
Oracle® Fusion Middleware
Developing Web Applications, Servlets, and
JSPs for Oracle WebLogic Server

15c (15.1.1.0.0)
G28780-01
October 2025

Oracle Fusion Middleware Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server, 15c
(15.1.1.0.0)

G28780-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation ii

Conventions ii

1 Understanding Web Applications, Servlets, and JSPs

The Web Applications Container 1

Web Applications and Jakarta EE 1

Web Application Development Key Points 1

Servlets 2

Servlets and Jakarta EE 2

What You Can Do with Servlets 2

Servlet Development Key Points 3

Jakarta Server Pages 3

JSPs and Jakarta EE 4

What You Can Do with JSPs 4

Overview of How JSP Requests Are Handled 4

Web Application Developer Tools 5

Other Tools 5

Web Application Security 5

Limiting the Number of Parameters in an HTTP Request 5

Avoiding Redirection Attacks 6

P3P Privacy Protocol 6

Displaying Special Characters on Linux Browsers 7

Using HTTP Strict Transport Security 7

2 Creating and Configuring Web Applications

WebLogic Web Applications and Jakarta EE 1

Directory Structure 1

Accessing Information in WEB-INF 2

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of xii

Directory Structure Example 2

Main Steps to Create and Configure a Web Application 2

Step One: Create the Enterprise Application Wrapper 2

Step Two: Create the Web Application 3

Step Three: Creating the build.xml File 3

Step Four: Execute the Split Development Directory Structure Ant Tasks 3

Configuring How a Client Accesses a Web Application 4

Configuring Virtual Hosts for Web Applications 4

Configuring a Channel-based Virtual Host 4

Configuring a Host-based Virtual Host 4

Targeting Web Applications to Virtual Hosts 5

Loading Servlets, Context Listeners, and Filters 5

Shared Jakarta EE Web Application Libraries 5

Enabling GZIP Compression for Web Applications 6

3 Creating and Configuring Servlets

What's New and Changed in Servlets 1

What's New and Changed in Servlet 5.0 1

What Was New and Changed in Servlet 4.0 1

Configuring Servlets 2

Servlet Annotations 3

Servlet Mapping 3

Setting Up a Default Servlet 4

Servlet Initialization Attributes 5

Writing a Simple HTTP Servlet 5

Advanced Features 7

Complete HelloWorldServlet Example 7

Debugging Servlet Containers 8

Disabling Access Logging 8

Usage 8

Example 9

Debugging Specific Sessions 9

Usage 9

Tracking a Request Handle Footprint 9

Usage 10

4 Creating and Configuring JSPs

Configuring Jakarta Server Pages (JSPs) 1

Registering a JSP as a Servlet 1

Configuring JSP Tag Libraries 2

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of xii

Configuring Welcome Files 2

Customizing HTTP Error Responses 3

Determining the Encoding of an HTTP Request 3

Mapping IANA Character Sets to Java Character Sets 4

Configuring Implicit Includes at the Beginning and End of JSPs 4

Configuring JSP Property Groups 5

JSP Property Group Rules 5

What You Can Do with JSP Property Groups 5

Writing JSP Documents Using XML Syntax 6

How to Use JSP Documents 6

Important Information about JSP Documents 6

5 Using JSF and JSTL

Using JSF and JSTL With Web Applications 1

Jakarta Server Faces (JSF) 1

Jakarta Standard Tag Library (JSTL) 2

6 Configuring Resources in a Web Application

Configuring Resources in a Web Application 1

Configuring Resources 1

Referencing External EJBs 2

More about the ejb-ref* Elements 2

Referencing Application-Scoped EJBs 3

Serving Resources from the CLASSPATH with the ClasspathServlet 5

Using CGI with WebLogic Server 5

Configuring WebLogic Server to Use CGI 6

Requesting a CGI Script 7

CGI Best Practices 7

7 WebLogic Annotation for Web Components

Servlet Annotation and Dependency Injection 1

Web Component Classes That Support Annotations 2

Annotations Supported By a Web Container 2

Fault Detection and Recovery 3

Limitations 4

Annotating Servlets 4

WLServlet 4

Attributes 4

Fault Detection And Recovery 5

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iii of xii

WLFilter 5

Attributes 5

Fault Detection and Recovery 6

WLInitParam 6

Attributes 6

8 Servlet Programming Tasks

Initializing a Servlet 1

Initializing a Servlet when WebLogic Server Starts 1

Overriding the init() Method 2

Providing an HTTP Response 2

Retrieving Client Input 4

Methods for Using the HTTP Request 5

Example: Retrieving Input by Using Query Parameters 5

Securing Client Input in Servlets 6

Using a WebLogic Server Utility Method 7

Using Cookies in a Servlet 7

Setting Cookies in an HTTP Servlet 8

Retrieving Cookies in an HTTP Servlet 8

Using Cookies That Are Transmitted by Both HTTP and HTTPS 9

Application Security and Cookies 9

Response Caching 9

Initialization Parameters 10

Using WebLogic Services from an HTTP Servlet 10

Accessing Databases 11

Connecting to a Database Using a DataSource Object 11

Using a Data Source in a Servlet 11

Connecting Directly to a Database Using a JDBC Driver 11

Threading Issues in HTTP Servlets 12

Dispatching Requests to Another Resource 12

Forwarding a Request 13

Including a Request 13

RequestDispatcher and Filters 13

Proxying Requests to Another Web Server 14

Overview of Proxying Requests to Another Web Server 14

Setting Up a Proxy to a Secondary Web Server 14

Sample Deployment Descriptor for the Proxy Servlet 15

Proxy Servlet Parameters 16

Clustering Servlets 17

Referencing a Servlet in a Web Application 17

URL Pattern Matching 18

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iv of xii

The SimpleApacheURLMatchMap Utility 18

A Future Response Model for HTTP Servlets 18

Abstract Asynchronous Servlet 19

doRequest 19

doResponse 19

doTimeOut 20

Future Response Servlet 21

9 Using Sessions and Session Persistence

Overview of HTTP Sessions 1

Setting Up Session Management 1

HTTP Session Properties 1

Session Timeout 1

Configuring WebLogic Server Session Cookies 2

Configuring Application Cookies That Outlive a Session 2

Logging Out 2

Enabling Web Applications to Share the Same Session 3

Limiting Number of Concurrent Requests for a Session 3

Configuring Session Persistence 3

Attributes Shared by Different Types of Session Persistence 4

Using Memory-based, Single-server, Non-replicated Persistent Storage 4

Using File-based Persistent Storage 4

Using a Database for Persistent Storage (JDBC Persistence) 5

Configuring JDBC-based Persistent Storage 5

Caching and Database Updates for JDBC Session Persistence 7

Using Cookie-Based Session Persistence 7

Using URL Rewriting Instead of Cookies 8

Coding Guidelines for URL Rewriting 8

URL Rewriting and Wireless Access Protocol (WAP) 9

Session Tracking from a Servlet 10

A History of Session Tracking 10

Tracking a Session with an HttpSession Object 10

Lifetime of a Session 11

How Session Tracking Works 12

Detecting the Start of a Session 12

Setting and Getting Session Name/Value Attributes 12

Logging Out and Ending a Session 13

Using session.invalidate() for a Single Web Application 13

Implementing Single Sign-On for Multiple Applications 13

Exempting a Web Application for Single Sign-on 14

Configuring Session Tracking 14

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page v of xii

Using URL Rewriting Instead of Cookies 14

URL Rewriting and Wireless Access Protocol (WAP) 15

Making Sessions Persistent 15

Scenarios to Avoid When Using Sessions 16

Use Serializable Attribute Values 16

Configuring Session Persistence 16

Configuring a Maximum Limit on In-memory Servlet Sessions 16

Enabling Session Memory Overload Protection 16

10

Application Events and Event Listener Classes

Overview of Application Event Listener Classes 1

Servlet Context Events 1

HTTP Session Events 2

Servlet Request Events 3

Configuring an Event Listener Class 3

Writing an Event Listener Class 4

Templates for Event Listener Classes 4

Servlet Context Event Listener Class Example 4

HTTP Session Attribute Event Listener Class Example 5

Additional Resources 5

11

Using the HTTP Publish-Subscribe Server

Overview of HTTP Publish-Subscribe Servers 1

How the Pub-Sub Server Works 2

Channels 3

Message Delivery and Order of Delivery Guarantee 3

Examples of Using the HTTP Publish-Subscribe Server 4

Using the HTTP Publish-Subscribe Server: Typical Steps 4

Creating the weblogic-pubsub.xml File 6

Programming Using the Server-Side Pub-Sub APIs 7

Overview of the Main API Classes and Interfaces 8

Getting a Pub-Sub Server Instance and Creating a Local Client 8

Publishing Messages to a Channel 9

Subscribing to a Channel 9

Configuring and Programming Message Filter Chains 10

Programming the Message Filter Class 10

Configuring the Message Filter Chain 11

Updating a Browser Client to Communicate with the Pub-Sub Server 12

Overriding the Default Servlet Mapping of the pubsub Jakarta EE Library 13

Getting Runtime Information about the Pub-Sub Server and Channels 14

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page vi of xii

Enabling Security 14

Use Pub-Sub Constraints 14

Specify Access to Channel Operations 15

Restricting Access to All Channel Operations 16

Opening Access to All Channel Operations 16

Updating a Constraint Requires Redeploy of Web Application 16

Map Roles to Principals 17

Configure SSL for Pub-Sub Communication 17

Additional Security Considerations 18

Use AuthCookieEnabled to Access Resources 18

Locking Down the Pub-Sub Server 18

Advanced Topic: Using JMS as a Provider to Enable Cluster Support 19

Configuring JMS as a Handler 20

Configuring Client Session Failover 22

Advanced Topic: Persisting Messages to Physical Storage 22

Configuring Persistent Channels 23

12

WebLogic JSP Reference

JSP Tags 1

Defining JSP Versions 2

Rules for Defining a JSP File Version 2

Rules for Defining a Tag File Version 3

Reserved Words for Implicit Objects 3

Directives for WebLogic JSP 4

Using the page Directive to Set Character Encoding 5

Using the taglib Directive 5

Declarations 5

Scriptlets 5

Expressions 6

Example of a JSP with HTML and Embedded Java 6

Actions 7

Using JavaBeans in JSP 8

Instantiating the JavaBean Object 8

Doing Setup Work at JavaBean Instantiation 8

Using the JavaBean Object 9

Defining the Scope of a JavaBean Object 9

Forwarding Requests 9

Including Requests 10

JSP Expression Language 10

Expressions and Attribute Values 10

Expressions and Template Text 11

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page vii of xii

JSP Expression Language Implicit Objects 12

JSP Expression Language Literals and Operators 13

Literals 13

Errors, Warnings, Default Values 13

Operators 13

Operator Precedence 14

JSP Expression Language Reserved Words 14

JSP Expression Language Named Variables 15

Securing User-Supplied Data in JSPs 15

Using a WebLogic Server Utility Method 16

Using Sessions with JSP 16

Deploying Applets from JSP 17

Using the WebLogic JSP Compiler 18

JSP Compiler Syntax 18

JSP Compiler Options 19

Precompiling JSPs 21

Using the JSPClassServlet 21

13

Filters

Overview of Filters 1

How Filters Work 1

Uses for Filters 1

Writing a Filter Class 2

Configuring Filters 2

Configuring a Filter 2

Configuring a Chain of Filters 3

Filtering the Servlet Response Object 4

Additional Resources 4

14

Using WebLogic JSP Form Validation Tags

Overview of WebLogic JSP Form Validation Tags 1

Validation Tag Attribute Reference 1

<wl:summary> 1

<wl:form> 2

<wl:validator> 3

Using WebLogic JSP Form Validation Tags in a JSP 3

Creating HTML Forms Using the <wl:form> Tag 4

Defining a Single Form 4

Defining Multiple Forms 5

Re-Displaying the Values in a Field When Validation Returns Errors 5

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page viii of xii

Re-Displaying a Value Using the <input> Tag 5

Re-Displaying a Value Using the Apache Jakarta <input:text> Tag 5

Using a Custom Validator Class 6

Extending the CustomizableAdapter Class 6

Sample User-Written Validator Class 7

Sample JSP with Validator Tags 7

15

Using Custom WebLogic JSP Tags (cache, process, repeat)

Overview of WebLogic Custom JSP Tags 1

Using the WebLogic Custom Tags in a Web Application 1

Cache Tag 1

Refreshing a Cache 2

Flushing a Cache 2

Process Tag 6

Repeat Tag 6

16

Using the WebLogic EJB to JSP Integration Tool

Overview of the WebLogic EJB-to-JSP Integration Tool 1

Basic Operation 1

Interface Source Files 2

Build Options Panel 2

Troubleshooting 3

Using EJB Tags on a JSP Page 3

EJB Home Methods 4

Stateful Session and Entity Beans 4

Default Attributes 5

A web.xml Deployment Descriptor Elements

web.xml Namespace Declaration and Schema Location A-1

context-param A-1

description A-3

display-name A-3

distributable A-3

ejb-local-ref A-4

ejb-ref A-5

env-entry A-5

error-page A-6

filter A-7

filter-mapping A-7

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ix of xii

icon A-8

jsp-config A-9

taglib A-9

jsp-property-group A-10

listener A-11

login-config A-12

form-login-config A-12

message-destination-ref A-13

mime-mapping A-14

resource-env-ref A-14

resource-ref A-15

security-constraint A-16

web-resource-collection A-16

auth-constraint A-17

user-data-constraint A-17

security-role A-18

servlet A-18

icon A-19

init-param A-20

security-role-ref A-20

servlet-mapping A-21

session-config A-22

web-app A-23

welcome-file-list A-23

B weblogic.xml Deployment Descriptor Elements

weblogic.xml Namespace Declaration and Schema Location B-1

async-descriptor B-1

async-work-manager B-1

auth-filter B-2

charset-params B-2

charset-mapping B-2

input-charset B-3

container-descriptor B-3

access-logging-disabled B-3

allow-all-roles B-3

check-auth-on-forward B-3

client-cert-proxy-enabled B-4

container-initializer-enabled B-4

default-mime-type B-5

disable-implicit-servlet-mappings B-5

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page x of xii

filter-dispatched-requests-enabled B-5

gzip-compression B-5

index-directory-enabled B-6

index-directory-sort-by B-6

langtag-revision B-7

minimum-native-file-size B-7

native-io-enabled B-7

optimistic-serialization B-7

prefer-application-packages B-8

prefer-application-resources B-8

prefer-forward-query-string B-9

prefer-web-inf-classes B-9

redirect-with-absolute-url B-9

referer-validation B-9

relogin-enabled B-10

require-admin-traffic B-10

resource-reload-check-secs B-11

save-sessions-enabled B-11

servlet-reload-check-secs B-11

session-monitoring-enabled B-11

show-archived-real-path-enabled B-11

single-threaded-servlet-pool-size B-12

temp-dir B-12

context-root B-12

description B-13

ejb-reference-description B-13

fast-swap B-13

jsp-descriptor B-13

library-ref B-16

logging B-16

ready-registration B-18

resource-description B-19

resource-env-description B-19

run-as-role-assignment B-19

security-permission B-20

security-role-assignment B-20

service-reference-description B-21

servlet-descriptor B-22

session-descriptor B-22

url-match-map B-28

virtual-directory-mapping B-29

weblogic-version B-29

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page xi of xii

wl-dispatch-policy B-30

work-manager B-30

Backward Compatibility Flags B-31

Compatibility with JSP 2.0 Web Applications B-32

JSP Behavior and Buffer Suffix B-32

Implicit Servlet 2.5 Package Imports B-32

Web Container Global Configuration B-32

C Support for GlassFish Deployment Descriptors

D Web Application Best Practices

CGI Best Practices D-1

Servlet Best Practices D-1

Best Practice When Subclassing ServletResponseWrapper D-1

E HTTP Proxy Servlet Parameters

Debug E-1

DebugConfigInfo E-1

DefaultFileName E-2

FileCaching E-2

KeepAliveEnabled E-3

KeepAliveSecs E-3

MaxPostSize E-3

PathPrepend E-3

PathTrim E-4

SecureProxy E-4

WebLogicHost E-5

WebLogicPort E-5

WLCookieName E-5

WLIOTimeoutSecs E-5

WLLogFile E-6

WLProxyPassThrough E-6

WLProxySSL E-6

WLProxySSLPassThrough E-6

Index

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page xii of xii

Preface

This document is a resource for software developers who develop Web applications and
components such as HTTP servlets and Jakarta Server Pages (JSPs) for deployment on
WebLogic Server.

Audience
This document is also a resource for Web application users and deployers. It also contains
information that is useful for business analysts and system architects who are evaluating
WebLogic Server or considering the use of WebLogic Server Web applications for a particular
application.

The topics in this document are relevant during the design and development phases of a
software project. The document also includes topics that are useful in solving application
problems that are discovered during test and pre-production phases of a project.

This document does not address production phase administration, monitoring, or performance
tuning topics. For links to WebLogic Server documentation and resources for these topics, see
Related Documentation.

It is assumed that the reader is familiar with Jakarta EE and Web application concepts. This
document emphasizes the value-added features provided by WebLogic Server Web
applications and key information about how to use WebLogic Server features and facilities to
get a Web application up and running .

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Related Documentation
This document contains Web application-specific design and development information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

• Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic
Server applications.

• Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications.

• Upgrading Oracle WebLogic Server contains information about Web applications, JSP, and
servlet compatibility with previous WebLogic Server releases.

• For more information about Jakarta application development, refer to https://
jakarta.ee/specifications/deployment/

Samples and Tutorials
Oracle provides a variety of code examples and tutorials that show WebLogic Server
configuration and API use, and provide practical instructions on how to perform key
development tasks. For more information, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

Oracle provides several web application, servlet, and JSP examples with this release of
WebLogic Server. Oracle recommends that you run these web application examples before
developing your own web applications.

New and Changed WebLogic Server Features
For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of ii

https://jakarta.ee/specifications/deployment/
https://jakarta.ee/specifications/deployment/

1
Understanding Web Applications, Servlets,
and JSPs

Learn about WebLogic Server Web applications, servlets, and Jakarta Server Pages (JSPs).
This chapter includes the following sections:

The Web Applications Container
A Web application contains an application's resources, such as servlets, Jakarta Server Pages
(JSPs), JSP tag libraries, and any static resources such as HTML pages and image files. A
Web application adds service-refs (Web services) and message-destination-refs (JMS
destinations/queues) to an application. It can also define links to outside resources such as
Jakarta Enterprise Beans (EJBs).

Web Applications and Jakarta EE
The Jakarta EE programming model employs metadata annotations which simplify the
application development process by allowing a developer to specify within the Java class itself
how the application component behaves in the container, requests for dependency injection,
and so on. Annotations are an alternative to deployment descriptors that were required by
older versions of enterprise applications (Java EE 1.4 and earlier).

With Jakarta EE annotations, the standard application.xml and web.xml deployment
descriptors are optional. The Jakarta EE programming model uses the JDK annotations
feature for Web containers, such as EJBs, servlets, Web applications, and JSPs.

However, Web applications deployed on WebLogic Server can still use a standard Jakarta EE
deployment descriptor file and a WebLogic-specific deployment descriptor file to define their
resources and operating attributes.

Web Application Development Key Points
JSPs and HTTP servlets can access all services and APIs available in WebLogic Server.
These services include EJBs, database connections by way of JDBC, JMS services, XML, and
more.

A Web archive (WAR file) contains the files that make up a Web application. A WAR file is
deployed as a unit on one or more WebLogic Server instances. A WAR file deployed to
WebLogic Server always includes the following files:

• One servlet or Jakarta Server Page (JSP), along with any helper classes.

• An optional web.xml deployment descriptor, which is a Jakarta EE standard XML
document that describes the contents of a WAR file.

• A weblogic.xml deployment descriptor, which is an XML document containing WebLogic
Server-specific elements for Web applications.

• A WAR file can also include HTML or XML pages and supporting files such as image and
multimedia files.

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 8

The WAR file can be deployed alone or packaged in an enterprise application archive (EAR
file) with other application components. If deployed alone, the archive must end with a .war
extension. If deployed in an EAR file, the archive must end with an .ear extension.

Oracle recommends that you package and deploy your standalone Web applications as part of
an enterprise application. This is an Oracle best practice which allows for easier application
migration, additions, and changes. Also, packaging your applications as part of an enterprise
application allows you to take advantage of the split development directory structure, which
provides a number of benefits over the traditional single directory structure.

Note

If you are deploying a directory in exploded format (not archived), do not name the
directory .ear, .jar, and such. For more information on archived format, see Web
Application Developer Tools.

Servlets
A servlet is a Java class that runs in a Java-enabled server. An HTTP servlet is a special type
of servlet that handles an HTTP request and provides an HTTP response, usually in the form
of an HTML page. The most common use of WebLogic HTTP servlets is to create interactive
applications using standard Web browsers for the client-side presentation while WebLogic
Server handles the business logic as a server-side process. WebLogic HTTP servlets can
access databases, EJBs, messaging APIs, HTTP sessions, and other facilities of WebLogic
Server.

Servlets and Jakarta EE
WebLogic Server fully supports HTTP servlets as defined in the Jakarta Servlet 5.0
specification at https://jakarta.ee/specifications/servlet/5.0/. HTTP servlets form an
integral part of the Jakarta EE standard.

With Jakarta EE metadata annotations, the standard web.xml deployment descriptor is
optional. The servlet specification states annotations can be defined on certain Web
components, such as servlets, filters, listeners, and tag handlers. The annotations are used to
declare dependencies on external resources. The container will detect annotations on such
components and inject necessary dependencies before the component's life cycle methods are
invoked. See WebLogic Annotation for Web Components.

The servlet specification defines the implementation of the servlet API and the method by
which servlets are deployed in enterprise applications. Deploying servlets on a Jakarta EE-
compliant server, such as WebLogic Server, is accomplished by packaging the servlets and
other resources that make up an enterprise application into a single unit, the Web application.
A Web application utilizes a specific directory structure to contain its resources and a
deployment descriptor that defines how these resources interact and how the application is
accessed by a client. See The Web Applications Container.

What You Can Do with Servlets
• Create dynamic Web pages that use HTML forms to get end-user input and provide HTML

pages that respond to that input. Examples of this utilization include online shopping carts,
financial services, and personalized content.

Chapter 1
Servlets

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 8

https://jakarta.ee/specifications/servlet/5.0/

• Create collaborative systems such as online conferencing.

• Have access to a variety of APIs and features by using servlets running in WebLogic
Server. For example:

– Session tracking—Allows a Web site to track a user's progress across multiple Web
pages. This functionality supports Web sites such as e-commerce sites that use
shopping carts. WebLogic Server supports session persistence to a database,
providing failover between server down time and session sharing between clustered
servers. For more information see Session Tracking from a Servlet.

– JDBC drivers—JDBC drivers provide basic database access. With WebLogic Server's
multi-tier JDBC implementations, you can take advantage of connection pools, server-
side data caching, and transactions. For more information see Accessing Databases.

– Jakarta Enterprise Beans—Servlets can use Jakarta Enterprise Beans (EJBs) to
encapsulate sessions, data from databases, and other functionality. See Referencing
External EJBs, More about the ejb-ref* Elements, and Referencing Application-Scoped
EJBs.

– Jakarta Messaging Service (JMS)—JMS allows your servlets to exchange messages
with other servlets and Java programs. See Developing JMS Applications for Oracle
WebLogic Server.

– Jakarta JDK APIs—Servlets can use the standard Jakarta JDK APIs.

– Forwarding requests—Servlets can forward a request to another servlet or other
resource. Forwarding a Request.

• Easily deploy servlets written for any Jakarta EE-compliant servlet engine to WebLogic
Server.

Servlet Development Key Points
The following are a few key points relating to servlet development:

• Programmers of HTTP servlets utilize a standard Jakarta API, jakarta.servlet.http, to
create interactive applications.

• HTTP servlets can read HTTP headers and write HTML coding to deliver a response to a
browser client.

• Servlets are deployed to WebLogic Server as part of a Web application. A Web application
is a grouping of application components such as servlet classes, Jakarta Server Pages
(JSPs), static HTML pages, images, and security.

Jakarta Server Pages
Jakarta Server Pages (JSPs) are defined by a specification for combining Java with HTML to
provide dynamic content for Web pages. When you create dynamic content, JSPs are more
convenient to write than HTTP servlets because they allow you to embed Java code directly
into your HTML pages, in contrast with HTTP servlets, in which you embed HTML inside Java
code.

WebLogic JSP supports the Jakarta Server Pages 3.0 specification. JSPs are Web pages
coded with an extended HTML that makes it possible to embed Java code in a Web page.
JSPs can call custom Java classes, called taglibs, using HTML-like tags. The WebLogic appc
compiler weblogic.appc generates JSPs and validates descriptors. You can also precompile
JSPs into the WEB-INF/classes/ directory or as a JAR file under WEB-INF/lib/ and package

Chapter 1
Jakarta Server Pages

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 8

https://jakarta.ee/specifications/pages/3.0/

the servlet class in the Web archive to avoid compiling in the server. Servlets and JSPs may
require additional helper classes to be deployed with the Web application.

JSPs enable you to separate the dynamic content of a Web page from its presentation. It
caters to two different types of developers: HTML developers, who are responsible for the
graphical design of the page, and Java developers, who handle the development of software to
create the dynamic content.

JSPs and Jakarta EE
WebLogic JSP supports the Jakarta Server Pages specification at https://jakarta.ee/
specifications/pages/3.0/.

• An expression language (EL) syntax that allows deferred evaluation of expressions,
enables using expressions to both get and set data and to invoke methods, and facilitates
customizing the resolution of a variable or property referenced by an expression.

• Support for resource injection through annotations to simplify configuring access to
resources and environment data.

• Complete alignment of JSF technology tags and JSP software code.

Because JSPs are part of the Jakarta EE standard, you can deploy JSPs on a variety of
platforms, including WebLogic Server. In addition, third-party vendors and application
developers can provide JavaBean components and define custom JSP tags that can be
referenced from a JSP page to provide dynamic content.

What You Can Do with JSPs
• Combine Java with HTML to provide dynamic content for Web pages.

• Call custom Java classes, called taglibs, using HTML-like tags.

• Embed Java code directly into your HTML pages, in contrast with HTTP servlets, in which
you embed HTML inside Java code.

• Separate the dynamic content of a Web page from its presentation.

Overview of How JSP Requests Are Handled
WebLogic Server handles JSP requests in the following sequence:

1. A browser requests a page with a .jsp file extension from WebLogic Server.

2. WebLogic Server reads the request.

3. Using the JSP compiler, WebLogic Server converts the JSP into a servlet class that
implements the jakarta.servlet.jsp.JspPage interface. The JSP file is compiled only
when the page is first requested, or when the JSP file has been updated and has a more
recent timestamp. Otherwise, the previously compiled JSP servlet class is re-used, making
subsequent responses much quicker.

4. The generated JspPage servlet class is invoked to handle the browser request.

It is also possible to invoke the JSP compiler directly without making a request from a browser.
For details, see Using the WebLogic JSP Compiler.

Because the JSP compiler creates a Java servlet as its first step, you can look at the Java files
it produces, or even register the generated JspPage servlet class as an HTTP servlet. See
Servlets.

Chapter 1
Jakarta Server Pages

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 8

https://jakarta.ee/specifications/pages/3.0/
https://jakarta.ee/specifications/pages/3.0/

Web Application Developer Tools
Oracle provides Oracle JDeveloper to help simplify the creating, testing, debugging, and
deploying of servlets, JSP, JSF-based Web applications.

Oracle JDeveloper is an enterprise IDE providing a unified development experience for Oracle
Fusion Middleware products.

Oracle JDeveloper provides advanced code editor features, collaborative teamwork
development, visual development and debugging, and streamlined deployment capabilities.

Other Tools
You can use the WebLogic Ant utilities to create skeleton deployment descriptors. These
utilities are Java classes shipped with your WebLogic Server distribution. The Ant task looks at
a directory containing a Web application and creates deployment descriptors based on the files
it finds in the Web application. Because the Ant utility does not have information about all
desired configurations and mappings for your Web application, the skeleton deployment
descriptors the utility creates are incomplete. After the utility creates the skeleton deployment
descriptors, you can use a text editor or an XML editor to edit the deployment descriptors and
complete the configuration of your Web application.

Web Application Security
You can secure a Web application by restricting access to certain URL patterns in the Web
application or programmatically using security calls in your servlet code.

At run time, your user name and password are authenticated using the applicable security
realm for the Web application. Authorization is verified according to the security constraints
configured in web.xml or the external policies that might have been created for the Web
application.

At run time, the WebLogic Server active security realm applies the Web application security
constraints to the specified Web application resources. Note that a security realm is shared
across multiple virtual hosts.

For detailed instructions and an example on configuring security in Web applications, see
Securing Resources Using Roles and Policies for Oracle WebLogic Server. For more
information on WebLogic security, refer to Developing Applications with the WebLogic Security
Service.

Limiting the Number of Parameters in an HTTP Request
You can prevent overloading the WebLogic Server domain with excessive parameters in HTTP
requests by setting the MaxRequestParameterCount attribute on the WebServer MBean. This
attribute limits the number of parameters allowed in a request. The default value of
MaxRequestParameterCount is 10,000. If the number of parameters on an incoming HTTP
request exceeds the maximum value set in the MaxRequestParameterCount attribute, then the
following error is logged:

<Error> <ServletContext> <BEA-000000> <Rejecting request since max request parameter
limit exceeded 10000>

You can set this parameter either on the WebServer MBean or on the VirtualHost MBean. Use
WLST online to set this attribute as shown in the following examples:

Chapter 1
Web Application Developer Tools

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 8

https://www.oracle.com/application-development/technologies/jdeveloper.html

• Using the WebServer MBean

connect('<admin_user>','<admin_pwd>','<admin_url>')
edit()
startEdit()
cd('Servers/<server_name>')
cmo.getWebServer().setMaxRequestParameterCount(1000)
save()
activate()
exit()

• Using the VirtualHost MBean

connect('<admin_user>','<admin_pwd>','<admin_url>')
edit()
startEdit()
cd('VirtualHosts/<virtual_host>')
cmo.setMaxRequestParameterCount(1000)
save()
activate()
exit()

Note

If you have set MaxRequestParameterCount on the WebAppContainer MBean, Oracle
recommends setting the attribute on the WebServer MBean instead.

Avoiding Redirection Attacks
When a request on a Web application is redirected to another location, the Host header
contained in the request is used by default in the Location header that is generated for the
response. Because the Host header can be spoofed—that is, corrupted to contain a different
host name and other parameters—this behavior can be exploited to launch a redirection attack
on a third party.

To prevent the likelihood of this occurrence, set the FrontendHost attribute on either the
WebServerMBean or ClusterMBean to specify the host to which all redirected URLs are sent.
The host specified in the FrontendHost attribute will be used in the Location header of the
response instead of the one contained in the original request.

See FrontendHost in MBean Reference for Oracle WebLogic Server.

P3P Privacy Protocol
The Platform for Privacy Preferences (P3P) provides a way for Web sites to publish their
privacy policies in a machine-readable syntax. The WebLogic Server Web application
container can support P3P.

There are three ways to tell the browser about the location of the p3p.xml file:

• Place a policy reference file in the "well-known location" (at the location /w3c/p3p.xml on
the site).

• Add an extra HTTP header to each response from the Web site giving the location of the
policy reference file.

• Place a link to the policy reference file in each HTML page on the site.

Chapter 1
Avoiding Redirection Attacks

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 8

For more detailed information, see http://www.w3.org/TR/p3pdeployment#Locating_PRF.

Displaying Special Characters on Linux Browsers
To display special characters on Linux browsers, set the JVM's file.encoding system
property to ISO8859_1. For example, java -Dfile.encoding=ISO8859_1 weblogic.Server.

For a complete listing, see https://docs.oracle.com/en/java/javase/17/intl/supported-
encodings.html.

Using HTTP Strict Transport Security
HTTP Strict Transport Security (HSTS) is a web security policy mechanism that allows a web
server to be configured so that web browsers, or other user agents, can access the server
using only secure connections, such as HTTPS. Web servers declare this policy using the
Strict-Transport-Security HTTP response header field.

The HSTS policy Strict-Transport-Security HTTP response header directs browsers to
communicate with the web server only over secure transport such as TLS/SSL, for a specified
expiration time. The HSTS policy may also specify whether the policy applies to subdomains of
the host's domain name. When a browser receives and processes the HSTS header, it
remembers the web server and automatically uses HTTPS for all future access to the server.
Any attempts to access the web server using HTTP are automatically converted to HTTPS
requests instead.

Note

If an application uses a mix of both HTTP and HTTPS, or some resources in an
application can only be accessed using HTTP, then the application will be broken after
you enable HSTS on WebLogic Server. To ensure that your applications continue to
work after enabling HSTS, ensure that all pages in the application can be accessed
using HTTPS. If any pages are hard-coded to be accessible only using HTTP, then
they should be updated to be accessible using HTTPS.

WebLogic Server provides system properties to enable HSTS, and to customize the response
header:

• -Dweblogic.http.headers.enableHSTS={true|false} - enables HSTS. The default is
false.

• -Dweblogic.http.headers.hsts.maxage=max-age-seconds - sets the policy expiration
time. The default is 31536000 seconds (one year).

• -Dweblogic.http.headers.hsts.includesubdomains={true|false} - specifies whether
the HSTS policy applies to the subdomains of the host domain. The default is true.

• -Dweblogic.http.headers.hsts.preload={true|false} - specifies whether the domain is
requesting inclusion in the HSTS preload list maintained by Google. The default is true. All
sites approved for inclusion are hardcoded into this list and can only be accessed using
HTTPS in Chrome and other browsers.

For details about these system properties, see HTTP Strict Transport Security in Command
Reference for Oracle WebLogic Server.

For more information about HSTS, see the following documents:

Chapter 1
Displaying Special Characters on Linux Browsers

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 8

http://www.w3.org/TR/p3pdeployment#Locating_PRF
https://docs.oracle.com/en/java/javase/17/intl/supported-encodings.html
https://docs.oracle.com/en/java/javase/17/intl/supported-encodings.html
https://hstspreload.org/

• HTTP Strict Transport Security (HSTS) standard at https://tools.ietf.org/html/
rfc6797

• Strict-Transport-Security on MDN Web Docs at https://developer.mozilla.org/en-US/
docs/Web/HTTP/Headers/Strict-Transport-Security

Chapter 1
Using HTTP Strict Transport Security

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 8

https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security

2
Creating and Configuring Web Applications

Learn how to create and configure WebLogic Web applications.
This chapter includes the following sections:

WebLogic Web Applications and Jakarta EE
The Jakarta EE programming model employs metadata annotations which simplify the
application development process by allowing a developer to specify within the Java class itself
how the application component behaves in the container, requests for dependency injection,
and so on. Annotations are an alternative to deployment descriptors that were required by
older versions of enterprise applications (Java EE 1.4 and earlier).

With Jakarta EE annotations, the standard application.xml and web.xml deployment
descriptors are optional. The Jakarta EE programming model uses the JDK annotations
feature for Web containers, such as EJBs, servlets, Web applications, and JSPs. See
WebLogic Annotation for Web Components.

However, Web applications deployed on WebLogic Server can still use a standard deployment
descriptor file and a WebLogic-specific deployment descriptor file to define their resources and
operating attributes.

Directory Structure
Web applications use a standard directory structure defined in the Jakarta EE specification.
You can deploy a Web application as a collection of files that use this directory structure,
known as exploded directory format, or as an archived file called a WAR file. Oracle
recommends that you package and deploy your exploded Web application as part of an
enterprise application. This is an Oracle best practice which allows for easier application
migration, additions, and changes. Also, packaging your Web application as part of an
enterprise application allows you to take advantage of the split development directory
structure, which provides a number of benefits over the traditional single directory structure.

The WEB-INF directory contains the deployment descriptors for the Web application (web.xml
and weblogic.xml) and two subdirectories for storing compiled Java classes and library JAR
files. These subdirectories are respectively named classes and lib. JSP taglibs are stored in
the WEB-INF directory at the top level of the staging directory. The Java classes include
servlets, helper classes and, if desired, precompiled JSPs.

All servlets, classes, static files, and other resources belonging to a Web application are
organized under a directory hierarchy.

The entire directory, once staged, is bundled into a WAR file using the jar command. The
WAR file can be deployed alone or as part of an enterprise application (recommended) with
other application components, including other Web applications, EJB components, and
WebLogic Server components.

JSP pages and HTTP servlets can access all services and APIs available in WebLogic Server.
These services include EJBs, database connections through JDBC, JMS services, XML, and
more.

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

Accessing Information in WEB-INF
The WEB-INF directory is not part of the public document tree of the application. No file
contained in the WEB-INF directory can be served directly to a client by the container. However,
the contents of the WEB-INF directory are visible to servlet code using the getResource and
getResourceAsStream() method calls on the ServletContext or includes/forwards using the
RequestDispatcher. Hence, if the application developer needs access, from servlet code, to
application specific configuration information that should not be exposed directly to the Web
client, the application developer may place it under this directory.

Since requests are matched to resource mappings in a case-sensitive manner, client requests
for "/WEB-INF/foo", "/WEb-iNf/foo", for example, should not result in contents of the Web
application located under /WEB-INF being returned, nor any form of directory listing thereof.

Directory Structure Example
The following is an example of a Web application directory structure, in which myWebApp/ is the
staging directory:

Example 2-1 Web Application Directory Structure

myWebApp/
 WEB-INF/
 web.xml
 weblogic.xml
 lib/
 MyLib.jar
 classes/
 MyPackage/
 MyServlet.class
 index.html
 index.jsp

Main Steps to Create and Configure a Web Application
Learn how to create a Web application as part of an enterprise application using the split
development directory structure.

See Creating a Split Development Directory Environment, Building Applications In a Split
Development Directory, and Deploying and Packaging From a Split Development Directory in
Developing Applications for Oracle WebLogic Server.

You may want to use developer tools included with WebLogic Server for creating and
configuring Web applications. See Web Application Developer Tools.

Step One: Create the Enterprise Application Wrapper
1. Create a directory for your root EAR file:

\src\myEAR\

2. Set your environment as follows:

• On Windows, execute the setWLSEnv.cmd command, located in the directory
WL_HOME\server\bin\, where WL_HOME is the top-level directory in which WebLogic
Server is installed.

Chapter 2
Main Steps to Create and Configure a Web Application

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

• On UNIX, execute the setWLSEnv.sh command, located in the directory WL_HOME/
server/bin/, where WL_HOME is the top-level directory in which WebLogic Server is
installed.

Note

On UNIX operating systems, the setWLSEnv.sh command does not set the
environment variables in all command shells. Oracle recommends that you
execute this command using the Korn shell or bash shell.

3. Package your enterprise application in the \src\myEAR\ directory as follows:

a. Place the enterprise applications descriptors (application.xml and weblogic-
application.xml) in the META-INF\ directory. See Enterprise Application Deployment
Descriptors in Developing Applications for Oracle WebLogic Server.

b. Edit the deployment descriptors as needed to fine-tune the behavior of your enterprise
application. See Web Application Developer Tools.

c. Place the enterprise application .jar files in:

\src\myEAR\APP-INF\lib\

Step Two: Create the Web Application
1. Create a directory for your Web application in the root of your EAR file:

\src\myEAR\myWebApp

2. Package your Web application in the \src\myEAR\myWebApp\ directory as follows:

a. Place the Web application descriptors (web.xml and weblogic.xml) in the
\src\myEAR\myWebApp\WEB-INF\ directory. See weblogic.xml Deployment Descriptor
Elements.

b. Edit the deployment descriptors as needed to fine-tune the behavior of your enterprise
application. See Web Application Developer Tools.

c. Place all HTML files, JSPs, images and any other files referenced by the Web
application pages in the root of the Web application:

\src\myEAR\myWebApp\images\myimage.jpg
\src\myEAR\myWebApp\login.jsp
\src\myEAR\myWebApp\index.html

d. Place your Web application Java source files (servlets, tag libs, other classes
referenced by servlets or tag libs) in:

\src\myEAR\myWebApp\WEB-INF\src\

Step Three: Creating the build.xml File
Once you have set up your directory structure, you create the build.xml file using the
weblogic.BuildXMLGen utility.

Step Four: Execute the Split Development Directory Structure Ant Tasks
1. Execute the wlcompile Ant task to invoke the javac compiler. This compiles your Web

application Java components into an output directory: /build/myEAR/WEB-INF/classes.

Chapter 2
Main Steps to Create and Configure a Web Application

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

2. Execute wlappc Ant task to invoke the appc compiler. This compiles any JSPs and
container-specific EJB classes for deployment.

3. Execute the wldeploy Ant task to deploy your Web application as part of an archived or
exploded EAR to WebLogic Server.

4. If this is a production environment (rather than development), execute the wlpackage Ant
task to package your Web application as part of an archived or exploded EAR.

Note

The wlpackage Ant task places compiled versions of your Java source files in the
build directory. For example: /build/myEAR/myWebApp/classes.

Configuring How a Client Accesses a Web Application
You construct the URL that a client uses to access a Web application using a specific pattern.

http://hoststring/ContextPath/servletPath/pathInfo

Where

• hoststring is either a host name that is mapped to a virtual host or hostname:portNumber.

• ContextPath is the name of your Web application.

• servletPath is a servlet that is mapped to the servletPath.

• pathInfo is the remaining portion of the URL, typically a file name.

If you are using virtual hosting, you can substitute the virtual host name for the hoststring
portion of the URL.

Configuring Virtual Hosts for Web Applications
WebLogic Server supports two methods for configuring virtual hosts for Web applications.

Configuring a Channel-based Virtual Host
The following is an example of how to configure a channel-based virtual host:

<VirtualHost Name="channel1vh" NetworkAccessPoint="Channel1" Targets="myserver"/>
<VirtualHost Name="channel2vh" NetworkAccessPoint="Channel2" Targets="myserver"/>

Where Channel1 and Channel2 are the names of NetworkAccessPoint configured in the
config.xml file. NetworkAccessPoint represents the dedicated server channel name for which
the virtual host serves HTTP requests. If the NetworkAccessPoint for a given HTTP request
does not match the NetworkAccessPoint of any virtual host, the incoming HOST header is
matched with the VirtualHostNames in order to resolve the correct virtual host. If an incoming
request does not match a virtual host, the request will be served by the default Web server.

Configuring a Host-based Virtual Host
The following is an example of how to configure a host-based virtual host:

Chapter 2
Configuring How a Client Accesses a Web Application

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

<VirtualHost Name="cokevh" Targets="myserver" VirtualHostNames="coke"/>
<VirtualHost Name="pepsivh" Targets="myserver" VirtualHostNames="pepsi"/>

Targeting Web Applications to Virtual Hosts
A Web application component can be targeted to servers and virtual hosts using the WebLogic
Remote Console.

If you are migrating from previous versions of WebLogic Server, note that in the config.xml
file, all Web application targets must be specified in the targets attribute. The targets attribute
has replaced the virtual hosts attribute and a virtual host cannot have the same name as a
server or cluster in the same domain. The following is an example of how to target a Web
application to a virtual host:

<AppDeployment name="test-app" Sourcepath="/myapps/test-app.ear">
 <SubDeployment Name="test-webapp1.war" Targets="virutalhost-1"/>
 <SubDeployment Name="test-webapp2.war" Targets="virtualhost-2"/>
 ...
</AppDeployment>

Loading Servlets, Context Listeners, and Filters
Servlets, context listeners, and filters are loaded and destroyed in a certain order:

Order of loading:

1. Context listeners

2. Filters

3. Servlets

Order of destruction:

1. Servlets

2. Filters

3. Context listeners

Servlets and filters are loaded in the same order they are defined in the web.xml file and
unloaded in reverse order. Context listeners are loaded in the following order:

1. All context listeners in the web.xml file in the order as specified in the file

2. Packaged JAR files containing tag library descriptors

3. Tag library descriptors in the WEB-INF directory

Shared Jakarta EE Web Application Libraries
A Jakarta EE Web application library is a standalone Web application module registered with
the Jakarta EE application container upon deployment. With WebLogic Server, multiple Web
applications can easily share a single Web application module or collection of modules.

A Web application may reference one or more Web application libraries, but cannot reference
other library types (EJBs, EAR files, plain JAR files). Web application libraries are Web
application modules deployed as libraries. They are referenced from the weblogic.xml file
using the same syntax that is used to reference application libraries in the weblogic-
application.xml file, except that the <context-root> element is ignored.

Chapter 2
Targeting Web Applications to Virtual Hosts

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

At deployment time, the classpath of each referenced library is appended to the Web
application's classpath. Therefore, the search for all resources and classes occurs first in the
original Web application and then in the referenced library.

The deployment tools, appc, wlcompile, and BuildXMLGen support libraries at the Web
application level in the same way they support libraries at the application level. For more
information about shared Jakarta EE libraries and their deployment, see Creating Shared
Jakarta EE Libraries and Optional Packages in Developing Applications for Oracle WebLogic
Server.

Enabling GZIP Compression for Web Applications
The WebLogic Server Web container supports HTTP content-encoding GZIP compression,
which is part of HTTP/1.1. With GZIP compression, you can reduce the size of the data that a
Web browser has to download, improving network bandwidth.

For general information about content-encoding and GZIP compression, see the Hypertext
Transfer Protocol HTTP/1.1 Specification.

You can enable and configure content-encoding GZIP compression at the domain level or Web
application level.

To set domain-wide values for GZIP compression support, use WLST to configure the following
attributes of the GzipCompressionMBean under the WebAppContainerMBean:

Table 2-1 Domain-Level GZIP Compression Attributes

Attribute Description Default Value

GzipCompressionEnabled Enables GZIP compression for all
Web applications in the domain.

false

GzipCompressionMinCompress
ionContentLength

Specifies the minimum file size to
trigger compression in Web
applications.

This attribute allows you to
bypass small-sized resources
where compression would not
yield a great return but use
unnecessary CPU.

2048

GzipCompressionContentType Specifies the type of content to
be included compression.

"text/html, text/xml,
text/plain"

To configure GZIP compression for a specific Web application, use the gzip-
compression element in the weblogic.xml deployment descriptor container-descriptor element.
See gzip-compression.

Application-level values override domain-level values. Therefore, any gzip-
compression values set in weblogic.xml take precedence over domain-wide values set in
the GzipCompressionMBean or default values.

WebLogic Server determines the GZIP compression attribute value to use based on the
following override hierarchy:

• If you do not configure GZIP compression in the individual Web
application weblogic.xml file or in the domain-wide GzipCompressionMBean, then the
domain default value is used.

Chapter 2
Enabling GZIP Compression for Web Applications

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

http://tools.ietf.org/html/rfc7231#section-3.1.2
http://tools.ietf.org/html/rfc7231#section-3.1.2

• If you configure GZIP compression in the domain-wide GzipCompressionMBean, then the
MBean value overrides the default value. The GzipCompressionMBeanvalue is used.

• If you configure GZIP compression in the individual Web application weblogic.xml file,
then the weblogic.xml file overrides the GzipCompressionMBean value and the default
value. The Web application weblogic.xml value is used.

You can track compression statistics, such as CPUs used, original content length, GZIP
content length, and the compression ratio, by enabling the HTTPDebugLoggerdebug flag, which
tracks information about these statistics in existing server log files. If HTTPDebugLogger is not
enabled, these statistics are not tracked. To enableHTTPDebugLogger, set -
Dweblogic.debug.DebugHttp=true in JAVA_OPTIONS in the server start script.

Chapter 2
Enabling GZIP Compression for Web Applications

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

3
Creating and Configuring Servlets

Learn about what is new and changed in recent servlet specifications, and how to create and
configure servlets.
This chapter includes the following sections:

What's New and Changed in Servlets
These sections summarize the changes in the servlet programming model and requirements.

What's New and Changed in Servlet 5.0
WebLogic Server supports the Jakarta Servlet 5.0 specification (see https://jakarta.ee/
specifications/servlet/5.0/). There is no significant change in the servlet specification
between 4.0 and 5.0, other than moving from javax.* to jakarta.* package naming. To
upgrade to Jakarta Servlet 5.0, you must use Jakarta EE 9 and you must alter javax.*
packages imports to jakarta.* packages. Also, if you are using any other libraries, you must
use a compatible version.

Oracle recommends using Rewrite WebLogic recipes to apply the changes required to upgrade
your applications to WebLogic Server 15.1.1.0.0 and Jakarta EE 9.1, such as to:

• Transform applications from javax to the jakarta namespace.

• Transform deployment descriptors with Jakarta schema.

• Upgrade applications from Java 8 or 11 to Java 17 or 21.

• Identify deprecated or removed WebLogic Server and Java APIs.

• Upgrade WebLogic Maven properties versions.

• Upgrade Spring 5.x applications to Spring Framework 6.x.

For more information about using WebLogic OpenRewrite recipes for your WebLogic
applications, see the WebLogic Server application upgrade tooling Documentation.

What Was New and Changed in Servlet 4.0
WebLogic Server supports the Jakarta Servlet 4.0 specification (see https://jakarta.ee/
specifications/servlet/4.0/), which introduces the following new features:

• Support for HTTP/2—HTTP/2 enables a more efficient use of network resources and a
reduced perception of latency by introducing header field compression and allowing
multiple concurrent exchanges on the same connection. It also introduces an unsolicited
push of representations from servers to clients.

– Server Push—Server push is the most visible of the improvements in HTTP/2 to
appear in the servlet API. All of the new features in HTTP/2, including server push, are
aimed at improving the perceived performance of the web browsing experience.
Server push is the ability of the server to anticipate what will be needed by the client in
advance of the client’s request. It lets the server pre-populate the browser’s cache in
advance of the browser asking for the resource to put in the cache. For example,

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 10

https://jakarta.ee/specifications/servlet/5.0/
https://jakarta.ee/specifications/servlet/5.0/
https://github.com/oracle/rewrite-recipes/tree/main/rewrite-weblogic/README.md#recipes
https://github.com/oracle/rewrite-recipes/tree/main/rewrite-weblogic/docs/README.md
https://jakarta.ee/specifications/servlet/4.0/
https://jakarta.ee/specifications/servlet/4.0/

servers might know that whenever a browser requests index.html, it will shortly
thereafter request header.gif, footer.gif, and style.css. Servers can preemptively
start sending the bytes of these assets along with the bytes of the index.html.

To use server push, obtain a reference to a PushBuilder from an
HttpServletRequest, edit the builder as desired, then call push().

PushBuilder pb = req.newPushBuilder();
pb.path("bar.jpg");
pb.push();

– HTTP/2 configuration parameters via a new Http2ConfigMBean.

• HTTP Trailer support—HTTP trailer is a collection of a special type of HTTP headers that
comes after the response body. The trailer response header allows the sender to include
additional fields at the end of chunked messages in order to supply metadata that might be
dynamically generated while the message body is sent, such as a message integrity
check, digital signature, or post-processing status.

• Mapping Discovery—Every mapping that causes a servlet to be activated, regardless of
whether or not servlet filters are involved, is discoverable at runtime using the Servlet
Mapping API. The method getHttpServletMapping() on HttpServletRequest returns an
HttpServletMapping implementation that provides information for the mapping that caused
the current servlet to be invoked. As with the included and forwarded request parameters,
HttpServletMapping is not available for servlets that have been obtained with a call to
ServletContext.getNamedDispatcher().

• Servlet examples—When you install WebLogic Server examples, the examples source
code is placed in the EXAMPLES_HOME\examples\src\examples\javaee8\servlet directory.
The default path is ORACLE_HOME\wlserver\samples\server. From this directory, you can
access the source code and instruction files for the Servlet 4.0 code examples without
having to set up the samples domain.

The ORACLE_HOME\user_projects\domains\wl_server directory contains the WebLogic
Server examples domain; it contains your applications and the XML configuration files that
define how your applications and Oracle WebLogic Server will behave, as well as startup
and environment scripts. For more information about the WebLogic Server code examples,
see Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

– Server Push - demonstrates how to build a HTTP/2 server push request and push a
resource to the client.

EXAMPLES_HOME/examples/src/examples/javaee8/servlet/server-push

– HTTP Trailer - demonstrates how to use the HTTP trailer API. The servlet consumes
HTTP trailer from the request and produces HTTP trailer for the response.

EXAMPLES_HOME/examples/src/examples/javaee8/servlet/trailer

– Mapping Discovery - demonstrates how to use HttpServletMapping to handle a
series of hyperlinks that explore the various values for the properties of
HttpServletMapping.

EXAMPLES_HOME/examples/src/examples/javaee8/servlet/mapping-discovery

Configuring Servlets
Learn how to configure servlets using Jakarta EE metadata annotations versus deployment
descriptors, and how to use servlet mapping in a Web application.

Chapter 3
Configuring Servlets

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 10

Servlet Annotations
With Jakarta EE metadata annotations, the standard web.xml deployment descriptor is
optional. The servlet specification states annotations can be defined on certain Web
components, such as servlets, filters, listeners, and tag handlers. The annotations are used to
declare dependencies on external resources. The container will detect annotations on such
components and inject necessary dependencies before the component's life cycle methods are
invoked. See WebLogic Annotation for Web Components.

However, you can also define servlets as a part of a Web application in several entries in the
standard Web application deployment descriptor, web.xml. The web.xml file is located in the
WEB-INF directory of your Web application.

The first entry, under the root servlet element in web.xml, defines a name for the servlet and
specifies the compiled class that executes the servlet. (Or, instead of specifying a servlet class,
you can specify a JSP.) The servlet element also contains definitions for initialization
attributes and security roles for the servlet.

The second entry in web.xml, under the servlet-mapping element, defines the URL pattern
that calls this servlet.

Servlet Mapping
Servlet mapping controls how you access a servlet. The following examples demonstrate how
you can use servlet mapping in your Web application. In the examples, a set of servlet
configurations and mappings (from the web.xml deployment descriptor) is followed by a table
(see Table 3-1) showing the URLs used to invoke these servlets.

Example 3-1 Servlet Mapping Example

<servlet>
 <servlet-name>watermelon</servlet-name>
 <servlet-class>myservlets.watermelon</servlet-class>
</servlet>
<servlet>
 <servlet-name>garden</servlet-name>
 <servlet-class>myservlets.garden</servlet-class>
</servlet>
<servlet>
 <servlet-name>list</servlet-name>
 <servlet-class>myservlets.list</servlet-class>
</servlet>
<servlet>
 <servlet-name>kiwi</servlet-name>
 <servlet-class>myservlets.kiwi</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>watermelon</servlet-name>
 <url-pattern>/fruit/summer/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>garden</servlet-name>
 <url-pattern>/seeds/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>list</servlet-name>
 <url-pattern>/seedlist</url-pattern>
</servlet-mapping>
<servlet-mapping>

Chapter 3
Configuring Servlets

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 10

 <servlet-name>kiwi</servlet-name>
 <url-pattern>*.abc</url-pattern>
</servlet-mapping>

Table 3-1 url-patterns and Servlet Invocation

URL Servlet Invoked

http://host:port/mywebapp/
fruit/summer/index.html

watermelon

http://host:port/mywebapp/
fruit/summer/index.abc

watermelon

http://host:port/mywebapp/
seedlist

list

http://host:port/mywebapp/
seedlist/index.html

The default servlet, if configured, or an HTTP 404 File Not
Found error message.

If the mapping for the list servlet had been /seedlist*,
the list servlet would be invoked.

http://host:port/mywebapp/
seedlist/pear.abc

kiwi
If the mapping for the list servlet had been /seedlist*, the
list servlet would be invoked.

http://host:port/mywebapp/seeds garden

http://host:port/mywebapp/
seeds/index.html

garden

http://host:port/mywebapp/
index.abc

kiwi

Setting Up a Default Servlet
Each Web application has a default servlet. This default servlet can be a servlet that you
specify, or, if you do not specify a default servlet, WebLogic Server uses an internal servlet
called the FileServlet as the default servlet.

You can register any servlet as the default servlet. Writing your own default servlet allows you
to use your own logic to decide how to handle a request that falls back to the default servlet.

Setting up a default servlet replaces the FileServlet and should be done carefully because
the FileServlet is used to serve most files, such as text files, HTML file, image files, and
more. If you expect your default servlet to serve such files, you will need to write that
functionality into your default servlet.

