to provide request
information for HTTP servlets.

The servlet container creates an Ht t pSer vl et Request object and passes it
as an argument to the servlet's service methods (doGet , doPost , and so
on.).

jakarta.servlet.htt
p. H t pSer vl et Respon
se in Jakarta EE
Platform API

This interface extends the Ser vl et Response interface to provide HTTP-
specific functionality in sending a response. For example, it has methods to
access HTTP headers and cookies.

The servlet container creates an H t pSer vl et Request object and passes it
as an argument to the servlet's service methods (doGet , doPost , and so
on.).

j akarta.servlet. Ser
vl et Qut put St r eamin
Jakarta EE Platform API

This class provides an output stream for sending binary data to the client. A
Ser vl et Qut put St r eamobject is normally retrieved via the

Servl et Response. get Qut put St rean() method.

This is an abstract class that the servlet container implements. Subclasses of

this class must implement the j ava. i 0. Qut put Stream write(int)
method.

Developing Applications with the WebLogic Security Service

G31581-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 23

https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary

ORACLE’

Chapter 4
SSL Certificate Authentication Development Environment

Table 4-2 (Cont.) Java Certificate APIs

Java Certificate APIs

Description

jakarta.servlet. Ser
vl et Response in
Jakarta EE Platform API

This class defines an object to assist a servlet in sending a response to the
client. The servlet container creates a Ser vl et Response object and passes
it as an argument to the servlet's service methods (doGet , doPost , and so
on.).

Table 4-3 WebLogic Certificate APIs

WebLogic Certificate
APls

Description

weblogic.net.http.HttpsU
RLConnection

This class is used to represent a HTTP with SSL (HTTPS) connection to a
remote object. Use this class to make an outbound SSL connection from a
WebLogic Server acting as a client to another WebLogic Server.

weblogic.security.SSL.H
ostnameVerifier

During an SSL handshake, hostname verification establishes that the
hostname in the URL matches the hostname in the server's identification; this
verification is necessary to prevent man-in-the-middle attacks.

WebLogic Server provides a certificate-based implementation of
HostnameVerifier which is used by default, and which verifies that the URL
hostname matches the CN field value of the server certificate.

You can replace the default hostname verifier with a custom hostname verifier
using WebLogic Remote Console. This will affect the default for SSL clients
running on the server using the WebLogic SSL APIs. In addition, WebLogic
SSL APIs such as Ht t psURLConnect i on, and SSLCont ext allow the explicit
setting of a custom HostnameVerifier.

weblogic.security.SSL.Tr
ustManager

This interface permits the user to override certain validation errors in the
peer's certificate chain and allow the handshake to continue. This interface
also permits the user to perform additional validation on the peer certificate
chain and interrupt the handshake if need be.

weblogic.security.SSL.C
ertPathTrustManager

This class makes use of the configured CertPathValidation providers to
perform extra validation; for example, revocation checking.

By default, CertPathTrustManager is installed but configured not to call the
CertPathValidators (controlled by the SSLMBean attributes
InboundCertificateValidation and OutboundCertificateValidation).

Applications that install a custom TrustManager will replace
CertPathTrustManager. An application that wants to use a custom
TrustManager, and call the CertPathProviders at the same time, can delegate
to a CertPathTrustManager from its custom TrustManager.

weblogic.security.SSL.S
SLContext

This class holds all of the state information shared across all sockets created
under that context.

weblogic.security.SSL.S
SLSocketFactory

This class provides the API for creating SSL sockets.

weblogic.security.SSL.S
SLValidationConstants

This class defines context element names. SSL performs some built-in
validation before it calls one or more CertPathValidator objects to perform
additional validation. A validator can reduce the amount of validation it must
do by discovering what validation has already been done.

SSL Client Application Components

At a minimum, an SSL client application includes the following components:

Developing Applications with the WebLogic Security Service

G31581-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 23

https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary

ORACLE Chapter 4
Writing Applications that Use SSL

e Javaclient
Typically, a Java client performs these functions:

— Initializes an SSLCont ext with client identity, trust, a Host nameVeri fier, and a
Trust Manager .

— Loads a keystore and retrieves the private key and certificate chain

— Uses an SSLSocketFactory

— Uses HTTPS to connect to a JSP served by an instance of WebLogic Server
e HostnameVerifier

The HostnameVerifier implements the webl ogi c. security. SSL. Host nameVeri fi er
interface.

e HandshakeCompletedListener

The HandshakeCompletedListener implements the

j avax. net. ssl . HandshakeConpl et edLi st ener interface. It is used by the SSL client to
receive notifications about the completion of an SSL handshake on a given SSL
connection.

e TrustManager
The TrustManager implements the webl ogi c. security. SSL. Tr ust Manager interface.

For a complete working SSL authentication client that implements the components described
here, see the SSLClient sample application in

EXAMPLES_HOME\ sr c\ exanpl es\ security\sslclient, where EXAMPLES HOME represents the
directory in which the WebLogic Server code examples are configured and can be found at
ORACLE_HOVE\ W ser ver\ sanpl es\ server.

For more information on JSSE authentication, see Java Secure Socket Extension (JSSE)
Reference Guide in Java SE Security Developer's Guide .

Writing Applications that Use SSL

When you write an application that uses SSL, consider how the application will be used and
the special requirements it has for secure communication, such as whether the application is
hosted on a WebLogic Server instance acting as a client to another WebLogic Server instance.
Other considerations include whether you need to use two-way SSL, a custom host name
verifier, a Trust Manager, or other security artifacts.

« Communicating Securely From WebLogic Server to Other WebLogic Servers

e Writing SSL Clients

¢ Using Two-Way SSL Authentication

¢ Using a Custom Host Name Verifier

e Using a Trust Manager

¢ Using an SSLContext
¢ Using URLs to Make Outbound SSL Connections

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 23

https://docs.oracle.com/en/java/javase/17/security/index.html

ORACLE

Chapter 4
Writing Applications that Use SSL

Communicating Securely From WebLogic Server to Other WebLogic

Servers

You can use a URL object to make an outbound SSL connection from a WebLogic Server
instance acting as a client to another WebLogic Server instance. The

webl ogi c. net. http. H t psURLConnect i on class provides a way to specify the security context
information for a client, including the digital certificate and private key of the client.

The webl ogi c. net. http. H t psURLConnect i on class provides methods for determining the
negotiated cipher suite, getting/setting a hostname verifier, getting the server's certificate chain,
and getting/setting an SSLSocket Fact ory in order to create new SSL sockets.

The SSLClient code example uses the webl ogi c. net. http. H t psURLConnect i on class to
make an outbound SSL connection. The SSLClient code example is available in the

exanpl es. security.sslclient package in

EXAMPLES_HOME\ st c\ exanpl es\ security\sslclient, where EXAMPLES_HOME represents the
directory in which the WebLogic Server code examples are configured and can be found at
ORACLE_HOVE\ W server\ sanpl es\ server.

Writing SSL Clients

This section uses examples to show how to write various types of SSL clients. Examples of the
following types of SSL clients are provided:

 SSLClient Sample
eSSl SocketClient Sample

e Using Two-Way SSL Authentication

SSLClient Sample

The SSLClient sample demonstrates how to use the WebLogic SSL library to make outgoing
SSL connections using URL and URLConnect i on objects. It shows both how to do this from a
stand-alone application as well as from a servlet in WebLogic Server.

@ Note

WebLogic Server acting as an SSL client uses the server's identity certificate for
outgoing SSL connections. Applications running on WebLogic Server and using the
previously described SSL APIs do not share the server's identity certificates by default,
only the trust.

Example 4-2 shows code fragments from the SSLClient example; the complete example is
located in the EXAMPLES HOME\ st ¢\ exanpl es\ security\sslclient directory in the
SSLC i ent. j ava file.

The EXAMPLES_HOME directory can be found at ORACLE_HOVE\ W ser ver\ sanpl es\ server.
Example 4-2 SSLClient Sample Code Fragments

package exanpl es.security.sslclient;

import java.io.*;

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 23

ORACLE

Chapter 4
Writing Applications that Use SSL

i mport java.net.URL;
i mport java.security.Provider;
i mport jakarta.servlet. ServletQutputStream
. .)*
* This method contains an exanple of how to use the URL and
* URLConnection objects to create a new SSL connection, using
* WebLogic SSL client classes.
*/
public void w sURLConnect (String host, String port,
String sport, String query,
Qut put Stream out)
throws Exception {

URL Wi sUrl = null;
try {
w sUrl = new URL("http", host, Integer.valueCf(port).intValue(),
query);
webl ogi c. net. http. H t pURLConnection connection =
new webl ogi c. net. http. H t pURLConnection(w sUrl);
tryConnection(connection, out);

}

W sUrl = new URL("https", host, Integer.valueO(sport).intValue(),
query);
webl ogi c. net. http. H t psURLConnecti on sconnection =
new webl ogi c. net. http. H t psURLConnection(w sUrl);

SSLSocketClient Sample

The SSLSocketClient sample demonstrates how to use SSL sockets to go directly to the
secure port to connect to a JSP served by an instance of WebLogic Server and display the
results of that connection. It shows how to implement the following functions:

e Initializing an SSLCont ext with client identity, a Host nameVeri fi er, and a Tr ust Manager
* Loading a keystore and retrieving the private key and certificate chain

e Using an SSLSocket Fact ory

e Using HTTPS to connect to a JSP served by WebLogic Server

e Implementing the j avax. net. ssl . HandshakeConpl et edLi st ener interface

e Creating a dummy implementation of the webl ogi c. security. SSL. Host nameVeri fi er
class to verify that the server the example connects to is running on the desired host

Example 4-3 shows code fragments from the SSLSocketClient example; the complete example
is located in the EXAMPLES_HOME\ sr c\ exanpl es\ security\ssl client directory in the
SSLSocket O i ent. java file. (The SSLClientServlet example in the ssl cl i ent directory is a
simple servlet wrapper of the SSLClient example.) The EXAMPLES_HOME directory can be found
at ORACLE_HOVE\ Wl ser ver\ sanpl es\ server.

Example 4-3 SSLSocketClient Sample Code Fragments

package exanpl es.security.sslclient;

import java.io.*;

inport java.security.KeyStore;

i mport java.security. PrivateKey;

inport java.security.cert.Certificate;

i mport javax. net.ssl.HandshakeConpl et edLi st ener;

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 23

ORACLE

Chapter 4
Writing Applications that Use SSL

i mport javax. net.ssl.SSLSocket;

i mport webl ogi c. security. SSL. Host naneVerifier;
i mport webl ogi c. security. SSL. SSLCont ext ;

i mport webl ogi c. security. SSL. SSLSocket Fact ory;
i mport webl ogi c. security. SSL. Trust Manager ;

SSLCont ext ssl Ctx = SSLContext. getlnstance("https");
File KeyStoreFile = new File ("nykeystore");

Il Open the keystore, retrieve the private key, and certificate chain
KeyStore ks = KeyStore. getlnstance("jks");
ks. | oad(new Fi | el nput Strean("nykeystore"), null);
PrivateKey key = (PrivateKey)Kks. get Key("nykey",
"testkey".toCharArray());

Certificate [] certChain = ks.getCertificateChain("nykey");
ssl Gt x. | oadLocal | dentity(certChain, key);
Host nameVerifier hVerifier = null;
if (argv.length < 3)

hVerifier = new Nul | edHost naneVerifier();
el se

hVerifier = (HostnameVerifier)

QO ass. forName(argv[2]).new nstance();

ssl Gt x. set Host naneVerifier(hVerifier);
Trust Manager tManager = new Nul | edTrust Manager () ;
ssl Gt x. set Trust Manager (t Manager) ;
Systemout. println(" Creating new SSLSocket Factory with SSLContext");
SSLSocket Factory ssl SF = (SSLSocket Fact ory)
ssl Ct x. get Socket Factory();
Systemout. println(" Creating and opening new SSLSocket with
SSLSocket Factory");
/1 using createSocket(String hostname, int port)
SSLSocket ssl Sock = (SSLSocket) ssl SF.createSocket (argv[0],
new I nteger(argv[1]).intValue());
Systemout. println(" SSLSocket created");
HandshakeConpl et edLi st ener nlListener = null;
mLi stener = new MyListener();
ssl Sock. addHandshakeConpl et edLi st ener (new MyLi stener());

Using Two-Way SSL Authentication

When using certificate authentication, Oracle WebLogic Server sends a digital certificate to the
requesting client. The client examines the digital certificate to ensure that it is authentic, has
not expired, and matches the Oracle WebLogic Server instance that presented it.

With two-way SSL authentication (a form of mutual authentication), the requesting client also
presents a digital certificate to Oracle WebLogic Server. When the instance of WebLogic
Server is configured for two-way SSL authentication, requesting clients are required to present
digital certificates from a specified set of certificate authorities. Oracle WebLogic Server
accepts only digital certificates that are signed by trusted certificate authorities.

For information on how to configure WebLogic Server for two-way SSL authentication, see the
Configuring SSL in Administering Security for Oracle WebLogic Server.

The following sections describe the different ways two-way SSL authentication can be
implemented in WebLogic Server.

« Two-Way SSL Authentication with INDI

* Using Two-Way SSL Authentication Between WebLogic Server Instances

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 23

ORACLE Chapter 4
Writing Applications that Use SSL

* Using Two-Way SSL Authentication with Servlets

Two-Way SSL Authentication with JNDI

When using JNDI for two-way SSL authentication in a Java client, use the set SSLCont ext ()
method in the WebLogic JNDI Envi r onnent class to set the SSLContext onto the current
thread for client authentication.

To use set SSLCont ext (SSLCont ext ssl ct x), you pass an SSLContext, with a client certificate
created from trustManager and keyManager, to the server using JNDI when the server is
configured for two-way SSL. See Class SSLContext in Java SE and JDK API Specification .

@® Note

Invoking the set SSLCont ext method requires the WebLogic thin T3 client
(Wthint3client.jar).

set SSLA i entCertificate() and set SSLA i ent KeyPasswor d() have been deprecated
in this release.

Example 4-4 demonstrates how to use the set SSLCont ext () method for two-way SSL
authentication in a Java client.

Example 4-4 Example of a Two-Way SSL Authentication Client That Uses JNDI
Environment setSSLContext Method

i nport webl ogi c. j ndi. Environment;

i nport javax. nami ng. Cont ext;

inport javax.net.ssl.KeyManager;

inport javax. net.ssl.KeyManager Factory;
inport javax.net.ssl.SSLContext;

i nport javax.net.ssl.Trust Manager;

inport javax.net.ssl. Trust Manager Factory;
inport java.security.KeyStore;

i nport java.security.PrivatekKey;

inport java.security.SecureRandom

public class JNDI SSLContextdient {
public static void main(String[] args) throws Exception {
Context jndi Context = null;
SSLCont ext ssl Context = null;

try {
String identityKeyStore = "path to the identity keystore";
String identityKeyStoreType = "type of the identity keystore, e.g. JKS';
String identityKSPwd = "password of the identity keystore";
String alias = "alias_of identity certificate entry";
String aliasPwd = "pass_word_of the alias";
String trustKeyStore = "path_to the identity keystore";
String trustKeyStoreType = "type of the trust keystore, e.g. JKS';
String trustKSPwd = "password of the identity keystore";

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 23

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/javax/net/ssl/SSLContext.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

ORACLE

i den

env.

}
/*

*
*

t han
*

>* >* >* * * >* >* >* *

pr
i den
Stri

trus

i den

Chapter 4
Writing Applications that Use SSL

ssl Context = createSSLCont ext (identityKeyStore, identityKeyStoreType,
tityKSPwd, alias, aliasPwd, trustKeyStore, trustKeyStoreType, trustKSPwd);

Envi ronnent env = new Envi ronment ();

String url = "t3s://local host:7002";

env.setProviderUrl (url);

Il The next two set methods are optional if you are using
/'l a User NameMapper interface.

env. set SecurityPrincipal ("systent);

env. set SecurityCredential s("webl ogic");

env. set SSLCont ext (ssl Cont ext);
set I nitial ContextFactory(Environment. DEFAULT_I NI TI AL_CONTEXT_FACTCRY) ;

jndi Context = env.getlnitial Context();
bj ect ej bObj = jndi Context.|ookup("ejb");
...

} finally {
if (jndiContext !'= null) jndiContext.close();

}

*

@aram identityKeyStore the identity keystore, which night contain nore

one entry

@aram i dentityKeyStoreType

@aram i dentityKeySt orePassword

@aram identityAlias

@aram i dentityAl iasPassword

@aram trustKeyStore

@aram trust KeySt oreType

@aram trust KeySt or ePasswor d

@aram trust KeySt or ePasswor d

@eturn an SSLContext created fromthe input parameters
/
ivate static SSLContext createSSLContext(String identityKeyStore, String
tityKeyStoreType, String identityKeyStorePassword, String identityAlias,
ng identityAl iasPassword,

String trustKeyStore, String

t KeySt oreType, String trustKeyStorePassword) throws Exception {
/I Read the private key and certificate entry under the given alias
KeyStore identityKS = KeyStore. getlnstance(identityKeyStoreType);
i dentityKS. | oad(new java.io. FilelnputStrean(identityKeyStore),
tityKeySt orePassword.toCharArray());
KeyStore.Entry entry = identityKS. getEntry(identityAlias, new

KeySt or e. Passwor dProt ecti on(i dentityAl iasPassword.toCharArray()));

((Ke

/I KeyStore instance used for the ssl context
KeySt ore keystore = KeyStore. getlnstance(KeyStore. get Defaul t Type());
keystore.load(null, null);

PrivateKey key = ((KeyStore. PrivateKeyEntry)entry). getPrivateKey();
java.security.cert.Certificate[] cert =
yStore. Privat eKeyEntry)entry).getCertificateChain();

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 23

ORACLE

Chapter 4
Writing Applications that Use SSL

byte[] pwd = new byte[10];
new Secur eRandomn() . next Byt es(pwd) ;
char[] entryPassword = new String(pwd).toCharArray();
byte[] alias = new byte[10];
new Secur eRandon() . next Byt es(al i as);
keystore. set KeyEntry(new String(alias), key, entryPassword, cert);
KeyManager Factory knf =
KeyManager Fact ory. get | nst ance(KeyManager Fact ory. get Def aul t Al gorithm());
knf.init(keystore, entryPassword);
KeyManager[] keyManagers = knf.get KeyManagers();

KeyStore truststore;
truststore = KeyStore. getlnstance(trustKeyStoreType);
truststore.load(new java.io.FilelnputStrean(trustKeyStore),

t rust KeySt or ePassword. t oChar Array());
Trust Manager Factory tnf =

Trust Manager Fact ory. get | nst ance(Tr ust Manager Fact ory. get Def aul t Al gorithn());
tnf.init(truststore);
Trust Manager[] trustManagers = tnf.get Trust Managers();

SSLCont ext ssl Context = SSLContext. getlnstance("TLS");
ssl Context.init(keyManagers, trustMnagers, null);

return ssl Cont ext;

® Note

Security provider plug-ins are loaded from the system classpath. The system
classpath must specify the implementation of a custom
webl ogi c. security. provi ders. aut henti cati on. User NameMapper interface.

If you have not configured an Identity Assertion provider that performs certificate-based
authentication, a Java client running in a JVM with an SSL connection can change the Oracle
WebLogic Server user identity by creating a new JNDI | ni ti al Cont ext and supplying a new
user name and password in the JNDI SECURI TY_PRI NCI PAL and SECURI TY_CREDENTI ALS
properties. Any digital certificates passed by the Java client after the SSL connection is made
are not used. The new Oracle WebLogic Server user continues to use the SSL connection
negotiated with the initial user's digital certificate.

If you have configured an Identity Assertion provider that performs certificate-based
authentication, Oracle WebLogic Server passes the digital certificate from the Java client to the
class that implements the User NaneMapper interface and the User NaneMapper class maps the
digital certificate to a Oracle WebLogic Server user name. Therefore, if you want to set a new
user identity when you use the certificate-based identity assertion, you cannot change the
identity. This is because the digital certificate is processed only at the time of the first
connection request from the JVM for each Envi ronnent .

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 23

ORACLE

Chapter 4
Writing Applications that Use SSL

@® Note

Multiple, concurrent, user logins to WebLogic Server from a single client JVM when
using two-way SSL and JNDI is not supported. If multiple logins are executed on
different threads, the results are undeterminable and might result in one user's
requests being executed on another user's login, thereby allowing one user to access
another user's data. WebLogic Server does not support multiple, concurrent,
certificate-based logins from a single client JVM. For information on JNDI contexts and
threads and how to avoid potential JNDI context problems, see JNDI Contexts and
Threads and How to Avoid Potential INDI Context Problems in Developing JNDI
Applications for Oracle WebLogic Server.

When the JNDI get | ni ti al Cont ext () method is called, the Java client and Oracle WebLogic
Server execute mutual authentication in the same way that a Web browser performs mutual
authentication to get a secure Web server connection. An exception is thrown if the digital
certificates cannot be validated or if the Java client's digital certificate cannot be authenticated
in the default (active) security realm. The authenticated user object is stored on the Java
client's server thread and is used for checking the permissions governing the Java client's
access to any protected WebLogic resources.

When you use the WebLogic JNDI Envi ronnent class, you must create a new Envi r onnment
object for each call to the get | ni ti al Cont ext () method. Once you specify a User object and
security credentials, both the user and their associated credentials remain set in the

Envi ronnent object. If you try to reset them and then call the JNDI get | ni ti al Cont ext ()
method, the original user and credentials are used.

When you use two-way SSL authentication from a Java client, Oracle WebLogic Server gets a
unique Java Virtual Machine (JVM) ID for each client JVM so that the connection between the
Java client and Oracle WebLogic Server is constant. Unless the connection times out from lack
of activity, it persists as long as the JVM for the Java client continues to execute. The only way
a Java client can negotiate a new SSL connection reliably is by stopping its JVM and running
another instance of the JVM.

The code in Example 4-4 generates a call to the WebLogic Identity Assertion provider that
implements the webl ogi c. security. providers. aut henti cati on. User NameMapper interface.
The class that implements the User NaneMapper interface returns a user object if the digital
certificate is valid. Oracle WebLogic Server stores this authenticated user object on the Java
client's thread in Oracle WebLogic Server and uses it for subsequent authorization requests
when the thread attempts to use WebLogic resources protected by the default (active) security
realm.

Writing a User Name Mapper

When using two-way SSL, WebLogic Server verifies the digital certificate of the Web browser
or Java client when establishing an SSL connection. However, the digital certificate does not
identify the Web browser or Java client as a user in the WebLogic Server security realm. If the
Web browser or Java client requests a WebLogic Server resource protected by a security
policy, WebLogic Server requires the Web browser or Java client to have an identity. To handle
this requirement, the WebLogic Identity Assertion provider allows you to enable a user name
mapper that maps the digital certificate of a Web browser or Java client to a user in a
WebLogic Server security realm. The user name mapper must be an implementation the

webl ogi c. security. provi ders. aut henti cation. User NameMapper interface.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 23

ORACLE

Chapter 4
Writing Applications that Use SSL

You have the option of the using the default implementation of the
webl ogi c. security. providers. aut henti cati on. User NameMapper interface,
Def aul t User NaneMapper | npl , or developing your own implementation.

The WebLogic Identity Assertion provider can call the implementation of the User NameMapper
interface for the following types of identity assertion token types:

e X.509 digital certificates passed via the SSL handshake
e X.509 digital certificates passed via CSIv2
e X.501 distinguished names passed via CSIv2

If you need to map different types of certificates, write your own implementation of the
User NameMapper interface.

To implement a User NaneMapper interface that maps a digital certificate to a user name, write a
User NameMapper class that performs the following operations:

1. Instantiates the User NameMapper implementation class.
2. Creates the User NaneMapper interface implementation.

3. Usesthe mapCertificateToUser Nane() method to map a certificate to a user name based
on a certificate chain presented by the client.

4. Maps a string attribute type to the corresponding Attri bute Val ue Assertion field type.

Security provider plug-ins are loaded from the system classpath. The system classpath must
specify the implementation of the weblogic.security.providers.authentication.UserNameMapper
interface.

