
Oracle® Fusion Middleware
Developing JNDI Applications for Oracle
WebLogic Server

15c (15.1.1.0.0)
G31652-01
October 2025

Oracle Fusion Middleware Developing JNDI Applications for Oracle WebLogic Server, 15c (15.1.1.0.0)

G31652-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation i

Conventions ii

1 Developing JNDI Applications for Oracle WebLogic Server

Understanding WebLogic JNDI 1

What is JNDI? 1

WebLogic Server JNDI 1

WebLogic JNDI 2

Using WebLogic JNDI to Connect a Java Client to a Single Server 2

Setting Up JNDI Environment Properties for the Initial Context 3

Creating a Context Using a Hashtable 4

Creating a Context Using a WebLogic Environment Object 4

Creating a Context from a Server-Side Object 5

Associating a WebLogic User with a Security Context 5

JNDI Contexts and Threads 5

Using the Context to Look Up a Named Object 6

Using a Named Object to Get an Object Reference 6

Closing the Context 7

Using WebLogic JNDI in a Clustered Environment 7

Using the Relationship of RMI and JNDI to Enable WebLogic Clusters 7

Making Custom Objects Available to a WebLogic Server Cluster 8

Data Caching Design Pattern 9

Exactly-Once-Per-Cluster Design Pattern 9

Using WebLogic JNDI from a Client in a Clustered Environment 10

Using JNDI from Within Jakarta EE Components 11

Setting Up Foreign JNDI 12

Developing JNDI Applications for Oracle WebLogic Server
G31652-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of i

Preface

This document describes developing Java Naming and Directory Interface (JNDI) API for
Oracle WebLogic Server 15c.

Audience
This document is written for application developers who want to design, develop, configure,
and manage applications using the Java Platform, Enterprise Edition (Jakarta EE) and want to
use the JNDI API to provide a unified interface to multiple naming and directory services in
their enterprise. It is assumed that readers know JNDI and the Java programming language.

It is assumed that readers knows the JNDI API and the Java programming language.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
For additional information on JNDI, see the following documentation:

• BEA-000001 to BEA-2194843 in Error Messages provides a list of all WebLogic Server
error messages, including JNDI subsystem messages.

• Communications in a Cluster in Administering Clusters for Oracle WebLogic Server
provides information on the cluster-wide JNDI tree.

Developing JNDI Applications for Oracle WebLogic Server
G31652-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Examples for the Web Application Developer
In addition to this document, Oracle provides examples for software developers within the
context of the Avitek Medical Records Application (MedRec) sample application, as well as
JNDI code examples.

Avitek Medical Records Application (MedRec)
MedRec is an end-to-end sample Jakarta EE application shipped with WebLogic Server that
simulates an independent, centralized medical record management system. The MedRec
application provides a framework for patients, doctors, and administrators to manage patient
data using a variety of different clients.

MedRec includes a service tier comprised primarily of Enterprise Java Beans (EJBs) that work
to process requests from web applications, web services, and workflow applications, and future
client applications. The application includes message-driven, stateless session, stateful
session, and entity EJBs.

For more information, see Sample Applications and Code Examples.

JNDI Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in the
ORACLE_HOME\wlserver\samples\server directory, where ORACLE_HOME represents the Oracle
Home directory for your WebLogic Server installation. For more information about the
WebLogic Server code examples, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

New and Changed WebLogic Server Features
For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server 15.1.1.0.0.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Developing JNDI Applications for Oracle WebLogic Server
G31652-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of ii

1
Developing JNDI Applications for Oracle
WebLogic Server

Oracle WebLogic Server implements the Java Naming and Directory Interface (JNDI) of the
Jakarta EE platform as a means to provide a standard, unified interface to multiple naming and
directory services in an enterprise.
This document is written for application developers who want to design, develop, configure,
and manage applications using the Java Platform, Enterprise Edition (Jakarta EE) and want to
use the JNDI API to provide a unified interface to multiple naming and directory services in
their enterprise. It is assumed that readers know JNDI and the Java programming language.

Understanding WebLogic JNDI
Applications use naming services to locate objects in data sources, EJBs, JMS, Mail Sessions,
and so on in the network. A naming service associates names with objects and finds objects
based on their given names. The RMI registry is a good example of a naming service. The
WebLogic Server implementation of JNDI supplies methods that give clients access to the
WebLogic Server naming services, make objects available in the WebLogic namespace, and
retrieve objects from the WebLogic namespace.