To set up a user-defined default servlet:

1. Define your servlet as described in Configuring How a Client Accesses a Web Application.

2. Add a servlet-mapping with url-pattern = "/" as follows:

<servlet-mapping>
<servlet-name>MyOwnDefaultServlet</servlet-name>
<url-pattern>/myservlet/*(</url-pattern>
</servlet-mapping>

3. If you still want the FileServlet to serve files with other extensions:

a. Define a servlet and give it a <servlet-name>, for example myFileServlet.

Chapter 3
Setting Up a Default Servlet

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 10

b. Define the <servlet-class> as weblogic.servlet.FileServlet.

c. Using the <servlet-mapping> element, map file extensions to the myFileServlet (in
addition to the mappings for your default servlet). For example, if you want the
myFileServlet to serve.gif files, map *.gif to the myFileServlet.

Note

The FileServlet includes the SERVLET_PATH when determining the source
filename if the docHome parameter (deprecated in this release) is not specified.
As a result, it is possible to explicitly serve only files from specific directories
by mapping the FileServlet to /dir/*, etc.

Servlet Initialization Attributes
You define initialization attributes for servlets in the Web application deployment descriptor,
web.xml, in the init-param element of the servlet element, using param-name and param-
value tags. The web.xml file is located in the WEB-INF directory of your Web application.

For example:

Example 3-2 Example of Configuring Servlet Initialization Attributes in web.xml

<servlet>
 <servlet-name>HelloWorld2</servlet-name>
 <servlet-class>examples.servlets.HelloWorld2</servlet-class>
 <init-param>
 <param-name>greeting</param-name>
 <param-value>Welcome</param-value>
 </init-param>
 <init-param>
 <param-name>person</param-name>
 <param-value>WebLogic Developer</param-value>
 </init-param>
</servlet>

Writing a Simple HTTP Servlet
Examine a procedure for writing a simple HTTP servlet, which prints out the message Hello
World.

A complete code example (the HelloWorldServlet) illustrating these steps is included at the
end of this section. Additional information about using various Jakarta EE and WebLogic
Server services such as JDBC, RMI, and JMS, in your servlet are discussed later in this
document.

1. Import the appropriate package and classes, including the following:

import jakarta.servlet.*;
import jakarta.servlet.http.*;
import java.io.*;

2. Extend jakarta.servlet.http.HttpServlet. For example:

public class HelloWorldServlet extends HttpServlet{

3. Implement a service() method.

Chapter 3
Servlet Initialization Attributes

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 10

The main function of a servlet is to accept an HTTP request from a Web browser, and
return an HTTP response. This work is done by the service() method of your servlet.
Service methods include response objects used to create output and request objects used
to receive data from the client.

You may have seen other servlet examples implement the doPost() and/or doGet()
methods. These methods reply only to POST or GET requests; if you want to handle all
request types from a single method, your servlet can simply implement the service()
method. (However, if you choose to implement the service() method, you cannot
implement the doPost() or doGet() methods, unless you call super.service() at the
beginning of the service() method.) The HTTP servlet specification describes other
methods used to handle other request types, but all of these methods are collectively
referred to as service methods.

All the service methods take the same parameter arguments. An HttpServletRequest
provides information about the request, and your servlet uses an HttpServletResponse to
reply to the HTTP client. The service method looks like the following:

public void service(HttpServletRequest req,
 HttpServletResponse res) throws IOException
{

4. Set the content type, as follows:

res.setContentType("text/html");

5. Get a reference to a java.io.PrintWriter object to use for output, as follows:

PrintWriter out = res.getWriter();

6. Create some HTML using the println() method on the PrintWriter object, as shown in
the following example:

out.println("<html><head><title>Hello World!</title></head>");
out.println("<body><h1>Hello World!</h1></body></html>");
 }
}

7. Compile the servlet, as follows:

a. Set up a development environment shell with the correct classpath and path settings.

b. From the directory containing the Java source code for your servlet, compile your
servlet into the WEB-INF/classes directory of the Web application that contains your
servlet. For example:

javac -d /myWebApplication/WEB-INF/classes myServlet.java

8. Deploy the servlet as part of a Web application hosted on WebLogic Server.

9. Call the servlet from a browser.

The URL you use to call a servlet is determined by:

• The name of the Web application containing the servlet and

• The name of the servlet as mapped in the deployment descriptor of the Web
application. Request parameters can also be included in the URL used to call a
servlet.

Generally the URL for a servlet conforms to the following:

http://host:port/webApplicationName/mappedServletName?parameter

The components of the URL are defined as follows:

• host is the name of the machine running WebLogic Server.

Chapter 3
Writing a Simple HTTP Servlet

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 10

• port is the port at which the above machine is listening for HTTP requests.

• webApplicationName is the name of the Web application containing the servlet.

• parameters are one or more name-value pairs containing information sent from the
browser that can be used in your servlet.

For example, to use a Web browser to call the HelloWorldServlet (the example featured
in this document), which is deployed in the examplesWebApp and served from a WebLogic
Server running on your machine, enter the following URL:

http://localhost:7001/examplesWebApp/HelloWorldServlet

The host:port portion of the URL can be replaced by a DNS name that is mapped to
WebLogic Server.

Advanced Features
Examine the steps create a basic servlet. You will probably also use more advanced features
of servlets.

• Handling HTML form data—HTTP servlets can receive and process data received from a
browser client in HTML forms.

– Retrieving Client Input

• Application design—HTTP servlets offer many ways to design your application. The
following sections provide detailed information about writing servlets:

– Providing an HTTP Response

– Threading Issues in HTTP Servlets

– Dispatching Requests to Another Resource

• Initializing a servlet—if your servlet needs to initialize data, accept initialization arguments,
or perform other actions when the servlet is initialized, you can override the init()
method.

– Initializing a Servlet

• Use of sessions and persistence in your servlet—sessions and persistence allow you to
track your users within and between HTTP sessions. Session management includes the
use of cookies. See the following sections:

– Session Tracking from a Servlet

– Using Cookies in a Servlet

– Configuring Session Persistence

• Use of WebLogic services in your servlet—WebLogic Server provides a variety of services
and APIs that you can use in your Web applications. These services include JDBC drivers,
JDBC database connection pools, Jakarta Messaging (JMS), Enterprise JavaBeans (EJB),
and Remote Method Invocation (RMI). See the following sections:

– Using WebLogic Services from an HTTP Servlet

– Accessing Databases

Complete HelloWorldServlet Example
Examine the complete Java source code for the example used in the preceding procedure.
The example is a simple servlet that provides a response to an HTTP request.

Chapter 3
Advanced Features

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 10

Later in this document, this example is expanded to illustrate how to use HTTP parameters,
cookies, and session tracking.

Example 3-3 HelloWorldServlet.java

import jakarta.servlet.*;
import jakarta.servlet.http.*;
import java.io.*;
public class HelloWorldServlet extends HttpServlet {
 public void service(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException
 {
 // Must set the content type first
 res.setContentType("text/html");
 // Now obtain a PrintWriter to insert HTML into
 PrintWriter out = res.getWriter();
 out.println("<html><head><title>" +
 "Hello World!</title></head>");
 out.println("<body><h1>Hello World!</h1></body></html>");
 }
}

You can find the source code and instructions for compiling and running examples in the
ORACLE_HOME\wlserver\samples\server\examples\src\examples\splitdir\helloWorldEar
directory of your WebLogic Server distribution, whereORACLE_HOME represents the directory in
which you installed WebLogic Server. For more information about the WebLogic Server code
examples, see Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

Debugging Servlet Containers
Learn about the debugging options available in the WebLogic Server servlet container:

Disabling Access Logging
Logging access for servlets can be expensive with regard to server performance. Therefore, in
cases where access logging is not required, you can improve performance by disabling logging
to the access log file.

Usage
The optional access-logging-disabled property in the container-descriptor in
weblogic.xml can be used to specify whether access logging for an underlying Web
application is disabled.

• If the property is set as true, then application accesses are not logged.

• If the property is not defined or is set as false, then application accesses are logged.

Note

The access-logging-disabled property functions at the Web application level.
Therefore, if it is defined in a Web application, it does not affect other Web
applications. This property works under both development mode and production
mode.

Chapter 3
Debugging Servlet Containers

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 10

Note

To disable logging for internal applications, use this property,
weblogic.servlet.logging.LogInternalAppAccess=false.

Example
The following example demonstrates how to disable access logging:

<?xml version="1.0" encoding="ISO-8859-1"?>
<weblogic-web-app xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app">
<container-descriptor>
<access-logging-disabled>true</access-logging-disabled>
</container-descriptor>
</weblogic-web-app>

Debugging Specific Sessions
Tracking session change is very helpful when developing applications, especially for replicated
sessions. Although you can utilize HttpSessionAttributeListener to track session changes
at the Web application level, developers need a finer-grained debugging option to track
session changes during a specific request.

Usage
The wl_debug_session request attribute or a same-named session attribute can log attribute
changes in the current session. When either flag is used, the container logs the modifications
of the underlying session in the server log.

You can enable specific session debugging by using either of the following methods:

• Set the wl_debug_session attribute to the current session, as follows:

• session.setAttribute('wl_debug_session', Boolean.TRUE);

• Use the wl_debug_session attribute in the request query string as the indicator. The
container adds a wl_debug_session session attribute to the current session, as shown in
the following example:

http://localhost/foocontext/foo?wl_debug_session

To stop debugging a session, you can simply remove the wl_debug_session attribute.

Note

This feature is available only in development mode. The severity of the debug
message is at the debug level. You need to adjust the severity of the logger to debug or
lower for the system logger to output the debug message to the server log file.

Tracking a Request Handle Footprint
Tracking a request handle footprint is very helpful while in application development mode. For
example, when debugging an application, you need to know many pieces of information. This
includes such information as: what request is received, how it is dispatched, what session it is

Chapter 3
Debugging Servlet Containers

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 10

bound to it, when the servlet is invoked, and what response is sent. Finally, when a
ServletException occurs, you need a way to link the exception to corresponding request to
find the root cause of the error.

Usage
The WebLogic Server servlet container provides more detailed log messages during request
handling to better describe each milestone in a request flow. No additional configuration
changes are required other than enabling the DebugHttp logger.

You can then find the footprint of a request handle in the server log. Once in production mode,
you should disable DebugHttp logger to maximize server performance.

Chapter 3
Debugging Servlet Containers

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 10

4
Creating and Configuring JSPs

Learn how to create and configure Jakarta Server Pages (JSPs).
This chapter includes the following sections:

Configuring Jakarta Server Pages (JSPs)
In order to deploy JSPs files, you must place them in the root (or in a subdirectory below the
root) of a Web application. You define JSP configuration parameters in subelements of the
jsp-descriptor element in the WebLogic-specific deployment descriptor, weblogic.xml.

These parameters define the following functionality:

• Options for the JSP compiler

• Debugging

• How often WebLogic Server checks for updated JSPs that need to be recompiled

• Character encoding

For a complete description of these subelements, see jsp-descriptor.

Registering a JSP as a Servlet
You can register a JSP as a servlet using the servlet element of the Jakarta EE standard
deployment descriptor web.xml. (The web.xml file is located in the WEB-INF directory of your
Web application.) A servlet container maintains a map of the servlets known to it. This map is
used to resolve requests that are made to the container. Adding entries into this map is known
as "registering" a servlet. You add entries to this map by referencing a servlet element in
web.xml through the servlet-mapping entry.

A JSP is a type of servlet; registering a JSP is a special case of registering a servlet. Normally,
JSPs are implicitly registered the first time you invoke them, based on the name of the JSP file.
Therefore, the myJSPfile.jsp file would be registered as myJSPfile.jsp in the mapping table.
You can implicitly register JSPs, as illustrated in the following example. In this example, you
request the JSP with the name /main instead of the implicit name myJSPfile.jsp.

In this example, a URL containing /main will invoke myJSPfile.jsp:

<servlet>
 <servlet-name>myFoo</servlet-name>
 <jsp-file>myJSPfile.jsp</jsp-file>
</servlet>
<servlet-mapping>
 <servlet-name>myFoo</servlet-name>
 <url-pattern>/main</url-pattern>
</servlet-mapping>

Registering a JSP as a servlet allows you to specify the load order, initialization attributes, and
security roles for a JSP, just as you would for a servlet.

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

Configuring JSP Tag Libraries
WebLogic Server lets you create and use custom JSP tags. Custom JSP tags are Java classes
you can call from within a JSP page. To create custom JSP tags, you place them in a tag
library and define their behavior in a tag library descriptor (TLD) file. You make this TLD
available to the Web application containing the JSP by defining it in the Web application
deployment descriptor. It is a good idea to place the TLD file in the WEB-INF directory of your
Web application, because that directory is never available publicly.

In the Web application deployment descriptor, you define a URI pattern for the tag library. This
URI pattern must match the value in the taglib directive in your JSP pages. You also define the
location of the TLD. For example, if the taglib directive in the JSP page is:

<%@ taglib uri="myTaglib" prefix="taglib" %>

and the TLD is located in the WEB-INF directory of your Web application, you would create the
following entry in the Web application deployment descriptor:

<jsp-config>
<taglib>
<taglib-uri>myTaglib</taglib-uri>
<tablig-location>WEB-INF/myTLD.tld</taglib-location>
</taglib>
</jsp-config>

You can also deploy a tag library as a .jar file.

For more information on creating custom JSP tag libraries, see Developing JSP Tag
Extensions for Oracle WebLogic Server.

WebLogic Server also includes several custom JSP tags that you can use in your applications.
These tags perform caching, facilitate query attribute-based flow control, and facilitate
iterations over sets of objects. See:

• Using Custom WebLogic JSP Tags (cache, process, repeat)

• Using WebLogic JSP Form Validation Tags

Configuring Welcome Files
Web application developers can define an ordered list of partial URIs called welcome files in
the Web application deployment descriptor. The purpose of this mechanism is to allow the
deployer to specify an ordered list of partial URIs for the container to use for appending to
URIs when there is a request for a URI that corresponds to a directory entry in the WAR not
mapped to a Web component. This feature can make your site easier to use, because the user
can type a URL without giving a specific filename.

Note

Welcome files can be JSPs, static pages, or servlets.

Welcome files are defined at the Web application level. If your server is hosting multiple Web
applications, you need to define welcome files separately for each Web application. You define
welcome files using the welcome-file-list element in web.xml. (The web.xml file is located in

Chapter 4
Configuring JSP Tag Libraries

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

the WEB-INF directory of your Web application.) The following is an example welcome file
configuration:

Example 4-1 Welcome File Example

<servlet>
 <servlet-name>WelcomeServlet</servlet-name>
 <servlet-class>foo.bar.WelcomeServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>WelcomeServlet</servlet-name>
 <url-pattern>*.foo</url-pattern>
</servlet-mapping>

<welcome-file-list>
 <welcome-file>/welcome.foo</welcome-file>
</welcome-file-list>

For more information on welcome files, see the servlet 5.0 specification, section 10.10 at
https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-spec-5.0#welcome-
files.

Customizing HTTP Error Responses
You can configure WebLogic Server to respond with your own custom Web pages or other
HTTP resources when particular HTTP errors or Java exceptions occur, instead of responding
with the standard WebLogic Server error response pages.

You define custom error pages in the error-page element of the Jakarta EE standard Web
application deployment descriptor, web.xml. (The web.xml file is located in the WEB-INF
directory of your Web application.)

Determining the Encoding of an HTTP Request
WebLogic Server converts binary (bytes) data contained in an HTTP request to the correct
encoding expected by the servlet. The incoming post data might be encoded in a particular
encoding that must be converted to the correct encoding on the server side for use in methods
such as request.getParameter(..).

There are two ways you can define the code set:

• For a POST operation, you can set the encoding in the HTML <form> tag. For example,
this form tag sets SJIS as the character set for the content:

<form action="http://some.example.com/myWebApp/foo/index.html">
 <input type="application/x-www-form-urlencoded; charset=SJIS">
</form>

When the form is read by WebLogic Server, it processes the data using the SJIS character
set.

• Because all Web clients do not transmit the information after the semicolon in the above
example, you can set the code set to be used for requests by using the input-charset
element in the WebLogic-specific deployment descriptor, weblogic.xml.

The java-charset-name subelement defines the encoding used to convert data when the
URL of the request contains the path specified with the resource-path subelement.

Chapter 4
Customizing HTTP Error Responses

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-spec-5.0#welcome-files
https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-spec-5.0#welcome-files

This following example ensures that all request parameters that map to the pattern /foo/*
are encoded using the Java character set SJIS.

<input-charset>
<resource-path>/foo/*</resource-path>
<java-charset-name>SJIS</java-charset-name>
</input-charset>

This method works for both GET and POST operations.

Mapping IANA Character Sets to Java Character Sets
The names assigned by the Internet Assigned Numbers Authority (IANA) to describe character
sets are sometimes different from the names used by Java. Because all HTTP communication
uses the IANA character set names and these names are not always the same, WebLogic
Server internally maps IANA character set names to Java character set names and can usually
determine the correct mapping. However, you can resolve any ambiguities by explicitly
mapping an IANA character set to the name of a Java character set.

To map on IANA character set to a Java character, set the character set names in the
charset-mapping element of the WebLogic-specific deployment descriptor, weblogic.xml.
Define the IANA character set name in the iana-charset-name element and the Java
character set name in the java-charset-name element. See charset-mapping.

For example:

<charset-mapping>
 <iana-charset-name>Shift-JIS</iana-charset-name>
 <java-charset-name>SJIS</java-charset-name>
</charset-mapping>

Configuring Implicit Includes at the Beginning and End of JSPs
You can implicitly include preludes (also called headers) and codas (also called footers) for a
group of JSP pages by adding <include-prelude> and <include-coda> elements respectively
within a <jsp-property-group> element in the Web application web.xml deployment
descriptor. Their values are context-relative paths that must correspond to elements in the Web
application. When the elements are present, the given paths are automatically included (as in
an include directive) at the beginning and end of each JSP page in the property group
respectively. When there is more than one include or coda element in a group, they are
included in the order they appear. When more than one JSP property group applies to a JSP
page, the corresponding elements will be processed in the same order as they appear in the
JSP configuration section.

Consider the following files: /template/prelude.jspf and /template/coda.jspf. These files
are used to include code at the beginning and end of each file in the following example:

Example 4-2 Implicit Includes

<jsp-config>
 <jsp-property-group>
 <display-name>WebLogicServer</display-name>
 <url-pattern>*.jsp</url-pattern>
 <el-ignored>false</el-ignored>
 <scripting-invalid>false</scripting-invalid>
 <is-xml>false</is-xml>
 <include-prelude>/template/prelude.jspf</include-prelude>
 <include-coda>/template/coda.jspf</include-coda>

Chapter 4
Mapping IANA Character Sets to Java Character Sets

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

 </jsp-property-group>
</jsp-config>

Configuring JSP Property Groups
A JSP property group is a collection of properties that apply to a set of files representing JSP
pages. You define these properties in one or more subelements of the jsp-property-group
element in the web.xml deployment descriptor.

Most properties defined in a JSP property group apply to an entire translation unit, that is, the
requested JSP file that is matched by its URL pattern and all the files it includes by way of the
include directive. The exception is the page-encoding property, which applies separately to
each JSP file matched by its URL pattern. The applicability of a JSP property group is defined
through one or more URL patterns. URL patterns use the same syntax as defined in chapter
12, Mapping Requests to Servlets of the servlet 5.0 specification, but are bound at translation
time. All the properties in the property group apply to the resources in the Web application that
match any of the URL patterns. There is an implicit property—that of being a JSP file. JSP
property groups do not affect tag files.

JSP Property Group Rules
The following are some rules that apply to JSP property groups:

• If a resource matches a URL pattern in both a servlet-mapping and a jsp-property-
group, the pattern that is most specific applies (following the same rules as the servlet
specification).

• If the URL patterns are identical, the jsp-property-group takes precedence over the
servlet-mapping.

• If at least one jsp-property-group contains the most specific matching URL pattern, the
resource is considered to be a JSP file, and the properties in that jsp-property-group
apply.

• If a resource is considered to be a JSP file, all include-prelude and include-coda
properties apply from all the jsp-property-group elements with matching URL patterns.
See Configuring Implicit Includes at the Beginning and End of JSPs.

What You Can Do with JSP Property Groups
You can configure the jsp-property-group to do the following:

• Indicate that a resource is a JSP file (implicit).

• Control disabling of JSP expression language (JSP EL) evaluation.

• Control disabling of Scripting elements.

• Indicate page Encoding information.

• Prelude and Coda automatic includes.

• Indicate that a resource is a JSP document.

For more information on JSP property groups, see chapter 3, "JSP Configuration," of the JSP
3.0 specification at https://jakarta.ee/specifications/pages/3.0/jakarta-server-
pages-spec-3.0#jsp-configuration.

Chapter 4
Configuring JSP Property Groups

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-spec-5.0#mapping-requests-to-servlets
https://jakarta.ee/specifications/pages/3.0/jakarta-server-pages-spec-3.0#jsp-configuration
https://jakarta.ee/specifications/pages/3.0/jakarta-server-pages-spec-3.0#jsp-configuration

Writing JSP Documents Using XML Syntax
The JSP 3.0 specification improves upon the concept of JSP documents by allowing them to
leverage XML syntax. Also, JSP documents have been extended to use property groups. A
JSP document is a JSP page written using XML syntax. JSP documents need to be described
as such, either implicitly or explicitly, to the JSP container, which then processes them as XML
documents, checking for well-formedness and applying requests like entity declarations, if
present. JSP documents are used to generate dynamic content using the standard JSP
semantics.

The following is an example of a simple JSP document that generates, using the JSP standard
tag library, an XML document that has table as the root element. The table element has three
row subelements containing values 1, 2, and 3.

Example 4-3 Simple JSP Document

<table>
<c:forEach
xmlns:c="http://java.sun.com/jsp/jstl/core"
var="counter" begin="1" end="3">
<row>${counter}</row>
</c:forEach>
</table>

How to Use JSP Documents
You can use JSP documents in a number of ways including the following:

• JSP documents can be passed directly to the JSP container. This is becoming more
important as more and more content is authored in XML. The generated content may be
sent directly to a client or it may be part of some XML processing pipeline.

• JSP documents can be manipulated by XML-aware tools.

• JSP documents can be generated from textual representations by applying an XML
transformation, such as XSLT.

• A JSP document can be generated automatically, for example, by serializing some objects.

Important Information about JSP Documents
The following are some important pieces of information pertaining to JSP documents:

• By default, files with the filename extension .jspx or .tagx are treated as JSP documents
in the XML syntax.

• JSP property groups defined in the web.xml deployment descriptor can control which files
in the Web application can be treated as being in the XML syntax. See Configuring JSP
Property Groups.

• If a JSP file starts with <jsp:root>, then it is used in the XML syntax.

• XML namespaces are used instead of <%@taglib%> taglib tags (xmlns:prefix="...").

• The <jsp:scriptlet>, <jsp:declaration> and <jsp:expression> tags are used instead
of <%...%>, <%!...%>, and <%=...%>.

• The <jsp:directive.page> and <jsp:directive.include> tags are used instead of
<%@page%> and <%@include%>.

Chapter 4
Writing JSP Documents Using XML Syntax

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

• Inside of attribute values, instead of using <%=...%> to denote an expression, only "%...%"
is used.

Chapter 4
Writing JSP Documents Using XML Syntax

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

5
Using JSF and JSTL

Learn how to use Jakarta Server Faces (JSF) and Jakarta Standard Tag Library (JSTL) with
WebLogic Server.
This chapter includes the following sections:

Using JSF and JSTL With Web Applications
JSF and JSTL are an integral part of Jakarta EE and, as such, are incorporated directly into
WebLogic Server. All Jakarta EE technologies are present on the WebLogic Server classpath.
No additional configuration is required to use any of the Jakarta EE technologies in your
applications. Applications deployed to WebLogic Server can seamlessly make use of JSF 3.0
and JSTL 2.0 without requiring you to deploy and reference separate shared libraries.

The Jakarta EE API JAR file is included in WL_HOME\wlserver\server\lib\jakarta.javaee-
api-9.1.0.jar, where WL_HOME represents the top-level installation directory for WebLogic
Server.

For information about referencing these shared libraries with your Web applications, see
Creating Shared Jakarta EE Libraries and Optional Packages in Developing Applications for
Oracle WebLogic Server.

Jakarta Server Faces (JSF)
JSF technology simplifies building user interfaces for JavaServer applications. Developers of
various skill levels can quickly build Web applications by: assembling reusable UI components
in a page, connecting these components to an application data source, and wiring client-
generated events to server-side event handlers.

WebLogic Server supports the JSF 3.0 specification at https://jakarta.ee/specifications/
faces/3.0/. WebLogic Server support includes:

• Better CDI integration; a CDI-compatible @ManagedProperty annotation.

• Better WebSocket integration; direct support for WebSockets using the new
<f:websocket> tag.

• Ajax method invocation.

• Class-level bean validation using the new <f:validateWholeBean> tag.

• Java date and time support.

• Enhanced component search expression framework.

These features are described in detail in the Java EE Tutorial at https://jakarta.ee/learn/
docs/jakartaee-tutorial/9.1/intro/overview/overview.html and in https://github.com/
jakartaee/faces.

If you selected to install the server examples with your WebLogic Server installation, the
sample application demonstrates the following key features of JSF:

• Ajax method invocation using the new <h:commandScript> component

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 2

https://jakarta.ee/specifications/faces/3.0/
https://jakarta.ee/specifications/faces/3.0/
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/intro/overview/overview.html
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/intro/overview/overview.html
https://github.com/jakartaee/faces
https://github.com/jakartaee/faces

• CDI converter

• Iterable h:dataTable

• CDI for evaluation of JSF-specific EL implicit Objects

• CDI injection

• New Java date and time

• @ManagedProperty

• Iterable ui:repeat

• Class-level bean validation using f:validateWholeBean

• CDI validator

• WebSocket using f:websocket

The JSF examples are located in
the ORACLE_HOME\wlserver\samples\server\examples\src\examples\javaee8\jsf directory,
where ORACLE_HOME represents the directory in which you installed WebLogic Server.

For more information about the WebLogic Server code examples, see Sample Applications
and Code Examples in Understanding Oracle WebLogic Server.

Jakarta Standard Tag Library (JSTL)
The Jakarta Standard Tag Library (JSTL) encapsulates as simple tags the core functionality
common to many Web applications. JSTL has support for common, structural tasks, such as:

• Iteration and conditionals

• Tags for manipulating XML documents

• Internationalization tags

• SQL tags

JSTL also provides a framework for integrating existing custom tags with JSTL tags.

WebLogic Server supports the JSTL 2.0 specification at https://jakarta.ee/
specifications/tags/2.0/.

Chapter 5
Using JSF and JSTL With Web Applications

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 2

https://jakarta.ee/specifications/tags/2.0/
https://jakarta.ee/specifications/tags/2.0/

6
Configuring Resources in a Web Application

Learn how to configure Web application resources in WebLogic Server.
This chapter includes the following sections:

Configuring Resources in a Web Application
The resources that you use in a Web application are generally deployed externally to the Web
application. JDBC data sources can optionally be deployed within the scope of the Web
application as part of an EAR file.

To use external resources in the Web application, you resolve the JNDI resource name that the
application uses with the global JNDI resource name using the web.xml and weblogic.xml
deployment descriptors. (The web.xml file is located in the WEB-INF directory of your Web
application.) See Configuring Resources for more information.

You can also deploy JDBC data sources as part of the Web application EAR file by configuring
those resources in the weblogic-application.xml deployment descriptor. Resources
deployed as part of the EAR file with their scope defined as application are referred to as
application-scoped resources. These resources remain private to the application, and
application components can access the resource names by adding <resource-ref> elements
as explained in Configuring Resources.

Configuring Resources
When accessing resources such as a data source from a Web application through Java
Naming and Directory Interface (JNDI), you can map the JNDI name you look up in your code
to the actual JNDI name as bound in the global JNDI tree. This mapping is made using both
the web.xml and weblogic.xml deployment descriptors and allows you to change these
resources without changing your application code. You provide a name that is used in your
Java code, the name of the resource as bound in the JNDI tree, and the Java type of the
resource, and you indicate whether security for the resource is handled programmatically by
the servlet or from the credentials associated with the HTTP request. You can also access JMS
module resources, such as queues, topics, and connection factories.

For more information see, Configuring JMS Application Modules for Deployment in
Administering JMS Resources for Oracle WebLogic Server.

To configure resources:

1. Enter the resource name in the deployment descriptor as you use it in your code, the Java
type, and the security authorization type.

2. Map the resource name to the JNDI name.

The following example illustrates how to use an external data source. It assumes that you
have defined a data source called accountDataSource. See Create a Generic Data Source
in the Oracle WebLogic Remote Console Online Help.

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

Example 6-1 Using an External DataSource

servlet code:

javax.sql.DataSource ds = (javax.sql.DataSource) ctx.lookup
 ("myDataSource");
web.xml entries:

<resource-ref>
. . .
 <res-ref-name>myDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>CONTAINER</res-auth>
. . .
</resource-ref>
weblogic.xml entries:
<resource-description>
 <res-ref-name>myDataSource</res-ref-name>
 <jndi-name>accountDataSource</jndi-name>
</resource-description>

Referencing External EJBs
Web applications can access EJBs that are deployed as part of a different application (a
different EAR file) by using an external reference. The EJB being referenced exports a name to
the global JNDI tree in its weblogic-ejb-jar.xml deployment descriptor. An EJB reference in
the Web application module can be linked to this global JNDI name by adding an ejb-
reference-description element to its weblogic.xml deployment descriptor.

This procedure provides a level of indirection between the Web application and an EJB and is
useful if you are using third-party EJBs or Web applications and cannot modify the code to
directly call an EJB. In most situations, you can call the EJB directly without using this
indirection.

To reference an external EJB for use in a Web application:

1. Enter the EJB reference name you use to look up the EJB in your code, the Java class
name and the class name of the home and remote interfaces of the EJB in the ejb-ref
element of the Jakarta EE standard deployment descriptor, web.xml. (The web.xml file is
located in the WEB-INF directory of your Web application.)

2. Map the reference name in the ejb-reference-description element of the WebLogic-
specific deployment descriptor, weblogic.xml, to the JNDI name defined in the weblogic-
ejb-jar.xml file.

If the Web application is part of an Enterprise Application Archive (EAR file), you can
reference an EJB by the name used in the EAR with the ejb-link element of the Jakarta
EE standard deployment descriptor, web.xml.

More about the ejb-ref* Elements
The ejb-ref element in the web.xml deployment descriptor declares that either a servlet or
JSP is going to be using a particular EJB. The ejb-reference-description element in the
weblogic.xml deployment descriptor binds that reference to an EJB, which is advertised in the
global JNDI tree.

Chapter 6
Referencing External EJBs

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

The ejb-reference-descriptor element indicates which ejb-ref element it is resolving with
the ejb-ref-name element. That is, the ejb-reference-descriptor and ejb-ref elements
with the same ejb-ref-name element go together.

With the addition of the ejb-link syntax, the ejb-reference-descriptor element is no longer
required if the EJB being used is in the same application as the servlet or JSP that is using the
EJB.

The ejb-ref-name element serves two purposes in the web.xml deployment descriptor:

• It is the name that the user code (servlet or JSP) uses to look up the EJB. Therefore, if
your ejb-ref-name element is ejb1, you would perform a JNDI name lookup for ejb1
relative to java:comp/env. The ejb-ref-name element is bound into the component
environment (java:comp/env) of the Web application containing the servlet or JSP.

Assuming the ejb-ref-name element is ejb1, the code in your servlet or JSP should look
like:

Context ctx = new InitialContext();
ctx = (Context)ctx.lookup("java:comp/env");
Object o = ctx.lookup("ejb1");
Ejb1Home home = (Ejb1Home) PortableRemoteObject.narrow(o, Ejb1Home.class);

• It links the ejb-ref and ejb-reference-descriptor elements together.

Referencing Application-Scoped EJBs
Within an application, WebLogic Server binds any EJBs referenced by other application
components to the environments associated with those referencing components. These
resources are accessed at run time through a JNDI name lookup relative to java:comp/env.

The following is an example of an application deployment descriptor (application.xml) for an
application containing an EJB and a Web application, also called an Enterprise Application.
(For the sake of brevity, the XML header is not included in this example.)

Example 6-2 Example Deployment Descriptor

 <application>
 <display-name>MyApp</display-name>
 <module>
 <web>
 <web-uri>myapp.war</web-uri>
 <context-root>myapp</context-root>
 </web>
 </module>
 <module>
 <ejb>ejb1.jar</ejb>
 </module>
 </application>

To allow the code in the Web application to use an EJB in ejb1.jar, the Jakarta EE standard
Web application deployment descriptor, web.xml, must include an ejb-ref stanza that contains
an ejb-link referencing the JAR file and the name of the EJB that is being called.

The format of the ejb-link entry must be as follows:

filename#ejbname

where filename is the name of the JAR file, relative to the Web application, and ejbname is the
EJB within that JAR file. The ejb-link element should look like the following:

Chapter 6
Referencing Application-Scoped EJBs

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

<ejb-link>../ejb1.jar#myejb</ejb-link>

Note that since the JAR path is relative to the WAR file, it begins with "../". Also, if the
ejbname is unique across the application, the JAR path may be dropped. As a result, your entry
may look like the following:

<ejb-link>myejb</ejb-link>

The ejb-link element is a sub-element of an ejb-ref element contained in the Web
application's web.xml descriptor. The ejb-ref element should look like the following:

Example 6-3 <ejb-ref> Element

 <web-app>
 ...
 <ejb-ref>
 <ejb-ref-name>ejb1</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>mypackage.ejb1.MyHome</home>
 <remote>mypackage.ejb1.MyRemote</remote>
 <ejb-link>../ejb1.jar#myejb</ejb-link>
 </ejb-ref>
 ...
 </web-app>

Referring to the syntax for the ejb-link element in the above example,

<ejb-link>../ejb1.jar#ejb1</ejb-link>,

the portion of the syntax to the left of the # is a relative path to the EJB module being
referenced. The syntax to the right of # is the particular EJB being referenced in that module. In
the above example, the EJB JAR and WAR files are at the same level.

The name referenced in the ejb-link (in this example, myejb) corresponds to the ejb-name
element of the referenced EJB's descriptor. As a result, the deployment descriptor (ejb-
jar.xml) of the EJB module that this ejb-ref element is referencing should have an entry
similar to the following:

Example 6-4 <ejb-jar> Element

 <ejb-jar>
 ...
 <enterprise-beans>
 <session>
 <ejb-name>myejb</ejb-name>
 <home>mypackage.ejb1.MyHome</home>
 <remote>mypackage.ejb1.MyRemote</remote>
 <ejb-class>mypackage.ejb1.MyBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 ...
 </ejb-jar>

Notice the ejb-name element is set to myejb.

At run time, the Web application code looks up the EJB's JNDI name relative to java:/comp/
env. The following is an example of the servlet code:

MyHome home = (MyHome)ctx.lookup("java:/comp/env/ejb1");

Chapter 6
Referencing Application-Scoped EJBs

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

The name used in this example (ejb1) is the ejb-ref-name defined in the ejb-ref element of
the web.xml segment above.

Serving Resources from the CLASSPATH with the
ClasspathServlet

If you need to serve classes or other resources from the system CLASSPATH, or from the WEB-
INF/classes directory of a Web application, you can use a special servlet called the
ClasspathServlet. The ClasspathServlet is useful for applications that use applets or RMI
clients and require access to server-side classes. The ClasspathServlet is implicitly
registered and available from any application.

The ClasspathServlet is always enabled by default. To disable it, set the ServerMBean
parameter ClassPathServletDisabled to true (default = false).

The ClasspathServlet returns the classes or resources from the system CLASSPATH in the
following order:

1. WEB-INF/classes

2. JAR files under WEB-INF/lib/*

3. system CLASSPATH

To serve a resource from the WEB-INF/classes directory of a Web application, call the
resource with a URL such as:

http://server:port/myWebApp/classes/my/resource/myClass.class

In this case, the resource is located in the following directory, relative to the root of the Web
application:

WEB-INF/classes/my/resource/myClass.class

Note

WebLogic Server provides a secured production mode that enforces more restrictive
and stringent security settings to ensure less vulnerability to threats. The
ServerTemplateMBean includes a ClasspathServletSecureModeEnabled attribute that,
when secure mode is enabled, will serve only class files from well known packages
required for JDBC and JMS functionality.

If secure mode is disabled, do not place any resources or classes that should not be
publicly available in any of the locations listed above that the ClasspathServlet
serves.

Using CGI with WebLogic Server
WebLogic Server supports all CGI scripts through an internal WebLogic servlet called the
CGIServlet. To use CGI, register the CGIServlet in the Web application deployment
descriptor.

See Configuring How a Client Accesses a Web Application.

Chapter 6
Serving Resources from the CLASSPATH with the ClasspathServlet

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

Note

WebLogic Server provides functionality to support your legacy Common Gateway
Interface (CGI) scripts. For new projects, Oracle recommends that you use HTTP
servlets or JSPs.

Configuring WebLogic Server to Use CGI
To configure CGI in WebLogic Server:

1. Declare the CGIServlet in your Web application by using the servlet and servlet-
mapping elements in the Jakarta EE standard Web application deployment descriptor,
web.xml. (The web.xml file is located in the WEB-INF directory of your Web application.) The
class name for the CGIServlet is weblogic.servlet.CGIServlet. You do not need to
package this class in your Web application.

2. Register the following initialization attributes for the CGIServlet by defining the following
init-param elements:

• cgiDir—The path to the directory containing your CGI scripts. You can specify
multiple directories, separated by a ";" (Windows) or a ":" (UNIX). If you do not specify
cgiDir, the directory defaults to a directory named cgi-bin under the Web application
root.

• useByteStream—By default, character streams are used to read the output of CGI
scripts. When scripts produce binary data, the stream may become corrupted due to
character encoding. Use the useByteStream parameter to keep the stream from
becoming corrupted. Using this parameter for ascii output also improves performance.

• extension mapping—Maps a file extension to the interpreter or executable that runs
the script. If the script does not require an executable, this initialization attribute may
be omitted.

• The param-name for extension mappings must begin with an asterisk followed by a dot,
followed by the file extension, for example, *.pl.

• The param-value contains the path to the interpreter or executable that runs the script.
You can create multiple mappings by creating a separate init-param element for each
mapping.

Example 6-5 Example Web Application Deployment Descriptor Entries for Registering
the CGIServlet

<servlet>
 <servlet-name>CGIServlet</servlet-name>
 <servlet-class>weblogic.servlet.CGIServlet</servlet-class>
 <init-param>
 <param-name>cgiDir</param-name>
 <param-value>
 /bea/wlserver6.0/config/mydomain/applications/myWebApp/cgi-bin
 </param-value>
 </init-param>
 <init-param>
 <param-name>*.pl</param-name>
 <param-value>/bin/perl.exe</param-value>
 </init-param>
</servlet>
...
<servlet-mapping>

Chapter 6
Using CGI with WebLogic Server

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

 <servlet-name>CGIServlet</servlet-name>
 <url-pattern>/cgi-bin/*</url-pattern>
</servlet-mapping>

Requesting a CGI Script
The URL used to request a Perl script must follow the pattern:

http://host:port/myWebApp/cgi-bin/myscript.pl

Where

host:port—Host name and port number of WebLogic Server.

myWebApp—Name of your Web application.

cgi-bin—url-pattern name mapped to the CGIServlet.

myscript.pl—Name of the Perl script that is located in the directory specified by the cgiDir
initialization attribute.

CGI Best Practices
For a list of CGI Best Practices, see CGI Best Practices.

Chapter 6
Using CGI with WebLogic Server

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

7
WebLogic Annotation for Web Components

Learn how to annotate Web components in WebLogic Server.
This chapter includes the following sections:

Servlet Annotation and Dependency Injection
The Servlet 5.0 specification provides annotations to enable declarative-style programming.

Note

WebLogic Server-specific annotations have been deprecated and will be removed in a
future release: @WLServlet, @WLFilter, and @WLInitParam, in favor of the standard
annotations defined in the Servlet 5.0 specification. Also, instead of
weblogic.servlet.http.AbstractAsyncServlet, you should use the standard
asynchronous processing model defined in the Servlet 5.0 specification.

The servlet specification states that annotations can be defined on certain Web components,
such as servlets, filters, listeners, and tag handlers. The annotations are used to declare
dependencies on external resources. The container will detect annotations on such
components and inject necessary dependencies before the component's life cycle methods are
invoked. Dependency Injection (DI) will only be done on certain components, as described in
Web Component Classes That Support Annotations.

Annotation processing and DI will be performed on all Web applications that have the version
set to 2.5 or higher. However, annotation processing is expensive and it can increase the
deployment time for Web applications depending on the size of the included classes. Set the
metadata-complete attribute to true in the web.xml descriptor if your Web application does not
have any annotations and if you have the version set to 2.5 or higher to avoid unnecessary
scanning of the Web applications classes for annotations. Alternatively, you can turn off
annotation processing and DI for all the Web applications by setting -
Dweblogic.servlet.DIDisabled=true flag when starting WebLogic Server.

For more information about using Jakarta EE annotations and dependency injection with
WebLogic Server applications, see Using Jakarta EE Annotations and Dependency Injection
and Using Contexts and Dependency Injection for the Jakarta EE Platform in Developing
Applications for Oracle WebLogic Server. For detailed information about EJB-specific
annotations for WebLogic Server EJBs, see Developing EJBs for Oracle WebLogic Server.

If you selected to install the server examples, you will find this annotation code example,
"Using Annotations for Servlets, Filters and Listeners," in the
ORACLE_HOME\wlserver\samples\server\examples\examples\src\examples\javaee7\servle
t\annotation directory of your WebLogic Server distribution, where ORACLE_HOME represents
the directory in which you installed the WebLogic Server. For more information about the
WebLogic Server code examples, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

Web Component Classes That Support Annotations
This section describes the behavior of annotations and dependency injection (DI) of resources
in a Jakarta EE compliant Web container.

The Web container only processes annotations for the types of classes listed in Table 7-1.

Table 7-1 Web Components and Interfaces Supporting Annotations and Dependency
Injection

Component Type Interfaces

Servlets jakarta.servlet.Servlet

Filters jakarta.servlet.Filter

Listeners
jakarta.servlet.ServletContextListener
jakarta.servlet.ServletContextAttributeListener
jakarta.servlet.ServletRequestListener
jakarta.servlet.ServletRequestAttributeListener
jakarta.servlet.http.HttpSessionListener
jakarta.servlet.http.HttpSessionAttributeListener
jakarta.servlet.AsyncListener

Tag handlers
jakarta.servlet.jsp.tagext.SimpleTag
jakarta.servlet.jsp.tagext.BodyTag

The Web container will not process annotations on classes like Jakarta Enterprise Beans and
other helper classes. The Web container follows these steps to achieve DI:

1. Annotation Processing—The Web container processes annotations during the Web
application deployment phase. As annotations are processed, the container figures out the
relevant entries in the descriptor that get affected by the annotation and updates the
descriptor tree. The servlet specification indicates that all annotations can be declared in
the descriptor by defining an injection target. The Web container updates the descriptor
tree with the injection targets so that as deployment continues the JNDI tree is updated
with the necessary entries.

2. Dependency Injection (DI)—DI is done when instances are created (for the types listed in
Table 7-1). For listeners and filters, this occurs during the deployment phase, and for
servlets it can occur during deployment or run time.

Note

In any Web application component, if one DI fails, it will cause all subsequent DIs
upon the same component to be ignored.

Annotations Supported By a Web Container
Table 7-2 lists all the annotations that must be supported by the Web container.

Chapter 7
Servlet Annotation and Dependency Injection

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

Table 7-2 List of Supported Annotations

@Annotation

DeclaresRoles

EJB

EJBs

PersistenceContext

PersistenceUnit

PersistenceUnits

PersistenceContexts

PostConstruct

PreDestroy

Resource

Resources

WebServiceRef

WebServiceRefs

RunAs

The Web container makes use of the Jakarta EE container's annotation processing and
dependency injection mechanisms to achieve this functionality.

The specification states that the Web container should not process annotations when
metadata-complete attributes are set to true in the web.xml descriptor. If annotations are
properly defined and annotation processing succeeds and dependencies are properly injected,
the annotated fields are initialized properly and annotated methods are invoked at the proper
phase in the life cycle. If DI fails, these annotated fields will be null.

Note

If multiple methods in a Web component class, such as a servlet, filter, and such, are
annotated with PostConstruct or PreDestroy, then the Web component will fail to
deploy such an application. Similarly, if an EJB component class, such as a session
bean, is annotated with PostConstruct or PreDestroy, or an EJB interceptor is
annotated with PostConstruct, PreDestroy, PostActivate, or PrePassivate, then the
EJB component will also fail to deploy such an application.

Fault Detection and Recovery
Any failure during annotation processing will yield a deployment exception that will prevent
deployment of the Web application. If a failure happens during DI, the container will log a
warning message in the server logs indicating the reason for the failure. The annotated fields in
the instance of the class will be null and any life cycle annotated methods will not be invoked
in case of DI failure.

Chapter 7
Servlet Annotation and Dependency Injection

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

Limitations
The WebLogic servlet container supports annotations on Web components that are declared in
the web.xml descriptor. Any listeners, filters or servlets registered dynamically via the
weblogic.servlet.WeblogicServletContext method will not have their annotations
processed and no DI will be done for such components.

Annotating Servlets
The WebLogic servlet container provides the @WLServlet annotation for servlets and the
WLFilter annotation for filters that you develop in a Web application without having to declare
them in a web.xml descriptor. The WebLogic servlet container also provides the WLInitParam
annotation to specify the initial parameters for servlets and filters declared using the WLServlet
and WLFilter annotations.

All the required metadata can be annotated in the servlet or filter and the container will detect
them and update the descriptor tree so that the annotated servlet or filter is deployed.

WLServlet
You can annotate a servlet class with WLServlet annotation
(weblogic.servlet.annotation.WLServlet). This annotation defines various attributes for
declaring parameters for the servlet. All attributes on this annotation are optional.

Attributes

Table 7-3 Attributes of WLServlet Annotation

Name Description Data Type Required?

displayName Display name for the servlet after deployment String No

description Servlet description String No

icon Icon location String No

name Servlet name String No

initParams Initialization parameters for the servlet WLInitParam[] No

loadOnStartup Whether the servlet should load on startup int No

runAs The run-as user for the servlet String No

mapping The url-pattern for the servlet String[] No

Example 7-1 illustrates the usage of the annotation in a servlet class.

Example 7-1 WLServlet Annotation

@WLServlet (
 name = "FOO",
 runAs = "SuperUser"
 initParams = { @WLInitParam (name="one", value="1") }
 mapping = {"/foo/*"}
)
. . .

Chapter 7
Annotating Servlets

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

The WebLogic servlet container detects the annotation and installs this servlet for deployment.
During the annotation processing phase of the Web applications deployment, the descriptor
bean corresponding to web.xml descriptor is updated with the relevant entries corresponding to
the annotation.

Example 7-2 shows how the descriptor bean looks after being updated.

Example 7-2 Updated web.xml Descriptor

<web-app>
. . .
 <servlet>
 <servlet-name>FOO</servlet-name>
 <servlet-class>my.TestServlet</servlet-class>
 <init-param>
 <param-name>one</param-name>
 <param-value>1</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>FOO</servlet-name>
 <url-pattern>/foo/*</url-pattern>
 </servlet-mapping>
. . .
</web-app>

Fault Detection And Recovery
Any error during the processing of this annotation will result in a deployment error with a proper
message in the server logs.

WLFilter
You can annotate a filter class with WLFilter annotation
(weblogic.servlet.annotation.WLFilter). This annotation defines various attributes for
declaring parameters for the filter. All attributes on this annotation are optional.

Attributes

Table 7-4 Attributes of WLFilter Annotation

Name Description Data Type Required?

displayName Display name for the filter after deployment String No

description Filter description String No

icon Icon location String No

name Filter name String No

initParams Initialization parameters for the filter WLInitParam[] No

mapping The url-pattern for the filter String[] No

Example 7-3 illustrates the usage of the annotation in a filter class.

Example 7-3 WLFilter Annotation

@WLFilter (
 name = "BAR",

Chapter 7
Annotating Servlets

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

 initParams = { @WLInitParam (name="one", value="1") }
 Mapping = {"/bar/*"}
)
. . .

The WebLogic servlet container detects the annotation and installs this filter for deployment.
During the annotation processing phase of the Web application deployment, the descriptor
bean corresponding to web.xml descriptor is updated with the relevant entries corresponding to
the annotation.

Example 7-4 shows how the descriptor bean looks after being updated.

Example 7-4 Updated web.xml Descriptor

<web-app>
. . .
 <filter>
 <filter-name>BAR</filter-name>
 <filter-class>my.TestFilter</filter-class>
 <init-param>
 <param-name>one</param-name>
 <param-value>1</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>BAR</filter-name>
 <url-pattern>/bar/*</url-pattern>
 </filter-mapping>
. . .
</web-app>

Fault Detection and Recovery
Any error during the processing of this annotation will result in a deployment error with a proper
message in the server logs.

WLInitParam
You can use the @WLInitParam annotation (weblogic.servlet.annotation.WLInitParam) to
specify the initial parameters for servlets and filters declared using the @WLServlet and
@WLFilter annotations.

Attributes

Table 7-5 Attributes of WLFilter Annotation

Name Description Data Type Required?

name The initial parameter name. String No

value The initial parameter value. String No

Example 7-5 provides an example of WLInitParam annotation.

Example 7-5 Example WLInitParam Annotation

initParams = {@WLInitParam(name="one", value="1"),
 @WLInitParam(name="two", value="2")}

Chapter 7
Annotating Servlets

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

Annotating a servlet or filter class with the above annotation is equivalent to declaring the init
params in Example 7-6 in the web.xml descriptor.

Example 7-6 Init Params In web.xml

. . .
<init-param>
 <param-name>one</param-name>
 <param-value>1</param-value>
</init-param>
<init-param>
 <param-name>two</param-name>
 <param-value>2</param-value>
</init-param>
. . .

Chapter 7
Annotating Servlets

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

8
Servlet Programming Tasks

Learn how to write HTTP servlets in a WebLogic Server environment.
This chapter includes the following sections:

Initializing a Servlet
Normally, WebLogic Server initializes a servlet when the first request is made for the servlet.
Subsequently, if the servlet is modified, the destroy() method is called on the existing version
of the servlet. Then, after a request is made for the modified servlet, the init() method of the
modified servlet is executed. See Servlet Best Practices.
When a servlet is initialized, WebLogic Server executes the init() method of the servlet.
Once the servlet is initialized, it is not initialized again until you restart WebLogic Server or
modify the servlet code. If you choose to override the init() method, your servlet can perform
certain tasks, such as establishing database connections, when the servlet is initialized. (See
Overriding the init() Method.)

Initializing a Servlet when WebLogic Server Starts
Rather than having WebLogic Server initialize a servlet when the first request is made for it,
you can first configure WebLogic Server to initialize a servlet when the server starts. You do
this by specifying the servlet class in the load-on-startup element in the Jakarta EE standard
Web application deployment descriptor, web.xml. The order in which resources within a Web
application are initialized is as follows:

1. ServletContextListeners—the contextCreated() callback for
ServletContextListeners registered for this Web application.

2. ServletFilters init() method.

3. Servlet init() method, marked as load-on-startup in web.xml.

You can pass parameters to an HTTP servlet during initialization by defining these parameters
in the Web application containing the servlet. You can use these parameters to pass values to
your servlet every time the servlet is initialized without having to rewrite the servlet.

For example, the following entries in the Jakarta EE standard Web application deployment
descriptor, web.xml, define two initialization parameters: greeting, which has a value of
Welcome and person, which has a value of WebLogic Developer.

<servlet>
 ...
 <init-param>
 <description>The salutation</description>
 <param-name>greeting</param-name>
 <param-value>Welcome</param-value>
 </init-param>
 <init-param>
 <description>name</description>
 <param-name>person</param-name>
 <param-value>WebLogic Developer</param-value>
 </init-param>
</servlet>

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 21

To retrieve initialization parameters, call the getInitParameter(String name) method from the
parent jakarta.servlet.GenericServlet class. When passed the name of the parameter, this
method returns the parameter's value as a String.

Overriding the init() Method
You can have your servlet execute tasks at initialization time by overriding the init() method.
The following code fragment reads the <init-param> tags that define a greeting and a name in
the Jakarta EE standard Web application deployment descriptor, web.xml:

String defaultGreeting;
String defaultName;

public void init(ServletConfig config)
 throws ServletException {
 if ((defaultGreeting = getInitParameter("greeting")) == null)
 defaultGreeting = "Hello";

 if ((defaultName = getInitParameter("person")) == null)
 defaultName = "World";
}

The values of each parameter are stored in the class instance variables defaultGreeting and
defaultName. The first code tests whether the parameters have null values, and if null values
are returned, provides appropriate default values.

You can then use the service() method to include these variables in the response. For
example:

out.print("<body><h1>");
out.println(defaultGreeting + " " + defaultName + "!");
out.println("</h1></body></html>");

The init() method of a servlet does whatever initialization work is required when WebLogic
Server loads the servlet. The default init() method does all of the initial work that WebLogic
Server requires, so you do not need to override it unless you have special initialization
requirements. If you do override init(), first call super.init() so that the default initialization
actions are done first.

Providing an HTTP Response
Learn how to provide a response to the client in your HTTP servlet. Deliver all responses by
using the HttpServletResponse object that is passed as a parameter to the service() method
of your servlet.

1. Configure the HttpServletResponse.

Using the HttpServletResponse object, you can set several servlet properties that are
translated into HTTP header information:

• At a minimum, set the content type using the setContentType() method before you
obtain the output stream to which you write the page contents. For HTML pages, set
the content type to text/html. For example:

res.setContentType("text/html");

• (optional) You can also use the setContentType() method to set the character
encoding. For example:

res.setContentType("text/html;ISO-88859-4");

Chapter 8
Providing an HTTP Response

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 21

• Set header attributes using the setHeader() method. For dynamic responses, it is
useful to set the "Pragma" attribute to no-cache, which causes the browser to always
reload the page and ensures the data is current. For example:

res.setHeader("Pragma", "no-cache");

2. Compose the HTML page.

The response that your servlet sends back to the client must look like regular HTTP
content, essentially formatted as an HTML page.Your servlet returns an HTTP response
through an output stream that you obtain using the response parameter of the service()
method. To send an HTTP response:

a. Obtain an output stream by using the HttpServletResponse object and one of the
methods shown in the following two examples:

• PrintWriter out = res.getWriter();

• ServletOutputStream out = res.getOutputStream();

b. Write the contents of the response to the output stream using the print() method.
You can use HTML tags in these statements. For example:

out.print("<html><head><title>My Servlet</title>");
out.print("</head><body><h1>");
out.print("Welcome");
out.print("</h1></body></html>");

Any time you print data that a user has previously supplied, Oracle recommends that
you remove any HTML special characters that a user might have entered. If you do not
remove these characters, your Web site could be exploited by cross-site scripting. For
more information, refer to Securing Client Input in Servlets.

Do not close the output stream by using the close() method, and avoid flushing the
contents of the stream. If you do not close or flush the output stream, WebLogic Server
can take advantage of persistent HTTP connections, as described in the next step.

3. Optimize the response.

By default, WebLogic Server attempts to use HTTP persistent connections whenever
possible. A persistent connection attempts to reuse the same HTTP TCP/IP connection for
a series of communications between client and server. Application performance improves
because a new connection need not be opened for each request. Persistent connections
are useful for HTML pages containing many in-line images, where each requested image
would otherwise require a new TCP/IP connection.

WebLogic Server must know the length of the HTTP response in order to establish a
persistent connection and automatically adds a Content-Length property to the HTTP
response header. In order to determine the content length, WebLogic Server must buffer
the response. However, if your servlet explicitly flushes the ServletOutputStream,
WebLogic Server cannot determine the length of the response and therefore cannot use
persistent connections. For this reason, you should avoid explicitly flushing the HTTP
response in your servlets.