Using Two-Way SSL Authentication Between WebLogic Server Instances

You can use two-way SSL authentication in server-to-server communication in which one
WebLogic Server instance is acting as the client of another WebLogic Server instance. Using
two-way SSL authentication in server-to-server communication enables you to have
dependable, highly-secure connections, even without the more common client/server
environment.

Example 4-5 shows an example of how to establish a secure connection from a servlet running
in one instance of WebLogic Server to a second WebLogic Server instance called
server 2. webl ogi c. com

e set Provi der URL—specifies the URL of the Oracle WebLogic Server instance acting as the
SSL server. The WebLogic Server instance acting as SSL client calls this method. The
URL specifies the t3s protocol which is a WebLogic Server proprietary protocol built on the
SSL protocol. The SSL protocol protects the connection and communication between the
two WebLogic Servers instances.

e setSSLdientCertificate—specifies the private key and certificate chain to use for the
SSL connection. You use this method to specify an input stream array that consists of a
private key (which is the first input stream in the array) and a chain of X.509 certificates
(which make up the remaining input streams in the array). Each certificate in the chain of
certificates is the issuer of the certificate preceding it in the chain.

@® Note

set SSLA ientCertificate(lnputStrean]] chain) is deprecated in this release

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 23

ORACLE

Chapter 4
Writing Applications that Use SSL

* set SSLSer ver Name—specifies the name of the Oracle WebLogic Server instance acting as
the SSL server. When the SSL server presents its digital certificate to the WebLogic Server
acting as the SSL client, the name specified using the set SSLSer ver Nane method is
compared to the common name field in the digital certificate. In order for hostname
verification to succeed, the names must match. This parameter is used to prevent man-in-
the-middle attacks.

e set SSLRoot CAFi nger pri nt —specifies digital codes that represent a set of trusted
certificate authorities, thus specifying trust based on a trusted certificate fingerprint. The
root certificate in the certificate chain received from the WebLogic Server instance acting
as the SSL server has to match one of the fingerprints specified with this method in order
to be trusted. This parameter is used to prevent man-in-the-middle attacks. It provides an
addition to the default level of trust, which for clients running on WebLogic Server is that
specified by the WebLogic Server trust configuration.

@® Note

For information on JNDI contexts and threads and how to avoid potential INDI
context problems, see JNDI Contexts and Threads and How to Avoid Potential
JNDI Context Problems in Developing JNDI Applications for Oracle WebLogic
Server.

Example 4-5 Establishing a Secure Connection to Another WebLogic Server Instance

FilelnputStream[] f = new FilelnputStreani3];
f[0]= new Fil el nput Strean{"denokey. pent') ;
f[1]= new Fil el nput Strean{"denocert. pent);
f[2]= new Fil el nput Strean{"ca. pent');
Envi ronnent e = new Environnent ();
e.setProvider URL("t 3s://server2. webl ogi c. com 443");
e.setSSLAientCertificate(f);
e. set SSLServer Name(" server 2. webl ogi c. cont');
e. set SSLRoot CAFi ngerprint s("ac45e2d1lce492252acc27ee5c345ef 26") ;

e.setlnitial ContextFactory
("webl ogi c.jndi . WInitial ContextFactory");
Context ctx = new Initial Context(e.getProperties())

In Example 4-5, the WebLogic JNDI Envi ronnent class creates a hash table to store the
following parameters:

Using Two-Way SSL Authentication with Servlets

To authenticate Java clients in a servlet (or any other server-side Java class), you must check
whether the client presented a digital certificate and if so, whether the certificate was issued by
a trusted certificate authority. The servlet developer is responsible for asking whether the Java
client has a valid digital certificate. When developing servlets with the WebLogic Servlet API,
you must access information about the SSL connection through the get Attri but e() method
of the HTTPSer vl et Request object.

The following attributes are supported in WebLogic Server servlets:
e jakarta.servlet.request.X509Certificate
° java.security.cert.X509Certificate []—returns an array of the X.509 certificate.

e jakarta.servlet.request.cipher_suite—returns a string representing the cipher suite
used by HTTPS.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 16 of 23

ORACLE

Chapter 4
Writing Applications that Use SSL

e jakarta.servlet.request.key_ size— returns an integer (0, 40, 56, 128, 168)
representing the bit size of the symmetric (bulk encryption) key algorithm.

* webl ogic. servlet.request. SSLSessi on

e javax.net.ssl.SSLSessi on—returns the SSL session object that contains the cipher suite
and the dates on which the object was created and last used.

You have access to the user information defined in the digital certificates. When you get the
jakarta.servlet.request.X509Certificate attribute, it is an array of type
java.security.cert.X509Certificate. You simply cast the array to that type and examine
the certificates.

A digital certificate includes information, such as the following:

* The name of the subject (holder, owner) and other identification information required to
verify the unique identity of the subject.

e The subject's public key
* The name of the certificate authority that issued the digital certificate
e A serial number

* The validity period (or lifetime) of the digital certificate (as defined by a start date and an
end date)

Using a Custom Host Name Verifier

A host name verifier validates that the host to which an SSL connection is made is the
intended or authorized party. A host name verifier is useful when a WebLogic client or a
WebLogic Server instance is acting as an SSL client to another application server. It helps
prevent man-in-the-middle attacks.

@® Note

Demonstration digital certificates are generated during installation so they do contain
the host name of the system on which the WebLogic Server software installed.
Therefore, you should leave host name verification on when using the demonstration
certificates for development or testing purposes.

By default, WebLogic Server, as a function of the SSL handshake, compares the CN field of
the SSL server certificate Subject DN with the host name in the URL used to connect to the
server. If these names do not match, the SSL connection is dropped.

The dropping of the SSL connection is caused by the SSL client, which validates the host
name of the server against the digital certificate of the server. If anything but the default
behavior is desired, you can either turn off host name verification or register a custom host
name verifier. Turning off host name verification leaves the SSL connections vulnerable to
man-in-the-middle attacks.

You can turn off host name verification in the following ways:

* In WebLogic Remote Console, specify None in the Hosthame Verification field that is
located on the Advanced Options pane under the SSL tab for the server (for example,
myserver).

e Onthe command line of the SSL client, enter the following argument:

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 17 of 23

ORACLE

Chapter 4
Writing Applications that Use SSL

- Dwebl ogi c. security. SSL. i gnor eHost nameVeri fication=true

You can write a custom host name verifier. The webl ogi c. security. SSL. Host nameVeri fier
interface provides a callback mechanism so that implementers of this interface can supply a
policy on whether the connection to the URL's host name should be allowed. The policy can be
certificate-based or can depend on other authentication schemes.

To use a custom host name verifier, create a class that implements the
webl ogi c. security. SSL. Host naneVeri fi er interface and define the methods that capture
information about the server's security identity.

@® Note

This interface takes new style certificates and replaces the
weblogic.security.SSL.HostnameVerifierJSSE interface, which is deprecated.

Before you can use a custom host name verifier, you need to specify the class for your
implementation in the following ways:

* In WebLogic Remote Console, set the SSL.HostName Verifier field on the SSL tab under
Server: Security configuration to the name of a class that implements this interface. The
specified class must have a public no-arg constructor.

e On the command line, enter the following argument:

- Dnebl ogi c. security. SSL. host nameVeri fi er =host naneverifier

The value for host naneveri fi er is the name of the class that implements the custom host
name verifier.

Example 4-6 shows code fragments from the NulledHostnameVerifier example; the complete
example is located in the EXAMPLES HOME\ sr c\ exanpl es\ security\ssl client directory in the
Nul | edHost nameVeri fier.java file. The EXAMPLES_HOME directory can be found at
ORACLE_HOVE\ W server\ sanpl es\ server. This code example contains a

Nul | edHost nameVeri fi er class which always returns true for the comparison. The sample
allows the WebLogic SSL client to connect to any SSL server regardless of the server's host
name and digital certificate SubjectDN comparison.

Example 4-6 Hosthame Verifier Sample Code Fragment

public class Nul | edHost naneVerifier inplenents
webl ogi c. security. SSL. Host naneVerifier {
public bool ean verify(String urlHostnanme, javax.net.ssl.SSLSession session) {
return true;
}
}

Using a Trust Manager

The webl ogi c. security. SSL. Trust Manager interface provides the ability to:

* Ignore specific certificate validation errors

* Perform additional validation on the peer certificate chain

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 18 of 23

ORACLE Chapter 4
Writing Applications that Use SSL

@® Note

This interface takes new style certificates and replaces the
weblogic.security.SSL.TrustManagerJSSE interface, which is deprecated.

When an SSL client connects to an instance of WebLogic Server, the server presents its digital
certificate chain to the client for authentication. That chain could contain an invalid digital
certificate. The SSL specification says that the client should drop the SSL connection upon
discovery of an invalid certificate. You can use a custom implementation of the Tr ust Manager
interface to control when to continue or discontinue an SSL handshake. Using a trust manager,
you can ignore certain validation errors, optionally perform custom validation checks, and then
decide whether or not to continue the handshake.

Use the webl ogi c. security. SSL. Trust Manager interface to create a trust manager. The
interface contains a set of error codes for certificate verification. You can also perform
additional validation on the peer certificate and interrupt the SSL handshake if need be. After a
digital certificate has been verified, the webl ogi c. security. SSL. Tr ust Manager interface uses
a callback function to override the result of verifying the digital certificate. You can associate an
instance of a trust manager with an SSL context through the set Tr ust Manager () method.

You can only set up a trust manger programmatically; its use cannot be defined through
WebLogic Remote Console or on the command-line.

@® Note

Depending on the checks performed, use of a trust manager may potentially impact
performance.

Example 4-7 shows code fragments from the NulledTrustManager example; the complete
example is located in the EXAMPLES_HOVE\ st c\ exanpl es\ security\ssl client directory in the
Nul | edTr ust Manager . j ava file. The EXAMPLES_HOME directory can be found at

ORACLE_HOMVE\ wl server\ sanpl es\ server. The SSLSocketClient example uses the custom trust
manager. The SSLSocketClient shows how to set up a new SSL connection by using an SSL
context with the trust manager.

Example 4-7 NulledTrustManager Sample Code Fragments

package exanpl es.security.sslclient;

i mport webl ogi c. security. SSL. Tr ust Manager ;
import java.security.cert.X509Certificate;

public class Nul | edTrust Manager inplenents Trust Manager {
public bool ean certificateCallback(X509Certificate[] o, int validateErr) {
Systemout.println(" --- Do Not Use In Production ---\n" +
" By using this NulledTrustManager, the trust in" +

" the server's identity is conpletely lost.\n"
+ SIRRSORRCEICPERTPDREREPEERTPRER ")
for (int i=0; i<o.length; i++)
Systemout.printin(" certificate " +i + " -- " + o[i].toString());
return true;
}
}

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 19 of 23

ORACLE Chapter 4
Writing Applications that Use SSL

Using the CertPath Trust Manager

The CertPathTrustManager, webl ogi c. security. SSL. Cert Pat hTr ust Manager , makes use of
the default security realm's configured CertPath validation providers to perform extra validation
such as revocation checking.

By default, application code using outbound SSL in the server has access only to the built-in
SSL certificate validation. However, application code can specify the CertPathTrustManager in
order to access any additional certificate validation that the administrator has configured for the
server. If you want your application code to also run the CertPath validators, the application
code should use the CertPathTrustManager.

There are three ways to use this class:

e The Trust Manager calls the configured CertPathValidators only if the administrator has set
a switch on the SSLMBean stating that outbound SSL should use the validators. That is,
the application completely delegates validation to whatever the administrator configures.
You use the set UseConfi guredSSLVal i dati on() method for this purpose. This is the
default.

e The Trust Manager always calls any configured CertPathValidators. You use the
set Bui | tinSSLVal i dati onAndCert Pat hVal i dat or s() method for this purpose.

e The Trust Manager never calls any configured CertPathValidators. You use the
setBui | tinSSLVal i dati onOnl y() method for this purpose.

Using a Handshake Completed Listener

The j akarta. net. ssl . HandshakeConpl et edLi st ener interface defines how an SSL client
receives notifications about the completion of an SSL protocol handshake on a given SSL
connection. Example 4-8 shows code fragments from the MyListener example; the complete
example is located in the EXAMPLES HOME\ sr c\ exanpl es\ security\ssl client directory in the
M/Li st ener. j ava file. The EXAMPLES HOME directory can be found at

ORACLE_HOVE\ W ser ver\ sanpl es\ server.

Example 4-8 MyListener (HandshakeCompletedListener) Sample Code Fragments

package exanpl es. security.sslclient;

import java.io.File;

i mport java.io.lOException;

i mport java.io.lnputStream

i mport java.io.QutputStream

import java.io.FilelnputStream

i mport javax.net.ssl.HandshakeConpl et edLi st ener;
import java.util.Hashtable;

i mport javax.net.ssl.SSLSession;

public class MListener inplenents HandshakeConpl et edLi st ener
{
public void handshakeConpl et ed(j avax. net . ssl . HandshakeConpl et edEvent
event)
{
SSLSessi on session = event. get Sessi on();
System out. println("Handshake Conpleted with peer " +
sessi on. get Peer Host ());
Systemout.printIn(" cipher: " + session.getC pherSuite());
Certificate[] certs = null;

try

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 20 of 23

ORACLE Chapter 4
Writing Applications that Use SSL

{

certs = session.getPeerCertificates();

catch (SSLPeer UnverifiedException puv)

{

certs = null;
}
if (certs !=null)
{

Systemout. println(" peer certificates:");

for (int z=0; z<certs.length; z++)

Systemout. println(" certs["+z+"]: " + certs[z]);

}
el se
{

Systemout.printin("No peer certificates presented");
}

}
}

Using an SSLContext

The SSLCont ext class is used to programmatically configure SSL and to retain SSL session
information. Each instance can be configured with the keys, certificate chains, and trusted CA
certificates that will be used to perform authentication. SSL sockets created with the same
SSLContext and used to connect to the same SSL server could potentially reuse SSL session
information. Whether the session information is actually reused depends on the SSL server.

For more information on session caching see SSL Session Behavior in Administering Security
for Oracle WebLogic Server. To associate an instance of a trust manager class with its SSL
context, use the webl ogi c. security. SSL. SSLCont ext . set Tr ust Manager () method.

You can only set up an SSL context programmatically; you cannot use WebLogic Remote
Console or the command line. A Java new expression or the get | nst ance() method of the
SSLCont ext class can create an SSLCont ext object. The get I nst ance() method is static and it
generates a new SSLCont ext object that implements the specified secure socket protocol. An
example of using the SSLCont ext class is provided in the SSLSocket O i ent . j ava sample in
EXAMPLES HOME\ sr c\ exanpl es\ security\sslclient, where EXAMPLES HOME represents the
directory in which the WebLogic Server code examples are configured and can be found at
ORACLE_HOVE\ W server\ sanpl es\ server. The SSLSocketClient example shows how to create
a new SSL socket factory that will create a new SSL socket using SSLCont ext .

Example 4-9 shows a sample instantiation using the get | nst ance() method.

Example 4-9 SSL Context Code Example

i mport webl ogi c. security. SSL. SSLCont ext ;
SSLcont ext sslctx = SSLContext. getlnstance ("https")

Using URLSs to Make Outbound SSL Connections

You can use a URL object to make an outbound SSL connection from a WebLogic Server
instance acting as a client to another WebLogic Server instance. WebLogic Server supports
both one-way and two-way SSL authentication for outbound SSL connections.

For one-way SSL authentication, you use the j ava. net. URL, j ava. net . URLConnect i on, and

j ava. net . HTTPURLConnect i on classes to make outbound SSL connections using URL objects.
Example 4-10 shows a si npl eURL class that supports both HTTP and HTTPS URLs and that
only uses these Java classes (that is, no WebLogic classes are required). To use the

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 21 of 23

ORACLE

Chapter 4
Writing Applications that Use SSL

si npl eURL class for one-way SSL authentication (HTTPS) on WebLogic Server, all that is
required is that "webl ogi c. net " be defined in the system property for
java. protocol s. handl er. pkgs.

@® Note

Because the simpleURL sample shown in Example 4-10 defaults trust and hostname
checking, this sample requires that you connect to a real Web server that is trusted
and that passes hostname checking by default. Otherwise, you must override trust and

hostname checking on the command line.

Example 4-10 One-Way SSL Authentication URL Outbound SSL Connection Class That
Uses Java Classes Only

inport java.net.URL;

inport java.net.URLConnecti on;
inport java.net.HtpURLConnecti on;
inport java.io.lCOException;

public class sinpleURL

{

public static void main (String [] argv)

{

}

if (argv.length != 1)
{

Systemout. println("Please provide a URL to connect to");

Systemexit(-1);

}
set upHandl er ();
connect TOURL(argv[0]);

private static void setupHandl er()

{

}

java.util.Properties p = System getProperties();
String s = p.getProperty("java. protocol . handl er. pkgs");
if (s ==null)
s = "webl ogi c. net";
else if (s.indexO("weblogic.net") == -1)
s += "|webl ogi c. net";
p. put ("j ava. protocol . handl er. pkgs", s);
System set Properties(p);

private static void connect TOURL(String theURLSpec)

{

try
{
URL theURL = new URL(theURLSpec);

URLConnection url Connection = theURL. openConnection();
Ht t pURLConnection connection = null;
if (!'(urlConnection instanceof HttpURLConnection))

{

Systemout. printIn("The URL is not using HTTP/ HTTPS: "

t heURLSpec) ;
return;
}
connection = (HttpURLConnection) url Connecti on;
connection. connect ();
String responseStr = "\t\t" +
connection. get ResponseCode() + " -- " +

Developing Applications with the WebLogic Security Service

G31581-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

+

October 8, 2025
Page 22 of 23

ORACLE Chapter 4
SSL Client Code Examples

connection. get ResponseMessage() + "\n\t\t" +
connection. get Content ().getd ass().getName() + "\n";
connection. di sconnect();
Systemout. println(responseStr);

}
catch (I CException ioe)

{
Systemout.println("Failure processing URL: " + theURLSpec);
i oe.printStackTrace();

}
}
}

For two-way SSL authentication, the webl ogi c. net. htt p. Ht t psURLConnect i on class provides
a way to specify the security context information for a client, including the digital certificate and
private key of the client. Instances of this class represent an HTTPS connection to a remote
object.

The SSLClient sample code demonstrates using the WebLogic URL object to make an
outbound SSL connection (see Example 4-11). The code example shown in Example 4-11 is
excerpted from the SSLC i ent . j ava file in the

EXAMPLES_HOME\ sr c\ exanpl es\ security\sslclient directory. The EXAMPLES HOME directory
can be found at ORACLE_HOVE\ wl ser ver\ sanpl es\ server.

® Note

| oadLocal I dentity(InputStreamcertStream InputStreamkeyStream char[]
passwor d) is deprecated in this release.

Example 4-11 WebLogic Two-Way SSL Authentication URL Outbound SSL Connection
Code Example

W sUrl = new URL("https", host, Integer.valueO (sport).intValue(),

query);
webl ogi c. net. http. H t psURLConnecti on sconnection =
new webl ogi c. net. http. H t psURLConnecti on(w sUrl);

InputStream[] ins = new I nputStreani?2];
ins[0] = new FilelnputStrean("clientkey.pen');
ins[1] = new FilelnputStrean("client2certs. pent);
String pwd = "clientkey";
sconnection. | oadLocal I dentity(ins[0], ins[1], pwd.toCharArray());

SSL Client Code Examples

The WebLogic Server product provides a complete working SSL authentication sample.The
sample provided by WebLogic Server is located in

EXAMPLES_HOME\ st ¢\ exanpl es\ securi ty\ ssl client, where EXAMPLES_HOVE represents the
directory in which the WebLogic Server code examples are configured and can be found at
ORACLE_HOVE\ W ser ver\ sanpl es\ server. For a description of the sample and instructions on
how to build, configure, and run this sample, see the package. ht nl file in the sample directory.
You can modify this code example and reuse it.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 23 of 23

Securing EJBs

Oracle WebLogic Server supports the Jakarta EE architecture security model for securing
EJBs, which includes support for declarative authorization (also referred to in this document as
declarative security) and programmatic authorization (also referred to in this document as
programmatic security).

« Jakarta EE Architecture Security Model

e Using Declarative Security With EJBs

 EJB Security-Related Deployment Descriptors

* Using Programmatic Security With EJBs

@® Note

You can use metadata annotations, deployment descriptor files, WebLogic
Remote Console, and Jakarta Authorization to secure EJBs. For information on
using WebLogic Remote Console to secure EJBs, see Options for Securing Web
Application and EJB Resources in Securing Resources Using Roles and Policies
for Oracle WebLogic Server. For information on Jakarta Authorization, see Using
Jakarta Authorization.

Jakarta EE Architecture Security Model

Enterprise tier and web tier applications are made up of components that are deployed into
various containers. These components are combined to build a multitier enterprise application.
Security for components is provided by their containers. A container provides two kinds of
security: declarative and programmatic.

The Jakarta EE Platform includes a Jakarta Security specification that defines portable, plug-in
interfaces for authentication and identity stores, and a new injectable-type Securi t yCont ext
interface that provides an access point for programmatic security. You can use the built-in
implementations of these APIs, or define custom implementations.

See Introduction to Security in the Jakarta EE Platform in The Jakarta EE Tutorial for complete
details about the Jakarta EE security architecture.

Declarative Security

The Jakarta EE Tutorial states that declarative security expresses an application component's
security requirements by using either deployment descriptors or annotations.

A deployment descriptor is an XML file that is external to the application and that expresses an
application's security structure, including security roles, access control, and authentication
requirements.

Annotations, also called metadata, are used to specify information about security within a class
file. When the application is deployed, this information can be either used by or overridden by
the application deployment descriptor. Annotations save you from having to write declarative

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 23

https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/security/security-intro/security-intro.html

ORACLE Chapter 5
Jakarta EE Architecture Security Model

information inside XML descriptors. Instead, you simply put annotations on the code, and the
required information gets generated. In the tutorial, annotations are used for securing
applications wherever possible.

Declarative Authorization Via Annotations

As of EJB 3.x, to make the deployer's task easier, the application developer can define security
roles. Developers can specify security metadata annotations directly in the EJB bean class to
identify the roles that are allowed to invoke all, or a subset, of the EJB's methods.

As stated in the Securing an Enterprise Bean Using Declarative Security section of the The
Jakarta EE Tutorial, "Declarative security enables the application developer to specify which
users are authorized to access which methods of the enterprise beans and to authenticate
these users with basic, or user name/password, authentication. Frequently, the person who is
developing an enterprise application is not the same person who is responsible for deploying
the application. An application developer who uses declarative security to define method
permissions and authentication mechanisms is passing along to the deployer a security view of
the enterprise beans contained in the EJB JAR. When a security view is passed on to the
deployer, he or she uses this information to define method permissions for security roles. If you
don't define a security view, the deployer will have to determine what each business method
does to determine which users are authorized to call each method."

At deployment time, the deployer then creates these security roles if they do not already exist
and maps users to these roles using WebLogic Remote Console to update the security realm.
For details, see Security Roles in Oracle WebLogic Remote Console Online Help. The
deployer can also map any security roles to users using the webl ogi c- ej b-j ar. xn
deployment descriptor.

@® Note

Deployment descriptor elements always override their annotation counterparts. In the
case of conflicts, the deployment descriptor value overrides the annotation value.

The Jakarta Security specification requires that group principal names are mapped to
roles of the same name by default. In WebLogic Server, if the security-role-assignment
element in the webl ogi c- ej b-j ar. xm deployment descriptor does not declare a
mapping between a security role and one or more principals in the WebLogic Server
security realm, then the role name is used as the default principal.

Programmatic Security

The Jakarta EE Tutorial states that for an enterprise bean, code embedded in a business
method can be used to access a caller's identity programmatically and uses this information to
make security decisions. Programmatic security is useful when declarative security alone is not
sufficient to express the security model of an application. The APIs for programmatic security
consist of methods of the Jakarta EE 9.1 Securi t yCont ext interface, EJBCont ext interface,
and the Ht t pSer vl et Request interface. These methods allow components to make business-
logic decisions based on the security role of the caller or remote user.