The following sections present an overview of the Java Naming and Directory Interface (JNDI)
implementation in WebLogic Server including:

What is JNDI?
JNDI provides a common-denominator interface to many existing naming services, such as
LDAP (Lightweight Directory Access Protocol) and DNS (Domain Name System). These
naming services maintain a set of bindings, which relate names to objects and provide the
ability to look up objects by name. JNDI allows the components in distributed applications to
locate each other.

The JNDI API, at https://docs.oracle.com/en/java/javase/17/docs/api/java.naming/
module-summary.html, is defined to be independent of any specific naming or directory service
implementation. It supports the use of a number of methods for accessing various new and
existing services. This support allows any service-provider implementation to be plugged into
the JNDI framework using the standard service provider interface (SPI) conventions.

WebLogic Server JNDI
The WebLogic Server implementation of JNDI supplies methods that:

• Give clients access to the WebLogic Server naming services

• Make objects available in the WebLogic namespace

• Retrieve objects from the WebLogic namespace

Each WebLogic Server cluster is supported by a replicated cluster-wide JNDI tree that provides
access to both replicated and pinned RMI and EJB objects. While the JNDI tree representing
the cluster appears to the client as a single global tree, the tree containing the cluster-wide

Developing JNDI Applications for Oracle WebLogic Server
G31652-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 12

https://docs.oracle.com/en/java/javase/17/docs/api/java.naming/module-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.naming/module-summary.html

services is actually replicated across each WebLogic Server instance in the cluster. For more
information, see Using WebLogic JNDI in a Clustered Environment .

Other WebLogic services can use the integrated naming service provided by WebLogic Server
JNDI. For example, WebLogic RMI can bind and access remote objects by both standard RMI
methods and JNDI methods.

In addition to the standard Java interfaces for JNDI, WebLogic Server provides its own
implementation, weblogic.jndi.WLInitialContextFactory, that uses the standard JNDI
interfaces.

You need not instantiate this class directly. Instead, you can use the standard
javax.naming.InitialContext class and set the appropriate hash table properties, as
documented in the section Setting Up JNDI Environment Properties for the Initial Context. All
interaction is done through the javax.naming.Context interface, as described in the JNDI
Javadoc.

For instructions on using the WebLogic JNDI API for client connections, see WebLogic JNDI.

WebLogic JNDI
You can program WebLogic JNDI to connect a Java client to a single server, set up JNDI
environment properties for the initial context, use the context to look up a named object to get
an object reference, and so on. You can use WebLogic JNDI in a clustered environment and
within Jakarta EE components, and to access objects on a remote JNDI tree without directly
connecting to that tree.

The following sections describe programming with WebLogic JNDI:

Using WebLogic JNDI to Connect a Java Client to a Single Server
The WebLogic Server JNDI Service Provider Interface (SPI) provides an InitialContext
implementation that allows remote Java clients to connect to WebLogic Server. The client can
specify standard JNDI environment properties that identify a particular WebLogic Server
deployment and related connection properties for logging in to WebLogic Server.

To interact with WebLogic Server, a Java client must be able to get an object reference for a
remote object and invoke operations on the object. To accomplish this, the client application
code must perform the following procedure:

1. Set up JNDI environment properties for the InitialContext.

2. Establish an InitialContext with WebLogic Server.

3. Use the context to look up a named object in the WebLogic Server namespace.

4. Use the named object to get a reference for the remote object and invoke operations on
the remote object.

5. Close the context.

The following sections discuss JNDI client operations for connecting to a specific WebLogic
Server instance. For information about using JNDI in a WebLogic Server cluster, see Using
WebLogic JNDI in a Clustered Environment .

Before you can use JNDI to access an object in a WebLogic Server environment, you must
load the object into the WebLogic Server JNDI tree.

Chapter 1
WebLogic JNDI

Developing JNDI Applications for Oracle WebLogic Server
G31652-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 12

Setting Up JNDI Environment Properties for the Initial Context
The first task that a Java client application must perform is to create environment properties.
The InitialContext factory uses various properties to customize the InitialContext for a
specific environment. You set these properties either by using a hash table or the set()
method of a WebLogic environment object. These properties, which are specified name-to-
value pairs, determine how the WLInitialContextFactory creates the context.