You may decide that, in some cases, it is better to flush the response early to display
information in the client before the page has completed; for example, to display a banner
advertisement while some time-consuming page content is calculated. Conversely, you
may want to increase the size of the buffer used by the servlet engine to accommodate a
larger response before flushing the response. You can manipulate the size of the response
buffer by using the related methods of the jakarta.servlet.ServletResponse interface.
See the Servlet 5.0 specification at https://jakarta.ee/specifications/servlet/5.0/.

Chapter 8
Providing an HTTP Response

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 21

https://jakarta.ee/specifications/servlet/5.0/

The default value of the WebLogic Server response buffer is 12K and the buffer size is
internally calculated in terms of CHUNK_SIZE where CHUNK_SIZE = 4088 bytes; if the user
sets 5Kb the server rounds the request up to the nearest multiple of CHUNK_SIZE which is 2
and the buffer is set to 8176 bytes.

Retrieving Client Input
The HTTP servlet API provides a interface for retrieving user input from Web pages.

An HTTP request from a Web browser can contain more than the URL, such as information
about the client, the browser, cookies, and user query parameters. Use query parameters to
carry user input from the browser. Use the GET method appends parameters to the URL
address, and the POST method includes them in the HTTP request body.

HTTP servlets need not deal with these details; information in a request is available through
the HttpServletRequest object and can be accessed using the request.getParameter()
method, regardless of the send method.

Read the following for more detailed information about the ways to send query parameters
from the client:

• Encode the parameters directly into the URL of a link on a page. This approach uses the
GET method for sending parameters. The parameters are appended to the URL after a ?
character. Multiple parameters are separated by a & character. Parameters are always
specified in name=value pairs so the order in which they are listed is not important. For
example, you might include the following link in a Web page, which sends the parameter
color with the value purple to an HTTP servlet called ColorServlet:

<a href=
 "http://localhost:7001/myWebApp/ColorServlet?color=purple">
 Click Here For Purple!

• Manually enter the URL, with query parameters, into the browser location field. This is
equivalent to clicking the link shown in the previous example.

• Query the user for input with an HTML form. The contents of each user input field on the
form are sent as query parameters when the user clicks the form's Submit button. Specify
the method used by the form to send the query parameters (POST or GET) in the <FORM> tag
using the METHOD="GET|POST" attribute.

Query parameters are always sent in name=value pairs, and are accessed through the
HttpServletRequest object. You can obtain an Enumeration of all parameter names in a
query, and fetch each parameter value by using its parameter name. A parameter usually has
only one value, but it can also hold an array of values. Parameter values are always
interpreted as Strings, so you may need to cast them to a more appropriate type.

The following sample from a service() method examines query parameter names and their
values from a form. Note that request is the HttpServletRequest object.

Enumeration params = request.getParameterNames();
String paramName = null;
String[] paramValues = null;

while (params.hasMoreElements()) {
 paramName = (String) params.nextElement();
 paramValues = request.getParameterValues(paramName);
 System.out.println("\nParameter name is " + paramName);
 for (int i = 0; i < paramValues.length; i++) {
 System.out.println(", value " + i + " is " +
 paramValues[i].toString());

Chapter 8
Retrieving Client Input

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 21

 }
}

Note

Any time you print data that a user has supplied, Oracle recommends that you remove
any HTML special characters that a user might have entered. If you do not remove
these characters, your Web site could be exploited by cross-site scripting. For more
information, refer to Securing Client Input in Servlets.

Methods for Using the HTTP Request
This section defines the methods of the jakarta.servlet.HttpServletRequest interface that
you can use to get data from the request object. You should keep the following limitations in
mind:

• You cannot read request parameters using any of the getParameter() methods described
in this section and then attempt to read the request with the getInputStream() method.

• You cannot read the request with getInputStream() and then attempt to read request
parameters with one of the getParameter() methods.

If you attempt either of the preceding procedures, an IllegalStateException is thrown.

You can use the following methods of jakarta.servlet.HttpServeletRequest to retrieve data
from the request object:

• HttpServletRequest.getMethod()—Allows you to determine the request method, such as
GET or POST.

• HttpServletRequest.getQueryString()—Allows you to access the query string. (The
remainder of the requested URL, following the ? character.)

• HttpServletRequest.getParameter()—Returns the value of a parameter.

• HttpServletRequest.getParameterNames()—Returns an array of parameter names.

• HttpServletRequest.getParameterValues()—Returns an array of values for a parameter.

• HttpServletRequest.getInputStream() —Reads the body of the request as binary data.
If you call this method after reading the request parameters with getParameter(),
getParameterNames(), or getParameterValues(), an IllegalStateException is thrown.

Example: Retrieving Input by Using Query Parameters
In Example 8-1, the HelloWorld2.java servlet example is modified to accept a user name as
a query parameter, in order to display a more personal greeting. The service() method is
shown here.

Example 8-1 Retrieving Input with the service() Method

public void service(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException
{
 String name, paramName[];
 if ((paramName = req.getParameterValues("name"))
 != null) {

Chapter 8
Retrieving Client Input

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 21

 name = paramName[0];
 }
 else {
 name = defaultName;
 }

 // Set the content type first
 res.setContentType("text/html");
 // Obtain a PrintWriter as an output stream
 PrintWriter out = res.getWriter();

 out.print("<html><head><title>" +
 "Hello World!" + </title></head>");
 out.print("<body><h1>");
 out.print(defaultGreeting + " " + name + "!");
 out.print("</h1></body></html>");
}

The getParameterValues() method retrieves the value of the name parameter from the HTTP
query parameters. You retrieve these values in an array of type String. A single value for this
parameter is returned and is assigned to the first element in the name array. If the parameter is
not present in the query data, null is returned; in this case, name is assigned to the default
name that was read from the <init-param> by the init() method.

Do not base your servlet code on the assumption that parameters are included in an HTTP
request. The getParameter() method has been deprecated; as a result, you might be tempted
to shorthand the getParameterValues() method by tagging an array subscript to the end.
However, this method can return null if the specified parameter is not available, resulting in a
NullPointerException.

For example, the following code triggers a NullPointerException:

String myStr = req.getParameterValues("paramName")[0];

Instead, use the following code:

if ((String myStr[] =
 req.getParameterValues("paramName"))!=null) {
 // Now you can use the myStr[0];
}
else {
 // paramName was not in the query parameters!
}

Securing Client Input in Servlets
The ability to retrieve and return user-supplied data can present a security vulnerability called
cross-site scripting, which can be exploited to steal a user's security authorization.

See Cross Site Scripting Prevention Cheat Sheet on the Open Web Application Security
Project (OWASP) website at https://cheatsheetseries.owasp.org/cheatsheets/
Cross_Site_Scripting_Prevention_Cheat_Sheet.html.

To remove the security vulnerability, before you return data that a user has supplied, scan the
data for any of the HTML special characters in Table 8-1. If you find any special characters,
replace them with their HTML entity or character reference. Replacing the characters prevents
the browser from executing the user-supplied data as HTML.

Chapter 8
Securing Client Input in Servlets

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 21

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

Table 8-1 HTML Special Characters that Must Be Replaced

Replace this special character With this entity/character reference

< <

> >

(&40;

) &41;

&35;

& &38;

Using a WebLogic Server Utility Method
WebLogic Server provides the weblogic.servlet.security.Utils.encodeXSS() method to
replace the special characters in user-supplied data. To use this method, provide the user-
supplied data as input. For example, to secure the user-supplied data in Example 8-1, replace
the following line:

out.print(defaultGreeting + " " + name + "!");

with the following:

out.print(defaultGreeting + " " +
weblogic.security.servlet.encodeXSS(name) + "!");

To secure an entire application, you must use the encodeXSS() method each time you return
user-supplied data. While the previous example in Example 8-1 is an obvious location in which
to use the encodeXSS() method, Table 8-2 describes other locations to consider.

Table 8-2 Code that Returns User-Supplied Data

Page Type User-Supplied Data Example

Error page Erroneous input string, invalid URL, user
name

An error page that says user name is not
permitted access.

Status page User name, summary of input from
previous pages

A summary page that asks a user to
confirm input from previous pages.

Database display Data presented from a database A page that displays a list of database
entries that have been previously
entered by a user.

Using Cookies in a Servlet
A cookie is a piece of information that the server asks the client browser to save locally on the
user's disk. Each time the browser visits the same server, it sends all cookies relevant to that
server with the HTTP request. Cookies are useful for identifying clients as they return to the
server.

Each cookie has a name and a value. A browser that supports cookies generally allows each
server domain to store up to 20 cookies of up to 4k per cookie.

Chapter 8
Using Cookies in a Servlet

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 21

Setting Cookies in an HTTP Servlet
To set a cookie on a browser, create the cookie, give it a value, and add it to the
HttpServletResponse object that is the second parameter in your servlet's service method. For
example:

Cookie myCookie = new Cookie("ChocolateChip", "100");
myCookie.setMaxAge(Integer.MAX_VALUE);
response.addCookie(myCookie);

This examples shows how to add a cookie called ChocolateChip with a value of 100 to the
browser client when the response is sent. The expiration of the cookie is set to the largest
possible value, which effectively makes the cookie last forever. Because cookies accept only
string-type values, you should cast to and from the desired type that you want to store in the
cookie. When using EJBs, a common practice is to use the home handle of an EJB instance
for the cookie value and to store the user's details in the EJB for later reference.

Retrieving Cookies in an HTTP Servlet
You can retrieve a cookie object from the HttpServletRequest that is passed to your servlet as
an argument to the service() method. The cookie itself is presented as a
jakarta.servlet.http.Cookie object.

In your servlet code, you can retrieve all the cookies sent from the browser by calling the
getCookies() method. For example:

Cookie[] cookies = request.getCookies();

This method returns an array of all cookies sent from the browser, or null if no cookies were
sent by the browser. Your servlet must process the array in order to find the correct named
cookie. You can get the name of a cookie using the Cookie.getName() method. It is possible to
have more that one cookie with the same name, but different path attributes. If your servlets
set multiple cookies with the same names, but different path attributes, you also need to
compare the cookies by using the Cookie.getPath() method. The following code illustrates
how to access the details of a cookie sent from the browser. It assumes that all cookies sent to
this server have unique names, and that you are looking for a cookie called ChocolateChip
that may have been set previously in a browser client.

Cookie[] cookies = request.getCookies();
boolean cookieFound = false;

for(int i=0; i < cookies.length; i++) {
 thisCookie = cookies[i];
 if (thisCookie.getName().equals("ChocolateChip")) {
 cookieFound = true;
 break;
 }
}

if (cookieFound) {
 // We found the cookie! Now get its value
 int cookieOrder = String.parseInt(thisCookie.getValue());
}

Chapter 8
Using Cookies in a Servlet

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 21

Using Cookies That Are Transmitted by Both HTTP and HTTPS
Because HTTP and HTTPS requests are sent to different ports, some browsers may not
include the cookie sent in an HTTP request with a subsequent HTTPS request (or vice-versa).
This may cause new sessions to be created when servlet requests alternate between HTTP
and HTTPS. To ensure that all cookies set by a specific domain are sent to the server every
time a request in a session is made, set the cookie-domain element to the name of the
domain. The cookie-domain element is a sub-element of the session-descriptor element in
the WebLogic-specific deployment descriptor weblogic.xml. For example:

<session-descriptor>
 <cookie-domain>example.com</cookie-domain>
</session-descriptor>

The cookie-domain element instructs the browser to include the proper cookie(s) for all
requests to hosts in the domain specified by example.com. For more information about this
property or configuring session cookies, see Setting Up Session Management .

Application Security and Cookies
Using cookies that enable automatic account access on a machine is convenient, but can be
undesirable from a security perspective. When designing an application that uses cookies,
follow these guidelines:

• Do not assume that a cookie is always correct for a user. Sometimes machines are shared
or the same user may want to access a different account.

• Allow your users to make a choice about leaving cookies on the server. On shared
machines, users may not want to leave automatic logins for their account. Do not assume
that users know what a cookie is; instead, ask a question like:

Automatically login from this computer?

• Always ask for passwords from users logging on to obtain sensitive data. Unless a user
requests otherwise, you can store this preference and the password in the user's session
data. Configure the session cookie to expire when the user quits the browser.

Response Caching
The cache filter works similarly to the cache tag with certain exceptions.

• It caches on a page level (or included page) instead of a JSP fragment level.

• Instead of declaring the caching parameters inside the document you can declare the
parameters in the configuration of the Web application.

The cache filter has some default behavior that the cache tag does not for pages that were not
included from another page. The cache filter automatically caches the response headers
Content-Type and Last-Modified. When it receives a request that results in a cached page it
compares the If-Modified-Since request header to the Last-Modified response header to
determine whether it needs to actually serve the content or if it can send an 302
SC_NOT_MODIFED status with an empty content instead.

The following example shows how to register a cache filter to cache all the HTML pages in a
Web application using the filter element of the Jakarta EE standard deployment descriptor,
web.xml.

Chapter 8
Response Caching

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 21

<filter>
 <filter-name>HTML</filter-name>
 <filter-class>weblogic.cache.filter.CacheFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>HTML</filter-name>
 <url-pattern>*.html</url-pattern>
</filter-mapping>

The cache system uses soft references for storing the cache. So the garbage collector might or
might not reclaim the cache depending on how recently the cache was created or accessed. It
will clear the soft references in order to avoid throwing an OutOfMemoryError.

Initialization Parameters
To make sure that if the Web pages were updated at some point you got the new copies into
the cache, you could add a timeout to the filter. Using the init-params you can set many of the
same parameters that you can set for the cache tag:

The initialization parameters are

• Name—The name of the cache. It defaults to the request URI for compatibility with
*.extension URL patterns.

• Timeout—The amount of time since the last cache update that the filter waits until trying to
update the content in the cache again. The default unit is seconds but you can also specify
it in units of ms (milliseconds), s (seconds), m (minutes), h (hours), or d (days).

• Scope—The scope of the cache can be any one of request, session, application, or cluster.
Request scope is sometimes useful for looping constructs in the page and not much else.
The scope defaults to application. To use cluster scope you must set up the
ClusterListener.

• Key—Specifies that the cache is further specified not only by the name but also by values
of various entries in scopes. These are specified just like the keys in the CacheTag
although you do not have page scope available.

• Vars—The variables calculated by the page that you want to cache. Typically this is used
with servlets that pull information out of the database based on input parameters.

• Size—Limits the number of different unique key values cached. It defaults to infinity.

The following example shows where the init-parameter is located in the filter code.

<filter>
 <filter-name>HTML</filter-name>
 <filter-class>weblogic.cache.filter.CacheFilter</filter-class>
 <init-param>

• Max-cache-size—This limits the size of an element added to the cache. It defaults to 64k.

Using WebLogic Services from an HTTP Servlet
When you write an HTTP servlet, you have access to many rich features of WebLogic Server,
such as JNDI, EJB, JDBC, and JMS.

The following documents provide additional information about these features:

• Developing Jakarta Enterprise Beans for Oracle WebLogic Server

• Developing JDBC Applications for Oracle WebLogic Server

Chapter 8
Using WebLogic Services from an HTTP Servlet

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 21

• Developing JNDI Applications for Oracle WebLogic Server

• Developing JMS Applications for Oracle WebLogic Server

Accessing Databases
WebLogic Server supports the use of JDBC from server-side Java classes, including servlets.
JDBC allows you to execute SQL queries from a Java class and to process the results of those
queries.

For more information on JDBC and WebLogic Server, see Developing JDBC Applications for
Oracle WebLogic Server.

You can use JDBC in servlets as described in the following sections:

Connecting to a Database Using a DataSource Object
A DataSource is a server-side object that references a connection pool. The connection pool
registration defines the JDBC driver, database, login, and other parameters associated with a
database connection. You create DataSource objects and connection pools through the
Remote Console.

Note

Using a DataSource object is recommended when creating Jakarta EE-compliant
applications.

Using a Data Source in a Servlet
1. Register a connection pool using the Remote Console, Services > Data Sources >

Connection Pool.

2. Register a DataSource object that points to the connection pool.

3. Look up the DataSource object in the JNDI tree. For example:

Context ctx = null;
// Get a context for the JNDI look up
ctx = new InitialContext(ht);
// Look up the DataSource object
javax.sql.DataSource ds
 = (javax.sql.DataSource) ctx.lookup ("myDataSource");

4. Use the DataSource to create a JDBC connection. For example:

java.sql.Connection conn = ds.getConnection();

5. Use the connection to execute SQL statements. For example:

Statement stmt = conn.createStatement();
stmt.execute("select * from emp");
. . .

Connecting Directly to a Database Using a JDBC Driver
Connecting directly to a database is the least efficient way of making a database connection
because a new database connection must be established for each request. You can use any

Chapter 8
Accessing Databases

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 21

JDBC driver to connect to your database. Oracle provides JDBC drivers for Oracle and
Microsoft SQL Server. See Developing JDBC Applications for Oracle WebLogic Server.

Threading Issues in HTTP Servlets
When you design a servlet, you should consider how the servlet is invoked by WebLogic
Server under high load. It is inevitable that more than one client will hit your servlet
simultaneously. Therefore, write your servlet code to guard against sharing violations on
shared resources or instance variables.

It is recommended that shared-resource issues be handled on an individual servlet basis.
Consider the following guidelines:

• Wherever possible, avoid synchronization, because it causes subsequent servlet requests
to bottleneck until the current thread completes.

• Define variables that are specific to each servlet request within the scope of the service
methods. Local scope variables are stored on the stack and, therefore, are not shared by
multiple threads running within the same method, which avoids the need to be
synchronized.

• Access to external resources should be synchronized on a Class level, or encapsulated in
a transaction.

Dispatching Requests to Another Resource
Read an overview of commonly used methods for dispatching requests from a servlet to
another resource.

A servlet can pass on a request to another resource, such as a servlet, JSP, or HTML page.
This process is referred to as request dispatching. When you dispatch requests, you use either
the include() or forward() method of the RequestDispatcher interface.

For a complete discussion of request dispatching, see section 9.2 of the Servlet 5.0
specification (see https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-
spec-5.0#using-a-request-dispatcher).

By using the RequestDispatcher, you can avoid sending an HTTP-redirect response back to
the client. The RequestDispatcher passes the HTTP request to the requested resource.

To dispatch a request to a particular resource:

1. Get a reference to a ServletContext:

ServletContext sc = getServletConfig().getServletContext();

2. Look up the RequestDispatcher object using one of the following methods:

• RequestDispatcher rd = sc.getRequestDispatcher(String path);

• where path should be relative to the root of the Web application.

• RequestDispatcher rd = sc.getNamedDispatcher(String name);

Replace name with the name assigned to the servlet in the Jakarta EE standard Web
application deployment descriptor, web.xml, with the <servlet-name> element.

• RequestDispatcher rd = ServletRequest.getRequestDispatcher(String path);

This method returns a RequestDispatcher object and is similar to the
ServletContext.getRequestDispatcher(String path) method except that it allows

Chapter 8
Threading Issues in HTTP Servlets

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 21

https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-spec-5.0#using-a-request-dispatcher
https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-spec-5.0#using-a-request-dispatcher

the path specified to be relative to the current servlet. If the path begins with a /
character it is interpreted to be relative to the Web application.

You can obtain a RequestDispatcher for any HTTP resource within a Web application,
including HTTP Servlets, JSP pages, or plain HTML pages by requesting the
appropriate URL for the resource in the getRequestDispatcher() method. Use the
returned RequestDispatcher object to forward the request to another servlet.

3. Forward or include the request using the appropriate method:

• rd.forward(request,response); See Forwarding a Request.

• rd.include(request,response); See Including a Request.

Forwarding a Request
Once you have the correct RequestDispatcher, your servlet forwards a request using the
RequestDispatcher.forward() method, passing HTTPServletRequest and
HTTPServletResponse as arguments. If you call this method when output has already been
sent to the client an IllegalStateException is thrown. If the response buffer contains pending
output that has not been committed, the buffer is reset.

The servlet must not attempt to write any previous output to the response. If the servlet
retrieves the ServletOutputStream or the PrintWriter for the response before forwarding the
request, an IllegalStateException is thrown.

All other output from the original servlet is ignored after the request has been forwarded.

If you are using any type of authentication, a forwarded request, by default, does not require
the user to be re-authenticated. You can change this behavior to require authentication of a
forwarded request by adding the check-auth-on-forward/ element to the container-
descriptor element of the WebLogic-specific deployment descriptor, weblogic.xml. For
example:

<container-descriptor>
 <check-auth-on-forward/>
</container-descriptor>

Including a Request
Your servlet can include the output from another resource by using the
RequestDispatcher.include() method, and passing HTTPServletRequest and
HTTPServletResponse as arguments. When you include output from another resource, the
included resource has access to the request object.

The included resource can write data back to the ServletOutputStream or Writer objects of
the response object and then can either add data to the response buffer or call the flush()
method on the response object. Any attempt to set the response status code or to set any
HTTP header information from the included servlet response is ignored.

In effect, you can use the include() method to mimic a "server-side-include" of another HTTP
resource from your servlet code.

RequestDispatcher and Filters
Servlet 2.3 and older specifications did not specify whether filters should be applied on
forwards and includes. The Servlet 2.4 specification clarifies this by introducing a new
dispatcher element in the web.xml deployment descriptor. Using this dispatcher element, you

Chapter 8
Dispatching Requests to Another Resource

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 21

can configure a filter-mapping to be applied on REQUEST/FORWARD/INCLUDE/ERROR. In
WebLogic Server 8.1, the default was REQUEST+FORWARD+INCLUDE. For the old DTD-based
deployment descriptors, the default value has not been changed in order to preserve backward
compatibility. For the new descriptors (schema based) the default is REQUEST.

You can change the default behavior of dispatched requests by setting the filter-
dispatched-requests-enabled element in weblogic.xml. This element controls whether or not
filters are applied to dispatched (include/forward) requests. The default value for old DTD-
based deployment descriptors is true. The default for the new schema-based descriptors is
false.

For more information about Filters and the RequestDispatcher, see the Servlet 5.0
specification at https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-
spec-5.0#filters-and-the-requestdispatcher. For more information about writing and
configuring filters for WebLogic Server, see Filters.

Proxying Requests to Another Web Server
Learn how to proxy HTTP requests to another Web server:

Overview of Proxying Requests to Another Web Server
When you use WebLogic Server as your primary Web server, you may also want to configure
WebLogic Server to pass on, or proxy, certain requests to a secondary Web server, such as
Netscape Enterprise Server, Apache, or Microsoft Internet Information Server. Any request that
gets proxied is redirected to a specific URL.You can even proxy to another Web server on a
different machine.You proxy requests based on the URL of the incoming request.

The HttpProxyServlet (provided as part of the distribution) takes an HTTP request, redirects it
to the proxy URL, and sends the response to the client's browser back through WebLogic
Server. To use the HttpProxyServlet, you must configure it in a Web application and deploy
that Web application on the WebLogic Server that is redirecting requests.

Setting Up a Proxy to a Secondary Web Server
To set up a proxy to a secondary HTTP server:

1. Register the proxy servlet in your Web application deployment descriptor (see
Example 8-2). The Web application must be the default Web application of the server
instance that is responding to requests. The class name for the proxy servlet is
weblogic.servlet.proxy.HttpProxyServlet.

2. Define an initialization parameter for the ProxyServlet with a <param-name> of
redirectURL and a <param-value> containing the URL of the server to which proxied
requests should be directed.

3. Optionally, define the following <KeyStore> initialization parameters to use two-way SSL
with your own identity certificate and key. If no <KeyStore> is specified in the deployment
descriptor, the proxy will assume one-way SSL.

• <KeyStore>—The key store location in your Web application.

• <KeyStoreType>—The key store type. If it is not defined, the default type will be used
instead.

• <PrivateKeyAlias>—The private key alias.

Chapter 8
Proxying Requests to Another Web Server

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 21

https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-spec-5.0#filters-and-the-requestdispatcher
https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-spec-5.0#filters-and-the-requestdispatcher

• <KeyStorePasswordProperties>— A property file in your Web application that defines
encrypted passwords to access the key store and private key alias. The file contents
looks like this:

KeyStorePassword={3DES}i4+50LCKenQO8BBvlsXTrg\=\=
PrivateKeyPassword={3DES}a4TcG4mtVVBRKtZwH3p7yA\=\=

You must use the weblogic.security.Encrypt command-line utility to encrypt the
password. For more information on the Encrypt utility, as well as the CertGen, and
der2pem utilities, see Using the WebLogic Server Java Utilities in the Command
Reference for Oracle WebLogic Server.

4. Map the ProxyServlet to a <url-pattern>. Specifically, map the file extensions you wish
to proxy, for example *.jsp, or *.html. Use the <servlet-mapping> element in the
web.xml Web application deployment descriptor.

If you set the <url-pattern> to "/", then any request that cannot be resolved by WebLogic
Server is proxied to the remote server. However, you must also specifically map the
following extensions: *.jsp, *.html, and *.html if you want to proxy files ending with
those extensions.

5. Deploy the Web application on the WebLogic Server instance that redirects incoming
requests.

Sample Deployment Descriptor for the Proxy Servlet
The following is an sample of a Web application deployment descriptor for using the
ProxyServlet.

Example 8-2 Sample web.xml for Use with ProxyServlet

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://java.sun.com/xml/ns/j2ee"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="2.4">

<web-app>

<servlet>
 <servlet-name>ProxyServlet</servlet-name>
 <servlet-class>weblogic.servlet.proxy.HttpProxyServlet</servlet-class>

 <init-param>
 <param-name>redirectURL</param-name>
 <param-value>http://server:port</param-value>
 </init-param>

 <init-param>
 <param-name>KeyStore</param-name>
 <param-value>/mykeystore</param-value>
 </init-param>

 <init-param>
 <param-name>KeyStoreType</param-name>
 <param-value>jks</param-value>
 </init-param>

Chapter 8
Proxying Requests to Another Web Server

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 21

 <init-param>
 <param-name>PrivateKeyAlias</param-name>
 <param-value>passalias</param-value>
 </init-param>

 <init-param>
 <param-name>KeyStorePasswordProperties</param-name>
 <param-value>mykeystore.properties</param-value>
 </init-param>

</servlet>

<servlet-mapping>
 <servlet-name>ProxyServlet</servlet-name>
 <url-pattern>/</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>ProxyServlet</servlet-name>
 <url-pattern>*.jsp</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>ProxyServlet</servlet-name>
 <url-pattern>*.htm</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>ProxyServlet</servlet-name>
 <url-pattern>*.html</url-pattern>
</servlet-mapping>

</web-app>

Proxy Servlet Parameters

The parameters and default values for the HttpProxyServlet are listed below. For a complete
description of these parameters, see HTTP Proxy Servlet Parameters and Proxy Servlet
Deployment Parameters.

• Debug: false

• DebugConfigInfo: false

• DefaultFileName: null

• FileCaching: true

• KeepAliveEnabled: true

• KeepAliveSecs: 20

• MaxPostSize: -1

• PathPrepend: null

• PathTrim: null

• TrimExt: null

• SecureProxy: false

• WebLogicHost: none

Chapter 8
Proxying Requests to Another Web Server

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 21

• WebLogicPort: none

• WLCookieName: JSESSIONID

• WLIOTimeoutSecs: 300

• WLLogFile: null

• WLProxyPassThrough: false

• WLProxySSL: false

• WLProxySSLPassThrough: false

Clustering Servlets
Clustering servlets provides failover and load balancing benefits. To deploy a servlet in a
WebLogic Server cluster, deploy the Web application containing the servlet on all servers in the
cluster.

For information on requirements for clustering servlets, and to understand the connection and
failover processes for requests that are routed to clustered servlets, see Replication and
Failover for Servlets and JSPs in Administering Clusters for Oracle WebLogic Server.

Note

Automatic failover for servlets requires that the servlet session state be replicated in
memory. For instructions, see Configure In-Memory HTTP Replication in Administering
Clusters for Oracle WebLogic Server.

For information on the load balancing support that a WebLogic Server cluster provides for
servlets, and for related planning and configuration considerations for architects and
administrators, see Load Balancing for Servlets and JSPs in Administering Clusters for Oracle
WebLogic Server.

Referencing a Servlet in a Web Application
The URL used to reference a servlet in a Web application is constructed with a certain pattern.

http://myHostName:port/myContextPath/myRequest/myRequestParameters

The components of this URL are defined as follows:

• myHostName—The DNS name mapped to the Web Server defined in the WebLogic Remote
Console. This portion of the URL can be replaced with host:port, where host is the name
of the machine running WebLogic Server and port is the port at which WebLogic Server is
listening for requests.

• port—The port at which WebLogic Server is listening for requests. The servlet can
communicate with the proxy only through the listenPort on the Server MBean and the SSL
MBean.

• myContextPath—The name of the context root which is specified in the weblogic.xml file,
or the URI of the Web module which is specified in the config.xml file.

• myRequest—The name of the servlet as defined in the web.xml file.

Chapter 8
Clustering Servlets

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 21

• myRequestParameters—Optional HTTP request parameters encoded in the URL, which
can be read by an HTTP servlet.

URL Pattern Matching
WebLogic Server provides the user with the ability to implement a URL matching utility which
does not conform to the Jakarta EE rules for matching. The utility must be configured in the
weblogic.xml deployment descriptor rather than the web.xml deployment descriptor used for
the configuration of the default implementation of URLMatchMap.

To be used with WebLogic Server, the URL matching utility must implement the following
interface:

Package weblogic.servlet.utils;
public interface URLMapping {
 public void put(String pattern, Object value);
 public Object get(String uri);
 public void remove(String pattern)
 public void setDefault(Object defaultObject);
 public Object getDefault();
 public void setCaseInsensitive(boolean ci);
 public boolean isCaseInsensitive();
 public int size();
 public Object[] values();
 public String[] keys();
}

The SimpleApacheURLMatchMap Utility
The included SimpleApacheURLMatchMap utility is not Jakarta EE specific. It can be configured
in the weblogic.xml deployment descriptor file and allows the user to specify Apache style
pattern matching rather than the default URL pattern matching provided in the web.xml
deployment descriptor.

See url-match-map.

A Future Response Model for HTTP Servlets
In general, WebLogic Server processes incoming HTTP requests and the response is returned
immediately to the client. Such connections are handled synchronously by the same thread.
However, some HTTP requests may require longer processing time. Database connection, for
example, may create longer response times. Handling these requests synchronously causes
the thread to be held, waiting until the request is processed and the response sent.

To avoid this hung-thread scenario, WebLogic Server provides two classes that handle HTTP
requests asynchronously by de-coupling the response from the thread that handles the
incoming request. The following sections describe these classes.

Chapter 8
URL Pattern Matching

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 21

Abstract Asynchronous Servlet

Note

Oracle recommends that instead of the WebLogic Server Abstract Asynchronous
Servlet, you should use the standard asynchronous processing model defined in the
Servlet 5.0 specification.

The Abstract Asynchronous Servlet enables you to handle incoming requests and servlet
responses with different threads. This class explicitly provides a better general framework for
handling the response than the Future Response Servlet, including thread handling.

You implement the Abstract Asynchronous Servlet by extending the
weblogic.servlet.http.AbstractAsyncServlet.java class. This class provides the following
abstract methods that you must override in your extended class .

doRequest
This method processes the servlet request. The following code example demonstrates how to
override this method.

Example 8-3 Overriding doRequest in AbstractAsynchServlet.java

public boolean doRequest(RequestResponseKey rrk)
 throws ServletException, IOException {
 HttpServletRequest req = rrk.getRequest();
 HttpServletResponse res = rrk.getResponse();

 if (req.getParameter("immediate") != null) {
 res.setContentType("text/html");
 PrintWriter out = res.getWriter();
 out.println("Hello World Immediately!");
 return false ;
 }
 else {
 TimerManagerFactory.getTimerManagerFactory()
 .getDefaultTimerManager().schedule
 (new TimerListener() {
 public void timerExpired(Timer timer)
 {try {
 AbstractAsyncServlet.notify(rrk, null);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 }, 2000);
 return true;
 }
}

doResponse
This method processes the servlet response.

Chapter 8
A Future Response Model for HTTP Servlets

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 19 of 21

Note

The servlet instance that processed the doRequest() method used to handle the
original incoming request method will not necessarily be the one to process the
doResponse() method.

If an exception occurs during processing, the container returns an error to the client. The
following code example demonstrates how to override this method.

Example 8-4 Overriding doResponse() in AbstractAsyncServlet.java

public void doResponse (RequestResponseKey rrk, Object context)
 throws ServletException, IOException
 {
 HttpServletRequest req = rrk.getRequest();
 HttpServletResponse res = rrk.getResponse();

 res.setContentType("text/html");
 PrintWriter out = res.getWriter();
 out.println("Hello World!");
}

doTimeOut
This method sends a servlet response error when the notify() method is not called within the
timeout period.

Note

The servlet instance that processed the doRequest() method used to handle the
original incoming request method will not necessarily be the one to process the
doTimeOut() method.

Example 8-5 Overriding doTimeOut() in AbstractAsyncServlet.java

public void doTimeout (RequestResponseKey rrk)
 throws ServletException, IOException
{
 HttpServletRequest req = rrk.getRequest();
 HttpServletResponse res = rrk.getResponse();

 res.setContentType("text/html");
 PrintWriter out = res.getWriter();
 out.println("Timeout!");
}

Chapter 8
A Future Response Model for HTTP Servlets

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 20 of 21

Future Response Servlet

Note

Oracle recommends that you use the standard asynchronous processing model
defined in the Servlet 5.0 specification.

You can also use the Future Response Servlet to handle servlet responses with a different
thread than the one that handles the incoming request. You enable this servlet by extending
weblogic.servlet.FutureResponseServlet.java, which gives you full control over how the
response is handled and allows more control over thread handling. However, using this class
to avoid hung threads requires you to provide most of the code.

The exact implementation depends on your needs, but you must override the service()
method of this class at a minimum. The following example shows how you can override the
service method.

Example 8-6 Overriding the service() method of FutureResponseServlet.java

 public void service(HttpServletRequest req, FutureServletResponse rsp)
 throws IOException, ServletException {
 if(req.getParameter("immediate") != null){
 PrintWriter out = rsp.getWriter();
 out.println("Immediate response!");
 rsp.send();
 } else {
 Timer myTimer = new Timer();
 MyTimerTask mt = new MyTimerTask(rsp, myTimer);
 myTimer.schedule(mt, 100);
 }
 }

 private static class MyTimerTask extends TimerTask{
 private FutureServletResponse rsp;
 Timer timer;
 MyTimerTask(FutureServletResponse rsp, Timer timer){
 this.rsp = rsp;
 this.timer = timer;
 }
 public void run(){
 try{
 PrintWriter out = rsp.getWriter();
 out.println("Delayed Response");
 rsp.send();
 timer.cancel();
 }
 catch(IOException e){
 e.printStackTrace();
 }
 }
 }

Chapter 8
A Future Response Model for HTTP Servlets

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 21 of 21

9
Using Sessions and Session Persistence

Learn how to set up and use HTTP sessions and session persistence in WebLogic Server.
This chapter includes the following sections:

Overview of HTTP Sessions
Session tracking enables you to track a user's progress over multiple servlets or HTML pages,
which, by nature, are stateless. A session is defined as a series of related browser requests
that come from the same client during a certain time period. Session tracking ties together a
series of browser requests—think of these requests as pages—that may have some meaning
as a whole, such as a shopping cart application.

Setting Up Session Management
WebLogic Server is set up to handle session tracking by default. You need not set any of these
properties to use session tracking. However, configuring how WebLogic Server manages
sessions is a key part of tuning your application for best performance.

When you set up session management, you determine factors such as:

• How many users you expect to hit the servlet

• How long each session lasts

• How much data you expect to store for each user

• Heap size allocated to the WebLogic Server instance

You can also store data permanently from an HTTP session. See Configuring Session
Persistence.

HTTP Session Properties
You configure WebLogic Server session tracking by defining properties in the WebLogic-
specific deployment descriptor, weblogic.xml. For a complete list of session attributes, see
session-descriptor.

In a previous WebLogic Server release, a change was introduced to the SessionID format that
caused some load balancers to lose the ability to retain session stickiness. A server startup
flag, -Dweblogic.servlet.useExtendedSessionFormat=true, retains the information that the
load-balancing application needs for session stickiness. The extended session ID format will
be part of the URL if URL rewriting is activated, and the startup flag is set to true.

Session Timeout
You can specify an interval of time after which HTTP sessions expire. When a session expires,
all data stored in the session is discarded. You can set the interval in either web.xml or
weblogic.xml:

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 17

• Set the timeout-secs parameter value in the session-descriptor element of the
WebLogic-specific deployment descriptor, weblogic.xml. This value is set in seconds. See
session-descriptor.

• Set the session-timeout element in the Jakarta EE standard Web application deployment
descriptor, web.xml.

If you want to synchronize the expiration of all sessions that share the same session ID, then
enable the SynchronizedSessionTimeoutEnabled attribute in either WebAppContainerMBean or
ServerTemplateMBean. If the attribute is configured in both MBeans, the value set in
ServerTemplateMBean overrides WebAppContainerMBean.

Configuring WebLogic Server Session Cookies
WebLogic Server uses cookies for session management when cookies are supported by the
client browser.

The cookies that WebLogic Server uses to track sessions are set as transient by default and
do not outlive the session. When a user quits the browser, the cookies are lost and the session
ends. This behavior is in the spirit of session usage and it is recommended that you use
sessions in this way.

You can configure session-tracking parameters of cookies in the WebLogic-specific
deployment descriptor, weblogic.xml. A complete list of session and cookie-related
parameters is available in session-descriptor.

Configuring Application Cookies That Outlive a Session
For longer-lived client-side user data, you program your application to create and set its own
cookies on the browser via the HTTP servlet API. The application should not attempt to use the
cookies associated with the HTTP session. Your application might use cookies to auto-login a
user from a particular machine, in which case you would set a new cookie to last for a long
time. Remember that the cookie can only be sent from that particular client machine. Your
application should store data on the server if it must be accessed by the user from multiple
locations.

You cannot directly connect the age of a browser cookie with the length of a session. If a
cookie expires before its associated session, that session becomes orphaned. If a session
expires before its associated cookie, the servlet is not be able to find a session. At that point, a
new session is automatically assigned when the request.getSession(true) method is called.

You can set the maximum life of a cookie with the cookie-max-age-secs element in the
session descriptor of the weblogic.xml deployment descriptor. See session-descriptor.

Logging Out
User authentication information is stored both in the user's session data and in the context of a
server or virtual host that is targeted by a Web application. The session.invalidate()
method, which is often used to log out a user, only invalidates the current session for a user—
the user's authentication information still remains valid and is stored in the context of the server
or virtual host. If the server or virtual host is hosting only one Web application, the
session.invalidate() method, in effect, logs out the user.

There are several Java methods and strategies you can use when using authentication with
multiple Web applications. For more information see Logging Out and Ending a Session.

Chapter 9
Setting Up Session Management

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 17

Enabling Web Applications to Share the Same Session
By default, Web applications do not share the same session. If you would like Web applications
to share the same session, you can configure the session descriptor at the application level in
the weblogic-application.xml deployment descriptor. To enable Web applications to share
the same session, set the sharing-enabled attribute in the session descriptor to true in the
weblogic-application.xml deployment descriptor. See "sharing-enabled" in session-
descriptor.

The session descriptor configuration that you specify at the application level overrides any
session descriptor configuration that is specified at the individual Web application level. If you
set the sharing-enabled attribute to true at the Web application level, it will be ignored.

All Web applications in an application are automatically started using the same session
instance if you specify the session descriptor in the weblogic-application.xml deployment
descriptor and set the sharing-enabled attribute to true as in the following example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<weblogic-application xmlns="http://xmlns.oracle.com/weblogic/weblogic-application";;>
 ...
 <session-descriptor>
 <persistent-store-type>memory</persistent-store-type>
 <sharing-enabled>true</sharing-enabled>
 ...
 </session-descriptor>
...
</weblogic-application>

Limiting Number of Concurrent Requests for a Session
The weblogic.http.session.maxConcurrentRequest property limits the number of concurrent
requests for a session. If the number of concurrent requests for a given session exceeds the
specified value, the servlet container will start rejecting requests. By default, this property is set
to -1, which indicates the servlet container does not impose any restrictions.

Configuring Session Persistence
You use session persistence to permanently store data from an HTTP session object to enable
failover and load balancing across a cluster of WebLogic Servers. When your applications
stores data in an HTTP session object, the data must be serializable.

The following session persistence implementations are supported:

• Memory (single-server, non-replicated)

• File system persistence

• JDBC persistence

• Cookie-based session persistence

• In-memory replication using either WebLogic Server clusters or Coherence clusters

The first four are discussed here; in-memory replication is discussed in HTTP Session State
Replication in Administering Clusters for Oracle WebLogic Server. For detailed information on
using Coherence for session state replication, see Administering HTTP Session Management
with Oracle Coherence*Web.

Chapter 9
Configuring Session Persistence

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 17

File, JDBC, cookie-based, and memory (single-server, non-populated) session persistence
have some common properties. Each persistence method has its own set of configurable
parameters, as discussed in the following sections. These parameters are subelements of the
session-descriptor element in the weblogic.xml deployment descriptor file.

Attributes Shared by Different Types of Session Persistence
This section describes parameters common to file and JDBC-based persistence. You can
configure the number of sessions that are held in memory by defining the following parameters
in the session-descriptor element in the weblogic.xml deployment descriptor file. These
parameters are only applicable if you are using session persistence:

• cache-size—Limits the number of cached sessions that can be active in memory at any
one time. If you expect high volumes of simultaneous active sessions, you do not want
these sessions to soak up the RAM of your server because this may cause performance
problems swapping to and from virtual memory. When the cache is full, the least recently
used sessions are stored in the persistent store and recalled automatically when required.
If you do not use persistence, this property is ignored, and there is no soft limit to the
number of sessions allowed in main memory. By default, the number of cached sessions is
1028. To turn off caching, set this to 0. See "cache-size" in session-descriptor.

Note

cache-size is used by JDBC and file-based sessions only for maintaining the in-
memory bubbling cache. It is not applicable for other persistence types.

• invalidation-interval-secs—Sets the time, in seconds, that WebLogic Server waits
between doing house-cleaning checks for timed-out and invalid sessions, and deleting the
old sessions and freeing up memory. Use this element to tune WebLogic Server for best
performance on high traffic sites. See "invalidation-interval-secs" in session-descriptor.

The minimum value is every second (1). The maximum value is once a week (604,800
seconds). If not set, the attribute defaults to 60 seconds.

Using Memory-based, Single-server, Non-replicated Persistent Storage
When you use memory-based storage, all session information is stored in memory and is lost
when you stop and restart WebLogic Server. To use memory-based, single-server, non-
replicated persistent storage, set the persistent-store-type parameter in the session-
descriptor element in the weblogic.xml deployment descriptor file to memory. See session-
descriptor.

Note

If you do not allocate sufficient heap size when running WebLogic Server, your server
may run out of memory under heavy load.

Using File-based Persistent Storage
To configure file-based persistent storage for sessions:

Chapter 9
Configuring Session Persistence

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 17

• In the deployment descriptor file weblogic.xml, set the persistent-store-type parameter
in the session-descriptor element in the weblogic.xml deployment descriptor file to
file. See "persistent-store-type" in session-descriptor.

• Set the directory where WebLogic Server stores the sessions. See "persistent-store-dir" in
session-descriptor.

Note

You must create this directory and make sure appropriate access privileges have
been assigned to the directory.

Using a Database for Persistent Storage (JDBC Persistence)
JDBC persistence stores session data in a database table using a schema provided for this
purpose. You can use any database for which you have a JDBC driver. You configure database
access by using connection pools.

Because WebLogic Server uses the system time to determine the session life time when using
JDBC session persistence, you must be sure to synchronize the system clock on all of the
machines on which servers are running in the same cluster.

Configuring JDBC-based Persistent Storage
To configure JDBC-based persistent storage for sessions:

• Set the persistent-store-type parameter in the session-descriptor element in the
weblogic.xml deployment descriptor file to jdbc. See session-descriptor.

• Set a JDBC connection pool to be used for persistence storage with the persistent-
store-pool or persistent-data-source-jndi-name parameter in the session-descriptor
element in the weblogic.xml deployment descriptor file. Use the name of a connection
pool that is defined in the WebLogic Remote Console. See session-descriptor.

With asynchronous JDBC persistence for HTTP sessions in an application or Web
application, the persistent-store-pool parameter is ignored. To set a JDBC connection
pool for async-jdbc-based persistence, you must specify the persistent-data-source-
jndi-name parameter in the session-desciptor element in the weblogic.xml deployment
descriptor file. See session-descriptor.

• Set up a database table named wl_servlet_sessions for JDBC-based persistence. The
connection pool that connects to the database needs to have read/write access for this
table.

Note

Create indexes on wl_id and wl_context_path, if the database does not create
them automatically. Some databases create indexes automatically for primary
keys.

Set up column names and data types as follows:

Chapter 9
Using a Database for Persistent Storage (JDBC Persistence)

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 17

Table 9-1 Creating wl_servlet_sessions

Column Name Data Type

wl_id Variable-width alphanumeric column, up to 100 characters; for example,
Oracle VARCHAR2(100).

The primary key must be set as follows:

wl_id + wl_context_path

wl_context_path Variable-width alphanumeric column, up to 100 characters; for example,
Oracle VARCHAR2(100). This column is used as part of the primary key. (See
the wl_id column description.)

wl_is_new Single char column; for example, Oracle CHAR(1)

wl_create_time Numeric column, 20 digits; for example, Oracle NUMBER(20)

wl_is_valid Single char column; for example, Oracle CHAR(1)

wl_session_values Large binary column; for example, Oracle LONG RAW

wl_access_time Numeric column, 20 digits; for example, NUMBER(20)

wl_max_inactive_int
erval

Integer column; for example, Oracle Integer. Number of seconds between
client requests before the session is invalidated. A negative time value
indicates that the session should never time out.

If you are using an Oracle DBMS, use the following SQL statement to create the
wl_servlet_sessions table. Modify the SQL statement for use with your DBMS.

Example 9-1 Creating wl_servlet_sessions table with Oracle DBMS

create table wl_servlet_sessions
 (wl_id VARCHAR2(100) NOT NULL,
 wl_context_path VARCHAR2(100) NOT NULL,
 wl_is_new CHAR(1),
 wl_create_time NUMBER(20),
 wl_is_valid CHAR(1),
 wl_session_values LONG RAW,
 wl_access_time NUMBER(20),
 wl_max_inactive_interval INTEGER,
 PRIMARY KEY (wl_id, wl_context_path));

If you are using SqlServer2000, use the following SQL statement to create the
wl_servlet_sessions table. Modify the SQL statement for use with your DBMS.

Example 9-2 Creating wl_servlet_sessions table with SqlServer 2000

create table wl_servlet_sessions
 (wl_id VARCHAR2(100) NOT NULL,
 wl_context_path VARCHAR2(100) NOT NULL,
 wl_is_new VARCHAR(1),
 wl_create_time DECIMAL,
 wl_is_valid VARCHAR(1),
 wl_session_values IMAGE,
 wl_access_time DECIMAL,
 wl_max_inactive_interval INTEGER,
 PRIMARY KEY (wl_id, wl_context_path));

If you are using DB2, use the following SQL statement to create the wl_servlet_sessions
table. Modify the SQL statement for use with your DBMS.

Chapter 9
Using a Database for Persistent Storage (JDBC Persistence)

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 17

Example 9-3 Creating wl_servlet_sessions table with DB2

CREATE TABLE WL_SERVLET_SESSIONS
(
 WL_ID VARCHAR(100) not null,
 WL_CONTEXT_PATH VARCHAR(100) not null,
 WL_IS_NEW SMALLINT,
 WL_CREATE_TIME DECIMAL(16),
 WL_IS_VALID SMALLINT,
 wl_session_values BLOB(10M) NOT LOGGED,
 WL_ACCESS_TIME DECIMAL(16),
 WL_MAX_INACTIVE_INTERVAL INTEGER,
 PRIMARY KEY (WL_ID,WL_CONTEXT_PATH)
);

If you are using Sybase, use the following SQL statement to create the wl_servlet_sessions
table. Modify the SQL statement for use with your DBMS.

Example 9-4 Creating wl_servlet_sessions table with Sybase

create table WL_SERVLET_SESSIONS (
WL_ID varchar(100) not null ,
WL_CONTEXT_PATH varchar(100) not null ,
WL_IS_NEW CHAR(1) null ,
WL_CREATE_TIME decimal(16,0) null ,
WL_IS_VALID CHAR(1) null ,
WL_SESSION_VALUES image null ,
WL_ACCESS_TIME decimal(16,0) null ,
WL_MAX_INACTIVE_INTERVAL int null ,
)
go

alter table WL_SERVLET_SESSIONS
add PRIMARY KEY CLUSTERED (WL_ID, WL_CONTEXT_PATH)
go

Caching and Database Updates for JDBC Session Persistence
WebLogic Server does not write the HTTP session state to disk if the request is read-only,
meaning the request does not modify the HTTP session. Only the wl_access_time column is
updated in the database, if the session is accessed.

For non read-only requests, the Web application container updates the database for the
changes to session state after every HTTP request. This is done so that any server in the
cluster can handle requests upon failovers and retrieve the latest session state from the
database.

To prevent multiple database queries, WebLogic Server caches recently used sessions.
Recently used sessions are not refreshed from the database for every request. The number of
sessions in cache is governed by the cache-size parameter in the session-descriptor
element of the WebLogic Server-specific deployment descriptor, weblogic.xml. See session-
descriptor.

Using Cookie-Based Session Persistence
Cookie-based session persistence provides a stateless solution for session persistence by
storing all session data in a cookie in the user's browser. Cookie-based session persistence is
most useful when you do not need to store large amounts of data in the session. Cookie-based
session persistence can make managing your WebLogic Server installation easier because

Chapter 9
Using a Database for Persistent Storage (JDBC Persistence)

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 17

clustering failover logic is not required. Because the session is stored in the browser, not on
the server, you can start and stop WebLogic Servers without losing sessions.

There are some limitations to cookie-based session persistence:

• You can store only string attributes in the session. If you store any other type of object in
the session, an IllegalArgument exception is thrown.

• You cannot flush the HTTP response (because the cookie must be written to the header
data before the response is committed).

• If the content length of the response exceeds the buffer size, the response is automatically
flushed and the session data cannot be updated in the cookie. (The buffer size is, by
default, 8192 bytes. You can change the buffer size with the
jakarta.servlet.ServletResponse.setBufferSize() method.

• You can only use basic (browser-based) authentication.

• Session data is sent to the browser in clear text.

• The user's browser must be configured to accept cookies.

• You cannot use commas (,) in a string when using cookie-based session persistence or an
exception occurs.

To set up cookie-based session persistence:

• Set the persistent-store-type parameter in the session-descriptor element in the
weblogic.xml deployment descriptor file to cookie. See session-descriptor.

• Optionally, set a name for the cookie using the persistent-store-cookie-name element.
The default is WLCOOKIE. See session-descriptor.

Using URL Rewriting Instead of Cookies
In some situations, a browser or wireless device may not accept cookies, which makes session
tracking with cookies impossible. URL rewriting is a solution to this situation that can be
substituted automatically when WebLogic Server detects that the browser does not accept
cookies. URL rewriting involves encoding the session ID into the hyperlinks on the Web pages
that your servlet sends back to the browser. When the user subsequently clicks these links,
WebLogic Server extracts the ID from the URL address and finds the appropriate HttpSession
when your servlet calls the getSession() method.

Enable URL rewriting in WebLogic Server by setting the url-rewriting-enabled parameter in
the WebLogic-specific deployment descriptor, weblogic.xml, under the session-descriptor
element. The default value for this attribute is true. See session-descriptor.

Coding Guidelines for URL Rewriting
Here are general guidelines for supporting URL rewriting.

• Avoid writing a URL straight to the output stream, as shown here:

out.println("catalog");

Instead, use the HttpServletResponse.encodeURL() method, for example:

out.println("<a href=\"
 + response.encodeURL("myshop/catalog.jsp")
 + "\">catalog");

Chapter 9
Using URL Rewriting Instead of Cookies

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 17

Calling the encodeURL() method determines whether the URL needs to be rewritten. If it
does need to be rewritten, WebLogic Server rewrites the URL by appending the session ID
to the URL, with the session ID preceded by a semicolon.

• In addition to URLs that are returned as a response to WebLogic Server, also encode
URLs that send redirects. For example:

if (session.isNew())
 response.sendRedirect (response.encodeRedirectUrl(welcomeURL));

WebLogic Server uses URL rewriting when a session is new, even if the browser does
accept cookies, because the server cannot tell whether a browser accepts cookies in the
first visit of a session.

When a plug-in is used (Apache, NSAPI, ISAPI, HttpClusterServlet, or
HttpProxyServlet) and URL rewriting is used at the back-end server using
response.sendRedirect(url) or response.encodeRedirectURL(url), then the PathTrim
and PathPrepend parameters will be applied to the URL under the following condition:
PathTrim will only be applied to the URL if PathPrepend is null or PathPrepend has been
applied.

• Your servlet can determine whether a given session ID was received from a cookie by
checking the Boolean returned from the
HttpServletRequest.isRequestedSessionIdFromCookie() method. Your application may
respond appropriately, or simply rely on URL rewriting by WebLogic Server.

Note

The CISCO Local Director load balancer expects a question mark "?" delimiter for
URL rewriting. Because the WebLogic Server URL-rewriting mechanism uses a
semicolon ";" as the delimiter, our URL rewriting is incompatible with this load
balancer.

URL Rewriting and Wireless Access Protocol (WAP)
If you are writing a WAP application, you must use URL rewriting because the WAP protocol
does not support cookies. In addition, some WAP devices have a 128-character limit on the
length of a URL (including attributes), which limits the amount of data that can be transmitted
using URL rewriting. To allow more space for attributes, you can limit the size of the session ID
that is randomly generated by WebLogic Server.

In particular, to use the WAPEnabled attribute, use the WebLogic Remote Console at Server >
Protocols > HTTP. The WAPEnabled attribute restricts the size of the session ID to 52
characters and disallows special characters, such as ! and #. You can also use the IDLength
parameter of weblogic.xml to further restrict the size of the session ID. For additional details,
see "id-length" in session-descriptor.

Chapter 9
Using URL Rewriting Instead of Cookies

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 17

Note

If the id-length subelement of the session-descriptor element of the WebLogic
Server-specific deployment descriptor, weblogic.xml, contains a value of less than 32,
WebLogic Server automatically increases the value to 32 and displays the following
message:

The IDLength is too short. It is not secure. WLS will raise the length to 32.

Session Tracking from a Servlet
Session tracking enables you to track a user's progress over multiple servlets or HTML pages,
which, by nature, are stateless. A session is defined as a series of related browser requests
that come from the same client during a certain time period. Session tracking ties together a
series of browser requests—think of these requests as pages—that may have some meaning
as a whole, such as a shopping cart application.

The following sections discuss various aspects of tracking sessions from an HTTP servlet:

A History of Session Tracking
Before session tracking matured conceptually, developers tried to build state into their pages
by stuffing information into hidden fields on a page or embedding user choices into URLs used
in links with a long string of appended characters. You can see good examples of this at most
search engine sites, many of which still depend on CGI. These sites track user choices with
URL parameter name=value pairs that are appended to the URL, after the reserved HTTP
character ?. This practice can result in a very long URL that the CGI script must carefully parse
and manage. The problem with this approach is that you cannot pass this information from
session to session. Once you lose control over the URL—that is, once the user leaves one of
your pages—the user information is lost forever.

Later, Netscape introduced browser cookies, which enable you to store user-related
information about the client for each server. However, some browsers still do not fully support
cookies, and some users prefer to turn off the cookie option in their browsers. Another factor
that should be considered is that most browsers limit the amount of data that can be stored
with a cookie.

Unlike the CGI approach, the HTTP servlet specification defines a solution that allows the
server to store user details on the server beyond a single session, and protects your code from
the complexities of tracking sessions. Your servlets can use an HttpSession object to track a
user's input over the span of a single session and to share session details among multiple
servlets. Session data can be persisted using a variety of methods available with WebLogic
Service.

