
Oracle® Fusion Middleware
Developing JTA Applications for Oracle
WebLogic Server

15c (15.1.1.0.0)
G31654-01
October 2025

Oracle Fusion Middleware Developing JTA Applications for Oracle WebLogic Server, 15c (15.1.1.0.0)

G31654-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation i

Conventions ii

1 Introducing Transactions

Overview of Transactions in WebLogic Server Applications 1

ACID Properties of Transactions 1

Supported Programming Model 1

Supported API Models 1

Distributed Transactions and the Two-Phase Commit Protocol 2

Support for Business Transactions 2

When to Use Transactions 3

What Happens During a Transaction 4

Transactions in WebLogic Server EJB Applications 4

Container-managed Transactions 5

Bean-managed Transactions 5

Transactions in WebLogic Server RMI Applications 6

Transactions Sample Code 7

Transactions Sample EJB Code 7

Importing Packages 7

Using JNDI to Return an Object Reference 8

Starting a Transaction 8

Completing a Transaction 8

Transactions Sample RMI Code 9

Importing Packages 9

Using JNDI to Return an Object Reference to the UserTransaction Object 10

Starting a Transaction 10

Completing a Transaction 10

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of vii

2 Configuring Transactions

Overview of Transaction Configuration 1

Configuring JTA 1

Unregister Resource Grace Period 5

Additional Attributes for Managing Transactions 5

XA Transaction Cluster Affinity 6

Configuring Network Channels for JTA Communication 6

Using Transaction Log Files to Recover Transactions 10

Using the Default Persistent Store 10

Setting the Path for the Default Persistent Store 10

Setting the Default Persistent Store Synchronous Write Policy 10

Using a JDBC TLOG Store 10

Last Logging Resource 11

XA Transactions without Transaction TLog Write 11

What is a Determiner Resource? 11

Configuring XA Transactions without TLogs 11

Read-Only, One-Phase Commit Optimizations 14

Configuring Read-only, One-phase Commit Optimization and Two-phase Commit
Disablement 14

Monitoring Read-only, One-phase Transaction Statistics 15

3 Managing Transactions

Monitoring Transactions 1

Handling Heuristic Completions 1

Moving a Server 2

Abandoning Transactions 2

Transaction Completion Timeout 3

Manually Resolving Current (Inflight) Transactions 3

Manual Commit and Rollback Options 5

Transaction Recovery After a Server Fails 5

Transaction Recovery Service Actions After a Crash 6

Recovering Transactions For a Failed Non-Clustered Server 7

Recovering Transactions For a Failed Clustered Server 8

Server Migration 8

Automatic Transaction Recovery Service Migration 8

Manual Transaction Recovery Service Migration 8

Managed Server Independence 9

Limitations of Migrating the Transaction Recovery Service 10

Preparing to Migrate the Transaction Recovery Service 10

Constraining Servers to Which the Transaction Recovery Service Can Migrate 11

Manually Migrating the Transaction Recovery Service to the Original Server 12

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of vii

How to Remove Transaction Records 12

How to Remove the TLog in the LLR Database 13

How to Remove the TLog Files from the Default Store 13

How to Remove the TLog from a JDBC TLog Store 13

4 Using Transaction Guard

Overview of Transaction Guard 1

Enabling Transaction Guard 2

Enabling Transaction Guard for WebLogic Data Sources 2

Enabling Transaction Guard for Database Service 2

Data Source Statistics for Transaction Guard 3

5 Transaction Service

About the Transaction Service 1

Capabilities and Limitations 1

Lightweight Clients with Delegated Commit 1

Client-initiated Transactions 1

Transaction Integrity 2

Transaction Termination 2

Flat Transactions 2

Relationship of the Transaction Service to Transaction Processing 2

Multithreaded Transaction Client Support 2

Transaction Id 3

Transaction Name and Properties 3

Transaction Status 3

Transaction Statistics 3

General Constraints 3

Transaction Scope 4

Transaction Service in EJB Applications 4

Transaction Service in RMI Applications 4

Transaction Service Interoperating with OTS 4

Server-Server 2PC 5

Client Demarcated Transactions 5

6 Transaction Recovery Spanning Multiple Sites or Data Centers

Understanding XA Transaction Recovery in Disaster Recovery 1

Active-Passive XA Transaction Recovery 1

Example Active-Passive Domain Configuration for XA Transaction Recovery 2

Active-Active Stretch Cluster XA Transaction Recovery 3

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iii of vii

Example Active-Active Stretch Cluster for XA Transaction Recovery 4

Additional Information on Maximum Availability Architecture 5

7 Configuring Secure Inter-Domain and Intra-Domain Transaction
Communication

What is Secure Inter-Domain and Intra-Domain Transaction Communication? 1

Requirements for Transaction Communication 1

How to Determine the Communication to Use for Domain Transactions 2

Configuring Secure Channel Communication 3

Local Domain Security 3

Cross Domain Security 4

Important Considerations When Configuring Cross Domain Security 4

Cross Domain Security is Not Transitive 4

Adding Domains to the Exclude List Based on Transaction Participation 6

8 Java Transaction API and Oracle WebLogic Extensions

JTA API Overview 1

Oracle WebLogic Extensions to JTA 1

9 Logging Last Resource Transaction Optimization

About the LLR Optimization Transaction Optimization 1

Logging Last Resource Processing Details 2

LLR Database Table Details 2

LLR Table Transaction Log Records 3

Failure and Recovery Processing for LLR 3

Coordinating Server Crash 4

JDBC Connection Failure 4

LLR Transaction Recover During Server Startup 4

Failover Considerations for LLR 5

Optimizing Performance with LLR 5

Optimizing Transaction Coordinator Location 5

Varied Performance for Read-Only Operations Through an LLR Data Source 5

Dedicating LLR Tables by Data Source 6

Limitations 6

First Resource Commit Ordering 6

10

Transactions in EJB Applications

Before You Begin 1

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iv of vii

General Guidelines 1

Transaction Attributes 2

About Transaction Attributes for EJBs 2

Transaction Attributes for Container-Managed Transactions 2

Transaction Attributes for Bean-Managed Transactions 3

Participating in a Transaction 3

Transaction Semantics 3

Transaction Semantics for Container-Managed Transactions 3

Transaction Semantics for Stateful Session Beans 4

Transaction Semantics for Stateless Session Beans 4

Transaction Semantics for Entity Beans 4

Transaction Semantics for Bean-Managed Transactions 5

Transaction Semantics for Stateful Session Beans 5

Transaction Semantics for Stateless Session Beans 6

Session Synchronization 6

Synchronization During Transactions 6

Setting Transaction Timeouts 7

Handling Exceptions in EJB Transactions 7

11

Transactions in RMI Applications

Before You Begin 1

General Guidelines 1

12

Using JDBC XA Drivers with WebLogic Server

Using Oracle Thin/XA Driver 1

Set the Environment for the Oracle Thin/XA Driver 1

Configure WebLogic Server 1

Enable XA on the Database Server 1

Oracle Thin/XA Driver Configuration Properties 2

Using Other XA Drivers 2

Using WebLogic-branded Data Direct Drivers 2

Additional Considerations 2

13

Coordinating XAResources with the WebLogic Server Transaction
Manager

Overview of Coordinating Distributed Transactions with Foreign XAResources 1

Registering an XAResource to Participate in Transactions 2

Enlisting and Delisting an XAResource in a Transaction 4

Standard Enlistment 5

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page v of vii

Dynamic Enlistment 6

Static Enlistment 6

Commit processing 7

Recovery 7

Resource Health Monitoring 8

Jakarta EE Connector Architecture Resource Adapter 8

Implementation Tips 8

Sharing the WebLogic Server Transaction Log 9

Transaction global properties 9

TxHelper.createXid 10

Changes in the Resource Registration Name 10

FAQs 10

Additional Documentation about JTA 11

14

Participating in Transactions Managed by a Third-Party Transaction
Manager

Overview of Participating in Foreign-Managed Transactions 1

Importing Transactions with the Client Interposed Transaction Manager 2

Get the Client Interposed Transaction Manager 3

Get the XAResource from the Interposed Transaction Manager 4

Cluster-wide Recovery 4

Limitations of the Client Interposed Transaction Manager 4

Importing Transactions with the Server Interposed Transaction Manager 4

Get the Server Interposed Transaction Manager 5

Limitations of the Server Interposed Transaction Manager 5

Transaction Processing for Imported Transactions 6

Transaction Processing Limitations for Imported Transactions 6

Commit Processing for Imported Transactions 7

Recovery for Imported Transactions 7

Transactions that Span Transaction Manager Systems 7

15

Troubleshooting Transactions

Overview 1

Troubleshooting Tools 1

Exceptions 1

Transaction Identifier 1

Transaction Name and Properties 2

Transaction Status 2

Transaction Statistics 2

Transaction Monitoring 2

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page vi of vii

Debugging JTA Resources 2

Enabling Debugging 3

Enable Debugging Using the Command Line 3

Enable Debugging Using the WebLogic Remote Console 3

Enable Debugging Using the WebLogic Scripting Tool 3

Changes to the config.xml File 4

JTA Debugging Scopes 5

Index

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page vii of vii

Preface

This document explains developing JTA applications for Oracle WebLogic Server.

Audience
This document is written for application developers who are interested in building transactional
Java applications that run in the WebLogic Server environment. It is assumed that readers are
familiar with the WebLogic Server platform, Java Platform, Enterprise Edition (Jakarta EE)
programming, and transaction processing concepts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
Samples and Tutorials

Oracle provides a variety of code examples and tutorials that show WebLogic Server
configuration and API use, and provide practical instructions on how to perform key
development tasks. For more information, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of ii

1
Introducing Transactions

Understand the basics of transaction such as their ACID properties, supported programming
and API models, distributed transactions, and so on. Also, learn when to use a transaction and
how a transaction is processed with help of a example transaction code.

Overview of Transactions in WebLogic Server Applications
Learn about the ACID properties of transactions, supported programming and API models,
distributed transactions, two-phase protocol and support for business transaction.

ACID Properties of Transactions
A fundamental feature of WebLogic Server is transaction management. Transactions are a
means to guarantee that database changes are completed accurately and that they take on all
the ACID properties of a high-performance transaction, including:

• Atomicity—all changes that a transaction makes to a database are made as one unit;
otherwise, all changes are rolled back.

• Consistency—a successful transaction transforms a database from a previous valid state
to a new valid state.

• Isolation—changes that a transaction makes to a database are not visible to other
operations until the transaction completes its work.

• Durability—changes that a transaction makes to a database survive future system or
media failures.

WebLogic Server protects the integrity of your transactions by providing a complete
infrastructure for ensuring that database updates are done accurately, even across a variety of
resource managers. If any one operation fails, the entire set of operations is rolled back.

Supported Programming Model
WebLogic Server supports transactions in the Java Platform, Enterprise Edition (Jakarta EE)
programming model. WebLogic Server provides full support for transactions in Java
applications that use Jakarta Enterprise Beans, in compliance with the Jakarta Enterprise
Beans (EJBs) Specification 4.0. WebLogic Server also supports the Java Transaction API
(JTA) Specification 2.0. Both specifications are published at the following locations:

Specification Location

EJB 4.0 https://jakarta.ee/specifications/enterprise-beans/4.0/

JTA 2.0 https://jakarta.ee/specifications/transactions/2.0/

Supported API Models
WebLogic Server supports the Java Transaction API (JTA), which is used by:

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 11

https://jcp.org/en/jsr/detail?id=345
https://jcp.org/en/jsr/detail?id=907

• Enterprise JavaBean (EJB) applications within the WebLogic Server EJB container.

• Remote Method Invocation (RMI) applications within the WebLogic Server infrastructure.

For information, see the following API Javadoc.

• https://jakarta.ee/specifications/transactions/2.0/apidocs/

• https://docs.oracle.com/en/java/javase/17/docs/api/java.transaction.xa/module-
summary.html

Distributed Transactions and the Two-Phase Commit Protocol
WebLogic Server supports distributed transactions and the two-phase commit protocol for
enterprise applications. A distributed transaction is a transaction that updates multiple
resource managers (such as databases) in a coordinated manner. In contrast, a local
transaction begins and commits the transaction to a single resource manager that internally
coordinates API calls; there is no transaction manager. The two-phase commit protocol is a
method of coordinating a single transaction across two or more resource managers. It
guarantees data integrity by ensuring that transactional updates are committed in all of the
participating databases, or are fully rolled back out of all the databases, reverting to the state
prior to the start of the transaction. In other words, either all the participating databases are
updated, or none are updated.

Distributed transactions involve the following participants:

• Transaction originator—initiates the transaction. The transaction originator can be a user
application, an Enterprise JavaBean, or a JMS client.

• Transaction manager—manages transactions on behalf of application programs. A
transaction manager coordinates commands from application programs to start and
complete transactions by communicating with all resource managers that are participating
in those transactions. When resource managers fail during transactions, transaction
managers help resource managers decide whether to commit or roll back pending
transactions.