The section Securing an Enterprise Bean Programmatically in The Jakarta EE Tutorial states
that, in general, security management should be enforced by the container in a manner that is
transparent to the enterprise bean's business methods. The security APIs described in this
section should be used only in the less frequent situations in which the enterprise bean

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 23

https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/security/security-jakartaee/security-jakartaee.html#_securing_an_enterprise_bean_using_declarative_security
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/security/security-jakartaee/security-jakartaee.html#_securing_an_enterprise_bean_programmatically

ORACLE

Chapter 5
Using Declarative Security With EJBS

business methods need to access the security context information, such as when you want to
restrict access to a particular time of day.

The Securi tyCont ext interface, as described in the Jakarta Security specification, defines
three methods that allow the bean provider to access security information about the enterprise
bean’s caller: get Cal | er Pri nci pal , get Pri nci pal sByType, and i sCal | erI nRol e.

The j akart a. ej b. EJBCont ext interface provides two methods that allow the bean provider to
access security information about the enterprise bean's caller: get Cal | er Pri nci pal and
get Pri nci pal sByType.

Note that the newer Securi t yCont ext API duplicates some functions of the EJBContext API
because it is intended to provide a consistent APl across containers. See Using Programmatic
Security With EJBs.

Declarative Versus Programmatic Authorization

Programmatic security is used by security-aware applications when declarative security alone
is not sufficient to express the security model of the application. When choosing the security
model that works best for you, consider who is responsible for managing security in your
organization. Developers are most familiar with the application components they build, but they
might not necessarily be familiar with the deployment environment in which those components
run. In addition, as security policies change, it is more economical to reconfigure security
declaratively instead of rebuilding, retesting, and redeploying applications, which may be
necessary when making programmatic security updates.

As described in Declarative Authorization Via Annotations, to make the deployer's task easier,
the application developer can specify security metadata annotations directly in the EJB bean
class to identify the roles that are allowed to invoke all, or a subset, of the EJB's methods.
However, deployment descriptor elements always override their annotation counterparts, which
gives the deployer final control.

Using Declarative Security With EJBs

You can implement declarative security using the security providers using WebLogic Remote
Console, or by using Jakarta Authorization. You also use deployment descriptors and metadata
annotations for implementing declarative security.

There are three ways to implement declarative security:

1. Security providers using WebLogic Remote Console, as described in Securing Resources
Using Roles and Policies for Oracle WebLogic Server.

2. Jakarta Authorization, as described in Using Jakarta Authorization.

3. Deployment descriptors and metadata annotations, which are discussed in this section.

Which of these three methods is used is defined by the Jakarta Authorization flags and the
security model. (Security models are described in Options for Securing EJB and Web
Application Resources in Securing Resources Using Roles and Policies for Oracle WebLogic
Server)

Implementing Declarative Security Via Metadata Annotations

As of EJB 3.0, (see What Was New and Changed in EJB 3.0 in Developing Jakarta Enterprise
Beans for Oracle WebLogic Server), you are no longer required to create the deployment
descriptor files (such as ej b-j ar. xnl). You can now use metadata annotations in the bean file
itself to configure metadata.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 23

ORACLE

Chapter 5
Using Declarative Security With EJBS

You can still use XML deployment descriptors in addition to, or instead of, the metadata
annotations if you so choose.

® Note

Deployment descriptor elements always override their annotation counterparts. In the
case of conflicts, the deployment descriptor value overrides the annotation value.

To use metadata annotations:

1. Use the metadata annotations feature and create an annotated EJB bean file.

2. At deployment time, the deployer must then create these security roles if they do not
already exist and map users to these roles using WebLogic Remote Console to update the
security realm. See Security Roles in Oracle WebLogic Remote Console Online Help.

The annotations are part of the jakarta.annotation.security package. The following security-
related annotations are available:

» jakarta.annotation.security.DeclareRoles — Explicitly lists the security roles that will be
used to secure the EJB.

* jakarta.annotation.security.RolesAllowed — Specifies the security roles that are allowed to
invoke all the methods of the EJB (when specified at the class-level) or a particular method
(when specified at the method-level.)

» jakarta.annotation.security.DenyAll — Specifies that the annotated method can not be
invoked by any role.

* jakarta.annotation.security.PermitAll — Specifies that the annotated method can be
invoked by all roles.

« jakarta.annotation.security.RunAs — Specifies the role which runs the EJB. By default, the
EJB runs as the user who actually invokes it.

Security-Related Annotation Code Examples

The section Securing Access to the EJB in Developing Jakarta Enterprise Beans for Oracle
WebLogic Server provides an example of a simple stateless session EJB that uses all of the
security-related annotations.

The section Specifying Authorized Users by Declaring Security Roles in the Jakarta EE Tutorial
also discusses how to use annotations to specify the method permissions for the methods of a
bean class, with accompanying code examples.

Implementing Declarative Security Via Deployment Descriptors

To implement declarative security in EJBs you can use deployment descriptors (ej b-j ar. xm
and webl ogi c- gj b-j ar. xm) to define the security requirements. Example 5-1 shows examples
of how to use the ej b-j ar. xm and webl ogi c-ej b-j ar. xm deployment descriptors to map
security role names to a security realm. The deployment descriptors map the application's
logical security requirements to its runtime definitions. And at runtime, the EJB container uses
the security definitions to enforce the requirements.

To configure security in the EJB deployment descriptors, perform the following steps (see
Example 5-1):

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 23

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/annotation/security/package-summary
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/security/security-jakartaee/security-jakartaee.html#_specifying_authorized_users_by_declaring_security_roles

ORACLE Chapter 5
Using Declarative Security With EJBS

1. Use atext editor to create ej b-j ar. xml and webl ogi c- ej b-j ar. xm deployment descriptor
files.

2. Intheejb-jar.xnl file, define the security role name, the EJB name, and the method
name.

@® Note

The proper syntax for a security role name is as defined for an Nmtoken in the
Extensible Markup Language (XML) recommendation available on the Web at:
http: // ww. w3. or g/ TR REC- xm #NT- Nt oken.

When specifying security role names, observe the following conventions and
restrictions:

» Do not use blank spaces, commas, hyphens, or any characters in this comma-
separated list: \t, <>, #, |, & ~, 2, (), { }-

* Security role names are case sensitive.
* The suggested convention for security role names is that they be singular.

For more information on configuring security in the ejb-jar.xml file, see the EJB
Specification at htt ps: //j akarta. ee/ speci fications/enterprise-beans/.

3. Inthe WebLogic-specific EJB deployment descriptor file, webl ogi c- ej b-j ar. xm , define
the security role name and link it to one or more principals (users or groups) in a security
realm.

For more information on configuring security in the webl ogi c- ej b-j ar. xnl file, see
weblogic-ejb-jar.xml Deployment Descriptor Reference in Developing Jakarta Enterprise
Beans Using Deployment Descriptors.

Example 5-1 Using ejb-jar.xml and weblogic-ejb-jar.xml Files to Map Security Role
Names to a Security Realm

gjb-jar.xm entries:

<assenbl y-descri pt or >
<security-rol e>
<rol e-name>manger </ r ol e- name>
</security-rol e>
<security-rol e>
<rol e- nane>east </ r ol e- nane>
</security-rol e>
<met hod- per m ssi on>
<rol e- name>nanager </ r ol e- nane>
<rol e- nane>east </ r ol e- nane>
<net hod>
<ej b- name>account sPayabl e</ ej b- nane>
<met hod- nane>get Recei pt s</ net hod- nanme>
</ met hod>
</ met hod- per ni ssi on>

</ assenbl y-descri pt or >

webl ogi c-ej b-jar.xm entries:
<security-rol e-assi gnment >
<rol e- nane>nmanager </ r ol e- nane>
<princi pal - name>al </ pri nci pal - name>
<pri nci pal - name>geor ge</ pri nci pal - nane>

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 23

http://www.w3.org/TR/REC-xml#NT-Nmtoken
https://jakarta.ee/specifications/enterprise-beans/

ORACLE Chapter 5
EJB Security-Related Deployment Descriptors

<princi pal - name>r al ph</ pri nci pal - name>
</security-rol e-assi gnnent >

EJB Security-Related Deployment Descriptors

WebLogic Server supports several deployment descriptor elements that are used in the ej b-
jar.xn and webl ogi c-ej b-jar. xm files to define security requirements in EJBs.

e ejb-jar.xml Deployment Descriptors

» weblogic-ejb-jar.xml Deployment Descriptors

ejb-jar.xml Deployment Descriptors

The following ej b-j ar. xn deployment descriptor elements are used to define security
requirements in WebLogic Server:

* method

e method-permission

e role-name

° run-as

e security-identity
e security-role

e security-role-ref
e unchecked

» use-caller-identity

method

The net hod element is used to denote a method of an enterprise bean's home or component
interface, or, in the case of a message-driven bean, the bean's onMessage method, or a set of
methods.

The following table describes the elements you can define within an met hod element.

Table 5-1 method Element
]

Element Required/ Description
Optional
<descri ption> Optional A text description of the method.
<ej b- name> Required Specifies the name of one of the enterprise beans declared

in the ej b-j ar. xn file.

<met hod-intf> Optional Allows you to distinguish between a method with the same
signature that is multiply defined across both the home and
component interfaces of the enterprise bean.

<net hod- name> Required Specifies a name of an enterprise bean method or the
asterisk (*) character. The asterisk is used when the
element denotes all the methods of an enterprise bean's
component and home interfaces.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 23

ORACLE

Used Within

Example

Chapter 5
EJB Security-Related Deployment Descriptors

Table 5-1 (Cont.) method Element
]

Element Required/ Description
Optional
<met hod- par ans> Optional Contains a list of the fully-qualified Java type names of the

method parameters.

The net hod element is used within the met hod- per mi ssi on element.

For an example of how to use the net hod element, see Example 5-1.

method-permission

Used Within

Example

The et hod- per m ssi on element specifies that one or more security roles are allowed to
invoke one or more enterprise bean methods. The et hod- per m ssi on element consists of an
optional description, a list of security role names or an indicator to state that the method is
unchecked for authorization, and a list of method elements.

The security roles used in the net hod- per ni ssi on element must be defined in the security-
rol e elements of the deployment descriptor, and the methods must be methods defined in the
enterprise bean's component and/or home interfaces.

The following table describes the elements you can define within a met hod- per mi ssi on
element.

Table 5-2 method-permission Element
]

Element Required/Optional Description

<description> Optional A text description of this security constraint.

<rol e-nane> or Required The r ol e- nane element or the unchecked element must be
<unchecked> specified.

The r ol e- nane element contains the name of a security role.
The name must conform to the lexical rules for an NMTOKEN.

The unchecked element specifies that a method is not
checked for authorization by the container prior to invocation
of the method.

<met hod> Required Specifies a method of an enterprise bean's home or
component interface, or, in the case of a message-driven
bean, the bean's onMessage method, or a set of methods.

The met hod- per mi ssi on element is used within the assenbl y- descri pt or element.

For an example of how to use the net hod- per ni ssi on element, see Example 5-1.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 23

ORACLE Chapter 5
EJB Security-Related Deployment Descriptors
role-name
The role-name element contains the name of a security role. The name must conform to the
lexical rules for an NMIOKEN.
Used Within
The role-name element is used within the et hod- per mi ssi on, run- as, security-role, and
security-role-ref el ements.
Example
For an example of how to use the r ol e- nanme element, see Example 5-1.
run-as
The run-as element specifies the run-as identity to be used for the execution of the enterprise
bean. It contains an optional description, and the name of a security role.
Used Within
The run-as element is used within the security-identity element.
Example
For an example of how to use the run- as element, see Example 5-8.
security-identity

The security-identity element specifies whether the caller's security identity is to be used
for the execution of the methods of the enterprise bean or whether a specific run-as identity is
to be used. It contains an optional description and a specification of the security identity to be
used.

The following table describes the elements you can define within an security-identity
element.

Table 5-3 security-identity Element
]

Element Required/Optional Description

<description> Optional A text description of the security identity.

<use-caller- Required The use-cal | er-identity element or the run-as element
i dentity> or must be specified.

<run-as> The use-cal | er-i dentity element specifies that the

caller's security identity be used as the security identity for the
execution of the enterprise bean's methods.

The run-as element specifies the run-as identity to be used for
the execution of the enterprise bean. It contains an optional
description, and the name of a security role.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 23

ORACLE

Used Within

Example

security-role

Used Within

Example

Chapter 5
EJB Security-Related Deployment Descriptors

The security-identity elementis used within the enti ty, message-driven, and sessi on
elements.

For an example of how to use the security-identity element, see Example 5-3 and
Example 5-8.

The security-rol e element contains the definition of a security role. The definition consists of
an optional description of the security role, and the security role name.

The security-rol e element is used within the assenbl y- descri pt or element.

For an example of how to use the assenbl y- descri pt or element, see Example 5-1.

security-role-ref

Used Within

Example

The security-rol e-ref element contains the declaration of a security role reference in the
enterprise bean's code. The declaration consists of an optional description, the security role
name used in the code, and an optional link to a security role. If the security role is not
specified, the Deployer must choose an appropriate security role.

The value of the r ol e- name element must be the String used as the parameter to the
EJBContext.isCall erl nRol e(String rol eName) method or the
Ht t pSer vl et Request . i sUser I nRol e(String rol e) method.

The security-rol e-ref elementis used within the enti ty and sessi on elements.

For an example of how to use the security-role-ref element, see Example 5-2.
Example 5-2 Security-role-ref Element Example

<! DOC<webl ogi c-ej b-jar xm ns="http://ww. bea. con ns/ webl ogi c/ 90"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
Xsi:schenmalLocation="http://ww. bea. com ns/ webl ogi c/ 90
http://ww. bea. con ns/ webl ogi ¢/ 90/ webl ogi c-ej b-j ar. xsd" >
<ejb-jar>

<enterpri se-beans>

<sessi on>
<ej b- name>Securi t ySLEJB</] b- nane>
<home>webl ogi c. ej b20. securi ty. SecuritySLHone</ hone>
<r enpt e>webl ogi c. ej b20. security. SecuritySL</renote>
<ej b-cl ass>webl ogi c. ej b20. security. SecuritySLBean</ ej b-cl ass>

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 23

ORACLE

unchecked

Used Within

Example

Chapter 5

EJB Security-Related Deployment Descriptors

<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Cont ai ner</transaction-type>
<security-role-ref>
<rol e- nane>r ol enanedi f f f ronl i nk</r ol e- nane>
<rol e-link>rol el21SL</rol e-link>
</security-role-ref>
<security-role-ref>
<r ol e- nane>r ol eFor Renot es</ r ol e- name>
<rol e-link>rol eFor Renot es</rol e-1ink>
</security-role-ref>
<security-role-ref>
<rol e- nane>r ol eFor Local AndRenpt e</ r ol e- nane>
<rol e-1ink>rol eFor Local AndRermpt e</rol e-link>
</security-role-ref>
</ sessi on>

</enterprise-beans>
<lejb-jar>

The unchecked element specifies that a method is not checked for authorization by the

container prior to invocation of the method.

The unchecked element is used within the net hod- per ni ssi on element.

For an example of how to use the unchecked element, see Example 5-1.

use-caller-identity

Used Within

Example

The use-cal | er-identity element specifies that the caller's security identity be used as the

security identity for the execution of the enterprise bean's methods.

The use-cal l er-identity element is used within the security-identity element.

For an example of how to use the use-cal | er-i dentity element, see Example 5-3.

Example 5-3 use-caller-identity Element Example

<ejb-jar>
<enterpri se- beans>
<sessi on>
<ej b- name>Securi t yEIB</ ej b- name>
<home>webl ogi c. ej b20. Securi t ySLHome</ home>
<r enot e>webl ogi c. ej b20. SecuritySL</renot e>
<l ocal - hone>
webl ogi c. ej b20. SecuritylLocal SLHone

</l ocal - home>
<l ocal >webl ogi c. ej b20. Securi tyLocal SL</| ocal >
<ej b- cl ass>webl ogi c. ej b20. Securi t ySLBean</ ej b- cl ass>
<sessi on-type>St at el ess</ sessi on-type>

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates.

Page 10 of 23

ORACLE’

<transaction-type>Cont ai ner</transaction-type>

</ sessi on>
<message-driven>

<ej b- name>Securi t yEJB</ ej b- name>

Chapter 5
EJB Security-Related Deployment Descriptors

<ej b- cl ass>webl ogi c. ej b20. Securi t ySLBean</ ej b-cl ass>

<transaction-type>Cont ai ner</transaction-type>

<security-identity>

<use-cal ler-identity/>

</security-identity>
</ message-driven>

</enterprise-beans>

<lejb-jar>

weblogic-ejb-jar.xml Deployment Descriptors

The following webl ogi c- ej b-j ar. xm deployment descriptor elements are used to define

security requirements in WebLogic Server:

client-authentication

client-cert-authentication

confidentialit
externally-defined

identity-assertion

iiop-security-descriptor
integrity
principal-name
role-name

run-as-identity-principal

run-as-principal-name

run-as-role-assignment

security-permission

security-permission-spec

security-role-assignment

transport-requirements

client-authentication

The client - aut henti cati on element specifies whether the EJB supports or requires client
authentication.

The following table defines the possible settings.

Table 5-4 client-authentication Element

Setting Definition

none Client authentication is not supported.

support ed Client authentication is supported, but not required.
required Client authentication is required.

Developing Applications with the WebLogic Security Service

G31581-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 23

ORACLE Chapter 5
EJB Security-Related Deployment Descriptors

Example

For an example of how to use the cl i ent - aut henti cati on element, see Example 5-6.

client-cert-authentication

The client-cert-authentication element specifies whether the EJB supports or requires
client certificate authentication at the transport level.

The following table defines the possible settings.

Table 5-5 client-cert-authentication Element

Setting Definition

none Client certificate authentication is not supported.

support ed Client certificate authentication is supported, but not required.
required Client certificate authentication is required.

Example

For an example of how to use the cl i ent-cert-authenticati on element, see Example 5-10.

confidentiality

The confidential ity element specifies the transport confidentiality requirements for the EJB.
Using the confi denti al ity element ensures that the data is sent between the client and
server in such a way as to prevent other entities from observing the contents.

The following table defines the possible settings.

Table 5-6 confidentiality Element

Setting Definition

none Confidentiality is not supported.

support ed Confidentiality is supported, but not required.
required Confidentiality is required.

Example

For an example of how to use the confidenti al i ty element, see Example 5-10 .

externally-defined

The ext ernal | y- def i ned element lets you explicitly indicate that you want the security roles
defined by the r ol e- nane element in the webl ogi c- ej b-j ar. xm deployment descriptors to use
the mappings specified in WebLogic Remote Console. The element gives you the flexibility of
not having to specify a specific security role mapping for each security role defined in the
deployment descriptors for a particular Web application. Therefore, within the same security
realm, deployment descriptors can be used to specify and modify security for some
applications while WebLogic Remote Console can be used to specify and modify security for
others.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 23

ORACLE

Chapter 5
EJB Security-Related Deployment Descriptors

@® Note

Starting in version 9.0, the default role mapping behavior is to create empty role
mappings when none are specified. In version 8.1, EJB required that role mappings be
defined in the weblogic-ejb-jar.xml descriptor or deployment would fail. With 9.0, EJB
and WebApp behavior are consistent in creating empty role mappings.

For information on role mapping behavior and backward compatibility settings, see the
section Understanding the Combined Role Mapping Enabled Setting in Securing
Resources Using Roles and Policies for Oracle WebLogic Server. The role mapping
behavior for a server depends on which security deployment model is selected in
WebLogic Remote Console. For information on security deployment models, see
Options for Securing EJB and Web Application Resources in Securing Resources
Using Roles and Policies for Oracle WebLogic Server.

When specifying security role names, observe the following conventions and restrictions:

The proper syntax for a security role name is as defined for an Nnt oken in the Extensible
Markup Language (XML) recommendation available on the Web at: http://
www. W3. or g/ TR REC- xmi #NT- Nt oken.

Do not use blank spaces, commas, hyphens, or any characters in this comma-separated
list: \t, <> #1, &~ 2, (), {}

Security role names are case sensitive.

The suggested convention for security role names is that they be singular.

Example 5-4 and Example 5-5 show by comparison how to use the ext er nal | y- defi ned

element in the webl ogi c- ej b-j ar. xm file. In Example 5-5, the specification of the "manager"
ext ernal | y-defi ned element in the webl ogi c- ej b-j ar. xnml means that for security to be
correctly configured on the get Recei pt s method, the principals for manager will have to be
created in WebLogic Remote Console.

Example 5-4 Using the ejb-jar.xml and weblogic-ejb-jar.xml Deployment Descriptors to
Map Security Roles in EJBs

ejb-jar.xm entries:

<assenbl y-descri pt or >

<security-role>

<r ol e- name>manger </ r ol e- name>

</security-rol e>
<security-role>

<rol e- name>east </ r ol e- name>

</security-role>
<met hod- per m ssi on>

<r ol e- name>manager </ r ol e- nane>
<rol e- name>east </ r ol e- nane>
<met hod>
<ej b- name>account sPayabl e</ ej b- nane>
<met hod- nane>get Recei pt s</ net hod- nanme>
</ met hod>

</ met hod- per ni ssi on>

</ assenbl y-descri pt or>

webl ogi c-ej b-jar.xm entries:
<security-rol e-assi gnment >

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 23

http://www.w3.org/TR/REC-xml#NT-Nmtoken
http://www.w3.org/TR/REC-xml#NT-Nmtoken

ORACLE Chapter 5
EJB Security-Related Deployment Descriptors

<rol e- nane>manager </ r ol e- nane>

<pri nci pal - name>j oe</ pri nci pal - nane>
<princi pal -name>Bi | | </ pri nci pal - nane>
<princi pal - name>Mar y</ pri nci pal - nane>

</security-rol e-assi gnnent >

Example 5-5 Using the externally-defined Element in EJB Deployment Descriptors for
Role Mapping

ejb-jar.xm entries:

<assenbl y- descri pt or >
<security-role>
<r ol e- name>manger </ r ol e- name>
</security-rol e>
<security-role>
<rol e- name>east </ r ol e- nane>
</security-role>
<met hod- per m ssi on>
<r ol e- name>manager </ r ol e- nane>
<r ol e- name>east </ r ol e- nane>
<met hod>
<ej b- name>account sPayabl e</ ej b- nane>
<met hod- nanme>get Recei pt s</ net hod- nane>
</ met hod>
</ met hod- per ni ssi on>

</ assenbl y- descri pt or>
webl ogi c-ej b-jar.xm entries:
<security-rol e-assi gnment >
<r ol e- name>manager </ r ol e- nane>
<external | y-defined/ >
</security-rol e-assi gnnent >
For more information on using WebLogic Remote Console to configure security for EJBS, see

Options for Securing EJB and Web Application Resources in Securing Resources Using Roles
and Policies for Oracle WebLogic Server.

identity-assertion

Theidentity-assertion element specifies whether the EJB supports identity assertion.

The following table defines the possible settings.

Table 5-7 identity-assertion Element
]

Setting Definition

none Identity assertion is not supported

support ed Identity assertion is supported, but not required.
required Identity assertion is required.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 23

ORACLE Chapter 5
EJB Security-Related Deployment Descriptors

Used Within

The i dentity-assertion elementis used with the i i op- security-descriptor element.

Example

For an example of how to the i dentity-assertion element, see Example 5-6.

liop-security-descriptor

Theiiop-security-descriptor element specifies security configuration parameters at the
bean-level. These parameters determine the IIOP security information contained in the
interoperable object reference (IOR).

Example
For an example of how to use the i i op- security-descri ptor element, see Example 5-6.

Example 5-6 iiop-security-descriptor Element Example

<webl ogi c- ent er pri se- bean>
<iiop-security-descriptor>
<transport-requirenents>
<confidentiality>supported</confidentiality>
<integrity>supported</integrity>
<client-cert-authorization>
supported
</client-cert-authentication>
</transport-requirenents>
<client-authentication>supported<client-authentication>
<identity-assertion>supported</identity-assertion>
</iiop-security-descriptor>
</ webl ogi c-enterpri se-bean>

integrity

The i ntegrity element specifies the transport integrity requirements for the EJB. Using the
integrity element ensures that the data is sent between the client and server in such a way that
it cannot be changed in transit.

The following table defines the possible settings.