The following properties are used to customize the InitialContext:

• Context.PROVIDER_URL— specifies the URL of the WebLogic Server instance that provides
the name service. The default is t3://localhost:7001.

• Context.SECURITY_PRINCIPAL—specifies the identity of the user (that is, a user defined in
a WebLogic Server security realm) for authentication purposes. The property defaults to
the guest user unless the thread has already been associated with a WebLogic Server
user. For more information, see Associating a WebLogic User with a Security Context.

• Context.SECURITY_CREDENTIALS—specifies either the password for the user defined in the
Context.SECURITY_PRINCIPAL property or an object that implements the
weblogic.security.acl.UserInfo interface with the Context.SECURITY_CREDENTIALS
property defined. If you pass a UserInfo object in this property, the Context.PROVIDER_URL
property is ignored. The property defaults to the guest user unless the thread has already
been associated with a user. For more information, see Associating a WebLogic User with
a Security Context.

You can use the same properties on either a client or a server. If you define the properties on a
server-side object, a local context is used. If you define the properties on a client or another
WebLogic Server instance, the context delegates to a remote context running on the WebLogic
Server instance specified by the Context.PROVIDER_URL property. A remote object bound to the
server will not be serviced by peerGone, and will not be reachable if the client should fail.

There are some properties that cannot be changed after the creation of the context. These
properties include provider URL, user credentials, and factories. AddToEnvironment can be
used to change other properties after the creation of the context.

Example 1-1 shows how to obtain a context using the properties
Context.INITIAL_CONTEXT_FACTORY and Context.PROVIDER_URL.

Example 1-1 Obtaining a Context

Context ctx = null;
Hashtable ht = new Hashtable();
ht.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
ht.put(Context.PROVIDER_URL,
 "t3://localhost:7001");

try {
 ctx = new InitialContext(ht);
 // Use the context in your program
}
catch (NamingException e) {
 // a failure occurred
}
finally {
 try {ctx.close();}
 catch (Exception e) {
 // a failure occurred

Chapter 1
WebLogic JNDI

Developing JNDI Applications for Oracle WebLogic Server
G31652-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 12

 }
}

Additional WebLogic-specific properties are also available for controlling how objects are
bound into the cluster-wide JNDI tree. Bindings may or may not be replicated across the JNDI
tree of each server within the cluster due to the way these properties are set. Properties such
as these are identified by constants in the weblogic.jndi.WLContext class. For more
information about JNDI-related clustering issues, see Using WebLogic JNDI from a Client in a
Clustered Environment.

Creating a Context Using a Hashtable
You can create a context with a hashtable in which you have specified the properties described
in Setting Up JNDI Environment Properties for the Initial Context.

To do so, pass the hashtable to the constructor for InitialContext. The property
java.naming.factory.initial is used to specify how the InitialContext is created. To use
WebLogic JNDI, you must always set the java.naming.factory.initial property to
weblogic.jndi.WLInitialContextFactory. This setting identifies the factory that actually
creates the context.

Creating a Context Using a WebLogic Environment Object
You can also create a context by using a WebLogic environment object implemented by
weblogic.jndi.environment. Although the environment object is WebLogic-specific, it offers
the following advantages:

• A set of defaults which reduces the amount of code you need to write.

• Convenience set() methods that provide compile-time type-safety. The type-safety set()
methods can save you time both writing and debugging code.

The WebLogic environment object provides the following defaults:

• If you do not specify an InitialContext factory, WLInitialContextFactory is used.

• If you do not specify a user and password in the Context.SECURITY_PRINCIPAL and
Context.CREDENTIALS properties, the guest user and password are used unless the thread
has already been associated with a user.

• If you do not specify a Context.PROVIDER_URL property, t3://localhost:7001 is used.