Tracking a Session with an HttpSession Object
According to the Jakarta Servlet API, which WebLogic Server implements and supports, each
servlet can access a server-side session by using its HttpSession object. You can access an
HttpSession object in the service() method of the servlet by using the HttpServletRequest
object with the variable request variable, as shown:

HttpSession session = request.getSession(true);

Chapter 9
Session Tracking from a Servlet

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 17

An HttpSession object is created if one does not already exist for that client when the
request.getSession(true)method is called with the argument true. The session object lives
on WebLogic Server for the lifetime of the session, during which the session object
accumulates information related to that client. Your servlet adds or removes information from
the session object as necessary. A session is associated with a particular client. Each time the
client visits your servlet, the same associated HttpSession object is retrieved when the
getSession() method is called.

For more details on the methods supported by the HttpSession, refer to the HttpServlet API at
https://jakarta.ee/specifications/servlet/5.0/apidocs/jakarta/servlet/http/
httpsession.

In the following example, the service() method counts the number of times a user requests
the servlet during a session.

public void service(HttpServletRequest request,
 HttpServletResponse, response)
 throws IOException
{
 // Get the session and the counter param attribute
 HttpSession session = request.getSession (true);
 Integer ival = (Integer)
 session.getAttribute("simplesession.counter");
 if (ival == null) // Initialize the counter
 ival = new Integer (1);
 else // Increment the counter
 ival = new Integer (ival.intValue () + 1);
 // Set the new attribute value in the session
 session.setAttribute("simplesession.counter", ival);
 // Output the HTML page
 out.print("<HTML><body>");
 out.print("<center> You have hit this page ");
 out.print(ival + " times!");
 out.print("</body></html>");
}

Lifetime of a Session
A session tracks the selections of a user over a series of pages in a single transaction. A single
transaction may consist of several tasks, such as searching for an item, adding it to a shopping
cart, and then processing a payment. A session is transient, and its lifetime ends when one of
the following occurs:

• A user leaves your site and the user's browser does not accept cookies.

• A user quits the browser.

• The session is timed out due to inactivity.

• The session is completed and invalidated by the servlet.

• The user logs out and is invalidated by the servlet.

For more persistent, long-term storage of data, your servlet should write details to a database
using JDBC or EJB and associate the client with this data using a long-lived cookie and/or user
name and password.

Chapter 9
Session Tracking from a Servlet

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 17

https://jakarta.ee/specifications/servlet/5.0/apidocs/jakarta/servlet/http/httpsession
https://jakarta.ee/specifications/servlet/5.0/apidocs/jakarta/servlet/http/httpsession

Note

Although this document states that sessions use cookies and persistence internally,
you should not use sessions as a general mechanism for storing data about a user.

How Session Tracking Works
How does WebLogic Server know which session is associated with each client? When an
HttpSession is created in a servlet, it is associated with a unique ID. The browser must
provide this session ID with its request in order for the server to find the session data again.
The server attempts to store this ID by setting a cookie on the client. Once the cookie is set,
each time the browser sends a request to the server it includes the cookie containing the ID.
The server automatically parses the cookie and supplies the session data when your servlet
calls the getSession() method.

If the client does not accept cookies, the only alternative is to encode the ID into the URL links
in the pages sent back to the client. For this reason, you should always use the encodeURL()
method when you include URLs in your servlet response. WebLogic Server detects whether
the browser accepts cookies and does not unnecessarily encode URLs. WebLogic
automatically parses the session ID from an encoded URL and retrieves the correct session
data when you call the getSession() method. Using the encodeURL() method ensures no
disruption to your servlet code, regardless of the procedure used to track sessions. See Using
URL Rewriting Instead of Cookies.

Detecting the Start of a Session
After you obtain a session using the getSession(true) method, you can tell whether the
session has just been created by calling the HttpSession.isNew() method. If this method
returns true, then the client does not already have a valid session, and at this point it is
unaware of the new session. The client does not become aware of the new session until a
reply is posted back from the server.

Design your application to accommodate new or existing sessions in a way that suits your
business logic. For example, your application might redirect the client's URL to a login/
password page if you determine that the session has not yet started, as shown in the following
code example:

HttpSession session = request.getSession(true);
if (session.isNew()) {
 response.sendRedirect(welcomeURL);
}

On the login page, provide an option to log in to the system or create a new account. You can
also specify a login page in your Web application using the login-config element of the
Jakarta EE standard Web application deployment descriptor, web.xml.

Setting and Getting Session Name/Value Attributes
You can store data in an HttpSession object using name=value pairs. Data stored in a session
is available through the session. To store data in a session, use these methods from the
HttpSession interface:

getAttribute()
getAttributeNames()

Chapter 9
Session Tracking from a Servlet

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 17

setAttribute()
removeAttribute()
The following code fragment shows how to get all the existing name=value pairs:
Enumeration sessionNames = session.getAttributeNames();
String sessionName = null;
Object sessionValue = null;

while (sessionNames.hasMoreElements()) {
 sessionName = (String)sessionNames.nextElement();
 sessionValue = session.getAttribute(sessionName);
 System.out.println("Session name is " + sessionName +
 ", value is " + sessionValue);
}

To add or overwrite a named attribute, use the setAttribute() method. To remove a named
attribute altogether, use the removeAttribute() method.

Note

You can add any Java descendant of Object as a session attribute and associate it
with a name. However, if you are using session persistence, your attribute value
objects must implement java.io.Serializable.

Logging Out and Ending a Session
If your application deals with sensitive information, consider offering the ability to log out of the
session. This is a common feature when using shopping carts and Internet email accounts.
When the same browser returns to the service, the user must log back in to the system.

Using session.invalidate() for a Single Web Application
User authentication information is stored both in the users's session data and in the context of
a server or virtual host that is targeted by a Web application. Using the session.invalidate()
method, which is often used to log out a user, only invalidates the current session for a user—
the user's authentication information still remains valid and is stored in the context of the server
or virtual host. If the server or virtual host is hosting only one Web application, the
session.invalidate()method, in effect, logs out the user.

Do not reference an invalidated session after calling session.invalidate(). If you do, an
IllegalStateException is thrown. The next time a user visits your servlet from the same
browser, the session data will be missing, and a new session will be created when you call the
getSession(true) method. At that time you can send the user to the login page again.

Implementing Single Sign-On for Multiple Applications
If the server or virtual host is targeted by many Web applications, another means is required to
log out a user from all Web applications. Because the servlet specification does not provide an
API for logging out a user from all Web applications, the following methods are provided.

• weblogic.servlet.security.ServletAuthentication.logout()—Removes the
authentication data from the users's session data, which logs out a user but allows the
session to remain alive.

Chapter 9
Session Tracking from a Servlet

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 17

• weblogic.servlet.security.ServletAuthentication.invalidateAll()—Invalidates all
the sessions and removes the authentication data for the current user. The cookie is also
invalidated.

• weblogic.servlet.security.ServletAuthentication.killCookie()—Invalidates the
current cookie by setting the cookie so that it expires immediately when the response is
sent to the browser. This method depends on a successful response reaching the user's
browser. The session remains alive until it times out.

Exempting a Web Application for Single Sign-on
If you want to exempt a Web application from participating in single sign-on, define a different
cookie name for the exempted Web application. See Configuring WebLogic Server Session
Cookies.

Configuring Session Tracking
WebLogic Server provides many configurable attributes that determine how WebLogic Server
handles session tracking. For details about configuring these session tracking attributes, see
session-descriptor.

Using URL Rewriting Instead of Cookies
In some situations, a browser may not accept cookies, which means that session tracking with
cookies is not possible. URL rewriting is a workaround to this scenario that can be substituted
automatically when WebLogic Server detects that the browser does not accept cookies. URL
rewriting involves encoding the session ID into the hyperlinks on the Web pages that your
servlet sends back to the browser. When the user subsequently clicks these links, WebLogic
Server extracts the ID from the URL and finds the appropriate HttpSession. Then you use the
getSession() method to access session data.

To enable URL rewriting in WebLogic Server, set the URL-rewriting-enabled parameter to
true in the session-descriptor element of the WebLogic Server-specific deployment
descriptor, weblogic.xml. See session-descriptor.

To make sure your code correctly handles URLs in order to support URL rewriting, consider the
following guidelines:

• You should avoid writing a URL straight to the output stream, as shown here:

out.println("catalog");

Instead, use the HttpServletResponse.encodeURL() method. For example:

out.println("<a href=\""
 + response.encodeURL("myshop/catalog.jsp")
 + "\">catalog");

• Calling the encodeURL() method determines if the URL needs to be rewritten and, if
necessary, rewrites the URL by including the session ID in the URL.

• Encode URLs that send redirects, as well as URLs that are returned as a response to
WebLogic Server. For example:

if (session.isNew())
 response.sendRedirect(response.encodeRedirectUrl(welcomeURL));

Chapter 9
Session Tracking from a Servlet

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 17

WebLogic Server uses URL rewriting when a session is new, even if the browser accepts
cookies, because the server cannot determine, during the first visit of a session, whether the
browser accepts cookies.

Your servlet may determine whether a given session was returned from a cookie by checking
the Boolean returned from the HttpServletRequest.isRequestedSessionIdFromCookie()
method. Your application may respond appropriately, or it may simply rely on URL rewriting by
WebLogic Server.

Note

The CISCO Local Director load balancer expects a question mark "?" delimiter for URL
rewriting. Because the WebLogic Server URL-rewriting mechanism uses a semicolon
";" as the delimiter, our URL rewriting is incompatible with this load balancer.

URL Rewriting and Wireless Access Protocol (WAP)
If you are writing a WAP application, you must use URL rewriting because the WAP protocol
does not support cookies. In addition, some WAP devices impose a 128-character limit
(including parameters) on the length of a URL, which limits the amount of data that can be
transmitted using URL rewriting. To allow more space for parameters, you can limit the size of
the session ID that is randomly generated by WebLogic Server by specifying the number of
bytes with the id-length parameter in the session-descriptor element of the WebLogic
Server-specific deployment descriptor, weblogic.xml. See session-descriptor.

The minimum value is 32 bytes; the default value is 52 bytes; the maximum value is
Integer.MAX_VALUE. (See the note in URL Rewriting and Wireless Access Protocol (WAP)).

Making Sessions Persistent
You can set up WebLogic Server to record session data in a persistent store. If you are using
session persistence, you can expect the following characteristics:

• Good failover, because sessions are saved when servers fail.

• Better load balancing, because any server can handle requests for any number of
sessions, and use caching to optimize performance. See the cache-size property, at
Configuring Session Persistence.

• Sessions can be shared across clustered WebLogic Servers. Note that session
persistence is no longer a requirement in a WebLogic Cluster. Instead, you can use in-
memory replication of state. See Administering Clusters for Oracle WebLogic Server.

• For customers who want the highest in servlet session persistence, JDBC-based
persistence is the best choice. For customers who want to sacrifice some amount of
session persistence in favor of drastically better performance, in-memory replication is the
appropriate choice. JDBC-based persistence is noticeably slower than in-memory
replication. In some cases, in-memory replication has outperformed JDBC-based
persistence for servlet sessions by a factor of eight.

• You can put any kind of Java object into a session, but for file, JDBC, and in-memory
replication, only objects that are java.io.Serializable can be stored in a session. See
Configuring Session Persistence.

Chapter 9
Session Tracking from a Servlet

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 17

Scenarios to Avoid When Using Sessions
Do not use session persistence for storing long-term data between sessions. In other words,
do not rely on a session still being active when a client returns to a site at some later date.
Instead, your application should record long-term or important information in a database.

Sessions are not a convenience wrapper around cookies. Do not attempt to store long-term or
limited-term client data in a session. Instead, your application should create and set its own
cookies on the browser. Examples include an auto-login feature that allows a cookie to live for
a long period, or an auto-logout feature that allows a cookie to expire after a short period of
time. Here, you should not attempt to use HTTP sessions. Instead, you should write your own
application-specific logic.

Use Serializable Attribute Values
When you use persistent sessions, all attribute value objects that you add to the session must
implement java.io.Serializable.

If you add your own serializable classes to a persistent session, make sure that each instance
variable of your class is also serializable. Otherwise, you can declare it as transient, and
WebLogic Server does not attempt to save that variable to persistent storage. One common
example of an instance variable that must be made transient is the HttpSession object. (See
the notes on using serialized objects in sessions in the section Making Sessions Persistent.)

The HttpServletRequest, ServletContext, and HttpSession attributes will be serialized when
a WebLogic Server instance detects a change in the Web application classloader. The
classloader changes when a Web application is redeployed, when there is a dynamic change
in a servlet, or when there is a cross Web application forward or include.

To avoid having the attribute serialized, during a dynamic change in a servlet, turn off servlet-
reload-check-secs in weblogic.xml. There is no way to avoid serialization of attributes for
cross Web application dispatch or redeployment. See servlet-reload-check-secs.

Configuring Session Persistence
For details about setting up persistent sessions, see Configuring Session Persistence.

Configuring a Maximum Limit on In-memory Servlet Sessions
Without the ability to configure in-memory servlet session use, as new sessions are continually
created, the server eventually throws out of memory. To protect against this, WebLogic Server
provides a configurable bound on the number of sessions created. When this number is
exceeded, the weblogic.servlet.SessionCreationException occurs for each attempt to
create a new session. This feature applies to both replicated and non-replicated in-memory
sessions.

To configure bound in-memory servlet session use, you set the limitation in the max-in-
memory-sessions element in the weblogic.xml deployment descriptor. See session-descriptor.

Enabling Session Memory Overload Protection
When memory is overloaded, a weblogic.servlet.SessionCreationException
(RuntimeException) for any getSession(true) attempts occurs. As the person developing the
servlet, you should handle this exception as follows:

Chapter 9
Session Tracking from a Servlet

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 17

• Return the appropriate error message to the user when the exception occurs, explaining
the situation.

• Map weblogic.servlet.SessionCreationException to an error page in the Jakarta EE
standard Web application deployment descriptor, web.xml.

By default, memory overload protection is turned off. You can enable it with a domain-level
flag:

weblogic.management.configuration.WebAppContainerMBean.OverloadProtectionEnabled

Chapter 9
Session Tracking from a Servlet

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 17

10
Application Events and Event Listener Classes

Learn about Web application events and event listener classes.
This chapter includes the following sections:

Overview of Application Event Listener Classes
Application events provide notifications of a change in state of the servlet context (each Web
application uses its own servlet context) or of an HTTP session object. You write event listener
classes that respond to these changes in state, and you configure and deploy them in a Web
application. The servlet container generates events that cause the event listener classes to do
something. In other words, the servlet container calls the methods on a user's event listener
class.

The following is an overview of this process:

1. The user creates an event listener class that implements one of the listener interfaces.

2. This implementation is registered in the deployment descriptor.

3. At deployment time, the servlet container constructs an instance of the event listener class.
(This is why the public constructor must exist, as discussed in Writing an Event Listener
Class.)

4. At run time, the servlet container invokes on the instance of the listener class.

For servlet context events, the event listener classes can receive notification when the Web
application is deployed or undeployed (or when WebLogic Server shuts down), and when
attributes are added, removed, or replaced.

For HTTP session events, the event listener classes can receive notification when an HTTP
session is activated or is about to be passivated, and when an HTTP session attribute is
added, removed, or replaced.

Use Web application event listener classes to:

• Manage database connections when a Web application is deployed or shuts down

• Create standard counter utilities

• Monitor the state of HTTP sessions and their attributes

Servlet Context Events
Examine a listing of the types of Servlet context events, the interface your event listener class
must implement to respond to each Servlet context event, and the methods invoked when the
Servlet context event occurs.

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 5

Table 10-1 Servlet Context Events

Type of Event Interface Method

Servlet context is
created.

jakarta.servlet.ServletContextListener contextInitialized(
)

Servlet context is about
to be shut down.

jakarta.servlet.ServletContextListener contextDestroyed()

An attribute is added. jakarta.servlet.ServletContextAttribute
sListener

attributeAdded()

An attribute is removed. jakarta.servlet.ServletContextAttribute
sListener

attributeRemoved()

An attribute is replaced. jakarta.servlet.ServletContextAttribute
sListener

attributeReplaced()

HTTP Session Events
The HTTP Session Events contains a list of event types, interfaces and methods that are used
to indicate the activation and deactivation of a HTTP session along with the addition and
removal of attributes during a HTTP session.

The following table lists the types of HTTP session events your event listener class must
implement to respond to the HTTP session events and the methods invoked when the HTTP
session events occur.

Table 10-2 HTTP Session Events

Type of Event Interface Method

An HTTP session is
activated.

jakarta.servlet.http.HttpSessionListene
r

sessionCreated()

An HTTP session is
about to be passivated.

jakarta.servlet.http.HttpSessionListene
r

sessionDestroyed()

An attribute is added. jakarta.servlet.http.HttpSessionAttribu
teListener

attributeAdded()

An attribute is removed. jakarta.servlet.http.HttpSessionAttribu
teListener

attributeRemoved()

An attribute is replaced. jakarta.servlet.http.HttpSessionAttribu
teListener

attributeReplaced()

Note

The Servlet 5.0 specification also contains the
jakarta.servlet.http.HttpSessionBindingListener and the
jakarta.servlet.http.HttpSessionActivationListener interfaces. These
interfaces are implemented by objects that are stored as session attributes and do not
require registration of an event listener in web.xml.

Chapter 10
HTTP Session Events

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 5

Servlet Request Events
Examine a listing of the types of servlet request events, the interface your event listener class
must implement to manage state across the life cycle of servlet requests and the methods
invoked when the request events occur.

Table 10-3 Servlet Request Events

Type of Event Interface Method

The request is about to go out of scope
of the Web application.

jakarta.servlet.ServletRequestL
istener

requestDestroye
d()

The request is about to come into scope
of the Web application.

jakarta.servlet.ServletRequestL
istener

requestInitiali
zed()

Notification that a new attribute was
added to the servlet request. Called after
the attribute is added.

jakarta.servlet.ServletRequestA
ttributeListener

attributeAdded(
)

Notification that a new attribute was
removed from the servlet request. Called
after the attribute is removed.

jakarta.servlet.ServletRequestA
ttributeListener

attributeRemove
d()

Notification that an attribute was
replaced on the servlet request. Called
after the attribute is replaced.

jakarta.servlet.ServletRequestA
ttributeListener

attributeReplac
ed()

Configuring an Event Listener Class
Learn how to configure an event listener class.

To configure an event listener class:

1. Open the web.xml deployment descriptor of the Web application for which you are creating
an event listener class in a text editor. The web.xml file is located in the WEB-INF directory
of your Web application.

2. Add an event declaration using the listener element of the web.xml deployment
descriptor. The event declaration defines the event listener class that is invoked when the
event occurs. The listener element must directly follow the filter and filter-mapping
elements and directly precede the servlet element. You can specify more than one event
listener class for each type of event. WebLogic Server invokes the event listener classes in
the order that they appear in the deployment descriptor (except for shutdown events, which
are invoked in the reverse order). For example:

<listener>
 <listener-class>myApp.MyContextListenerClass</listener-class>
</listener>
<listener>
 <listener-class>myApp.MySessionAttributeListenerClass</listener-class>
</listener>

3. Write and deploy the event listener class. For details, see the section, Writing an Event
Listener Class.

Chapter 10
Servlet Request Events

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 5

Writing an Event Listener Class
Learn how to write an event listener class.

To write an event listener class:

1. Create a new event listener class that implements the appropriate interface for the type of
event to which your class responds. For a list of these interfaces, see Servlet Context
Events or HTTP Session Events. See Templates for Event Listener Classes for sample
templates you can use to get started.

2. Create a public constructor that takes no arguments. For example:

public class MyListener {
// public constructor
public MyListener() { /* ... */ }
}

3. Implement the required methods of the interface. See the Jakarta EE API Reference
(Javadocs) at https://docs.oracle.com/en/java/javase/17/index.html for more
information.

4. Copy the compiled event listener classes into the WEB-INF/classes directory of the Web
application, or package them into a JAR file and copy the JAR file into the WEB-INF/lib
directory of the Web application.

The following useful classes are passed into the methods in an event listener class:

• jakarta.servlet.http.HttpSessionEvent—provides access to the HTTP session
object

• jakarta.servlet.ServletContextEvent—provides access to the servlet context
object.

• jakarta.servlet.ServletContextAttributeEvent—provides access to servlet
context and its attributes

• jakarta.servlet.http.HttpSessionBindingEvent—provides access to an HTTP
session and its attributes

Templates for Event Listener Classes
Examine examples that provide some basic templates for event listener classes.

Servlet Context Event Listener Class Example
package myApp;
import jakarta.servlet.http.*;
public final class MyContextListenerClass implements
 ServletContextListener {
 public void contextInitialized(ServletContextEvent event) {

 /* This method is called prior to the servlet context being
 initialized (when the Web application is deployed).
 You can initialize servlet context related data here.
 */

 }
 public void contextDestroyed(ServletContextEvent event) {

Chapter 10
Writing an Event Listener Class

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 5

https://docs.oracle.com/en/java/javase/17/index.html

 /* This method is invoked when the Servlet Context
 (the Web application) is undeployed or
 WebLogic Server shuts down.
 */

 }
}

HTTP Session Attribute Event Listener Class Example
package myApp;
import jakarta.servlet.*;

public final class MySessionAttributeListenerClass implements
 HttpSessionAttributeListener {

 public void attributeAdded(HttpSessionBindingEvent sbe) {
 /* This method is called when an attribute
 is added to a session.
 */
 }
 public void attributeRemoved(HttpSessionBindingEvent sbe) {
 /* This method is called when an attribute
 is removed from a session.
 */
 }
 public void attributeReplaced(HttpSessionBindingEvent sbe) {
 /* This method is invoked when an attibute
 is replaced in a session.
 */
 }
}

Additional Resources
• Servlet 5.0 specification at https://jakarta.ee/specifications/servlet/5.0/jakarta-

servlet-spec-5.0

• The Jakarta EE tutorial at https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/
intro/overview/overview.html

Chapter 10
Additional Resources

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 5

https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-spec-5.0
https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-spec-5.0
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/intro/overview/overview.html
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/intro/overview/overview.html

11
Using the HTTP Publish-Subscribe Server

Learn how to use the HTTP Publish-Subscribe Server, included in WebLogic Server, with your
Web applications.

Note

The HTTP Publish-Subscribe Server is deprecated in WebLogic Server 14c
(14.1.2.0.0).

This chapter includes the following sections:

Overview of HTTP Publish-Subscribe Servers
An HTTP Publish-Subscribe Server (for simplicity, also called pub-sub server in this document)
is a mechanism whereby Web clients subscribe to channels and then publish messages to
these channels using asynchronous messages over HTTP.

The simple request/response nature of a standard Web application requires that all
communication be initiated by the client; this means that the server can only push updated
data to its clients if it receives an explicit request. This mechanism is adequate for traditional
applications, such as shopping carts, in which data from the server is required only when a
client requests it, but inadequate for dynamic real-time applications such as chat rooms and
auction updates in which the server must send data even if a client has not explicitly requested
it. The client can use the traditional HTTP pull approach to check and retrieve the latest data at
regular intervals, but this approach is lacking in scalability and leads to high network traffic
because of redundant checks. The HTTP Publish-Subscribe Server solves this problem by
allowing clients to subscribe to a channel (similar to a topic in JMS) and receive messages as
they become available.

The pub-sub server is based on the Bayeux protocol, see https://archive.is/http://
svn.cometd.com/trunk/bayeux/bayeux.html. The Bayeux protocol defines a contract
between the client and the server for communicating with asynchronous messages over HTTP.
It allows clients to register and subscribe to channels, which are named destinations or
sources of events. Registered clients, or the pub-sub server itself, then publishes messages to
these channels which in turn any subscribed clients receive.

The pub-sub server can communicate with any client that can understand the Bayeux protocol.
The pub-sub server is responsible for identifying clients, negotiating trust, exchanging Bayeux
messages, and, most importantly, pushing event messages to subscribed clients.

The following figure describes the basic architecture of the pub-sub server included in
WebLogic Server.

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 24

https://archive.is/http://svn.cometd.com/trunk/bayeux/bayeux.html
https://archive.is/http://svn.cometd.com/trunk/bayeux/bayeux.html

Figure 11-1 HTTP Publish-Subscribe Server of WebLogic Server

How the Pub-Sub Server Works
There is a one-to-one relationship between a Web application and a pub-sub server; in other
words, each Web application has access to one unique pub-sub server. Each pub-sub server
has its own list of channels, which means that there can be channels with the same name used
in different Web applications within the same enterprise application. The Web application uses
a context object to get a handle to its associated pub-sub server.

The pub-sub server itself is implemented as a Jakarta EE library that its associated Web
application references in its weblogic.xml deployment descriptor.

The pub-sub server has its own deployment descriptor, called weblogic-pubsub.xml, that lives
in the same directory as other Web application descriptors (WEB-INF). Developers use the
descriptor to configure initial channels for the pub-sub server, specify the transport and
message handlers, and set up user authentication and authorization.

Web application developers can optionally use server-side pub-sub APIs in their servlets or
Java classes to get the pub-sub server context, manage channels, and manage the incoming
and outgoing messages to and from the clients. It is not required, however, to use server-side
pub-sub APIs. For example, developers can use the pub-sub server to implement a chat
feature in their Web application. In a typical chat application, clients perform all the subscribe
and publish tasks themselves without any need for additional server-side coding. If, however,
developers need the pub-sub server to perform additional steps, such as monitoring, collecting,
or interpreting incoming messages from clients, then they must use the server-side pub-sub
server APIs to program this functionality.

For Web 2.0 Ajax clients to communicate with the pub-sub server, the clients need a
JavaScript library that supports the Bayeux protocol. The pub-sub server provides the Dojo

Chapter 11
Overview of HTTP Publish-Subscribe Servers

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 24

JavaScript library implementation as part of its distribution sample. The Dojo JavaScript library
provides four different transports, of which two are supported by the WebLogic pub-sub server:
long-polling and callback-polling.

The pub-sub server can run in a clustered environment by using JMS to make the messages
shareable between nodes of the cluster. In this case, the pub-sub server essentially delegates
message handling to a JMS provider.

You can also specify that messages be persisted to physical storage such as a file system or
database. By default messages are not persisted.

The following sections provide additional information about the pub-sub server:

• Channels

• Message Delivery and Order of Delivery Guarantee

Channels
Channels are named destinations to which clients subscribe and publish messages.
Programmers define initial channels, channel mapping, and security by creating the weblogic-
pubsub.xml deployment descriptor file and packaging it in the WEB-INF directory of the Web
application, alongside the standard web.xml and weblogic.xml files. Programmers can
optionally use the pub-sub server APIs in servlets to further find, create, and destroy channels
dynamically.

It is up to the programmer to decide whether clients can create and destroy channels. This
means that the programmer, if required, will have to constrain the use of the create and destroy
methods based on client authorization. Any attempt by an unauthorized client to create or
destroy a channel generates an error message.

When the pub-sub server destroys an existing channel, all the clients subscribed to that
channel and sub-channels of that channel are automatically unsubscribed. Unsubscribed
clients receive a disconnect response message from the pub-sub server when it destroys the
channel so that clients can try to reconnect and resubscribe to the other channels.

The channel namespace is hierarchical. This means that a set of channels can be specified for
subscriptions by a channel gobbling pattern with wildcards like * and **. The client is
automatically registered with any channels that are created after the client subscribed with a
wildcard pattern.

Message Delivery and Order of Delivery Guarantee
The order of delivery of messages is not guaranteed between the client and the pub-sub
server. This means that if the pub-sub server publishes message1 and then message2, the
client may receive the messages in that order, or it may also receive them in reverse order.

On the Web, clients are by definition loosely connected and it is possible that a subscriber is
inactive or not connected when the pub-sub server publishes a message. The following rules
govern the behavior of message delivery in this case:

• Messages published by the pub-sub server when a client is unreachable are not delivered
to the client.

• When the clients reconnects back, it will continue to receive newly published messages.

• In order to recover already-published messages, the pub-sub server must be configured
for persistent messages and the channel be configured as a persistent channel.0

Chapter 11
Overview of HTTP Publish-Subscribe Servers

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 24

Examples of Using the HTTP Publish-Subscribe Server
Examine a very simple example that describes the basic functionality and required tasks of
using the HTTP pub-sub server.

The example is a Web application that consists of only the following components:

• A web.xml deployment descriptor to configure the pub-sub Jakarta EE library.

• A weblogic-pubsub.xml deployment descriptor that configures the pub-sub server itself.

• An HTML file that allows users to subscribe and publish messages; the HTML file uses the
DOJO client JavaScript libraries as its programming model.

This example does not use any server-side programming using the pub-sub APIs.

A more complicated example is optionally provided in the WebLogic Server distribution. The
example describes a real-world scenario based on stock trading, and makes extensive use of
the pub-sub APIs in both the server and client components. The example uses Dojo as its
client-side programming framework and provides some of the Dojo JavaScript libraries for your
own testing use. The example also shows how to add security to the pub-sub server and client.
The example is in the following directory:

ORACLE_HOME\wlserver\samples\server\examples\src\examples\webapp\pubsub\stock

where ORACLE_HOME represents the directory in which you installed WebLogic Server. For more
information about the WebLogic Server code examples, see Sample Applications and Code
Examplesin Understanding Oracle WebLogic Server.

Using the HTTP Publish-Subscribe Server: Typical Steps
Review the high-level steps for using the HTTP Publish-Subscribe Server.

Note

In the procedure, it is assumed that you have already created a basic Web application,
along with its web.xml and weblogic.xml deployment descriptor files, JSPs, and
servlets. For general details about creating Web applications, see Creating and
Configuring Web Applications.

1. Update the weblogic.xml deployment descriptor of the Web application, located in the
WEB-INF directory, by adding a reference to the shared Jakarta EE library (always called
pubsub) in which the pub-sub server is bundled, as shown in bold below:

<?xml version='1.0' encoding='UTF-8'?>
<weblogic-web-app
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <library-ref>
 <library-name>pubsub</library-name>
 <specification-version>1.0</specification-version>
 </library-ref>
</weblogic-web-app>

Chapter 11
Examples of Using the HTTP Publish-Subscribe Server

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 24

See Creating Shared Jakarta EE Libraries and Optional Packages in Developing
Applications for Oracle WebLogic Serverfor additional child elements of <library-ref> as
well as additional general information about shared Jakarta EE libraries.

2. Create the weblogic-pubsub.xml file to configure initial channels, specify the transport and
message handlers, and set up user authentication and authorization. See Creating the
weblogic-pubsub.xml File.

3. Optionally add Java code to a component of your Web application, such as a servlet, if you
want the pub-sub server to publish messages to the channels, filter messages from clients,
or dynamically create or destroy channels. This step is not necessary. See Programming
Using the Server-Side Pub-Sub APIs.

4. Optionally program and configure a message filter chain if you want to pre-process the
messages you receive from a client. See Configuring and Programming Message Filter
Chains.

5. Update the browser client, such as an HTML file or JSP, to allow users to subscribe to
channels and send and receive messages. See Updating a Browser Client to
Communicate with the Pub-Sub Server.

6. Reassemble the Web application with new and updated deployment description files and
browser clients, and optionally recompile the servlet if you added pub-sub server code.

Put the new weblogic-pubsub.xml deployment descriptor in the same WEB-INF directory
of the Web application that contains the web.xml and weblogic.xml files.

See Creating and Configuring Web Applications for general information about assembling
Web applications.

7. If you have not already done so, deploy the shared Jakarta EE library WAR file in which
the pub-sub server is bundled; you must perform this step before you re-deploy the Web
application that uses the pub-sub server, although you only have to perform the step once
for the entire WebLogic Server.

The pub-sub shared Jakarta EE library WAR file is called pubsub-1.0.war and is located in
the following directory:

WL_HOME/common/deployable-libraries

where WL_HOME is the main WebLogic Server installation directory.

You can use either the WebLogic Remote Console or the weblogic.Deployer command-
line tool. See Deploying Applications in the Oracle WebLogic Remote Console Online Help
or Deploying Shared Jakarta EE Libraries and Dependent Applications for details about
using weblogic.Deployer.

8. Redeploy your updated Web application using the WebLogic Remote Console or the
weblogic.Deployer command-line tool.

See Install an Application in the Oracle WebLogic Remote Console Online Help or
Deploying Applications and Modules with weblogic.Deployer for details about using
weblogic.Deployer.

You can now start using the browser client to subscribe to a channel configured in the
weblogic-pubsub.xml file and then send or receive messages.

After you have programmed your pub-sub application, you might want to start monitoring it for
run-time information; for details, see Getting Run-time Information about the Pub-Sub Server
and Channels.

See the following sections for more advanced features of the pub-sub server that you might
want to implement:

Chapter 11
Using the HTTP Publish-Subscribe Server: Typical Steps

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 24

• Enabling Security

• Advanced Topic: Using JMS as a Provider to Enable Cluster Support

• Advanced Topic: Persisting Messages to Physical Storage

Creating the weblogic-pubsub.xml File
The weblogic-pubsub.xml deployment descriptor is an XML file that configures the pub-sub
server, in particular by specifying the initial channels, configuration properties of the pub-sub
server, and security specifications for the clients that subscribe to the channels. Some of this
information can be updated at run time by the pub-sub server using the server-side APIs.

The root element of the deployment descriptor is <wlps:weblogic-pubsub>, where the wlps
namespace is http://xmlns.oracle.com/weblogic/weblogic-pubsub.

For a full description of the elements of the weblogic-pubsub.xml file, see the schema. The
following list includes some of the more commonly used elements; see the end of this section
for a typical example of a weblogic-pubsub.xml file:

• <wlps:server-config>: Configures the pub-sub server. Child elements of this element
include:

– <wlps:work-manager>: Specifies the name of the work manager that delivers
messages to clients.

– <wlps:publish-without-connect-allowed>: Specifies whether clients can publish
messages without having explicitly connected to the pub-sub server.

– <wlps:supported-transport>: Specifies the supported transports. Currently, the two
supported transports are long-polling and callback-polling.

– <wlps:client-timeout-secs>: Specifies the number of seconds after which the pub-
sub server disconnects a client if the client does has not sent back a connect/
reconnect message

• <wlps:channel>: Defines and configures the initial channels. Child elements of this
element include:

– <wlps:channel-pattern>: Specifies the channel pattern, similar to the way servlet
URL patterns are specified, such as /foo/bar, /foo/bar/*, /foo/bar/**.

• <wlps:channel-persistence>: Specifies whether the channel is persistent. For details,
sees Advanced Topic: Persisting Messages to Physical Storage.

– <wlps:jms-handler-name>: Specifies that this channel uses a JMS handler, rather
than the default. For details, see Advanced Topic: Using JMS as a Provider to Enable
Cluster Support.

– <wlps:message-filter>: Configures a message filter chain. For details, see
Configuring and Programming Message Filter Chains.

• <wlps:channel-constraints>: Configures security for the channel, such which roles are
allowed to perform which operations for a given channel. For details, see Enabling
Security.

• <wlps:jms-handler-mapping>: Configures a JMS handler. For details, see Advanced
Topic: Using JMS as a Provider to Enable Cluster Support.

The following sample weblogic-pubsub.xml file shows a simple configuration for an application
that uses the pub-sub server; see the explanation after the example for details:

<?xml version="1.0" encoding="UTF-8"?>
<wlps:weblogic-pubsub

Chapter 11
Using the HTTP Publish-Subscribe Server: Typical Steps

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 24

 xmlns:wlps="http://xmlns.oracle.com/weblogic/weblogic-pubsub">
 <wlps:server-config>
 <wlps:publish-without-connect-allowed>true</wlps:publish-without-connect-allowed>
 <wlps:supported-transport/>
 <wlps:client-timeout-secs>100</wlps:client-timeout-secs>
 <wlps:persistent-client-timeout-secs>400</wlps:persistent-client-timeout-secs>
 <wlps:interval-millisecs>1000</wlps:interval-millisecs>
 <wlps:multi-frame-interval-millisecs>2000</wlps:multi-frame-interval-millisecs>
 </wlps:server-config>
 <wlps:channel>
 <wlps:channel-pattern>/chatrooms/**</wlps:channel-pattern>
 </wlps:channel>
 <wlps:channel-constraint>
 <wlps:channel-resource-collection>
 <wlps:channel-resource-name>all-permissions</wlps:channel-resource-name>
 <wlps:description>Grant all permissions for everything by everyone</
wlps:description>
 <wlps:channel-pattern>/chatrooms/*</wlps:channel-pattern>
 </wlps:channel-resource-collection>
 </wlps:channel-constraint>
</wlps:weblogic-pubsub>

In the preceding example:

• The <wlps:server-config> element configures the pub-sub server itself. In particular, it
specifies that clients can publish messages to the pub-sub server without explicitly
connecting to it and that the server disconnects the client after 100 seconds if the client
has not sent a reconnect message during that time. The <wlps:persistent-client-
timeout-secs> element specifies that, in the case of persistent channels, the client has up
to 400 seconds to be disconnected to still receive messages published during that time
after it reconnects. The <wlps:interval-milliseconds> element specifies that the client
can delay up to 1000 milliseconds subsequent requests to the /meta/connect channel.
Finally, the <wlps:multi-frame-interval-millisecs> element specifies that the client
can delay up to 2000 milliseconds subsequent requests to the /meta/connect channel
when multi-frame is detected.

• The <wlps:channel> element configures a single initial channel to which users can
subscribe. This channel is identified with the pattern /chatrooms/**; this pattern is the top
of the channel hierarchy.

• The <wlps:channel-constraints> element provides security constraints about how the /
chatrooms/** channel can be used. In this case, all permissions are granted to all users
for all channels for all operations.

Programming Using the Server-Side Pub-Sub APIs
The pub-sub server itself might sometimes need to get messages from a channel so as to
monitor information or intercept incoming data before it gets published to subscribed clients.
The server might also want to publish messages to a channel directly to, for example, make an
announcement to all subscribed clients or provide additional services. The pub-sub server
might also need to perform maintenance on the channels, such as create new ones or destroy
existing ones.

WebLogic Server provides a pub-sub API in the com.bea.httppubsub package to perform all of
these tasks. Pub-sub programmers use the API in servlets or POJOs (plain old Java objects)
of the Web application that contains the pub-sub application. Programming with the API is
optional and needed only if the pub-sub server must perform tasks additional to the standard
publish and subscribe on the client side.

Chapter 11
Using the HTTP Publish-Subscribe Server: Typical Steps

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 24

Overview of the Main API Classes and Interfaces
The following list describes the main interfaces and classes of the pub-sub server API:

• com.bea.httppubsub.PubSubServer—This is the most important interface of the pub-sub
server API. It represents an instance of the pub-sub server that is associated with the
current Web application; you use the context path of the current servlet to get the
associated pub-sub server. Using this interface, programmers can manage channels,
configure the pub-sub server, and create local clients that are used to publish to and
subscribe to channels.

• com.bea.httppubsub.LocalClient—After a programmer has instanciated an instance of
the current pub-sub server using the PubSubServer interface, the programmer must then
create a LocalClient, which is the client representative on the server side. This client is
always connected to the pub-sub server. Using this client, programmers can publish and
subscribe to channels. Remote clients, such as browser-based clients, are represented
with the com.bea.httppubsub.Client interface.

• com.bea.httppubsub.ClientManager—Interface for creating a new LocalClient.

• com.bea.httppubsub.Channel—Interface that represents a channel and all its
subchannels. With this interface, programmers can get the list of clients currently
subscribed to a channel and its subchannels, publish messages to a channel, get a list of
all subchannels, subscribe or unsubscribe to a channel, and destroy a channel.

• com.bea.httppubsub.MessageFilter—Interface for creating message filters that intercept
the messages that a client publishes to a channel. See Configuring and Programming
Message Filter Chains for details.

• com.bea.httppubsub.DeliveredMessageListener—Interface that programmers use to
create an object that listens to a channel and is notified every time a client (remote or local)
publishes a message to the channel.

• com.bea.httppubsub.BayeuxMessage—Interface that represents the messages that are
exchanged between the pub-sub server and a Bayeux client.

There are additional supporting classes, interfaces, enums, and exceptions in the
com.bea.httppubsub package; see the HTTP Pub-Sub API Javadoc for the complete
documentation.

The following sections describe how to perform the most common server-side tasks using the
pub-sub API, such as publishing messages to and subscribing to a channel. The sample
snippets are taken from the Java source files of the pub-sub server sample on the distribution
kit:
ORACLE_HOME\wlserver\samples\server\examples\src\examples\webapp\pubsub\stock\src
\stockWar, where ORACLE_HOME represents the directory in which you installed WebLogic
Server. For more information about the WebLogic Server code examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

Getting a Pub-Sub Server Instance and Creating a Local Client
Before you can perform any server-side tasks on the pub-sub server and its channels, you
must first instantiate a PubSubServer object which represents the pub-sub server and then
create a local client which you use to manipulate the channels on behalf of the pub-sub server.

The following code snippet shows an example:

import com.bea.httppubsub.FactoryFinder;
import com.bea.httppubsub.LocalClient;

Chapter 11
Using the HTTP Publish-Subscribe Server: Typical Steps

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 24

import com.bea.httppubsub.PubSubSecurityException;
import com.bea.httppubsub.PubSubServer;
import com.bea.httppubsub.PubSubServerException;
import com.bea.httppubsub.PubSubServerFactory;
import org.json.JSONObject;
public class ApiBasedClient implements Client {
 private PubSubServer pubSubServer;
 private LocalClient localClient;
 public ApiBasedClient(String serverName) throws PubSubServerException {
 PubSubServerFactory pubSubServerFactory =
 (PubSubServerFactory)FactoryFinder.getFactory(FactoryFinder.PUBSUBSERVER_FACTORY);
 pubSubServer = pubSubServerFactory.lookupPubSubServer(serverName);
 localClient = pubSubServer.getClientManager().createLocalClient();
 }
 ...
}

The FactoryFinder class searches for an implementation of the PubSubServerFactory which
in turn is used to create PubSubServer instances. The lookupPubSubServer() method of
PubSubServerFactory returns a PubSubServer instance based the context path of the servlet
from which the method is run. Finally, the createLocalClient() method of the ClientManager
of the PubSubServer instance returns a LocalClient object; this is the object that the pub-sub
server uses to subscribe and publish to a channel.

Publishing Messages to a Channel
To publish a message to a channel, use the PubSubServer.publishToChannel() method,
passing it the LocalClient object, the name of the channel, and the text of the message, as
shown in the following code snippet:

public void publish(String channel, JSONObject data) throws IOException {
 try {
 pubSubServer.publishToChannel(localClient, channel, data.toString());
 } catch (PubSubSecurityException e) {
 throw new IOException(e);
 }
}

In the example, the channel variable would contain the name of a channel, such as /my/
channel/**.

The publishToChannel() method is asynchronous and returns immediately, or in other words,
the method does not wait for the subscribed clients to receive the message.

Subscribing to a Channel
Subscribing to a channel from the server-side is a two step process:

1. Create a message listener and register it with the LocalClient

2. Explicitly subscribe to the channel.

The message listener is a class that implements the DeliveredMessageListener interface.
This interface defines a single callback method, onPublish(), which is notified whenever the
local client receives a message. The callback method is sent a DeliveredMessageEvent
instance which represents the message sent to the local client.

To subscribe to a channel, use the PubSubServer.subscribeToChannel() method, passing it
the LocalClient object and the name of the channel.

Chapter 11
Using the HTTP Publish-Subscribe Server: Typical Steps

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 24

The following code snippet shows an example of both of these steps; see a description of the
example directly after the code snippet:

pubSubServer.subscribeToChannel(localClient, "/management/publisher");
localClient.registerMessageListener(new DeliveredMessageListener() {
 private InWebPublisher publisher = new InWebPublisher(contextPath);
 private boolean publishing = false;
 public void onPublish(DeliveredMessageEvent event) {
 Object payLoad = event.getMessage().getPayLoad();
 if (payLoad instanceof String) {
 String command = (String)payLoad;
 if ("start".equals(command) && !publishing) {
 publisher.startup();
 publishing = true;
 } else if ("halt".equals(command) && publishing) {
 publisher.halt();
 publishing = false;
 }
 }
 }
 });

In the preceding example:

• The pub-sub server subscribes to a channel called /management/publisher.

• The message listener class is implemented directly in the
LocalClient.registerMessageListener() method call.

Configuring and Programming Message Filter Chains
Pub-sub server application developers can program one or more message filters and configure
them for a channel so as to intercept the incoming messages from clients and transform or
additionally process the messages in some way. A message filter chain refers to more than
one filter attached to a channel, where the first configured filter pre-processes the message
and then passes it to the second configured filter, and so on. This feature is similar to the filters
that were introduced in the servlet 2.3 specification.

Message filters are useful for a variety of reasons. First, they provide the ability to encapsulate
recurring tasks in reusable units, which is good programming practice. Second, they provide an
easy and consistent way to pre-process an incoming message from a client before the pub-sub
server gets it and subsequently sends it out to the subscribers to the channel. Reasons for pre-
processing the messages include validating incoming data, gathering monitoring information,
tracking the users of the pub-sub application, caching, and so on.

There are two major steps to implementing message filter chains:

• Programming the Message Filter Class

• Configuring the Message Filter Chain

Programming the Message Filter Class
Each filter in the chain must have its own user-programmed filter class. The filter class must
implement the com.bea.httppubsub.MessageFilter interface. The MessageFilter interface
includes a single method, handleMessage(EventMessage); its signature is as follows:

boolean handleMessage(EventMessage message);

Chapter 11
Using the HTTP Publish-Subscribe Server: Typical Steps

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 24

The com.bea.httppubsub.EventMessage interface extends BayeaxMessage, which is a
JavaScript Object Notation (JSON) (see http://www.json.org/) encoded object. JSON is a
lightweight data-interchange format used by the Bayeux protocol. The EventMessage interface
defines two methods, getPayload() and setPayload(), that programmers use to access and
process the incoming messages.

Because the handleMessage() method returns boolean, a programmer can interrupt all further
processing in the message filter chain by returning false in any of the filter classes in the
chain. This action not only interrupts the filter processing, but also immediately returns the
message back to the client that published it, without sending it on to channel subscribers. This
is a great way for programmers to ensure that there is no problem identified in the incoming
messages, and, if a problem is found, to prevent the messages to be published to subscribers.

The following example shows a simple implementation of the MessageFilter interface:

package msgfilters;
public static class Filter1 implements MessageFilter {
 public boolean handleMessage(EventMessage message) {
 String msg = (String) message.getPayLoad();
 message.setPayLoad("[" + msg.substring(1, msg.length()-1));
 return true;
 }
}

In the example, the getPayload() method gets the String message from the inputted message
parameter; this message either comes directly from the client (if Filter1 is the first configured
filter in the chain) or is the result of another filter class if Filter1 is not the first in the chain.
The setPayLoad() method resets the message while performing some data manipulation; in
the example, the first character of the message is replaced with a [.

Configuring the Message Filter Chain
You configure the message filters in the weblogic-pubsub.xml deployment descriptor of the
pub-sub server.

First, you declare the message filters using the <wlps:message-filter> child element of the
root <wlps:weblogic-pubsub> element. Then you configure a specific channel by adding a
<wlps:message-filter> element for each filter in the chain. The order in which the filters are
configured in the <wlps:channel> element is the order in which they execute.

The following example shows how to configure message filters in the weblogic-pubsub.xml
deployment descriptor; only relevant information is shown. See the text after the example for
an explanation:

<?xml version="1.0" encoding="UTF-8"?>
<wlps:weblogic-pubsub
 xmlns:wlps="http://xmlns.oracle.com/weblogic/weblogic-pubsub">
 <wlps:server-config>
 ...
 </wlps:server-config>
 <wlps:message-filter>
 <wlps:message-filter-name>filter1</wlps:message-filter-name>
 <wlps:message-filter-class>msgfilters.Fiter1</wlps:message-filter-class>
 </wlps:message-filter>
 <wlps:message-filter>
 <wlps:message-filter-name>filter2</wlps:message-filter-name>
 <wlps:message-filter-class>msgfilters.Filter2</wlps:message-filter-class>
 </wlps:message-filter>
 <wlps:channel>
 <wlps:channel-pattern>/firstchannel/*</wlps:channel-pattern>

Chapter 11
Using the HTTP Publish-Subscribe Server: Typical Steps

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 24

http://www.json.org/

 <wlps:message-filter>filter1</wlps:message-filter>
 </wlps:channel>
 <wlps:channel>
 <wlps:channel-pattern>/secondchannel/*</wlps:channel-pattern>
 <wlps:message-filter>filter2</wlps:message-filter>
 <wlps:message-filter>filter1</wlps:message-filter>
 </wlps:channel>
</wlps:weblogic-pubsub>

In the example, two filters are declared using the <wlps:message-filter> element: filter1
implemented by the msgfilters.Filter1 class and filter2 implemented by the
msgfilters.Filter2 class.

The channel with pattern /firstchannel/* is then configured with filter1. At run time, this
means that all messages published to the direct subchannels of /firstchannel are first pre-
processed by the msgfilters.Filter1 class.

The channel with pattern /secondchannel/* is configured with two filters: filter2 and
filter1. The order in which these two filters are configured is important. At run time, all
messages published to the direct subchannels of /secondchannel are first intercepted and
processed by the msgfilters.Filter2 class, then the result of this processing is sent to
msgfilters.Filter1 which then does its own processing, and then the result is sent to the
subscribers of the channel.

Updating a Browser Client to Communicate with the Pub-Sub Server
To update a browser, or any other Web-based client, to communicate with the pub-sub server,
you use a JavaScript library that supports the Bayeux protocol. You can use any client-side
programming framework of your choosing, provided that it supports the Bayeux protocol.
Typically you add the JavaScript to your JSP or HTML file, or whatever implements the Web
client.

This section shows an example of using Dojo as the client-side programming framework and
updating a JSP. Dojo is a JavaScript-based toolkit that supports the Bayeux protocol as well as
AJAX. Although WebLogic Server does not provide the toolkit as an integral feature, it does
include a subset of the libraries as part of the installed pub-sub example; see Examples of
Using the HTTP Publish-Subscribe Server for details.

There are three main tasks you must perform when programming the Web client to
communicate with the pub-sub server:

• Initialize the Dojo cometd environment.

The following example shows a typical way to perform this step:

dojo.io.cometd.init({}, "/context/cometd");

where context refers to the context path of the Web application that hosts the pub-sub
application. This initialization step creates a handshake with the pub-sub server so as to
determine the transport type for the connection. If the handshake is successful, the client
connects to the pub-sub server.

The cometd part of the initialization string is required, unless you specifically override the
default servlet mappings of the pubsub Jakarta EE library that are defined in the web.xml
file of the library itself. For details of how to do this, see Overriding the Default Servlet
Mapping of the pubsub Jakarta EE Library.

• Publish a message to a channel.

Chapter 11
Using the HTTP Publish-Subscribe Server: Typical Steps

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 24

The message can be a simple string message or a JSON message. The following example
shows how to publish a simple message:

dojo.io.cometd.publish("/a/channel", "message content");

where /a/channel refers to the name of the channel to which you want to publish the
message and the second parameter is the text of the message. The following example
shows how to publish a JSON message:

dojo.io.cometd.publish("/a/channel", {"data": "content"});

• In this example, the second parameter can be any JSON object.

• Subscribe to a channel.

Before you can actually subscribe to a channel, you must first implement a callback
JavaScript function. This function can have any name; you will later reference the function
when you subscribe to a channel. The following example shows how to implement a
JavaScript function called onUpdate:

function onUpdate(message) {
 if (!message.data) {
 alert("bad message format "+message);
 return;
 }
 // fetch the data published by other clients
 var data = message.data;
}

To actually subscribe to a channel, use the following JavaScript:

dojo.io.cometd.subscribe("/a/channel", null, "onUpdate");

where /a/channel refers to the channel to which you want to subscribe and onUpdate is
the name of the callback JavaScript function you previously defined.

This section covers only the minimal information on using the Dojo toolkit to update a Web
based client to communicate with the WebLogic pub-sub server; for additional details, see
https://dojotoolkit.org/documentation/.

Overriding the Default Servlet Mapping of the pubsub Jakarta EE Library
The web.xml of the pubsub Jakarta EE library defines the internal servlet (called
PubSubServlet) that implements the pub-sub server as follows:

<web-app>
 <servlet>
 <servlet-name>PubSubServlet</servlet-name>
 <servlet-class>com.bea.httppubsub.servlet.ControllerServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>PubSubServlet</servlet-name>
 <url-pattern>/cometd/*</url-pattern>
 </servlet-mapping>
</web-app>

As shown by the code in bold, the URL pattern for the PubSubServlet is /cometd/*; this is why
by default you must use a string such as /mywebapp/cometd when initializing a Web client that
communicates with the pub-sub server.

Chapter 11
Using the HTTP Publish-Subscribe Server: Typical Steps

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 24

https://dojotoolkit.org/documentation/

If you need to override this default URL pattern, then update the web.xml file of your Web
application with something like the following:

<servlet-mapping>
 <servlet-name>PubSubServlet</servlet-name>
 <url-pattern>/web2/*</url-pattern>
</servlet-mapping>

Now you can specify this new URL pattern, rather than cometd, when using Dojo to initialize a
Web client:

dojo.io.cometd.init({}, "/context/web2");

Getting Runtime Information about the Pub-Sub Server and
Channels

The pub-sub server exposes all run-time monitoring information using Jakarta Management
(JMX) MBeans. Examples of the type of information you can gather at run time include details
about registered clients, channel subscriptions, and message counts.

The pub-sub server uses two kinds of run-time MBeans:

• weblogic.management.runtime.WebPubSubRuntimeMBean—Encapsulates run-time
information about the pub-sub server itself. Examples of information you can get about a
pub-sub server using this MBean include the context root of the associated Web
application and a handle to a configured channel.

• weblogic.management.runtime.ChannelRuntimeMBean—Encapsulates information about
the channels configured for the pub-sub server. Examples of information you can get about
a channel using the MBean include the number of published messages to this channel, the
number of current subscribers, and the list of subscribers.

Both MBeans are registered in the WebLogic Server MBean tree and can be reached by
navigating through the tree. In particular, WebPubSubRuntimeMBean is registered under
WebAppComponentRuntimeMBean of the current Web application and all ChannelRuntimeMBeans
are registered under WebPubSubRuntimeMBean.

For complete information on these MBeans, go to the MBean Reference for Oracle WebLogic
Server, open the Runtime MBeans node in the left pane; the run-time MBeans are listed in
alphabetical order.

For general information about programming JMX MBeans, see Developing Manageable
Applications Using JMX for Oracle WebLogic Server.

Enabling Security
Review the pub-sub server security features.

The use of these features is described in the sections that follow.

Use Pub-Sub Constraints
The pub-sub server provides the capability to secure a channel via a combination of two
mechanisms: a channel constraint and an authorization constraint.

Conceptually, a channel constraint is a container that includes a collection of resources to be
protected and, optionally, authorization constraints on the specific resources in the resource

Chapter 11
Getting Runtime Information about the Pub-Sub Server and Channels

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 24

collection. The authorization constraints represent WebLogic Server roles and policies, and
answer the question "Who can perform a given operation on the resources in the collection?"

You specify the pub-sub constraints in a configuration file, weblogic-pub-sub.xml. The pub-
sub server uses the channel constraint and any authorization constraints in the weblogic-pub-
sub.xml configuration file to set up roles and policies on the channels.

Consider the example shown in Example 11-1. Significant sections are shown in bold.

Example 11-1 Pub/Sub Constraints

<wlps:channel-constraint>
<wlps:channel-resource-collection>
 <wlps:channel-resource-name>publish</wlps:channel-resource-name>
 <wlps:description>publish channel constraint</wlps:description>
 <wlps:channel-pattern>/stock/* *</wlps:channel-pattern>
 <wlps:channel-pattern>/management/publisher</wlps:channel-pattern>
 <wlps:channel-operation>publish</wlps:channel-operation>
 </wlps:channel-resource-collection>

 <wlps:auth-constraint>
 <wlps:description>publisher</wlps:description>
 <wlps:role-name>publisher</wlps:role-name>
 </wlps:auth-constraint>

 </wlps:channel-constraint>

In this example, the operation publish for the /stock/* * and /management/publisher
channels is available only to users with the WebLogic Server role publisher.