Table 5-8 integrity Element

. ___|]
Setting Definition

none Integrity is not supported.

support ed Integrity is supported, but not required.

required Integrity is required.

Used Within

The integrity elementis used within the transport-requi rement s element.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 23

ORACLE Chapter 5
EJB Security-Related Deployment Descriptors

Example

For an example of how to use the i nt egrity element, see Example 5-10.

principal-name

The princi pal - nane element specifies the name of the principal in the WebLogic Server
security realm that applies to role name specified in the security-role-assignment element. At
least one pri nci pal is required in the security-rol e-assi gnment element. You may define
more than one pri nci pal - nane for each role name.

@® Note

If you need to list a significant number of principals, consider specifying groups instead
of users. There are performance issues if you specify too many users.

Used Within
The nk, ?"{>L" - nanme element is used within the security-rol e-assi gnnent element.
Example
For an example of how to use the pri nci pal - nane element, see Example 5-1.
role-name
The r ol e- nane element identifies an application role name that the EJB provider placed in the
companion ej b-j ar. xnl file. Subsequent principal-name elements in the stanza map
WebLogic Server principals to the specified r ol e- nane.
Used Within
The rol e- nane element is used within the securi ty-rol e- assi gnnent element.
Example

For an example of how to use the r ol e- nanme element, see Example 5-1.

run-as-identity-principal

The run-as-identity-principal element specifies which security principal name is to be
used as the run-as principal for a bean that has specified a security-identity run-as role-name
in its ejb-jar deployment descriptor. For an explanation about how run-as role-names are
mapped to run-as-identity-principals (or run-as-principal-names, see run-as-role-assignment.

@® Note

Deprecated: The run-as-identity-principal elementis deprecated in WebLogic
Server 8.1. Use the run- as- pri nci pal - nane element instead.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 16 of 23

ORACLE Chapter 5
EJB Security-Related Deployment Descriptors

Used Within

The run-as-identity-principal elementis used within the run-as-rol e-assi gnment
element.

Example
For an example of how to use the run-as-identity-principal element, see Example 5-7.

Example 5-7 run-as-identity-principal Element Example

ebj -jar.xm
<ejb-jar>
<enterpri se-beans>
<sessi on>
<ej b- name>Cal | er 2EJB</ ej b- nane>
<home>webl ogi c. ej b1l. security. Cal | er BeanHome</ home>
<renot e>webl ogi c. ej b11. security. Cal | er BeanRenot e</ r enot e>
<ej b-cl ass>webl ogi c. ej b11l. security. Cal | er Bean</ ¢j b- cl ass>
<sessi on-type>St at ef ul </ sessi on-type>
<transaction-type>Cont ai ner</transaction-type>
<ej b-r ef ><ej b-ref - name>Cal | ee2Bean</ ej b-r ef - name>
<ej b-ref-type>Sessi on</ej b-ref-type>
<home>webl ogi c. ej b11. security. Cal | eeBeanHone</ hone>
<renot e>webl ogi c. ej b1l. security. Cal | eeBeanRenot e</ r enot e>
</ejb-ref>
<security-rol e-ref>
<rol e- name>user sl1</rol e- name>
<rol e-link>usersl</role-Iink>
</security-role-ref>
<security-identity>
<run-as>
<rol e- name>user s2</rol e- nane>
</run-as>
</security-identity>
</ sessi on>
</enterprise-beans>
</ejb-jar>
wobl ogi c-ej b-jar.xm :
<webl ogi c-ej b-jar>
<webl ogi c- ent er pri se-bean>
<ej b- name>Cal | er 2EJB</ ej b- name>
<ref erence-descri pt or>
<ej b-reference-description>
<ej b-ref - nane>Cal | ee2Bean</ ¢j b-r ef - nane>
<j ndi - nane>security. Cal | ee2Bean</j ndi - name>
</ ej b-reference-description>
</reference-descriptor>
<run-as-identity-principal >wsUser 3</run-as-identity-principal >
</ webl ogi c-enterpri se- bean>
<security-rol e-assi gnment >
<rol e- name>user </ r ol e- name>
<princi pal - nane>wsUser 2</ pri nci pal - nane>
<princi pal - name>wsUser 3</ pri nci pal - nane>
<princi pal - nane>wsUser 4</ pri nci pal - nane>
</security-rol e-assi gnnent >
</ webl ogi c-¢ej b-j ar>

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 17 of 23

ORACLE

Chapter 5
EJB Security-Related Deployment Descriptors

run-as-principal-name

Used Within

Example

The run-as- princi pal - nane element specifies which security principal name is to be used as
the run-as principal for a bean that has specified a security-identity run-as role-name in its ejb-
jar deployment descriptor. For an explanation of how the run-as role-names map to run-as-
principal-names, see run-as-role-assignment.

The run-as- princi pal - name element is used within the r un- as-r ol e- assi gnnent element.

For an example of how to use the run-as- pri nci pal - name element, see Example 5-8.

run-as-role-assignment

Example

The run-as-rol e-assi gnnment element is used to map a given security-identity run-as role-
name that is specified in the ej b-j ar. xnl file to a run-as- pri nci pal - nane specified in the
webl ogi c- ej b-jar.xn file. The value of the r un- as- pri nci pal - name element for a given role-
name is scoped to all beans in the ej b-j ar. xn file that use the specified role-name as their
security-identity. The value of the r un- as- pri nci pal - name element specified in webl ogi c- ej b-
jar.xm file can be overridden at the individual bean level by specifying a r un- as- pri nci pal -
name element under that bean's webl ogi c- ent er pri se- bean element.

@® Note

For a given bean, if there is no r un- as- pri nci pal - nane element specified in either a
run-as-rol e-assi gnment element or in a bean specific r un- as- pri nci pal - nane
element, then the EJB container will choose the first principal-name of a security user
in the weblogic-enterprise-bean securi ty-rol e- assi gnnent element for the role-
name and use that principal-name as the run- as- pri nci pal - nane.

For an example of how to use the run-as-role-assignment element, see Example 5-8.
Example 5-8 run-as-role-assignment Element Example

Inthe ejb-jar.xm file:
/1 Beans "A_EJB with_runAs_role_X' and "B_EJB with_runAs_rol e_X"
/'l specify a security-identity run-as rol e-name "runAs_rol e_X"
/1 Bean "C_EJB with_runAs_role_Y" specifies a security-identity
/'l run-as role-name "runAs_rol e_Y"
<ej b-jar>
<enterpri se-beans>
<sessi on>

<ej b- name>Securit yEJB</ ej b- name>

<home>webl ogi c. ej b20. Securi t ySLHome</ home>

<r enot e>webl ogi c. ej b20. Securi tySL</renot e>

<l ocal - hone>

webl ogi c. ej b20. SecuritylLocal SLHone
</l ocal - home>
<l ocal >webl ogi c. ej b20. SecuritylLocal SL</| ocal >

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 18 of 23

ORACLE

Chapter 5
EJB Security-Related Deployment Descriptors

<ej b- cl ass>webl ogi c. ej b20. Securit ySLBean</ ej b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Cont ai ner</transaction-type>
</ sessi on>
<message-driven>
<ej b- name>Securit yEJB</ ej b- name>
<ej b- cl ass>webl ogi c. ej b20. Securi t ySLBean</ ej b-cl ass>
<transaction-type>Cont ai ner</transaction-type>
<security-identity>
<run-as>
<rol e-nane>runAs_rol e_X</rol e- nane>
</run-as>
</security-identity>
<security-identity>
<run-as>
<rol e-nane>runAs_rol e_Y</rol e- nane>
</run-as>
</security-identity>
</ message-driven>

</enterprise-beans>

<lejb-jar>

webl ogi c-ej b-jar file

<webl ogi c-ej b-jar>

<webl ogi c- ent er pri se-bean>
<ej b-name>A EJB with_runAs_rol e_X</ej b- nane>
</ webl ogi c-enterpri se-bean>
<webl ogi c-ent er pri se-bean>
<ej b-name>B_EJB with_runAs_rol e_X</ej b- nane>
<run-as- princi pal - nane>Joe</ r un- as- pri nci pal - nanme>
</ webl ogi c-enterpri se-bean>
<webl ogi c- ent er pri se-bean>
<ej b-name>C EJB with_runAs_rol e_Y</ej b- nane>
</ webl ogi c-enterpri se-bean>
<security-rol e-assi gnnent >
<rol e- nane>runAs_rol e_Y</rol e- nane>
<princi pal - name>Har r y</ pri nci pal - nane>
<princi pal - name>John</ pri nci pal - nane>
</security-rol e-assi gnnent >
<run-as-rol e-assi gnnent >
<rol e- nane>r unAs_rol e_X</rol e- nane>
<run-as- princi pal - nane>Fr ed</ run- as- pri nci pal - nane>
</run-as-rol e-assi gnment >

</ webl ogi c-ej b-j ar>

Each of the three beans shown in Example 5-8 will choose a different principal name to run as.

A_EJB_with_runAs_role_X

This bean's run-as role-name is r unAs_r ol e_X. The jar-scoped <r un- as-rol e-

assi gnment > mapping will be used to look up the nhame of the principal to use. The <run-
as-rol e-assi gnment > mapping specifies that for <role-name>r unAs_rol e_X we are to use
<run-as- princi pal - nane> Fr ed. Therefore, Fred is the principal name that will be used.

B_EJB_with_runAs_role X

This bean's run-as role-name is also runAs_r ol e_X. This bean will not use the jar scoped
<run-as-rol e-assi gnnent > to look up the name of the principal to use because that value
is overridden by this bean's <webl ogi c- ent er pri se- bean> <run-as- pri nci pal - nane>
value Joe. Therefore Joe is the principal name that will be used.

C_EJB_with_runAs_role_Y

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 19 of 23

ORACLE Chapter 5
EJB Security-Related Deployment Descriptors

This bean's run-as role-name is runAs_r ol e_Y. There is no explicit mapping of

runAs_rol e_Y to a run-as principal name, that is, there is no jar scoped <r un- as-rol e-
assi gnment > for runAs_rol e_Y nor is there a bean scoped <r un- as- pri nci pal - nane>
specified in this bean's <webl ogi c- ent er pri se- bean>. To determine the principal name to
use, the <security-rol e-assi gnment > for <r ol e- name> runAs_rol e_Y is examined. The
first <pri nci pal - name> corresponding to a user that is not a Group is chosen. Therefore,
Har ry is the principal name that will be used.

security-permission

The securi ty-perm ssi on element specifies a security permission that is associated with a
Jakarta EE Sandbox.

Example

For an example of how to use the security- perni ssi on element, see Example 5-9.

security-permission-spec

The security-perm ssi on-spec element specifies a single security permission based on the
Security policy file syntax.

For the implementation of the security permission specification, see Default Policy
Implementation and Policy File Syntax section in Java SE Security Developer's Guide .

@® Note

Disregard the optional codebase and signedBy clauses.

Used Within

The securi ty-perm ssi on-spec element is used within the securi ty- perm ssi on element.

Example

For an example of how to use the security- perni ssi on- spec element, see Example 5-9.

Example 5-9 security-permission-spec Element Example

<webl ogi c-ej b-jar>
<security-perm ssion>
<descri ption>Optional explanation goes here</description>
<security-perm ssion-spec>
<!
A single grant statenent followi ng the syntax of
http://xmns.jcp.org/j2sel 1. 5.0/ docs/ gui de/ security/PolicyFiles.htm #Fi | eSynt ax,
wi t hout the codebase and signedBy clauses, goes here. For exanple:
>
grant {
perm ssion java. net. Socket Pernission *, resolve;
¥
</ security-pernission-spec>
</ security- pernission>
</ webl ogi c-ej b-j ar>

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 20 of 23

https://docs.oracle.com/en/java/javase/17/security/index.html

ORACLE’

Chapter 5
Using Programmatic Security With EJBs

In Example 5-9, perni ssi on java. net. Socket Per ni ssi on is the permission class name, "*"
represents the target name, and r esol ve (resolve host/IP name service lookups) indicates the
action.

security-role-assignment

Example

The security-rol e-assi gnnent element maps application roles in the ej b-j ar. xnl file to the
names of security principals available in WebLogic Server.

@ Note

For information on using the security-role-assignment element in a weblogic-
application.xml deployment descriptor for an enterprise application, see Enterprise
Application Deployment Descriptor Elements in Developing Applications for Oracle
WebLogic Server.

For an example of how to use the security-rol e-assi gnnent element, see Example 5-1.

transport-requirements

Used Within

Example

The transport-requirenents element defines the transport requirements for the EJB.

The transport-requirements element is used within the i i op- security-descriptor element.

For an example of how to use the transport-requirenment s element, see Example 5-10.

Example 5-10 transport-requirements Element Example

<webl ogi c-enterpri se- bean>
<iiop-security-descriptor>
<transport-requirenents>
<confidentiality>supported</confidentiality>
<integrity>supported</integrity>
<client-cert-authorization>
supported
</client-cert-authentication>
</transport-requirenents>
</iiop-security-descriptor>
<webl ogi c-enterpri se- bean>

Using Programmatic Security With EJBs

To implement programmatic security in EJBs, WebLogic Server supports the use of the Jakarta
Security get Cal | er Pri nci pal , get Pri nci pal sByType, and i sCal | er | nRol e methods of the
SecurityCont ext interface, and the get Cal | er Pri nci pal andisCal |l erl nRol e methods of the
j akarta. ej b. EJBCont ext interface.

The following sections describe these methods in more detail:

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 21 of 23

ORACLE Chapter 5
Using Programmatic Security With EJBS

» SecurityContext Interface Methods

 EJBContext Interface Methods

SecurityContext Interface Methods

The Securi tyCont ext interface, as specified in the Jakarta Security specification, defines three
methods that allow the bean provider to access security information about the enterprise
bean’s caller:

e getCallerPrincipal () retrieves the Principal that represents the name of the
authenticated caller. This is the container-specific representation of the caller principal. The
type may differ from the type of the caller principal originally established by an
Ht t pAut hent i cati onMechani sm This method returns null for an unauthenticated caller in
either the Servlet Container or the EJB Container. Note that this behavior differs from the
behavior of the EJBCont ext . get Cal | er Pri nci pal () method, which returns a special
principal to represent an anonymous caller.

e getPrincipal sByType() retrieves all principals of the given type from the authenticated
callers subject. This method returns an empty Set if the caller is unauthenticated, or if the
requested type is not found.

Where both a container caller principal and an application caller principal are present, the
value returned by get Name() is the same for both principals.

e isCallerlnRol e() takes a String argument that represents the specific role to be verified.
The result must be the same as if the corresponding container-specific call had been made
(for example EJBContext.isCallerlnRole()).

EJBContext Interface Methods

The j akarta. ej b. EJBCont ext interface defines two methods that allow the bean provider to
access security information about the enterprise bean'’s caller:

e getCallerPrincipal allows the enterprise bean methods to obtain the current caller
principal's name. The methods might, for example, use the name as a key to information in
a database. This method never returns null. Instead, it returns a principal with a special
username to indicate an anonymous/unauthenticated caller. Note that this behavior differs
from the behavior of the Securit yCont ext . get Cal | er Pri nci pal () method, which returns
null for an unauthenticated caller.

In WebLogic Server, you use the get Cal | er Pri nci pal () method to determine the caller of
the EJB. The j akarta. ej b. EJBCont ext .get Cal | er Pri nci pal () method returns a W.SUser
Princi pal if one exists in the Subj ect of the calling user. In the case of multiple W.SUser
Princi pal s, the method returns the first in the ordering defined by the

Subj ect. get Principal s().iterator() method. If there are no W.SUser Princi pal s, then
the get Cal | er Pri nci pal () method returns the first non-W.SG oup Pri nci pal . If there are
no Princi pal s or all Princi pal s are of type W.SG oup, this method returns

webl ogi c. security. W.SPri nci pal s. get AnonynmousUser Pri nci pal () . This behavior is
similar to the semantics of webl ogi c. security. Subject Utils. get UserPrincipal ()
except that Subj ect Utils. get UserPrinci pal () returns a nul | whereas

EJBCont ext .get Cal | er Pri nci pal () returns

WLSPri nci pal s. get AnonnyousUser Princi pal ().

e isCallerlnRol e allows the developer to code the security checks that cannot be easily
defined using method permissions. Such a check might impose a role-based limit on a
request, or it might depend on information stored in the database. The enterprise bean
code can use the i sCal | er | nRol e method to test whether the current caller has been

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 22 of 23

ORACLE Chapter 5
Using Programmatic Security With EJBs

assigned to a given security role. Security roles are defined by the bean provider or the
application assembler and are assigned by the deployer to principals or principal groups
that exist in the operational environment.

In WebLogic Server, the i sCal | erl nRol e() method is used to determine if the caller (the
current user) has been assigned a security role that is authorized to perform actions on the
WebLogic resources in that thread of execution. For example, the method

jakarta.ejb. EJBContext.isCallerlnRole("adm n")will return t r ue if the current user

has admi n privileges.

For information about using these methods, see the Jakarta Enterprise Beans (EJB)
specification.

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 23 of 23

https://jakarta.ee/specifications/enterprise-beans/
https://jakarta.ee/specifications/enterprise-beans/

Using Network Connection Filters

Network connection filters can be used to protect WebLogic resources on individual servers,
server clusters, or an entire internal network. Learn how to implement network connection
filters in Oracle WebLogic Server.

* The Benefits of Using Network Connection Filters

* Network Connection Filter API

e Guidelines for Writing Connection Filter Rules

» Configuring the WebLogic Connection Filter

* Developing Custom Connection Filters

The Benefits of Using Network Connection Filters

Network connection filters act as a firewall that can be used to allow or deny access to servers
in your WebLogic domain based on certain protocols, network addresses and DNS node
names.Security roles and security policies let you secure WebLogic resources at the domain
level, the application level, and the application-component level. Connection filters let you deny
access at the network level. Thus, the network connection filters provide an additional layer of
security at the network level. Connection filters can be used to protect server resources on
individual servers, server clusters, or an entire internal network.

Connection filters are particularly useful for controlling access through the Administration port.
Depending on your network firewall configuration, you might be able to use a connection filter
to further restrict administration access. A typical use is to restrict access to the Administration
port to only the servers and machines in the domain. Even if an attacker gets access to a
machine inside the firewall, they will not be able to perform administration operations unless
they are on one of the permitted machines.

Network connection filters are a type of firewall in that they can be configured to filter on
protocols, IP addresses, and DNS node names. For example, you can deny any non-SSL
connections originating outside of your corporate network. This would ensure that all access
from systems on the Internet would be secure.

Network Connection Filter API

Connection filter rules allow you to limit the number of network connections that are accepted.
Learn how to create effective connection filter rules and how they are evaluated.

The webl ogi c. security. net APl package provides interfaces and classes for developing
network connection filters. It also includes a class, Connecti onFi | ter | npl, which is a ready-to-
use implementation of a network connection filter. See Java API Reference for Oracle
WebLogic Server for complete reference information on the network connection filter API.

This section covers the following topics:

e Connection Filter Interfaces

e Connection Filter Classes

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 6

ORACLE

Chapter 6
Network Connection Filter API

Connection Filter Interfaces

To implement connection filtering, write a class that implements the connection filter interfaces.
The following webl ogi c. security. net interfaces are provided for implementing connection

filters:

» ConnectionFilter Interface

* ConnectionFilterRulesListener Interface

ConnectionFilter Interface

This interface defines the accept () method, which is used to implement connection filtering. To
program the server to perform connection filtering, instantiate a class that implements this
interface and then configure that class in WebLogic Remote Console. This interface is the
minimum implementation requirement for connection filtering.

@® Note

Implementing this interface alone does not permit the use of WebLogic Remote
Console to enter and modify filtering rules to restrict client connections; you must use
some other form (such as a flat file, which is defined in WebLogic Remote Console) for
that purpose. To use WebLogic Remote Console to enter and modify filtering rules,
you must also implement the ConnectionFilterRulesListener interface. For a
description of the ConnectionFilterRulesListener interface, see
ConnectionFilterRulesListener Interface.

ConnectionFilterRulesListener Interface

The server uses this interface to determine whether the rules specified in WebLogic Remote
Console in the Connecti onFi | t er Rul es field are valid during startup and at runtime.

® Note

You can implement this interface or just use the WebLogic connection filter
implementation, weblogic.security.net.ConnectionFilterimpl, which is provided as part
of the WebLogic Server product.

This interface defines two methods that are used to implement connection filtering: set Rul es()
and checkRul es() . Implementing this interface in addition to the Connecti onFi | t er interface
allows the use of WebLogic Remote Console to enter filtering rules to restrict client
connections.

@® Note

In order to enter and edit connection filtering rules in WebLogic Remote Console, you
must implement the ConnectionFilterRulesListener interface; otherwise some other
means must be used. For example, you could use a flat file.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 6

ORACLE Chapter 6
Guidelines for Writing Connection Filter Rules

Connection Filter Classes

Two webl ogi c. security. net classes are provided for implementing connection filters:

e ConnectionFilterlmpl Class

e ConnectionEvent Class

ConnectionFilterimpl Class

This class is the WebLogic connection filter implementation of the Connecti onFi | ter and
ConnectionFil t er Rul esLi st ener interfaces. Once configured using WebLogic Remote
Console, this connection filter accepts all incoming connections by default, and also provides
static factory methods that allow the server to obtain the current connection filter. To use this
connection to deny access, simply enter connection filter rules using the WebLogic Remote
Console.

This class is provided as part of the WebLogic Server product. To configure this class for use,
see Configuring the WebL ogic Connection Filter.

ConnectionEvent Class

This is the class from which all event state objects are derived. All events are constructed with
a reference to the object, that is, the source that is logically deemed to be the object upon
which a specific event initially occurred. To create a new Connect i onEvent instance,
applications use the methods provided by this class: get Local Address(), get Local Port (),
get Renot eAddr ess(), get Renot ePort (), and hashcode() .

Guidelines for Writing Connection Filter Rules

There are certain guidelines for writing connection filter rules. If you do not specify connection
rules, then all connections are accepted.

Depending on how you implement connection filtering, connection filter rules can be written in
a flat file or input directly on the WebLogic Remote Console.

The following sections provide information and guidelines for writing connection filter rules:

e Connection Filter Rules Syntax

* Types of Connection Filter Rules

How Connection Filter Rules are Evaluated

Connection Filter Rules Syntax

The syntax of connection filter rules is as follows:

e Each rule must be written on a single line.
e Tokens in a rule are separated by white space.

e A pound sign (#) is the comment character. Everything after a pound sign on a line is
ignored.

* Whitespace before or after a rule is ignored.

e Lines consisting only of whitespace or comments are skipped.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 6

ORACLE

Chapter 6
Guidelines for Writing Connection Filter Rules

The format of filter rules differ depending on whether you are using a filter file to enter the filter
rules or you enter the filter rules in WebLogic Remote Console.

When entering the filter rules in WebLogic Remote Console, enter them in the following
format:

target Address | ocal Address | ocal Port action protocols
When specifying rules in the filter file, enter them in the following format:

target Address action protocols

— target Addr ess specifies one or more systems to filter.

— local Addr ess defines the host address of the WebLogic Server instance. (If you
specify an asterisk (*), the match returns all local IP addresses.)

— local Port defines the port on which the WebLogic Server instance is listening. (If you
specify an asterisk (*), the match returns all available ports on the server).

— acti on specifies the action to perform. This value must be al | owor deny.

— protocol s is the list of protocol names to match. The following protocols may be
specified: http, https,t3,t3s,|dap, | daps,iiop,iiops,and com (Although the gi op,
gi ops, and dcomprotocol names are still supported, their use is deprecated as of
release 9.0; you should use the equivalentii op, i i ops, and comprotocol names.)

@® Note

The SecurityConfigurationMBean provides a
CompatibilityConnectionFiltersEnabled attribute for enabling compatibility with
previous connection filters.

— If no protocol is defined, all protocols will match a rule.