• Recoverable resource—provides persistent storage for data. The resource is most often a
database.

• Resource manager—provides access to a collection of information and processes.
Transaction-aware JDBC drivers are common resource managers. Resource managers
provide transaction capabilities and permanence of actions; they are entities accessed and
controlled within a distributed transaction. The communication between a resource
manager and a specific resource is called a transaction branch.

The first phase of the two-phase commit protocol is called the prepare phase. The required
updates are recorded in a transaction log file, and the resource must indicate, through a
resource manager, that it is ready to make the changes. Resources either vote to commit the
updates or to roll back to the previous state. What happens in the second phase depends on
how the resources vote. If all resources vote to commit, all the resources participating in the
transaction are updated. If one or more of the resources vote to roll back, then all the
resources participating in the transaction are rolled back to their previous state.

Support for Business Transactions
WebLogic JTA provides the following support for your business transactions:

• Creates a unique transaction identifier when a client application initiates a transaction.

Chapter 1
Overview of Transactions in WebLogic Server Applications

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 11

https://javaee.github.io/javaee-spec/javadocs/javax/transaction/package-summary.html
https://javaee.github.io/javaee-spec/javadocs/javax/transaction/xa/package-summary.html
https://javaee.github.io/javaee-spec/javadocs/javax/transaction/xa/package-summary.html

• Supports an optional transaction name describing the business process that the
transaction represents. The transaction name makes statistics and error messages more
meaningful.

• Works with the WebLogic Server infrastructure to track objects that are involved in a
transaction and, therefore, coordinates these objects when the transaction is ready to
commit.

• Notifies the resource managers—which are, most often, databases—when they are
accessed on behalf of a transaction. Resource managers then lock the accessed records
until the end of the transaction.

• Orchestrates the two-phase commit when the transaction completes, which ensures that
all the participants in the transaction commit their updates simultaneously. It coordinates
the commit with any databases that are being updated using Open Group's XA protocol.
Many popular relational databases support this standard.

• Executes the rollback procedure when the transaction must be stopped.

• Executes a recovery procedure when failures occur. It determines which transactions were
active in the machine at the time of the crash, and then determines whether the transaction
should be rolled back or committed.

• Manages transaction timeouts. If a business operation takes too much time or is only
partially completed due to failures, the system takes action to automatically issue a timeout
for the transaction and free resources, such as database locks.

When to Use Transactions
Learn about the situations in which you can use transactions supported by WebLogic Server.

Transactions are appropriate in the situations described in the following list. Each situation
describes a transaction model supported by the WebLogic Server system. Keep in mind that
distributed transactions should not span more than a single user input screen; more complex,
higher level transactions are best implemented with a series of distributed transactions.

• Within the scope of a single client invocation on an object, the object performs multiple
edits to data in a database. If one edits fails, the object needs a mechanism to roll back all
the edits. (In this situation, the individual database edits are not necessarily EJB or RMI
invocations. A client, such as an applet, obtain a reference to the Transaction and
TransactionManager objects, using JNDI, and start a transaction.)

For example, consider a banking application. The client invokes the transfer operation on a
teller object. The transfer operation requires the teller object to make the following
invocations on the bank database:

– Invoking the debit method on one account.

– Invoking the credit method on another account.

If the credit invocation on the bank database fails, the banking application needs a way to
roll back the previous debit invocation.

• The client application needs a conversation with an object managed by the server
application, and the client application makes multiple invocations on a specific object
instance. The conversation may be characterized by one or more of the following:

– Data is cached in memory or written to a database during or after each successive
invocation.

– Data is written to a database at the end of the conversation.

Chapter 1
When to Use Transactions

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 11

– The client application needs the object to maintain an in-memory context between
each invocation; that is, each successive invocation uses the data that is being
maintained in memory across the conversation.

– At the end of the conversation, the client application needs the ability to cancel all
database write operations that may have occurred during or at the end of the
conversation.

What Happens During a Transaction
Learn the difference in how transactions work in WebLogic Server EJB applications and
WebLogic Server RMI applications.

Transactions in WebLogic Server EJB Applications
Figure 1-1 illustrates how transactions work in a WebLogic Server EJB application.

Figure 1-1 How Transactions Work in a WebLogic Server EJB Application

WebLogic Server supports two types of transactions in WebLogic Server EJB applications:

• In container-managed transactions, the WebLogic Server EJB container manages the
transaction demarcation. Transaction attributes in the EJB deployment descriptor
determine how the WebLogic Server EJB container handles transactions with each method
invocation. For more information about the deployment descriptor, see Implementing
Enterprise Java Beans in Developing Enterprise JavaBeans, Version 2.1, for Oracle
WebLogic Server.

• In bean-managed transactions, the EJB manages the transaction demarcation. The EJB
makes explicit method invocations on the UserTransaction object to begin, commit, and
roll back transactions. See weblogic.transaction.UserTransaction in the Java API
Reference for Oracle WebLogic Server.

Chapter 1
What Happens During a Transaction

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 11

The sequence of transaction events differs between container-managed and bean-managed
transactions.

Container-managed Transactions
For EJB applications with container-managed transactions, a basic transaction works in the
following way:

1. In the EJB's deployment descriptor, the Bean Provider or Application Assembler specifies
the transaction type (transaction-type element) for container-managed demarcation
(Container).

2. In the EJB's deployment descriptor, the Bean Provider or Application Assembler specifies
the default transaction attribute (trans-attribute element) for the EJB, which is one of
the following settings: NotSupported, Required, Supports, RequiresNew, Mandatory, or
Never. For a detailed description of these settings, see Section 17.6.2 in the Jakarta
Enterprise Beans Specification 2.0.

3. Optionally, in the EJB's deployment descriptor, the Bean Provider or Application Assembler
specifies the trans-attribute for one or more methods.

4. When a client application invokes a method in the EJB, the EJB container checks the
trans-attribute setting in the deployment descriptor for that method. If no setting is
specified for the method, the EJB uses the default trans-attribute setting for that EJB.

5. The EJB container takes the appropriate action depending on the applicable trans-
attribute setting.

• For example, if the trans-attribute setting is Required, the EJB container invokes
the method within the existing transaction context or, if the client called without a
transaction context, the EJB container begins a new transaction before executing the
method.

• In another example, if the trans-attribute setting is Mandatory, the EJB container
invokes the method within the existing transaction context. If the client called without a
transaction context, the EJB container throws the
jakarta.transaction.TransactionRequiredException exception.

6. During invocation of the business method, if it is determined that a rollback is required, the
business method calls the EJBContext.setRollbackOnly method, which notifies the EJB
container that the transaction is to be rolled back at the end of the method invocation.

Note

Calling the EJBContext.setRollbackOnly method is allowed only for methods that
have a meaningful transaction context.

7. At the end of the method execution and before the result is sent to the client, the EJB
container completes the transaction, either by committing the transaction or rolling it back
(if the EJBContext.setRollbackOnly method was called).

Bean-managed Transactions
For EJB applications with bean-managed transaction demarcations, a basic transaction works
in the following way:

Chapter 1
What Happens During a Transaction

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 11

1. In the EJB's deployment descriptor, the Bean Provider or Application Assembler specifies
the transaction type (transaction-type element) for container-managed demarcation
(Bean).

2. The client application uses JNDI to obtain an object reference to the UserTransaction
object for the WebLogic Server domain.

3. The client application begins a transaction using the UserTransaction.begin method, and
issues a request to the EJB through the EJB container. All operations on the EJB execute
within the scope of a transaction.

• If a call to any of these operations raises an exception (either explicitly or because of a
communication failure), catch the exception and use the UserTransaction.rollback
method to roll back the transaction.

• If no exceptions occur, the client application commits the current transaction using the
UserTransaction.commit method. This method ends the transaction and starts the
processing of the operation. The transaction is committed only if all of the participants
in the transaction agree to commit.

4. The UserTransaction.commit method causes the EJB container to call the transaction
manager to complete the transaction.

5. The transaction manager is responsible for coordinating with the resource managers to
update any databases.

Transactions in WebLogic Server RMI Applications
Figure 1-2 illustrates how transactions work in a WebLogic Server RMI application.

Figure 1-2 How Transactions Work in a WebLogic Server RMI Application

For RMI client and server applications, a basic transaction works in the following way:

Chapter 1
What Happens During a Transaction

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 11

1. The application uses JNDI to return an object reference to the UserTransaction object for
the WebLogic Server domain.

Obtaining the object reference begins a conversational state between the application and
that object. The conversational state continues until the transaction is completed
(committed or rolled back). Once instantiated, RMI objects remain active in memory until
they are released (typically during server shutdown). For the duration of the transaction,
the WebLogic Server infrastructure does not perform any deactivation or activation.

2. The client application begins a transaction using the UserTransaction.begin method, and
issues a request to the server application. All operations on the server application execute
within the scope of a transaction.

• If a call to any of these operations raises an exception (either explicitly or because of a
communication failure), catch the exception and the use the
UserTransaction.rollback method to roll back the transaction.

• If no exceptions occur, the client application commits the current transaction using the
UserTransaction.commit method. This method ends the transaction and starts the
processing of the operation. The transaction is committed only if all of the participants
in the transaction agree to commit.

3. The UserTransaction.commit method causes WebLogic Server to call the transaction
manager to complete the transaction.

4. The transaction manager is responsible for coordinating with the resource managers to
update any databases.

See Transactions in RMI Applications.

Transactions Sample Code
Learn about transaction with the help of EJB and RMI sample codes.

Transactions Sample EJB Code
This section provides a walkthrough of sample code fragments from a class in an EJB
application. This topic includes the following sections:

The code fragments demonstrate using the UserTransaction object for bean-managed
transaction demarcation. The deployment descriptor for this bean specifies the transaction type
(transaction-type element) for transaction demarcation (Bean).

Note

In a global transaction, use a database connection from a local JDBC data source—on
the WebLogic Server instance on which the EJB is running. Do not use a connection
from a JDBC data source on a remote WebLogic Server instance.

These code fragments do not derive from any of the sample applications that ship with
WebLogic Server. They simply illustrate the use of the UserTransaction object within
an EJB application.

Importing Packages
Example 1-1 shows importing the necessary packages for transactions, including:

Chapter 1
Transactions Sample Code

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 11

• jakarta.transaction.UserTransaction. For a list of methods associated with this object,
see the online Javadoc.

• System exceptions. For a list of exceptions, see the online Javadoc.

Example 1-1 Importing Packages

import jakarta.naming.*;
import jakarta.transaction.UserTransaction;
import jakarta.transaction.SystemException;
import jakarta.transaction.HeuristicMixedException
import jakarta.transaction.HeuristicRollbackException
import jakarta.transaction.NotSupportedException
import jakarta.transaction.RollbackException
import jakarta.transaction.IllegalStateException
import jakarta.transaction.SecurityException
import java.sql.*;
import java.util.*;

Using JNDI to Return an Object Reference
Example 1-2 shows how look up an object on the JNDI tree.

Example 1-2 Performing a JNDI Lookup

Context ctx = null;
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");

// Parameters for the WebLogic Server.
// Substitute the correct hostname, port number
// user name, and password for your environment:
env.put(Context.PROVIDER_URL, "t3://localhost:7001");
env.put(Context.SECURITY_PRINCIPAL, "Fred");
env.put(Context.SECURITY_CREDENTIALS, "secret");

ctx = new InitialContext(env);

UserTransaction tx = (UserTransaction)
 ctx.lookup("jakarta.transaction.UserTransaction");

Starting a Transaction
Example 1-3 shows starting a transaction by getting a UserTransaction object and calling the
jakarta.transaction.UserTransaction.begin() method. Database operations that occur
after this method invocation and prior to completing the transaction exist within the scope of
this transaction.

Example 1-3 Starting a Transaction

UserTransaction tx = (UserTransaction)
 ctx.lookup("jakarta.transaction.UserTransaction");
tx.begin();

Completing a Transaction
Example 1-4 shows completing the transaction depending on whether an exception was
thrown during any of the database operations that were attempted within the scope of this
transaction:

Chapter 1
Transactions Sample Code

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 11

• If an exception was thrown during any of the database operations, the application calls the
jakarta.transaction.UserTransaction.rollback() method.

• If no exception was thrown, the application calls the
jakarta.transaction.UserTransaction.commit() method to attempt to commit the
transaction after all database operations completed successfully. Calling this method ends
the transaction and starts the processing of the operation, causing the WebLogic Server
EJB container to call the transaction manager to complete the transaction. The transaction
is committed only if all of the participants in the transaction agree to commit.

Example 1-4 Completing a Transaction

tx.commit();

// or:

tx.rollback();

Transactions Sample RMI Code
This topic provides a walkthrough of sample code fragments from a class in an RMI
application. This topic includes the following sections:

The code fragments demonstrate using the UserTransaction object for RMI transactions. For
guidelines on using transactions in RMI applications, see Transactions in RMI Applications.

Note

These code fragments do not derive from any of the sample applications that ship with
WebLogic Server. They simply illustrate the use of the UserTransaction object within
an RMI application.