Specify Access to Channel Operations
Four types of actions (operations) are allowed on channels:

• create

• delete

• subscribe

• publish

By default (with no channel constraints defined), subscribe operations are open for all users on
all channels.

Similarly, create, delete, and publish operations are restricted for all users on all channels by
default. Create, delete, and publish operations are allowed only if explicitly configured in
channel constraints.

You use a combination of <wlps:channel-operation> and <wlps:auth-constraint> to
specify access to a channel operation for a given role.

For example, in Example 11-2, the publish operation is permitted for authenticated subjects
with the publisher role, and denied to all other roles.

Example 11-2 Publisher Role Constraint

<wlps:channel-constraint>

 <wlps:channel-resource-collection>
 <wlps:channel-resource-name>publish</wlps:channel-resource-name>
 <wlps:description>publish channel constraint</wlps:description>
 <wlps:channel-pattern>/stock/* *</wlps:channel-pattern>

Chapter 11
Enabling Security

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 24

 <wlps:channel-pattern>/management/publisher</wlps:channel-pattern>
 <wlps:channel-operation>publish</wlps:channel-operation>
 </wlps:channel-resource-collection>

 <wlps:auth-constraint>
 <wlps:description>publisher</wlps:description>
 <wlps:role-name>publisher</wlps:role-name>
 </wlps:auth-constraint>

 </wlps:channel-constraint>

Restricting Access to All Channel Operations
The presence of an empty authorization constraint (<wlps:auth-constraint> </wlps:auth-
constraint>) means that all access is prohibited for the specified channel operations, or all
channel operations if <wlps:channel-operation> is not specified.

Therefore, to restrict all channel operations for the channel for all users, set up your weblogic-
pub-sub.xml configuration file with an empty <wlps:auth-constraint> element, as follows:

<wlps:channel-constraint>
 <wlps:channel-resource-collection>
 <wlps:description>Restrict All Acesss</wlps:description>
 <wlps:channel-pattern>/**</wlps:channel-pattern>
 </wlps:channel-resource-collection>
 <wlps:auth-constraint> </wlps:auth-constraint>
 </wlps:channel-constraint>

Opening Access to All Channel Operations
The absence of an authorization constraint within a channel constraint means that access is
not limited for the specified channel operations, or all channel operations if <wlps:channel-
operation> is not specified.

(In contrast, the presence of an empty authorization constraint (<wlps:auth-constraint> </
wlps:auth-constraint>) means that all access is prohibited for the specified channel
operations, or all channel operations for that channel if <wlps:channel-operation> is not
specified.)

Therefore, to open up all channel operations for the channel for all users, set up your
weblogic-pub-sub.xml configuration file without <wlps:channel-operation> or <wlps:auth-
constraint> elements, as follows:

<wlps:channel-constraint>
 <wlps:channel-resource-collection>
 <wlps:description>All Acesss</wlps:description>
 <wlps:channel-pattern>/**</wlps:channel-pattern>
 </wlps:channel-resource-collection>
 <!-- Not defining an auth-constraint will open up access to everyone -->
 </wlps:channel-constraint>

Updating a Constraint Requires Redeploy of Web Application
Constraints cannot be updated dynamically. You must redeploy the Web application for new
settings to take effect.

Chapter 11
Enabling Security

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 24

Map Roles to Principals

Note

The pub-sub server does not directly perform authentication. Rather, the pub-sub
server runs on top of WebLogic Server (the servlet container) and leverages the
WebLogic authentication services. Specifically, the pub-sub server uses the currently-
authenticated user (or anonymous) for requests originating from a given client.

The primary pub-sub security mechanism is authorization. As previously described, the pub-
sub server uses the a combination of <wlps:channel-operation> and <wlps:auth-
constraint> elements to set up roles and policies on the channels. Each bayeux packet
corresponds to one bayeux request. One HTTP request can translate to one or more bayeux
requests. WebLogic Server (the servlet container) performs authorization checks for the HTTP
request, and the pub-sub server performs one authorization check for each bayeux request.

To set up the pub-sub authorization, you must map the role names, which you specify as
<wlps:role-name>some-role-name</wlps:role-name> in your weblogic-pub-sub.xml file, to
principal names using the security-role-assignment element configured in your
weblogic.xml file.

Note

The absence of such a mapping in the weblogic.xml file will cause the role to be used
implicitly; this generates a warning.

As described in security-role-assignment, the security-role-assignment element declares
a mapping between a security role and one or more principals in the WebLogic Server security
realm.

Example 11-3 shows how to use the security-role-assignment element to assign principals
to the publisher role.

Example 11-3 security-role-assignment Element

<weblogic-web-app>
 <security-role-assignment>
 <role-name>publisher</role-name>
 <principal-name>Tanya</principal-name>
 <principal-name>Fred</principal-name>
 <principal-name>system</principal-name>
 </security-role-assignment>

</weblogic-web-app>

Configure SSL for Pub-Sub Communication
By default, all pub-sub communication is via HTTP. However, you can configure the pub-sub
server to require SSL by modifying the web.xml file. Requiring SSL ensures that all
communication between the pub-sub server and the Web 2.0 clients happens over SSL.

Chapter 11
Enabling Security

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 24

WebLogic Server establishes an SSL connection when the user is authenticated using the
INTEGRAL or CONFIDENTIAL transport guarantee, as specified in the web.xml file. In
Example 11-4, the transport guarantee is set to integral.

Example 11-4 Requiring SSL Via web.xml

<security-constraint>

<web-resource-collection>
<web-resource-name>Success</web-resource-name>
<url-pattern>/cometd/*</url-pattern>

<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>

<user-data-constraint>
<transport-guarantee>INTEGRAL</transport-guarantee>
</user-data-constraint>

</security-constraint>

Additional Security Considerations
This section describes the following additional pub-sub security considerations:

• Use AuthCookieEnabled to Access Resources

• Locking Down the Pub-Sub Server

Use AuthCookieEnabled to Access Resources
WebLogic Server allows a user to securely access HTTPS resources in a session that was
initiated using HTTP, without loss of session data. To enable this feature, add
AuthCookieEnabled="true" to the WebServer element in config.xml:

<WebServer Name="myserver" AuthCookieEnabled="true"/>

Setting AuthCookieEnabled to true, which is the default setting, causes the WebLogic Server
instance to send a new secure cookie, _WL_AUTHCOOKIE_JSESSIONID, to the browser
when authenticating via an HTTPS connection. Once the secure cookie is set, the session is
allowed to access other security-constrained HTTPS resources only if the cookie is sent from
the browser.

Note

This feature will work even when cookies are disabled because WebLogic Server will
use URL rewriting over secure connections to rewrite secure URLs in order to encode
the authCookieID in the URL along with the JSESSIONID.

Locking Down the Pub-Sub Server
This section describes how to lock down the pub-sub server to prevent unauthorized access.
The steps described here offer additional security at the cost of reduced access. It is up to you
to decide which level of security is appropriate for your environment.

To lock down the pub-sub server, perform the following steps:

Chapter 11
Enabling Security

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 24

1. Configure SSL for pub-sub communication, as described in Configure SSL for Pub-Sub
Communication.

2. Require authentication (BASIC, FORM, and so forth.)

WebLogic Server sets the required authentication method for the Web application in the
web.xml file.

In the following example, HTTP BASIC authentication is required:

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>default</realm-name>
</login-config>

3. Ensure auth-cookie is enabled for the Web applications, as described in Use
AuthCookieEnabled to Access Resources.

4. Ensure that all the channels are constrained in the weblogic-pubsub.xml file.

5. Lock subscribe operations, which are allowed by default.

<wlps:channel-constraint>
<wlps:channel-resource-collection>
<wlps:channel-resource-name>publish</wlps:channel-resource-name>
<wlps:description>publish channel constraint</wlps:description>
<wlps:channel-pattern>/stock/*</wlps:channel-pattern>

<wlps:channel-pattern>/management/publisher</wlps:channel-pattern>
<wlps:channel-operation>publish</wlps:channel-operation>
</wlps:channel-resource-collection>

<wlps:auth-constraint>
<wlps:description>publisher</wlps:description>
<wlps:role-name>publisher</wlps:role-name>
</wlps:auth-constraint>
</wlps:channel-constraint>

<wlps:channel-constraint>
<wlps:channel-resource-collection>
<wlps:channel-resource-name>subscribe</wlps:channel-resource-name>
<wlps:description>subscribe channel constraint</wlps:description>
<wlps:channel-pattern>/stock/*</wlps:channel-pattern>
<wlps:channel-operation>subscribe</wlps:channel-operation>
</wlps:channel-resource-collection>

<wlps:auth-constraint>
<wlps:description>subscriber</wlps:description>
<wlps:role-name>subscriber</wlps:role-name>
</wlps:auth-constraint>

</wlps:channel-constraint>

Advanced Topic: Using JMS as a Provider to Enable Cluster
Support

Pub-sub server applications can run in a WebLogic Server clustered environment so as to
provide scalability and server failover. However, pub-sub applications behave differently
depending on the message handler (pub-sub server itself or a JMS provider) that is handling
the published messages.

Chapter 11
Advanced Topic: Using JMS as a Provider to Enable Cluster Support

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 19 of 24

In the default non-JMS case, the pub-sub server handles all messages and each instance of
the pub-sub server on each node of the cluster is independent and isolated. This means that
event messages cannot be shared between different server instances. For example, if a client
subscribes to channel /chat on node A of the cluster, it cannot receive messages published to
channel /chat on node B of the cluster.

If, for a given channel, you want all messages published to all nodes of a cluster to be
shareable by all clients subscribed to the channel, then you must configure the channel for
JMS. You do this by updating the appropriate <wlps:channel> element in the weblogic-
pubsub.xml deployment descriptor of your application.

When a client publishes a message to a JMS-configured channel, the pub-sub server re-sends
the message to a JMS topic. JMS message listeners running on each node of the cluster
retrieve the messages from the JMS topics and then deliver them to the subscribed clients on
their node.

Configuring JMS as a Handler
You configure the JMS as the message handler for an application in the weblogic-pubsub.xml
deployment descriptor of the pub-sub server.

First, you declare the configuration of the JMS handler using the <wlps:jms-handler-mapping>
child element of the root <wlps:weblogic-pubsub> element. This is where you specify the URL
of the JMS provider, the connection factory JNDI name, and the JMS topic JNDI name. Then
you configure a specific channel to be a JMS channel by adding a <wlps:jms-handler-name>
child element.

The following example shows how to configure a JMS handler and channel in the weblogic-
pubsub.xml deployment descriptor; only relevant information is shown in bold. See the text
after the example for an explanation.

Note

It is assumed in this section that you have already configured your JMS provider and
created the connection factory and topic that will be used for the pub-sub JMS
channel. See Developing JMS Applications for Oracle WebLogic Server for
information about WebLogic JMS or your provider's documentation for details.

<?xml version="1.0" encoding="UTF-8"?>
<wlps:weblogic-pubsub
 xmlns:wlps="http://xmlns.oracle.com/weblogic/weblogic-pubsub">
 <wlps:server-config>
 ...
 </wlps:server-config>
 <wlps:jms-handler-mapping>
 <wlps:jms-handler-name>DefaultJmsHandler</wlps:jms-handler-name>
 <wlps:jms-handler>
 <wlps:jms-provider-url>t3://localhost:7001</wlps:jms-provider-url>
 <wlps:connection-factory-jndi-name>ConnectionFactoryJNDI</wlps:connection-factory-
jndi-name>
 <wlps:topic-jndi-name>TopicJNDI</wlps:topic-jndi-name>
 </wlps:jms-handler>
 </wlps:jms-handler-mapping>
 <wlps:channel>
 <wlps:channel-pattern>/chat/**</wlps:channel-pattern>
 <wlps:jms-handler-name>DefaultJmsHandler</wlps:jms-handler-name>

Chapter 11
Advanced Topic: Using JMS as a Provider to Enable Cluster Support

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 20 of 24

 </wlps:channel>
</wlps:weblogic-pubsub>

In the preceding example:

• The <wlps:jms-handler-mapping> element defines a JMS handler named
DefaultJmsHandler. The <wlps:jms-handler> child element configures specific properties
of DefaultJmsHandler that the pub-sub server uses to delegate messages to the JMS
topic; in particular, the JMS provider URL that the pub-sub server uses to access the JNDI
tree of the JMS provider is t3://localhost:7001, the connection factory JNDI name is
ConnectionFactoryJNDI, and the JNDI name of the topic to which the messages will be
delegated is TopicJNDI.

• The <wlps:jms-handler-name> child element of <wlps:channel> specifies that the channel
with pattern /chat is actually a JMS channel, with JMS configuration options specified by
the DefaultJmsHandler.

If you do not define jms-provider-url in weblogic-pubsub.xml, the Pub-Sub Server uses the
connection-factory-jndi-name and topic-jndi-name elements configured in weblogic-
pubsub.xml to look up the reference to the connection factory and topic, as defined by the
resource-ref element in web.xml and the res-ref-name element in weblogic.xml.

The following code example demonstrates:

• defining resource-ref in web.xml (Example 11-5)

• mapping res-ref-name to the actual JNDI name of the JMS resources in weblogic.xml
(Example 11-6)

• using the connection-factory-jndi-name and topic-jndi-name elements in weblogic-
pubsub.xml to reference the connection factory and topic without specifying jms-
provider-url (Example 11-7)

Example 11-5 Defining resource-ref for the connection factory and topic in web.xml

<resource-ref>
 <res-ref-name>web20/connectionFactory</res-ref-name>
 <res-type>jakarta.jms.ConnectionFactory</res-type>
</resource-ref>
<resource-ref>
 <res-ref-name>web20/topic</res-ref-name>
 <res-type>jakarta.jms.Topic</res-type>
</resource-ref>

Example 11-6 Mapping res-ref-name to the JNDI name in weblogic.xml

<resource-description>
 <res-ref-name>web20/connectionFactory</res-ref-name>
 <jndi-name> weblogic.web20.jms.TopicConnectionFactory</jndi-name>
</resource-description>

<resource-description>
 <res-ref-name>web20/topic</res-ref-name>
 <jndi-name>weblogic.web20.jms.chatTopic</jndi-name>
</resource-description>

Example 11-7 Using connection-factory-jndi-name and topic-jndi-name in weblogic-
pubsub.xml

<jms-handler-mapping>
 <jms-handler-name>jms-fortest</jms-handler-name>
 <jms-handler>
 <connection-factory-jndi-name>

Chapter 11
Advanced Topic: Using JMS as a Provider to Enable Cluster Support

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 21 of 24

 web20/connectionFactory
 </connection-factory-jndi-name>
 <topic-jndi-name>
 web20/topic
 </topic-jndi-name>
 </jms-handler>
</jms-handler-mapping>

For the full list of JMS handler-related XML elements you can include in the weblogic-
pubsub.xml deployment descriptor, see the weblogic-pubsub.xsd schema at http://
xmlns.oracle.com/weblogic/weblogic-pubsub.

Configuring Client Session Failover
In addition to server failover, the pub-sub server also supports client session failover in
clustered environments. In client failover, whenever the status of the client changes, such as
when it subscribes or unsubscribes to a channel, the latest client status is stored into a
replicated HTTP session. If one node of the cluster crashes, WebLogic Server attempts to
recover the clients on the crashed node by moving them to other available nodes using the
replicated HTTP sessions.

To configure client session failover, update the weblogic.xml deployment descriptor file of the
Web application that hosts the pub-sub application by adding a <session-descriptor> child
element of the root <weblogic-web-app> element and specify that the persistent store type is
replicated_if_clustered, as shown below; only relevant sections of the file are shown in
bold:

<?xml version='1.0' encoding='UTF-8'?>
<weblogic-web-app
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 ...
 <session-descriptor>
 <persistent-store-type>replicated_if_clustered</persistent-store-type>
 </session-descriptor>
</weblogic-web-app>

Advanced Topic: Persisting Messages to Physical Storage
If you require that messages published to a particular channel be persisted, then you should
configure the channel as a persistent channel. In this case, all messages published to this
channel will be persisted to physical storage such as a database or the file system. In
particular, this physical storage must be a pre-configured WebLogic persistent store.

The WebLogic persistent store provides a built-in, high-performance storage solution for
WebLogic Server subsystems and services that require persistence. The persistent store
supports persistence to a file-based store or to a JDBC-enabled database. For additional
details, see Administering the WebLogic Persistent Store.

Oracle recommends that you create your own file or JDBC store to store the persistent
messages and configure this store for the persistent channel. If, however, the pub-sub server
does not find a store with the configured name, then the server attempts to use the default
WebLogic persistent store to store the messages, and logs a warning message to the log file.

The pub-sub server does not allow messages to live in the persistent store indefinitely; rather,
it uses a configured maximum duration property to regularly delete old messages from the
store after they have been in the store longer than the max duration. By default, this maximum
duration is 3600 seconds, but it can be configured differently for each persistent channel.

Chapter 11
Advanced Topic: Persisting Messages to Physical Storage

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 22 of 24

http://xmlns.oracle.com/weblogic/weblogic-pubsub/1.0/weblogic-pubsub.xsd
http://xmlns.oracle.com/weblogic/weblogic-pubsub/1.0/weblogic-pubsub.xsd

A client that subscribes to a persistent channel is called a persistent client. The main difference
between normal clients and persistent clients is how the pub-sub server handles timeouts.
There are two different timeout configuration options when configuring the pub-sub server; the
following elements are children of <wlps:server-config> in the weblogic-pubsub.xml file:

• <wlps:client-timeout-secs>—Specifies the number of seconds after which normal (non-
persistent) clients are deleted and persistent clients are deactivated by the pub-sub server,
if during that time the client does not send a connect or re-connect message. When
deactivating, the server keeps all subscribed persistent channels for the client and
unsubscribes the non-persistent channels. The default value is 60 seconds.

• <wlps:persistent-client-timeout-secs>—Specifies the number of seconds after which
persistent clients are disconnected and deleted by the pub-sub server, if during that time
the persistent client does not send a connect or re-connect message. This value must be
larger than client-timeout-secs. If the persistent client reconnects before the persistent
timeout is reached, the client receives all messages that have been published to the
persistent channel during that time; if the client reconnects after the timeout, then it does
not get the messages. The default value is 600 seconds.

Configuring Persistent Channels
You configure a persistent channel in the weblogic-pubsub.xml deployment descriptor file of
the pub-sub server.

First configure the pub-sub by adding a <wlps:persistent-client-timeout-secs> child
element of <wlps:server-config> if you want to change the default persistent timeout value of
600 seconds. Then you configure a persistent channel by adding a <wlps:channel-
persistence> child element of <wlps:channel> and specify the maximum amount of time that
messages for that channel should be persisted and the name of the persistent store to which
the messages should be persisted. The following example shows the relevant sections of the
weblogic-pubsub.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<wlps:weblogic-pubsub
 xmlns:wlps="http://xmlns.oracle.com/weblogic/weblogic-pubsub">
 <wlps:server-config>
 ...
 <wlps:persistent-client-timeout-secs>400</wlps:persistent-client-timeout-secs>
 </wlps:server-config>
 <wlps:channel>
 <wlps:channel-pattern>/chat/**</wlps:channel-pattern>
 <wlps:channel-persistence>
 <wlps:max-persistent-message-duration-secs>3000</wlps:max-persistent-message-
duration-secs>
 <wlps:persistent-store>PubSubFileStore</wlps:persistent-store>
 </wlps:channel-persistence>
 </wlps:channel>
</wlps:weblogic-pubsub>

In the preceding example:

• The persistent client timeout value is 400 seconds. This value applies to all persistent
channels of this pub-sub server.

• The channel with pattern /chat, and all its subchannels, has been configured as a
persistent channel. The messages will be persisted to a WebLogic persistent store called
PubSubFileStore and they will live for a maximum of 3000 seconds in the store.

It is assumed that you have already created and configured the PubSubFileStore using the
WebLogic Remote Console; for details, see Administering the WebLogic Persistent Store.

Chapter 11
Advanced Topic: Persisting Messages to Physical Storage

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 23 of 24

Chapter 11
Advanced Topic: Persisting Messages to Physical Storage

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 24 of 24

12
WebLogic JSP Reference

Review reference information for writing WebLogic JavaServer Pages (JSPs).
This chapter includes the following sections:

JSP Tags
Review the basic tags that you can use in a JSP page.

The following table describes the tags. Each shorthand tag has an XML equivalent.

Table 12-1 Basic Tags for JSP Pages

JSP Tag Syntax Description

Scriptlet <% java_code %>

. . . or use the XML equivalent:

<jsp:scriptlet>
 java_code
</jsp:scriptlet>

Embeds Java source code scriptlet in
your HTML page. The Java code is
executed and its output is inserted in
sequence with the rest of the HTML in
the page. For details, see Scriptlets.

Directive <%@ dir-type dir-attr %>

. . . or use the XML equivalent:

<jsp:directive.dir_type
dir_attr />

Directives contain messages to the
application server.

A directive can also contain name/value
pair attributes in the form
attr="value", which provides
additional instructions to the application
server. See Directives for WebLogic
JSP.

Declarations <%! declaration %>

. . . or use XML equivalent...

<jsp:declaration>
 declaration;
</jsp:declaration>

Declares a variable or method that can
be referenced by other declarations,
scriptlets, or expressions in the page.
See Declarations.

Expression <%= expression %>

. . . or use XML equivalent...

<jsp:expression>
expression
</expression>

Defines a Java expression that is
evaluated at page request time,
converted to a String, and sent inline
to the output stream of the JSP
response. See Expressions.

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 21

Table 12-1 (Cont.) Basic Tags for JSP Pages

JSP Tag Syntax Description

Actions <jsp:useBean ... >

JSP body is included if the bean is
instantiated here

</jsp:useBean>
<jsp:setProperty ... >
<jsp:getProperty ... >
<jsp:include ... >
<jsp:forward ... >
<jsp:plugin ... >

Provide access to advanced features of
JSP, and only use XML syntax. These
actions are supported as defined in the
JSP 2.2 specification. See Actions .

Comments <%/* comment */%> Ensure that your comments are removed
from the viewable source of your HTML
files by using only JSP comment tags.
HTML comments remain visible when
the user selects view source in the
browser.

Defining JSP Versions
WebLogic Server supports JSP 3.0. Changes between JSP 3.0 and JSP 2.1 (JSR 245) include
that the API has moved from the jakarta.servlet.jsp package to the jakarta.servlet.jsp
package.

For information about JSP 3.0, see https://jakarta.ee/specifications/pages/3.0/
jakarta-server-pages-spec-3.0.

JSP 2.3 was a maintenance release for JSP 2.1 (JSR 245). Because JSP 2.1 imported some
new features, the same syntax could hold different meanings between JSP 2.1 and JSP 2.0,
so the JSP version must be defined to attain the expected behavior. For example:

• <%@ page deferredSyntaxAllowedAsLiteral="true" %> is not allowed in JSP 2.0.

• # {expr} is valid in JSP 2.0 template text, but is invalid in JSP 2.1 by default.

Rules for Defining a JSP File Version
Since there is no explicit method of specifying a JSP page's version, its version is eventually
determined by the Web application version, as follows:

• If <jsp:root> appears in a JSP document, its attribute version value will determine that
JSP document's version; otherwise, the Web application version will determine it.

• If the Web application version is determining the JSP version, then 2.5 indicates the
version is JSP 2.1 and 2.4 means the version is JSP 2.0.

• If a JSP document contains <jsp:root>, and if Web application version is 2.4, the
<jsp:root> version must not be higher than 2.0. However, if the Web application version is
2.5, then the <jsp:root> version could be less than 2.1.

• All Referred JSP tag versions must not be higher than current JSP file's version.

Chapter 12
Defining JSP Versions

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 21

https://jakarta.ee/specifications/pages/3.0/jakarta-server-pages-spec-3.0
https://jakarta.ee/specifications/pages/3.0/jakarta-server-pages-spec-3.0

Rules for Defining a Tag File Version
All JSP tag file versions are defined by the version of the tag library they belong to.

• Since an implicit tag library will be created for each directory, including tag files, the implicit
tag library's version is 2.0 by default. However, the version can be configured by the
implicit.tld file in same directory in JSP 2.1.

• A .tagx file's <jsp:root> attribute version value must be same as the tag file's version.

• All Referred JSP tag versions must not be higher than current tag file's version.

Reserved Words for Implicit Objects
JSP reserves words for implicit objects in scriptlets and expressions. These implicit objects
represent Java objects that provide useful methods and information for your JSP page.

WebLogic JSP implements all implicit objects defined in the JSP specification. The JSP API is
described in the Javadocs available at https://jakarta.ee/specifications/platform/9.1/
apidocs/.

Note

Use these implicit objects only within scriptlets or expressions. Using these keywords
from a method defined in a declaration causes a translation-time compilation error
because such usage causes your page to reference an undefined variable.

Table 12-2 Reserved Words for Implicit Objects

Reserved Word Description

request Represents the HttpServletRequest object. It contains information about
the request from the browser and has several useful methods for getting
cookie, header, and session data.

response Represents the HttpServletResponse object and several useful methods
for setting the response sent back to the browser from your JSP page.
Examples of these responses include cookies and other header information.

Note: You cannot use the response.getWriter() method from within a
JSP page; if you do, a run-time exception is thrown. Use the out keyword to
send the JSP response back to the browser from within your scriptlet code
whenever possible. The WebLogic Server implementation of
jakarta.servlet.jsp.JspWriter uses
jakarta.servlet.ServletOutputStream, which implies that you can use
response.getServletOutputStream(). Keep in mind, however, that this
implementation is specific to WebLogic Server. To keep your code
maintainable and portable, use the out keyword.

Chapter 12
Reserved Words for Implicit Objects

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 21

https://jakarta.ee/specifications/platform/9.1/apidocs/
https://jakarta.ee/specifications/platform/9.1/apidocs/

Table 12-2 (Cont.) Reserved Words for Implicit Objects

Reserved Word Description

out An instance of jakarta.servlet.jsp.JspWriter that has several
methods you can use to send output back to the browser.

If you are using a method that requires an output stream, then JspWriter
does not work. You can work around this limitation by supplying a buffered
stream and then writing this stream to out. For example, the following code
shows how to write an exception stack trace to out:

 ByteArrayOutputStream ostr = new
ByteArrayOutputStream();
 exception.printStackTrace(new PrintWriter(ostr));
 out.print(ostr);

pageContext Represents a jakarta.servlet.jsp.PageContext object. It is a
convenience API for accessing various scoped namespaces and servlet-
related objects, and provides wrapper methods for common servlet-related
functionality.

session Represents a jakarta.servlet.http.HttpSession object for the request.
The session directive is set to true by default, so the session is valid by
default. The JSP 2.1 specification states that if the session directive is set to
false, then using the session keyword results in a fatal translation time
error.

application Represents a jakarta.servlet.ServletContext object. Use it to find
information about the servlet engine and the servlet environment.

When forwarding or including requests, you can access the servlet
requestDispatcher using the ServletContext, or you can use the JSP
forward directive for forwarding requests to other servlets, and the JSP
include directive for including output from other servlets.

config Represents a jakarta.servlet.ServletConfig object and provides
access to the servlet instance initialization parameters.

page Represents the servlet instance generated from this JSP page. It is
synonymous with the Java keyword this when used in your scriptlet code.

To use page, you must cast it to the class type of the servlet that implements
the JSP page, because it is defined as an instance of java.lang.Object.
By default, the servlet class is named after the JSP filename. For
convenience, we recommend that you use the Java keyword this to
reference the servlet instance and get access to initialization parameters,
instead of using page.

Directives for WebLogic JSP
Use directives to instruct WebLogic JSP to perform certain functions or interpret the JSP page
in a particular way. You can insert a directive anywhere in a JSP page. The position is
generally irrelevant (except for the include directive), and you can use multiple directive tags. A
directive consists of a directive type and one or more attributes of that type.

You can use either of two types of syntax: shorthand or XML:

• Shorthand: <%@ dir_type dir_attr %>

• XML: <jsp:directive.dir_type dir_attr />

Chapter 12
Directives for WebLogic JSP

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 21

Replace dir_type with the directive type, and dir_attr with a list of one or more directive
attributes for that directive type.

There are three types of directives page, taglib, or include.

Using the page Directive to Set Character Encoding
To specify a character encoding set, use the following directive at the top of the page:

<%@ page contentType="text/html; charset=custom-encoding" %>

The character set you specify with a contentType directive specifies the character set used in
the JSP as well as any JSP included in that JSP.

You can specify a default character encoding by specifying it in the WebLogic-specific
deployment descriptor for your Web application.

Using the taglib Directive
Use a taglib directive to declare that your JSP page uses custom JSP tag extensions that are
defined in a tag library. For details about writing and using custom JSP tags, see Developing
JSP Tag Extensions for Oracle WebLogic Server.

Declarations
Use declarations to define variables and methods at the class-scope level of the generated
JSP servlet. Declarations made between JSP tags are accessible from other declarations and
scriptlets in your JSP page.

For example:

<%!
 int i=0;
 String foo= "Hello";
 private void bar() {
 // ...java code here...
 }
%>

Remember that class-scope objects are shared between multiple threads being executed in
the same instance of a servlet. To guard against sharing violations, synchronize class scope
objects. If you are not confident writing thread-safe code, you can declare your servlet as not-
thread-safe by including the following directive:

<%@ page isThreadSafe="false" %>

By default, this attribute is set to true. Setting isThreadSafe to false consumes additional
memory and can cause performance to degrade.

Scriptlets
JSP scriptlets make up the Java body of your JSP servlet's HTTP response.

To include a scriptlet in your JSP page, use the shorthand or XML scriptlet tags shown here:

Shorthand:

Chapter 12
Declarations

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 21

<%
 // Your Java code goes here
%>

XML:

<jsp:scriptlet>
 // Your Java code goes here
</jsp:scriptlet>

Note the following features of scriptlets:

• You can have multiple blocks of scriptlet Java code mixed with plain HTML.

• You can switch between HTML and Java code anywhere, even within Java constructs and
blocks. In Example of a JSP with HTML and Embedded Java the example declares a Java
loop, switches to HTML, and then switches back to Java to close the loop. The HTML
within the loop is generated as output multiple times as the loop iterates.

• You can use the predefined variable out to print HTML text directly to the servlet output
stream from your Java code. Call the print() method to add a string to the HTTP page
response.

• Any time you print data that a user has previously supplied, Oracle recommends that you
remove any HTML special characters that a user might have entered. If you do not remove
these characters, your Web site could be exploited by cross-site scripting. For more
information, refer to JSP Expression Language.

• The Java tag is an inline tag; it does not force a new paragraph.

Expressions
Learn how to include an expression in your JSP file.

Use the following tag:

<%= expr %>

Replace expr with a Java expression. When the expression is evaluated, its string
representation is placed inline in the HTML response page. It is shorthand for

<% out.print(expr); %>

This technique enables you to make your HTML more readable in the JSP page. Note the use
of the expression tag in the example in the next section.

Expressions are often used to return data that a user has previously supplied. Any time you
print user-supplied data, Oracle recommends that you remove any HTML special characters
that a user might have entered. If you do not remove these characters, your Web site could be
exploited by cross-site scripting. For more information, refer to JSP Expression Language.

Example of a JSP with HTML and Embedded Java
Examine an example that shows a JSP with HTML and embedded Java.

<html>
 <head><title>Hello World Test</title></head>
<body bgcolor=#ffffff>
<center>
<h1> Hello World Test </h1>

Chapter 12
Expressions

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 21

<%
 out.print("Java-generated Hello World");
%>

<p> This is not Java!
<p><i>Middle stuff on page</i>
<p>

<%
 for (int i = 1; i<=3; i++) {
%>
 <h2>This is HTML in a Java loop! <%= i %> </h2>
<%
 }
%>

</center>
</body>
</html>

After the code shown here is compiled, the resulting page is displayed in a browser as shown
in the following figure.

Figure 12-1 Compiled JSP with HTML and Embedded Java

Actions
You use JSP actions to modify, use, or create objects that are represented by JavaBeans.
Actions use XML syntax exclusively.

Chapter 12
Actions

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 21

Using JavaBeans in JSP
The <jsp:useBean> action tag allows you to instantiate Java objects that comply with the
JavaBean specification, and to refer to them from your JSP pages.

To comply with the JavaBean specification, objects need:

• A public constructor that takes no arguments

• A setVariable() method for each variable field

• A getVariable() method for each variable field

Instantiating the JavaBean Object
The <jsp:useBean> tag attempts to retrieve an existing named Java object from a specific
scope and, if the existing object is not found, may attempt to instantiate a new object and
associate it with the name given by the id attribute. The object is stored in a location given by
the scope attribute, which determines the availability of the object. For example, the following
tag attempts to retrieve a Java object of type examples.jsp.ShoppingCart from the HTTP
session under the name cart.

<jsp:useBean id="cart"
 class="examples.jsp.ShoppingCart" scope="session"/>

If such an object does not currently exist, the JSP attempts to create a new object, and stores
it in the HTTP session under the name cart. The class should be available in the CLASSPATH
used to start WebLogic Server, or in the WEB-INF/classes directory of the Web application
containing the JSP.

It is good practice to use an errorPage directive with the <jsp:useBean> tag because there are
run-time exceptions that must be caught. If you do not use an errorPage directive, the class
referenced in the JavaBean cannot be created, an InstantiationException is thrown, and an
error message is returned to the browser.

You can use the type attribute to cast the JavaBean type to another object or interface,
provided that it is a legal type cast operation within Java. If you use the attribute without the
class attribute, your JavaBean object must already exist in the scope specified. If it is not
legal, an InstantiationException is thrown.

Doing Setup Work at JavaBean Instantiation
The <jsp:useBean> tag syntax has another format that allows you to define a body of JSP
code that is executed when the object is instantiated. The body is not executed if the named
JavaBean already exists in the specified scope. This format allows you to set up certain
properties when the object is first created. For example:

<jsp:useBean id="cart" class="examples.jsp.ShoppingCart"
 scope=session>
 Creating the shopping cart now...
 <jsp:setProperty name="cart"
 property="cartName" value="music">
</jsp:useBean>

Chapter 12
Actions

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 21

Note

If you use the type attribute without the class attribute, a JavaBean object is never
instantiated, and you should not attempt to use the tag format to include a body.
Instead, use the single tag format. In this case, the JavaBean must exist in the
specified scope, or an InstantiationException is thrown. Use an errorPage directive
to catch the potential exception.

Using the JavaBean Object
After you instantiate the JavaBean object, you can refer to it by its id name in the JSP file as a
Java object. You can use it within scriptlet tags and expression evaluator tags, and you can
invoke its setXxx() or getXxx() methods using the <jsp:setProperty> and
<jsp:getProperty> tags, respectively.

Defining the Scope of a JavaBean Object
Use the scope attribute to specify the availability and life-span of the JavaBean object. The
scope can be one of the following:

Table 12-3 Defining the Scope attribute of a JavaBean Object

Scope Description

page This is the default scope for a JavaBean, which stores the object in the
jakarta.servlet.jsp.PageContext of the current page. It is available
only from the current invocation of this JSP page. It is not available to
included JSP pages, and it is discarded upon completion of this page request.

request When the request scope is used, the object is stored in the current
ServletRequest, and it is available to other included JSP pages that are
passed the same request object. The object is discarded when the current
request is completed.

session Use the session scope to store the JavaBean object in the HTTP session so
that it can be tracked across several HTTP pages. The reference to the
JavaBean is stored in the page's HttpSession object. Your JSP pages must
be able to participate in a session to use this scope. That is, you must not
have the page directive session set to false.

application At the application-scope level, your JavaBean object is stored in the Web
application. Use of this scope implies that the object is available to any other
servlet or JSP page running in the same Web application in which the object
is stored.

For more information about using JavaBeans, see http://www.oracle.com/technetwork/
java/javase/tech/index-jsp-138795.html.

Forwarding Requests
If you are using any type of authentication, a forwarded request made with the <jsp:forward>
tag, by default, does not require the user to be re-authenticated. You can change this behavior
to require authentication of a forwarded request by adding the <check-auth-on-forward/>
element to the <container-descriptor> element of the WebLogic-specific deployment descriptor,
weblogic.xml. For example:

Chapter 12
Actions

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 21

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138795.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138795.html

<container-descriptor>
 <check-auth-on-forward/>
</container-descriptor>

Including Requests
You can use the <jsp:include> tag to include another resource in a JSP. This tag takes two
attributes:

page—Use the page attribute to specify the included resource. For example:

<jsp:include page="somePage.jsp"/>

flush—Setting this boolean attribute to true buffers the page output and then flushes the
buffer before including the resource. Setting flush="false" can be useful when the
<jsp:include> tag is located within another tag on the JSP page and you want the included
resource to be processed by the tag.

JSP Expression Language
The JSP expression language is inspired by both ECMAScript and the XPath expression
languages. The JSP EL is available in attribute values for standard and custom actions and
within template text. In both cases, the JSP EL is invoked consistently by way of the construct
#{expr} or ${expr}.

The #{expr} syntax refers to deferred expressions introduced in JSP EL 2.1. Expressions
delimited by "#{}" use "deferred evaluation" because the expression is not evaluated until its
value is needed by the system, and so can be processed by the underlying mechanism at the
appropriate moment within its life cycle. Whereas, expressions delimited by "${}" use
"immediate evaluation" because the expression is compiled when the JSP page is compiled
and it is executed when the JSP page is executed. The deferred expression includes deferred
ValueExpression and deferred MethodExpression. The ${expr} syntax is supported in JSP EL
2.1.

The addition of the JSP EL to the JSP technology better facilitates the writing of scriptlets JSP
pages. These pages can use JSP EL expressions but cannot use Java scriptlets, Java
expressions, or Java declaration elements. You can enforce this usage pattern through the
scripting-invalid JSP configuration element of the web.xml deployment descriptor.

WebLogic Server now supports EL 4.0. For more information on the JSP expression language,
see https://jakarta.ee/specifications/expression-language/4.0/.

Expressions and Attribute Values
You can use JSP EL expressions in any attribute that can accept a run-time expression,
whether it is a standard action or a custom action. The following are use-cases for expressions
in attribute values:

• The attribute value contains a single expression construct of either <some:tag value="$
{expr}"/> or <some:tag value="#{expr}"/>. In this case, the expression is evaluated and
the result is coerced to the attribute's expected type according to the type conversion rules
described in "Type Conversion," at https://jakarta.ee/specifications/expression-
language/4.0/jakarta-expression-language-spec-4.0#type-conversion.

• The attribute value contains one or more expressions separated or surrounded by text of
either: <some:tag value="some${expr}${expr}text${expr}"/> or <some:tag
value="some#{expr}#{expr}text#{expr}"/>. In this case, the expressions are evaluated

Chapter 12
JSP Expression Language

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 21

https://jakarta.ee/specifications/expression-language/4.0/
https://jakarta.ee/specifications/expression-language/4.0/jakarta-expression-language-spec-4.0#type-conversion
https://jakarta.ee/specifications/expression-language/4.0/jakarta-expression-language-spec-4.0#type-conversion

from left to right, coerced to Strings (according to the type conversion rules described
later), and concatenated with any intervening text. The resulting String is then coerced to
the attribute's expected type according to the type conversion rules described in "Type
Conversion," at https://jakarta.ee/specifications/expression-language/4.0/
jakarta-expression-language-spec-4.0#type-conversion.

• The attribute value contains only text: <some:tag value="sometext"/>. In this case, the
attribute's String value is coerced to the attribute's expected type according to the type
conversion rules described in "Type Conversion," at https://jakarta.ee/
specifications/expression-language/4.0/jakarta-expression-language-
spec-4.0#type-conversion.

Note

These rules are equivalent to the JSP 2.1 conversions, except that empty strings
are treated differently.

The following two conditions must be satisfied when using JSPX:

• web.xml – The web-app must define the servlet version attribute as 2.4 or higher;
otherwise, all EL functions are ignored.

• TLD file – Namespace declaration is required for the jsp prefix, as follows:

<html xmlns:jsp="http://java.sun.com/JSP/Page";

The following shows a conditional action that uses the JSP EL to test whether a property of a
bean is less than 3.

<c:if test="${bean1.a < 3}">
...
</c:if>

Note that the normal JSP coercion mechanism already allows for: <mytags:if test="true" />.
There may be literal values that include the character sequence ${. If this is the case, a literal
with that value can be used as shown here:

<mytags:example code="an expression is ${'${'}expr}" />

The resulting attribute value would then be the string an expression is ${expr}.

Expressions and Template Text
You can use the JSP EL directly in template text; this can be inside the body of custom or
standard actions or in template text outside of any action. An exception to this use is if the
body of the tag is tag dependent or if the JSP EL is turned off (usually for compatibility issues)
explicitly through a directive or implicitly.

The semantics of a JSP EL expression are the same as with Java expressions: the value is
computed and inserted into the current output. In cases where escaping is desired (for
example, to help prevent cross-site scripting attacks), you can use the JSTL core tag <c:out>.
For example:

<c:out value="${anELexpression}" />

The following shows a custom action where two JSP EL expressions are used to access bean
properties:

Chapter 12
JSP Expression Language

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 21

https://jakarta.ee/specifications/expression-language/4.0/jakarta-expression-language-spec-4.0#type-conversion
https://jakarta.ee/specifications/expression-language/4.0/jakarta-expression-language-spec-4.0#type-conversion
https://jakarta.ee/specifications/expression-language/4.0/jakarta-expression-language-spec-4.0#type-conversion
https://jakarta.ee/specifications/expression-language/4.0/jakarta-expression-language-spec-4.0#type-conversion
https://jakarta.ee/specifications/expression-language/4.0/jakarta-expression-language-spec-4.0#type-conversion

<c:wombat>
One value is ${bean1.a} and another is ${bean2.a.c}.
</c:wombat>

JSP Expression Language Implicit Objects
There are several implicit objects that are available to JSP EL expressions used in JSP pages.

These objects are always available under these names:

• pageContext—Represents the pageContext object.

• pageScope—Represents a Map that maps page-scoped attribute names to their values.

• requestScope—Represents a Map that maps request-scoped attribute names to their
values.

• sessionScope—Represents a Map that maps session-scoped attribute names to their
values.

• applicationScope—Represents a Map that maps application-scoped attribute names to
their values.

• param—Represents a Map that maps parameter names to a single String parameter value
(obtained by calling ServletRequest.getParameter(String name)).

• paramValues—Represents a Map that maps parameter names to a single String[] of all
values for that parameter (obtained by calling
ServletRequest.getParameterValues(String name)).

• header—Represents a Map that maps header names to a single String header value
(obtained by calling ServletRequest.getHeader(string name)).

• headerValues—Represents a Map that maps header names to a String[] of all values for
that header (obtained by calling ServletRequest.getHeaders(String name)).

• cookie—Represents a Map that maps cookie names to a single Cookie object. Cookies
are retrieved according to the semantics of HttpServletRequest.getCookies(). If the
same name is shared by multiple cookies, an implementation must use the first one
encountered in the array of Cookie objects returned by the getCookies() method.
However, users of the cookie implicit objects must be aware that the ordering of cookies is
currently unspecified in the servlet specification.

• initParam—Represents a Map that maps context initialization parameter names to their
String parameter value (obtained by calling ServletRequest.getInitParameter(String
name)).

Table 12-4 shows some examples of using these implicit objects:

Table 12-4 Example Uses of Implicit Objects

Expression Description

$
{pageContext.request.requestURI
}

The request's URI (obtained from HttpServletRequest)

${sessionScope.profile} The session-scoped attribute named profile (null if not
found)

${param.productId} The String value of the productId parameter (null if not
found).

Chapter 12
JSP Expression Language Implicit Objects

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 21

Table 12-4 (Cont.) Example Uses of Implicit Objects

Expression Description

${paramValues.productId} The String[] containing all values of the productId
parameter (null if not found).

JSP Expression Language Literals and Operators
Learn about JSP EL expression literals and operators. The JSP EL syntax is pretty
straightforward. Variables are accessed by name. A generalized [] operator can be used to
access maps, lists, arrays of objects and properties of JavaBean objects; the operator can be
nested arbitrarily. The . operator can be used as a convenient shorthand for property access
when the property name follows the conventions of Java identifies. However the [] operator
allows for more generalized access.

Relational comparisons are allowed using the standard Java relational operators. Comparisons
may be made against other values, or against boolean (for equality comparisons only), String,
integer, or floating point literals. Arithmetic operators can be used to compute integer and
floating point values. Logical operators are available.

Literals
Literals exist for Boolean, Integer, Floating point, String, Null.

• Boolean - true and false

• Integer - As defined by the IntegerLiteral construct in Collected Syntax in the EL
specification.

• Floating point - As defined by the FloatingPointLiteral construct in Collected Syntax in
the EL specification.

• String -With single and double quotes - " is escaped as \", ' is escaped as \', and \ is
escaped as \\. Quotes only need to be escaped in a string value enclosed in the same type
of quote.

• Null - null

Errors, Warnings, Default Values
JSP pages are mostly used in presentation, and in that usage, experience suggests that it is
most important to be able to provide as good a presentation as possible, even when there are
simple errors in the page. To meet this requirement, the JSP EL does not provide warnings,
just default values and errors. Default values are typecorrect values that are assigned to a
subexpression when there is some problem. An error is an exception thrown (to be handled by
the standard JSP machinery).

Operators
The following is a list of operators provided by the JSP expression language:

• . and []

• Arithmetic: +, - (binary), *, / and div, % and mod, - (unary)

• Logical: and, &&, or, ||, not, !

Chapter 12
JSP Expression Language Literals and Operators

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 21

https://jakarta.ee/specifications/expression-language/4.0/jakarta-expression-language-spec-4.0#collected-syntax
https://jakarta.ee/specifications/expression-language/4.0/jakarta-expression-language-spec-4.0#collected-syntax

• Relational: ==, eq, !=, ne, <, lt, >, gt, <=, ge, >=, le. Comparisons can be made against
other values, or against boolean, string, integer, or floating point literals.

• Empty: The empty operator is a prefix operation that can be used to determine whether a
value is null or empty.

• Conditional: A ? B : C. Evaluate B or C, depending on the result of the evaluation of A.

For more information about the operators and their functions, see Operators in the EL
specification.

Operator Precedence
The following is operator precedence, from highest to lowest, left-to-right.

• [] .

• ()

• - (unary) not ! empty

• * / div % mod

• + - (binary)

• < > <= >= lt gt le ge

• == != eq ne

• && and

• || or

• ? :

JSP Expression Language Reserved Words
The following words are reserved for the language and should not be used as identifiers.

• and

• eq

• gt

• true

• instanceof

• or

• ne

• le

• false

• empty

• not

• lt

• ge

• null

• div

Chapter 12
JSP Expression Language Reserved Words

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 21

https://jakarta.ee/specifications/expression-language/4.0/jakarta-expression-language-spec-4.0#operators-and

• mod

Note

Many of these words are not in the language now, but they may be in the future,
so developers should avoid using these words now.

JSP Expression Language Named Variables
A core concept in the JSP EL is the evaluation of a variable name into an object.

The JSP EL API provides a generalized mechanism, a VariableResolver, that will resolve
names into objects. The default resolver is what is used in the evaluation of JSP EL
expressions in template and attributes. This default resolver provides the implicit objects
discussed in JSP Expression Language Implicit Objects.

The default resolver also provides a map for other identifiers by looking up its value as an
attribute, according to the behavior of PageContext.findAttribute(String) on the
pageContext object. For example: ${product}.

This expression looks for the attribute named product, searching the page, request, session,
and application scopes, and returns its value. If the attribute is not found, null is returned. See
Resolution of Variables and their Properties of the JSP 3.0 specification.

Securing User-Supplied Data in JSPs
Expressions and scriptlets enable a JSP to receive data from a user and return the user
supplied data.

For example, the sample JSP in Example 12-1 prompts a user to enter a string, assigns the
string to a parameter named userInput, and then uses the <%=
jakarta.servlet.ServletRequest.getParameter("userInput")%> expression to return the
data to the browser.

Example 12-1 Using Expressions to Return User-Supplied Content

<html>
 <body>
 <h1>My Sample JSP</h1>
 <form method="GET" action="mysample.jsp">
 Enter string here:
 <input type="text" name="userInput" size=50>
 <input type=submit value="Submit">
 </form>

 <hr>

 Output from last command:
 <%= jakarta.servlet.ServletRequest.getParameter("userInput")%>
 </body>
</html>

This ability to return user-supplied data can present a security vulnerability called cross-site
scripting, which can be exploited to steal a user's security authorization. See Cross Site
Scripting Prevention Cheat Sheet on the Open Web Application Security Project (OWASP)

Chapter 12
JSP Expression Language Named Variables

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 21

https://jakarta.ee/specifications/pages/3.0/jakarta-server-pages-spec-3.0#resolution-of-variables-and-their-properties

website at https://cheatsheetseries.owasp.org/cheatsheets/
Cross_Site_Scripting_Prevention_Cheat_Sheet.html.

To remove the security vulnerability, before you return data that a user has supplied, scan the
data for any of the HTML special characters in Table 12-5. If you find any special characters,
replace them with their HTML entity or character reference. Replacing the characters prevents
the browser from executing the user-supplied data as HTML.

Table 12-5 HTML Special Characters that Must Be Replaced

Replace this special character: With this entity/character reference:

< <

> >

(&40;

) &41;

&35;

& &38;

Using a WebLogic Server Utility Method
WebLogic Server provides the weblogic.servlet.security.Utils.encodeXSS() method to
replace the special characters in user-supplied data. To use this method, provide the user-
supplied data as input. For example:

<%= weblogic.servlet.security.Utils.encodeXSS(
jakarta.servlet.ServletRequest.getParameter("userInput"))%>

To secure an entire application, you must use the encodeXSS() method each time you return
user-supplied data. While the previous example is an obvious location in which to use the
encodeXSS() method, Table 12-6 describes other locations to consider using the encodeXSS()
method.

Table 12-6 Code that Returns User-Supplied Data

Page Type User-Supplied Data Example

Error page Erroneous input string, invalid URL, user
name

An error page that says "user name is
not permitted access."

Status page User Name, summary of input from
previous pages

A summary page that asks a user to
confirm input from previous pages.

Database display Data presented from a database A page that displays a list of database
entries that have been previously
entered by a user.

Using Sessions with JSP
Sessions in WebLogic JSP perform according to the JSP specification.

The following suggestions pertain to using sessions:

Chapter 12
Using Sessions with JSP

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 21

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

• Store small objects in sessions. For example, a session should not be used to store an
EJB, but an EJB primary key instead. Store large amounts of data in a database. The
session should hold only a simple string reference to the data.

• When you use sessions with dynamic reloading of servlets or JSPs, the objects stored in
the servlet session must be serializable. Serialization is required because the servlet is
reloaded in a new class loader, which results in an incompatibility between any classes
loaded previously (from the old version of the servlet) and any classes loaded in the new
class loader (for the new version of the servlet classes). This incompatibility causes the
servlet to return ClassCastException errors.

• If session data must be of a user-defined type, the data class should be serializable.
Furthermore, the session should store the serialized representation of the data object.
Serialization should be compatible across versions of the data class.

Deploying Applets from JSP
Using the JSP provides a convenient way to include the Java Plug-in a Web page, by
generating HTML that contains the appropriate client browser tag. The Java Plug-in allows you
to use a Java Runtime Environment (JRE) instead of the JVM implemented by the client Web
browser. This feature avoids incompatibility problems between your applets and specific types
of Web browsers.

The Java Plug-in is available at http://www.oracle.com/technetwork/java/index-
jsp-141438.html.

Because the syntax used by Internet Explorer and Netscape is different, the servlet code
generated from the <jsp:plugin> action dynamically senses the type of browser client and
sends the appropriate <OBJECT> or <EMBED> tags in the HTML page.

The <jsp:plugin> tag uses many attributes similar to those of the <APPLET> tag, and some
other attributes that allow you to configure the version of the Java Plug-in to be used. If the
applet communicates with the server, the JVM running your applet code must be compatible
with the JVM running WebLogic Server.

In the following example, the plug-in action is used to deploy an applet:

<jsp:plugin type="applet" code="examples.applets.PhoneBook1"
 codebase="/classes/" height="800" width="500"
 jreversion="2.0"
 nspluginurl=
 "http://java.sun.com/products/plugin/1.1.3/plugin-install.html"
 iepluginurl=
"http://java.sun.com/products/plugin/1.1.3/
 jinstall-113-win32.cab#Version=1,1,3,0" >
<jsp:params>
 <param name="weblogic_url" value="t3://localhost:7001">
 <param name="poolname" value="demoPool">
</jsp:params>
<jsp:fallback>
 Sorry, cannot run java applet!!
</jsp:fallback>

</jsp:plugin>

The sample JSP syntax shown here instructs the browser to download the Java Plug-in
version 1.3.1 (if it has not been downloaded previously), and run the applet identified by the
code attribute from the location specified by codebase.

Chapter 12
Deploying Applets from JSP

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 21

http://www.oracle.com/technetwork/java/index-jsp-141438.html
http://www.oracle.com/technetwork/java/index-jsp-141438.html

The jreversion attribute identifies the spec version of the Java Plug-in that the applet requires
to operate. The Web browser attempts to use this version of the Java Plug-in. If the plug-in is
not already installed on the browser, the nspluginurl and iepluginurl attributes specify
URLs where the Java Plug-in can be downloaded from http://www.oracle.com/technetwork/
java/index-jsp-141438.html. Once the plug-in is installed on the Web browser, it is not
downloaded again.

Because WebLogic Server uses the Java 1.3.x VM, you must specify the Java Plug-in version
1.3.x in the <jsp:plugin> tag. To specify the 1.3 JVM in the previous example code, replace
the corresponding attribute values with the following:

jreversion="1.3"
nspluginurl=
"http://java.sun.com/products/plugin/1.3/plugin-install.html"
iepluginurl=
"http://java.sun.com/products/plugin/1.3/jinstall-131-win32.cab"

The other attributes of the plug-in action correspond with those of the <APPLET> tag. You
specify applet parameters within a pair of <params> tags, nested within the <jsp:plugin> and
</jsp:plugin> tags.

The <jsp:fallback> tags allow you to substitute HTML for browsers that are not supported by
the <jsp:plugin> action. The HTML nested between the <fallback> and </jsp:fallback>
tags is sent instead of the plug-in syntax.

Using the WebLogic JSP Compiler

Note

The WebLogic JSP compiler is deprecated. Oracle recommends that you use the
WebLogic appc compiler, weblogic.appc, to compile EAR files, WAR files, and EJBs.

For better compilation performance, the WebLogic JSP compiler transforms a JSP directly into
a class file on the disk instead of first creating a Java file on the disk and then compiling it into
a class file. The Java file only resides in memory.

To see the generated Java file, turn on the -keepgenerated flag which dumps the in-memory
Java file to the disk.

Note

During JSP compilation, neither the command line flag (compilerclass) nor the
descriptor element is invoked.

JSP Compiler Syntax
The JSP compiler works in much the same way that other WebLogic compilers work (including
the RMI and EJB compilers). To start the JSP compiler, enter the following command.

$ java weblogic.jspc -options fileName

Chapter 12
Using the WebLogic JSP Compiler

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 21

http://www.oracle.com/technetwork/java/index-jsp-141438.html
http://www.oracle.com/technetwork/java/index-jsp-141438.html

Replace fileName with the name of the JSP file that you want to compile. You can specify any
options before or after the target fileName. The following example uses the -d option to
compile myFile.jsp into the destination directory, weblogic/classes:

$ java weblogic.jspc -d /weblogic/classes myFile.jsp

Note

If you are precompiling JSPs that are part of a Web application and that reference
resources in the Web application (such as a JSP tag library), you must use the -
webapp flag to specify the location of the Web application. The -webapp flag is
described in the following listing of JSP compiler options.

JSP Compiler Options
Use any combination of the following options:

Table 12-7 JSP Compiler Options

Option Description

-classpath Add a list (separated by semi-colons on Windows platforms or colons on
UNIX platforms) of directories that make up the desired CLASSPATH. Include
directories containing any classes required by the JSP. For example (to be
entered on one line):

$ java weblogic.jspc -classpath java/classes.zip;/weblogic/
classes.zip myFile.JSP

-charsetMap Specifies mapping of IANA or unofficial charset names used in JSP
contentType directives to java charset names. For example:

-charsetMap x-sjis=Shift_JIS,x-big5=Big5
The most common mappings are built into the JSP compiler. Use this option
only if a desired charset mapping is not recognized.