Types of Connection Filter Rules

Two types of filter rules are recognized:

Fast rules

A fast rule applies to a hostname or IP address with an optional netmask. If a hostname
corresponds to multiple IP addresses, multiple rules are generated (in no particular order).
Netmasks can be specified either in numeric or dotted-quad form. For example:

di al up-555-1212. pa. exanpl e. net 127.0.0.1 7001 deny t3 t3s #http(s) K
192.168. 81. 0/ 255. 255.254.0 127.0.0.1 8001 allow #23-bit netmask
192.168.0.0/16 127.0.0.1 8002 deny #like /255.255.0.0

Hostnames for fast rules are looked up once at startup of the WebLogic Server instance.
While this design greatly reduces overhead at connect time, it can result in the filter
obtaining out of date information about what addresses correspond to a hostname. Oracle
recommends using numeric IP addresses instead.

Slow rules

A slow rule applies to part of a domain name. Because a slow rule requires a connect-time
DNS lookup on the client-side in order to perform a match, it may take much longer to run
than a fast rule. Slow rules are also subject to DNS spoofing. Slow rules are specified as
follows:

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 6

ORACLE’

Chapter 6
Configuring the WebLogic Connection Filter

* script-kiddiez.org 127.0.0.1 7001 deny

An asterisk only matches at the head of a pattern. If you specify an asterisk anywhere else
in arule, it is treated as part of the pattern. Note that the pattern will never match a domain
name since an asterisk is not a legal part of a domain name.

How Connection Filter Rules are Evaluated

When a client connects to WebLogic Server, the rules are evaluated in the order in which they
were written. The first rule to match determines how the connection is treated. If no rules
match, the connection is permitted.

To further protect your server and only allow connections from certain addresses, specify the
last rule as:

0.0.0.0/0 * * deny

With this as the last rule, only connections that are allowed by preceding rules are allowed, all
others are denied. For example, if you specify the following rules:

<Renpote | P Address> * * allow https
0.0.0.0/0 * * deny

Only machines with the Remote IP Address are allowed to access the instance of WebLogic
Server running connection filter. All other systems are denied access.

® Note

The default connection filter implementation interprets a target address of 0 (0.0.0.0/0)
as meaning "the rule should apply to all IP addresses." By design, the default filter
does not evaluate the port or the local address, just the action. To clearly specify
restrictions when using the default filter, modify the rules.

Another option is to implement a custom connection filter.

Configuring the WebLogic Connection Filter

WebLogic Server provides an out-of-the-box network connection filter, which you can configure
using the WebLogic Remote Console.

Developing Custom Connection Filters

If you do not want to use the WebLogic connection filter and want to develop you own, you can
use the application programming interface (API) provided in the webl ogi c. security. net
package to do so.

For a description of the webl ogi c. securi ty. net package, see Network Connection Filter API.

To develop custom connection filters with Oracle WebLogic Server, perform the following
steps:

1. Write a class that implements the Connecti onFi | t er interface (minimum requirement).

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 6

ORACLE

Chapter 6
Developing Custom Connection Filters

Or, optionally, if you want to use WebLogic Remote Console to enter and modify the
connection filtering rules directly, write a class that implements both the Connecti onFi | t er
interface and the Connecti onFi | t er Rul esLi st ener interface.

2. If you choose the minimum requirement in step 1 (only implementing the
ConnectionFi | t er interface), enter the connection filtering rules in a flat file and define the
location of the flat file in the class that implements the Connecti onFi | t er interface. Then
use WebLogic Remote Console to configure the class in WebLogic Server. For instructions
for configuring the class in WebLogic Remote Console, see Using Connection Filters in
Administering Security for Oracle WebLogic Server.

3. If you choose to implement both interfaces in step 1, use WebLogic Remote Console to
configure the class and to enter the connection filtering rules. For instructions on
configuring the class inWebLogic Remote Console, see Using Connection Filters in
Administering Security for Oracle WebLogic Server.

Note that if connection filtering is implemented when a Java or Web browser client tries to
connect to a WebLogic Server instance, The WebLogic Server instance constructs a
Connect i onEvent object and passes it to the accept () method of your connection filter class.
The connection filter class examines the Connect i onEvent object and accepts the connection
by returning, or denies the connection by throwing a Fi | t er Except i on.

Both implemented classes (the class that implements only the Connecti onFi |l t er interface and
the class that implements both the Connecti onFi | t er interface and the

Connecti onFi | t er Rul esLi st ener interface) must call the accept () method after gathering
information about the client connection. However, if you only implement the Connecti onFil ter
interface, the information gathered includes the remote IP address and the connection
protocol: http, https,t3,t3s,|dap,|daps,iiop,iiops,orcom If youimplement both
interfaces, the information gathered includes the remote IP address, remote port number, local
IP address, local port number and the connection protocol.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 6

Using Java Security Features to Protect
WebLogic Resources

To protect WebLogic resources, Oracle WebLogic Server supports the use of Java security
artifacts, such as Jakarta security, Java Security Manager, and Jakarta Authorization.

e Using Jakarta Security to Protect WebLogic Resources

e Using the Java Security Manager to Protect WeblLogic Resources

e Using Jakarta Authorization

Using Jakarta Security to Protect WebLogic Resources

You can use Jakarta Security to protect URL (Web), EJBs, and Connector components.
Additionally, WebLogic Server extends the connector model of specifying additional security
policies in the deployment descriptor to the URL and EJB components.

The connector specification provides for deployment descriptors to specify additional security
policies using the <security- perni ssi on> tag (see Example 7-1):

Example 7-1 Security-Permission Tag Sample

<security-perm ssion>

<description> Optional explanation goes here </description>

<security-perm ssion-spec>

<I--

A single grant statenent followi ng the syntax of http://xmns.jcp.org/j2sell.4.2/docs/
gui de/ security/ PolicyFiles. htnl #Fi | eSynt ax

W thout the "codebase" and "signedBy" clauses goes here. For exanple

-->

grant {

perm ssion java.net. Socket Pernission "*", "resol ve"
¥

</ security-pernission-spec>

</ security- pernission>

Besides support of the <security- perni ssion>taginthe rar.xm file, WebLogic Server adds
the <securi ty- perni ssi on> tag to the webl ogi c. xm and webl ogi c-ej b-j ar. xm files. This
extends the connector model to the two other application types, Web applications and EJBs,
provides a uniform interface to security policies across all component types, and anticipates
future Jakarta EE specification changes.

® Note

Jakarta EE has requirements for Java security default permissions for different
application types (see the Jakarta EE specification) as does the Jakarta Connector
Architecture specification.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 10

ORACLE Chapter 7
Using the Java Security Manager to Protect WebLogic Resources

Using the Java Security Manager to Protect WebLogic
Resources

You can set up the Java Security Manager to be used with WebLogic Server to provide
additional protection for resources running in a Java Virtual Machine (JVM). You can also use
Printing Security Manager which is an enhancement to the Java Security Manager.

@® Note

The Java Security Manager was deprecated in JDK 17 and will be removed in a future
release. WebLogic Server will display warnings if you start a server with the Java
Security Manager enabled.

WebLogic Server will no longer support the Java Security Manager after it is removed
from the JDK.

Using a Java Security Manager is an optional security step. The following sections describe
how to use the Java Security Manager with WebLogic Server:

e Setting Up the Java Security Manager

* Using Printing Security Manager

For more information on Java Security Manager, see the Java Security Web page at htt p: //
docs. oracl e. con j avase/ 8/ docs/ t echnot es/ gui des/ security/index.htm .

Setting Up the Java Security Manager

When you run WebLogic Server, WebLogic Server can use the Java Security Manager, which
prevents untrusted code from performing actions that are restricted by the Java security policy
file.

The JVM has security mechanisms built into it that allow you to define restrictions to code
through a Java security policy file. The Java Security Manager uses the Java security policy
file to enforce a set of permissions granted to classes. The permissions allow specified classes
running in that instance of the JVM to permit or not permit certain runtime operations. In many
cases, where the threat model does not include malicious code being run in the JVM, the Java
Security Manager is unnecessary. However, when untrusted third-parties use WebLogic Server
and untrusted classes are being run, the Java Security Manager may be useful.

To use the Java Security Manager with WebLogic Server, specify the - Dj ava. security. policy
and - Dj ava. security. manager arguments when starting WebLogic Server. The -

O ava. security. pol i cy argument specifies a filename (using a relative or fully-qualified
pathname) that contains Java security policies. If you're using Java Security Manager with
WebLogic Server, then you must also specify the - Dnebl ogi ¢c. Nane argument when starting
WebLogic Server from the command line using the j ava webl ogi c. Server command. For
example:

java - Dnebl ogi c. Nane=server - nane
-Dj ava. securi ty. manager
-Djava. security.policy[=]=fil ename
webl ogi c. Server

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 10

http://docs.oracle.com/javase/8/docs/technotes/guides/security/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/index.html

ORACLE

Chapter 7
Using the Java Security Manager to Protect WebLogic Resources

WebLogic Server provides a sample Java security policy file located at

W._HOVE\ server\ | i b\webl ogi c. pol i cy. Do not edit this file because it may be overwritten by
Patch Set Updates (PSU). Instead, use it as a model to create your own security policy file.
Consider concatenating the sample webl ogi c. pol i cy file with your custom security policy file
to automatically obtain any updates delivered in the PSU.

@® Note

This sample policy file is not complete and is not sufficient to start WebLogic Server
without modifications. When you create your own custom policy file, make sure that
you add various permissions based on your configuration in order for WebLogic
Server and all applications to work properly.

Pay particular attention if you apply patches. If you apply patches that include code
with system privileges, you may need to make associated changes to any custom
Java policy file you are using.

For example, to successfully start WebLogic Server and deploy an application using WebLogic
Remote Console, you might need to add permissions such as the following to your custom
policy file:

perm ssion java.util.PropertyPermission "*', 'read';

perm ssion java.lang. RuntimePermission '*';

perm ssion java.io.FilePermssion ' <<ALL FILES>>', 'read,wite';
perm ssion javax. managenent. MBeanPermission '*', "*';

If you enable the Java Security Manager but do not specify a security policy file, the Java
Security Manager uses the default security policies defined in the j ava. pol i cy file in
the $JAVA_HOVE\j re\li b\ security directory.

Define security policies for the Java Security Manager in one of the following ways:

* Modifying your Custom Policy File for General Use

» Setting Application-Type Security Policies

» Setting Application-Specific Security Policies

Modifying your Custom Policy File for General Use

To use the Java Security Manager security policy file with your WebLogic Server deployment,
you must specify the location of a custom policy file to the Java Security Manager when you
start WebLogic Server. To do this, set the following arguments on the Java command line you
use to start the server:

e java.security.manager tells the JVM to use a Java security policy file.

e java.security.policy tells the JVM the location of the Java security policy file to use.
The argument is the fully qualified name of the Java security policy, which in this case,
might be exanpl e. pol i cy.

For example:

java...-Dava.security. manager \
-Dj ava. securi ty. pol i cy==C: \ webl ogi c\ exanpl e. pol i cy

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 10

ORACLE Chapter 7
Using the Java Security Manager to Protect WebLogic Resources

@® Note

Be sure to use == instead of = when specifying the java.security.policy argument so
that only the exanpl e. pol i cy file is used by the Java Security Manager. The ==
causes the exanpl e. pol i cy file to override any default security policy. A single equal
sign (=) appends the exanpl e. pol i cy file to an existing security policy.

If you have extra directories in your CLASSPATH or if you are deploying applications in extra
directories, add specific permissions for those directories to your exanpl e. pol i cy file.

Oracle recommends taking the following precautions when using a policy file:

* Do not make your changes to the W._HOVE\ server\ | i b\ webl ogi c. pol i cy file directly as
subsequent Patch Set Updates (PSUs) will overwrite your changes. Instead, create a
custom policy file based off of W._HOVE\ server\|i b\ webl ogi c. pol i cy and apply your
changes to the custom policy file. Consider configuring your custom policy file to
automatically pull in the contents of W._HOVE\ ser ver\ | i b\ webl ogi c. pol i cy so you can get
any changes from the PSU automatically.

e Make a backup copy of your custom policy file and put the backup copy in a secure
location.

e Set the permissions on the custom policy file via the operating system such that the
administrator of the WebLogic Server deployment has write and read privileges and no
other users have access to the file.

@® Note

The Java Security Manager is partially disabled during the booting of
Administration and Managed Servers. During the boot sequence, the current Java
Security Manager is disabled and replaced with a variation of the Java Security
Manager that has the checkRead() method disabled. While disabling this method
greatly improves the performance of the boot sequence, it also minimally
diminishes security. The startup classes for WebLogic Server are run with this
partially disabled Java Security Manager and therefore the classes need to be
carefully scrutinized for security considerations involving the reading of files.

For more information about the Java Security Manager, see the Javadoc for the
java. |l ang. SecurityManager class, available at htt p: //docs. oracl e. cont j avase/ 8/
docs/ api /j aval | ang/ SecurityManager. ht i .

Setting Application-Type Security Policies

Set default security policies for servlets, EJBs, and Jakarta Connector Architecture resource
adapters in the Java security policy file. The default security policies for servlets, EJBs, and
resource adapters are defined in the Java security policy file under the following codebases:

e Servlets—"fil e:/webl ogi c/application/defaul ts/\Wb"
e EJBs—"file:/weblogic/application/defaults/EIB"

e Resource adapters—"fil e:/webl ogi ¢/ appl i cati on/ def aul t s/ Connect or"

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 10

http://docs.oracle.com/javase/8/docs/api/java/lang/SecurityManager.html
http://docs.oracle.com/javase/8/docs/api/java/lang/SecurityManager.html

ORACLE Chapter 7
Using the Java Security Manager to Protect WebLogic Resources

@® Note

These security policies apply to all servlets, EJBs, and resource adapters
deployed in the particular instance of WebLogic Server.

Setting Application-Specific Security Policies

Set security policies for a specific servlet, EJB, or resource adapter by adding security policies
to their deployment descriptors. Deployment descriptors are defined in the following files:

e Servlets—webl ogi c. xn
e EJBs—webl ogi c-ej b-jar. xnl

* Resource adapters—r ar. xn

@® Note

The security policies for resource adapters follow the Jakarta EE standard while
the security policies for servlets and EJBs follow the WebLogic Server extension
to the Jakarta EE standard.

Example 7-2 shows the syntax for adding a security policy to a deployment descriptor:

@® Note

The <security-permission-spec> tag cannot currently be added to a weblogic-
application.xml file, you are limited to using this tag within a weblogic-ejb-jar.xml,
rar.xml, or weblogic.xml file. Also, variables are not supported in the <security-
permission-spec> attribute.

Example 7-2 Security Policy Syntax

<security-perm ssion>
<descri ption>
Al'low getting the J2EEJ2SETest4 property
</ descri ption>
<security-perm ssi on-spec>
grant {
perm ssion java.util.PropertyPermnission "wel come. J2EEJ2SETest 4", "read";
¥
</security-perm ssion-spec>
</ security-pernission>

Using Printing Security Manager

Printing Security Manager is an enhancement to the Java Security Manager. You can use
Printing Security Manager to identify all of the required permissions for any Java application
running under Java Security Manager. Unlike The Java Security Manager, which identifies
needed permissions one at a time, the Printing Security Manager identifies all of the needed
permissions without intervention.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 10

ORACLE

Chapter 7
Using the Java Security Manager to Protect WebLogic Resources

For more information on Java Security Manager, see the Java Security Web page at htt p: //
docs. oracl e. conl j avase/ 8/ docs/t echnot es/ qui des/ security/overview jsoverview htm .

@® Note

Do not use Printing Security Manager in production environments. It is intended solely
for development to identify missing permissions.

It does not prevent untrusted code operations.

Printing Security Manager Startup Arguments

To use the Java Security Manager with WebLogic Server, you specify two arguments when
starting WebLogic Server:

-Dj ava. security. manager =webl ogi c. security. psm PrintingSecurityMnager

The - Dj ava. security. manager argument tells WebLogic Server which Java Security
Manager to start, in this case the Printing Security Manager.

-Djava. security.policy

The - [j ava. security. pol i cy argument specifies a file name (using a relative or fully-
qualified path name) that contains Java security policies. WebLogic Server provides a
sample Java security policy file located at W._HOVE\ server\ | i b\ webl ogi c. pol i cy. Do not
use this file directly because it may be overwritten by Patch Set Updates (PSU). Instead,
use it as a model to create your own security policy file. Consider concatenating the
sample webl ogi c. pol i cy file with your custom security policy file to automatically obtain
any updates delivered in the PSU.

By default, the st art WebLogi ¢ script already includes the - Dj ava. security. policy
property, which is set to W._HOVE/ server /| i b/ webl ogi c. pol i cy. Update the -
D ava. security. policy to specify the file location of your custom policy file.

@ Note

The sample policy file at W._HOVE\ server\ | i b\ webl ogi c. pol i cy is not complete and
is not sufficient to start WebLogic Server without first being modified. When you create
your own custom policy file, make sure that you add various permissions based on
your configuration in order for WebLogic Server and all applications to work properly.

See the following sections:

* Moadifying your Custom Policy File for General Use

e Setting Application-Type Security Policies

» Setting Application-Specific Security Policies

Starting WebLogic Server With Printing Security Manager

To start WebLogic Server with the Printing Security Manager from a UNIX shell, pass the
following argument to the startWebLogic.sh script in DOMAIN_HOME. This example uses the
default weblogic.policy Java policy file from startWeblogic.sh.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 10

http://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html

ORACLE

Chapter 7
Using Jakarta Authorization

startWebl ogi c. sh
-Dj ava. securi ty. manager =webl ogi c. security. psm PrintingSecurityManager

For a Windows system without a UNIX shell, first set the startup options in JAVA_OPTIONS,
and then use the st art WebLogi c. cnd script in DOMAIN_HOME to start WebLogic Server. This
example uses the default weblogic.policy Java policy file from st art Wbl ogi c. cnd.

$ set JAVA OPTI ONS=-Dj ava. security. manager =webl ogi c. security. psm PrintingSecurityManager

$ DOVAI N_HOVE\ st ar t Wbl ogi c. cnd

Writing Output Files

Printing Security Manager generates output that lists which code source needs which
permissions. It also generates a policy grant that you can copy and paste into the policy file.

By default, output is to System.out. You can configure output files via two arguments:

o -Doracl e.webl ogi c. security. manager.printing.file=psm perms.txt

Dor acl e. webl ogi c. security. manager. printing.generated. grants.file=psmgrants.tx
t

The value of the first system argument is a file to which Printing Security Manager writes all
missing-permission messages. The value of the second argument is a file to which Printing
Security Manager writes the missing policy grants.

For example, for a Windows system without a UNIX shell, add the argument to
JAVA_OPTIONS:

$ set JAVA OPTI ONS=-[j ava. security. manager =webl ogi c. security. psm PrintingSecurityMnager
- Dor acl e. webl ogi c. security. manager. printing.fil e=psm perns. txt

$ startWebl ogi c. cnd

If you do not specify the full path for the output files, they are created in DOMAIN_HOME.

Using Jakarta Authorization

Jakarta Authorization provides an alternate authorization mechanism for the EJB and servlet
containers in a WebLogic Server domain. You can enable the WebLogic JACC provider by
specifying certain system property-value pairs.

The Jakarta Authorization specification is part of the Jakarta EE Platform. Jakarta
Authorization extends the Java permission-based security model to EJBs and servlets. Jakarta
Authorization is defined at https://jakarta.ee/specifications/authorization/. Jakarta Authorization
was previously known as Java Authorization Contract for Containers (JACC).

As shown in Table 7-2, when Jakarta Authorization is configured, the WebLogic Security
framework access decisions, adjudication, and role mapping functions are not used for EJB
and servlet authorization decisions.

WebLogic Server implements a Jakarta Authorization provider which, although fully compliant
with the Jakarta Authorization specification, is not as optimized as the WebLogic Authorization
provider. The Jakarta Authorization classes are used for rendering access decisions. Because
the Jakarta Authorization specification does not define how to address role mapping,
WebLogic JACC classes are used for role-to-principal mapping.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 10

https://jakarta.ee/specifications/authorization/

ORACLE Chapter 7
Using Jakarta Authorization

@® Note

The Jakarta Authorization classes used by WebLogic Server do not include an
implementation of a Policy object for rendering decisions but instead rely on the
java.security. Pol i cy object (see Java SE and JDK API| Specification).

This section discusses the following topics:
Comparing the WebLogic JACC Provider with the WebLogic Authorization Provider
* Enabling the WebLogic JACC Provider

Table 7-2 shows which providers are used for role mapping when JACC is enabled.

Table 7-1 When Jakarta Authorization is Enabled
]

Status Provider used for EJB/ Provider used for all EJBI/Serviet Roles and
Servlet Authorization other Authorization and Policies Can be
and Role Mapping Role Mapping Viewed and Modified
by WebLogic Remote
Console
Jakarta JACC provider WebLogic Security No
Authorization is Framework providers
enabled
Jakarta WebLogic Security WebLogic Security Yes, depending on
Authorization is not Framework providers Framework providers settings
enabled
® Note

In a domain, either enable Jakarta Authorization on all servers or on none. The reason
is that Jakarta Authorization is server-specific, while the WebLogic Security
Framework is realm/domain specific. If you enable Jakarta Authorization, either by
using the WebLogic JACC provider or (recommended) by creating your own Jakarta
Authorization provider, you are responsible for keeping EJB and servlet authorization
policies synchronized across the domain. For example, applications are redeployed
each time a server boots. If a server configured for Jakarta Authorization reboots
without specifying the Jakarta Authorization options on the command line, the server
uses the default WebLogic Authorization provider for EJB and servlet role mapping
and authorization decisions.

Comparing the WebLogic JACC Provider with the WebLogic Authorization
Provider

The WebLogic JACC provider fully complies with the Jakarta Authorization specification;
however, it does not support dynamic role mapping, nor does it address authorization
decisions for resources other than EJBs and servlets. For better performance, and for more
flexibility regarding security features, Oracle recommends using SSPI-based providers.

Table 7-2 compares the features provided by the WebLogic JACC provider with those of the
WebLogic Authorization provider.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 10

https://docs.oracle.com/en/java/javase/17/docs/api/index.html

ORACLE Chapter 7
Using Jakarta Authorization

Table 7-2 Comparing the WebLogic JACC Provider with the WebLogic Authorization

Provider
___|
WebLogic JACC Provider WebLogic Authorization Provider

Implements the Jakarta Authorization specification Value-added security framework

Addresses only EJB and servlet deployment/ Addresses deployment/authorization decisions
authorization decisions

Uses the j ava. security. Pol i cy object to Allows for multiple authorization/role providers
render decisions

Static role mapping at deployment time Dynamic role mapping

Jakarta EE permissions control access Entitlements engine controls access

Role and role-to-principal mappings are modifiable Roles and role-to-principal mappings are
only through deployment descriptors modifiable through deployment descriptors and
WebLogic Remote Console

Enabling the WebLogic JACC Provider

In the command that starts WebLogic Server, you can enable the WebLogic JACC provider by
specifying the following system property/value pairs:

* Property:
jakarta.security.jacc.PolicyConfigurationFactory. provider
Value:
webl ogi c. security.jacc.sinpleprovider. PolicyConfigurationFactorylnpl

* Property:
jakarta.security.jacc.policy.provider
Value:
webl ogi c. security.jacc. sinpleprovider.Sinpl eJACCPol i cy

* Property:
webl ogi c. security.jacc. Rol eMapper Fact ory. provi der
Value:

webl ogi c. security.jacc. sinpl eprovider. Rol eMapper Fact or yI npl

@ Note

If the system properties, -

D akarta. security.jacc. PolicyConfigurationFactory. provider and -

Dj akarta. security.jacc.policy.provider are specified, then WebLogic Server
automatically initializes the default Rol eMapper Fact ory property. Therefore, you do not
need to specify the webl ogi c. security.jacc. Rol eMapper Fact ory. provi der system
property to enable the WebLogic JACC provider.