Importing Packages
Example 1-5 shows importing the necessary packages, including the following packages used
to handle transactions:

• jakarta.transaction.UserTransaction. For a list of methods associated with this object,
see the online Javadoc.

• System exceptions. For a list of exceptions, see the online Javadoc.

Example 1-5 Importing Packages

import javax.naming.*;
import java.rmi.*;
import jakarta.transaction.UserTransaction;
import jakarta.transaction.SystemException;
import jakarta.transaction.HeuristicMixedException
import jakarta.transaction.HeuristicRollbackException
import jakarta.transaction.NotSupportedException
import jakarta.transaction.RollbackException
import jakarta.transaction.IllegalStateException
import jakarta.transaction.SecurityException
import java.sql.*;
import java.util.*;

After importing these classes, initialize an instance of the UserTransaction object to null.

Chapter 1
Transactions Sample Code

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 11

Using JNDI to Return an Object Reference to the UserTransaction Object
Example 1-6 shows searching the JNDI tree to return an object reference to the
UserTransaction object for the appropriate WebLogic Server domain.

Note

Obtaining the object reference begins a conversational state between the application
and that object. The conversational state continues until the transaction is completed
(committed or rolled back). Once instantiated, RMI objects remain active in memory
until they are released (typically during server shutdown). For the duration of the
transaction, the WebLogic Server infrastructure does not perform any deactivation or
activation.

Example 1-6 Performing a JNDI Lookup

Context ctx = null;
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");

// Parameters for the WebLogic Server.
// Substitute the correct hostname, port number
// user name, and password for your environment:
env.put(Context.PROVIDER_URL, "t3://localhost:7001");
env.put(Context.SECURITY_PRINCIPAL, "Fred");
env.put(Context.SECURITY_CREDENTIALS, "secret");

ctx = new InitialContext(env);

UserTransaction tx = (UserTransaction)
 ctx.lookup("jakarta.transaction.UserTransaction");

Starting a Transaction
Example 1-7 shows starting a transaction by calling the
jakarta.transaction.UserTransaction.begin() method. Database operations that occur
after this method invocation and prior to completing the transaction exist within the scope of
this transaction.

Example 1-7 Starting a Transaction

UserTransaction tx = (UserTransaction)
 ctx.lookup("jakarta.transaction.UserTransaction");
tx.begin();

Completing a Transaction
Example 1-8 shows completing the transaction depending on whether an exception was
thrown during any of the database operations that were attempted within the scope of this
transaction:

Chapter 1
Transactions Sample Code

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 11

• If an exception was thrown, the application calls the
jakarta.transaction.UserTransaction.rollback() method if an exception was thrown
during any of the database operations.

• If no exception was thrown, the application calls the
jakarta.transaction.UserTransaction.commit() method to attempt to commit the
transaction after all database operations completed successfully. Calling this method ends
the transaction and starts the processing of the operation, causing WebLogic Server to call
the transaction manager to complete the transaction. The transaction is committed only if
all of the participants in the transaction agree to commit.

Example 1-8 Completing a Transaction

tx.commit();

// or:

tx.rollback();

Chapter 1
Transactions Sample Code

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 11

2
Configuring Transactions

Learn basic configuration tasks related to transactions. These tasks include using JTA,
configuring secure transaction communication, using transaction log (TLog) files, and using
read-only, one-phase commit optimizations.
This chapter includes the following sections:

Overview of Transaction Configuration
Transaction Configuration can be handled through the Remote Console that provides the
interface for configuring features of WebLogic Server, including WebLogic JTA.

The configuration process involves specifying values for attributes. These attributes define the
transaction environment, including the following:

• Transaction timeouts and limits

• Transaction manager behavior

You should also be familiar with the administration of Jakarta EE components that participate in
transactions, such as EJBs, JDBC data sources, and JMS.

Note

You can also use the WebLogic Scripting Tool (WLST; see Understanding the
WebLogic Scripting Tool) or JMX (see Developing Custom Management Utilities Using
JMX for Oracle WebLogic Server) to configure transaction-related settings.

Configuring JTA
You can configure JTA settings at the domain or cluster level. Once you configure WebLogic
JTA and any transaction participants, the system manages transactions using the JTA API and
the WebLogic JTA extensions.

Note the following:

• Configuration settings for JTA (transactions) are applicable at the domain and cluster level:

– At the domain level, attribute settings apply to all servers within a domain. These
settings are superseded by any settings at the cluster level. See Table 2-1

– At the cluster level, attribute settings apply to a cluster within a domain. These settings
supersede any settings at the domain level.

• Monitoring tasks for JTA are performed at the server level.

• Configuration settings for participating resources (such as JDBC data sources) are per
configured object. The settings apply to all instances of a particular object. See JDBC Data
Source Transaction Options in Administering JDBC Data Sources for Oracle WebLogic
Server and Configure Global Transaction Options for a JDBC Data Source in the Oracle
WebLogic Remote Console Online Help.

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 15

Table 2-1 Configuration Options for JTA (transactions)

Name Description

Timeout Seconds Specifies the maximum amount of time, in seconds, an active
transaction is allowed to be in the first phase of a two-phase
commit transaction. If the specified amount of time expires,
the transaction is automatically rolled back.

MBean Attribute: JTAMBean.TimeoutSeconds
Minimum value: 1

Maximum value: 2147483647

Note: The DBMS has its own DISTRIBUTED_LOCK_TIMEOUT,
with a default of 60 seconds, the maximum period it will allow
an XA transaction to hold DBMS locks. It is important that this
DBMS option be tuned to accommodate the longest expected
WebLogic transaction. If this DBMS timeout is lower than the
WebLogic JTA/tx timeout, the DBMS may roll back and
‘forget’ an on-going transaction out from under WebLogic.
This will cause ‘NOTA’ (transaction ID unknown) errors in
WebLogic when WebLogic subsequently asks the DBMS to
do something more on behalf of the transaction, and the
DBMS now knows nothing about it.

Abandon Timeout Seconds Specifies the maximum amount of time, in seconds, a
transaction manager persists in attempting to complete the
second phase of a two-phase commit transaction.

During the second phase of a two-phase commit transaction,
the transaction manager continues to try to complete the
transaction until all resource managers indicate that the
transaction is completed. After the abandon transaction timer
expires, no further attempt is made to resolve the transaction.
If the transaction is in a prepared state before being
abandoned, the transaction manager rolls back the
transaction to release any locks held on behalf of the
abandoned transaction.

MBean Attribute: JTAMBean.AbandonTimeoutSeconds
Minimum value: 1

Maximum value: 2147483647

Note: The Abandon Timeout Seconds should not be
smaller than the Timeout Seconds, as the transactions that
are still active can be abandoned and remain pending. To
avoid this, when the Abandon Timeout Seconds is
configured too low, it will be auto-adjusted to equal the
Timeout Seconds.

Chapter 2
Configuring JTA

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 15

Table 2-1 (Cont.) Configuration Options for JTA (transactions)

Name Description

Before Completion Iteration Limit The maximum number of cycles that the transaction manager
performs the beforeCompletion synchronization callback for
this WebLogic Server domain.

Nothing prevents a Synchronization object from registering
another during beforeCompletion, even those whose
beforeCompletions have already been called. For example,
an EJB can call another in its ejbStore() method. To
accommodate this, the transaction manager calls all
Synchronization objects, then repeats the cycle if new ones
have been registered. This count sets a limit to the number of
cycles that synchronization occurs.

MBean Attribute: JTAMBean.BeforeCompletionIterationLimit
Minimum value: 1

Max Transactions The maximum number of simultaneous in-progress
transactions allowed on a server in this WebLogic Server
domain.

MBean Attribute: JTAMBean.MaxTransactions
Minimum value: 1

Maximum value: 2147483647

Max Unique Name Statistics The maximum number of unique transaction names for which
statistics are maintained.

The first 1001 unique transaction names are maintained as
their own transaction name and stored in each statistic. After
the 1001st transaction name is reached, the transaction
name is stored as
weblogic.transaction.statistics.namedOverflow,
and the transaction statistic is also merged and maintained in
weblogic.transaction.statistics.namedOverflow.

A transaction name typically represents a category of
business transactions, such as "funds-transfer."

MBean Attribute: JTAMBean.MaxUniqueNameStatistics
Minimum value: 0

Maximum value: 2147483647

Checkpoint Interval Seconds The interval at which the transaction manager creates a new
transaction log file and checks all old transaction log files to
see if they are ready to be deleted.

MBean Attribute: JTAMBean.CheckpointIntervalSeconds
Minimum value: 10

Maximum value: 1800

Write recovery logs when determiners
configured

Indicates two-phase transaction recovery logs are written
even if one or more determiners are configured.

MBean Attribute:
JTAMBean.TLOGWriteWhenDeterminerExistsEnabled

Determiners Select a transaction resource (determiner) from the list of
resources. For JMS, select WebLogic JMS as the determiner.
When a determiner is configured, the determiner's in-doubt
transaction records are used during transaction recovery.

MBean Attribute: JTAMBean.Determiners

Chapter 2
Configuring JTA

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 15

Table 2-1 (Cont.) Configuration Options for JTA (transactions)

Name Description

Forget Heuristics Specifies whether the transaction manager automatically
performs an XA Resource forget operation for heuristic
transaction completions.

When enabled, the transaction manager automatically
performs an XA Resource forget() operation for all
resources as soon as the transaction learns of a heuristic
outcome. Disable this feature only if you know what to do with
the resource when it reports a heuristic decision.

MBean Attribute: JTAMBean.ForgetHeuristics

Unregister Resource Grace Period The amount of time, in seconds, a transaction manager waits
for transactions involving the resource to complete before
unregistering a resource. This grace period helps minimize
the risk of abandoned transactions because of an
unregistered resource, such as a JDBC data source module
packaged with an application.

During the specified grace period, the unregisterResource
call blocks until the call returns and no new transactions are
started for the associated resource. If the number of
outstanding transactions for the resource goes to 0, the
unregisterResource call returns immediately.

At the end of the grace period, if outstanding transactions are
associated with the resource, the unregisterResource call
returns and a log message is written to the server on which
the resource was previously registered.

MBean Attribute: JTAMBean.UnregisterResourceGracePeriod
Minimum value: 0

Maximum value: 2147483647

Execute XA Calls In Parallel Indicates that XA calls are executed in parallel if there are
available threads.

MBean Attribute: JTAMBean.ParallelXAEnabled

Enable Two Phase Commit Indicates that the two-phase commit protocol is used to
coordinate transactions across two or more resource
managers.

If not selected:

• Two-phase commit is disabled and any attempt to use
two-phase commit results in a RollbackException
being thrown.

• All transaction logging is disabled, including checkpoint
records.

MBean Attribute: JTAMBean.TwoPhaseEnabled
Changes take effect after you redeploy the module or restart
the server

Chapter 2
Configuring JTA

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 15

Table 2-1 (Cont.) Configuration Options for JTA (transactions)

Name Description

Enable Tightly Coupled Transactions Indicates tight coupling of transaction branches that span
different transaction manager systems.

When enabled, WebLogic uses the transaction identifier of a
transaction imported by the
InterposedTransactionManager for XA calls rather than
an internally mapped Xid. This applies to inter-domain
WebLogic transactions and transactions imported from
Tuxedo. This allows for tight coupling of transaction branches
for transactions that span across different transaction
manager systems.

If a transaction between WebLogic and Tuxedo resources
uses a GridLink Data Source with GridLink Affinity enabled,
the XA Affinity context is automatically used for the
transaction.

MBean Attribute:
JTAMBean.TightlyCoupledTransactionsEnabled

Enable Cluster-Wide Recovery Indicates that cluster-wide recovery is used for distributed
transactions.

When enabled, recovery operations for a distributed
transaction are applied to all the servers of the cluster hosting
a InterposedTransactionManager rather than just the
server hosting the InterposedTransactionManager.

MBean Attribute: JTAMBean.ClusterwideRecoveryEnabled

Unregister Resource Grace Period
If you have resources that you may occasionally undeploy and redeploy such as a JDBC data
source module packaged with an application, minimize the risk of abandoned transactions
because of an unregistered resource by setting the Unregistered Resource Grace Period for
the domain. The grace period is the number of seconds that the transaction manager waits for
transactions to complete before unregistering a resource.

During the specified grace period, the unregisterResource call blocks until the call returns,
and no new transactions are started for the associated resource. If the number of outstanding
transactions for the resource goes to 0, the unregisterResource call returns immediately.

At the end of the grace period, if there are still outstanding transactions associated with the
resource, the unregisterResource call returns and a log message is written on the server on
which the resource was previously registered.

Additional Attributes for Managing Transactions
By default, if an XA resource that is participating in a global transaction fails to respond to an
XA call from the WebLogic Server transaction manager, WebLogic Server flags the resource
as unhealthy and unavailable, and blocks any further calls to the resource in an effort to
preserve resource threads. The failure can be caused by either an unhealthy transaction or an
unhealthy resource—there is no distinction between the two causes. In both cases, the
resource is marked as unhealthy. To mitigate this limitation, WebLogic Server provides the
following configuration attributes:

Chapter 2
Configuring JTA

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 15

• Maximum Duration of XA Calls—Sets the maximum allowed duration (in milliseconds) of
XA calls to XA resources.