-commentary Causes the JSP compiler to include comments from the JSP in the generated
HTML page. If this option is omitted, comments do not appear in the
generated HTML page.

-compileAll Recursively compiles all JSPs in the current directory, or in the directory
specified with the -webapp flag. (See the listing for -webapp in this list of
options.). JSPs in subdirectories are also compiled.

-compileFlags Passes one or more command-line flags to the compiler. Enclose multiple
flags in quotes, separated by a space. For example:

java weblogic.jspc -compileFlags "-g -v" myFile.jsp

-compiler Specifies the Java compiler to be used to compile the class file from the
generated Java source code. The default compiler used is jdt. The Java
compiler program should be in your PATH unless you specify the absolute
path to the compiler explicitly.

-compilerclass Runs a Java compiler as a Java class and not as a native executable.

-
compressHtmlTemplat
e

Compress the HTML in the JSP template blocks to improve run-time
performance.

If the JSP's HTML template block contains the <pre> tag, do not enable this
option.

Chapter 12
Using the WebLogic JSP Compiler

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 19 of 21

http://www.eclipse.org/jdt/

Table 12-7 (Cont.) JSP Compiler Options

Option Description

-d <dir> Specifies the destination of the compiled output (that is, the class file). Use
this option as a shortcut for placing the compiled classes in a directory that is
already in your CLASSPATH.

-depend If a previously generated class file for a JSP has a more recent date stamp
than the JSP source file, the JSP is not recompiled.

-debug Compile with debugging on.

-deprecation Warn about the use of deprecated methods in the generated Java source file
when compiling the source file into a class file.

-docroot directory See -webapp.

-encoding default|
named character
encoding

Valid arguments include (a) default which specifies using the default
character encoding of your JDK, (b) a named character encoding, such as
8859_1. If the -encoding flag is not specified, an array of bytes is used.

-g Instructs the Java compiler to include debugging information in the class file.

-help Displays a list of all the available flags for the JSP compiler.

-J Takes a list of options that are passed to your compiler.

-k When compiling multiple JSPs with a single command, the compiler continues
compiling even if one or more of the JSPs failed to compile.

-keepgenerated Keeps the Java source code files that are created as an intermediary step in
the compilation process. Normally these files are deleted after compilation.

-noTryBlocks If a JSP file has numerous or deeply nested custom JSP tags and you receive
a java.lang.VerifyError exception when compiling, use this flag to allow
the JSPs to compile correctly.

-nowarn Turns off warning messages from the Java compiler.

-noPrintNulls Shows "null" in jsp expressions as "".

-O Compiles the generated Java source file with optimization turned on. This
option overrides the -g flag.

-
optimizeJavaExpress
ion

Optimize Java expressions to improve run-time performance.

-package
packageName

Sets the package name that is prepended to the package name of the
generated Java HTTP servlet. Defaults to jsp_servlet.

-superclass
classname

Sets the classname of the superclass extended by the generated servlet. The
named superclass must be a derivative of HttpServlet or
GenericServlet.

-verbose Passes the verbose flag to the Java compiler specified with the compiler
flag. See the compiler documentation for more information. The default is
off.

-verboseJavac Prints messages generated by the designated JSP compiler.

-version Prints the version of the JSP compiler.

-webapp directory Name of a directory containing a Web application in exploded directory
format. If your JSP contains references to resources in a Web application
such as a JSP tag library or other Java classes, the JSP compiler will look for
those resources in this directory. If you omit this flag when compiling a JSP
that requires resources from a Web application, the compilation will fail.

Chapter 12
Using the WebLogic JSP Compiler

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 20 of 21

Precompiling JSPs
You can configure WebLogic Server to precompile your JSPs when a Web application is
deployed or re-deployed or when WebLogic Server starts up by setting the precompile
parameter to true in the <jsp-descriptor> element of the weblogic.xml deployment
descriptor. To avoid recompiling your JSPs each time the server restarts and when you target
additional servers, precompile them using weblogic.jspc and place them in the WEB-INF/
classes folder and archive them in a .war file. Keeping your source files in a separate
directory from the archived .war file will eliminate the possibility of errors caused by a JSP
having a dependency on one of the class files.

Using the JSPClassServlet
Another way to prevent your JSPs from recompiling is to use the JSPClassServlet in place of
JSPServlet and to place your precompiled JSPs into the WEB-INF/classes directory. This will
remove any possibility of the JSPs being recompiled, as the server will not look at the source
code. The server will not note any changes to the JSPs and recompile them if you choose this
option. This option allows you to completely remove the JSP source code from your application
after precompiling.

This is an example of how to add the JSPClassServlet to your Web application's web.xml file.

<servlet>
 <servlet-name>JSPClassServlet</servlet-name>
 <servlet-class>weblogic.servlet.JSPClassServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>JSPClassServlet</servlet-name>
 <url-pattern>*.jsp</url-pattern>
 </servlet-mapping>

As when using virtual hosting, you must have physical directories that correspond to the
mappings you create to allow your files to be found by the server.

Chapter 12
Using the WebLogic JSP Compiler

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 21 of 21

13
Filters

Learn how to use Java classes known as filters in WebLogic Web applications.
This chapter includes the following sections:

Overview of Filters
A filter is a Java class that is invoked in response to a request for a resource in a Web
application. Resources include Jakarta servlets, Jakarta Server pages (JSP), and static
resources such as HTML pages or images. A filter intercepts the request and can examine and
modify the response and request objects or execute other tasks.

Filters are an advanced Jakarta EE feature primarily intended for situations where the
developer cannot change the coding of an existing resource and needs to modify the behavior
of that resource. Generally, it is more efficient to modify the code to change the behavior of the
resource itself rather than using filters to modify the resource. In some situations, using filters
can add unnecessary complexity to an application and degrade performance.

How Filters Work
You define filters in the context of a Web application. A filter intercepts a request for a specific
named resource or a group of resources (based on a URL pattern) and executes the code in
the filter. For each resource or group of resources, you can specify a single filter or multiple
filters that are invoked in a specific order, called a chain.

When a filter intercepts a request, it has access to the jakarta.servlet.ServletRequest and
jakarta.servlet.ServletResponse objects that provide access to the HTTP request and
response, and a jakarta.servlet.FilterChain object. The FilterChain object contains a list
of filters that can be invoked sequentially. When a filter has completed its work, the filter can
either call the next filter in the chain, block the request, throw an exception, or invoke the
originally requested resource.

After the original resource is invoked, control is passed back to the filter at the bottom of the list
in the chain. This filter can then examine and modify the response headers and data, block the
request, throw an exception, or invoke the next filter up from the bottom of the chain. This
process continues in reverse order up through the chain of filters.

Note

The filter can modify the headers only if the response has not already been committed.

Uses for Filters
Filters can be useful for the following functions:

• Implementing a logging function

• Implementing user-written security functionality

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 4

• Debugging

• Encryption

• Data compression

• Modifying the response sent to the client. (However, post processing the response can
degrade the performance of your application.)

Writing a Filter Class
To write a filter class, implement the jakarta.servlet.Filter interface.

See https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/servlet/
filter. You must implement the following methods of this interface:

• init()

• destroy()

• doFilter()

You use the doFilter() method to examine and modify the request and response objects,
perform other tasks such as logging, invoke the next filter in the chain, or block further
processing.

Several other methods are available on the FilterConfig object for accessing the name of the
filter, the ServletContext and the filter's initialization attributes. For more information see the
Jakarta EE javadocs for jakarta.servlet.FilterConfig at https://jakarta.ee/
specifications/platform/9.1/apidocs/jakarta/servlet/filterconfig.

To access the next item in the chain (either another filter or the original resource, if that is the
next item in the chain), call the FilterChain.doFilter() method.

Configuring Filters
You configure filters as part of a Web application, using the application's web.xml deployment
descriptor. In the deployment descriptor, you specify the filter and then map the filter to a URL
pattern or to a specific servlet in the Web application. You can specify any number of filters.

Configuring a Filter
To configure a filter:

1. Open the web.xml deployment descriptor in a text editor or an XML editor. See Web
Application Developer Tools. The web.xml file is located in the WEB-INF directory of your
Web application.

2. Add a filter declaration. The filter element declares a filter, defines a name for the filter,
and specifies the Java class that executes the filter. The filter element must directly
follow the context-param element and directly precede the listener and servlet
elements. For example:

<context-param>Param</context-param>
<filter>
 <icon>
 <small-icon>MySmallIcon.gif</small-icon>
 <large-icon>MyLargeIcon.gif</large-icon>
 </icon>
 <filter-name>myFilter</filter-name>

Chapter 13
Writing a Filter Class

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 4

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/servlet/filter
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/servlet/filter
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/servlet/filterconfig
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/servlet/filterconfig

 <display-name>My Filter</display-name>
 <description>This is my filter</description>
 <filter-class>examples.myFilterClass</filter-class>
</filter>
<listener>Listener</listener>
<servlet>Servlet</servlet>

The icon, description, and display-name elements are optional.

3. Specify one or more initialization attributes inside a filter element. For example:

<filter>
 <icon>
 <small-icon>MySmallIcon.gif</small-icon>
 <large-icon>MyLargeIcon.gif</large-icon>
 </icon>
 <filter-name>myFilter</filter-name>
 <display-name>My Filter</display-name>
 <description>This is my filter</description>
 <filter-class>examples.myFilterClass</filter-class>
 <init-param>
 <param-name>myInitParam</param-name>
 <param-value>myInitParamValue</param-value>
 </init-param>
</filter>

Your Filter class can read the initialization attributes using the
FilterConfig.getInitParameter() or FilterConfig.getInitParameters() methods.

4. Add filter mappings. The filter-mapping element specifies which filter to execute based
on a URL pattern or servlet name. The filter-mapping element must immediately follow
the filter element(s).

• To create a filter mapping using a URL pattern, specify the name of the filter and a
URL pattern. URL pattern matching is performed according to the rules specified in the
Servlet 5.0 specification at https://jakarta.ee/specifications/servlet/5.0/
jakarta-servlet-spec-5.0. For example, the following filter-mapping maps
myFilter to requests that contain /myPattern/.

<filter-mapping>
 <filter-name>myFilter</filter-name>
 <url-pattern>/myPattern/*</url-pattern>
</filter-mapping>

• To create a filter mapping for a specific servlet, map the filter to the name of a servlet
that is registered in the Web application. For example, the following code maps the
myFilter filter to a servlet called myServlet:

<filter-mapping>
 <filter-name>myFilter</filter-name>
 <servlet-hame>myServlet</servlet-name>
</filter-mapping>

5. To create a chain of filters, specify multiple filter mappings. See Configuring a Chain of
Filters.

Configuring a Chain of Filters
WebLogic Server creates a chain of filters by creating a list of all the filter mappings that match
an incoming HTTP request. The ordering of the list is determined by the following sequence:

Chapter 13
Configuring Filters

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 4

https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-spec-5.0
https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-spec-5.0

1. Filters where the filter-mapping element contains a url-pattern that matches the
request are added to the chain in the order they appear in the web.xml deployment
descriptor.

2. Filters where the filter-mapping element contains a servlet-name that matches the
request are added to the chain after the filters that match a URL pattern.

3. The last item in the chain is always the originally requested resource.

In your filter class, use the FilterChain.doFilter() method to invoke the next item in the
chain.

Filtering the Servlet Response Object
You can use filters to post-process the output of a servlet by appending data to the output
generated by the servlet. However, in order to capture the output of the servlet, you must
create a wrapper for the response. (You cannot use the original response object, because the
output buffer of the servlet is automatically flushed and sent to the client when the servlet
completes executing and before control is returned to the last filter in the chain.) When you
create such a wrapper, WebLogic Server must manipulate an additional copy of the output in
memory, which can degrade performance.

For more information on wrapping the response or request objects, see
jakarta.servlet.http.HttpServletResponseWrapper and
jakarta.servlet.http.HttpServletRequestWrapper at https://jakarta.ee/
specifications/platform/9.1/apidocs/jakarta/servlet/http/package-summary.html.

Additional Resources
• Servlet 5.0 specification at https://jakarta.ee/specifications/servlet/5.0/jakarta-

servlet-spec-5.0

• Jakarta EE API Reference (Javadocs) at https://jakarta.ee/specifications/
platform/9.1/apidocs/

• The Jakarta EE tutorial at https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/
intro/overview/overview.html

Chapter 13
Filtering the Servlet Response Object

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 4

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/servlet/http/package-summary.html
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/servlet/http/package-summary.html
https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-spec-5.0
https://jakarta.ee/specifications/servlet/5.0/jakarta-servlet-spec-5.0
https://jakarta.ee/specifications/platform/9.1/apidocs/
https://jakarta.ee/specifications/platform/9.1/apidocs/
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/intro/overview/overview.html
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/intro/overview/overview.html

14
Using WebLogic JSP Form Validation Tags

Learn how to use WebLogic JavaServer Pages (JSP) form validation tags in WebLogic Server.
This chapter includes the following sections:

Overview of WebLogic JSP Form Validation Tags
WebLogic JSP form validation tags provide a convenient way to validate the entries an end
user makes to HTML form text fields generated by JSP pages. Using the WebLogic JSP form
validation tags prevents unnecessary and repetitive coding of commonly used validation logic.
The validation is performed by several custom JSP tags that are included with the WebLogic
Server distribution.

The tags can:

• Verify that required fields have been filled in (Required Field Validator class).

• Validate the text in the field against a regular expression (Regular Expression Validator
class).

• Compare two fields in the form (Compare Validator class).

• Perform custom validation by means of a Java class that you write (Custom Validator
class).

• WebLogic JSP form validation tags include:

• <wl:summary>

• <wl:form>

• <wl:validator>

When a validation tag determines that data in a field is not been input correctly, the page is re-
displayed and the fields that need to be re-entered are flagged with text or an image to alert
the end user. Once the form is correctly filled out, the end user's browser displays a new page
specified by the validation tag.

Validation Tag Attribute Reference
Learn about the WebLogic form validation tags and their attributes.

Note that the prefix used to reference the tag can be defined in the taglib directive on your
JSP page. For clarity, the wl prefix is used to refer to the WebLogic form validation tags
throughout this document.

<wl:summary>
<wl:summary> is the parent tag for validation. Place the opening <wl:summary> tag before any
other element or HTML code in the JSP. Place the closing </wl:summary> tag anywhere after
the closing </wl:form> tag(s).

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 8

• name—(Optional) Name of a vector variable that holds all validation error messages
generated by the <wl:validator> tags on the JSP page. If you do not define this attribute,
the default value, errorVector, is used. The text of the error message is defined with the
errorMessage attribute of the <wl:validator> tag.

To display the values in this vector, use the <wl:errors/> tag. To use the <wl:errors/>
tag, place the tag on the page where you want the output to appear. For example:

<wl:errors color="red"/>

Alternately, you can use a scriptlet. For example:

<% if (errorVector.size() > 0) {
 for (int i=0; i < errorVector.size(); i++) {
 out.println((String)errorVector.elementAt(i));
 out.println("
");
 }
} %>

Where errorVector is the name of the vector assigned using the name attribute of the
<wl:summary> tag.

The name attribute is required when using multiple forms on a page.

• headerText—A variable that contains text that can be displayed on the page. If you only
want this text to appear when errors occur on the page, you can use a scriptlet to test for
this condition. For example:

<% if(summary.size() >0) {
 out.println(headerText);
 }
%>

Where summary is the name of the vector assigned using the name attribute of the
<wl:summary> tag.

• redirectPage—URL for the page that is displayed if the form validation does not return
errors. This attribute is not required if you specify a URL in the action attribute of the
<wl:form> tag.

Do not set the redirectPage attribute to the same page containing the <wl:summary> tag—
you will create an infinite loop causing a StackOverFlow exception.

<wl:form>
The <wl:form> tag is similar to the HTML <form> tag and defines an HTML form that can be
validated using the WebLogic JSP form validation tags. You can define multiple forms on a
single JSP by uniquely identifying each form using the name attribute.

• method—Enter GET or POST. Functions exactly as the method attribute of the HTML <form>
tag.

• action—URL for the page that is displayed if the form validation does not return errors.
The value of this attribute takes precedence over the value of the redirectPage attribute of
the <wl:summary> tag and is useful if you have multiple forms on a single JSP page.

Do not set the action attribute to the same page containing the <wl:form> tag—you will
create an infinite loop causing a StackOverFlow exception.

• name—Functions exactly as the name attribute of the HTML <form> tag. Identifies the form
when multiple forms are used on the same page. The name attribute is also useful for
JavaScript references to a form.

Chapter 14
Validation Tag Attribute Reference

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 8

<wl:validator>
Use one or more <wl:validator> tags for each form field. If, for instance, you want to validate
the input against a regular expression and also require that something be entered into the field
you would use two <wl:validator> tags, one using the RequiredFieldValidator class and
another using the RegExpValidator class. (You need to use both of these validators because
blank values are evaluated by the Regular Expression Field Validator as valid.)

• errorMessage—A string that is stored in the vector variable defined by the name attribute of
the <wl:summary> tag.

• expression—When using the RegExpValidator class, the regular expression to be
evaluated. If you are not using RegExpValidator, you can omit this attribute.

• fieldToValidate—Name of the form field to be validated. The name of the field is defined
with the name attribute of the HTML <input> tag.

• validatorClass—The name of the Java class that executes the validation logic. Three
classes are provided for your use. You can also create your own custom validator class.
See Using a Custom Validator Class.

The available validation classes are:

– weblogicx.jsp.tags.validators.RequiredFieldValidator—Validates that some text
has been entered in the field.

– weblogicx.jsp.tags.validators.RegExpValidator—Validates the text in the field
using a standard regular expression. Note: A blank value is evaluated as valid.

– weblogicx.jsp.tags.validators.CompareValidator—Checks to see if two fields
contain the same string. When using this class, set the fieldToValidate attribute to
the two fields you want to compare. For example:

fieldToValidate="field_1,field_2"

If both fields are blank, the comparison is evaluated as valid.

– myPackage.myValidatorClass—Specifies a custom validator class.

Using WebLogic JSP Form Validation Tags in a JSP
Examine the steps for using a validation tag in a JSP.

1. Write the JSP.

a. Enter a taglib directive to reference the tag library containing the WebLogic JSP Form
Validation Tags. For example:

<%@ taglib uri="tagl" prefix="wl" %>

Note that the prefix attribute defines the prefix used to reference all tags in your JSP
page. Although you may set the prefix to any value you like, the tags referred to in this
document use the wl prefix.

b. Enter the <wl:summary> ... </wl:summary> tags.

Place the opening <wl:summary ...> tag before any HTML code, JSP tag, scriptlet, or
expression on the page.

Place the closing </wl:summary> tag anywhere after the </wl:form> tag(s).

Chapter 14
Using WebLogic JSP Form Validation Tags in a JSP

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 8

c. Define an HTML form using the <wl:form> JSP tag that is included with the supplied
tag library. See <wl:form> and Creating HTML Forms Using the <wl:form> Tag. Be
sure to close the form block with the </wl:form> tag. You can create multiple forms on
a page if you uniquely define the name attribute of the <wl:form> tag for each form.

d. Create the HTML form fields using the HTML <input> tag.

2. Add <wl:validator> tags. For the syntax of the tags, see <wl:validator>. Place
<wl:validator> tags on the page where you want the error message or image to appear.
If you use multiple forms on the same page, place the <wl:validator> tag inside the
<wl:form> block containing the form fields you want to validate.

The following example shows a validation for a required field:

<wl:form name="FirstForm" method="POST" action="thisJSP.jsp">

<wl:validator
 errorMessage="Field_1 is required" expression=""
 fieldToValidate="field_1"
 validatorClass=
 "weblogicx.jsp.tags.validators.RequiredFieldValidator"
>

 Field 1 is a required field
</wl:validator>
<p> <input type="text" name = "field_1"> </p>
<p> <input type="text" name = "field_2"> </p>
<p> <input type="submit" value="Submit FirstForm"> </p>
</wl:form>

If the user fails to enter a value in field_1, the page is redisplayed, showing a
warning.gif image, followed by the text (in red) "Field 1 is a required field,"
followed by the blank field for the user to re-enter the value.

3. Copy the weblogic-vtags.jar file from the ext directory of your WebLogic Server
installation into the WEB-INF/lib directory of your Web application. You may need to create
this directory.

4. Configure your Web application to use the tag library by adding a taglib element to the
web.xml deployment descriptor for the Web application. For example:

<taglib>
 <taglib-uri>tagl</taglib-uri>
 <taglib-location>
 /WEB-INF/lib/weblogic-vtags.jar
 </taglib-location>
</taglib>

Creating HTML Forms Using the <wl:form> Tag
Learn how to create HTML forms in your JSP page.

You use the <wl:form> tag to create a single form or multiple forms on a page.

Defining a Single Form
Use the <wl:form> tag that is provided in the weblogic-vtags.jar tag library: For example:

<wl:form method="POST" action="nextPage.jsp">
<p> <input type="text" name ="field_1"> </p>
<p> <input type="text" name ="field_2"> </p>

Chapter 14
Creating HTML Forms Using the <wl:form> Tag

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 8

<p> <input type="submit" value="Submit Form"> </p>
</wl:form>

For information on the syntax of this tag see <wl:form>.

Defining Multiple Forms
When using multiple forms on a page, use the name attribute to identify each form. For
example:

<wl:form name="FirstForm" method="POST" action="thisJSP.jsp">
<p> <input type="text" name="field_1"> </p>
<p> <input type="text" name="field_2"> </p>
<p> <input type="submit" value="Submit FirstForm"> </p>
</wl:form>
<wl:form name="SecondForm" method="POST" action="thisJSP.jsp">
<p> <input type="text" name="field_1"> </p>
<p> <input type="text" name="field_2"> </p>
<p> <input type="submit" value="Submit SecondForm"> </p>
</wl:form>

Re-Displaying the Values in a Field When Validation Returns Errors
When the JSP page is re-displayed after the validator tag has found errors, it is useful to re-
display the values that the user already entered, so that the user does not have to fill out the
entire form again. Use the value attribute of the HTML <input> tag or use a tag library
available from the Apache Jakarta Project. Both procedures are described next.

Re-Displaying a Value Using the <input> Tag
You can use the jakarta.servlet.ServletRequest.getParameter() method together with the
value attribute of the HTML <input> tag to re-display the user's input when the page is re-
displayed as a result of failed validation. For example:

<input type="text" name="field_1"
 value="<%= request.getParameter("field_1") %>" >

To prevent cross-site scripting security vulnerabilities, replace any HTML special characters in
user-supplied data with HTML entity references. For more information, refer to JSP Expression
Language.

Re-Displaying a Value Using the Apache Jakarta <input:text> Tag
You can also use a JSP tag library available free from the Apache Jakarta Project, which
provides the <input:text> tag as a replacement for the HTML <input> tag. For example, the
following HTML tag:

<input type="text" name="field_1">

could be entered using the Apache tag library as:

<input:text name="field_1">

For more information and documentation, download the Input Tag library, available at http://
attic.apache.org/projects/jakarta-taglibs.html.

To use the Apache tag library in your JSP:

Chapter 14
Creating HTML Forms Using the <wl:form> Tag

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 8

http://attic.apache.org/projects/jakarta-taglibs.html
http://attic.apache.org/projects/jakarta-taglibs.html

1. Copy the input.jar file from the Input Tag Library distribution file into the WEB-INF/lib
directory of your Web application.

2. Add the following directive to your JSP:

<%@ taglib uri="input" prefix="input" %>

3. Add the following entry to the web.xml deployment descriptor of your Web application:

<taglib>
 <taglib-uri>input</taglib-uri>
 <taglib-location>/WEB-INF/lib/input.jar</taglib-location>
</taglib>

Using a Custom Validator Class
Learn how to use your own validator class.

1. Write a Java class that extends the
weblogicx.jsp.tags.validators.CustomizableAdapter abstract class. See Extending
the CustomizableAdapter Class.

2. Implement the validate() method. In this method:

a. Look up the value of the field you are validating from the ServletRequest object. For
example:

String val = req.getParameter("field_1");

b. Return a value of true if the field meets the validation criteria.

3. Compile the validator class and place the compiled .class file in the WEB-INF/classes
directory of your Web application.

4. Use your validator class in a <wl:validator> tag by specifying the class name in the
validatorClass attribute. For example:

<wl:validator errorMessage="This field is required" fieldToValidate="field_1"
validatorClass="mypackage.myCustomValidator">

Extending the CustomizableAdapter Class
The CustomizableAdapter class is an abstract class that implements the Customizable
interface and provides the following helper methods:

• getFieldToValidate()—Returns the name of the field being validated (defined by the
fieldToValidate attribute in the <wl:validator> tag)

• getErrorMessage()—Returns the text of the error message defined with the errorMessage
attribute in the <wl:validator> tag.

• getExpression()—Returns the text of the expression attribute defined in the
<wl:validator> tag.

Instead of extending the CustomizableAdapter class, you can implement the Customizable
interface.

Chapter 14
Using a Custom Validator Class

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 8

Sample User-Written Validator Class
Example 14-1 Example of a User-written Validator Class

import weblogicx.jsp.tags.validators.CustomizableAdapter;

public class myCustomValidator extends CustomizableAdapter{

 public myCustomValidator(){
super();
 }

 public boolean validate(jakarta.servlet.ServletRequest req)
throws Exception {
String val = req.getParameter(getFieldToValidate());
 // perform some validation logic
 // if the validation is successful, return true,
 // otherwise return false
if (true) {
 return true;
}
return false;
 }

}

Sample JSP with Validator Tags
Examine sample code that shows the basic structure of a JSP using the WebLogic JSP form
validation tags.

A complete functioning code example is also available if you installed the examples with your
WebLogic Server installation. Instructions for running the example are available at samples/
examples/jsp/tagext/form_validation/package.html, in your WebLogic Server installation.

Example 14-2 JSP with WebLogic JSP Form Validation Tags

<%@ taglib uri="tagl" prefix="wl" %>
<%@ taglib uri="input" prefix="input" %>

<wl:summary
name="summary"
headerText="Some fields have not been filled out correctly."
redirectPage="successPage.jsp"
>

<html>
<head>
<title>Untitled Document</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<body bgcolor="#FFFFFF">

<% if(summary.size() >0) {
 out.println("<h3>" + headerText + "</h3>");
} %>

Chapter 14
Sample JSP with Validator Tags

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 8

<% if (summary.size() > 0) {
out.println("<H2>Error Summary:</h2>");
for (int i=0; i < summary.size(); i++) {
out.println((String)summary.elementAt(i));
out.println("
");
}
} %>

<wl:form method="GET" action="successPage.jsp">

 User Name: <input:text name="username"/>
 <wl:validator
 fieldToValidate="username"
 validatorClass="weblogicx.jsp.tags.validators.RequiredFieldValidator"
 errorMessage="User name is a required field!"
 >
 This is a required field!
 </wl:validator>

<p>

 Password: <input type="password" name="password">
 <wl:validator
 fieldToValidate="password"
 validatorClass="weblogicx.jsp.tags.validators.RequiredFieldValidator"
 errorMessage="Password is a required field!"
 >
 This is a required field!
 </wl:validator>

 <p>

 Re-enter Password: <input type="password" name="password2">
 <wl:validator
 fieldToValidate="password,password2"
 validatorClass="weblogicx.jsp.tags.validators.CompareValidator"
 errorMessage="Passwords don't match"
 >
 Passwords don't match.
 </wl:validator>

 <p>

 <input type="submit" value="Submit Form"> </p>

</wl:form>

</wl:summary>

</body>
</html>

Chapter 14
Sample JSP with Validator Tags

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 8

15
Using Custom WebLogic JSP Tags (cache,
process, repeat)

Learn how to use three custom JSP tags—cache, repeat, and process—provided with the
WebLogic Server distribution.
This chapter includes the following sections:

Overview of WebLogic Custom JSP Tags
Oracle provides three specialized JSP tags that you can use in your JSP pages: cache,
repeat, and process. These tags are packaged in a tag library JAR file called weblogic-
tags.jar. This JAR file contains classes for the tags and a tag library descriptor (TLD).

To use these tags, you copy this JAR file to the Web application that contains your JSPs and
reference the tag library in your JSP.

Using the WebLogic Custom Tags in a Web Application
Using the WebLogic custom tags requires that you include them within a Web application.

To use these tags in your JSP:

1. Copy the weblogic-tags.jar file from the ext directory of your WebLogic Server
installation to the WEB-INF/lib directory of the Web application containing the JSPs that
will use the WebLogic Custom Tags.

2. Reference this tag library descriptor in the <taglib> element of the Jakarta EE standard
Web application deployment descriptor, web.xml. For example:

<taglib>
 <taglib-uri>weblogic-tags.tld</taglib-uri>
 <taglib-location>
 /WEB-INF/lib/weblogic-tags.jar
 </taglib-location>
</taglib>

3. Reference the tag library in your JSP with the taglib directive. For example:

<%@ taglib uri="weblogic-tags.tld" prefix="wl" %>

Cache Tag
The cache tag enables caching the work that is done within the body of the tag. It supports
both output (transform) data and input (calculated) data. Output caching refers to the content
generated by the code within the tag. Input caching refers to the values to which variables are
set by the code within the tag. Output caching is useful when the final form of the content is the
important thing to cache. Input caching is important when the view of the data can vary
independently of the data calculated within the tag.

If one client is already recalculating the contents of a cache and another client requests the
same content it does not wait for the completion of the recalculation, instead it shows whatever

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

information is already in the cache. This is to make sure that the Web site does not come to a
halt for all your users because a cache is being recalculated. Additionally, the async attribute
means that no one, not even the user that initiates the cache recalculation waits.

Two versions of the cache tag are available. Version 2 has additional scopes available.

Refreshing a Cache
You can force the refresh of a cache by setting the _cache_refresh object to true in the scope
that you want affected. For example, to refresh a cache at session scope, specify the following:

<% request.setAttribute("_cache_refresh", "true"); %>

If you want all caches to be refreshed, set the cache to the application scope. If you want all
the caches for a user to be refreshed, set it in the session scope. If you want all the caches in
the current request to be refreshed, set the _cache_refresh object either as a parameter or in
the request.

The <wl:cache> tag specifies content that must be updated each time it is displayed. The
statements between the <wl:cache> and </wl:cache> tags are only executed if the cache has
expired or if any of the values of the key attributes (see Table 15-1) have changed.

Flushing a Cache
Flushing a cache forces the cached values to be erased; the next time the cache is accessed,
the values are recalculated. To flush a cache, set its flush attribute to true. The cache must
be named using the name attribute. If the cache has the size attribute set, all values are
flushed. If the cache sets the key attribute but not the size attribute, you can flush a specific
cache by specifying its key along with any other attributes required to uniquely identify the
cache (such as scope or vars).

For example:

1. Define the cache.

<wl:cache name="dbtable" key="parameter.tablename"

scope="application">
// read the table and output it to the page
</wl:cache>

2. Update the cached table data.

3. Flush the cache using the flush attribute in an empty tag (an empty tag ends with / and
does not use a closing tag). For example

<wl:cache name="dbtable" key="parameter.tablename" scope="application"
flush="true"/>

Chapter 15
Cache Tag

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

Table 15-1 Cache Tag Attributes

Attribut
e

Require
d

Default Value Description

timeout no -1 Cache timeout property. The amount of time, in seconds, after
which the statements within the cache tag are refreshed. This is
not proactive; the value is refreshed only if it is requested. If you
prefer to use a unit of time other than seconds, you can specify an
alternate unit by post fixing the value with desired unit:

• ms = milliseconds
• s = seconds (default)
• m = minutes
• h = hours
• d = days

scope no application Specifies the scope in which the data is cached. Valid scopes
include:

• parameter, (versions 1,2) requests the HTTP servlet request
parameters

• page, (versions 1,2) requests the JSP page context attributes
(This scope does not exist for the cache filter.)

• request, (versions 1,2) requests the servlet request attributes.
Request attributes are valid for the entire request, including
any forwarded or included pages.

• cookie, (version 2)requests the cookie values found in the
request. If there are multiple cookies with the same name, this
request returns only the first value.

• requestHeader, (version 2)requests the values from the
request Headers. If there are multiple Headers with the same
name, only the value of the first is returned.

scope
(cont.)

• responseHeader, (version 2)requests the values from the
response Headers. If there are multiple Headers with the same
name, only the value of the first is returned. If you set a
response header, all response headers are replaced with the
value you have set. This scope should not be used for storing
content.

• session, (versions 1,2) requests the values from the session
attributes of the current user. If there is no session then one
will not be created by accessing the scope. The caches can
become very large if you are caching content.

• application, (versions 1,2) requests the values found in the
servlet context attributes.

• cluster, (versions 1,2) requests the values from the application
scope, and when written to replicates the information across
the cluster.

Most caches will be either session or application scope.

Chapter 15
Cache Tag

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

Table 15-1 (Cont.) Cache Tag Attributes

Attribut
e

Require
d

Default Value Description

key no -- Specifies additional values to be used when evaluating whether to
cache the values contained within the tags. Typically a given cache
is identified by the cache name that you configured in web.xml. If
that is not specified the request uri is used as a cache name. Using
keys you can specify additional values to identify a tag. For
example, if you want to separate out the cache for a given end
user, then in addition to the cache name you can specify the keys
as the userid, values for which you want to pick it up from the
request parameter scope (query param/post params) plus perhaps
a client ip. So you will specify your keys as:
"parameter.userid,parameter.clientip" Here "parameter" is
the scope (request parameter scope) and "userid"/"clientip" are the
parameters/attributes. This means the primary key for the cache
becomes the cache name (request uri in this case) + value of
userid request param + value of clientip request param.

The list of keys is comma-separated. The value of this attribute is
the name of the variable whose value you wish to use as a key into
the cache. You can additionally specify a scope by prepending the
name of the scope to the name. For example:

parameter.key | page.key | request.key |
application.key | session.key
It defaults to searching through the scopes in the order shown in
the preceding list. Each named key is available in the cache tag as
a scripting variable. A list of keys is comma-separated.

async no false If the async parameter is set to true, the cache will be updated
asynchronously, if possible. The user that initiates the cache hit
sees the old data.

name no -- A unique name for the cache that allows caches to be shared
across multiple JSP pages. This same buffer is used to store the
data for all pages using the named cache. This attribute is useful
for textually included pages that need cache sharing. If this
attribute is not set, a unique name is chosen for the cache.

We recommended that you avoid manually calculating the name of
the tag; the key functionality can be used equivalently in all cases.
The name is calculated as weblogic.jsp.tags.CacheTag. plus
the URI plus a generated number representing the tag in the page
you are caching. If different URIs reach the same JSP page, the
caches are not shared in the default case. Use named caches in
this case.

System named caches can not be flushed and refreshed
automatically.

size no -1 (unlimited) For caches that use keys, the number of entries allowed. The
default is an unlimited cache of keys. With a limited number of keys
the tag uses a least-used system to order the cache. Changing the
value of the size attribute of a cache that has already been used
does not change the size of that cache.

Chapter 15
Cache Tag

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

Table 15-1 (Cont.) Cache Tag Attributes

Attribut
e

Require
d

Default Value Description

vars no -- In addition to caching the transformed output of the cache, you can
also cache calculated values within the block. These variables are
specified exactly the same way as the cache keys. This type of
caching is called Input caching.

Variables are used to do input caching. When the cache is
retrieved the variables are restored to the scope you specified. For
example, for retrieving results from a database you used var1 from
request parameter and var2 from session. When the cache is
created the value of these variables are stored with the cache. The
next time the cache is accessed these values are restored so you
will be able to access them from their respective scopes. For
example, var1 will be available from request and var2 from session.

flush no none When set to true, the cache is flushed. This attribute must be set in
an empty tag (ends with /).

Additional properties of the cache system for version 2

• Each cache also has additional arbitrary attributes associated with it that the end user can
manipulate and expect to be populated when the cache is retrieved.

• Cache listeners can be registered by putting an object that implements
weblogicx.cache.CacheListener in a java.util.List that is present in any scope in the
cache system under the "weblogicx.cache.CacheListener" key. If there is a List present
in the scope, add your listener to the end.

The following examples show how you can use the <wl:cache> tag.

Example 15-1 Examples of Using the cache Tag

<wl:cache>
<!--the content between these tags will only be
 refreshed on server restart-->
</wl:cache>

<wl:cache key="request.ticker" timeout="1m">
<!--get stock quote for whatever is in the request parameter ticker
 and display it, only update it every minute-->
</wl:cache>

<!--incoming parameter value isbn is the number used to lookup the
 book in the database-->
<wl:cache key="parameter.isbn" timeout="1d" size="100">
<!--retrieve the book from the database and display
the information -- the tag will cache the top 100
most accessed book descriptions-->
</wl:cache>

<wl:cache timeout="15m" async="true">
<!--get the new headlines from the database every 15 minutes and
 display them-->
<!--do not let anyone see the pause while they are retrieved-->
</wl:cache>

Chapter 15
Cache Tag

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

Process Tag
Use the <wl:process> tag for query parameter-based flow control. By using a combination of
the tag's four attributes, you can selectively execute the statements between the <wl:process>
and </wl:process> tags. The process tag may also be used to declaratively process the
results of form submissions. By specifying conditions based on the values of request
parameters you can include or not include JSP syntax on your page.

Table 15-2 Process Tag Attributes

Tag Attribute Required Description

name no Name of a query parameter.

notname no Name of a query parameter.

value no Value of a query parameter.

notvalue no Value of a query parameter.

The following examples show how you can use the <wl:process> tag:

Example 15-2 Examples of Using the process tag:

<wl:process notname="update">
<wl:process notname="delete">
<!--Only show this if there is no update or delete parameter-->
<form action="<%= request.getRequestURI() %>">
 <input type="text" name="name"/>
 <input type="submit" name="update" value="Update"/>
 <input type="submit" name="delete" value="Delete"/>
</form>
</wl:process>
</wl:process>
<wl:process name="update">
<!-- do the update -->
</wl:process>

<wl:process name="delete">
<!--do the delete-->
</wl:process>
<wl:process name="lastBookRead" value="A Man in Full">
<!--this section of code will be executed if lastBookRead exists
 and the value of lastBookRead is "A Man in Full"-->
</wl:process>

Repeat Tag
Use the <wl:repeat> tag to iterate over many different types of sets, including Enumerations,
Iterators, Collections, Arrays of Objects, Vectors, ResultSets, ResultSetMetaData, and the
keys of a Hashtable. You can also just loop a certain number of times by using the count
attribute. Use the set attribute to specify the type of Java objects.

Chapter 15
Process Tag

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

Table 15-3 Repeat Tag Attributes

Tag Attribute Required Type Description

set No Object The set of objects that includes:

• Enumerations
• Iterators
• Collections
• Arrays
• Vectors
• Result Sets
• Result Set MetaData
• Hashtable keys

count No Int Iterate over first count entries in the set.

id No String Variable used to store current object
being iterated over.

type No String Type of object that results from iterating
over the set you passed in. Defaults to
Object. This type must be fully
qualified.

The following example shows how you can use the <wl:repeat> tag.

Example 15-3 Examples of Using the repeat Tag

<wl:repeat id="name" set="<%= new String[] { "sam", "fred", "ed" } %>">
 <%= name %>
</wl:repeat>

<% Vector v = new Vector();%>
<!--add to the vector-->

<wl:repeat id="item" set="<%= v.elements() %>">
<!--print each element-->
</wl:repeat>

Chapter 15
Repeat Tag

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

16
Using the WebLogic EJB to JSP Integration
Tool

Learn how to use the WebLogic EJB-to-JSP integration tool to create JSP tag libraries that you
can use to invoke EJBs in a Jakarta Server Page (JSP) for WebLogic Server. This document
assumes at least some familiarity with both EJB and JSP.
This chapter includes the following sections:

Overview of the WebLogic EJB-to-JSP Integration Tool
Given an EJB JAR file, the WebLogic EJB-to-JSP integration tool will generate a JSP tag
extension library whose tags are customized for calling the EJB(s) of that JAR file. From the
perspective of a client, an EJB is described by its remote interface.

For example:

public interface Trader extends jakarta.ejb.EJBObject {
 public TradeResult buy(String stockSymbol, int shares);
 public TradeResult sell(String stockSymbol, int shares);
}

For Web applications that call EJBs, the typical model is to invoke the EJB using Java code
from within a JSP scriptlet (<% ... %>). The results of the EJB call are then formatted as
HTML and presented to the Web client. This approach is both tedious and error-prone. The
Java code required to invoke an EJB is lengthy, even in the simplest of cases, and is typically
not within the skill set of most Web designers responsible for HTML presentation.

The EJB-to-JSP tool simplifies the EJB invocation process by removing the need for java code.
Instead, you invoke the EJB is invoked using a JSP tag library that is custom generated for that
EJB. For example, the methods of the Trader bean above would be invoked in a JSP like this:

<%@ taglib uri="/WEB-INF/trader-tags.tld" prefix="trade" %>
invoking trade:

<trade:buy stockSymbol="BEAS" shares="100"/>

<trade:sell stockSymbol="MSFT" shares="200"/>

The resulting JSP page is cleaner and more intuitive. A tag is (optionally) generated for each
method on the EJB. The tags take attributes that are translated into the parameters for the
corresponding EJB method call. The tedious machinery of invoking the EJB is hidden,
encapsulated inside the handler code of the generated tag library. The generated tag libraries
support stateless and stateful session beans, and entity beans. The tag usage scenarios for
each of these cases are slightly different, and are described below.

Basic Operation
You can run the WebLogic EJB-to-JSP integration tool in command-line mode or graphical
mode.

Use the following command:

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 6

java weblogic.servlet.ejb2jsp.Main

Invoke the graphical tool as follows:

java weblogic.servlet.ejb2jsp.gui.Main

For all but the simplest EJBs, the graphical tool is preferable.

Initially, no ejb2jsp project is loaded by the Web application. Create a new project by selecting
the File > New menu item, browsing in the file chooser to an EJB JAR file, and selecting it.
Once initialized, you can modify, save, and reload ejb2jsp projects for future modification.

The composition of the generated tag library is simple: for each method, of each EJB, in the
JAR file, a JSP tag is generated, with the same name as the method. Each tag expects as
many attributes as the corresponding method has parameters.

Interface Source Files
When a new EJB JAR is loaded, the tool also tries to find the Java source files for the home
and remote interfaces of your EJB(s). The reason is that, although the tool can generate tags
only by introspecting the EJB classes, it cannot assign meaningful attribute names to the tags
whose corresponding EJB methods take parameters.

In the Trader example in Overview of the WebLogic EJB-to-JSP Integration Tool, when the EJB
JAR is loaded, the tool tries to find a source file called Trader.java. This file is then parsed
and detects that the buy() method takes parameters called stockSymbol and shares. The
corresponding JSP tag will then have appropriately named attributes that correspond to the
parameters of the buy() method.

When a new EJB JAR is loaded, the tool operates on the premise that the source directory is
the same directory where the EJB JAR is located. If that is not the case, the error is not fatal.
After the new project is loaded, under the Project Build Options panel, you can adjust the EJB
Source Path element to reflect the correct directory. You can then select the File -> Resolve
Attributes menu to re-run the resolve process.

When looking for java source files corresponding to an interface class, the tool searches in
both the directory specified, and in a sub-directory implied by the interface's java package. For
example, for my.ejb.Trader, if the directory given is C:/src, the tool will look for both C:/src/
Trader.java and C:/src/my/ejb/Trader.java.

Access to the source files is not strictly necessary. You can always modify attribute names for
each tag in a project by using the tool. However, parsing the source files of the EJB's public
interface was developed as the quickest way to assign meaningful attribute names.

Build Options Panel
Use this panel to set all parameters related to the local file system that are needed to build the
project. Specify the Java compiler, the Java package of the generated JSP tag handlers, and
whether to keep the generated Java code after a project build, which can be useful for
debugging.

You can also use this panel to specify the type of tag library output you want. For use in a
Jakarta EE Web application, a tag library should be packaged one of two ways: as separate
class files and a Tag Library Descriptor (.tld) file, or as a single taglib jar file. Either output
type is chosen with the Output Type pull-down. For development and testing purposes,
DIRECTORY output is recommended, because a Web application in WebLogic Server must be
re-deployed before a jar file can be overwritten.

Chapter 16
Interface Source Files

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 6

For either DIRECTORY or JAR, the output locations must be chosen appropriately so that the
tag library will be found by a Web application. For example, if you wish to use the tag library in
a Web application rooted in directory C:/mywebapp, then the DIRECTORY classes field should
be specified as:

C:/mywebapp/WEB-INF/classes

and the DIRECTORY .tld File field should be something like:

C:/mywebapp/WEB-INF/trader-ejb.tld

The Source Path, described earlier, is edited in the Build Options panel as well. The Extra
Classpath field can be used if your tag library depends on other classes not in the core
WebLogic Server or Jakarta EE API. Typically, nothing will need to be added to this field.

Troubleshooting
Sometimes, a project fails to build because of errors or conflicts. Read about some of the
reasons for those errors, and how they may be resolved.

• Missing build information: One of the necessary fields in the Build Options panel is
unspecified, like the java compiler, the code package name, or a directory where the output
can be saved. The missing field(s) must be filled in before the build can succeed.

• Duplicate tag names: When an EJB jar is loaded, the tool records a tag for each method
on the EJB, and the tag name is the same as the method name. If the EJB has overloaded
methods (methods with the same name but different signatures), the tag names conflict.
Resolve the conflict by renaming one of the tags or by disabling one of the tags. To rename
a tag, navigate to the tag in question using the tree hierarchy in the left window of the tool.
In the tag panel that appears in the right window, modify the Tag Name field. To disable a
tag, navigate to the tag in question using the tree hierarchy in the left window of the tool. In
the tag panel that appears in the right window, deselect the Generate Tag box. For EJB
jars that contain multiple EJBs, you can disable tags for an entire bean may as well.

• Meaningless attribute names arg0, arg1...: This error occurs when reasonable
attribute names for a tag could not be inferred from the EJB's interface source files. To fix
this error, navigate to the tag in question in the project hierarchy tree. Select each of the
attribute tree leaves below the tag, in order. For each attribute, assign a reasonable name
to the Attribute Name field, in the panel that appears on the right side of the tool.

• Duplicate attribute names: This occurs when a single tag expecting multiple attributes has
two attributes with the same name. Navigate to the attribute(s) in question, and rename
attributes so that they are all unique for the tag.

Using EJB Tags on a JSP Page
Using the generated EJB tags on a JSP page is simply a matter of declaring the tag library on
the page, and then invoking the tags like any other tag extension.

<% taglib uri="/WEB-INF/trader-ejb.tld"
 prefix="trade" %>
<trade:buy stockSymbol="XYZ" shares="100"/>

For EJB methods that have a non-void return type, a special, optional tag attribute "_return", is
built-in. When present, the value returned from the method is made available on the page for
further processing:

<% taglib uri="/WEB-INF/trader-ejb.tld"
 prefix="trade" %>

Chapter 16
Troubleshooting

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 6

<trade:buy stockSymbol="XYZ"
 shares="100" _return="tr"/>
<% out.println("trade result: " + tr.getShares()); %>

For methods that return a primitive numeric type, the return variable is a Java object
appropriate for that type (for example, "int" -> java.lang.Integer, and such).

EJB Home Methods
EJBs allows for methods on the EJB home interface that are neither create() or find()
methods. Tags are generated for these home methods as well.

To avoid confusion, the tool prepends "home-" to the tags for each method on an EJB's home,
when a new project is loaded. These methods may be renamed, if desired.

Stateful Session and Entity Beans
Typical usage of a "stateful" bean is to acquire an instance of the bean from the bean's Home
interface, and then to invoke multiple methods on a single bean instance. This programming
model is preserved in the generated tag library as well. Method tags for stateful EJB methods
are required to be inside a tag for the EJB home interface that corresponds to a find() or
create() on the home. All EJB method tags contained within the find/create tag operate on the
bean instance found or created by the enclosing tag. If a method tag for a stateful bean is not
enclosed by a find/create tag for its home, a run-time exception occurs.

For example, given the following EJB:

public interface AccountHome extends EJBHome {

 public Account create(String accountId, double initialBalance);
 public Account findByPrimaryKey(String accountID);
 /* find all accounts with balance above some threshold */
 public Collection findBigAccounts(double threshold);
}

public interface Account extends EJBObject {
 public String getAccountID();
 public double deposit(double amount);
 public double withdraw(double amount);
 public double balance();
}
Correct tag usage might be as follows:
<% taglib uri="/WEB-INF/account-ejb.tld" prefix="acct" %>
<acct:home-create accountId="103"
 initialBalance="450.0" _return="newAcct">
 <acct:deposit amount="20"/>
 <acct:balance _return="bal"/>
 Your new account balance is: <%= bal %>
</acct:home-create>

If the "_return" attribute is specified for a find/create tag, a page variable will be created that
refers to the found/created EJB instance. Entity beans finder methods may also return a
collection of EJB instances. Home tags that invoke methods returning a collection of beans will
iterate (repeat) over their tag body, for as many beans as are returned in the collection. If
"_return" is specified, it is set to the current bean in the iteration:

Accounts above $500:

<acct:home-findBigAccounts threshold="500" _return="acct">

Chapter 16
EJB Home Methods

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 6

Account <%= acct.getAccountID() %>
 has balance $<%= acct.balance() %>
</acct:home-findBigAccounts>

The preceding example will display an HTML list of all Account beans whose balance is
over $500.

Default Attributes
By default, the tag for each method requires that all of its attributes (method parameters) be
set on each tag instance. However, the tool will also allow "default" method parameters to be
specified, in case they are not given in the JSP tag. You can specify default attributes/
parameters in the Attribute window of the EJB-to-JSP tool. The parameter default can come
from an simple EXPRESSION, or if more complex processing is required, a default METHOD
body may be written.

For example, in the Trader example in Overview of the WebLogic EJB-to-JSP Integration Tool,
suppose you want the "buy" tag to operate on stock symbol "XYZ" if none is specified. In the
Attribute panel for the "stockSymbol" attribute of the "buy" tag, you set the "Default Attribute
Value" field to EXPRESSION, and enter "XYZ" (quotes included!) in the Default Expression
field. The buy tag then acts as if the stockSymbol="XYZ" attribute were present, unless some
other value is specified.

Or if you want the shares attribute of the "buy" tag to be a random number between 0-100, we
would set "Default Attribute Value" to METHOD, and in the Default Method Body area, you
write the body of a Java method that returns int (the expected type for the "shares" attribute of
the "buy" method):

long seed = System.currentTimeMillis();
java.util.Random rand = new java.util.Random(seed);
int ret = rand.nextInt();
/* ensure that it is positive...*/
ret = Math.abs(ret);
/* and < 100 */
return ret % 100;

Because your default method bodies appear within a JSP tag handler, your code has access to
the pageContext variable. From the JSP PageContext, you can gain access to the current
HttpServletRequest or HttpSession, and use session data or request parameters to generate
default method parameters. For example, to pull the "shares" parameter for the "buy" method
out of a ServletRequest parameter, you could write the following code:

HttpServletRequest req =
 (HttpServletRequest)pageContext.getRequest();
String s = req.getParameter("shares");
if (s == null) {
 /* webapp error handler will redirect to error page
 * for this exception
 */
 throw new BadTradeException("no #shares specified");
}
int ret = -1;
try {
 ret = Integer.parseInt(s);
} catch (NumberFormatException e) {
 throw new BadTradeException("bad #shares: " + s);
}
if (ret <= 0)

Chapter 16
Default Attributes

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 6

 throw new BadTradeException("bad #shares: " + ret);
return ret;

The generated default methods are assumed to throw exceptions. Any exceptions raised
during processing will be handled by the JSP's errorPage, or else by the registered exception-
handling pages of the Web application.

Chapter 16
Default Attributes

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 6

A
web.xml Deployment Descriptor Elements

Read descriptions of the standard Jakarta EE deployment descriptor elements for WebLogic
Server.
With Jakarta EE annotations, the standard web.xml deployment descriptor is optional.
According to the Servlet 4.0 specification at https://jcp.org/en/jsr/detail?id=369,
annotations can be defined on certain Web components, such as servlets, filters, listeners, and
tag handlers. The annotations are used to declare dependencies on external resources. See
WebLogic Annotation for Web Components.

This appendix includes the following sections:

web.xml Namespace Declaration and Schema Location
The correct text for the namespace declaration and schema location for the web.xml file is as
follows.

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"
id="WebApp_ID" version="4.0">

To view the schema for web.xml, go to http://www.oracle.com/webfolder/
technetwork/jsc/xml/ns/javaee/web-app_4_0.xsd.

context-param
The optional context-param element contains the declaration of a Web application's servlet
context initialization parameters.

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-1 of A-23

https://jcp.org/en/jsr/detail?id=369
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_4_0.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_4_0.xsd

Table A-1 context-parameter Elements

Element Required/
Optional

Description

weblogic.httpd.clientCe
rtProxy

optional This attribute specifies that certifications from clients of
the Web application are provided in the special WL-
Proxy-Client-Cert header sent by a proxy plug-in or
HttpClusterServlet.

This setting is useful if user authentication is performed
on a proxy server—setting clientCertProxy causes
the proxy server to pass on the certs to the cluster in a
special header, WL-Proxy-Client-Cert.

A WL-Proxy-Client-Cert header could be provided
by any client with access to WebLogic Server. WebLogic
Server takes the certificate information from that header,
trusting that is came from a secure source (the plug-in)
and uses that information to authenticate the user.

For this reason, if you set clientCertProxy, use a
connection filter to ensure that WebLogic Server accepts
connections only from the machine on which the plug-in
is running.

In addition to setting this attribute for an individual Web
application, you can define this attribute:

For all Web applications hosted by a server instance, on
the Server > General page in the WebLogic Remote
Console. For all Web applications hosted by server
instances in a cluster, on the Cluster > General page.

The following table describes the reserved context parameters used by the Web application
container, which have been deprecated and have replacements in weblogic.xml.

Table A-2 Deprecated context-param Elements

Deprecated Parameter Description Replacement Element in
weblogic.xml

weblogic.httpd.inputCharset Defines code set behavior for non-
unicode operations.

input-charset (defined
within charset-param) in
weblogic.xml. See input-
charset.

weblogic.httpd.servlet.relo
adCheckSecs

Defines how often WebLogic
Server checks whether a servlet
has been modified, and if so,
reloads it. A value of -1 is never
reload, 0 is always reload. The
default is set to 1 second.

servlet-reload-check-
secs (defined within
container-descriptor) in
weblogic.xml. See auth-
filter.

weblogic.httpd.servlet.clas
spath

When this values has been set, the
container appends this path to the
Web application classpath. This is
not a recommended method and is
supported only for backward
compatibility.

No replacement. Use other
means such as manifest
classpath or WEB-INF/lib or
WEB-INF/classes or virtual
directories.

Appendix A
context-param

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-2 of A-23

Table A-2 (Cont.) Deprecated context-param Elements

Deprecated Parameter Description Replacement Element in
weblogic.xml

weblogic.httpd.defaultServl
et

Sets the default servlet for the Web
application. This is not a
recommended method and is
supported only for backward
compatibility.

No replacement. Instead use
the servlet and servlet-
mapping elements in
web.xml to define a default
servlet. The URL pattern for
default-servlet should be
"/". See servlet-mapping. For
additional examples of servlet
mapping, see Servlet
Mapping.

description
The optional description element provides descriptive text about the Web application.

Table A-3 description Elements

Element Required/
Optional

Description

<description> Optional Currently, this element is not used by WebLogic
Server.

display-name
The optional display-name element specifies the Web application display name, a short name
that can be displayed by GUI tools.

Table A-4 display-name Elements

Element Required/
Optional

Description

<display-name> Optional Currently, this element is not used by WebLogic
Server.

distributable
The distributable element is not used by WebLogic Server.

Table A-5 description Elements

Element Required/
Optional

Description

<distributable> Optional Currently, this element is not used by WebLogic
Server.