For example, assuming a properly configured webl ogi c. pol i cy file, the following command
line enables the WebLogic JACC provider:

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 10

ORACLE Chapter 7
Using Jakarta Authorization

./startWebLogi c.sh -Djakarta.security.jacc.policy.provider=\

webl ogi c. security.jacc.sinpl eprovider. Si npl eJACCPol i cy \

-Dj akarta. security.jacc. PolicyConfigurationFactory. provider=\

webl ogi c. security.jacc.sinpl eprovider. PolicyConfigurationFactorylnmpl \

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 10

SAML APIs

Oracle WebLogic Server supports the use of Security Assertion Markup Language (SAML)
APIs. SAML is an XML-based protocol for exchanging security information between software
entities on the Web. SAML security is based on the interaction of asserting and relying
parties.SAML provides single sign-on capabilities; users can authenticate at one location and
then access service providers at other locations without having to log in multiple times.
WebLogic Server supports SAML 2.0. The WebLogic Server implementation:

e Supports the HTTP POST, HTTP Artifact, and HTTP Redirect bindings for the Web SSO
profile for SAML 2.0.

e Supports SAML authentication and attribute statements (does not support SAML
authorization statements)

For a general description of SAML and SAML assertions in a WebLogic Server environment,
see Security Assertion Markup Language (SAML) in Understanding Security for Oracle
WebLogic Server.

For information on configuring a SAML credential mapping provider, see Configuring a SAML
2.0 Credential Mapping Provider for SAML 2.0 in Administering Security for Oracle WebLogic
Server.

For access to the SAML specifications, go to ht t p: / / www. oasi s- open. or g. Also see the
Security Assertion Markup Language (SAML) 2.0 Technical Overview (htt p: / / www. oasi s-
open. or g/ conmi t t ees/ downl oad. php/ 11511/ sst c-sani -t ech- over vi ew 2. 0-draf t - 03. pdf).

This chapter includes the following sections:

« SAML API Description
e Configuring SAML SSO Attribute Support

SAML API Description

Learn about the WebLogic SAML APIs that you can use to implement SAML in WebLogic
Server.

Table 8-1 lists the WebLogic SAML 2.0 APIs. See the Javadoc for details.

Table 8-1 WebLogic SAML 2.0 APIs

__|
WebLogic SAML 2.0 APIs Description

com.bea.security.saml2.provid Provides interfaces and classes for the configuration, control, and

ers monitoring of SAML 2.0 security providers in a WebLogic security realm.
SAML 2Attributelnfo A class that represents a single attribute of a SAML 2.0 Assertion
AttributeStatement.

SAML2AttributeStatementinfo A class that represents an AttributeStatement in a SAML 2.0 Assertion.

SAML2CredentialAttributeMa Interface used to perform mapping from Subject to SAML 2.0 Assertion
pper attributes.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 11

http://www.oasis-open.org
http://www.oasis-open.org/committees/download.php/11511/sstc-saml-tech-overview-2.0-draft-03.pdf
http://www.oasis-open.org/committees/download.php/11511/sstc-saml-tech-overview-2.0-draft-03.pdf

ORACLE’

Chapter 8
Configuring SAML SSO Attribute Support

Table 8-1 (Cont.) WebLogic SAML 2.0 APIs
]

WebLogic SAML 2.0 APIs

Description

SAML2CredentialNameMapp

er

Interface used to perform the mapping of user and group information to
SAML 2.0 assertions.

SAML2ldentityAsserterAttribut

eMapper

Interface used to perform mapping from SAML 2.0 Attribute Statement to
Attribute Principals.

SAML2IdentityAsserterName

Mapper

Interface used to perform the mapping of user information contained in a
SAML 2.0 assertion to a local user name.

SAML2NameMapperinfo

The SAML2NameMapperinfo is used to represent user name and group
information contained in SAML 2.0 assertions.

com.bea.security.samli2.provid

ers.reqistr

Abstract interfaces for SAML 2.0 Identity Provider and Service Provider
partners and metadata.

BindingClientPartner

Binding Client partner is a partner that supports backend channel
communication.

IdPPartner Abstract representation of a SAML 2.0 Identity Provider partner.
Endpoint Abstract representation of a SAML 2.0 service endpoint.

IndexedEndpoint

This class represents the end point that could be indexed, like Artifact
Resolution Service's end point.

MetadataPartner Metadata partner contains contact information for the partner, which is
mainly required by the SAML 2.0 metadata profile.

Partner Abstract representation of a SAML 2.0 partner. This interface defines
mandatory information for a partner.

SPPartner Abstract representation of a SAML 2.0 Service Provider partner.

WebSSOldPPartner

Abstract representation of a SAML 2.0 Identity Provider partner for Web
SSO profile.

WebSSOPartner

Abstract representation of a SAML 2.0 partner for Web SSO profile.

WebSSOSPPartner

Abstract representation of a SAML 2.0 Service Provider partner for Web
SSO profile.

WSSIdPPartner

Abstract representation of a SAML 2.0 Identity Provider partner for WSS
SAML Token profile.

WSSPartner Abstract representation of a SAML 2.0 partner for WSS SAML Token
profile.
WSSSPPartner Abstract representation of a SAML 2.0 Service Provider partner for WSS

SAML Token profile. It has no specific attributes/methods.

Configuring SAML SSO Attribute Support

A SAML assertion is a piece of data produced by a SAML authority regarding either an act of
authentication performed on a subject, attribute information about the subject, or authorization
data applying to the subject with respect to a specified resource. You can configure SAML SSO
attributes to be used with SAML 2.0.

This section describes the following topics:

« What Are SAML SSO Attributes?

APIs for SAML Attributes

« SAML 2.0 Basic Attribute Profile Required

Developing Applications with the WebLogic Security Service

G31581-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 11

ORACLE’

Chapter 8
Configuring SAML SSO Attribute Support

* Passing Multiple Attributes to SAML Credential Mappers

« How to Implement SAML Attributes

« Examples of the SAML 2.0 Attribute Interfaces

* Make the Custom SAML Credential Attribute Mapper Class Available in the Console

* Make the Custom SAML Identity Asserter Class Available in the Console

What Are SAML SSO Attributes?

The SAML specification (see ht t p: / / www. oasi s- open. or g) allows additional, unspecified
information about a particular subject to be exchanged between SAML partners as attribute
statements in an assertion. A SAML attribute assertion is therefore a particular type of SAML
assertion that conveys site-determined information about attributes of a Subject.

The SAML 2.0 Credential Mapping provider and Identity Assertion provider mechanisms
support the use of a custom attribute mapper that can obtain additional attributes (other than
group information) to be written into SAML assertions, and to then map attributes from
incoming SAML assertions.

To do this:

e The SAML credential mapper (on the SAML Identity Provider site) determines how to
package the attributes based on the existence of this custom attribute mapper.

e The SAML identity asserter (on the SAML Service Provider site) determines how to get the
attributes based on the configuration of the custom name mapper.

e The Java Subject is used to make the attributes extracted from assertions available to
applications. This requires that the SAML Authentication provider be configured and the
virtual user be enabled on a SAML partner.

APIs for SAML Attributes

Use the following SAML 2.0 attribute APIs:

o SAM2Attributelnfo

o SAM2AttributeStatenent!nfo

e SAM.2Credential AttributeMapper

e SAM.2ldentityAsserterAttributeMapper

Subsequent sections describe the use of these SAML attribute APls.

SAML 2.0 Basic Attribute Profile Required

SAML 1.1 does not prescribe the name format of the SAML attribute.

However, only the SAML 2.0 Basic Attribute Profile is supported for SAML 2.0. Only attributes
with the ur n: oasi s: names: tc: SAM.: 2. 0: at t r name- f or mat : basi ¢ name format in
SAM_2At t ri but el nf o are written into a SAML 2.0 assertion.

The urn: oasi s: names: tc: SAM.: 2. 0: at t r name- f or mat : basi ¢ name format is the default, so
you need not set it.

If you do set the name format, you must specify ur n: oasi s: names: t ¢c: SAM.: 2. 0: att r name-
format: basic inthe SAML2. Attri butel nfo. set Attri but eNameFor mat method, as follows:

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 11

http://www.oasis-open.org

ORACLE

Chapter 8
Configuring SAML SSO Attribute Support

SAML2Attributelnfo attrinfo = new SAML2Attri but el nf o(

"AttributeWthSingleVal ue", "ValueOAttributeWthSinglevalue");
attrinfo.setAttributeNameFormat ("urn: oasis: nanes:tc: SAM.: 2. 0: attrnane-fornat: basic");
attrs.add(attrinfo);

Passing Multiple Attributes to SAML Credential Mappers

When the configured attribute mapper is called, it returns
Col | ecti on<SAML2At t ri but eSt at ement | nf 0>. You can specify multiple attribute statements,
each containing multiple attributes, each possibly having multiple attribute values.

An example of doing this is as follows:

private Collecti on<SAM_2Attri buteStatement | nfo> get AttributeStatenent!nfo(
Subj ect subject, ContextHandl er handlers) {
Col | ecti on<SAM_2Attributelnfo> attrs = new ArrayLi st <SAML2Attri butel nfo>();

SAML2Attributelnfo attrinfo = new SAML2Attri but el nf o(

"AttributeWthSingleval ue", "ValueOrAttributeWthSingleValue");
attrinfo.setAttributeNameFormat ("urn:oasis: nanes:tc: SAM.: 2. 0: attrnane-format: basic");
attrs.add(attrinfo);

ArrayList<String> v = new ArrayList<String>();

v.add("Val uelOf AttributeWthMltiplevVal ue");

v.add("Val ue2Cf Attri buteWthmMl tipl eval ue");

v.add("Val ue3O AttributeWthmMltipl eval ue");

SAML2Attributelnfo attrinfol = new SAML2Attri but el nf o(

"AttributeWthMltipleValue", v);

attrinfol.set Attribut eNameFor mat ("urn: oasi s: names:tc: SAM.: 2. 0: att rname-format: basic");

attrs.add(attrinfol);

SAML2At tributelnfo attrinfo2 = new SAML2Attri but el nf o(
"AttributeWthlnval i dNaneFor mat ",

"Val ueOf AttributeWthlnval i dNameFor mat Val ue") ;

attrlnfo2.set Attribut eNameFor mat ("urn: oasi s: names: tc: SAML: 2. 0: att r name-
format: unspecified");

attrs.add(attrlnfo2);

SAML2Attributelnfo attrinfo3 = new SAML2Attri but el nf o(

"AttributewWthNullValue", "null");

attrlnfo3.setAttribut eNameFor mat ("urn: oasi s: names: tc: SAM.: 2. 0: att rname-f ormat : basic");
attrs.add(attrlnfo3);

Col | ecti on<SAML2Attri buteStatementInfo> attrStatenments = new
ArrayLi st <SAM_2Att ri but eSt at ement | nf 0>() ;

attrStatements. add(new SAM_L2Attri but eStatement | nfo(attrs));
attrStatements. add(new SAM_L2Attri but eStatement I nfo(attrsl));
return attrStatenments;

}

How to Implement SAML Attributes

This section walks through the process you follow to implement SAML attributes.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 11

ORACLE

Chapter 8
Configuring SAML SSO Attribute Support

@® Note

This section uses the SAML 2.0 interface hames for the purpose of example.

From the SAML credential mapping (Identity Provider) site:

1.

Instantiate the SAML2At t ri but el nf o and SAML2At t ri but eSt at enent | nf o classes.
Implement the SAML2Cr edent i al Attri but eMapper interface.

Also implement the SAML2Cr edent i al NaneMapper interface in the same implementation.
(The SAM_2Cr edent i al Attri but eMapper and SAML2Cr edent i al NaneMapper interfaces must
both be in the same implementation.)

By implementing the SAML2Cr edent i al NaneMapper interface, you can then use WebLogic
Remote Console to set the NaneMapper O assNane attribute to the class name of your
SAML2Cr edent i al Attri but eMapper instance.

Use WebLogic Remote Console to configure your new custom attribute mapper on a
SAML provider, or on each individual partner, using the NameMapper O assNarme attribute of
the SAML Credential Mapping provider to identify it. See Make the Custom SAML
Credential Attribute Mapper Class Available in the Console .

The SAML Credential Mapping provider determines if the configured custom name mapper
is an implementation of the attribute mapping interface and, if so, calls your custom
attribute mapping interface to obtain attribute values to write to the generated SAML
assertions.

The SAML Credential Mapping provider does not validate the attribute names or values
obtained from your custom attribute mapper.

Any attribute with a non-null attribute name is written to the attribute statements in the
SAML assertion. An attribute with a null or empty attribute name is ignored, and
subsequent attributes are processed.

If an attribute has multiple values, each value appears as an <At tri but eVal ue> element of
a single <Attri but e> in SAML attribute statements.

For SAML 2.0, null or empty attribute values are handled based on Assertions and the
Protocols for the OASIS SAML V2.0 March 2005 (htt p://docs. oasi s- open. or g/
security/sam /v2.0/sam - core-2.0-o0s. pdf).

An attribute with a name format other than ur n: oasi s: nanes: t c: SAM.: 2. 0: at t r nane-
format: basi ¢ is skipped.

From the SAML Identity Assertion (Service Provider) site:

1.

Implement the SAML2| dent i t yAsserter Attri but eMapper and

SAML2I dent i t yAssert er NaneMapper interfaces in the same implementation. (The
SAML2I dentityAsserter Attribut eMapper and SAML2I dent i t yAssert er NameMapper
interfaces must both be in the same implementation.)

By implementing the SAML2| dent i t yAssert er NaneMapper interface, you can then use
WebLogic Remote Console to set the NaneMapper O assNane attribute to the class name of
your SAM.2I dent it yAsserterAttri but eMapper instance.

Use WebLogic Remote Console to configure the SAML Identity Assertion provider, as
described in Make the Custom SAML ldentity Asserter Class Available in the Console. Set
the NanmeMapper Cl assNane attribute to the class name of your custom

SAML2I dent it yAsserter Attri but eMapper instance.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 11

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

ORACLE

Chapter 8
Configuring SAML SSO Attribute Support

The SAML Identity Assertion provider processes <At tri but eSt at ement > elements of the
incoming SAML assertions and constructs a collection of SAML attribute statements.

The SAML Identity Assertion provider determines if the configured custom name mapper
implements the SAML2l dent i t yAsserter Attri but eMapper interface. If it does, the SAML
Identity Assertion provider calls the mapAtt ri but el nf o method to obtain the SAML
assertion's attributes.

Your mapAttri but el nf o method takes a Col | ecti on of SAMLAt t ri but eSt at ement I nf o
instances that represent the attributes of attribute statements in a SAML Assertion, and
maps the desired attributes in any application specific way.

The SAML IdentityAssertion provider makes the attributes from a SAML assertion available
to consumers via the Java Subject. This requires that the SAML Authentication provider be
configured and the virtual user be enabled on a SAML partner.

The attributes returned by the mapper are stored as subject principals or private
credentials, depending on the class type of the mapped attributes. Specifically, if the
mapper returns a collection of Pri nci pal objects, the mapped attributes are stored into the
subject principal set. Otherwise, the subject private credential set is used to carry the
mapped attributes.

The consuming code needs to know the class type of the object that the mapper uses to
represent attributes added to the subject, as shown in Example 8-2.

The SAML Identity Assertion provider checks the Cont ext Handl er and attribute mapper.
(This walk through assumes the presence of the attribute mapper as stated in Step 4).

@® Note

If both the Cont ext Handl er and attribute mapper are present and configured, the
attributes are instead made available to Web services via the Cont ext Handl er, as
described in Securing WebLogic Web Services for Oracle WebLogic Server.

Examples of the SAML 2.0 Attribute Interfaces

This section provides examples of implementing the SAML 2.0 attribute interfaces that allow
writing additional attributes into SAML assertions.

Example Custom SAML 2.0 Credential Attribute Mapper

Example 8-1 shows an example of a single class that implements both the
SAML2Cr edent i al NaneMapper interface and the SAML2Cr edent i al Attri but eMapper interface.

Example 8-1 SAML 2.0 Credential Attribute Mapper

public class CustonSAM.2Credenti al AttributeMapperlnpl inplements
SAML2Cr edent i al NameMapper, SAM.2Credenti al Attri buteMapper {
private String naneQualifier = null;

public Col | ecti on<SAML2Attri but eStat ement | nfo> mapAttri butes(
Subj ect subject, ContextHandl er handler) {
return getAttributeStatenentlnfo(subject, handler);

/**
* same as SAM.2NaneMapper | npl
*/
publ i ¢ SAM_.2NameMapper | nfo napName(String name, ContextHandl er handler) {

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 11

ORACLE Chapter 8
Configuring SAML SSO Attribute Support

System out
.println("CustonBAM.2Cr edenti al Attri but eMapper | npl : napName
Mapped nane: qualifier: "
+ naneQualifier + ", name: " + nane);
return new SAM.2NameMapper | nf o(naneQual i fier, name, null);

}

/**
* sane as SAM.2NameMapper | npl
*/
public synchronized void setNameQualifier(String naneQualifier) {
this.nameQualifier = nameQualifier;
}

/**
* sane as SAM.2NameMapper | npl
*
/
publ i ¢ SAM.2NarmeMapper | nf o mapSubj ect (Subj ect subj ect,
Cont ext Handl er handl er) {

/'l Provider checks for null Subject...

Set subjects = subject.getPrincipal s(W.SUser. cl ass);
Set groups = subject. getPrinci pal s(W.SG oup. cl ass);
String userNane = null;

Set <String> groupStrings = new java.util.HashSet();

if (subjects == null || subjects.size() == 0) {
Syst em out
.println("CustonSAM.2Cr edenti al Attri but eMapper!np
| : mapSubj ect: No valid W.SUser pricipals found in Subject, returning null");
return null;
}

if (groups == null || groups.size() == 0) {
Syst em out
.println("CustonSAM.2Cr edenti al Attri but eMapper!np
| : mapSubj ect: No valid W.SG oup pricipals found in Subject, continuing");
}
el sef
java.util.lterator<W.SGroup> it = groups.iterator();
whil e(it.hasNext()){
W.SGoup wg = it.next();
groupStrings. add(wg. get Name()) ;
}
}

if (subjects.size() '=1) {
Syst em out
.println("CustonSAM.2Cr edenti al Attri but eMapper!np
| : mapSubj ect: Mre than one W.SUser principal found in Subject, taking first user only");

}

userName = ((W.SUser) subjects.iterator().next()).getNane();
if (userName == null || userNane.equals("")) {
Syst em out
.println("CustonSAM.2Cr edenti al Attri but eMapper!np
| : mapSubj ect: Username string is null or enpty, returning null");
return null;
}

/1 Return mapping information...
System out

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 11

ORACLE Chapter 8
Configuring SAML SSO Attribute Support

TRACE. i nf o(" Cust onSAML2Cr edent i al Attri but eMapper | npl : mapSubj ect: Mapped subj ect:
qualifier: "

nameQual i fier

name: "

user Nane

", groups:

groups);

+ + + + +

SAML2NaneMapper | nf o saml 2NameMapper I nfo = new
SAML2NanmeMapper | nf o(naneQual i fi er, userName, groupStrings);
/1 SAM_L2NaneMapper | nf o sam 2NameMapper I nfo = new
SAML2NanmeMapper | nf o(nameQual i fi er, userNane, groups);

return new SAM.2NaneMapper | nf o(naneQual i fier, userName, groups);

}

private Collecti on<SAM.2Attri buteStatement| nfo> getAttributeStatenent!nfo(
Subj ect subject, ContextHandl er handlers) {
Col | ecti on<SAM.2Attributelnfo> attrs = new ArrayLi st <SAML.2Attributel nfo>();

SAML2Attributelnfo attrinfo = new SAML2Attri but el nf o(

"AttributeWthSingleVal ue", "ValueOAttributeWthSingleVvalue");
attrinfo.setAttributeNameFormat ("urn: oasis: nanes:tc: SAM.: 2. 0: attrnane-fornat: basic");
attrs.add(attrinfo);

ArrayList<String> v = new ArrayList<String>();

v.add("Val uelOf AttributeWthmMiltipl eVal ue");

v.add("Val ue2Cf Attri buteWthmMil tipl eVal ue");

v.add("Val ue3Cf AttributeWthmMil tipl eVal ue");

SAML2Attributelnfo attrinfol = new SAML.2Attri butel nf o(

"AttributewWthMltipleValue", v);

attrinfo.setAttributeNameFormat ("urn: oasis: nanes:tc: SAM.: 2. 0: attrnane-fornat: basic");

attrs.add(attrlnfol);

Col | ecti on<SAML2AttributeStatenmentInfo> attrStatements = new
ArrayLi st <SAML2At tri but eSt at ement | nf 0>() ;

attrStatenments. add(new SAM.2Attri buteStatement|nfo(attrs));
attrStatements. add(new SAM.2AttributeStatement|nfo(attrsl));
return attrStatenents;

}

}

Use WebLogic Remote Console to configure the User Name Mapper class name to the fully-
qualified class name of this mapper implementation, as described in Make the Custom SAML
Credential Attribute Mapper Class Available in the Console .

The attributes encapsulated in the collection of SAML2At t ri but eSt at ement | nf 0 objects
returned by the custom mapper implementation are included in the generated assertions by the
SAML 2.0 Credential Mapping provider.

Custom SAML 2.0 Identity Asserter Attribute Mapper

Example 8-2 shows an example implementation of SAML2I dent i t yAssert er NaneMapper and
SAML2I dent i t yAsserter Attri but eMapper.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 11

ORACLE Chapter 8
Configuring SAML SSO Attribute Support

Example 8-2 Custom SAML 2.0 Identity Asserter Attribute Mapper

public class CustonSAM.2] dentityAsserterAttributeMapperlnpl inplenents

SAML2I dent i t yAssert er NameMapper, SAM.2l dentityAsserterAttributeMpper {

/**

* same as SAML2NameMapper | npl

*/

public String mapNanel nf o(SAML.2NaneMapper | nfo i nfo, ContextHandl er handler) {
/I Get the user nane ...

String userNane = info.getName();

System out

.println("CustonBAM.2]l dentityAsserterAttributeMapper!npl: mapNanel nfo: returning nane:
+ user Nane) ;

return user Nang;

}

}

public Col | ecti on<Cbj ect> mapAttributel nfo0(
Col | ecti on<SAML2At t ri but eSt at enent | nf o> attr Stnt | nf os,
Cont ext Handl er cont ext Handl er) {

if (attrStntinfos == null || attrStmInfos.size() == 0) {

System out

.println("Custom AAttributeMapperlnpl: attrStntinfos has no el enents");
return null;

}

Col | ection<Cbj ect> customAttrs = new ArrayLi st<bject>();

for (SAML2AttributeStatenentinfo stntinfo : attrStntinfos) {
Col | ecti on<SAM_2Attributelnfo> attrs = stntInfo.getAttributelnfo();
if (attrs == null || attrs.size() == 0) {
System out
.println("Custom AAttributeMapperlnpl: no attribute in statenent:
+ stntinfo.toString());
} else {
for (SAML2Attributelnfo attr : attrs) {
if (attr.getAttributeNane().equal s("AttributeWthSingleValue")){
CustonPrinci pal customAttrl = new CustonPrincipal (attr
.getAttributeNane(), attr.getAttributeNameFormat(),
attr.getAttributeVal ues());
customAttrs. add(customAttrl);
}el se{
String customAttr = new StringBuffer().append(
attr.getAttributeName()).append(","). append(
attr.getAttributeValues()).toString();
customAttrs. add(cust omittr);
}
}
}
}

return customAttrs;

}

public Col | ection<Principal > mapAttributel nfo(
Col | ecti on<SAML2At t ri but eSt at enent | nf o> attr Stnt | nf os,
Cont ext Handl er cont ext Handl er) {

if (attrStntinfos == null || attrStmInfos.size() == 0) {

System out

.println("Custom AAttributeMapperlnpl: attrStntinfos has no el enents");
return null;

}

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 11

ORACLE

Chapter 8
Configuring SAML SSO Attribute Support

Col | ection<Principal > pals = new ArraylLi st<Principal >();

for (SAML2AttributeStatenentinfo stntinfo : attrStntinfos) {

Col | ecti on<SAM_.2Attributelnfo> attrs = stntinfo.getAttributelnfo();
if (attrs == null || attrs.size() == 0) {

System out

.println("Custom AAttributeMapperlnpl: no attribute in statement: "
+ stntinfo.toString());

} else {

for (SAML2Attributelnfo attr : attrs) {

Cust onPrinci pal pal = new CustonPrincipal (attr
.getAttributeNane(), attr.getAttributeNameFormat(),
attr.getAttributeVal ues());

pal s. add(pal);

}

}

}

return pals;

}

The SAML 2.0 IdentityAssertion provider makes the attributes from a SAML assertion available
to consumers via the subject.