If you want to create an InitialContext with these defaults, write the following code:

 Environment env = new Environment();
 Context ctx = env.getInitialContext();

If you want to set only a WebLogic Server to a Distributed Name Service (DNS) name for client
cluster access, write the following code:

 Environment env = new Environment();
 env.setProviderURL("t3://myweblogiccluster.com:7001");
 Context ctx = env.getInitialContext();

Chapter 1
WebLogic JNDI

Developing JNDI Applications for Oracle WebLogic Server
G31652-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 12

Note

Every time you create a new JNDI environment object, you are creating a new security
scope. This security scope ends with a context.close() method. The
environment.getInitialContext() method does not work correctly with the IIOP
protocol.

Example 1-2 illustrates using a JNDI environment object to create a security context.

Example 1-2 Creating a Security Context with a JNDI Environment Object

weblogic.jndi.Environment environment = new weblogic.jndi.Environment();
environment.setInitialContextFactory(
 weblogic.jndi.Environment.DEFAULT_INITIAL_CONTEXT_FACTORY);
environment.setProviderURL("t3://bross:4441");
environment.setSecurityPrincipal("guest");
environment.setSecurityCrendentials("guest");
InitialContext ctx = environment.getInitialContext();

Creating a Context from a Server-Side Object
You may also need to create a context from an object (an Enterprise JavaBean (EJB) or
Remote Method Invocation (RMI) object) that is instantiated in the Java Virtual Machine (JVM)
of WebLogic Server. When using a server-side object, you do not need to specify the
Context.PROVIDER_URL property. User names and passwords are required only if you want to
sign in as a specific user.

To create a context from within a server-side object, you first must create a new
InitialContext, as follows:

Context ctx = new InitialContext();

You do not need to specify a factory or a provider URL. By default, the context is created as a
context and is connected to the local naming service.

Associating a WebLogic User with a Security Context
See JNDI Contexts and Threads.

JNDI Contexts and Threads
When you create a JNDI context with a user name and password, you associate a user with a
thread. When the context is created, the user is pushed onto the context stack associated with
the thread. Before starting a new context on the thread, you must close the first context so that
the first user is no longer associated with the thread. Otherwise, users are pushed down in the
stack each time a new context created. This is not an efficient use of resources and may result
in the incorrect user being returned by ctx.lookup() calls. This scenario is illustrated by the
following steps:

1. Create a second context (with user name and credential) called ctx2 for user2. At this
point, the thread has a stack of users associated with it. User2 is at the top of the stack and
user1 is below it in the stack, so user2 is used is the current user.

2. If you do a ctx1.lookup("abc") call, user2 is used as the identity rather than user1,
because user2 is at the top of the stack. To get the expected result, which is to have
ctx1.lookup("abc") call performed as user1, you need to do a ctx2.close() call. The

Chapter 1
WebLogic JNDI

Developing JNDI Applications for Oracle WebLogic Server
G31652-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 12

ctx2.close() call removes user2 from the stack associated with the thread and so that a
ctx1.lookup("abc") call now uses user1 as expected.

Note

When the weblogic.jndi.enableDefaultUser flag is enabled, there are two
situations where a close() call does not remove the current user from the stack
and this can cause JNDI context problems.

For information on how to avoid JNDI context problems, see How to Avoid Potential JNDI
Context Problems.

How to Avoid Potential JNDI Context Problems
Issuing a close() call is usually as described in JNDI Contexts and Threads. However, the
following is an exception to the expected behavior that occurs when the
weblogic.jndi.enableDefaultUser flag is enabled:

Last Used

When using IIOP, an exception to expected behavior arises when there is one context on the
stack and that context is removed by a close(). The identity of the last context removed from
the stack determines the current identity of the user. This scenario is described in the following
steps:

1. Do a ctx1.close() call.

2. Do a ctx1.lookup()call. The current identity is user1.

3. Create a context (with user name and credential) called ctx2 for user2. In the process of
creating the context, user2 is associated with the thread and stored in the stack, that is,
the current identity is set to user2.

4. Do a ctx2.close() call.

5. Do a ctx2.lookup() call. The current identity is user2.

Using the Context to Look Up a Named Object
The lookup() method on the context is used to obtain named objects. The argument passed to
the lookup() method is a string that contains the name of the desired object. Example 1-3
shows how to retrieve an EJB named ServiceBean.