• Maximum Duration XA Resource Unavailable—The maximum duration (in milliseconds)
that an XA resource is marked as unhealthy.

• Maximum Resource Requests on a Server—Maximum number of concurrent requests to
resources allowed for each server in the domain.

These attributes are configurable at the domain and the cluster level.

XA Transaction Cluster Affinity
XA transaction affinity allows server instances that are participating in a global transactions to
service related requests rather than load-balancing these requests to other member servers.
When Enable Transaction Affinity=true, cluster throughput can be increased by:

• Reducing inter-server transaction coordination traffic

• Improving resource utilization, such as reducing JDBC connections

• Simplifying asynchronous processing of transactions

If the cluster does not have a member participating in the transaction, the request is load
balanced to an available cluster member. If the selected cluster member fails, the JTA
Transaction Recovery Service can be migrated using the Roadmap for Configuring Automatic
Migration of the JTA Transaction Recovery Service in Administering Clusters for Oracle
WebLogic Server.

See Configure Clusters in Oracle WebLogic Remote Console Online Help. You can also
enable XA transaction affinity on the command line using -
Dweblogic.cluster.TxnAffinityEnabled=true.

Configuring Network Channels for JTA Communication
Network channels are a configurable resource in WebLogic Server that you can configure to
separate and load balance network traffic. Also, you can configure network channels to
separate internal server communication from client user communication.

WebLogic Server automatically generates the default network channel. In place of the default
network channel, you can configure custom network channels for JTA communications. The
WebLogic Server transaction manager uses these custom network channels for coordinating
distributed transactions that update multiple servers.

The network channels specified for JTA communication support mixed internal and external
addressing for cross-domain JTA communication and interoperability with servers configured
with the default network channel. A global transaction context propagates between servers
when an application accesses remote objects such as, EJBs and resources such as, JMS and
JDBC. Each server adds its local address information into the transaction context so that it can
be used by other servers to communicate with it. The transaction context contains the address
information of the coordinating server and all the subordinate servers.

During server initialization, the coordinator URL, which represents the local server, is
constructed using the address information from the static configuration and runtime overrides.
The coordinator URL of the local server is added to the transaction context at coordinator
assignment time or when the transaction propagation context is received on a remote server.
For a remote coordinator assignment, the coordinator URL is constructed from information
about the remote server obtained from the RMI connection and added to the propagation
context during the outbound RMI call.

Chapter 2
Configuring Network Channels for JTA Communication

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 15

You can create up to four types of URLs for JTA interserver communication that are obtained
from the server network channel configuration:

• Primary

• Secure

• Public

• Public Secure

The created URLs are stored with the JTA descriptor that is used to identify coordinator and
subordinate servers, are propagated between servers, and are persisted with the transaction
context and in server checkpoint records. When a server participant needs to obtain the
coordinator or sub-coordinator remote object for a remote participant, one of the four URLs are
used to establish the JNDI initial context and perform the lookup.

See Understanding Network Channels and Configuring a Channel in Administering Server
Environments for Oracle WebLogic Server for more information about configuring a network
channel. Use the WebLogic Remote Console or NetworkAccessPointMBean to configure a
network channel and set the protocol, listen address, listen port, public address, and
the public port attributes to construct the JTA coordinator URL.

Constructing the Server URLs

The following example shows the configuration of a server that listens for t3 traffic on the
network address corresponding to ports 7001 and 7101:

Example 2-1 Server Configuration

<server>
 <name>myserver</name>
 <listen-port>7001</listen-port>
 <listen-port-enabled>true</listen-port-enabled>
 <listen-address>myhost</listen-address>
 <network-access-point>
 <name>channelt3</name>
 <protocol>t3</protocol>
 <listen-address>myhost</listen-address>
 <public-address>publicaddress</public-address>
 <listen-port>7101</listen-port>
 <public-port>7101</public-port>
 </network-access-point>
</server>

The coordinator URL is derived from the network channel configuration and is of the form
<protocol>://host:port. For the network configuration of the server defined in the example,
the supported URLs are t3://myhost:7001, t3://myhost:7101, and t3://
publicaddress:7101.

The server level attributes that are supported for configuring JTA network channel are:

• ServerMBean.TransactionPrimaryChannelName – The name of the server network channel
that is used to derive the primary URL for internal JTA communication with the server. If
not set, then the primary URL is initialized using the server’s default channel configuration.

Chapter 2
Configuring Network Channels for JTA Communication

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 15

Table 2-2 Example of Network Channel with Primary URL

Protocol listen-address:listen-
port

public-
address:public-port

Primary URL

t3 host:7001 NA t3://host:7001

t3 host:7001 public-
address:7201

t3://public-
address:7201

• ServerMBean.TransactionSecureChannelName – The name of the server network channel
that is used in secure communication. The network access point configuration must have
the t3s protocol. If this attribute is not specified, then the default secure channel is used for
secure URL if enabled. Secure channel takes precedence over administration channel
configuration.

Table 2-3 Example of Network Channel with Secure URL

Protocol listen-address:listen-
port

public-
address:public-port

Secure URL

t3s host:9003 NA t3s://host:9003

t3s host:9003 public-
address:9003

t3s://public-
address:9003

• ServerMBean.TransactionPublicChannelName – The name of the server network channel
that is used to determine the public URL. It is an optional attribute.

Table 2-4 Example of Network Channel with Public URL

Protocol listen-address:listen-
port

public-
address:public-port

Public URL

t3 host:7001 NA t3://host:7001

t3 host:7001 public-
address:7201

t3://public-
address:7201

• ServerMBean.TransactionPublicSecureChannelName – The name of the server network
channel that is used to derive the public secure URL. The referenced network access point
configuration must have the t3s protocol. It is an optional attribute.

Table 2-5 Example of Network Channel with Public Secure URL

Protocol listen-address:listen-
port

public-
address:public-port

Public Secure URL

t3s host:9303 NA t3s://host:9303

t3s host:9303 public-
address:9333

t3s://public-
address:9333

Note

The network channel configuration can contain only one public secure and public
nonsecure addresses. Multiple public addresses are not supported.

Chapter 2
Configuring Network Channels for JTA Communication

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 15

Conditions for Constructing the Server URL

Depending on whether the listen-address or public-address is set, the URL for primary,
public, secure, and public secure is constructed. If you configure the same network access
point configuration for primary and public or secure and public secure, then the listen-
address:listen-port is used for primary and secure URL while the public-address:public-
port is used for public and public secure URL.

The following table shows an example of how the URL is constructed from the network access
point attributes:

Table 2-6 Conditions for Constructing the Primary and Public URLs

Protocol listen-
address:listen-
port

public-
address:public-
port

Primary URL Public URL

t3 host:7001 public-
address:7201

t3://host:7001 t3://public-
address:7201

Table 2-7 Conditions for Constructing the Secure and Public Secure URLs

Protocol listen-
address:listen-
port

public-
address:public-
port

Secure URL Public Secure
URL

t3s host:9303 public-
address:9333

t3s://host:9303 t3s://public-
address:9333

Using Public Addresses for Remote Domains

To communicate with a remote domain using the public URL, use the new attribute
JTAMBean.UsePublicAddressesForRemoteDomains defined with the domain names.

If the target domain name is not specified in the attribute, then the primary or secure URL is
used.

Using Nonsecure Addresses for Domains

To specify the domains for which only nonsecure URLs must be used for JTA communication,
use the new attribute JTAMBean.UseNonSecureAddressesForDomains defined with the domain
names.

Note

Public addresses are used only for cross-domain communication.

Interoperability with Servers Using Default Channels

Mixed configurations are supported to use network channels such as:

• Configuring the servers in a domain to use the network channel for JTA communication.

• Using the server default channel based on listen address and port, or listen address and
SSL port.

Chapter 2
Configuring Network Channels for JTA Communication

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 15

• Using the primary URL when servers need to connect to a remote server that is configured
to use the default channel.

In the example server configuration, Example 2-1, if the
ServerMBean.TransactionPublicChannelName is set to channelt3, then the resulting primary
URL will be t3://myhost:7001 and the public URL will be t3://publicaddress:7101.

Using Transaction Log Files to Recover Transactions
Each server has a transaction log which stores information about committed transactions
coordinated by the server that may not have been completed. WebLogic Server uses the
transaction log (TLogs) when recovering from system crashes or network failures.

You cannot directly view the transaction log—the records are in a binary format and are stored
in either the default persistent store or a JDBC TLog store for the server.

Using the Default Persistent Store
To take advantage of the migration capability of the Transaction Recovery Service for servers
in a cluster, you must store the transaction log in a location that is available to a server and its
backup servers, preferably on a dual-ported SCSI disk or on a Storage Area Network (SAN).
See Setting the Path for the Default Persistent Store.

If the file system on which the default store saves transaction log records runs out of space or
is inaccessible, commit() throws SystemException, and the transaction manager places a
message in the system error log. No transactions are committed until more space is available.

Setting the Path for the Default Persistent Store
Each server instance, including the administration server, has a default persistent store, which
is a file-based store that is available to subsystems that do not require explicit selection of a
particular store and function best by using the system's default storage mechanism. The
transaction manager uses the default persistent store to store transaction log records. In many
cases, the default persistent store requires no configuration. However, to enable migration of
the Transaction Recovery Service, you must configure the default persistent store so that it
stores its data files on a persistent storage solution that is available to other servers in the
cluster if the original server fails.

Setting the Default Persistent Store Synchronous Write Policy
WebLogic Server uses the default persistent store to store transaction log records. Select a
write policy for the default store to change the way WebLogic Server writes records to disk, see
Guidelines for Configuring a Synchronous Write Policy.

Using a JDBC TLOG Store
You can configure a JDBC TLog store to persist transaction logs to a database, which allows
you to leverage replication and HA characteristics of the underlying database, simplify disaster
recovery, and improve Transaction Recovery service migration. See Administering the
Persistent Store.

Chapter 2
Using Transaction Log Files to Recover Transactions

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 15

Last Logging Resource
LLR is a performance enhancement option that enables one non-XA resource to participate in
a global transaction with the same ACID guarantee as XA. See Logging Last Resource
Transaction Optimization.

XA Transactions without Transaction TLog Write
As described in Using Transaction Log Files to Recover Transactions, TLogs are used to
resolve in-doubt transactions. However, there can be a significant cost associated with creating
and maintaining these files, such as read/write costs, network calls between resource
managers, and HA storage.

Note

Server and resource checkpoints in a XA transaction are still written to the TLog.
These checkpoints are written when the resources are first involved in a global
transaction, updated only if there are changes to the transaction participants, and
purged only if they are no longer used or become unavailable.

The following section provides information on how to improve XA transaction performance by
eliminating TLogs when XA transactions span a single transaction manager (TM):

What is a Determiner Resource?
Determiners are JDBC XA and JMS XA resources whose in-doubt transaction records are
used during transaction recovery when a TLog is not present.

Best Practices When Using Determiner Resources
The following section provides information on best practices for using determiner resources in
global transactions:

• The Determiner resource must be targeted to the server where the global transaction will
execute. In a clustered environment, the determiner resource should target a cluster to
ensure high availability during a service or server migration.

• To support Transaction Recovery Service migration:

– For JDBC XA resources, target the determiner DataSource to the cluster.

– For JMS XA resources, target the JMS service to the same migratable target used by
the custom persistent store. See Custom Store Availability for JMS Services in
Administering Clusters for Oracle WebLogic Server.

• Configure the minimum number of determiner resources possible. This reduces the
number of resources that must be available for recovery.

Configuring XA Transactions without TLogs
The following sections provide information on how to configure, update, and remove
determiners in your environment.

Chapter 2
Using Transaction Log Files to Recover Transactions

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 15

Note

Before you start, review Limitations and Considerations When Configuring
Transactions without TLogs

How to Configure a Determiner
To configure a determiner:

1. Ensure that all XA transactions are complete on the server or servers that will host the
JDBC XA or JMS XA resources you want to configure as a determiner resource.

2. Stop any server or cluster hosting JDBC XA resources to be used as a determiner.

3. You can configure a determiner for a domain or for a cluster.

• For a domain: In the edit tree select Services > JTA.

• For a cluster: In the edit tree, select the cluster you want to configure and then select
the JTA tab.

4. Specify a list of one or more determiners separated by line breaks in the Determiner
attribute.

JDBCA XA resource determiner names have the pattern <XAdsname>+"_"+<dname> ,
where XAdsname is the name of the data source and dname is the name of the domain.
For example:

myDS1_myDomain
myDS2_myDomain

JMS XA resource determiner names have the pattern
"WLStore_"+<dname>+"_"+<JMSXAResource>, where JMSXAResource is the name of
the JMS persistent store and dname is the name of the domain. If no persistent store is
configured, default store is used and the naming convention is
"WLStore_"+<dname>"+"_"+"_"+"WLS_"+<server name>, where server name is the name
of the server and dname is the name of the domain. For example:

WLStore_myDomain_myStore1
WLStore_myDomain_myStore2
WLStore_XADomain__WLS_myServer

Note: Target the determiner resource to ensure high availability, see Best Practices When
Using Determiner Resources.