Appendix A
description

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-3 of A-23

ejb-local-ref
The ejb-local-ref element is used for the declaration of a reference to an enterprise bean's
local home. The declaration consists of:

• An optional description

• The EJB reference name used in the code of the Web application that references the
enterprise bean. The expected type of the referenced enterprise bean

• The expected local home and local interfaces of the referenced enterprise bean

• Optional ejb-link information, used to specify the referenced enterprise bean

The following table describes the elements you can define within an ejb-local-ref element.

Table A-6 ejb-local-ref Elements

Element Required/
Optional

Description

<descriptio
n>

Optional A text description of the reference.

<ejb-ref-
name>

Required Contains the name of an EJB reference. The EJB reference is an entry
in the Web application's environment and is relative to the
java:comp/env context. The name must be unique within the Web
application. It is recommended that name is prefixed with ejb/.

For example:

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

<ejb-ref-
type>

Required The ejb-ref-type element contains the expected type of the
referenced enterprise bean. The ejb-ref-type element must be one
of the following:

<ejb-ref-type>Entity</ejb-ref-type>

<ejb-ref-type>Session</ejb-ref-type>

<local-
home>

Required Contains the fully-qualified name of the enterprise bean's local home
interface.

<local> Required Contains the fully-qualified name of the enterprise bean's local interface.

<ejb-link> Optional The ejb-link element is used in the ejb-ref or ejb-local-ref
elements to specify that an EJB reference is linked to an EJB.

The name in the ejb-link element is composed of a path name. This
path name specifies the ejb-jar containing the referenced EJB with
the ejb-name of the target bean appended and separated from the path
name by #.

The path name is relative to the WAR file containing the Web application
that is referencing the EJB. This allows multiple EJBs with the same
ejb-name to be uniquely identified.

Used in: ejb-local-ref and ejb-ref elements.

Examples:

<ejb-link>EmployeeRecord</ejb-link>
<ejb-link>../products/product.jar#ProductEJB</ejb-
link>

Appendix A
ejb-local-ref

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-4 of A-23

Table A-6 (Cont.) ejb-local-ref Elements

Element Required/
Optional

Description

<lookup-
name>

Optional The JNDI name to be looked up to resolve a resource reference.

ejb-ref
The optional ejb-ref element defines a reference to an EJB resource. This reference is
mapped to the actual location of the EJB at deployment time by defining the mapping in the
WebLogic-specific deployment descriptor file, weblogic.xml. Use a separate <ejb-ref>
element to define each reference EJB name.

The following table describes the elements you can define within an ejb-ref element.

Table A-7 ejb-ref Elements

Element Required/Optional Description

<description> Optional A text description of the reference.

<ejb-ref-name> Required The name of the EJB used in the Web application.
This name is mapped to the JNDI tree in the
WebLogic-specific deployment descriptor
weblogic.xml. See ejb-reference-description.

<ejb-ref-type> Required The expected Java class type of the referenced
EJB.

<home> Required The fully qualified class name of the EJB home
interface.

<remote> Required The fully qualified class name of the EJB remote
interface.

<ejb-link> Optional The <ejb-name> of an EJB in an encompassing
Jakarta EE application package.

<run-as> Optional A security role whose security context is applied to
the referenced EJB. Must be a security role defined
with the <security-role> element.

<lookup-name> Optional The JNDI name to be looked up to resolve a
resource reference.

env-entry
The optional env-entry element declares an environment entry for an application. Use a
separate element for each environment entry.

The following table describes the elements you can define within an env-entry element.

Table A-8 env-entry Elements

Element Required/Optional Description

<description> Optional A textual description.

Appendix A
ejb-ref

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-5 of A-23

Table A-8 (Cont.) env-entry Elements

Element Required/Optional Description

<env-entry-name> Required The name of the environment entry.

<env-entry-value> Required The value of the environment entry.

<env-entry-type> Required The type of the environment entry.

Can be set to one of the following Java types:

java.lang.Boolean
java.lang.String
java.lang.Integer
java.lang.Double
java.lang.Float

<lookup-name> Optional The JNDI name to be looked up to resolve a
resource reference.

error-page
The optional error-page element specifies a mapping between an error code or exception
type to the path of a resource in the Web application.

When an error occurs—while WebLogic Server is responding to an HTTP request, or as a
result of a Java exception—WebLogic Server returns an HTML page that displays either the
HTTP error code or a page containing the Java error message. You can define your own HTML
page to be displayed in place of these default error pages or in response to a Java exception.

See Customizing HTTP Error Responses.

The following table describes the elements you can define within an error-page element.

Note

Define either an <error-code> or an <exception-type> but not both.

Table A-9 error-page Elements

Element Required/Optional Description

<error-code> Optional A valid HTTP error code, for example, 404.

<exception-type> Optional A fully-qualified class name of a Java exception
type, for example, java.lang.string

<location> Required The location of the resource to display in response
to the error. For example, /myErrorPg.html.

Appendix A
error-page

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-6 of A-23

filter
The filter element defines a filter class and its initialization attributes. For more information
on filters, see Configuring Filters.

The following table describes the elements you can define within a filter element.

Table A-10 filter Elements

Element Required/Optional Description

<icon> Optional Specifies the location within the Web application for
a small and large image used to represent the filter
in a GUI tool. Contains a small-icon and large-icon
element.

Currently, this element is not used by WebLogic
Server.

<filter-name> Required Defines the name of the filter, used to reference the
filter definition elsewhere in the deployment
descriptor.

<display-name> Optional A short name intended to be displayed by GUI
tools.

<description> Optional A text description of the filter.

<filter-class> Required The fully-qualified class name of the filter.

<init-param> Optional Contains a name/value pair as an initialization
attribute of the filter.

Use a separate set of <init-param> tags for each
attribute.

filter-mapping
The following table describes the elements you can define within a filter-mapping element.

Appendix A
filter

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-7 of A-23

Table A-11 filter-mapping Elements

Element Required/Optional Description

<dispatcher> Optional Indicates whether filters should be invoked under
request dispatcher forward() and include()
calls. You can use the <dispatcher> element to
indicate for a filter-mapping whether a filter should
be applied to various types of requests.

Possible values include:

• REQUEST
• FORWARD
• INCLUDE
• ERROR
• ASYNC
If the <dispatcher> element is absent, the filter is
applied to requests when the request comes
directly from the client.

See "Filters and the RequestDispatcher" in the
Servlet 4.0 specification at https://
jcp.org/en/jsr/detail?id=369.

<filter-name> Required The name of the filter to which you are mapping a
URL pattern or servlet. This name corresponds to
the name assigned in the <filter> element with
the <filter-name> element.

<servlet> Required - or map
by <url-pattern>

The name of a servlet which, if called, causes this
filter to execute.

<url-pattern> Required - or map
by <servlet>

Describes a pattern used to resolve URLs. The
portion of the URL after the http://host:port +
ContextPath is compared to the <url-pattern>
by WebLogic Server. If the patterns match, the filter
mapped in this element is called.

Example patterns:

/soda/grape/*
/foo/*
/contents
*.foo

The URL must follow the rules specified in the
Servlet 4.0 specification.

icon
The icon element specifies the location within the Web application for a small and large image
used to represent the Web application in a GUI tool. (The servlet element also has an
element called the icon element, used to supply an icon to represent a servlet in a GUI tool.)

The following table describes the elements you can define within an icon element.

Appendix A
icon

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-8 of A-23

https://jcp.org/en/jsr/detail?id=369
https://jcp.org/en/jsr/detail?id=369

Table A-12 Icon Elements

Element Required/
Optional

Description

<small-icon> Optional Location for a small (16x16 pixel) .gif or .jpg
image used to represent the Web application in a
GUI tool. Currently, this is not used by WebLogic
Server.

<large-icon> Optional Location for a large (32x32 pixel) .gif or .jpg
image used to represent the Web application in a
GUI tool. Currently, this element is not used by
WebLogic Server.

jsp-config
The jsp-config element is used to provide global configuration information for the JSP files in
a Web application. It has two sub-elements, taglib and jsp-property-group.

The following table describes the elements you can define within a jsp-config element.

Table A-13 jsp-config Elements

Element Required/Optional Description

<taglib> Optional Provides information on a tag library that is used by
a JSP page within the Web application.

<jsp-property-group> Optional Used to group a number of files so they can be
given global property information. All files so
described are deemed to be JSP files.

taglib
This is an element within the jsp-config.

The required taglib element provides information on a tag library that is used by a JSP page
within the Web application.

This element associates the location of a JSP Tag Library Descriptor (TLD) with a URI pattern.
Although you can specify a TLD in your JSP that is relative to the WEB-INF directory, you can
also use the <taglib> tag to configure the TLD when deploying your Web application. Use a
separate element for each TLD.

The following table describes the elements you can define within a taglib element.

Table A-14 taglib Elements

Element Required/Optional Description

<taglib-location> Optional Gives the file name of the tag library descriptor
relative to the root of the Web application. It is a
good idea to store the tag library descriptor file
under the WEB-INF directory so it is not publicly
available over an HTTP request.

Appendix A
jsp-config

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-9 of A-23

Table A-14 (Cont.) taglib Elements

Element Required/Optional Description

<taglib-uri> Optional Describes a URI, relative to the location of the
web.xml document, identifying a Tag Library used
in the Web application.

If the URI matches the URI string used in the taglib
directive on the JSP page, this taglib is used.

jsp-property-group
This is an element within the jsp-config.

The required jsp-property-group element is used to group a number of files so they can be
given global property information. All files so described are deemed to be JSP files.

The following table describes the elements you can define within a jsp-property-group
element.

Table A-15 jsp-property-group Elements

Element Required/Optional Description

<el-ignored> Optional Controls whether EL is ignored. By default, the EL
evaluation is enabled for Web applications using a
Servlet 2.4 or later web.xml, and disabled
otherwise.

<scripting-invalid> Optional Controls whether scripting elements are invalid in a
group of JSP pages. By default, scripting is
enabled.

<page-encoding> Optional Indicates pageEncoding information. It is a
translation-time error to name different encodings
in the pageEncoding attribute of the page directive
of a JSP page and in a JSP configuration element
matching the page. It is also a translation-time error
to name different encodings in the prolog or text
declaration of a document in XML syntax and in a
JSP configuration element matching the document.
It is legal to name the same encoding through
multiple mechanisms.

<is-xml> Optional Indicates that a resource is a JSP document
(XML). If true, denotes that the group of resources
that match the URL pattern are JSP documents,
and thus must be interpreted as XML documents. If
false, the resources are assumed to not be JSP
documents, unless there is another property group
that indicates otherwise.

<include-prelude> Optional A context-relative path that must correspond to an
element in the Web application. When the element
is present, the given path will be automatically
included (as in an include directive) at the
beginning of each JSP page in this jsp-property-
group.

Appendix A
jsp-config

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-10 of A-23

Table A-15 (Cont.) jsp-property-group Elements

Element Required/Optional Description

<include-coda> Optional A context-relative path that must correspond to an
element in the Web application. When the element
is present, the given path will be automatically
included (as in an include directive) at the end of
each JSP page in this jsp-property-group.

<deferred-syntax-
allowed-as-literal>

Optional Controls whether the character sequence #{ is
allowed when used as a String literal.

<trim-directive-
whitespaces>

Optional Controls whether template text containing only
white spaces must be removed from the response
output.

<url-pattern> Required Describes a pattern used to resolve URLs. The
portion of the URL after the http://host:port +
ContextPath is compared to the <url-pattern>
by WebLogic Server.

Example patterns:

/soda/grape/*
/foo/*
/contents
*.foo

The URL must follow the rules specified in the
Servlet 4.0 specification.

default-content-type Optional Specifies the default contentType property. Valid
values are those of the contentType page
directive. If the page directive does not include a
contentType attribute, it specifies the default
response contentType.

buffer Optional Specifies the default buffering model for
JspWriter. Valid values are those of the buffer
attribute of the page directive. Specifies if buffering
should be used for the output to response, and if
so, the size of the buffer to use.

error-on-undeclared-
namespace

Optional Controls whether an error should be raised for the
use of an undeclared tag in a JSP document.

If set to true, when an undeclared tag is used in a
JSP document, an error must be raised during the
translation time. Disabled (false) by default.

listener
Define an application listener using the listener element.

Table A-16 listener Elements

Element Required/Optional Description

<listener-class> Optional Name of the class that responds to a Web
application event.

Appendix A
listener

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-11 of A-23

See Configuring an Event Listener Class.

login-config
Use the optional login-config element to configure how the user is authenticated; the realm
name that should be used for this application; and the attributes that are needed by the form
login mechanism.

If this element is present, the user must be authenticated in order to access any resource that
is constrained by a <security-constraint> defined in the Web application. Once
authenticated, the user can be authorized to access other resources with access privileges.

The following table describes the elements you can define within a login-config element.

Table A-17 config

Element Required/Optional Description

<auth-method> Optional Specifies the method used to authenticate the user.
Possible values:

BASIC—uses browser authentication. (This is the
default value.)

FORM—uses a user-written HTML form.

CLIENT-CERT

You can define multiple authentication methods as
a comma separated list to provide a fall-back
mechanism. Authentication will be attempted in the
order the values are defined in the auth-method
list. See Providing a Fallback Mechanism for
Authentication Methods in Developing Applications
with the WebLogic Security Service.

<realm-name> Optional The name of the realm that is referenced to
authenticate the user credentials. If omitted, the
realm defined with the Auth Realm Name field of
the Web application is used by default.

The <realm-name> element does not refer to
system security realms within WebLogic Server.
This element defines the realm name to use in
HTTP Basic authorization. The system security
realm is a collection of security information that is
checked when certain operations are performed in
the server. The servlet security realm is a different
collection of security information that is checked
when a page is accessed and basic authentication
is used.

<form-login-config> Optional Use this element if you configure the <auth-
method> to FORM. See form-login-config.

form-login-config
This is an element within the login-config.

Use the <form-login-config> element if you configure the <auth-method> to FORM.

Appendix A
login-config

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-12 of A-23

Table A-18 form-login-config Elements

Element Required/Optional Description

<form-login-page> Required The URI of a Web resource relative to the
document root, used to authenticate the user. This
can be an HTML page, JSP, or HTTP servlet, and
must return an HTML page containing a FORM-
based authentication that conforms to a specific
naming convention.

<form-error-page> Required The URI of a Web resource relative to the
document root, sent to the user in response to a
failed authentication login.

message-destination-ref
The optional message-destination-ref element specifies a reference to a message
destination associated with a resource. The logical destination described by this element is
mapped to a physical destination in the deployment descriptor.

The following table describes the elements you can define within an message-destination-ref
element.

Table A-19 message-destination-ref Elements

Element Required/Optional Description

description Optional Provides a description of the message destination
reference.

message-destination-
name

Required Specifies a name for a message destination. This
name must be unique among the names of
message destinations within the deployment
descriptor.

mapped-name Optional Maps this message destination to a "logical" name.

lookup-name Optional The JNDI name to be looked up to resolve the
message destination.

message-destination-
type

Required Specifies the type of the destination. The type is
specified by the Java interface expected to be
implemented by the destination.

Must be supplied unless an injection target is
specified, in which case the type of the target is
used. If both are specified, the type must be
assignment compatible with the type of the
injection target.

Appendix A
message-destination-ref

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-13 of A-23

Table A-19 (Cont.) message-destination-ref Elements

Element Required/Optional Description

message-destination-
usage

Optional Specifies the use of the message destination
indicated by the reference. The value indicates
whether messages are consumed from the
message destination, produced for the destination,
or both.

Valid values are one of the following:

• Consumes
• Produces
• ConsumesProduces
If not specified, ConsumesProduces is assumed.

message-destination-
link

Optional Links a message destination reference or
message-driven bean to a message destination.

mime-mapping
The mime-mapping element defines a mapping between an extension and a mime type.

The following table describes the elements you can define within a mime-mapping element.

Table A-20 mime-mapping Elements

Element Required/Optional Description

<extension> Required A string describing an extension, for example: txt.

<mime-type> Required A string describing the defined mime type, for
example: text/plain.

resource-env-ref
The resource-env-ref element contains a declaration of a Web application's reference to an
administered object associated with a resource in the Web application's environment. It
consists of an optional description, the resource environment reference name, and an
indication of the resource environment reference type expected by the Web application code.

For example:

<resource-env-ref>
 <resource-env-ref-name>jms/StockQueue</resource-env-ref-name>
 <resource-env-ref-type>jakarta.jms.Queue</resource-env-ref-type>
</resource-env-ref>

The following table describes the elements you can define within a resource-env-ref element.

Appendix A
mime-mapping

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-14 of A-23

Table A-21 resource-env-ref

Element Required/Optional Description

<description> Optional Provides a description of the resource environment
reference.

<resource-env-ref-name> Required Specifies the name of a resource environment
reference; its value is the environment entry name
used in the Web application code. The name is a
JNDI name relative to the java:comp/env context
and must be unique within a Web application.

<resource-env-ref-type> Required Specifies the type of a resource environment
reference. It is the fully qualified name of a Java
language class or interface.

<lookup-name> Optional The JNDI name to be looked up to resolve a
resource reference.

resource-ref
The optional resource-ref element defines a reference lookup name to an external resource.
This allows the servlet code to look up a resource by a "virtual" name that is mapped to the
actual location at deployment time.

Use a separate <resource-ref> element to define each external resource name. The external
resource name is mapped to the actual location name of the resource at deployment time in
the WebLogic-specific deployment descriptor weblogic.xml.

The following table describes the elements you can define within a resource-ref element.

Table A-22 resource-ref Elements

Element Required/Optional Description

<description> Optional A text description.

<res-ref-name> Required The name of the resource used in the JNDI tree.
Servlets in the Web application use this name to
look up a reference to the resource.

<res-type> Required The Java type of the resource that corresponds to
the reference name. Use the full package name of
the Java type.

<res-auth> Required Used to control the resource sign on for security.

If set to APPLICATION, indicates that the
application component code performs resource
sign on programmatically. If set to Container,
WebLogic Server uses the security context
established with the login-config element. See
login-config.

<res-sharing-scope> Optional Specifies whether connections obtained through
the given resource manager connection factory
reference can be shared.

Valid values:

Shareable

Unshareable

Appendix A
resource-ref

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-15 of A-23

Table A-22 (Cont.) resource-ref Elements

Element Required/Optional Description

<lookup-name> Optional The JNDI name to be looked up to resolve a
resource reference.

security-constraint
The security-constraint element defines the access privileges to a collection of resources
defined by the <web-resource-collection> element.

For detailed instructions and an example on configuring security in Web applications, see
Securing Resources Using Roles and Policies for Oracle WebLogic Server. Also, for more
information on WebLogic Security, refer to Developing Applications with the WebLogic Security
Service.

The following table describes the elements you can define within a security-constraint
element.

Table A-23 security-constraint Elements

Element Required/Optional Description

<web-resource-
collection>

Required Defines the components of the Web application to
which this security constraint is applied.

<auth-constraint> Optional Defines which groups or principals have access to
the collection of Web resources defined in this
security constraint. See also auth-constraint.

<user-data-constraint> Optional Defines how the client should communicate with
the server.

See also user-data-constraint.

web-resource-collection
Each <security-constraint> element must have one or more <web-resource-collection>
elements. These define the area of the Web application to which this security constraint is
applied.

This is an element within the security-constraint.

The following table describes the elements you can define within a web-resource-collection
element.

Table A-24 web-resource-collection Elements

Element Required/Optional Description

<web-resource-name> Required The name of this Web resource collection.

<description> Optional A text description of this security constraint.

Appendix A
security-constraint

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-16 of A-23

Table A-24 (Cont.) web-resource-collection Elements

Element Required/Optional Description

<url-pattern> Optional Use one or more of the <url-pattern> elements
to declare to which URL patterns this security
constraint applies. If you do not use at least one of
these elements, this <web-resource-
collection> is ignored by WebLogic Server.

<http-method> Optional Use one or more of the <http-method> elements
to declare which HTTP methods (usually, GET or
POST) are subject to the authorization constraint. If
you omit the <http-method> element, the default
behavior is to apply the security constraint to all
HTTP methods.

auth-constraint
This is an element within the security-constraint.

The optional auth-constraint element defines which groups or principals have access to the
collection of Web resources defined in this security constraint.

The following table describes the elements you can define within an auth-constraint element.

Table A-25 auth-constraint Elements

Element Required/Optional Description

<description> Optional A text description of this security constraint.

<role-name> Optional Defines which security roles can access resources
defined in this security-constraint. Security role
names are mapped to principals using the security-
role-ref.

user-data-constraint
This is an element within the security-constraint.

The user-data-constraint element defines how the client should communicate with the
server.

The following table describes the elements you may define within a user-data-constraint
element.

Table A-26 user-data-constraint Elements

Element Required/Optional Description

<description> Optional A text description.

Appendix A
security-constraint

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-17 of A-23

Table A-26 (Cont.) user-data-constraint Elements

Element Required/Optional Description

<transport-guarantee> Required Specifies that the communication between client
and server.

WebLogic Server establishes a Secure Sockets
Layer (SSL) connection when the user is
authenticated using the INTEGRAL or
CONFIDENTIAL transport guarantee.

Range of values:

NONE—The application does not require any
transport guarantees.

INTEGRAL—The application requires that the data
be sent between the client and server in such a
way that it cannot be changed in transit.

CONFIDENTIAL—The application requires that data
be transmitted so as to prevent other entities from
observing the contents of the transmission.

security-role
The following table describes the elements you can define within a security-role element.

Table A-27 security-role Elements

Element Required/Optional Description

<description> Optional A text description of this security role.

<role-name> Required The role name. The name you use here must have
a corresponding entry in the WebLogic-specific
deployment descriptor, weblogic.xml, which
maps roles to principals in the security realm. See
security-role-assignment.

servlet
The servlet element contains the declarative data of a servlet.

If a jsp-file is specified and the <load-on-startup> element is present, then the JSP is
precompiled and loaded when WebLogic Server starts.

The following table describes the elements you can define within a servlet element.

Table A-28 servlet Elements

Element Required/Optional Description

<icon> Optional Location within the Web application for a small and
large image used to represent the servlet in a GUI
tool. Contains a small-icon and large-icon element.

Currently, this element is not used by WebLogic
Server.

Appendix A
security-role

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-18 of A-23

Table A-28 (Cont.) servlet Elements

Element Required/Optional Description

<servlet-name> Required Defines the canonical name of the servlet, used to
reference the servlet definition elsewhere in the
deployment descriptor.

<display-name> Optional A short name intended to be displayed by GUI
tools.

<description> Optional A text description of the servlet.

<servlet-class> Optional The fully-qualified class name of the servlet.

As of servlet 3.1, <servlet-class> and <jsp-
file> are optional. Servlet configuration without
<servlet-class> and <jsp-file> is considered
preliminary; you should use the programmatical
Servlet API to register the servlet dynamically,
otherwise, deployment will fail.

<jsp-file> Optional The full path to a JSP file within the Web
application, relative to the Web application root
directory.

As of servlet 3.1, <servlet-class> and <jsp-
file> are optional. Servlet configuration without
<servlet-class> and <jsp-file> is considered
preliminary; you should use the programmatical
Servlet API to register the servlet dynamically,
otherwise, deployment will fail.

<init-param> Optional Contains a name/value pair as an initialization
attribute of the servlet.

Use a separate set of <init-param> tags for each
attribute.

<load-on-startup> Optional WebLogic Server initializes this servlet when
WebLogic Server starts up. The optional content of
this element must be a positive integer indicating
the order in which the servlet should be loaded.
Lower integers are loaded before higher integers. If
no value is specified, or if the value specified is not
a positive integer, WebLogic Server can load the
servlet in any order during application startup.

<run-as> Optional Specifies the run-as identity to be used for the
execution of the Web application. It contains an
optional description and the name of a security
role.

<security-role-ref> Optional Used to link a security role name defined by
<security-role> to an alternative role name that
is hard coded in the servlet logic. This extra layer of
abstraction allows the servlet to be configured at
deployment without changing servlet code.

icon
This is an element within the servlet.

The icon element specifies the location within the Web application for small and large images
used to represent the servlet in a GUI tool.

Appendix A
servlet

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-19 of A-23

The following table describes the elements you can define within an icon element.

Table A-29 icon Elements

Element Required/Optional Description

<small-icon> Optional Specifies the location within the Web application for
a small (16x16 pixel) .gif or .jpg image used to
represent the servlet in a GUI tool.

Currently, this element is not used by WebLogic
Server.

<large-icon> Optional Specifies the location within the Web application for
a small (32x32 pixel) .gif or.jpg image used to
represent the servlet in a GUI tool.

Currently, this element is not used by WebLogic
Server.

init-param
This is an element within the servlet.

The optional init-param element contains a name/value pair as an initialization attribute of the
servlet. Use a separate set of init-param tags for each attribute.

You can access these attributes with the
jakarta.servlet.ServletConfig.getInitParameter() method.

The following table describes the elements you can define within a init-param element.

Table A-30 init-param Elements

Element Required/Optional Description

<param-name> Required Defines the name of this attribute.

<param-value> Required Defines a String value for this attribute.

<description> Optional Text description of the initialization attribute.

security-role-ref
This is an element within the servlet.

The security-role-ref element links a security role name defined by <security-role> to an
alternative role name that is hard-coded in the servlet logic. This extra layer of abstraction
allows the servlet to be configured at deployment without changing servlet code.

The following table describes the elements you can define within a security-role-ref
element.

Table A-31 security-role-ref Elements

Element Required/Optional Description

<description> Optional Text description of the role.

<role-name> Required Defines the name of the security role or principal
that is used in the servlet code.

Appendix A
servlet

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-20 of A-23

Table A-31 (Cont.) security-role-ref Elements

Element Required/Optional Description

<role-link> Required Defines the name of the security role that is defined
in a <security-role> element later in the
deployment descriptor.

servlet-mapping
The servlet-mapping element defines a mapping between a servlet and a URL pattern.

The following table describes the elements you can define within a servlet-mapping element.

Table A-32 servlet-mapping Elements

Element Required/Optional Description

<servlet-name> Required The name of the servlet to which you are mapping
a URL pattern. This name corresponds to the
name you assigned a servlet in a <servlet>
declaration tag.

Appendix A
servlet-mapping

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-21 of A-23

Table A-32 (Cont.) servlet-mapping Elements

Element Required/Optional Description

<url-pattern> Required Describes a pattern used to resolve URLs. The
portion of the URL after the http://host:port +
WebAppName is compared to the <url-pattern>
by WebLogic Server. If the patterns match, the
servlet mapped in this element will be called.

Example patterns:

/soda/grape/*
/foo/*
/contents
*.foo

The URL must follow the rules specified in the
Servlet 4.0 specification.

For additional examples of servlet mapping, see
Servlet Mapping.

Note

In WebLogic Server
15.1.1.0.0 if the same
<url-pattern> is
specified in both the
@WebServlet
annotation and the
web.xml, the
deployment fails due to
conflicting URL
mappings. To resolve
this issue define the
<url-pattern> in
only one place, either
in the @WebServlet
annotation or in the
web.xml file.

session-config
The session-config element defines the session attributes for this Web application.

The following table describes the element you can define within a session-config element.

Appendix A
session-config

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-22 of A-23

Table A-33 session-config Elements

Element Required/Optional Description

<session-timeout> Optional The number of minutes after which sessions in this
Web application expire. The value set in this
element overrides the value set in the
TimeoutSecs attribute of the <session-
descriptor> element in the WebLogic-specific
deployment descriptor weblogic.xml, unless one
of the special values listed here is entered.

Default value: 60

Maximum value: Integer.MAX_VALUE ÷ 60

Special values:

-1 = Sessions do not timeout. The value set in
<session-descriptor> element of
weblogic.xml is ignored.

See session-descriptor.

web-app
The XML schema for the Servlet 4.0 deployment descriptor. WebLogic Server fully supports
HTTP servlets as defined at https://jcp.org/en/jsr/detail?id=369. However, the version
attributed must be set to 4.0 in order to enforce 4.0 behavior.

The following table describes the elements you can define within an web-app element.

Table A-34 web-app Elements

Element Required/Optional Description

<version> Required All servlet deployment descriptors must indicate the
4.0 version of the schema in order to enforce
servlet 4.0 behavior.

welcome-file-list
The optional welcome-file-list element contains an ordered list of welcome-file elements.

When the URL request is a directory name, WebLogic Server serves the first file specified in
this element. If that file is not found, the server then tries the next file in the list.

See Configuring Welcome Files.

The following table describes the element you can define within a welcome-file-list
element.

Table A-35 welcome-file-list

Element Required/Optional Description

<welcome-file> Optional File name to use as a default welcome file, such as
index.html

Appendix A
web-app

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-23 of A-23

https://jcp.org/en/jsr/detail?id=369

B
weblogic.xml Deployment Descriptor Elements

This is a complete reference for the elements in the WebLogic Server-specific deployment
descriptor weblogic.xml. If your Web application does not contain a weblogic.xml deployment
descriptor, WebLogic Server automatically selects the default values of the deployment
descriptor elements.
This appendix includes the following sections, which describe the complex deployment
descriptor elements that can be defined in the weblogic.xml deployment descriptor under the
root element weblogic-web-app:

weblogic.xml Namespace Declaration and Schema Location
The correct text for the namespace declaration and schema location for the WebLogic Server
weblogic.xml file is as follows.

<weblogic-web-app xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app">

To view the schema for weblogic.xml, go to http://xmlns.oracle.com/weblogic/weblogic-
web-app/1.9/weblogic-web-app.xsd.

async-descriptor
Use the async-descriptor element to configure the asynchronous processing behavior of
Web applications. The following table describes the elements you can define within an async-
descriptor element.

Table B-1 async-descriptor Elements

Element Required/Optional Description

timeout-secs Optional Sets the time, in seconds, that WebLogic Server
waits before timing out an asynchronous job. The
default value is 120 seconds.

Setting the timeout to -1 indicates that the
asynchronous job never times out.

timeout-check-
interval-secs

Optional Sets the time, in seconds, that WebLogic Server
waits between doing checks for timed-out jobs. The
default value is 30 seconds.

async-work-manager
Use the async-work-manager element to specify a Work Manager for asynchronous jobs,
including asynchronous dispatches initiated using the AsyncContext dispatch methods and
runnable jobs started using the AsyncContext start method. If no Work Manager is specified,
the asynchronous jobs will be executed in the current request Work Manager.

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-1 of B-32

http://xmlns.oracle.com/weblogic/weblogic-web-app/1.9/weblogic-web-app.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.9/weblogic-web-app.xsd
https://javaee.github.io/javaee-spec/javadocs/javax/servlet/AsyncContext.html

auth-filter
The auth-filter element specifies an authentication filter HttpServlet class.

Note

This is a deprecated element for the current release. Instead, use servlet
authentication filters.

charset-params
The charset-params element is used to define code set behavior for non-unicode operations.
For example:

<charset-params>
 <input-charset>
 <resource-path>/*</resource-path>
 <java-charset-name>UTF-8</java-charset-name>
 </input-charset>
</charset-params>

charset-mapping
Use the charset-mapping element to map an IANA character set name to a Java character set
name. For example:

<charset-mapping>
 <iana-charset-name>Shift-JIS</iana-charset-name>
 <java-charset-name>SJIS</java-charset-name>
</charset-mapping>

See Mapping IANA Character Sets to Java Character Sets.

The following table describes the elements you can define within a charset-mapping element.

Table B-2 charset-mapping Elements

Element Required/Optional Description

iana-charset-name Required Specifies the IANA character set name that is to be
mapped to the Java character set specified by the
java-charset-name element.

java-charset-name Required Specifies the Java characters set to use.

Appendix B
auth-filter

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-2 of B-32

input-charset
Use the input-charset element to define which character set is used to read GET and POST
data. For example:

<input-charset>
 <resource-path>/foo</resource-path>
 <java-charset-name>SJIS</java-charset-name>
</input-charset>

See Determining the Encoding of an HTTP Request.

The following table describes the elements you can define within a input-charset element.

Table B-3 input-charset Elements

Element Required/Optional Description

resource-path Required A path which, if included in the URL of a request,
signals WebLogic Server to use the Java character
set specified by java-charset-name.

java-charset-name Required Specifies the Java characters set to use.

container-descriptor
The container-descriptor element specifies a list of parameters that affect the behavior of
the Web application.

access-logging-disabled
The access-logging-disabled element defines whether to eliminate access logging of the
underlying Web application. Setting this property to true improves server throughput by
reducing the logging overhead. If the property is not specified or a false value is set,
application accesses are logged.

allow-all-roles
In the security-constraints elements defined in the web.xml descriptor of a Web application, the
auth-constraint element indicates the user roles that should be permitted access to this
resource collection. Here role-name = "*" is a compact syntax for indicating all roles in the Web
application. In past releases, role-name = "*" was treated as all users/roles defined within the
realm.

This allow-all-roles element is a backward compatibility switch to restore old behavior. The
default behavior is to allow all roles defined in the Web application. The value specified in
weblogic.xml takes precedence over the value defined in the WebAppContainerMBean.

check-auth-on-forward
Add the check-auth-on-forward element when you want to require authentication of
forwarded requests from a servlet or JSP. Omit the tag if you do not want to require re-
authentication. For example:

Appendix B
container-descriptor

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-3 of B-32

<container-descriptor>
 <check-auth-on-forward/>
</container-descriptor>

Note

As a best practice, Oracle recommends that you do not enable the check-auth-on-
forward property.

client-cert-proxy-enabled
The client-cert-proxy-enabled element default value is true. When set to true, WebLogic
Server passes identity certificates from the clients to the backend servers. Also, WebLogic
Server is notified whether to honor or discard the incoming WL-Proxy-Client-Cert header.

A proxy-server plugin encodes each identity certification in the WL-Proxy-Client-Cert header
and passes it to the backend WebLogic Server instances. Each WebLogic Server instance
takes the certificate information from the header, ensures it came from a secure source, and
uses that information to authenticate the user. For the background WebLogic Server instances,
this parameter must be set to true (either at the cluster/server level or at the Web application
level).

If you set this element to true, use a weblogic.security.net.ConnectionFilter to ensure that
each WebLogic Server instance accepts connections only from the machine on which the
proxy-server plugin is running. If you specify true without using a connection filter, a potential
security vulnerability is created because the WL-Proxy-Client-Cert header can be spoofed.

container-initializer-enabled
The container-initializer-enabled element controls whether or not to enable the servlet
container initializer.

In Servlet 3.x applications, ServletContainerInitializer is enabled by default. For
performance considerations, you can explicitly disable the servlet container initializer by
configuring the container-initializer-enabled element in the weblogic.xml deployment
descriptor in the targeted Web application. For example:

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_4.0.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.9/weblogic-web-app.xsd">
 ...
 <container-descriptor>
 <container-initializer-enabled>false</container-initializer-enabled>
 </container-descriptor>
 ...
</weblogic-web-app>

In pre-servlet 3.x applications, you can explicitly enable the servlet container initializer by
setting the container-initializer-enabled element in the weblogic.xml deployment
descriptor to true. For example:

Appendix B
container-descriptor

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-4 of B-32

<container-descriptor>
 <container-initializer-enabled>true</container-initializer-enabled>
</container-descriptor>

default-mime-type
The default-mime-type element default value is null. This element allows the user to specify
the default mime type for a content-type for which the extension is not mapped.

disable-implicit-servlet-mappings
When the disable-implicit-servlet-mappings flag is set to true, the Web application
container does not create implicit mappings for internal servlets (*.jsp, *.class, and so on);
only for the default servlet mapping. A typical use case for turning off implicit servlet mappings
would be when configuring HttpClusterServlet or HttpProxyServlet.

The default value is false.

filter-dispatched-requests-enabled
The filter-dispatched-requests-enabled element controls whether or not filters are applied
to dispatched requests. The default value is false.

Note

Because 2.4 servlets are backward compatible with 2.3 servlets (per the 2.4
specification), when 2.3 descriptor elements are detected by WebLogic Server, the
filter-dispatched-requests-enabled element defaults to true.

gzip-compression
The gzip-compression element controls GZIP compression support for a specified Web
application.

Table B-4 gzip-compression sub-elements

Element Description Default Value

enabled Enables GZIP compression for the specified Web application.
If set to true, only the current application is affected.

If specified, the weblogic.xml value overrides the domain-
level value.

false

min-content-
length

Specifies the minimum file size to trigger compression for the
specified Web application. This element allows you to bypass
small-sized resources where compression would not yield a
great return but use unnecessary CPUs.

If specified, the weblogic.xml value overrides the domain-
level value.

2048

Appendix B
container-descriptor

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-5 of B-32

Table B-4 (Cont.) gzip-compression sub-elements

Element Description Default Value

content-type Specifies the type of content to be included in compression.
You can specify more than one content type by using
separate content-type sub-elements for each type.

If specified, the weblogic.xml value overrides the domain-
level value.

text/html,
text/xml, text/
plain

If the gzip-compression element and all of its sub-elements are present, these values override
any default values at the domain level. If one of the sub-elements is absent, then the default
domain value for that attribute is used.

The following example demonstrates setting the gzip-compression element and its sub-
elements:

<weblogic-web-app>
 <container-descriptor>
 <gzip-compression>
 <enabled>true</enabled>
 <min-content-length>4096</min-content-length>
 <content-type>text/html</content-type>
 <content-type>text/xml</content-type>
 </gzip-compression>
 </container-descriptor>
</weblogic-web-app>

Section Title

(Optional) Enter reference information in this section.

Syntax

(Optional) Enter syntax information here.

Example B-1 Example Title

(Optional) Enter an example to illustrate your reference here.

index-directory-enabled
The index-directory-enabled element controls whether or not to automatically generate an
HTML directory listing if no suitable index file is found.

The default value is false (does not generate a directory). Values are true or false.

index-directory-sort-by
The index-directory-sort-by element defines the order in which the directory listing
generated by weblogic.servlet.FileServlet is sorted. Valid sort-by values are NAME,
LAST_MODIFIED, and SIZE. The default sort-by value is NAME.

Appendix B
container-descriptor

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-6 of B-32

langtag-revision
The langtag-revision element determines the language tag specification version that the
HttpServletRequest getLocale and getLocales methods should obey.

Currently, WebLogic Server supports RFC5646 and RFC3066. If you do not set a value, the
HttpServletRequest getLocale and getLocales methods return a language tag for locale
according to RFC5646. The value 3066 means that the HttpServletRequest getLocale and
getLocales methods return a language tag for locale according to RFC3066. For example, if
using RFC3066:

<container-descriptor>
 <langtag-revision>3066</langtag-revision>
</container-descriptor>

The system property -Dweblogic.servlet.langtagRevision can also determine the locale
parsing mechanism. However, explicit configuration for the langtag-revision element in
weblogic.xml takes precedence over configuration in -Dweblogic.servlet.langtagRevision.
If you do not set a value in weblogic.xml, then the system property configuration takes effect.

The following table describes the relationship between the langtag-revision element in
weblogic.xml, the system property -Dweblogic.servlet.langtagRevision, and RFC3066
behavior.

System Property weblogic.xml Uses RFC3066 behavior

not set/5646 not set/5646 off

not set/5646 3066 on

3066 not set on

3066 5646 off

3066 3066 on

minimum-native-file-size
The minimum-native-file-size element applies only when native-io-enabled is set to true.
It sets the minimum file size in Bytes for using native I/O. If the file being served is larger than
this value, native I/O is used. If you do not set this value, the default value used is 4000.

native-io-enabled
To use native I/O while serving static files with weblogic.servlet.FileServlet, which is
implicitly registered as the default servlet, set native-io-enabled to true. (The default value is
false.) native-io-enabled element applies only on Windows.

optimistic-serialization
When optimistic-serialization is turned on, WebLogic Server does not serialize-
deserialize context and request attributes upon getAttribute(name) when the request is
dispatched across servlet contexts.

This means that you must make sure that the attributes common to Web applications are
scoped to a common parent classloader (application scoped) or you must place them in the
system classpath if the two Web applications do not belong to the same application.

Appendix B
container-descriptor

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-7 of B-32

When optimistic-serialization is turned off (default value), WebLogic Server serialize-
deserializes context and request attributes upon getAttribute(name) to avoid the possibility of
ClassCastExceptions.

The optimistic-serialization value can also be specified at domain level in the
WebAppContainerMBean, which applies for all Web applications. The value in weblogic.xml, if
specified, overrides the domain-level value.

The default value is false.

prefer-application-packages
The prefer-application-packages element specifies a list of packages for classes that must
always be loaded from the application. See prefer-application-packages in Developing
Applications for Oracle WebLogic Server.

<?xml version="1.0" encoding="UTF-8"?>

<wls:weblogic-web-app
xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-web-app"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/ejb-jar_3_2.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.9/weblogic-web-app.xsd">

 <wls:weblogic-version>12.2.1</wls:weblogic-version>
 <wls:context-root>FilterWeb</wls:context-root>
 <wls:container-descriptor>
 <wls:prefer-application-packages>
 <wls:package-name>com.oracle.foo</wls:package-name>
 </wls:prefer-application-packages>
 </wls:container-descriptor>
</wls:weblogic-web-app>

Note that in order to use prefer-application-packages or prefer-application-resources,
prefer-web-inf-classes must be set to false.

prefer-application-resources
The prefer-application-resources element specifies a list of resources that must always be
loaded from the application, even if the resources are found in the system classloader. See
prefer-application-resources in Developing Applications for Oracle WebLogic Server.

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app">
 <container-descriptor>
 <prefer-web-inf-classes>false</prefer-web-inf-classes>
 <prefer-application-packages>
 <package-name>jakarta.faces.*</package-name>
 <package-name>com.sun.faces.*</package-name>
 <package-name>com.bea.faces.*</package-name>
 </prefer-application-packages>

 <prefer-application-resources>
 <resource-name>jakarta.faces.*</resource-name>
 <resource-name>com.sun.faces.*</resource-name>
 <resource-name>com.bea.faces.*</resource-name>
 <resource-name>META-INF/services/jakarta.servlet.ServletContainerInitializer</
resource-name>

Appendix B
container-descriptor

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-8 of B-32

 </prefer-application-resources>
 </container-descriptor>
</weblogic-web-app>

Note that in order to use prefer-application-packages or prefer-application-resources,
prefer-web-inf-classes must be set to false.

prefer-forward-query-string
When HttpServletRequest.getQueryString() is invoked in a forwarding request, WebLogic
Server returns the queryString sent by the forwarding servlet via RequestDispatcher and the
original ones sent by the client.

When the prefer-forward-query-string flag is set to true, WebLogic Server returns only the
forwarded query string, if it is specified. The default value is false.

prefer-web-inf-classes
The prefer-web-inf-classes element, if set to true, will cause classes located in the WEB-INF
directory of a Web application to be loaded in preference to classes loaded in the application or
system classloader. The default value is false.

Note

Neither prefer-application-packages nor prefer-application-resources can be
specified when prefer-web-inf-classes is turned on in weblogic.xml.

redirect-with-absolute-url
The redirect-with-absolute-url element controls whether the
jakarta.servlet.http.HttpServletResponse.SendRedirect() method redirects using a
relative or absolute URL. Set this element to false if you are using a proxy HTTP server and
do not want the URL converted to a non-relative link.

The default behavior is to convert the URL to a non-relative link.

Note

User readable data used in a redirect.

referer-validation
To help mitigate Cross-Site Request Forgery (CSRF) attacks, you can configure validation of
the Referer header in incoming HTTP requests.

Checking the Referer is a commonly used method of preventing CSRF on embedded network
devices because it does not require any per-user state. This makes Referer a useful method of
CSRF prevention when memory is scarce or server-side state doesn't exist. This method of
CSRF mitigation is also commonly used with unauthenticated requests, such as requests
made prior to establishing a session state which is required to keep track of a synchronization
token.

Appendix B
container-descriptor

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-9 of B-32

<container-descriptor>
<referer-validation>NONE</referer-validation>
</container-descriptor>

Valid values:

• NONE: Disable Referer header validation.

• LENIENT (default): The web container blocks requests whose Referer header has an
incorrect value. If a requests lacks the header, the web container accepts the request.

• STRICT: The web container blocks requests that lack a Referer header.

For example, an authentication request is sent to http://myhost:myport/myapp/
Jj_security_check:

• If <referer-validation>NONE</referer-validation>, then the container will not validate
the Referer header.

• If <referer-validation>LENIENT</referer-validation> and there is a Referer header in
this request, then the container will check the host and port of Referer URL.

– If they are "myhost" and "myport", then this Referer header is valid.

– If either the host or port of the Referer URL is different from the actual URL, for
example, ”myhost1”, then this Referer header is invalid.

– If there is no Referer header in this request, then the container will not validate it.

• If <referer-validation>STRICT</referer-validation> and there is a Referer header in
this request, the container will check the host and port of the Referer URL.

– If they are "myhost" and "myport", then this Referer header is valid.

– If either the host or port of the Referer URL is different from the actual URL, for
example, ”myhost1”, then this Referer header is invalid.

– If there is no Referer header in this request, then the validation will fail.

Note

The web container also will consider the IP address. For example, if 192.168.226.129
is mapped to "myhost", then it is valid if the host of the Referer URL is
"192.168.226.129".

relogin-enabled
The relogin-enabled element is a backward compatibility parameter. If a user has logged in
already and tries to access a resource for which s/he does not have privileges, a FORBIDDEN
(403) response occurs.

require-admin-traffic
The require-admin-trafffic element defines whether traffic should go through the
administration channel. When set to true traffic is allowed to go through the administration
channel. Otherwise, traffic can only go through administration channel when the Web
application is in administrative mode. For example:

Appendix B
container-descriptor

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-10 of B-32

<container-descriptor>
 <require-admin-traffic>true</require-admin-traffic>
</container-descriptor>

resource-reload-check-secs
The resource-reload-check-secs element is used to perform metadata caching for cached
resources that are found in the resource path in the Web application scope. This parameter
identifies how often WebLogic Server checks whether a resource has been modified and if so,
it reloads it.

• The value -1 means never reload. This is the default value in a production environment.

• The value 0 means always reload.

• The value 1 means reload every second. This is the default value in a development
environment.

Note

If the resource is a JSP, and if page-check-secondsis specified in the jsp-
descriptor element, the page-check-seconds value is used to determine reload time
for the JSP file.

save-sessions-enabled
The save-sessions-enabled element controls whether session data is cleaned up during
redeploy or undeploy. It affects memory and replicated sessions. Setting the value to true
means session data is saved. Setting to false means session data will be destroyed when the
Web application is redeployed or undeployed. The default is false.

servlet-reload-check-secs
The servlet-reload-check-secs element defines whether a WebLogic Server will check to
see if a servlet has been modified, and if it has been modified, reloads it.

• The value -1 means never check the servlets. This is the default value in a production
environment.

• The value 0 means always check the servlets.

• The value 1 means check the servlets every second. This is the default value in a
development environment.

session-monitoring-enabled
The session-monitoring-enabled element, if set to true, allows run-time MBeans to be
created for sessions. When set to false, the default value, run-time MBeans are not created.

show-archived-real-path-enabled
The show-archived-real-path-enabled element specifies the behavior of getRealPath() for
archived Web applications.

Appendix B
container-descriptor

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-11 of B-32

When set to true, getRealPath() returns the canonical path of the resource files.

If the show-archived-real-path-enabled element is set to false, the servlet container will
return the real path of files in archived Web applications as null.

The default value is false.

single-threaded-servlet-pool-size
The single-threaded-servlet-pool-size element defines the size of the pool used for
SingleThreadMode instance pools. The default value is 5.

Note

SingleThreadMode instance pools are deprecated in this release.

temp-dir
The temp-dir element specifies the location of the temporary directory for the Web application,
as returned by the "jakarta.servlet.context.tempDir" attribute.

context-root
The context-root element defines the context root of this standalone Web application. If the
Web application is part of an EAR, not standalone, specify the context root in the EAR's META-
INF/application.xml file. A context-root setting in application.xml takes precedence over
context-root setting in weblogic.xml.

Note that this weblogic.xml element only acts on deployments using the two-phase
deployment model.

The order of precedence for context root determination for a Web application is as follows:

• Check context-root and web-uri in application.xml for context root; if found, use as
Web application's context root.

• If context root is not set in application.xml, and the Web application is being deployed as
part of an EAR, check whether context root is defined in weblogic.xml. If found, use as
Web application's context root. If the Web application is deployed standalone,
application.xml does not come into play and the determination for context-root starts at
weblogic.xml and defaults to URI if it is not defined there.

• If context root is not defined in weblogic.xml or application.xml, then infer the context
path from the URI, giving it the name of the value defined in the URI minus the WAR suffix.
For instance, a URI MyWebApp.war would be named MyWebApp.

Note

The context-root element cannot be set for individual Web applications in EAR
libraries. It can only bet set for Web application libraries.

Appendix B
context-root

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-12 of B-32

description
The description element is a text description of the Web application.

ejb-reference-description
The following table describes the elements you can define within a ejb-reference-
description element.

Table B-5 ejb-reference-description Elements

Element Required/Optional Description

ejb-ref-name Required Specifies the name of an EJB reference used in
your Web application.

jndi-name Required Specifies a JNDI name for the reference.

fast-swap
The following table describes the elements you can define within a fast-swap element.

For more information about FastSwap Deployment, see Using FastSwap Deployment to
Minimize Redeployment in Deploying Applications to Oracle WebLogic Server.

Table B-6 fast-swap Elements

Element Required/Optional Description

enabled Optional Set to true to enable FastSwap deployment in
your application.

refresh-interval Optional FastSwap checks for changes in application
classes when an incoming HTTP request is
received. Subsequent HTTP requests arriving
within the refresh-interval seconds will not
trigger a check for changes. The first HTTP request
arriving after the refresh-interval seconds
have passed, will cause FastSwap to perform a
class-change check again.

redefinition-task-limit Optional FastSwap class redefinitions are performed
asynchronously by redefinition tasks. They can be
controlled and inspected using JMX interfaces.

Specifies the number of redefinition tasks that will
be retained by the FastSwap system. If the number
of tasks exceeds this limit, older tasks are
automatically removed.

jsp-descriptor
The jsp-descriptor element specifies a list of configuration parameters for the JSP compiler.
The following table describes the elements you can define within a jsp-descriptor element.

Appendix B
description

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-13 of B-32

Table B-7 jsp-descriptor Elements

Element Default Value Description

page-check-seconds 1 Sets the interval, in seconds, at which WebLogic
Server checks to see if JSP files have changed and
need recompiling. Dependencies are also checked
and recursively reloaded if changed.

• The value -1 means never check the pages.
This is the default value in a production
environment.

• The value 0 means always check the pages.
• The value 1 means check the pages every

second. This is the default value in a
development environment.

In a production environment where changes to a
JSP are rare, consider changing the value of
pageCheckSeconds to 60 or greater, according to
your tuning requirements.

strict-stale-check true Applies to exploded WARs only.

Checks for updated JSP files, in other words,
whether the timestamp on the file is later (more
recent) than the one in the build. Only newer files
can replace older ones.

When set to false, just checks whether the
timestamp has changed. If so, the file is replaced.

<?xml version="1.0" encoding="UTF-8"?
>
<weblogic-web-app xmlns="http://
xmlns.oracle.com/weblogic/weblogic-
web-app">
 <jsp-descriptor>
 <strict-stale-check>false
 </strict-stale-check>
 </jsp-descriptor>
</weblogic-web-app>

precompile false When set to true, WebLogic Server automatically
precompiles all JSPs when the Web application is
deployed or re-deployed or when starting WebLogic
Server.

precompile-continue false When set to true, WebLogic Server continues
precompiling all JSPs even if some of those JSPs
fail during compilation. Only takes effect when
precompile is set to true.

keepgenerated false Saves the Java files that are generated as an
intermediary step in the JSP compilation process.
Unless this parameter is set to true, the
intermediate Java files are deleted after they are
compiled.

debug false When set to true, WebLogic Server enables the
debugging feature of the JSP compiler.

The default value is false.

Appendix B
jsp-descriptor

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-14 of B-32

Table B-7 (Cont.) jsp-descriptor Elements

Element Default Value Description

verbose false For production mode, the default value is false,
but for development mode, the default value is
true.

When set to true, debugging information is printed
out to the browser, the command prompt, and
WebLogic Server log file.

working-dir internally
generated
directory

The name of a directory where WebLogic Server
saves the generated Java and compiled class files
for a JSP.

Note: If weblogic.xml defines a working-dir,
WebLogic Server does not delete this directory
when the Web application is undeployed.

print-nulls null When set to false, this parameter ensures that
expressions with "null" results are printed as " ".

backward-compatible true When set to true, backward compatibility is
enabled.

See Backward Compatibility Flags.

encoding UTF-8 for JSP
and JSPX pages

Specifies the default character set used in the JSP
page. Use standard Java character set names (see
https://docs.oracle.com/en/java/
javase/17/intl/supported-
encodings.html).

If not set, this attribute defaults to the encoding for
your platform.

A JSP page directive (included in the JSP code)
overrides this setting. For example:

<%@ page contentType="text/html;
charset=custom-encoding"%>

package-prefix jsp_servlet Specifies the package prefix into which all JSP
pages are compiled.

exact-mapping true When true, upon the first request for a JSP the
newly created JspStub is mapped to the exact
request. If exactMapping is set to false, the Web
application container generates non-exact URL
mapping for JSPs. exactMapping allows path info
for JSP pages.

default-file-name true The default file name in which WebLogic Server
saves the generated Java and compiled class files
for a JSP.

rtexprvalue-jsp-param-
name

false Allows run-time expression values in the name
attribute of the jsp:param tag. It is set to false by
default.

optimize-java-
expression

false When set to true, the JSP compiler optimizes Java
expressions to improve run-time performance.

compress-html-template false When set to true, compresses the HTML in the JSP
template blocks to improve run-time performance.

If the JSP's HTML template block contains the
<pre> HTML tag, do not enable this feature.

Appendix B
jsp-descriptor

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-15 of B-32

https://docs.oracle.com/en/java/javase/17/intl/supported-encodings.html
https://docs.oracle.com/en/java/javase/17/intl/supported-encodings.html
https://docs.oracle.com/en/java/javase/17/intl/supported-encodings.html

library-ref
The library-ref element references a library module, which is intended to be used as a Web
application library in the current Web application.

Example:

<library-ref>
 <library-name>WebAppLibraryFoo</library-name>
 <specification-version>2.0</specification-version>
 <implementation-version>8.1beta</implementation-version>
 <exact-match>false</exact-match>
</library-ref>

Only the following sub-elements are relevant to Web applications: library-name,
specification-version, implementation-version, and exact-match.

You can define the following elements within the library-ref element.

Table B-8 library-ref Elements

Element Required/Optional Description

library-name Required Provides the library name for the library module
reference. The default value is null.

specification-version Optional Provides the specification version for the library
module reference. The default value is 0. (This is a
float.)

implementation-version Optional Provides the implementation version for the library
module reference. The default value is null.

exact-match Optional The default value is false.

logging
The logging element is a sub-element of the weblogic-web-app element. You can define the
following elements within the logging element.

Table B-9 logging Elements

Element Required/Optional Description

log-filename Required Specifies the name of the log file. The full address
of the filename is required.

Appendix B
library-ref

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-16 of B-32

Table B-9 (Cont.) logging Elements

Element Required/Optional Description

logging-enabled Optional Indicates whether or not the log writer is set for
either the ManagedConnectionFactory or
ManagedConnection. If this element is set to true,
output generated from either the
ManagedConnectionFactory or
ManagedConnection will be sent to the file
specified by the log-filename element.

Failure to specify this value will result in WebLogic
Server using its defined default value.

Value Range: true | false

Default Value: false

rotation-type Optional Sets the file rotation type.

Values are bySize, byTIme, none

• bySize—When the log file reaches the size
that you specify in file-size-limit, the
server renames the file as FileName.n.

• byTIme—At each time interval that you specify
in file-time-span, the server renames the
file as FileName.n. After the server renames
a file, subsequent messages accumulate in a
new file with the name that you specified in
log-filename.

• none—Messages accumulate in a single file.
You must erase the contents of the file when
the size is unwieldy.

Default Value: bySize

number-of-files-limited Optional Specifies whether the number of files that this
server instance creates to store old messages
should be limited. (Requires that you specify a
rotation-type of bySize). After the server
reaches this limit, it overwrites the oldest file. If you
do not enable this option, the server creates new
files indefinitely and you must clean up these files
as you require.