Example 1-3 Looking Up a Named Object

try {
 ServiceBean bean = (ServiceBean)ctx.lookup("ejb.serviceBean");
}catch (NameNotFoundException e) {
 // binding does not exist
}catch (NamingException e) {
 // a failure occurred
}

Using a Named Object to Get an Object Reference
EJB client applications get object references to EJB remote objects from EJB Homes. RMI
client applications get object references to other RMI objects from an initial named object. Both

Chapter 1
WebLogic JNDI

Developing JNDI Applications for Oracle WebLogic Server
G31652-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 12

initial named remote objects are known to WebLogic Server as factories. A factory is any
object that can return a reference to another object that is in the WebLogic namespace.

The client application invokes a method on a factory to obtain a reference to a remote object of
a specific class. The client application then invokes methods on the remote object, passing any
required arguments.

Example 1-4 contains a code fragment that obtains a remote object and then invokes a method
on it.

Example 1-4 Using a Named Object to Get an Object Reference

ServiceBean bean = ServiceBean.Home.create("ejb.ServiceBean")
Servicebean.additem(66);

Closing the Context
After clients finish working with a context, Oracle recommends that the client close the context
in order to release resources and avoid memory leaks. Oracle recommends that you use a
finally{} block and wrap the close() method in a try{} block. If you attempt to close a
context that was never instantiated because of an error, the Java client application throws an
exception.

In Example 1-5, the client closes the context, releasing the resource being used.

Example 1-5 Closing the Context

try {
 ctx.close();
} catch () {
//a failure occurred
}

Using WebLogic JNDI in a Clustered Environment
The intent of WebLogic JNDI is to provide a naming service for Jakarta EE services,
specifically EJB, RMI, and Java Messaging Service (JMS). Therefore, it is important to
understand the implications of binding an object to the JNDI tree in a clustered environment.

The following sections discuss how WebLogic JNDI is implemented in a clustered environment
and offer some approaches you can take to make your own objects available to JNDI clients.

Using the Relationship of RMI and JNDI to Enable WebLogic Clusters
WebLogic RMI is the enabling technology that allows clients in one JVM to access EJBs and
JMS services from a client in another JVM. RMI stubs marshal incoming calls from the client to
the RMI object. To make Jakarta EE services available to a client, WebLogic binds an RMI stub
for a particular service into its JNDI tree under a particular name. The RMI stub is updated with
the location of other instances of the RMI object as the instances are deployed to other servers
in the cluster. If a server within the cluster fails, the RMI stubs in the other server's JNDI tree
are updated to reflect the server failure.

When a client connects to a cluster, it is actually connecting to one of the WebLogic Server
instances in the cluster. Because the JNDI tree for this WebLogic Server instance contains the
RMI stubs for all services offered by the other WebLogic Servers in the cluster in addition to its
own services, the cluster appears to the client as one WebLogic Server instance hosting all of
the cluster-wide services. When a new WebLogic Server instance joins a cluster, each
WebLogic Server instance already in the cluster is responsible for sharing information about its
own services to the new WebLogic Server instance. With the information collected from all the

Chapter 1
WebLogic JNDI

Developing JNDI Applications for Oracle WebLogic Server
G31652-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 12

other servers in the cluster, the new server will create its own copy of the cluster-wide JNDI
tree.

RMI stubs significantly affect how WebLogic JNDI is implemented in a clustered environment:

• RMI stubs are relatively small. This allows WebLogic JNDI to replicate stubs across all
WebLogic Server instances in a cluster with little overhead in terms of server-to-server
cross-talk.

• RMI stubs serve as the mechanism for replication across a cluster. An instance of a RMI
object is deployed to a single WebLogic Server instance, however, the stub is replicated
across the cluster.

Making Custom Objects Available to a WebLogic Server Cluster
When you bind a custom object (a non-RMI object) into a JNDI tree in a WebLogic Server
cluster, the object is replicated across all the servers in the cluster. However, if the host server
goes down, the custom object is removed from the cluster's JNDI tree. Custom objects are not
replicated unless the custom object is bound again. You need to unbind and rebind a custom
object every time you want to propagate changes made to the custom object. Therefore,
WebLogic JNDI should not be used as a distributed object cache. You can use a third-party
solution with WebLogic Server to provide distributed caches.