5. Optionally, enable the Write recovery logs when determiners configured attribute to
write transaction recovery logs even if one or more determiners are configured.

6. Click Save.

7. To activate these changes, click shopping cart on top right corner and select commit
changes.

Not all changes take effect immediately—some require a restart.

8. Restart any server or cluster hosting a configured determiner resource.

Your environment is now ready to resume transaction processing.

How to Remove a Determiner
To remove a determiner:

Chapter 2
Using Transaction Log Files to Recover Transactions

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 15

1. Ensure that all XA transactions are complete on the server or servers that host the JDBC
XA or JMS XA resources you want to remove as a determiner resource.

2. Stop any server or cluster hosting determiner resources to be removed.

3. You can remove a determiner for a domain or for a cluster.

• For a domain: In the edit tree select Services > JTA.

• For a cluster: In the Edit Tree select the cluster you want to configure and select the
JTA tab.

4. Remove one or more determiners from the list specified in the Determiner attribute.

5. Click Save.

6. To activate these changes, click shopping cart on top right corner and select commit
changes.

Not all changes take effect immediately—some require a restart.

7. Restart any server or cluster shut down in Step 2.

Your environment is now ready to resume transaction processing.

Limitations and Considerations When Configuring Transactions without TLogs
The following section provides important information on limitations and considerations when
configuring transactions without TLogs:

• Configuring Transactions without TLogs is not supported when:

– More than one TM participates in global transactions

– Global transactions include JTS or LLR resources

– Participating transactions include WS-AT, OTS, WLS/Tuxedo transactions, and
transactions that include foreign transaction managers

– Only read operations are executed in the determiner resource as part of the global
transaction work.

– parallel-xa-enabled is set to false (default value is true).

• Server and resource checkpoints are still written to the TLOG. Checkpoints are written
when the resources are first involved in a global transaction, updated only if there are
changes to the transaction participants, and purged only if they are no longer used or
become unavailable. Because checkpoints are created early in the transaction, as long as
there are no changes to the participants in the global transactions, there is little danger of a
checkpoint being out of sync during transaction service migration or transaction recovery
spanning multiple sites or data centers.

• Abandon Timeout Seconds is not supported. Recovery is attempted on in-doubt
transactions until they are resolved or the resource is administratively removed.

• WebLogic Server will not start if a determiner resource is not available because XA
transactions cannot be recovered.

• To change the targeting of a determiner resource, you need to:

1. Ensure that all XA transactions are complete on the server or servers that host the
determiner resource.

2. Stop any server or servers hosting the determiner resource.

3. Retarget the determiner resource.

4. Start any server or cluster hosting the determiner resource.

Chapter 2
Using Transaction Log Files to Recover Transactions

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 15

• If more than one server is participating in a global transaction, a transaction entry is written
to the TLog.

• If more than one determiner resource is available from the list of specified determiners, the
first determiner enlisted is implicitly nominated as the determiner of the transaction.

• Applications can have a combination of global transactions, some that enlist a determiner
resource and some that do not. Only those transactions that do not enlist the determiner
resource will be written to the TLog.

• This feature does not support Dynamic Clusters.

• This feature supports Whole Server Migration (WSM), see Whole Server Migration in
Administering Clusters for Oracle WebLogic Server. Service Migration (ASM) is not
supported.

Read-Only, One-Phase Commit Optimizations
When resource managers, such as the Oracle Database (including AQ and RAC), provide
read-only optimizations, Oracle WebLogic can provide a read-only, one-phase commit
optimization. Read-only, one-phase commit optimization provides a number of benefits – even
when enabling multiple connections of the same XA transactions – such as eliminating
XAResource.prepare network calls and transaction log writes, both in Oracle WebLogic and in
the resource manager.

Note

Read-only, One-phase Commit Optimization requires Oracle Database 11.1.0.7.3PSU
or later.

For applications that do not require two-phase commit transactions, you can further optimize
performance by also disabling the WebLogic "Two Phase Commit" protocol, which coordinates
transactions across two or more resource managers. Disabling two-phase commits, does the
following:

• Removes persistent in-doubt logging and locks, as well as bookkeeping overhead in the
database.

• Removes all checkpoint logging in WebLogic.

• Enforces and/or tests the assumption that a particular server instance does not require
two-phase commit.

• Removes the need for WebLogic migration (whole server or service) recovery, which in
turn removes the need for additional assets/capacity, management, etc., involved in such
migrations.

Configuring Read-only, One-phase Commit Optimization and Two-phase
Commit Disablement

In order to enable the read-only, one-phase commit optimization and disable two-phase
commits, configure the following JTA domain configuration attributes:

• Execute XA Calls In Parallel – Set to false to enable the read-only, one-phase commit
optimization.

Chapter 2
Read-Only, One-Phase Commit Optimizations

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 15

• Enable Two Phase Commit – Optionally, set to false to disable two-phase commit
transactions. This disables all transaction logging, including checkpoint records. Any
attempt to use two-phase commit will result in a RollbackException being thrown.

Important! The Enable Two Phase Commit setting, which is true by default, should not to
be set to false unless it is well-known that the application only uses a resource manager
that provides read-only optimization, such as Oracle database, or that the application only
uses a single connection to a single resource manager.

Note

If a XA resource returns an XA_OK vote from a prepare (for example, if it is not an
Oracle database), and the WebLogic instance then crashes before rollback can take
place, there will be an in-doubt record and locks will be held in the resource manager
(database) that will need to be manually resolved.

For more information on all JTA domain configuration options, see Configure Domain JTA
Options in the Oracle WebLogic Remote Console Online Help.

Monitoring Read-only, One-phase Transaction Statistics
For monitoring purposes, there are five transaction processing statistics on the JTA Monitoring
page, which together break down the Transaction Committed Total Count statistic to better
track any read-only, one-phase commit transactions.

• Transaction No Resources Committed Total Count – The total number of transactions with
no enlisted resources that were committed since the server was started.

• Transaction One Resource One Phase Committed Total Count – The total number of
transactions with only one enlisted resource that were one-phase committed since the
server was started.

• Transaction Read Only One Phase Committed Total Count – The total number of
transactions with more than one enlisted resource that were one-phase committed due to
read-only optimization since the server was started.

• Transaction Two Phase Committed Total Count – The total number of transactions with
more than one enlisted resource that were two-phase committed since the server was
started.

• Transaction LLR Committed Total Count – The total number of LLR transactions that were
committed since the server was started.

Note: If the only resource enlisted in a JTA transaction is an LLR data source, then such
transactions are included under the Transaction One Resource One Phase Committed
Total Count category rather than the Transaction LLR Committed Total Count category.

Chapter 2
Read-Only, One-Phase Commit Optimizations

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 15

3
Managing Transactions

Learn about administration tasks that are used to manage transactions. These tasks include
monitoring transactions, handling heuristic completions, how to abandon a transaction,
resolving in-flight transactions, and transaction recovery.
Monitor transactions on a server using statistics and monitoring facilities. Use the Remote
Console to configure these features and to display the resulting output.

Monitoring Transactions
Monitor transactions for each server in the domain using the Remote Console. Transaction
statistics are displayed for a specific server, not the entire domain.

For instructions, see the following pages in the Oracle WebLogic Remote Console Online Help:

• View Transaction Statistics

• View Current Transactions

Handling Heuristic Completions
A heuristic completion (or heuristic decision) occurs when a resource makes a unilateral
decision during the completion stage of a distributed transaction to commit or rollback updates.
This can leave distributed data in an indeterminate state. Network failures or resource timeouts
are possible causes for heuristic completion.
In the event of an heuristic completion, one of the following heuristic outcome exceptions may
be thrown:

• HeuristicRollback—one resource participating in a transaction decided to autonomously
rollback its work, even though it agreed to prepare itself and wait for a commit decision. If
the Transaction Manager decided to commit the transaction, the resource's heuristic
rollback decision was incorrect, and might lead to an inconsistent outcome since other
branches of the transaction were committed.

• HeuristicCommit—one resource participating in a transaction decided to autonomously
commit its work, even though it agreed to prepare itself and wait for a commit decision. If
the Transaction Manager decided to rollback the transaction, the resource's heuristic
commit decision was incorrect, and might lead to an inconsistent outcome since other
branches of the transaction were rolled back.

• HeuristicMixed—the Transaction Manager is aware that a transaction resulted in a mixed
outcome, where some participating resources committed and some rolled back. The
underlying cause was most likely heuristic rollback or heuristic commit decisions made by
one or more of the participating resources.

• HeuristicHazard—the Transaction Manager is aware that a transaction might have
resulted in a mixed outcome, where some participating resources committed and some
rolled back. But system or resource failures make it impossible to know for sure whether a
Heuristic Mixed outcome definitely occurred. The underlying cause was most likely
heuristic rollback or heuristic commit decisions made by one or more of the participating
resources.

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 13

When an heuristic completion occurs, a message is written to the server log. Refer to your
database vendor documentation for instructions on resolving heuristic completions.

Some resource managers save context information for heuristic completions. This information
can be helpful in resolving resource manager data inconsistencies. If the ForgetHeuristics
attribute is selected (set to true) on the JTA panel of the WebLogic Remote Console, this
information is removed after an heuristic completion. When using a resource manager that
saves context information, you may want to set the ForgetHeuristics attribute to false.

Moving a Server
A server instance is identified by its URL (IP address or DNS name plus the listening port
number). Changing the URL by moving the server to a new machine or changing the Listening
Port of a server on the same machine effectively moves the server so the server identity may
no longer match the information stored in the transaction logs.

• If the new server has the same URL as the old server, the Transaction Recovery Service
searches all transaction log files for incomplete transactions and completes them as
described in Transaction Recovery Service Actions After a Crash.

• When the coordinator server is in the same domain as the sub-coordinator and the server
URL changes, the coordinator queries the Administration Server for the new URL of the
sub-coordinator and the propagation of any new transactions and any transactions that are
committing or rolling back use the new URL. Transaction branches for the sub-coordinator
with pending commit records stored in the coordinator's transaction log files before the
URL change are unrecoverable. If you wish, you can delete the transaction log files of the
coordinator. This step prevents the Transaction Recovery Service from attempting to
resolve these transactions until the value of the AbandonTimeoutSeconds parameter is
exceeded. See Abandoning Transactions and How to Remove Transaction Records.

• When transactions span multiple domains and if a server acting as a remote transaction
sub-coordination fails and its URL changes, any ongoing transactions do not complete
(commit or are rolled back) because the coordinator is unable to communicate with the
remote domain's Admin server. The coordinator is unable to contact the sub-coordinator
using the new URL and any ongoing transactions fail. The coordinator attempts the commit
or rollback request until the AbandonTimeoutSeconds value is exceeded. See Abandoning
Transactions . Any new transactions fail because the coordinator cannot contact the sub-
coordinator. The TLogs of the coordinator and sub-coordinators, excluding the moved
server domain, must be deleted. See How to Remove Transaction Records.

Oracle recommends configuring server instances using DNS names rather than IP addresses
to promote portability.

If you move a server to a new machine, follow the instructions for Recovering Transactions For
a Failed Non-Clustered Server.

Abandoning Transactions
You can choose to abandon incomplete transactions after a specified amount of time.

In the two-phase commit process for distributed transactions, the transaction manager
coordinates all resource managers involved in a transaction. After all resource managers vote
to commit or rollback, the transaction manager notifies the resource managers to act—to either
commit or rollback changes. During this second phase of the two-phase commit process, the
transaction manager continues to try to complete the transaction until all resource managers
indicate that the transaction is completed. Using the AbandonTimeoutSeconds attribute, set the
maximum time, in seconds, that a transaction manager persists in attempting to complete a

Chapter 3
Moving a Server

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 13

transaction during the second phase of the commit protocol. The default value is 86400
seconds, or 24 hours. After the abandon transaction timer expires, no further attempt is made
to resolve the transaction with any resources that are unavailable or unable to acknowledge
the transaction outcome. If the transaction is in a prepared state before being abandoned, the
transaction manager rolls back the transaction to release any locks held on behalf of the
abandoned transaction and writes an heuristic error to the server log.

For instructions on how to set the AbandonTimeoutSeconds attribute, see Configure Domain
JTA Options in the Oracle WebLogic Remote Console Online Help.

Note

It is not recommended to change the default AbandonTimeoutSeconds attribute to a
small value. When a global transaction is abandoned, resource manager transaction
branches could be left pending, which would require manual intervention to resolve.