If you enable number-of-files-limited by
setting it to true, the server refers to your
rotationType variable to determine how to rotate
the log file. Rotate means that you override your
existing file instead of creating a new file. If you
specify false for number-of-files-limited,
the server creates numerous log files rather than
overriding the same one.

Value Range: true | false

Default Value: false

file-count Optional The maximum number of log files that the server
creates when it rotates the log. This number does
not include the file that the server uses to store
current messages. (Requires that you enable
number-of-files-limited.)

Default Value: 7

Appendix B
logging

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-17 of B-32

Table B-9 (Cont.) logging Elements

Element Required/Optional Description

file-size-limit Optional The size that triggers the server to move log
messages to a separate file. (Requires that you
specify a rotation-type of bySize.) After the
log file reaches the specified minimum size, the
next time the server checks the file size, it will
rename the current log file as FileName.n and
create a new one to store subsequent messages.

Default Value: 500

rotate-log-on-startup Optional Specifies whether a server rotates its log file during
its startup cycle.

Value Range: true | false

Default Value: true

log-file-rotation-dir Optional Specifies the directory path where the rotated log
files will be stored.

rotation-time Optional The start time for a time-based rotation sequence
of the log file, in the format k:mm, where k is 1-24.
(Requires that you specify a rotation-type of
byTime.) At the specified time, the server renames
the current log file. Thereafter, the server renames
the log file at an interval that you specify in file-
time-span.

If the specified time has already past, then the
server starts its file rotation immediately.

By default, the rotation cycle begins immediately.

file-time-span Optional The interval (in hours) at which the server saves
old log messages to another file. (Requires that you
specify a rotation-type of byTime.)

Default Value: 24

ready-registration
To use the ReadyApp framework, register a WAR-based application with the framework by
adding the following code to the application's WebLogic deployment descriptor (META-
INF\weblogic-application.xml):

<wls:ready-registration>true</wls:ready-registration>

When the application starts, the state of the application is set to NOT READY.

Note

The prefix wls: may or may not be required depending on the contents of the
weblogic-application.xml file. If the rest of the tags do not have the prefix, you can
ignore the prefix.

See Configuring the ReadyApp Framework with EAR or WAR-based Applications in Deploying
Applications to Oracle WebLogic Server.

Appendix B
ready-registration

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-18 of B-32

resource-description
The resource-description element is used to map the JNDI name of a server resource to an
EJB resource reference in WebLogic Server.

The following table describes the elements you can define within a resource-description
element.

Table B-10 resource-description Elements

Element Required/Optional Description

res-ref-name Required Specifies the name of a resource reference.

jndi-name Required Specifies a JNDI name for the resource.

resource-env-description
The resource-env-description element maps a resource-env-ref, declared in the ejb-
jar.xml deployment descriptor, to the JNDI name of the server resource it represents.

The following table describes the elements you can define within a resource-env-description
element.

Table B-11 resource-env-description Elements

Element Required/Optional Description

res-env-ref-name Required Specifies the name of a resource environment
reference.

jndi-name Required Specifies a JNDI name for the resource
environment reference.

run-as-role-assignment
The run-as-role-assignment element maps a run-as role name (a sub-element of the
servlet element) in web.xml to a valid user name in the system. The value can be overridden
for a given servlet by the run-as-principal-name element in the servlet-descriptor. If the
run-as-role-assignment is absent for a given role name, the Web application container uses
the first principal-name defined in the security-role-assignment. The following example
illustrates how to use the run-as-role-assignment element.

<run-as-role-assignment>
 <role-name>RunAsRoleName</role-name>
 <run-as-principal-name>joe</run-as-principal-name>
</run-as-role-assignment>

The following table describes the elements you can define within a run-as-role-assignment
element.

Appendix B
resource-description

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-19 of B-32

Table B-12 run-as-role-assignment Elements

Element Required/Optional Description

role-name Required Specifies the name of a security role.

run-as-principal-name Required Specifies the name of a principal.

security-permission
The security-permission element specifies a single security permission based on the
security policy file syntax. Refer to Default Policy Implementation and Policy File Syntax for the
implementation of the security permission specification.

Disregard the optional codebase and signedBy clauses.

For example:

<security-permission-spec>
 grant { permission java.net.SocketPermission "*", "resolve" };
</security-permission-spec>

where:

• permission java.net.SocketPermission is the permission class name.

• "*" represents the target name.

• resolve indicates the action.

security-role-assignment
The security-role-assignment element declares a mapping between a Web application
security role and one or more principals in WebLogic Server, as shown in the following
example.

<security-role-assignment>
 <role-name>PayrollAdmin</role-name>
 <principal-name>Tanya</principal-name>
 <principal-name>Fred</principal-name>
 <principal-name>system</principal-name>
</security-role-assignment>

You can also use it to mark a given role as an externally defined role, as shown in the following
example:

<security-role-assignment>
 <role-name>roleadmin</role-name>
 <externally-defined/>
</security-role-assignment>

Appendix B
security-permission

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-20 of B-32

https://docs.oracle.com/en/java/javase/17/security/permissions-jdk1.html#GUID-789089CA-8557-4017-B8B0-6899AD3BA18D

Note

In the security-role-assignment element, either principal-name or externally-
defined must be defined. Both cannot be omitted.

The following table describes the elements you can define within a security-role-assignment
element.

Table B-13 security-role-assignment Elements

Element Required/Optional Description

role-name Required Specifies the name of a security role.

principal-name Required if
externally-
defined is not
defined.

Specifies the name of a principal that is defined in
the security realm. You can use multiple
principal-name elements to map principals to a
role. For more information on security realms, see
Administering Security for Oracle WebLogic Server.

externally-defined Required if
principal-name
is not defined.

Specifies that a particular security role is defined
globally in a security realm; WebLogic Server uses
this security role as the principal name, rather than
looking it up in a global realm. When the security
role and its principal-name mapping are defined
elsewhere, this is used as an indicative
placeholder.

If you do not define a security-role-assignment element and its sub-elements, the Web
application container implicitly maps the role name as a principal name and logs a warning.
The EJB container does not deploy the module if mappings are not defined.

Consider the following usage scenarios for the role name is "role_xyz"

• If you map "role_xyz" to user "joe" in weblogic.xml, role_xyz becomes a local role.

• If you specify role_xyz as an externally defined role, it becomes global (it refers to the role
defined at the realm level).

• If you do not define a security-role-assignment element, role_xyz becomes a local role,
and the Web application container creates an implicit mapping to it and logs a warning.

service-reference-description
The following table describes the elements you can define within a service-reference-
description element.

Table B-14 service-reference-description Elements

Element Required/Optional Description

service-ref-name

wsdl-url

Appendix B
service-reference-description

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-21 of B-32

Table B-14 (Cont.) service-reference-description Elements

Element Required/Optional Description

call-property The call-property element has the following
sub-elements:

name

value

port-info The port-info element has the following sub-
elements:

port-name

stub-property

call-property

servlet-descriptor
Use the servlet-descriptor element to aggregate the servlet-specific elements.

The following table describes the elements you can define within the servlet-descriptor
element.

Table B-15 servlet-descriptor Elements

Element Required/Optional Description

servlet-name Required Specifies the servlet name as defined in the servlet
element of the web.xml deployment descriptor file.

run-as-principal-name Optional Contains the name of a principal against the run-
as-role-name defined in the web.xml
deployment descriptor.

init-as-principal-name Optional Equivalent to run-as-principal-name for the
init method for servlets. The identity specified
here should be a valid user name in the system. If
init-as-principal-name is not specified, the
container uses the run-as-principal-name
element.

destroy-as-principal-
name

Optional Equivalent to run-as-principal-name for the
destroy method for servlets. The identity specified
here should be a valid user name in the system. If
destroy-as-principal-name is not specified,
the container uses the run-as-principal-name
element.

dispatch-policy Optional This is a deprecated element. Used to assign a
given servlet to a configured Work Manager by
identifying the Work Manager name. This setting
overrides the Web application-level dispatch policy
defined by wl-dispatch-policy.

session-descriptor
The following table describes the elements you can define within a session-descriptor
element to define parameters for servlet sessions.

Appendix B
servlet-descriptor

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-22 of B-32

Table B-16 session-descriptor

Element Name Default Value Value

timeout-secs 3600 Sets the time, in seconds, that WebLogic Server
waits before timing out a session. The default value
is 3600 seconds.

On busy sites, you can tune your application by
adjusting the timeout of sessions. While you want
to give a browser client every opportunity to finish a
session, you do not want to tie up the server
needlessly if the user has left the site or otherwise
abandoned the session.

This element can be overridden by the session-
timeout element (defined in minutes) in web.xml.

invalidation-interval-
secs

60 Sets the time, in seconds, that WebLogic Server
waits between doing house-cleaning checks for
timed-out and invalid sessions, and deleting the old
sessions and freeing up memory. Use this element
to tune WebLogic Server for best performance on
high traffic sites.

The default value is 60 seconds.

invalidate-on-relogin false Sets whether the container must invalidate the
current session if the currently logged-in user
switches to a different user name (which is valid in
the security realm) and attempts to log in again.

If the value of this parameter is set to true, the
current session is invalidated if the user attempts to
log in again using a different user name.

sharing-enabled false Enables Web applications to share HTTP sessions
when the value is set to true at the application
level.

This element is ignored if turned on at the Web
application level.

debug-enabled false Enables the debugging feature for HTTP sessions.

The default value is false.

Appendix B
session-descriptor

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-23 of B-32

Table B-16 (Cont.) session-descriptor

Element Name Default Value Value

id-length 52 Sets the size of the session ID.

The minimum value is 32 bytes and the maximum
value is Integer.MAX_VALUE.

Note: If a value lower than 32 bytes is set,
WebLogic Server automatically raises the value to
32 and displays the following message:

The IDLength is too short. It is not
secure. WLS will raise the length to
32.
If you are writing a WAP application, you must use
URL rewriting because the WAP protocol does not
support cookies. Also, some WAP devices have a
128-character limit on URL length (including
attributes), which limits the amount of data that can
be transmitted using URL rewriting. To allow more
space for attributes, use this attribute to limit the
size of the session ID that is randomly generated
by WebLogic Server.

You can also limit the length to a fixed 52
characters, and disallow special characters, by
setting the WAPEnabled attribute. See URL
Rewriting and Wireless Access Protocol (WAP).

tracking-enabled true Enables session tracking between HTTP requests.

cache-size 1028 Sets the cache size for JDBC and file-persistent
sessions.

max-in-memory-sessions -1 Sets the maximum limit for memory/replicated
sessions.

Without the ability to configure bound in-memory
servlet session use, as new sessions are
continually created, the server eventually grows out
of memory. To protect against this, WebLogic
Server provides a configurable bound on the
number of sessions created. When this number is
exceeded, the
weblogic.servlet.SessionCreationExcepti
on occurs for each attempt to create a new
session. This feature applies to both replicated and
non-replicated in-memory sessions.

To configure bound in-memory servlet session use,
you set the limitation in the max-in-memory-
sessions element.

The default is -1 (unlimited); any negative value
works as the same as -1.

max-save-post-size 4096 Sets the maximum size, in bytes, of the POST data
that the container saves/buffers during FORM
authentication.

The default value is 4096 bytes.

Appendix B
session-descriptor

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-24 of B-32

Table B-16 (Cont.) session-descriptor

Element Name Default Value Value

save-post-timeout-secs 40 Defines the timeout, in seconds, for the session
that saved/buffered POST data. For FORM
authentication, POST data is saved in a session
while the user is redirected to the login form.

The default value is 40 seconds.

If the value of the save-post-timeout-secs
element is less than the value of the timeout-
secs element, then session invalidation may occur
during user operations. In this scenario, increase
the value of save-post-timeout-secs to match
the timeout-secs value or to an acceptable
value, according to your needs.

save-post-timeout-
interval-secs

20 Sets the invalidation trigger interval, in seconds, for
saving POST data in a session.

The default value is 20 seconds.

cookies-enabled true Use of session cookies is enabled by default and is
recommended, but you can disable them by setting
this property to false. You might turn this option
off to test.

cookie-name JSESSIONID Defines the session tracking cookie name. Defaults
to JSESSIONID if not set. You may set this to a
more specific name for your application.

cookie-path null Defines the session tracking cookie path.

If not set, this attribute defaults to / (slash), where
the browser sends cookies to all URLs served by
WebLogic Server. You may set the path to a
narrower mapping, to limit the request URLs to
which the browser sends cookies.

cookie-domain null Specifies the domain for which the cookie is valid.
For example, setting cookie-domain
to.example.com returns cookies to any server in
the *.example.com domain.

The domain name must have at least two
components. Setting a name to *.com or *.net is
not valid.

If not set, this attribute defaults to the server that
issued the cookie.

See Cookie.setDomain() in the Servlet
specification.

cookie-comment null Specifies the comment that identifies the session
tracking cookie in the cookie file.

cookie-secure false Tells the browser to only send the cookie back over
an HTTPS connection. This ensures that the
cookie ID is secure and should only be used on
Web sites that use HTTPS. Session Cookies over
HTTP no longer work if this feature is enabled.

You should disable the url-rewriting-enabled
element if you intend to use this feature.

Appendix B
session-descriptor

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-25 of B-32

Table B-16 (Cont.) session-descriptor

Element Name Default Value Value

cookie-max-age-secs -1 Sets the life span of the session cookie, in
seconds, after which it expires on the client.

This value can be set as any integer; the default
value is -1 (unlimited).

For more information about cookies, see Using
Sessions and Session Persistence.

persistent-store-type memory Sets the persistent store method to one of the
following options:

• memory—Disables persistent session storage.
• replicated—Same as memory, but session

data is replicated across the clustered servers.
• replicated_if_clustered—If the Web

application is deployed on a clustered server,
the in-effect persistent-store-type will be
replicated. Otherwise, memory is the default.

• async-replicated—Enables asynchronous
session replication in an application or Web
application. See Asynchronous HTTP Session
Replication in Tuning Performance of Oracle
WebLogic Server.

• async-replicated-if-clustered—
Enables asynchronous session replication in
an application or Web application when
deployed to a cluster environment. If deployed
to a single server environment, then the
session persistence/replication defaults to in-
memory. This allows testing on a single server
without deployment errors.

• file—Uses file-based persistence (See also
session-descriptor).

• async-jdbc—Enables asynchronous JDBC
persistence for HTTP sessions in an
application or Web application. See
Configuring Session Persistence.

• jdbc—Uses a database to store persistent
sessions. (see also session-descriptor).

• cookie—All session data is stored in a cookie
in the user's browser.

persistent-store-
cookie-name

WLCOOKIE Sets the name of the cookie used for cookie-based
persistence. The WLCOOKIE cookie carries the
session state, which should not be shared between
Web applications.

See Using Cookie-Based Session Persistence.

Appendix B
session-descriptor

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-26 of B-32

Table B-16 (Cont.) session-descriptor

Element Name Default Value Value

persistent-store-dir session_db Specifies the storage directory used for file-based
persistence

Ensure that you have enough disk space to store
the number of valid sessions multiplied by the size
of each session. You can find the size of a session
by looking at the files created in the persistent-
store-dir. Note that the size of each session can
vary as the size of serialized session data changes.

Each server instance has a default persistent file
store that requires no configuration. Therefore, if no
directory is specified, a default store is
automatically created in the <server-
name>\data\store\default directory. However,
the default store is not shareable among clustered
servers.

You can make file-persistent sessions clusterable
by creating a custom persistent store in a directory
that is shared among different servers. However,
this requires you to create this directory manually.

persistent-store-pool None Specifies the name of a JDBC connection pool to
be used for persistence storage.

persistent-data-source-
jndi-name

None Specifies the data source JNDI name of a JDBC
connection to be used for jdbc- and async-jdbc-
based persistence (see persistent-store-type
above).

For async-jdbc-based persistence, you must
specify the persistent-data-source-jndi-
name parameter to configure persistence storage.

persistent-store-table wl_servlet_sess
ions

Specifies the database table name used to store
JDBC-based persistent sessions. This applies only
when persistent-store-type is set to jdbc.

The persistent-store-table element is used
when you choose a database table name other
than the default.

jdbc-column-name-max-
inactive-interval

Serves as an alternative name for the
wl_max_inactive_interval column name. This
jdbc-column-name-max-inactive-interval
element applies only to JDBC-based persistence. It
is required for certain databases that do not
support long column names.

url-rewriting-enabled true Enables URL rewriting, which encodes the session
ID into the URL and provides session tracking if
cookies are disabled in the browser.

http-proxy-caching-of-
cookies

true When set to false, WebLogic Server adds the
following header with the following response:

"Cache-control: no-cache=set-cookie"

This indicates that the proxy caches do not cache
the cookies.

Appendix B
session-descriptor

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-27 of B-32

Table B-16 (Cont.) session-descriptor

Element Name Default Value Value

encode-session-id-in-
query-params

false The latest servlet specification requires containers
to encode the session ID in path parameters.
Certain Web servers do not work well with path
parameters. In such cases, the encode-session-
id-in-query-params element should be set to
true. (The default is false.)

runtime-main-attribute Used in ServletSessionRuntimeMBean. The
getMainAttribute() of the
ServletSessionRuntimeMBean returns the
session attribute value using this string as a key.

Example: user-name

This element is useful for tagging session runtime
information for different sessions.

monitoring-attribute-
name

Configures the monitoring ID for a given HTTP
session.

HTTP sessions are identified with a monitoring ID.
By default, the monitoring ID for a given HTTP
session is a random string (not the same as a
session ID for security reasons). This monitoring ID
can be configured by setting the monitoring-
attribute-name element in session-descriptor of
the weblogic.xml deployment descriptor and
then setting a session attribute the defined
monitoring-attribute-name. The toString()
of the session attribute value will then be used as a
monitoring ID.

This element is useful for tagging session runtime
information for different sessions. For example, you
can set it to "username", if you have a "username"
attribute that is unique.

cookie-http-only true Specifies whether HttpOnly cookies are enabled.
When this element is set to true, all session
cookies would be unavailable to the browser
scripts. The default value is true. Therefore,
HttpOnly cookies are enabled by default.

auth-cookie-id-length 20 Defines the length of the secure cookie,
_WL_AUTHCOOKIE_JSESSIONID. The default
cookie length is 20, and the minimum cookie length
is 8.

url-match-map
Use this element to specify a class for URL pattern matching. The WebLogic Server default
URL match mapping class is weblogic.servlet.utils.URLMatchMap, which is based on Java
EE standards. Another implementation included in WebLogic Server is
SimpleApacheURLMatchMap, which you can plug in using the url-match-map element.

Rule for SimpleApacheURLMatchMap:

If you map *.jws to JWSServlet then

Appendix B
url-match-map

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-28 of B-32

http://example.com/bar.jws/baz will be resolved to JWSServlet with pathInfo = baz.

Configure the URLMatchMap to be used in weblogic.xml as in the following example:

<url-match-map>
 weblogic.servlet.utils.SimpleApacheURLMatchMap
</url-match-map>

virtual-directory-mapping
Use the virtual-directory-mapping element to specify document roots other than the default
document root of the Web application for certain kinds of requests, such as image requests. All
images for a set of Web applications can be stored in a single location, and need not be copied
to the document root of each Web application that uses them. For an incoming request, if a
virtual directory has been specified, the servlet container will search for the requested resource
first in the virtual directory and then in the Web application's original document root. This
defines the precedence if the same document exists in both places.

Example:

<virtual-directory-mapping>
 <local-path>c:/usr/gifs</local-path>
 <url-pattern>/images/*</url-pattern>
 <url-pattern>*.jpg</url-pattern>
</virtual-directory-mapping>
<virtual-directory-mapping>
 <local-path>c:/usr/common_jsps.jar</local-path>
 <url-pattern>*.jsp</url-pattern>
</virtual-directory-mapping>

The following table describes the elements you can define within the virtual-directory-
mapping element.

Table B-17 virtual-directory-mapping Elements

Element Required/Optional Description

local-path Required Specifies a physical location on the disk.

url-pattern Required Contains the URL pattern of the mapping. Must
follow the rules specified in Section 11.2 of the
Servlet API Specification.

The WebLogic Server implementation of virtual directory mapping requires that you have a
directory that matches the url-pattern of the mapping. The image example requires that you
create a directory named images at c:/usr/gifs/images. This allows the servlet container to
find images for multiple Web applications in the images directory.

weblogic-version
The weblogic-version element indicates the version of WebLogic Server on which this Web
application (as defined in the root element weblogic-web-app) is intended to be deployed. This
element is informational only and is not used by WebLogic Server.

Appendix B
virtual-directory-mapping

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-29 of B-32

wl-dispatch-policy
Use the wl-dispatch-policy element to assign the Web application to a configured Work
Manager by identifying the Work Manager name. This Web application-level parameter can be
overridden by the dispatch policy setting at the individual servlet or JSP level. You can set the
dispatch policy by using:

• The servlet's wl-dispatch-policy, using <init-param> of the <servlet> element in
web.xml

• The <dispatch-policy> element in the <servlet-descriptor> element of weblogic.xml

Note

The <dispatch-policy> setting in weblogic.xml overrides the wl-dispatch-policy
<init-param> configuration in web.xml.

work-manager
The work-manager element is a sub-element of the weblogic-web-app element. You can define
the following elements within the work-manager element.

Table B-18 work-manager Elements

Element Required/Optional Description

name Required Specifies the name of the Work Manager.

response-time-request-
class, fair-share-
request-class, context-
request-class, request-
class-name

Optional You can choose between the following four
elements:

• response-time-request-class—Defines
the response time request class for the
application. Response time is defined with
attribute goal-ms in milliseconds. The
increment is ((goal - T) Cr)/R, where T is the
average thread use time, R the arrival rate,
and Cr a coefficient to prioritize response time
goals over fair shares.

• fair-share-request-class—Defines the
fair share request class. Fair share is defined
with attribute percentage of default share.
Therefore, the default is 100. The increment is
Cf/(P R T), where P is the percentage, R the
arrival rate, T the average thread use time, and
Cf a coefficient for fair shares to prioritize them
lower than response time goals.

• context-request-class—Defines the
context class. Context is defined with multiple
cases mapping contextual information, like
current user or its role, cookie, or work area
fields to named service classes.

• request-class-name—Defines the request
class name.

Appendix B
wl-dispatch-policy

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-30 of B-32

Table B-18 (Cont.) work-manager Elements

Element Required/Optional Description

min-threads-constraint,
min-threads-constraint-
name

Optional You can choose between the following two
elements:

• min-threads-constraint—Used to
guarantee a number of threads the server
allocates to requests of the constrained work
set to avoid deadlocks. The default is zero. A
min-threads value of one is useful, for
example, for a replication update request,
which is called synchronously from a peer.

• min-threads-constraint-name—Defines a
name for the min-threads-constraint
element.

max-threads-constraint,
max-threads-constraint-
name

Optional You can choose between the following two
elements:

• max-threads-constraint—Limits the
number of concurrent threads executing
requests from the constrained work set. The
default is unlimited. For example, consider a
constraint defined with maximum threads of 10
and shared by 3 entry points. The scheduling
logic ensures that not more than 10 threads
are executing requests from the three entry
points combined.

• max-threads-constraint-name—Defines a
name for the max-threads-constraint
element.

capacity, capacity-name Optional You can choose between the following two
elements:

• capacity—Constraints can be defined and
applied to sets of entry points, called
constrained work sets. The server starts
rejecting requests only when the capacity is
reached. The default is zero. Note that the
capacity includes all requests, queued or
executing, from the constrained work set. This
constraint is primarily intended for subsystems
like JMS, which do their own flow control. This
constraint is independent of the global queue
threshold.

• capacity-name—Defines a name for the
capacity element.

Backward Compatibility Flags
For WebLogic Server, backward compatibility for WebLogic Server 9.2 or earlier is supported
via the backward-compatible element within the jsp-descriptor element.

Appendix B
Backward Compatibility Flags

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-31 of B-32

Compatibility with JSP 2.0 Web Applications
JSP 2.1 is supported as of WebLogic Server 10.0. Depending on the version of the Web
application (version 2.4 or 2.5) and the setting of the backward-compatible element in the
weblogic.xml descriptor file, WebLogic Server will also support JSP 2.0.

JSP Behavior and Buffer Suffix
• If a Web application version is 2.5 (for example, its web.xml has a version attribute of 2.5)

and the backward-compatible flag is set to false, then:

– All version 2.1 JSP/TAG files will follow the new JSP behavior.

– All version 2.0 or earlier JSP/TAG files will follow the previous JSP 2.0 or earlier
behavior.

• If a Web application version is 2.5 and the backward-compatible flag is set to true, then
all JSP/TAG files will follow the previous JSP 2.0 or earlier behavior.

• If the Web application version is 2.4 or earlier, then all JSP/TAG files will follow the
previous JSP 2.0 or earlier behavior no matter how the backward-compatible flag is set.

Implicit Servlet 2.5 Package Imports
The Servlet 2.5 specification mandates that only the java.lang.*, javax.servlet.*,
javax.servlet.jsp.*, and javax.servlet.http.* packages be implicitly imported. In
compliance with the Servlet 2.5 specification, WebLogic Server will only import these
mandated packages. Whereas, previous releases of WebLogic Server also imported the
java.io.*, java.util.*, and javax.servlet.jsp.tagext.* packages.

WebLogic Server will follow the previous 2.4 or earlier behavior and import the non-mandated
packages, if any of the following occur:

• The backward-compatible flag is set to true in the weblogic.xml descriptor file.

• The Web application version is 2.4 or earlier.

• The individual JSP/TAG files in a version 2.5 Web application are version 2.0 or earlier.

Web Container Global Configuration
To configure your Web container at a global level, use the WebAppContainerMBean. For
information on the WebAppContainerMBean attributes and how to use them to specify domain-
wide defaults for all of your Web applications, see the WebAppContainerMBean.

Appendix B
Web Container Global Configuration

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-32 of B-32

C
Support for GlassFish Deployment Descriptors

Learn about WebLogic Server support for GlassFish deployment descriptors. WebLogic Server
offers support for a subset of GlassFish deployment descriptors so that basic Web applications
which deploy and run on GlassFish Server can be deployed on WebLogic Server.
If a Web application has both weblogic.xml and glassfish-web.xml or sun-web.xml,
WebLogic Server will use weblogic.xml and ignore the GlassFish deployment descriptors. If a
Web application has both glassfish-web.xml and sun-web.xml, WebLogic Server will use
glassfish-web.xml and ignore sun-web.xml.

If the GlassFish element is on the list of supported deployment descriptors described in
Table C-1, WebLogic Server will use the settings of its counterpart element in weblogic.xml. If
the element is not on the list of supported deployment descriptors, WebLogic Server will ignore
the element.

When glassfish-web.xml or sun-web.xml is being used, WebLogic Server emits an INFO
level log message including whether individual settings are being used or ignored. WebLogic
Server will not generate or persist the corresponding weblogic.xml descriptor elements.

Note

Web services do not support glassfish-web.xml deployment descriptor elements. If
you are using Web services and define GlassFish elements in your Web application,
the GlassFish deployment descriptors will not work.

Table C-1 Supported GlassFish Deployment Descriptors

glassfish-web.xml Element Name Corresponding weblogic.xml Element Name

context-root context-root

security-role-mapping

• role-name
• principal-name
• group-name

security-role-assignment
• role-name
• principal-name
• principal-name

session-config

• session-manager:manager-
properties:reapIntervalSeconds

• session-manager:manager-
properties:maxSessions

• session-manager:store-properties:directory
• session-properties:timeoutSeconds

session-descriptor
• invalidation-interval-seconds
• max-in-memory-sessions
• persistent-store-dir
• timeout-secs

ejb-ref

• ejb-ref-name
• jndi-name

ejb-reference-description
• ejb-ref-name
• jndi-name

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-1 of C-2

Table C-1 (Cont.) Supported GlassFish Deployment Descriptors

glassfish-web.xml Element Name Corresponding weblogic.xml Element Name

resource-ref

• res-ref-name
• jndi-name

resource-description
• res-ref-name
• jndi-name

resource-env-ref

• resource-env-ref-name
• jndi-name

resource-env-description
• resource-env-ref-name
• jndi-name

class-loader

• delegate

container-descriptor
• prefer-web-inf-classes

jsp-config

• checkInterval
• keepgenerated
• scratchdir

jsp-descriptor
• page-check-seconds
• keepgenerated
• working-dir

Appendix C

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-2 of C-2

D
Web Application Best Practices

Learn Oracle best practices for designing, developing, and deploying WebLogic Web
applications and application resources in WebLogic Server.
This appendix includes the following sections:

CGI Best Practices
Review the CGI best practices with respect to calling a subscript.

• You can use sh subscript.sh for both exploded (unarchived) Web applications and
archived Web applications (WAR files).

• You can use sh $PWD/subscript.sh for both exploded (unarchived) Web applications and
archived Web applications (WAR files).

• You can use sh $DOCUMENT_ROOT/$PATH/subscript.sh for exploded (unarchived) Web
applications. You cannot use it, however, for archived Web applications (WAR files). This is
due to the fact that the document root might point you to the root of your WAR file, and the
scripting language cannot open that WAR file and locate the subscript.sh needed for
execution. This is true not only for sh, but for any scripting language.

Servlet Best Practices
When writing HTTP servlets, review the recommended best practices.

• Compile your servlet classes into the WEB-INF/classes directory of your Web application.

• Make sure your servlet is registered in the Java EE standard Web applications deployment
descriptor (web.xml).

• When responding to a request for a servlet, WebLogic Server checks the time stamp of the
servlet class file prior to applying any filters associated with the servlet, and compares it to
the servlet instance in memory. If a newer version of the servlet class is found, WebLogic
Server re-loads all servlet classes before any filtering takes place. When the servlets are
re-loaded, the init() method of the servlet is called. All servlets are reloaded when a
modified servlet class is discovered due to the possibility that there are interdependencies
among the servlet classes.

You can set the interval (in seconds) at which WebLogic Server checks the time stamp with
the Servlet Reload attribute. If you set this attribute to zero, WebLogic Server checks the
time stamp on every request, which can be useful while developing and testing servlets but
is needlessly time consuming in a production environment. If this attribute is set to -1,
WebLogic Server does not check for modified servlets.

Best Practice When Subclassing ServletResponseWrapper
Jakarta EE provides the class jakarta.servlet.ServletResponseWrapper, which you can
subclass in your Servlet to adapt its response.

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-1 of D-2

Oracle recommends that if you create your own response wrapper by subclassing the
ServletResponseWrapper class, you should always override the flushBuffer() and
resetBuffer() methods. Not doing so might result in the response being committed
prematurely.

Appendix D
Best Practice When Subclassing ServletResponseWrapper

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-2 of D-2

E
HTTP Proxy Servlet Parameters

Read descriptions of the HttpProxyServlet parameters.
This appendix includes the following topics:

Debug
Default: OFF

Sets the type of logging performed for debugging operations. The debugging information is
written to c:\TEMP\wlproxy.log on Windows NT/2000 systems.

Override this location and filename by setting the WLLogFile parameter to a different directory
and file. (See the WLTempDir parameter for an additional way to change this location.)

Ensure that the directory of the log file has write permission. Set any of the following logging
options (HFC,HTW,HFW, and HTC options may be set in combination by entering them
separated by commas, for example "HFC,HTW"):

• ON: The plug-in logs informational and error messages.

• OFF: No debugging information is logged.

• HFC: The plug-in logs headers from the client, informational, and error messages.

• HTW: The plug-in logs headers sent to WebLogic Server, and informational and error
messages.

• HFW: The plug-in logs headers sent from WebLogic Server, and informational and error
messages.

• HTC: The plug-in logs headers sent to the client, informational messages, and error
messages.

• ERR: Prints only the Error messages in the plug-in.

• ALL: The plug-in logs headers sent to and from the client, headers sent to and from
WebLogic Server, information messages, and error messages.

Note

For HttpProxyServlet, there are only two options: TRUE(ON) and FALSE(OFF).

For information on setting logging without using the deprecated parameter, see Deprecated
Directives for Apache HTTP Server.

DebugConfigInfo
Default: OFF

Enables the special query parameter "__WebLogicBridgeConfig". Use it to get details about
configuration parameters from the proxy plug-in.

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix E-1 of E-6

For example, if you enable "__WebLogicBridgeConfig" by setting DebugConfigInfo and then
send a request that includes the query string ?__WebLogicBridgeConfig, then the proxy plug-in
gathers the configuration information and run-time statistics and returns the information to the
browser. The proxy plug-in does not connect to Oracle WebLogic Server in this case.

This parameter is strictly for debugging and the format of the output message can change with
releases. For security purposes, keep this parameter turned OFF in production systems.

DefaultFileName
Default: none

If the URI is "/" then the proxy plug-in performs the following steps:

1. Trims the path specified with the PathTrim parameter.

2. Appends the value of DefaultFileName.

3. Prepends the value specified with PathPrepend.

This procedure prevents redirects from Oracle WebLogic Server.

Set the DefaultFileName to the default welcome page of the Web application in Oracle
WebLogic Server to which requests are being proxied. For example, If the DefaultFileName is
set to welcome.html, an HTTP request like "http://somehost/weblogic" becomes "http://
somehost/weblogic/welcome.html". For this parameter to function, the same file must be
specified as a welcome file in all the Web Applications to which requests are directed. See
Configuring Welcome Files in Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server.

Note for Apache users: If you are using Stronghold or Raven versions, define this parameter
inside of a Location block, and not in an IfModule block.

FileCaching
Default: ON

When set to ON, and the size of the POST data in a request is greater than 2048 bytes, the
POST data is first read into a temporary file on disk and then forwarded to Oracle WebLogic
Server in chunks of 8192 bytes. This preserves the POST data during failover, allowing all
necessary data to be repeated to the secondary if the primary goes down.

When FileCaching is ON, any client that tracks the progress of the POST will see that the
transfer has completed even though the data is still being transferred between the WebServer
and WebLogic. So, if you want the progress bar displayed by a browser during the upload to
reflect when the data is actually available on the Oracle WebLogic Server, you might not want
to have FileCaching ON.

When set to OFF and the size of the POST data in a request is greater than 2048 bytes, the
reading of the POST data is postponed until an Oracle WebLogic Server cluster member is
identified to serve the request. Then the proxy plug-in reads and immediately sends the POST
data to Oracle WebLogic Server in chunks of 8192 bytes.

Turning FileCaching OFF limits failover. If the Oracle WebLogic Server primary server goes
down while processing the request, the POST data already sent to the primary cannot be
repeated to the secondary.

Appendix E
DefaultFileName

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix E-2 of E-6

Finally, regardless of how FileCaching is set, if the size of the POST data is 2048 bytes or less
the proxy plug-in will read the data into memory and use it if needed during failover to repeat to
the secondary.

KeepAliveEnabled
Default: ON

This directive enables pooling of connections between the proxy plug-in and Oracle WebLogic
Server. Valid values are ON and OFF.

While using Apache prefork mpm, Apache web server might fail. Set KeepAliveEnabled to OFF
when using prefork mpm or use worker mpm in Apache.

Note

If both KeepAliveEnabled and HTTP/2 are configured for a back-end connection, the
following message is generated:
KeepAliveEnabled option will be ignored since HTTP/2 connection is enabled

KeepAliveSecs
Default: 20

The length of time after which an inactive connection between the proxy plug-in and Oracle
WebLogic Server is closed. You must set KeepAliveEnabled to true (ON when using the
Apache HTTP Server) for this parameter to be effective.

The value of this parameter must be less than or equal to the value of the Duration field set in
the Remote Console on the Server > Protocols > HTTP page, or the value set on the server
MBean with the KeepAliveSecs attribute.

MaxPostSize
Default: 0

Maximum allowable size of POST data, in bytes. If the content-length exceeds MaxPostSize,
the proxy plug-in returns an error message. If set to 0, the size of POST data is not checked.
This is useful for preventing denial-of-service attacks that attempt to overload the server with
POST data.

PathPrepend
Default: null

As per the RFC specification, generic syntax for URL is:

[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILENAME};{PATH_PARAMS}/{QUERY_STRING}...

PathPrepend specifies the path that the proxy plug-in prepends to the {PATH} portion of the
original URL, after PathTrim is trimmed and before the request is forwarded to Oracle
WebLogic Server.

Appendix E
KeepAliveEnabled

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix E-3 of E-6

If you must append a File Name, use DefaultFileName parameter instead of PathPrepend.

PathTrim
Default: null

As per the RFC specification, generic syntax for URL is:

[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILENAME};{PATH_PARAMS}/{QUERY_STRING}...

PathTrim specifies the string trimmed by the proxy plug-in from the {PATH}/{FILENAME} portion
of the original URL, before the request is forwarded to Oracle WebLogic Server. For example, if
the http://myWeb.server.com/weblogic/foo URL is passed to the proxy plug-in for parsing
and if PathTrim has been set to strip off /weblogic, before handing the URL to Oracle
WebLogic Server, the URL forwarded to Oracle WebLogic Server is http://
myWeb.server.com:7001/foo.

If you are newly converting an existing third-party server to proxy requests to Oracle WebLogic
Server using the proxy plug-in, you will need to change application paths to /foo to include
weblogic/foo. You can use PathTrim and PathPrepend in combination to change this path.

Configure the PathTrim parameter inside the <Location> tag.

The following configuration is incorrect because the PathTrim parameter is not configured
inside the <Location> tag:

<Location /weblogic>
WLSRequest On
</Location>

<IfModule mod_weblogic.c>
WebLogicHost localhost
WebLogicPort 7001
PathTrim /weblogic
</IfModule>

The following configuration is correct:

<Location /weblogic>
 WLSRequest On
 PathTrim /weblogic
</Location>

The <Location> directive limits the scope of the enclosed directives by URL. See Apache
Location Directive.

SecureProxy
Default: OFF

Set this parameter to ON to enable the use of the SSL protocol for all communication between
the proxy plug-in and Oracle WebLogic Server. Remember to configure a port on the
corresponding Oracle WebLogic Server for the SSL protocol before defining this parameter.

Appendix E
PathTrim

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix E-4 of E-6

https://httpd.apache.org/docs/2.4/mod/core.html#location
https://httpd.apache.org/docs/2.4/mod/core.html#location

This parameter may be set at two levels: in the configuration for the main server and—if you
have defined any virtual hosts—in the configuration for the virtual host. The configuration for
the virtual host inherits the SSL configuration from the configuration of the main server if the
setting is not overridden in the configuration for the virtual host.

WebLogicHost
Required when proxying to a single Oracle WebLogic Server.

Default: none

Oracle WebLogic Server host (or virtual host name as defined in Oracle WebLogic Server) to
which HTTP requests should be forwarded. If you are using a Oracle WebLogic cluster, use the
WebLogicCluster parameter instead of WebLogicHost.

WebLogicPort
Required when proxying to a single Oracle WebLogic Server.

Default: none

The port at which Oracle WebLogic Server host is listening for connection requests from the
proxy plug-in (or from other servers). (If you are using SSL between the proxy plug-in and
Oracle WebLogic Server, set this parameter to the SSL listen port and set the SecureProxy
parameter to ON).

If you are using a Oracle WebLogic Cluster, use the WebLogicCluster parameter instead of
WebLogicPort.

WLCookieName
Default: JSESSIONID

If you change the name of the Oracle WebLogic Server session cookie in the Oracle WebLogic
Server Web application, then you must change the WLCookieName parameter in the proxy plug-
in to the same value. The name of the Oracle WebLogic session cookie is set in the WebLogic-
specific deployment descriptor, in the <session-descriptor> element in weblogic.xml.

WLIOTimeoutSecs
New name for HungServerRecoverSecs.

Default: 120

Defines the amount of time the proxy plug-in waits for a response to a request from Oracle
WebLogic Server. The proxy plug-in waits for WLIOTimeoutSecs for the server to respond, and
then declares that the server is dead, and fails over to the next server. You must set the value
to a large value. If the value is less than the time the servlets take to process, you might see
unexpected results.

Minimum value: 10

Maximum value: 2147483647

Appendix E
WebLogicHost

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix E-5 of E-6

WLLogFile
Default: See the Debug parameter.

Specifies path and file name for the log file that is generated when the Debug parameter is set
to ON. You must create this directory before setting this parameter.

For information on setting logging without using the deprecated parameter, see Deprecated
Directives for Apache HTTP Server.

WLProxyPassThrough
Default: OFF

If you have a chained proxy setup, where a proxy plug-in is running behind some other proxy
or load balancer, you must explicitly enable the WLProxyPassThrough parameter. This
parameter allows the header to be passed through the chain of proxies.

WLProxySSL
Default: OFF

Set this parameter to ON to maintain SSL communication between the proxy plug-in and Oracle
WebLogic Server when the following conditions exist:

• An HTTP client request specifies the HTTPS protocol.

• The request is passed through one or more proxy servers (including the Oracle WebLogic
Server Proxy Plug-in).

• The connection between the proxy plug-in and Oracle WebLogic Server uses the HTTP
protocol.

When WLProxySSL is set to ON, the location header returned to the client from Oracle WebLogic
Server specifies the HTTPS protocol.

WLProxySSLPassThrough
Default: OFF

If a load balancer or other software deployed in front of the web server and proxy plug-in is the
SSL termination point, and that product sets the WL-Proxy-SSL request header to true or
false based on whether the client connected to it over SSL, set WLProxySSLPassThrough to ON
so that the use of SSL is passed on to the Oracle WebLogic Server.

If the SSL termination point is in the web server where the proxy plug-in operates, or the load
balancer does not set WL-Proxy-SSL, set WLProxySSLPassThrough to OFF (default).

Appendix E
WLLogFile

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix E-6 of E-6

Index

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
G28780-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Index-1 of Index-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Samples and Tutorials
	New and Changed WebLogic Server Features

	Conventions

	1 Understanding Web Applications, Servlets, and JSPs
	The Web Applications Container
	Web Applications and Jakarta EE
	Web Application Development Key Points

	Servlets
	Servlets and Jakarta EE
	What You Can Do with Servlets
	Servlet Development Key Points

	Jakarta Server Pages
	JSPs and Jakarta EE
	What You Can Do with JSPs
	Overview of How JSP Requests Are Handled

	Web Application Developer Tools
	Other Tools

	Web Application Security
	Limiting the Number of Parameters in an HTTP Request

	Avoiding Redirection Attacks
	P3P Privacy Protocol
	Displaying Special Characters on Linux Browsers
	Using HTTP Strict Transport Security

	2 Creating and Configuring Web Applications
	WebLogic Web Applications and Jakarta EE
	Directory Structure
	Accessing Information in WEB-INF
	Directory Structure Example

	Main Steps to Create and Configure a Web Application
	Step One: Create the Enterprise Application Wrapper
	Step Two: Create the Web Application
	Step Three: Creating the build.xml File
	Step Four: Execute the Split Development Directory Structure Ant Tasks

	Configuring How a Client Accesses a Web Application
	Configuring Virtual Hosts for Web Applications
	Configuring a Channel-based Virtual Host
	Configuring a Host-based Virtual Host

	Targeting Web Applications to Virtual Hosts
	Loading Servlets, Context Listeners, and Filters
	Shared Jakarta EE Web Application Libraries
	Enabling GZIP Compression for Web Applications

	3 Creating and Configuring Servlets
	What's New and Changed in Servlets
	What's New and Changed in Servlet 5.0
	What Was New and Changed in Servlet 4.0

	Configuring Servlets
	Servlet Annotations
	Servlet Mapping

	Setting Up a Default Servlet
	Servlet Initialization Attributes
	Writing a Simple HTTP Servlet
	Advanced Features
	Complete HelloWorldServlet Example
	Debugging Servlet Containers
	Disabling Access Logging
	Usage
	Example
	Debugging Specific Sessions
	Usage

	Tracking a Request Handle Footprint
	Usage

	4 Creating and Configuring JSPs
	Configuring Jakarta Server Pages (JSPs)
	Registering a JSP as a Servlet
	Configuring JSP Tag Libraries
	Configuring Welcome Files
	Customizing HTTP Error Responses
	Determining the Encoding of an HTTP Request
	Mapping IANA Character Sets to Java Character Sets
	Configuring Implicit Includes at the Beginning and End of JSPs
	Configuring JSP Property Groups
	JSP Property Group Rules
	What You Can Do with JSP Property Groups

	Writing JSP Documents Using XML Syntax
	How to Use JSP Documents
	Important Information about JSP Documents

	5 Using JSF and JSTL
	Using JSF and JSTL With Web Applications
	Jakarta Server Faces (JSF)
	Jakarta Standard Tag Library (JSTL)

	6 Configuring Resources in a Web Application
	Configuring Resources in a Web Application
	Configuring Resources
	Referencing External EJBs
	More about the ejb-ref* Elements
	Referencing Application-Scoped EJBs
	Serving Resources from the CLASSPATH with the ClasspathServlet
	Using CGI with WebLogic Server
	Configuring WebLogic Server to Use CGI
	Requesting a CGI Script
	CGI Best Practices

	7 WebLogic Annotation for Web Components
	Servlet Annotation and Dependency Injection
	Web Component Classes That Support Annotations
	Annotations Supported By a Web Container
	Fault Detection and Recovery
	Limitations

	Annotating Servlets
	WLServlet
	Attributes
	Fault Detection And Recovery

	WLFilter
	Attributes
	Fault Detection and Recovery

	WLInitParam
	Attributes

	8 Servlet Programming Tasks
	Initializing a Servlet
	Initializing a Servlet when WebLogic Server Starts
	Overriding the init() Method

	Providing an HTTP Response
	Retrieving Client Input
	Methods for Using the HTTP Request
	Example: Retrieving Input by Using Query Parameters

	Securing Client Input in Servlets
	Using a WebLogic Server Utility Method

	Using Cookies in a Servlet
	Setting Cookies in an HTTP Servlet
	Retrieving Cookies in an HTTP Servlet
	Using Cookies That Are Transmitted by Both HTTP and HTTPS
	Application Security and Cookies

	Response Caching
	Initialization Parameters

	Using WebLogic Services from an HTTP Servlet
	Accessing Databases
	Connecting to a Database Using a DataSource Object
	Using a Data Source in a Servlet

	Connecting Directly to a Database Using a JDBC Driver

	Threading Issues in HTTP Servlets
	Dispatching Requests to Another Resource
	Forwarding a Request
	Including a Request
	RequestDispatcher and Filters

	Proxying Requests to Another Web Server
	Overview of Proxying Requests to Another Web Server
	Setting Up a Proxy to a Secondary Web Server

	Sample Deployment Descriptor for the Proxy Servlet
	Proxy Servlet Parameters

	Clustering Servlets
	Referencing a Servlet in a Web Application
	URL Pattern Matching
	The SimpleApacheURLMatchMap Utility
	A Future Response Model for HTTP Servlets
	Abstract Asynchronous Servlet
	doRequest
	doResponse
	doTimeOut

	Future Response Servlet

	9 Using Sessions and Session Persistence
	Overview of HTTP Sessions
	Setting Up Session Management
	HTTP Session Properties
	Session Timeout
	Configuring WebLogic Server Session Cookies
	Configuring Application Cookies That Outlive a Session
	Logging Out
	Enabling Web Applications to Share the Same Session
	Limiting Number of Concurrent Requests for a Session

	Configuring Session Persistence
	Attributes Shared by Different Types of Session Persistence
	Using Memory-based, Single-server, Non-replicated Persistent Storage
	Using File-based Persistent Storage

	Using a Database for Persistent Storage (JDBC Persistence)
	Configuring JDBC-based Persistent Storage
	Caching and Database Updates for JDBC Session Persistence
	Using Cookie-Based Session Persistence

	Using URL Rewriting Instead of Cookies
	Coding Guidelines for URL Rewriting
	URL Rewriting and Wireless Access Protocol (WAP)

	Session Tracking from a Servlet
	A History of Session Tracking
	Tracking a Session with an HttpSession Object
	Lifetime of a Session
	How Session Tracking Works
	Detecting the Start of a Session
	Setting and Getting Session Name/Value Attributes
	Logging Out and Ending a Session
	Using session.invalidate() for a Single Web Application
	Implementing Single Sign-On for Multiple Applications
	Exempting a Web Application for Single Sign-on

	Configuring Session Tracking
	Using URL Rewriting Instead of Cookies
	URL Rewriting and Wireless Access Protocol (WAP)
	Making Sessions Persistent
	Scenarios to Avoid When Using Sessions
	Use Serializable Attribute Values
	Configuring Session Persistence

	Configuring a Maximum Limit on In-memory Servlet Sessions
	Enabling Session Memory Overload Protection

	10 Application Events and Event Listener Classes
	Overview of Application Event Listener Classes
	Servlet Context Events
	HTTP Session Events
	Servlet Request Events
	Configuring an Event Listener Class
	Writing an Event Listener Class
	Templates for Event Listener Classes
	Servlet Context Event Listener Class Example
	HTTP Session Attribute Event Listener Class Example

	Additional Resources

	11 Using the HTTP Publish-Subscribe Server
	Overview of HTTP Publish-Subscribe Servers
	How the Pub-Sub Server Works
	Channels
	Message Delivery and Order of Delivery Guarantee

	Examples of Using the HTTP Publish-Subscribe Server
	Using the HTTP Publish-Subscribe Server: Typical Steps
	Creating the weblogic-pubsub.xml File
	Programming Using the Server-Side Pub-Sub APIs
	Overview of the Main API Classes and Interfaces
	Getting a Pub-Sub Server Instance and Creating a Local Client
	Publishing Messages to a Channel
	Subscribing to a Channel

	Configuring and Programming Message Filter Chains
	Programming the Message Filter Class
	Configuring the Message Filter Chain

	Updating a Browser Client to Communicate with the Pub-Sub Server
	Overriding the Default Servlet Mapping of the pubsub Jakarta EE Library

	Getting Runtime Information about the Pub-Sub Server and Channels
	Enabling Security
	Use Pub-Sub Constraints
	Specify Access to Channel Operations
	Restricting Access to All Channel Operations
	Opening Access to All Channel Operations
	Updating a Constraint Requires Redeploy of Web Application

	Map Roles to Principals
	Configure SSL for Pub-Sub Communication
	Additional Security Considerations
	Use AuthCookieEnabled to Access Resources
	Locking Down the Pub-Sub Server

	Advanced Topic: Using JMS as a Provider to Enable Cluster Support
	Configuring JMS as a Handler
	Configuring Client Session Failover

	Advanced Topic: Persisting Messages to Physical Storage
	Configuring Persistent Channels

	12 WebLogic JSP Reference
	JSP Tags
	Defining JSP Versions
	Rules for Defining a JSP File Version
	Rules for Defining a Tag File Version

	Reserved Words for Implicit Objects
	Directives for WebLogic JSP
	Using the page Directive to Set Character Encoding
	Using the taglib Directive

	Declarations
	Scriptlets
	Expressions
	Example of a JSP with HTML and Embedded Java
	Actions
	Using JavaBeans in JSP
	Instantiating the JavaBean Object
	Doing Setup Work at JavaBean Instantiation
	Using the JavaBean Object
	Defining the Scope of a JavaBean Object

	Forwarding Requests
	Including Requests

	JSP Expression Language
	Expressions and Attribute Values
	Expressions and Template Text

	JSP Expression Language Implicit Objects
	JSP Expression Language Literals and Operators
	Literals
	Errors, Warnings, Default Values
	Operators
	Operator Precedence

	JSP Expression Language Reserved Words
	JSP Expression Language Named Variables
	Securing User-Supplied Data in JSPs
	Using a WebLogic Server Utility Method

	Using Sessions with JSP
	Deploying Applets from JSP
	Using the WebLogic JSP Compiler
	JSP Compiler Syntax
	JSP Compiler Options
	Precompiling JSPs
	Using the JSPClassServlet

	13 Filters
	Overview of Filters
	How Filters Work
	Uses for Filters

	Writing a Filter Class
	Configuring Filters
	Configuring a Filter
	Configuring a Chain of Filters

	Filtering the Servlet Response Object
	Additional Resources

	14 Using WebLogic JSP Form Validation Tags
	Overview of WebLogic JSP Form Validation Tags
	Validation Tag Attribute Reference
	<wl:summary>
	<wl:form>
	<wl:validator>

	Using WebLogic JSP Form Validation Tags in a JSP
	Creating HTML Forms Using the <wl:form> Tag
	Defining a Single Form
	Defining Multiple Forms
	Re-Displaying the Values in a Field When Validation Returns Errors
	Re-Displaying a Value Using the <input> Tag
	Re-Displaying a Value Using the Apache Jakarta <input:text> Tag

	Using a Custom Validator Class
	Extending the CustomizableAdapter Class
	Sample User-Written Validator Class

	Sample JSP with Validator Tags

	15 Using Custom WebLogic JSP Tags (cache, process, repeat)
	Overview of WebLogic Custom JSP Tags
	Using the WebLogic Custom Tags in a Web Application
	Cache Tag
	Refreshing a Cache
	Flushing a Cache

	Process Tag
	Repeat Tag

	16 Using the WebLogic EJB to JSP Integration Tool
	Overview of the WebLogic EJB-to-JSP Integration Tool
	Basic Operation
	Interface Source Files
	Build Options Panel
	Troubleshooting
	Using EJB Tags on a JSP Page
	EJB Home Methods
	Stateful Session and Entity Beans
	Default Attributes

	A web.xml Deployment Descriptor Elements
	web.xml Namespace Declaration and Schema Location
	context-param
	description
	display-name
	distributable
	ejb-local-ref
	ejb-ref
	env-entry
	error-page
	filter
	filter-mapping
	icon
	jsp-config
	taglib
	jsp-property-group

	listener
	login-config
	form-login-config

	message-destination-ref
	mime-mapping
	resource-env-ref
	resource-ref
	security-constraint
	web-resource-collection
	auth-constraint
	user-data-constraint

	security-role
	servlet
	icon
	init-param
	security-role-ref

	servlet-mapping
	session-config
	web-app
	welcome-file-list

	B weblogic.xml Deployment Descriptor Elements
	weblogic.xml Namespace Declaration and Schema Location
	async-descriptor
	async-work-manager
	auth-filter
	charset-params
	charset-mapping
	input-charset

	container-descriptor
	access-logging-disabled
	allow-all-roles
	check-auth-on-forward
	client-cert-proxy-enabled
	container-initializer-enabled
	default-mime-type
	disable-implicit-servlet-mappings
	filter-dispatched-requests-enabled
	gzip-compression
	index-directory-enabled
	index-directory-sort-by
	langtag-revision
	minimum-native-file-size
	native-io-enabled
	optimistic-serialization
	prefer-application-packages
	prefer-application-resources
	prefer-forward-query-string
	prefer-web-inf-classes
	redirect-with-absolute-url
	referer-validation
	relogin-enabled
	require-admin-traffic
	resource-reload-check-secs
	save-sessions-enabled
	servlet-reload-check-secs
	session-monitoring-enabled
	show-archived-real-path-enabled
	single-threaded-servlet-pool-size
	temp-dir

	context-root
	description
	ejb-reference-description
	fast-swap
	jsp-descriptor
	library-ref
	logging
	ready-registration
	resource-description
	resource-env-description
	run-as-role-assignment
	security-permission
	security-role-assignment
	service-reference-description
	servlet-descriptor
	session-descriptor
	url-match-map
	virtual-directory-mapping
	weblogic-version
	wl-dispatch-policy
	work-manager
	Backward Compatibility Flags
	Compatibility with JSP 2.0 Web Applications
	JSP Behavior and Buffer Suffix
	Implicit Servlet 2.5 Package Imports

	Web Container Global Configuration

	C Support for GlassFish Deployment Descriptors
	D Web Application Best Practices
	CGI Best Practices
	Servlet Best Practices
	Best Practice When Subclassing ServletResponseWrapper

	E HTTP Proxy Servlet Parameters
	Debug
	DebugConfigInfo
	DefaultFileName
	FileCaching
	KeepAliveEnabled
	KeepAliveSecs
	MaxPostSize
	PathPrepend
	PathTrim
	SecureProxy
	WebLogicHost
	WebLogicPort
	WLCookieName
	WLIOTimeoutSecs
	WLLogFile
	WLProxyPassThrough
	WLProxySSL
	WLProxySSLPassThrough

	Index