Suppose the custom object needs to be accessed only by EJBs that are deployed on only one
WebLogic Server instance. Obviously it is unnecessary to replicate this custom object
throughout all the WebLogic Server instances in the cluster. In fact, you should avoid
replicating the custom object in order to avoid any performance degradation due to
unnecessary server-to-server communication. To create a binding that is not replicated across
WebLogic Server instances in a cluster, you must specify the REPLICATE_BINDINGS property
when creating the context that binds the custom object to the namespace. Example 1-6
illustrates the use of the REPLICATE_BINDINGS property.

Example 1-6 Using the REPLICATE_BINDINGS Property

Hashtable ht = new Hashtable();
//turn off binding replication
ht.put(WLContext.REPLICATE_BINDINGS, "false");
try {
 Context ctx = new InitialContext(ht);
 //bind the object
 ctx.bind("my_object", MyObect);
} catch (NamingException ne) {
//failure occured
}

When you are using this technique and you need to use the custom object, you must explicitly
obtain an InitialContext for the WebLogic Server instance. If you connect to any other
WebLogic Server instance in the cluster, the binding does not appear in the JNDI tree.

If you need a custom object accessible from any WebLogic Server instance in the cluster,
deploy the custom object on each WebLogic Server instance in the cluster without replicating
the JNDI bindings.

When using WebLogic JNDI to replicate bindings, the bound object will be handled as if it is
owned by the host WebLogic Server instance. If the host WebLogic Server instance fails, the
custom object is removed from all the JNDI trees of all WebLogic Server instances in the
cluster. This behavior can have an adverse effect on the availability of the custom object.

Chapter 1
WebLogic JNDI

Developing JNDI Applications for Oracle WebLogic Server
G31652-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 12

Data Caching Design Pattern
A common task in Web applications is to cache data used by multiple objects for a period of
time to avoid the overhead associated with data computation or connecting to another service.

Suppose you have designed a custom data caching object that performs well on a single
WebLogic Server instance and you would like to use this same object within a WebLogic
Server cluster. If you bind the data caching object in the JNDI tree of one of the WebLogic
Server instances, WebLogic JNDI will, by default, copy the object to each of the other
WebLogic Server instances in the cluster. It is important to note that since this is not an RMI
object, what you are binding into the JNDI tree (and copying to the other WebLogic Server
instances) is the object itself, not a stub that refers to a single instance of the object hosted on
one of the WebLogic Server instances. Do not assume from the fact that WebLogic Server
copies a custom object between servers that custom objects can be used as a distributed
cache. Remember the custom object is removed from the cluster if the WebLogic Server
instance to which it was bound fails and changes to the custom object are not propagated
through the cluster unless the object is unbound and rebound to the JNDI tree.

For performance and availability considerations, it is often desirable to avoid using WebLogic
JNDI's binding replication to copy large custom objects with high availability requirements to all
of the WebLogic Server instances in a cluster. As an alternative, you can deploy a separate
instance of the custom object on each of the WebLogic Server instances in the cluster. When
binding the object to each WebLogic Server instance's JNDI tree, you should make sure to turn
off binding replication as described in Making Custom Objects Available to a WebLogic Server
Cluster. In this design pattern, each WebLogic Server instance has a copy of the custom object
but you will avoid copying large amounts of data from server to server.

Regardless of which approach you use, each instance of the object should maintain its own
logic for when it needs to refresh its cache independently of the other data cache objects in the
cluster. For example, suppose a client accesses the data cache on one WebLogic Server
instance. It is the first time the caching object has been accessed, so it computes or obtains
the information and saves a copy of the information for future requests. Now suppose another
client connects to the cluster to perform the same task as the first client only this time the
connection is made to a different WebLogic Server instance in the cluster. If this is the first time
this particular data caching object has been accessed, it will need to compute the information
regardless of whether other data caching objects in the cluster already have the information
cached. Of course, for any future requests, this instance of the data cache object will be able to
refer to the information it has saved.

Exactly-Once-Per-Cluster Design Pattern
In some cases, it is desirable to have a service that appears only once in the cluster. This is
accomplished by deploying the service on one machine only. For RMI objects, you can use the
default behavior of WebLogic JNDI to replicate the binding (the RMI stub) and the single
instance of your object will be accessible from all WebLogic Server instances in the cluster.
This is referred to as a pinned service. For non-RMI objects, make sure that you use the
REPLICATE_BINDINGS property when binding the object to the namespace. In this case, you will
need to explicitly connect to the host WebLogic Server instance to access the object.
Alternatively, you can create an RMI object that is deployed on the same host WebLogic
Server instance that can act as a proxy for your non-RMI object. The stub for the proxy can be
replicated (using the default WebLogic JNDI behavior) allowing clients connected to any
WebLogic Server instance in the cluster to access the non-RMI object via the RMI proxy.