Transaction Completion Timeout
When an application or server component instructs a transaction to commit or rollback, the
commit or rollback API will block while the transaction manager processes the two-phase
commit protocol. If the transaction is unable to complete within a period of time (up to two
minutes by default) a SystemException will be raised. A SystemException is non-deterministic
relative to transaction outcome so an application environment must provide special exception
handling for this case which often involves manually analyzing the transaction activity and state
of the resources involved in the transaction. The period of time waiting for a transaction to
complete can be changed by setting the completion-timeout-seconds attribute.

For configuration information, see:

• Configure Domain JTA Options in Oracle WebLogic Remote Console Online Help

• CompletionTimeoutSeconds in MBean Reference for Oracle WebLogic Server

Note

The completion-timeout-seconds attribute does not apply to imported transactions
such as JCA transactions or to recovering transactions.

If transactions are taking a long time to complete the two-phase commit protocol then it could
indicate a problem with server or resource manager participants. Viewing the current active
transactions and server statistics on each of the server participants could help identify the
cause of the transaction completion delays, see Monitoring Transactions.

Manually Resolving Current (Inflight) Transactions
If a transaction does not complete normally due to system or network failures, there may be
locks held on behalf of the pending transaction that may inhibit the progress of other
transactions. You can wait for the WebLogic Server Transaction Manager to remove the
transaction from its internal data structures, or you can manually resolve "stuck" transactions.

After the Abandon Timeout period has elapsed, the WebLogic Server Transaction Manager
removes the transaction from its internal data structures and writes a heuristic error to the

Chapter 3
Manually Resolving Current (Inflight) Transactions

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 13

server log. However, to manually resolve a transaction, you view current (inflight) transactions
for a server (see View Current Transactions in Oracle WebLogic Remote Console Online Help)
and then view details about a specific transaction by clicking the transaction id. You can then
force a commit or a rollback, depending on the status of the transaction.

Note

It is possible for a transaction to have different states at different servers. For instance,
a transaction may have been committed at the coordinating server, but a remote
participant may not have received the commit instruction.

The following table provides information on transaction status and resolution options.

Table 3-1 Transaction Status Definitions and Manual Resolution Options

Status Definition Forced
Commit?

Forced
Rollback?

Active The application is processing the transaction. The transaction
has not yet reached the two-phase commit processing.

Y

Preparing Corresponds to the interval between when the transaction
manager starts the jakarta.transaction.Synchronization
beforeCompletion() callback processing, through the first
phase of the 2PC protocol, and up to the point when all
participants have responded, "ready to commit."

Y

Prepared The interval between when all participants have responded to
prepare up to the commit point (commit log record is flushed
to disk) or to the initiation of rollback processing.

Y Y

Committing The time from when the commit decision is made up to the
point when all participants have been informed of the
outcome and the
jakarta.transaction.Synchronization
afterCompletion() callback processing has completed.

Y

Committed The transaction has been committed. It is likely that heuristics
exists, otherwise the transaction would have been completed
and would not have been displayed in the list of current
transactions.

Y

Rolling Back This state occurs from the point when rollback processing is
initiated up to the point when all participants have been
instructed to rollback and the
jakarta.transaction.Synchronization
afterCompletion() callback processing has completed.

Y

Rolled Back The transaction has been rolled back. It is likely that heuristics
exists, otherwise the transaction would have been destroyed
and would not have been displayed in the list of current
transactions.

Y

Marked Roll
Back

The transaction has been marked for rollback, perhaps as a
result of a setRollbackOnly operation.

Y

No
Transaction

Unknown Current status cannot be determined. Y Y

Chapter 3
Manually Resolving Current (Inflight) Transactions

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 13

Manual Commit and Rollback Options
To manually resolve a transaction, you can choose from the following options. Options are
restricted as described in Table 3-1.

• Force Local Commit—Each participating resource that is registered on the server is
issued a commit operation for the specified transaction and the transaction will be removed
from the local transaction manager's data structures. If the local server is the coordinator
for the transaction, the commit record is released.

• Force Global Commit—A local commit operation is attempted at each participating server
for the specified transaction. If this option is invoked on a non-coordinating server, the
coordinator will be contacted to process the operation. The coordinating server will issue
asynchronous requests to each participant server.

• Force Local Rollback—Each participating resource that is registered on the local server
is issued a rollback operation for the specified transaction. The transaction will then be
removed from the local transaction manager's data structures.

• Force Global Rollback—A local rollback operation is attempted at each participating
server for the specified transaction. If this option is invoked on a non-coordinating server,
the coordinator will be contacted to process the operation. The coordinating server will
issue asynchronous requests to each participant server.

Note

When you select any of these options, WebLogic Server writes entries to the
server log.

The difference between the Local and Global options is that Local options act only upon the
current server resources (resources on the server that you select in the navigation tree in the
left pane of the WebLogic Remote Console), whereas the Global options attempt to perform
the operation across all participating servers. If a Global operation is invoked for a transaction
that is not coordinated by the local server then an attempt will be made to contact the
coordinator of the transaction in order to perform the operation. If the coordinator cannot be
reached, the operation will fail with a jakarta.transaction.SystemException.

In the case where a transaction may have been committed at the coordinating server
(committing status), but a remote participant did not receive the commit instruction (prepared
status). You can force a local commit on the remote participant to complete the transaction. In
this case it is possible to force a rollback on the remote participant since its transaction state
will still be prepared, but the transaction will complete heuristically. If you try to force a global
rollback, the operation will fail because the state at the coordinator is committing. You cannot
roll back a transaction with the committing status.

Transaction Recovery After a Server Fails
The WebLogic Server transaction manager is designed to recover from system crashes with
minimal user intervention. The Transaction Recovery Service provided by WebLogic Server
makes every effort to resolve transaction branches that are prepared by resource managers
with a commit or roll back, even after multiple crashes or crashes during recovery.

To facilitate recovery after a crash, the Transaction Recovery Service automatically attempts to
recover transactions on system startup. On startup, the Transaction Recovery Service parses

Chapter 3
Transaction Recovery After a Server Fails

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 13

all transaction log records for incomplete transactions and completes them as described in
Transaction Recovery Service Actions After a Crash.

Because the Transaction Recovery Service is designed to gracefully handle transaction
recovery after a crash, Oracle recommends that you attempt to restart a crashed server and
allow the Transaction Recovery Service to handle incomplete transactions.

If a server crashes and you do not expect to be able to restart it within a reasonable period of
time, you may need to take action. Procedures for recovering transactions after a server failure
differ based on your WebLogic Server environment. For a non-clustered server, you can
manually move the server (with the default persistent store DAT file) to another system
(machine) to recover transactions. See Recovering Transactions For a Failed Non-Clustered
Server . For a server in a cluster, you can manually migrate the whole server or the Transaction
Recovery Service to another server in the same cluster. Migrating the Transaction Recovery
Service involves selecting a server with access to the transaction logs to recover transactions,
and then migrating the service using the WebLogic Remote Console or the WebLogic
command-line interface.

Note

For non-clustered servers, you can only move the entire server to a new system. For
clustered servers, you can migrate the entire server or temporarily migrate the
Transaction Recovery Service.

For more information about migrating the Transaction Recovery Service, see Recovering
Transactions For a Failed Clustered Server. For more information about clusters, see
Administering Clusters for Oracle WebLogic Server.

The following sections provide information on how to recover after a failure:

Transaction Recovery Service Actions After a Crash
When you restart a server after a crash or when you migrate the Transaction Recovery Service
to another (backup) server, the Transaction Recovery Service does the following:

• Complete transactions ready for second phase of two-phase commit

For transactions for which a commit decision has been made but the second phase of the
two-phase commit process has not completed (transactions recorded in the transaction
log), the Transaction Recovery Service completes the commit process.

• Resolve prepared transactions

For transactions that the transaction manager has prepared with a resource manager
(transactions in phase one of the two-phase commit process), the Transaction Recovery
Service must call XAResource.recover() during crash recovery for each resource
manager and eventually resolve (by calling the commit(), rollback(), or forget()
method) all transaction IDs returned by recover().

• Report heuristic completions

If a resource manager reports a heuristic exception, the Transaction Recovery Service
records the heuristic exception in the server log and calls forget() if the Forget
Heuristics configuration attribute is enabled. If the Forget Heuristics configuration
attribute is not enabled, refer to your database vendor's documentation for information
about resolving heuristic completions. See Handling Heuristic Completions .

Chapter 3
Transaction Recovery After a Server Fails

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 13

Note

Prior to WebLogic Server 12.2.1.3.0, when a WebLogic JMS resource was enlisted in
a subordinate domain in a transaction that spanned domains, and if the WebLogic
JMS resource later migrated to a different server before the completion of the
transaction, then the automatic transaction recovery of the migrated WebLogic JMS
resource and transactions would occur only after the WebLogic JMS resource was
migrated back to its original location. This recovery is now supported, however, this
recovery does not provide continuity of existing inflight transactions. In case of
migration due to server crash, or if WebLogic JMS did not shutdown gracefully then
there is a possibility of some exceptions occurring and leading to transactions rolling
back.

The Transaction Recovery Service provides the following benefits:

• Maintains consistency across resources

The Transaction Recovery Service handles transaction recovery in a consistent,
predictable manner: For a transaction for which a commit decision has been made but is
not yet committed before a crash, and XAResource.recover() returns the transaction ID,
the Transaction Recovery Service consistently calls XAResource.commit(); for a
transaction for which a commit decision has not been made before a crash, and
XAResource.recover() returns its transaction ID, the Transaction Recovery Service
consistently calls XAResource.rollback(). With consistent, predictable transaction
recovery, a transaction manager crash by itself cannot cause a mixed heuristic completion
where some branches are committed and some are rolled back.

• Persists in achieving transaction resolution

If a resource manager crashes, the Transaction Recovery Service must eventually call
commit() or rollback() for each prepared transaction until it gets a successful return from
commit() or rollback(). The attempts to resolve the transaction can be limited by setting
the AbandonTimeoutSeconds configuration attribute. See Abandoning Transactions .

Recovering Transactions For a Failed Non-Clustered Server
To recover transactions for a failed server, follow these steps:

1. Move (or make available) the persistent store DAT file (which contains all transaction log
records) from the failed server to a new server.

2. Set the path for the default persistent store with the path to the data file. See Setting the
Path for the Default Persistent Store .

3. Start the new server. The Transaction Recovery Service searches all transaction log files
for incomplete transactions and completes them as described in Transaction Recovery
Service Actions After a Crash.

When moving transaction log records after a server failure, make all transaction log records
available on the new machine before starting the server there. Otherwise, transactions in the
process of being committed at the time of a crash might not be resolved correctly, resulting in
application data inconsistencies. Accomplish this by storing persistent store data files on a
dual-ported disk available to both machines. As in the case of a planned migration, update the
default file store directory attribute with the new path before starting the server if the
pathname is different on the new machine.

Chapter 3
Transaction Recovery After a Server Fails

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 13

Note

The Transaction Recovery Service is designed to gracefully handle transaction
recovery after a crash. Oracle recommends that you attempt to restart a crashed
server and allow the Transaction Recovery Service to handle incomplete transactions,
rather than move the server to a new machine.

Recovering Transactions For a Failed Clustered Server
When a clustered server fails, you have the following options for recovering transactions:

Server Migration
For clustered servers, WebLogic Server enables you to migrate a failing server to a new
machine, including the Transaction Recovery Service. When the server migrates to another
machine, it must be able to locate the transaction log records to complete or recover
transactions. Transaction log records are stored in the default persistent store for the server. If
you plan to migrate clustered servers in the event of a failure, you must set up the default
persistent store so that it stores records in a shared storage system that is accessible to any
potential machine to which a failed migratable server might be migrated. For highest reliability,
use a shared storage solution that is itself highly available—for example, a storage area
network (SAN).

For information about server migration, see Whole Server Migration in Administering Clusters
for Oracle WebLogic Server.

For more information about setting default persistent store options, see:

• Setting the Path for the Default Persistent Store

• Setting the Default Persistent Store Synchronous Write Policy

Automatic Transaction Recovery Service Migration
You can specify to have the Transaction Recovery Service automatically migrated from an
unhealthy server instance to a healthy server instance, with the help of the server health
monitoring services. This way the backup server can complete transaction work for the failed
server. See Roadmap for Configuring Automatic Migration of the JTA Transaction Recovery
Service in Administering Clusters for Oracle WebLogic Server.

Manual Transaction Recovery Service Migration
When a clustered server crashes, you can manually migrate the Transaction Recovery Service
from the crashed server to another server in the same cluster using the WebLogic Remote
Console or the command-line interface.

You can also configure WebLogic Server to automatically migrate the Transaction Recovery
Service to a healthy candidate server based with the help of WebLogic Server health
monitoring of singleton services. See Automatic Transaction Recovery Service Migration.

What Occurs During Transaction Recovery Service Migration
When manual or automatic service migration takes place, the following events occur:

Chapter 3
Transaction Recovery After a Server Fails

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 13

1. The Transaction Recovery Service on the backup server takes ownership of the
transaction log from the crashed server.

2. The Transaction Recovery Service searches all transaction log records from the failed
server for incomplete transactions and completes them as described in Transaction
Recovery Service Actions After a Crash.