Use WebLogic Remote Console to configure the User Name Mapper class name to the fully-
qualified class name of this mapper implementation, as described in Make the Custom SAML
Identity Asserter Class Available in the Console.

If you are allowing virtual users to log in via SAML, you need to create and configure an
instance of the SAML Authentication provider. See Configuring the SAML Authentication
Provider.

If the virtual user is enabled and SAML Authenticator provider configured, the attributes
returned by the custom attribute mapper are added into the subject.

The attributes returned by the mapper are stored as subject principals or private credentials,
depending on the class type of the mapped attributes. Specifically, if the mapper returns a
collection of Pri nci pal objects, the mapped attributes are stored into the subject principal set.
Otherwise, the subject private credential set is used to carry the mapped attributes. The
example code shows both approaches.

Your application code needs to know the class type of the object that the mapper uses to
represent attributes added to the subject. Applications can retrieve the SAML attributes from
the subject private credential or principal set, given the class type that the customer attribute
mapper uses to represent the attributes.

Make the Custom SAML Credential Attribute Mapper Class Available in the

Console

To have the SAML Credential Mapping provider use your SAM_2Cr edent i al At t ri but eMapper
(SAML 2.0) instance, use WebLogic Remote Console to set the existing NaneMapper C assNane
attribute to the class name of this SAML2Cr edent i al Attri but eMapper instance.

That is, you use the WebLogic Remote Console field for the name mapper class name attribute
to specify the class name of the SAML2Cr edent i al Attri but eMapper instance in the active
security realm.

To use a custom user name mapper with the WebLogic SAML Credential Mapping provider

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 11

ORACLE

3.

Chapter 8
Configuring SAML SSO Attribute Support

In WebLogic Remote Console, go to the Edit Tree, then Security, then Realms, then
myRealm, then Credential Mappers, select the name of a SAML Credential Mapping
Version 2 provider.

On the SAML Credential Mapper V2 Parameters tab, in the Name Mapper Class Name
field, enter the class name of your SAML2Cr edent i al Attri but eMapper implementation. The
class name must be in the system classpath.

Click Save.

Make the Custom SAML Identity Asserter Class Available in the Console

To have the SAML Identity Assertion provider use this

SAML2I dent it yAsserter Attri but eMapper (SAML 2.0) instance, you can use WebLogic
Remote Console to set the existing NaneMapper O assNane attribute to the class name of this
SAM.2I dent it yAsserter Attri but eMapper instance.

That is, you use the Console control for the name mapper class name attribute to specify the
class name of the SAML2I dent i t yAsserter Attri but eMapper instance in the active security
realm.

To use a custom user name mapper with the WebLogic SAML Identity Asserter provider:

1.

In WebLogic Remote Console, go to the Edit Tree, then Security, then Realms, then
myRealm, then Authentication Providers, select the name of a SAML Ildentity Asserter
Version 2 provider.

On the SAML Identity Asserter V2 Parameters tab, in the Name Mapper Class Name
field, enter the class name of your SAM_2| dent i t yAsserter Attri but eMapper
implementation. The class name must be in the system classpath.

Click Save.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 11

Using CertPath Building and Validation

The WebLogic Security service provides the Certificate Lookup and Validation (CLV) API that
finds and validates X509 certificate chains. Use the CertPath providers provided by Oracle
WebLogic Server to build and validate certificate chains, or any custom CertPath providers.
A CertPath is a JDK class that stores a certificate chain in memory. The term CertPath is also
used to refer to the JDK architecture and framework that is used to locate and validate
certificate chains. The CLV framework extends and completes the JDK CertPath functionality.
CertPath providers rely on a tightly coupled integration of WebLogic and JDK interfaces.

This chapter includes the following sections:

e CertPath Building
e CertPath Validation

* Instantiate a CertPathSelector

¢ Instantiate a CertPathBuilderParameters

¢ Use the JDK CertPathBuilder Interface

* Instantiate a CertPathValidatorParameters

¢ Use the JDK CertPathValidator Interface

CertPath Building

To use a CertPath Builder in your application, you must perform a sequence of steps such as,
instantiating a Cert Pat hSel ect or object, instantiating a Cert Pat hBui | der Par anet er s object,
and implementing the JDK Cert Pat hBui | der interface.

1. Instantiate a CertPathSelector

2. Instantiate a CertPathBuilderParameters

3. Use the JDK CertPathBuilder Interface

Instantiate a CertPathSelector

The Cert Pat hSel ect or interface (webl ogi c. security. pk. Cert Pat hSel ect or) contains the
selection criteria for locating and validating a certification path. Because there are many ways
to look up certification paths, a derived class is created for each type of selection criteria.

Each selector class has one or more methods to retrieve the selection data and a constructor.

The classes in webl ogi c. securi ty. pk that implement the Cert Pat hSel ect or interface, one for
each supported type of certificate chain lookup, are as follows:

« EndCertificateSelector — used to find and validate a certificate chain given its end
certificate.

* |ssuerDNSerialNumberSelector — used to find and validate a certificate chain from its end
certificate's issuer DN and serial number.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 6

ORACLE

Chapter 9
CertPath Building

SubjectDNSelector — used to find and validate a certificate chain from its end certificate's
subject DN.

SubjectKeyldentifierSelector — used to find and validate a certificate chain from its end
certificate's subject key identifier (an optional field in X509 certificates).

® Note

The selectors that are supported depend on the configured CertPath providers.
The configured CertPath providers are determined by the administrator.

The WebLogic CertPath provider uses only the EndCertificateSelector selector.

Example 9-1 shows an example of choosing a selector.
Example 9-1 Make a certificate chain selector

/1 you already have the end certificate

// and want to use it to | ookup and

/1 validate the corresponding chain

X509Certificate endCertificate = ...

/1 make a cert chain selector

Cert Pat hSel ector selector = new EndCertificateSel ector(endCertificate);

Instantiate a CertPathBuilderParameters

You pass an instance of Cer t Pat hBui | der Par anet er s as the Cert Pat hPar anet er s object to the
JDK's Cert Pat hBui | der. bui | d() method.

The following constructor and method are provided:

CertPathBuilderParameters

publ i ¢ Cert PathBuil der Paramet ers(String real mNane,
Cert Pat hSel ect or sel ector,
X509Certificate[]
trust edCAs,
Cont ext Handl er cont ext)

Constructs a Cer t Pat hBui | der Par anet er s object.

You must provide the realm name. To do this, get the domain's
SecurityConfigurationMBean. Then, get the SecurityConfigurationMBean's default realm
attribute, which is a realm MBean. Finally, get the realm MBean's name attribute. You must
use the runtime JMX MBean server to get the realm name.

You must provide the sel ect or. You use one of the

webl ogi c. security. pk. Cert Pat hSel ect or interfaces derived classes, described in
Instantiate a CertPathSelector to specify the selection criteria for locating and validating a
certification path.

Specify trusted CAs if you have them. Otherwise, the server's trusted CAs are used. These
are just a hint to the configured CertPath builder and CertPath validators which, depending
on their lookup/validation algorithm, may or may not use these trusted CAs.

ContextHandler is used to pass in an optional list of name/value pairs that the configured
Cert Pat hBui | der and Cert Pat hVal i dat or s may use to look up and validate the chain. It is
symmetrical with the context handler passed to other types of security providers. Setting
context to null indicates that there are no context parameters.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 6

ORACLE

Chapter 9
CertPath Building

* clone

bj ect clone()

This interface is not cloneable.
Example 9-2 shows an example of passing an instance of Cert Pat hBui | der Par anet er s.
Example 9-2 Pass An Instance of CertPathBuilderParameters

/1 make a cert chain selector

Cert PathSel ector selector = new EndCertificateSel ector(endCertificate);
String realm= _

/1 create and popul ate a context handler if desired, or null

Cont ext Handl er context = _

/1 pass in alist of trusted CAs if desired, or null

X509Certificate[] trustedCAs = _;

/1 make the parans

Cer t Pat hBui | der Par ans params =

new Cert Pat hBui | der Paraneters(realm selector, context, trustedCAs);

Use the JDK CertPathBuilder Interface

The j ava. security. cert. Cert Pat hBui | der class is the base class for creating the
Cer t Pat hBui | der object. To use the JDK Cert Pat hBui | der interface, do the following:

1. Call the static Cert Pat hBui | der. get | nst ance method to retrieve the CLV framework's
CertPathBuilder. You must specify W.SCer t Pat hBui | der as the algorithm name that's
passed to the call.

2. Once the Cert Pat hBui | der object has been obtained, call the "build" method on the
returned CertPathBuilder. This method takes one argument - a Cert Pat hPar anet er s that
indicates which chain to find and how it should be validated.

You must pass an instance of webl ogi c. security. pk. Cert Pat hBui | der Par anet er s as the
Cert Pat hPar aret er s object to the JDK's CertPathBuilder.build() method, as described in
Instantiate a CertPathBuilderParameters.

3. If successful, the result (including the CertPath that was built) is returned in an object that
implements the Cert Pat hBui | der Resul t interface. The builder determines how much of
the CertPath is returned.

4. If not successful, the CertPathBuilder build method throws
InvalidAlgorithmParameterException if the params is not a WebLogic
Cer t Pat hBui | der Par anet er s, if the configured CertPathBuilder does not support the
selector, or if the realm name does not match the realm name of the default realm from
when the server was booted.

The Cert Pat hBui | der build method throws Cert Pat hBui | der Except i on if the cert path
could not be located or if the located cert path is not valid

Example Code Flow for Looking Up a Certificate Chain

Example 9-3 Looking up a Certificate Chain

i mport webl ogi c. security. pk. Cert Pat hBui | der Par anet er s;
i mport webl ogi c. security. pk. Cert Pat hSel ect or;

i mport webl ogi c. security. pk. EndCertificateSel ector;

i mport webl ogi c. security. service. Cont ext Handl er;

i mport java.security.cert. CertPath;

i mport java.security.cert. CertPathBuilder;

import java.security.cert.X509Certificate;

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 6

ORACLE’

Chapter 9
CertPath Validation

/1 you already have the end certificate
/! and want to use it to | ookup and
/1 validate the corresponding chain
X509Certificate endCertificate = ...

/1 meke a cert chain selector
Cert PathSel ector selector = new EndCertificateSel ector(endCertificate);

String realm= _;

/1 create and popul ate a context handler if desired
Cont ext Handl er context = _

/1 pass in alist of trusted CAs if desired
X509Certificate[] trustedCAs = _

/1 make the parans

Cer t Pat hBui | der Par ans paranms =

new Cert Pat hBui | der Paraneters(realm selector, context, trustedCAs);
/1 get the WS Cert Pat hBui |l der

Cert Pat hBui | der buil der =

Cert Pat hBui | der. get I nst ance("W.SCer t Pat hBui | der");

/] use it to look up and validate the chain

CertPath certpath = builder. build(parans).getCertPath();
X509Certificate[] chain =
certpath.getCertificates().toArray(new X509Certificate[0]);

CertPath Validation

To use a CertPath Validator in your application, you must instantiate a
Cert Pat hVal i dat or Par anet er s and use the JDK Cert Pat hVal i dat or interface.

1. Instantiate a CertPathValidatorParameters
2. Use the JDK CertPathValidator Interface

Instantiate a CertPathValidatorParameters

You pass an instance of Cert Pat hVal i dat or Par anet er s as the Cert Pat hPar anet er s object to
the JDK's Cert Pat hval i dat or. val i dat e() method.

The following constructor and method are provided:

e CertPathValidatorParameters

public CertPathValidatorParameters(String real mNane,
X509Certificate[] trustedCAs,
Cont ext Handl er cont ext)

Constructs a CertPathValidatorParameters.

You must provide the realm name. To do this, get the domain's

SecurityConfi gurationMBean. Then, get the default realm attribute of the
SecurityConfi gurationMBean, which is a realm MBean. Finally, get the realm MBean's
name attribute. You must use the runtime JMX MBean server to get the realm name.

Specify trusted CAs if you have them. Otherwise, the server's trusted CAs are used. These
are just a hint to the configured CertPath builder and CertPath validators which, depending
on their lookup/validation algorithm, may or may not use these trusted CAs.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 6

ORACLE

Chapter 9
CertPath Validation

ContextHandler is used to pass in an optional list of name/value pairs that the configured
CertPathBuilder and CertPathValidators may use to look up and validate the chain. It is
symmetrical with the context handler passed to other types of security providers. Setting
context to null indicates that there are no context parameters.

* clone

bj ect clone()

This interface is not cloneable.
Example 9-4 shows an example of passing an instance of CertPathValidatorParameters.
Example 9-4 Pass an Instance of CertPathValidatorParameters

/1 get the WS CertPathValidat or
Cert PathVal i dator validator =
CertPat hVal i dat or. get | nst ance("W.SCer t Pat hVal i dat or ") ;

String realm=_;

/'l create and popul ate a context handler if desired, or null
Cont ext Handl er context = _;

/1 pass in alist of trusted CAs if desired, or null
X509Certificate[] trustedCAs = _;

/1 make the params (for the default security realm
Cert Pat hVal i dat or Par ans parans =
new Cert Pat hVal i dat or Parans(real m context, trustedCAs);

Use the JDK CertPathValidator Interface

The java. security.cert. CertPathVal i dator class is the base class for creating a
Cert Pat hVal i dat or object. To use the JDK Cert Pat hVal i dat or interface, do the following:

1. Call the static Cert Pat hVal i dat or. get | nst ance method to retrieve the CLV framework's
CertPathValidator. You must specify W.SCer t Pat hVal i dat or as the algorithm name that's
passed to the call.

2. Once the Cert Pat hVal i dat or object has been obtained, call the val i dat e method on the
returned CertPathValidator. This method takes one argument - a Cert Pat hPar aret er s that
indicates how it should be validated.

You must pass an instance of webl ogi c. security. pk. Cert Pat hVal i dat or Paraneters as
the Cer t Pat hPar aret er s object to the JDK's Cer t Pat hVal i dat or . val i dat e() method, as
described in Instantiate a CertPathValidatorParameters.

3. If successful, the result is returned in an object that implements the
Cert Pat hVal i dat or Resul t interface.

4. If not successful, the Cert Pat hVal i dat or. val i dat e() method throws
I nval i dAl gorit hnPar amet er Except i on if params is not a WebLogic
Cert Pat hVal i dat or Par anet er s or if the realm name does not match the realm name of the
default realm from when the server was booted.

The CertPathValidator validate method throws Cer t Pat hVal i dat or Excepti on if the
certificates in the CertPath are not ordered (the end certificate must be the first cert) or if
the CertPath is not valid.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 6

ORACLE Chapter 9
CertPath Validation

Example Code Flow for Validating a Certificate Chain

Example 9-5 Performing Extra Validation

i mport webl ogi c. security. pk. Cert Pat hVal i dat or Par ans;
i mport webl ogi c. security. service. Cont ext Handl er;

i mport java.security.cert.CertPath;

import java.security.cert.CertPathValidator;

import java.security.cert.X509Certificate;

/'l you already have an unvalidated X509 certificate chain
/1 and you want to get it validated
X509Certificate[] chain = ...

/1 convert the chain to a CertPath

Cert PathFactory factory = CertPathFactory. getlnstance("X509");
ArraylList list = new ArrayList(chain.length);

for (int i =0; i <chain.length; i++) {

list.add(chain[i]);

}

CertPath certPath = factory. generateCertPath(list);

/1 get the WS CertPathValidat or
CertPathVal i dator validator =
Cert Pat hVal i dat or. get I nst ance("W.SCer t Pat hVal i dat or ") ;

String realm= _;

/] create and popul ate a context handler if desired, or null
Cont ext Handl er context = _;

/] pass in alist of trusted CAs if desired, or null
X509Certificate[] trustedCAs = _;

/1 make the params (for the default security realm
Cert Pat hVal i dat or Par ans parans =
new Cert Pat hVal i dat or Parans(real m context, trustedCAs);

/] use it to validate the chain
val i dator.validate(certPath, params);

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 6

Using Jakarta Authentication for a Web
Application

Oracle WebLogic Server supports the use of Jakarta Authentication to configure an
Authentication Configuration Provider for a Web application and using that instead of the
default WebLogic Server authentication mechanism for that Web application. Learn how to
configure Jakarta Authentication for the deployed web application.

Jakarta Authentication was previously called Java Authentication Service Provider Interface for
Containers (JASPIC).

* Qverview of Jakarta Authentication

Do You Need to Implement an Authentication Configuration Provider?

« Do You Need to Implement a Principal Validation Provider?

¢ Implement a SAM

« Configure Jakarta Authentication for the Deployed Web Application

This section assumes that you are familiar with a basic overview of Jakarta Authentication, as
described in Jakarta Authentication Security in Understanding Security for Oracle WebLogic
Server.

Overview of Jakarta Authentication

The Authentication Configuration provider in Jakarta Authentication assumes responsibility for
authenticating the user credentials for a Web application and returning a subject. It
authenticates incoming Web application messages and returns the identity (the expected
subject) established as a result of the message authentication to WebLogic Server.

The Jakarta Authentication programming model is described in the Jakarta Authentication
specification, https://jakarta.ee/specifications/authentication/. It defines a service provider
interface (SPI) by which authentication providers that implement message authentication
mechanisms can be integrated in server Web application message processing containers or
runtimes.

WebLogic Server allows you to use Jakarta Authentication to delegate authentication for Web
applications to your configured Authentication Configuration providers. You do not have to
modify your Web application code to use Jakarta Authentication. Instead, you use WebLogic
Remote Console or WLST to enable Jakarta Authentication for the Web application post
deployment.

For each of your deployed Web applications in the domain, determine whether you want
Jakarta Authentication to be disabled (the default), or select one of your configured
Authentication Configuration providers to authenticate the user credentials and return a valid
subject. If you configure an Authentication Configuration provider for a Web application, it is
used instead of the WLS authentication mechanism for that Web application. You should
therefore exercise care when you specify an Authentication Configuration provider to make
sure that it satisfies your security authentication needs.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 4

https://jakarta.ee/specifications/authentication/

ORACLE Chapter 10
Do You Need to Implement an Authentication Configuration Provider?

Do You Need to Implement an Authentication Configuration
Provider?

If you have a specific requirement that is not addressed by the default WebLogic
Authentication provider, then you can implement your own Authentication Configuration
provider.

You can use either the default WebLogic Server Authentication Configuration provider, or you
can implement your own. To use the default WebLogic Server Authentication Configuration
provider and configure it, see the steps described in Configuring Jakarta Authentication
Security in Administering Security for Oracle WebLogic Server.

As described in the Jakarta Authentication specification, https://jakarta.ee/specifications/
authentication/, the Authentication Configuration provider (called "authentication context
configuration provider” in the specification) is an implementation of the
jakarta.security.auth. message. config. Aut hConfi gProvi der interface.

The Authentication Configuration provider provides a configuration mechanism used to define
the registered Server Authentication Modules (SAM's) and bindings to applications that require
protection from unauthenticated/authorized access.

Do You Need to Implement a Principal Validation Provider?

Authentication providers rely on Principal Validation providers to sign and verify the authenticity
of principals (users and groups) contained within a subject. The Principal Validation provider,
thus, prevents malicious individuals from tampering with the principals stored in a subject.

Principals are sent to the specified Principal Validation provider, which signs the principals and
then returns them to the client application via WebLogic Server. Whenever the principals stored
within the subject are required for other security operations, the same Principal Validation
provider will verify that the principals stored within the subject have not been modified since
they were signed.

Such verification provides an additional level of trust and may reduce the likelihood of
malicious principal tampering. The authenticity of the subject's principals is also verified when
making authorization decisions.

You must therefore use a Principal Validation provider as described in Principal Validation
Providers.

Whether you use the existing WebLogic Principal Validation provider or implement a custom
Principal Validation provider depends on the type of principals you are using:

* WebLogic Server principals — The WebLogic Principal Validation provider includes
implementations of the W.SUser and W.SG oup interfaces, named W.SUser | npl and
W.SG oupl npl . These are located in the webl ogi c. securi ty. princi pal package.

It also includes an implementation of the Pri nci pal Val i dat or SSPI called

Princi pal Val i dat or I npl (located in the com bea. conmon. securi ty. provi der package).
To use this class, make the Pri nci pal Val i dat or | npl class the runtime class for your
Principal Validation provider. See the Pri nci pal Val i dat or SSPI for usage information.

e Custom Principals — If you have your own validation scheme and do not want to use the
WebLogic Principal Validation provider, or if you want to provide validation for principals
other than WebLogic Server principals, then you need to develop a custom Principal
Validation provider.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 4

https://jakarta.ee/specifications/authentication/
https://jakarta.ee/specifications/authentication/

ORACLE Chapter 10
Implement a SAM

@® Note

If you add custom principals, you must add a Principal Validation provider or
authorization fails. The WebLogic Server security framework performs principal
validation as part of authorization. (The only exception is if you are using Jakarta
Authorization for authorization. Even in the case of Jakarta Authorization, if your
Web application or EJB accesses any other server resource (for example, JDBC),
WebLogic Server authorization and principal validation are used.)

In this case, you must also develop an Authentication provider. The

Aut henti cati onProvi der V2 SSPI includes a method called get Pri nci pal Val i dat or in
which you specify the Principal Validation provider's runtime class. WebLogic Server uses
this method to get the Principal Validation provider. (In this use, the other methods can
return null.)

Both options are described in Principal Validation Providers in Developing Security Providers
for Oracle WebLogic Server.

Implement a SAM

A key step in adding an authentication mechanism to a compatible server-side message
processing runtime is acquiring a Server Authentication Module (SAM) that implements the
desired authentication mechanism.

You must implement your own SAM that works with the default WebLogic Server
Authentication Configuration provider, or with your own Authentication Configuration provider.

The SAM represents the implementation of a server-side authentication provider that is
compliant with Jakarta Authentication. As described in the Jakarta Authentication specification
https://jakarta.ee/specifications/authentication/, a SAM implements the
jakarta.security.auth. mssage. nodul e. Ser ver Aut hVbdul e interface and is invoked by
WebLogic Server at predetermined points in the message processing model.

@® Note

A sample SAM implementation is described in Adding Authentication Mechanisms to
the Servlet Container in the GlassFish Server Open Source Edition Application
Development Guide. Although written from the GlassFish Server perspective, the tips
for writing a SAM, and the sample SAM itself, are instructive.

Configure Jakarta Authentication for the Deployed Web
Application

To configure Jakarta Authentication for your deployed Web application, you must add the jar for
your SAM to the system classpath using the command line, enable Jakarta Authentication in
your domain using WebLogic Remote Console, and configure the desired Authentication
Configuration provider to specify the classname of the SAM.

Perform the following steps to configure Jakarta Authentication for a Web application:

Developing Applications with the WebLogic Security Service
G31581-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 4

https://jakarta.ee/specifications/authentication/
https://javaee.github.io/glassfish/doc/5.0/application-development-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/application-development-guide.pdf

ORACLE

Chapter 10
Configure Jakarta Authentication for the Deployed Web Application

Add the jar for your SAM to the system classpath via the startup scripts or the command
line used to start the WebLogic Server instance.

If you also configured a custom Authentication Configuration provider, you must add the jar
for your custom Authentication Configuration provider to the system classpath via the
startup scripts or the command line used to start the WebLogic Server instance.

Enable Jakarta Authentication in the domain, as described in Configuring Jakarta
Authentication Security in Administering Security for Oracle WebLogic Server.

Configure the WebLogic Server Authentication Configuration provider or the custom
Authentication Configuration provider to specify the classname of the SAM as described in
Configuring Jakarta Authentication Security in Administering Security for Oracle WebLogic
Server.

Configure Jakarta Authentication for the application as described in Configure JASPIC for
a Web Application in Oracle WebLogic Remote Console Online Help.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 4

Using Jakarta Security

The Jakarta Security specification defines portable, plug-in interfaces for HTTP authentication
and identity stores, and an injectable Securi t yCont ext interface that provides an API for
programmatic security. You can use the built-in implementations of the plug-in SPIs, or write
custom implementations.