For services with high-availability requirements, you can configure automatic migration of an
RMI object to another server. See Whole Server Migration in Administering Clusters for Oracle
WebLogic Server.

Chapter 1
WebLogic JNDI

Developing JNDI Applications for Oracle WebLogic Server
G31652-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 12

Using WebLogic JNDI from a Client in a Clustered Environment
The JNDI binding for an object can appear in the JNDI tree for one WebLogic Server instance
in the cluster, or it can be replicated to all the WebLogic Server instances in the cluster. If the
object of interest is bound in only one WebLogic Server instance, you must explicitly connect to
the host WebLogic Server instance by setting the Context.PROVIDER_URL property to the host
WebLogic Server URL when creating the InitialContext, as described in Using WebLogic
JNDI to Connect a Java Client to a Single Server.

In most cases, however, the object of interest is either a clustered service or a pinned service.
As a result, a stub for the service is displayed in the JNDI tree for each WebLogic Server
instance in the cluster. In this case, the client does not need to name a specific WebLogic
Server instance to provide its naming service. In fact, it is best for the client to simply request
that a WebLogic cluster provide a naming service, in which case the context factory in
WebLogic Server can choose whichever WebLogic Server instance in the cluster seems most
appropriate for the client.

Currently, a naming service provider is chosen within WebLogic using a DNS name for the
cluster that can be defined by the ClusterAddress attribute. This attribute defines the address
to be used by clients to connect to a cluster. This address may be either a DNS host name that
maps to multiple IP addresses or a comma separated list of single address host names or IP
addresses. If network channels are configured, it is possible to set the cluster address on a per
channel basis. See Communications In a Cluster in Administering Clusters for Oracle
WebLogic Server.

The context that is returned to a client of clustered services is, in general, implemented as a
failover stub that can transparently change the naming service provider if a failure (such as a
communication failure) with the selected WebLogic Server instance occurs.

Example 1-7 shows how a client uses the cluster's naming service.

Example 1-7 Using the Naming Service in a WebLogic Cluster

Hashtable ht = new Hashtable();
ht.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
ht.put(Context.PROVIDER_URL, "t3://acmeCluster:7001");
try {
 Context ctx = new InitialContext(ht);
 // Do the client's work
}
catch (NamingException ne) {
 // A failure occurred
}
finally {
 try {ctx.close();}
 catch (Exception e) {
 // a failure occurred
 }
}

The hostname specified as part of the provider URL is the DNS name for the cluster that can
be defined by the ClusterAddress setting in a Cluster stanza of the config.xml file.
ClusterAddress maps to the list of hosts providing naming service in this cluster. See
Understanding Cluster Configuration in Administering Clusters for Oracle WebLogic Server.

In Example 1-7, the cluster name acmeCluster is used to connect to any of the WebLogic
Server instances in the cluster. The resulting context is replicated so that it can fail over
transparently to any WebLogic Server instance in the cluster.

Chapter 1
WebLogic JNDI

Developing JNDI Applications for Oracle WebLogic Server
G31652-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 12

An alternative method of specifying the initial point of contact with the WebLogic Server cluster
is to supply a comma-delimited list of DNS server names or IP addresses.

• The following example specifies a list of WebLogic Server instances using the same port:

ht.put(Context.PROVIDER_URL,"t3://acme1,acme2,acme3:7001");

All the WebLogic Server instances listen on the port specified at the end of the URL.

• The following example specifies a list of WebLogic Server instances using different ports:

ht.put(Context.PROVIDER_URL,"t3://node1:7001,node2:7002,node3:7003");

When you use a DNS name which maps to multiple servers, WebLogic Server relies on DNS
for load balancing.

When you use a comma-delimited list of DNS names for WebLogic Server nodes, failover is
accomplished using the round-robin method, with the request going to a randomly chosen
server until that server fails to respond, after which the request will go to the next server on the
list. This will continue for each server instance that fails.