3. If the Transaction Recovery Service on the backup server successfully completes all
incomplete transactions from the failed server, the server releases ownership of the
Transaction Recovery Service for the failed server so the failed server can reclaim it upon
restart.

A server can perform transaction recovery for multiple failed servers. While recovering
transactions for other servers, the backup server continues to process and recover its own
transactions. If the backup server fails during recovery, you can migrate the Transaction
Recovery Service to yet another server, which continues the transaction recovery. You can also
manually migrate the Transaction Recovery Service back to the original failed server using the
WebLogic Remote Console or the command-line interface. See Manually Migrating the
Transaction Recovery Service to the Original Server.

When a backup server completes transaction recovery for a server, it releases ownership of
the Transaction Recovery Service for the failed server. When you restart a failed server, it
attempts to reclaim ownership of its Transaction Recovery Service. If a backup server is in the
process of recovering transactions when you restart the failed server, the backup server stops
recovering transactions, performs some internal cleanup, and releases ownership of the
Transaction Recovery service so the failed server can reclaim it and start properly. The failed
server then completes its own transaction recovery.

If a backup server still owns the Transaction Recovery Service for a failed server and the
backup server is inactive when you attempt to restart the failed server, the failed server does
not start because the backup server cannot release ownership of the Transaction Recovery
Service. This is also true if the fail back mechanism fails or if the backup server cannot
communicate with the Administration Server. You can manually migrate the Transaction
Recovery using the WebLogic Remote Console or the command-line interface.

Managed Server Independence
Prior to WebLogic Server 10.0, when a cluster's primary Managed Server was booted, but was
unable to contact the Administration Server (mostly because that Administration Server had
not started yet), then the primary Managed Server would automatically go into MSI (managed
server independence) mode and continue to boot up using its local configuration information.
During a manual migration of the Transaction Recovery Service, this situation posed a
potential risk that a backup server was still recovering TLog data on behalf of the primary
Managed Server, which could then lead to concurrent access to TLog and potential corruption
of the TLog.

To avoid risking potential TLog corruption, there is a strictOwnershipCheck property on the
JTAMigratableTargetMBean. This way, when a primary Managed Server attempts to boot up
and it finds that it cannot connect to the Administration Server (for the manual JTA migration
policy) or the Singleton Master (for the automatic JTA migration policy), then it verifies its
independence by checking the value of the strictOwnershipCheck, as follows:

• True – This is the recommended setting. The primary Managed Server throws an
exception and fail to boot.

• False – The primary Managed Server skips the Transaction Recovery Service failback,
then it can boot successfully. This poses the same TLog corruption risk as in WebLogic
Server 9.2 or earlier.

Chapter 3
Transaction Recovery After a Server Fails

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 13

Limitations of Migrating the Transaction Recovery Service
When manually or automatically migrating the Transaction Recovery Service, the following
limitations apply:

• You cannot migrate the Transaction Recovery Service to a backup server from a server
that is running. You must stop the server before migrating the Transactions Recovery
Service.

• The backup server does not accept new transaction work for the failed server. It only
processes incomplete transactions.

• The backup server does not process heuristic log files.

• The backup server only processes log records written by WebLogic Server. It does not
process log records written by gateway implementations, including WebLogic Tuxedo
Connector.

In addition to the limitations described above, the following rules also apply when WebLogic
Server 10.0 or later is configured to automatically migrate the Transaction Recovery Service:

• If the cluster also contains servers from earlier releases of WebLogic Server, the primary
server and backup servers must be WebLogic Server 10.0 or later. To enforce this when
automatic migration is enabled, on the WebLogic Remote Console, only WebLogic Server
10.0 or later servers appear in the Candidate Servers Available list.

• Manual service migration is supported between release 9.2 or earlier servers and release
10.0 or later servers if no migration scripts are used.

Preparing to Migrate the Transaction Recovery Service
To migrate the Transaction Recovery Service from a failed server in a cluster to another server
(backup server) in the same cluster, the backup server must have access to the transaction log
records from the failed server. Therefore, you must store default persistent store data files on
persistent storage available to all potential backup servers in the cluster. Consider the
following:

• A storage area network (SAN) is recommended.

• If you use an NFS file system, configure the NFS server so that disk writes are not cached.

• Regardless of the storage solution, test failover and migration.

With some storage solutions, particularly some versions of NFS, file locking can be an
issue. You may need to configure your storage server to handle file locks effectively or you
may need to turn off file locking for the WebLogic file store.

Chapter 3
Transaction Recovery After a Server Fails

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 13

Note

NFS storage may not fully protect transactional data, as it may be configured to
silently buffer synchronous write requests in volatile memory. If a file store
Directory is located on an NFS mount, and the file store's Synchronous Write
Policy is anything other than Disabled, check your NFS implementation and
configuration to make sure that it is configured to support synchronous writes. A
Disabled synchronous write policy does not perform synchronous writes, but, as a
consequence, is generally not transactionally safe. You may detect undesirable
buffering of synchronous write requests by observing high persistent message or
transaction throughput that exceeds the physical capabilities of your storage
device. On the NFS server, check the synchronous write setting of the exported
NFS directory hosting your File Store. A SAN based file store, or a JDBC store,
may provide an easier solution for safe centralized storage. See File Locking and
NFS in Tuning Performance of Oracle WebLogic Server.

The following persistent store rules apply when manually or automatically migrating the
Transaction Recovery Service:

• The default persistent store cannot be shared by JTA and other migratable services. Other
migratable services, such as JMS services, must use another custom store if they are
targeted to a migratable target.

• If post-deactivation and pre-activation scripts are specified to perform any dismounting and
mounting of the default store, then the Node Manager must be configure and running on all
candidate machines.

The Administration Server must be available when the primary server starts up, fails over, or
fails back. This is required to guarantee that the Transaction Recovery Service gets exclusive
ownership to its TLog correctly and without conflict. When the primary server starts up, the
Transaction Recovery Service connects to Administration Server to get the latest information
about JTA. And should failover/failback occur, the Transaction Recovery Service saves the
latest information to Administration Server.

When migrating the Transaction Recovery Service from a server, you must stop the failing or
failed server before actually migrating the Transaction Recovery Service. If the original server
is still running, you cannot migrate the Transaction Recovery Service from it.

All servers that participate in the migration must have a listen address specified in their
configuration.

Constraining Servers to Which the Transaction Recovery Service Can Migrate
You may want to limit the choices of the servers to use as a Transaction Recovery Service
backup for a server in a cluster. For example, all servers in your cluster may not have access
to the transaction log records for a server.

Note

You must include the original server in the list of chosen servers so that you can
manually migrate the Transaction Recovery Service back to the original server, if need
be. The WebLogic Remote Console enforces this rule.

Chapter 3
Transaction Recovery After a Server Fails

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 13

Manually Migrating the Transaction Recovery Service to the Original Server
After completing transaction recovery for a failed server, a backup server releases ownership
of the Transaction Recovery Service so that the original server can reclaim it when the server
is restarted. If the backup server stops (crashes) for any reason before it completes transaction
recovery, the original server cannot reclaim ownership of the Transaction Recovery Service
and does not start.

You can manually migrate the Transaction Recovery Service back to the original server by
selecting the original server as the destination server. The backup server must not be running
when you migrate the service back to the original server. Follow the instructions below.

Note

Please note the following:

• If a backup server fails before completing the transaction recovery actions, the
primary server cannot reclaim ownership of the Transaction Recovery Service and
recovery is not re-attempted after the rebooting server. Therefore, you must
attempt to manually re-migrate the Transaction Recovery Service to another
backup server.

• If you restart the original server while the backup server is recovering transactions,
the backup server gracefully releases ownership of the Transaction Recovery
Service. You do not need to stop the backup server. See Recovering Transactions
For a Failed Clustered Server.

How to Remove Transaction Records
Before deleting TLogs the WebLogic Server instance should be shutdown gracefully to allow
the completion of as many transactions as possible.

Note

You should delete TLogs only in an extreme case. Deleting the TLogs removes
transaction records, resulting in heuristic failures. For example, see Moving a Server.

The location of TLogs is dependent whether you are using the default store, a JDBC TLog
store, and if LLR is a participating resource in a transaction.

• When one resource involved in the transaction is a LLR, then the TLogs are stored in two
locations.

– The transaction records are stored in a database table. See How to Remove the TLog
in the LLR Database.

– The server and resource checkpoints are stored in the default store or a JDBC TLog
store. See How to Remove the TLog Files from the Default Store and How to Remove
the TLog from a JDBC TLog Store.

• If there are no participating LLR in the transactions, the transaction records, server
checkpoints, and resource checkpoints are all saved to the TLog file in the default store or

Chapter 3
Transaction Recovery After a Server Fails

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 13

a JDBC TLog store. See How to Remove the TLog Files from the Default Store and How to
Remove the TLog from a JDBC TLog Store.

How to Remove the TLog in the LLR Database
Default name of the LLR table is WL_LLR_SERVERNAME, where SERVERNAME is the name of the
server instance. To delete the LLR TLog that is kept in the database, remove all the records
from the table by issuing drop table WL_LLR_SERVERNAME.

How to Remove the TLog Files from the Default Store
To remove the TLogs in a the default store, delete all files having the following pattern:

$DOMAIN_HOME/servers/servername/data/store/default/_WLS_SERVERNAMExxxxxx.DAT

where xxxxxx are integers ranging from 0 to 9.

Note

If the default store contains a configured JMS file store, deleting the TLog also deletes
the JMS File Store. In this case, before deleting the TLog files, first export the JMS
messages to another location. You can then safely delete the TLog files and import the
JMS messages back to the original store. See Managing JMS Messages in
Administering JMS Resources for Oracle WebLogic Server.

How to Remove the TLog from a JDBC TLog Store
The name of the JDBC TLog store is the PrefixName prepended to the name of the server
hosting the JDBC TLog store and ends in "_". For example, a valid JDBC TLog store name
using the default Prefix Name is TLOG_MyServer_ where TLOG_ is the Prefix Name and
MyServer is the name of the server hosting the JDBC TLog store. You database administrator
can remove the existing TLog information from your JDBC TLog store.

Chapter 3
Transaction Recovery After a Server Fails

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 13

4
Using Transaction Guard

Transaction Guard provides a generic infrastructure for applications to use for at-most-once
execution during planned and unplanned outages and duplicate submissions. Applications use
the logical transaction ID to determine the outcome of the last transaction open in a database
session following an outage.

Without Transaction Guard, applications that attempt to replay operations following outages
can cause logical corruption by committing duplicate transactions.

Transaction Guard provides these benefits:

• Preserves the commit outcome

• Ensures a known outcome for every transaction

• Provides at-most-once transaction execution

This chapter contains the following topics:

Overview of Transaction Guard
The main purpose of Transaction guard is to provide at-most execution semantics in case of
failures. The semantics assure that end-user transactions are executed on time and at-most-
once.

For current applications, in case of communication failure to the server, determining the
outcome of the last commit operation in a guaranteed and scalable manner becomes a
challenge. In many cases, the end users are asked to follow certain steps to avoid resubmitting
duplicate request. For example, some applications warn users not to click the Submit button
twice because if it is not followed, then users may unintentionally purchase the same items
twice and submit multiple payments for the same invoice.

Without Transaction Guard, if a transaction has been started and commit has been issued, the
commit message that is sent back to the client is not durable. The client is left not knowing
whether the transaction committed. The transaction cannot be validly resubmitted if the non-
transactional state is incorrect or if it already committed. In the absence of guaranteed commit
and completion information, re-submission can lead to transactions applied more than once
and in a session with the incorrect state.

It's possible to use global XA transactions to limit the problem described above. However, there
is overhead associated with the protocols required for XA processing. Further, some features
like application continuity are not available with XA transactions.

WebLogic Server Transaction Management integrates with Transaction Guard internally to
determine the state (commit outcome) of transactions during failures. The benefits of this
integration is reducing heuristic exceptions in the case of global transactions with more than
one resource, and reducing system exceptions in the case of one-phase transactions with only
one resource. The implementation of this integration is internal to WebLogic Server and does
not require changes to the application code.

If there is an exception during the completion of the transaction, WebLogic Server uses
Transaction Guard to determine the transaction result. No changes are needed in the
application code.

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

For more information about Transaction Guard, see Transactions in the Oracle Database
guide.

Enabling Transaction Guard
Transaction Guard must be configured both in the data source and in the database service.