Using Jakarta Security, you can define all of the security information directly within the
application. Bundling the security configuration in the application instead of configuring it
externally improves the management of the application’s lifecycle, especially in a world of
Docker-hosted microservices that are distributed in containers.

* Overview of Jakarta Security in WebLogic Server

* About the HttpAuthenticationMechanism Interface

» About the Identity Store Interfaces

* Usage Requirements

Overview of Jakarta Security in WebLogic Server

Oracle WebLogic Server supports the Jakarta Security specification which defines portable
authentication mechanisms (such as Htt pAut henti cat i onMechani smand | dentityStore), and
an an access point for programmatic security using the Securi t yCont ext interface. In
WebLogic Server, these authentication mechanisms are supported in the web container, and
the Securit yCont ext interfaces are supported in the Servlet and EJB containers.

The programming model for Jakarta Security is defined in the specification at ht t ps: //
jakarta.eel/specifications/security/.WebLogic Server supports the plug-in interface for

authentication, Ht t pAut hent i cat i onMechani sm and includes built-in support for the BASIC,
FORM, and Custom FORM authentication mechanisms defined in the specification. WebLogic
Server also supports the Renenber Mel dent i t ySt or e interface, and built-in implementations of
the I dentitySt or e interface (LDAP identity store and Database identity store) as well as the
custom identity store.

The Securi tyCont ext interfaces for web applications and EJBs are described in Authenticating
Users Programmatically and Using Programmatic Security With EJBs, respectively.

The Ht t pAut hent i cat i onMechani sminterface is designed to capitalize on the strengths of
existing Servlet and authentication mechanisms from Jakarta Authentication. An

Ht t pAut hent i cati onMechani smis a CDI bean, and is therefore made available to the container
automatically by CDI (see Using Contexts and Dependency Injection for the Jakarta EE
Platform in Developing Applications for Oracle WebLogic Server for more information on CDI
support). The container is responsible for placing the Ht t pAut hent i cat i onMechani sminto
service. The I dentitySt ore interface is intended primarily for use by

Ht t pAut hent i cat i onMechani smimplementations, but could in theory be used by other types of
authentication mechanisms (such as a Jakarta Authentication Ser ver Aut hvodul e).

Ht t pAut hent i cat i onMechani smimplementations are not required to use | dentityStore —
they can authenticate users in any manner they choose — but the | dent i t ySt or e interface is
a useful and convenient mechanism.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 6

https://jakarta.ee/specifications/security/
https://jakarta.ee/specifications/security/

ORACLE

Chapter 11
About the HttpAuthenticationMechanism Interface

A significant advantage of using the Ht t pAut hent i cat i onMechani smand | dentityStore
interfaces over the declarative mechanisms defined by the Servlet specification is that they
allow an application to control the identity stores that it authenticates against in a standard,
portable way. Because implementations of these SPI interfaces are CDI beans, applications
can provide implementations that support application-specific authentication mechanisms, or
validate user credentials against application-specific identity stores, simply by including them in
a bean archive that is part of the deployed application.

About the HttpAuthenticationMechanism Interface

The Ht t pAut hent i cat i onMechani sminterface defines an SPI for writing authentication
mechanisms that can be provided with an application and deployed using CDI. Developers can
write their own implementations of Ht t pAut hent i cat i onMechani smto support specific
authentication token types or protocols. There are also several built-in authentication
mechanisms that perform BASIC, FORM, and Custom FORM authentication.

The built-in authentication mechanisms are enabled and configured using annotations that,
when used, make the corresponding built-in mechanism available as a CDI bean. The Jakarta
Security specification also supports the use of Expression Language 4.0 in these annotations
to allow dynamic configuration. For more information about Java Expression Language (EL),
see the Expression Language specification at https://jakarta.ee/specifications/expression-
language/. The annotations for the built-in authentication mechanisms are as follows:

e Basi cAut henti cati onMechani snDef i ni ti on —implements BASIC authentication that
conforms to the behavior of the servlet container when BASI C <aut h- net hod> is declared
in web. xm . In BASIC authentication, the web client obtains the user name and the
password from the user and transmits them to the web server. The web server then
authenticates the user in the specified realm.

e FormAut henti cati onMechani snDef i ni ti on —implements FORM authentication that
conforms to the behavior of the servlet container when the FORM <aut h- net hod> is
declared in web. xm . FORM Based Authentication introduces a required form-based
authentication mechanism that allows a developer to control the look and feel of the login
screens. The web application deployment descriptor contains entries for a login form and
error page. The login form must contain fields for entering a user name and password.

e Custonfor mAut henti cati onMechani snDef i ni ti on —implements a modified version of
FORM authentication. In WebLogic Server, the difference is that authentication occurs by
invoking Securit yCont ext . aut henti cat e() using the credentials the application collected.

An implementation of Ht t pAut hent i cat i onMechani smmust be a CDI bean to be recognized
and deployed at runtime, and is assumed to be application scoped. During bean discovery, the
servlet container looks for a bean that implements Ht t pAut hent i cat i onMechani sm— there
should be only one per application — and, if found, arranges for it to be deployed to
authenticate the application’s callers.

The servlet container leverages Jakarta Authentication, to deploy authentication mechanisms.
The container provides a Jakarta Authentication Server Auth Module (SAM) that can delegate
to an Ht t pAut henti cati onMechani sm and arranges for that "bridge” SAM to be registered with
the Jakarta Authentication Aut hConf i gFact ory. At runtime, normal Jakarta Authentication
processing invokes the bridge SAM, which then delegates to the

Ht t pAut hent i cat i onMechani smto perform the authentication and drive any necessary dialog
with the caller, or with third parties involved in the authentication protocol flow.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 6

https://jakarta.ee/specifications/expression-language/
https://jakarta.ee/specifications/expression-language/

ORACLE Chapter 11
About the Identity Store Interfaces

HttpAuthenticationMechanism Interface Methods

The Ht t pAut henti cati onMechani sminterface defines three interface methods, which
correspond to the three methods defined by the Jakarta Authentication ServerAuth interface.

When one of the Jakarta Authentication methods is invoked on the bridge SAM, it delegates to
the corresponding method of the Ht t pAut hent i cati onMechani sm Although the method names
are identical, the method signatures are not; the bridge SAM maps back and forth between the
parameters passed to it by the Jakarta Authentication framework, and the parameters
expected by an Ht t pAut henti cati onMechani sm

The three Ht t pAut hent i cati onMechani sminterface methods are as follows:

e validat eRequest () — validate an incoming request and authenticate the caller.

e secureResponse() — secure a response message. This method is optional if the default is
sufficient.

e cleanSubj ect () — clear the provided Subject of principals and credentials. This method is
optional if the default is sufficient.

Only the val i dat eRequest () method must be implemented by an
Ht t pAut hent i cat i onMechani sm the interface includes default implementations for
secur eResponse() and cl eanSubj ect () that will often be sufficient.

HttpAuthenticationMechanism Interface Annotations

You can use the following annotations to add additional behaviors to an
Ht t pAut hent i cati onMechani sm

* Aut oAppl ySessi on — provides an application with a way to declaratively enable Jakarta
Authentication j akart a. servl et. http. regi st er Sessi on behavior for an authentication
mechanism, and automatically apply it for every request.

e Logi nToCont i nue — provides an application with the ability to declaratively add "login to
continue” functionality to an authentication mechanism. The annotation is also used to
configure the login page, error page, and redirect/forward behavior for the built-in form-
based authentication mechanisms.

* Renenber Me - specifies that a Remenber Me identity store should be used to enable
Remenber Me functionality for the authentication mechanism. To use Renenber Mg, the
application must provide its implementation of HAM and annotate the HAM with the
Renenber Me annotation.

About the Identity Store Interfaces

In WebLogic Server, all built-in authentication mechanisms need to be authenticated using an
identity store. The Jakarta Security specification defines two identity store interfaces,

I dentityStore and Remenber Mel dentityStore. The I dentityStore interface defines methods
for validating a caller's credentials, such as username and password, and returning group
membership information. The Renenber Mel dent i t ySt or e interface is a variation on the

I dentityStore interface intended specifically to address cases where the identity of an
authenticated user should be remembered for an extended period of time.

The following topics describe the identity store interfaces in more detail:

» |dentityStore Interface

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 6

ORACLE Chapter 11
About the Identity Store Interfaces

» RememberMeldentityStore Interface

|dentityStore Interface

The I denti tySt or e interface defines an SPI for interacting with identity stores, which are
directories or databases containing user account information. An implementation of the

I dentityStore interface can validate users' credentials, provide information about the groups
they belong to, or both. Most often, an | dent i t ySt or e implementation will interact with an
external identity store — an LDAP server, for example — to perform the actual credential
validation and group lookups, but an | dent i t ySt or e may also manage user account data
itself.

There are two built-in implementations of | dent i t ySt or e: an LDAP identity store, and a
Database identity store. These identity stores delegate to external stores that must already
exist; the | denti t ySt or e implementations do not provide or manage the external store. Use
the following annotations to configure communication between the | dent i t ySt or e interface
and an external store:

e LdapldentityStoreDefinition— configures an identity store with the parameters
necessary to communicate with an external LDAP server, validate user credentials, and/or
lookup user groups.

e Databasel dentityStoreDefinition— configures an identity store with the parameters
necessary to connect to an external database, validate user credentials, and/or lookup
user groups. You must supply a Passwor dHash implementation when configuring a
Database Identity Store.

An application can provide its own custom identity store, or use the built-in LDAP or database
identity stores. WebLogic Server provides an optional example demonstrating the use of a
built-in database identity store. For more information about the WebLogic Server code
examples, see Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

An implementation of | dent i t ySt or e must be a CDI bean to be recognized and deployed at
runtime, and is assumed to be application scoped. Multiple implementations of | dentityStore
may be present. If so, they are invoked under the control of an | dent i t ySt or eHandl er.

|dentityStoreHandler

Authentication mechanisms do not interact with | denti t ySt or e directly; instead, they call an

| dentityStoreHandl er. An implementation of the | dent i t ySt or eHandl er interface provides a
single method, val i dat e(Credenti al), which, when invoked, iterates over the available
IdentityStores and returns an aggregated result. An | dentitySt oreHandl er must also be a CDI
bean, and is assumed to be application scoped. At runtime, an authentication mechanism
injects the | dent i t ySt or eHandl er and invokes on it. The | denti t ySt or eHandl er, in turn, looks
up the available IdentityStores and invokes on them to determine the aggregate result.

There is a built-in | dent i t ySt or eHandl er that implements a standard algorithm defined by the
Jakarta Security specification. An application may also supply its own | dent it ySt or eHandl er,
which can use any desired algorithm to select and invoke on ldentityStores, and return an
aggregated (or non-aggregated) result.

|dentityStore Interface Methods

The I denti tySt or e interface has four methods:

e validate(Credential) —validate a Credential, and return the result of that validation.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 6

ORACLE

Chapter 11
About the Identity Store Interfaces

e getCallerGoups(Credential ValidationResult) —return the groups associated with the
caller indicated by the supplied Credent i al Val i dati onResul t, which represents the result
of a previous, successful validation.

e validationTypes() —returns a Set of validation types (one or more of VALI DATE,
PROVI DE_GROUPS) that indicate the operations supported by this instance of the
| dentityStore.

e priority() —returns a positive integer representing the self-declared priority of this
| dentityStore. Lower values represent higher priority.

Because get Cal | er G oups() is a sensitive operation — it can return information about arbitrary
users, and does not require that the caller provide the user’s credential or proof of identity —
the caller should have the |dentityStorePermn ssion("getG oups") permission. For this
permission check to be performed, ensure that the Java Security Manager is enabled. See
Using the Java Security Manager to Protect WebLogic Resources.

RememberMeldentityStore Interface

The Remenber Mel dent i t ySt or e interface represents a special type of identity store. It is not
directly related to the | denti t ySt or e interface; that is, it does not implement or extend it. It
does, however, perform a similar, albeit specialized, function. You use the

Remenber Mel dent i t ySt or e interface when an application wants to "remember" a user’s
authenticated session for an extended period, so that the caller can return to the application
periodically without needing to present primary authentication credentials each time. For
example, a web site may remember you when you visit, and prompt for your password only
periodically, perhaps once every two weeks, as long as you don't explicitly log out.

RememberMe works as follows:

* When arequest from an unauthenicated user is received, the user is authenticated using
an Ht t pAut hent i cati onMechani smthat is provided by the application (this is required —
Remenber Mel dent i t ySt or e can only be used in conjunction with an application-supplied
Ht t pAut hent i cat i onMechani snj.

« After authentication, the configured Renenber Mel dent i t ySt or e saves information about the
user’s authenticated identity, so that it can be restored later, and generates a long-lived
"remember me" login token that is sent back to the client, perhaps as a cookie.

e On a subsequent visit to the application, the client presents the login token. The
Remenber Mel dent i t ySt or e then validates the token and returns the stored user identity,
which is then established as the user’s authenticated identity. If the token is invalid or
expired, it is discarded, the user is authenticated normally again, and a new login token is
generated.

The Rermenber Mel dent i t ySt or e interface defines the following methods:

e generateLogi nToken(Cal I erPrincipal caller, Set<String> groups) —generate a
login token for a newly authenticated user, and associate it with the provided caller/group
information.

e renovelogi nToken(String token) —remove the (presumably expired or invalid) login
token and any associated caller/group information.

e validate(Remenber MeCredential credential) —validate the supplied credential, and, if
valid, return the associated caller/group information. (RememberMeCredential is
essentially just a holder for a login token).

An implementation of Renenber Mel dent i t ySt or e must be a CDI bean, and is assumed to be
application scoped. You configure a Remenber Mel dent i t ySt or e by adding a Remenber Me

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 6

ORACLE

Chapter 11
Usage Requirements

annotation to an application’s Ht t pAut hent i cat i onMechani sm which indicates that a
Remenber Mel dent i tySt or e is in use, and provides related configuration parameters. A
container-supplied interceptor then intercepts calls to the Ht t pAut hent i cati onMechani sm
invokes the Remenber Mel dent i t ySt or e as necessary before and after calls to the
authentication mechanism, and ensures that the user’s identity is correctly set for the session.
See the Jakarta Security specification for a detailed description of the required interceptor
behavior.

Implementations of Renenber Mel dent i t ySt or e should take care to manage tokens and user
identity information securely. For example, login tokens should not contain sensitive user
information, like credentials or sensitive attributes, to avoid exposing that information if an
attacker were able to gain access to the token — even an encrypted token is potentially
vulnerable to an attacker with sufficient time/resources. Similarly, tokens should be encrypted/
signed wherever possible, and sent only over secure channels (HTTPS). User identity
information managed by a Renenber Mel dent i t ySt or e should be stored as securely as possible
(but does not necessarily need to be reliably persisted — the only impact of a "forgotten”
session is that the user will be prompted to log in again).

Usage Requirements

Using the Jakarta Security authentication mechanisms does not require any specific
configuration, but you must ensure that other functionality, such as Jakarta Authentication and
CDl, is enabled.

To use the Jakarta Security features in WebLogic Server, note the following requirements:

e Web applications must include the beans. xm deployment descriptor file in the application's
WAR or EAR file, as specified by the CDI specification. Because the
Ht t pAut hent i cati onMechani smand | denti tySt or e interfaces are implemented as CDI
beans, they are visible to the container through CDI.

* The net adat a- conpl et e attribute in the web. xm file for the web applications must NOT be
set to true. The default in WebLogic Server is f al se.

» Jakarta Authentication must be enabled at the domain level. By default, Jakarta
Authentication is enabled for a domain in WebLogic Server.

Developing Applications with the WebLogic Security Service

G31581-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 6

https://jakarta.ee/specifications/security/

Deprecated Security APIs

Some or all of the Security interfaces, classes, and exceptions in the WebLogic security
packages, webl ogi c. security. servi ce and webl ogi c. security. SSL, were deprecated prior
to the current release of Oracle WebLogic Server. For specific information on the interfaces,
classes, and exceptions deprecated in each package, see the Java API Reference for Oracle
WebLogic Server.

Developing Applications with the WebLogic Security Service
G31581-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-1 of A-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Information
	Security Samples and Tutorials
	New and Changed WebLogic Server Features

	Conventions

	1 WebLogic Security Programming Overview
	What Is Security?
	WebLogic Remote Console and Security
	Types of Security Supported by WebLogic Server
	Authentication
	Authorization
	Jakarta Security

	Security APIs
	JAAS Client Application APIs
	Java JAAS Client Application APIs
	WebLogic JAAS Client Application APIs

	SSL Client Application APIs
	Java SSL Client Application APIs
	WebLogic SSL Client Application APIs

	Other APIs

	2 Securing Web Applications
	Authentication With Web Browsers
	User Name and Password Authentication
	Digital Certificate Authentication

	Multiple Web Applications, Cookies, and Authentication
	Using Secure Cookies to Prevent Session Stealing
	Configuring the Session Cookie as a Secure Cookie
	Using the AuthCookie _WL_AUTHCOOKIE_JSESSIONID

	Developing Secure Web Applications
	Developing BASIC Authentication Web Applications
	Using HttpSessionListener to Account for Browser Caching of Credentials

	Understanding BASIC Authentication with Unsecured Resources
	Setting the enforce-valid-basic-auth-credentials Flag
	Check the Value of enforce-valid-basic-auth-credentials

	Developing FORM Authentication Web Applications
	Using Identity Assertion for Web Application Authentication
	Using Two-Way SSL for Web Application Authentication
	Providing a Fallback Mechanism for Authentication Methods
	Configuration

	Developing Swing-Based Authentication Web Applications
	Deploying Web Applications

	Using Declarative Security With Web Applications
	Web Application Security-Related Deployment Descriptors
	web.xml Deployment Descriptors
	auth-constraint
	Used Within
	Example

	security-constraint
	Example

	security-role
	Example

	security-role-ref
	Example

	user-data-constraint
	Used Within
	Example

	web-resource-collection
	Used Within
	Example

	weblogic.xml Deployment Descriptors
	externally-defined
	Used Within
	Example

	run-as-principal-name
	Used Within
	Example

	run-as-role-assignment
	Example:

	security-permission
	Example

	security-permission-spec
	Used Within
	Example

	security-role-assignment
	Example

	Using Programmatic Security With Web Applications
	Jakarta Security SecurityContext Methods
	Servlet HttpServletRequest Methods
	getUserPrincipal
	isUserInRole

	Authenticating Users Programmatically
	Using the Jakarta Security SecurityContext Interface
	Using the Programmatic Authentication API
	Change the User's Session ID at Login

	3 Using JAAS Authentication in Java Clients
	JAAS and WebLogic Server
	JAAS Authentication Development Environment
	JAAS Authentication APIs
	JAAS Client Application Components
	WebLogic LoginModule Implementation
	JVM-Wide Default User and the runAs() Method

	Writing a Client Application Using JAAS Authentication
	Using JNDI Authentication
	Java Client JAAS Authentication Code Examples

	4 Using SSL Authentication in Java Clients
	JSSE and WebLogic Server
	Using JNDI Authentication
	SSL Certificate Authentication Development Environment
	SSL Authentication APIs
	SSL Client Application Components

	Writing Applications that Use SSL
	Communicating Securely From WebLogic Server to Other WebLogic Servers
	Writing SSL Clients
	SSLClient Sample
	SSLSocketClient Sample

	Using Two-Way SSL Authentication
	Two-Way SSL Authentication with JNDI
	Writing a User Name Mapper
	Using Two-Way SSL Authentication Between WebLogic Server Instances
	Using Two-Way SSL Authentication with Servlets

	Using a Custom Host Name Verifier
	Using a Trust Manager
	Using the CertPath Trust Manager
	Using a Handshake Completed Listener
	Using an SSLContext
	Using URLs to Make Outbound SSL Connections

	SSL Client Code Examples

	5 Securing EJBs
	Jakarta EE Architecture Security Model
	Declarative Security
	Declarative Authorization Via Annotations

	Programmatic Security
	Declarative Versus Programmatic Authorization

	Using Declarative Security With EJBs
	Implementing Declarative Security Via Metadata Annotations
	Security-Related Annotation Code Examples

	Implementing Declarative Security Via Deployment Descriptors

	EJB Security-Related Deployment Descriptors
	ejb-jar.xml Deployment Descriptors
	method
	Used Within
	Example

	method-permission
	Used Within
	Example

	role-name
	Used Within
	Example

	run-as
	Used Within
	Example

	security-identity
	Used Within
	Example

	security-role
	Used Within
	Example

	security-role-ref
	Used Within
	Example

	unchecked
	Used Within
	Example

	use-caller-identity
	Used Within
	Example

	weblogic-ejb-jar.xml Deployment Descriptors
	client-authentication
	Example

	client-cert-authentication
	Example

	confidentiality
	Example

	externally-defined
	identity-assertion
	Used Within
	Example

	iiop-security-descriptor
	Example

	integrity
	Used Within
	Example

	principal-name
	Used Within
	Example

	role-name
	Used Within
	Example

	run-as-identity-principal
	Used Within
	Example

	run-as-principal-name
	Used Within
	Example

	run-as-role-assignment
	Example

	security-permission
	Example

	security-permission-spec
	Used Within
	Example

	security-role-assignment
	Example

	transport-requirements
	Used Within
	Example

	Using Programmatic Security With EJBs
	SecurityContext Interface Methods
	EJBContext Interface Methods

	6 Using Network Connection Filters
	The Benefits of Using Network Connection Filters
	Network Connection Filter API
	Connection Filter Interfaces
	ConnectionFilter Interface
	ConnectionFilterRulesListener Interface

	Connection Filter Classes
	ConnectionFilterImpl Class
	ConnectionEvent Class

	Guidelines for Writing Connection Filter Rules
	Connection Filter Rules Syntax
	Types of Connection Filter Rules
	How Connection Filter Rules are Evaluated

	Configuring the WebLogic Connection Filter
	Developing Custom Connection Filters

	7 Using Java Security Features to Protect WebLogic Resources
	Using Jakarta Security to Protect WebLogic Resources
	Using the Java Security Manager to Protect WebLogic Resources
	Setting Up the Java Security Manager
	Modifying your Custom Policy File for General Use
	Setting Application-Type Security Policies
	Setting Application-Specific Security Policies

	Using Printing Security Manager
	Printing Security Manager Startup Arguments
	Starting WebLogic Server With Printing Security Manager
	Writing Output Files

	Using Jakarta Authorization
	Comparing the WebLogic JACC Provider with the WebLogic Authorization Provider
	Enabling the WebLogic JACC Provider

	8 SAML APIs
	SAML API Description
	Configuring SAML SSO Attribute Support
	What Are SAML SSO Attributes?
	APIs for SAML Attributes
	SAML 2.0 Basic Attribute Profile Required
	Passing Multiple Attributes to SAML Credential Mappers
	How to Implement SAML Attributes
	Examples of the SAML 2.0 Attribute Interfaces
	Example Custom SAML 2.0 Credential Attribute Mapper
	Custom SAML 2.0 Identity Asserter Attribute Mapper

	Make the Custom SAML Credential Attribute Mapper Class Available in the Console
	Make the Custom SAML Identity Asserter Class Available in the Console

	9 Using CertPath Building and Validation
	CertPath Building
	Instantiate a CertPathSelector
	Instantiate a CertPathBuilderParameters
	Use the JDK CertPathBuilder Interface
	Example Code Flow for Looking Up a Certificate Chain

	CertPath Validation
	Instantiate a CertPathValidatorParameters
	Use the JDK CertPathValidator Interface
	Example Code Flow for Validating a Certificate Chain

	10 Using Jakarta Authentication for a Web Application
	Overview of Jakarta Authentication
	Do You Need to Implement an Authentication Configuration Provider?
	Do You Need to Implement a Principal Validation Provider?
	Implement a SAM
	Configure Jakarta Authentication for the Deployed Web Application

	11 Using Jakarta Security
	Overview of Jakarta Security in WebLogic Server
	About the HttpAuthenticationMechanism Interface
	HttpAuthenticationMechanism Interface Methods
	HttpAuthenticationMechanism Interface Annotations

	About the Identity Store Interfaces
	IdentityStore Interface
	IdentityStoreHandler
	IdentityStore Interface Methods

	RememberMeIdentityStore Interface

	Usage Requirements

	A Deprecated Security APIs