Once the client has gotten a context, no additional load balancing occurs unless there is a
failure, in which case a WebLogic Server instance will fail over to another node in the cluster.

A remote client will get the context from the first available server. A client that is local to a
server in the cluster will never go to a remote server for JNDI operations.

When you look up a stub, the first invocation of the stub will ordinarily go to the server from
which you got the context. If the stub is clusterable, subsequent invocations will be load
balanced based on the user defined load balancing policy.

For additional information about JNDI and clusters see Overview in Administering Clusters for
Oracle WebLogic Server.

Using JNDI from Within Jakarta EE Components
Although it is possible for Jakarta EE components to use the global environment directly, it is
preferable to use the component environment. Each Jakarta EE component within a Jakarta
EE application had its own component environment which is set up based on information
contained in the component's deployment descriptors.

Jakarta EE components are able to look up their component environments using the following
code:

Context ctx = new InitailContext();
Context comp_env = (Context)ctx.lookup("java:comp/env");

Because you are working within a Jakarta EE component, you do not need to set up the
hashtable or environment objects to define the connection information.

This context is used in the same way as the global environment, however, the names you use
are the ones defined in the deployment descriptor for your component. For example, if you
have an ejb-ref in your deployment descriptor that looks like:

<ejb-ref>
...
<ejb-ref-name>ejb1</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>ejb1.EJB1Home</home>
<remote>ejb1.EJB1</remote>
...
</ejb-ref>

Chapter 1
WebLogic JNDI

Developing JNDI Applications for Oracle WebLogic Server
G31652-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 12

you would look up the name defined with the <ejb-ref-name> setting, which in this case is
"ejb1".

Using the component environment rather than the global environment to set your JNDI name is
advantageous because the name it refers to is resolved during deployment. This means that
naming conflicts can be resolved without rewriting the code.

Setting Up Foreign JNDI
Foreign JNDI is an API that allows you to access objects on a remote JNDI tree without having
to connect directly to the remote tree.

Foreign JNDI enables you to make links to a JNDI tree on another server or provider including,
but not limited to, WebLogic Server, or a JNDI tree in a Java program. Once you have
configured Foreign JNDI, you can use an object that is somewhere else with the same ease
that you would use an object bound in your WebLogic Server instance.

To configure Foreign JNDI, create a ForeignJNDIProvider with the address of the remote
JNDI provider whose objects you want to use, and create a user name and password to
access those objects. Optionally, you can target Foreign JNDI references to specific servers,
clusters, or both. (If no targets are selected, Foreign JNDI references will be deployed to the
entire domain). Then you can create ForeignJNDILinks and ForeignJNDIObjects that set up a
relationship between a name in the local JNDI tree to the object in the remote tree.

Chapter 1
WebLogic JNDI

Developing JNDI Applications for Oracle WebLogic Server
G31652-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 12

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Examples for the Web Application Developer
	Avitek Medical Records Application (MedRec)
	JNDI Examples in the WebLogic Server Distribution

	New and Changed WebLogic Server Features

	Conventions

	1 Developing JNDI Applications for Oracle WebLogic Server
	Understanding WebLogic JNDI
	What is JNDI?
	WebLogic Server JNDI

	WebLogic JNDI
	Using WebLogic JNDI to Connect a Java Client to a Single Server
	Setting Up JNDI Environment Properties for the Initial Context
	Creating a Context Using a Hashtable
	Creating a Context Using a WebLogic Environment Object
	Creating a Context from a Server-Side Object
	Associating a WebLogic User with a Security Context
	JNDI Contexts and Threads
	How to Avoid Potential JNDI Context Problems
	Last Used

	Using the Context to Look Up a Named Object
	Using a Named Object to Get an Object Reference
	Closing the Context
	Using WebLogic JNDI in a Clustered Environment
	Using the Relationship of RMI and JNDI to Enable WebLogic Clusters
	Making Custom Objects Available to a WebLogic Server Cluster
	Data Caching Design Pattern
	Exactly-Once-Per-Cluster Design Pattern
	Using WebLogic JNDI from a Client in a Clustered Environment

	Using JNDI from Within Jakarta EE Components
	Setting Up Foreign JNDI