Topics

Enabling Transaction Guard for WebLogic Data Sources
Except TwoPhaseCommit, transaction guard supports all non-XA Oracle data source driver
types and all WebLogic data source transaction types like EmulateTwoPhaseCommit,
OnePhaseCommit, LoggingLastResource, and None.Enable transaction guard support on a
data source by setting the connection property weblogic.jdbc.commitOutcomeEnabled to
true.
For example, the following is a sample from a WLST script that creates a data source:

jdbcSR = create(dsname, 'JDBCSystemResource')
jdbcResource = jdbcSR.getJDBCResource()
driverParams = jdbcResource.getJDBCDriverParams()
driverProperties = driverParams.getProperties()
tgprop = driverProperties.createProperty('weblogic.jdbc.commitOutcomeEnabled')
tgprop.setValue('true')

While trying to get the status of the transaction using Transaction Guard, it is possible for the
operation to time out and the transaction will fail. The timeout for connections on a datasource
with transaction type EmulateTwoPhaseCommit, OnePhaseCommit, or LoggingLastResource
uses the XA completion-timeout value. The timeout for connections on a datasource with
transaction type None (e.g., outside a transaction) is 10 seconds.

To override the default value, use the weblogic.jdbc.commitOutcomeRetrySeconds
connection property. For example, add the following to the WLST script above.

tgseconds = driverProperties.createProperty(
'weblogic.jdbc. commitOutcomeRetrySeconds’)
tgseconds.setValue('60')

Note

This feature is supported in a global transaction that has both XA and non-XA
resources or has multiple EmulateTwoPhaseCommit resources. Global transactions
with more than one participating resource can still experience heuristic outcomes. The
use of the Transaction Guard feature on the datasource(s) does not guard against the
inherent potential for non-atomic/heuristic outcome for this type of global transaction.

Enabling Transaction Guard for Database Service
The database service that is specified in the URL for the data source must be configured with
the-commit_outcome parameter set to TRUE and optionally set the retention timeout.

For example:

Chapter 4
Enabling Transaction Guard

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

srvctl modify service -d mydb -s myservice -e TRANSACTION -commit_outcome TRUE -
retention 604800 -rlbgoal SERVICE_TIME -clbgoal SHORT

See Database Configuration for Transaction Guard

Data Source Statistics for Transaction Guard
Learn about Data source statistics available on the
weblogic.management.runtime.JDBCDataSourceRuntimeMBean for transaction guard.

The following related statistics are available on the
weblogic.management.runtime.JDBCDataSourceRuntimeMBean.

public long getResolvedAsCommittedTotalCount();

The cumulative total number of commit outcomes successfully resolved as committed in this
data source since the data source was deployed.

public long getResolvedAsNotCommittedTotalCount();

The cumulative total number of commit outcomes successfully resolved as committed in this
data source since the data source was deployed.

public long getUnresolvedTotalCount();

The cumulative total number of commit outcomes unsuccessfully resolved in this data source
since the data source was deployed.

public long getCommitOutcomeRetryTotalCount();

The cumulative total number of commit outcome query retries conducted before resolving the
outcome or exceeding the retry seconds in this data source since the data source was
deployed.

See JDBCDataSourceRuntimeMBean.

Chapter 4
Data Source Statistics for Transaction Guard

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

5
Transaction Service

Learn how to write information for transactional applications to be used with WebLogic Server.
Also, understand the capabilities and limitations of the transaction service and how to use it
with EJBs, RMI applications, and the Object Transaction Service (OTS).

About the Transaction Service
WebLogic Server provides a Transaction Service that supports transactions in EJB and RMI
applications.

In the WebLogic Server EJB container, the Transaction Service provides an implementation of
the transaction services described in the Jakarta Enterprise Beans Specification 4.0 at
https://jakarta.ee/specifications/enterprise-beans/4.0/.

For EJB and RMI applications, WebLogic Server also provides the javax.transaction and
jakarta.transaction.xa packages, which implement the Java Transaction API (JTA) for Java
applications. For more information about JTA, see the Java Transaction API (JTA) Specification
2.0, published at https://jakarta.ee/specifications/transactions/2.0/. For more
information about the UserTransaction object that applications use to demarcate transaction
boundaries, see weblogic.transaction.UserTransaction in the Java API Reference for
Oracle WebLogic Server.

Capabilities and Limitations
Learn about the capabilities and limitations of the Transaction Service that supports EJB and
RMI applications.

Lightweight Clients with Delegated Commit
A lightweight client runs on a single-user, unmanaged desktop system that has irregular
availability. Owners may turn their desktop systems off when they are not in use. These single-
user, unmanaged desktop systems should not be required to perform network functions such
as transaction coordination. In particular, unmanaged systems should not be responsible for
ensuring atomicity, consistency, isolation, and durability (ACID) properties across failures for
transactions involving server resources. WebLogic Server remote clients are lightweight
clients.

The Transaction Service allows lightweight clients to do a delegated commit, which means that
the Transaction Service allows lightweight clients to begin and terminate transactions while the
responsibility for transaction coordination is delegated to a transaction manager running on a
server machine. Client applications do not require a local transaction server. The remote
implementation of UserTransaction that EJB or RMI clients use delegates the actual
responsibility of transaction coordination to the transaction manager on the server.

Client-initiated Transactions
A client, such as an applet, can obtain a reference to the UserTransaction and
TransactionManager objects using JNDI. A client can begin a transaction using either object

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 5

http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://www.oracle.com/technetwork/java/javaee/jta/index.html

reference. To get the Transaction object for the current thread, the client program must invoke
the ((TransactionManager)tm).getTransaction() method.

Transaction Integrity
Checked transaction behavior provides transaction integrity by guaranteeing that a commit
does not succeed unless all transactional objects involved in the transaction have completed
the processing of their transactional requests. The Transaction Service provides checked
transaction behavior that is equivalent to that provided by the request/response inter-process
communication models defined by The Open Group.

Transaction Termination
WebLogic Server allows transactions to be terminated only by the client that created the
transaction.

Note

The client may be a server object that requests the services of another object.

Flat Transactions
WebLogic Server implements the flat transaction model. Nested transactions are not
supported.

Relationship of the Transaction Service to Transaction Processing
The Transaction Service relates to various transaction processing servers, interfaces,
protocols, and standards in the following ways:

• Support for The Open Group XA interface.The Open Group Resource Managers are
resource managers that can be involved in a distributed transaction by allowing their two-
phase commit protocol to be controlled using The Open Group XA interface. WebLogic
Server supports interaction with The Open Group Resource Managers.

• Support for the OSI TP protocol. Open Systems Interconnect Transaction Processing
(OSI TP) is the transactional protocol defined by the International Organization for
Standardization (ISO). WebLogic Server does not support interactions with OSI TP
transactions.

• Support for the LU 6.2 protocol. Systems Network Architecture (SNA) LU 6.2 is a
transactional protocol defined by IBM. WebLogic Server does not support interactions with
LU 6.2 transactions.

• Support for the ODMG standard. ODMG-93 is a standard defined by the Object
Database Management Group (ODMG) that describes a portable interface to access
Object Database Management Systems. WebLogic Server does not support interactions
with ODMG transactions.

Multithreaded Transaction Client Support
WebLogic Server supports multithreaded transactional clients. Clients can make transaction
requests concurrently in multiple threads.

Chapter 5
Capabilities and Limitations

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 5

Transaction Id
The Transaction Service assigns a transaction identifier (XID) to each transaction. This ID can
isolate information about a specific transaction in a log file. You can retrieve the transaction
identifier using the getXID method in the weblogic.transaction.Transaction interface. For
detailed information on methods for getting the transaction identifier, see
weblogic.transaction.Transaction in the Java API Reference for Oracle WebLogic Server.

Transaction Name and Properties
WebLogic JTA provides extensions to jakarta.transaction.Transaction that support
transaction naming and user-defined properties. These extensions are included in the
weblogic.transaction.Transaction interface.

The transaction name indicates a type of transaction (for example, funds transfer or ticket
purchase) and should not be confused with the transaction ID, which identifies a unique
transaction on a server. The transaction name makes it easier to identify a transaction type in
the context of an exception or a log file.

User-defined properties are key/value pairs, where the key is a string identifying the property
and the value is the current value assigned to the property. Transaction property values must
be objects that implement the Serializable interface. You manage properties in your
application using the set and get methods defined in the weblogic.transaction.Transaction
interface. Once set, properties stay with a transaction during its entire lifetime and are passed
between machines as the transaction travels through the system. Properties are saved in the
transaction log, and are restored during crash recovery processing. If a transaction property is
set more than once, the latest value is retained.

For detailed information on methods for setting and getting the transaction name and
transaction properties, see weblogic.transaction.Transaction in the Java API Reference for
Oracle WebLogic Server.

Transaction Status
The Java Transaction API provides transaction status codes using the
jakarta.transaction.Status class. Use the getStatusAsString method in
weblogic.transaction.Transaction to return the status of the transaction as a string. The
string contains the major state as specified in jakarta.transaction.Status with an additional
minor state (such as logging or pre-preparing).

Transaction Statistics
Transaction statistics are provided for all transactions handled by the transaction manager on a
server. These statistics include the number of total transactions, transactions with a specific
outcome (such as committed, rolled back, or heuristic completion), rolled back transactions by
reason, and the total time that transactions were active. For detailed information on transaction
statistics, see Monitoring Transactions.

General Constraints
The following constraints apply to the Transaction Service:

Chapter 5
Capabilities and Limitations

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 5

• In WebLogic Server, a client or a server object cannot invoke methods on an object that is
infected with (or participating in) another transaction. The method invocation issued by the
client or the server instance returns an exception.

• In WebLogic Server, clients using third-party implementations of the Java Transaction API
(for Java applications) are not supported.

• The transaction log buffer is limited to 250 KB. If your application includes very large
transactions that require transaction log writes that exceed this value, WebLogic Server
instance throws an exception. In that case, you must reconfigure your application to work
around the buffer size.

Transaction Scope
The scope of a transaction refers to the environment in which the transaction is performed.
WebLogic Server supports transactions on standalone servers, between non-clustered servers,
between clustered servers within a domain, and between domains.

To enable inter-domain transaction support, see Configuring Secure Inter-Domain and Intra-
Domain Transaction Communication.

Transaction Service in EJB Applications
The WebLogic Server EJB container provides a Transaction Service that supports the two
types of transactions in WebLogic Server EJB applications such as container-managed
transactions and bean-managed transactions.

• Container-managed transactions. In container-managed transactions, the WebLogic
Server EJB container manages the transaction demarcation. Transaction attributes in the
EJB deployment descriptor determine how the WebLogic Server EJB container handles
transactions with each method invocation.

• Bean-managed transactions. In bean-managed transactions, the EJB manages the
transaction demarcation. The EJB makes explicit method invocations on the
UserTransaction object to begin, commit, and roll back transactions. For more information
about UserTransaction methods, see weblogic.transaction.UserTransaction in the
Java API Reference for Oracle WebLogic Server.

For an introduction to transaction management in EJB applications, see Transactions in
WebLogic Server EJB Applications and Transactions Sample EJB Code .

Transaction Service in RMI Applications
WebLogic Server provides a Transaction Service that supports transactions in WebLogic
Server RMI applications. In RMI applications, the client or server application makes explicit
method invocations on the UserTransaction object to begin, commit, and roll back
transactions.

For more information about UserTransaction methods, see the online javadoc. For an
introduction to transaction management in RMI applications, see Transactions in WebLogic
Server RMI Applications and Transactions Sample RMI Code.

Transaction Service Interoperating with OTS
WebLogic Server provides a Transaction Service that supports interoperation with the Object
Transaction Service (OTS).

Chapter 5
Transaction Scope

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 5

For this release, WebLogic Server interoperates with OTS in the following scenarios:

Server-Server 2PC
In this situation, a server-to-server 2PC transaction is completed using interposition. The
originating server creates an Xid and propagates the transaction to the target server. The
target server registers itself as a resource with the originating server. The originating server
drives the completion of the transaction. Logging Last Resource (LLR) transaction
optimization, as described in Logging Last Resource Transaction Optimization, is not
supported.

Client Demarcated Transactions
The client starts a transaction on the server using the OTS client APIs. The client then
retrieves the Xid from this transaction and then propagates this per-request until the
transaction is committed. Although the client initiates the transaction, all the commit processing
occurs on the server.

Chapter 5
Transaction Service Interoperating with OTS

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 5

6
Transaction Recovery Spanning Multiple Sites
or Data Centers

Learn about the best practices for XA transaction recovery of WebLogic domains across
physical sites as part of a Disaster Recovery (DR) solution.

Understanding XA Transaction Recovery in Disaster Recovery
Maximizing availability and providing protection from unforeseen disasters and natural
calamities are key requirements of a disaster recovery solution for an enterprise deployment.
One aspect of a disaster recovery solution is to ensure that all XA transactions of affected
WebLogic domains can be recovered if a production site is no longer available.

For transaction recovery, the following solutions are provided:

• Active-Passive: These solutions involve setting up and pairing a standby site at a
geographically different location with an active (production) site. The standby site is
normally in a passive mode; it is started when the production site is not available. See
Active-Passive XA Transaction Recovery.

• Active-Active Stretch Cluster: In this architecture, a cluster stretches across two sites.
Transaction recovery across sites takes place by service or server migration. See Active-
Active Stretch Cluster XA Transaction Recovery.

Note

Transactions that enlist a WebLogic Server JMS resource cannot be recovered in
active-active recovery solutions.

See Overview of Disaster Recovery in Oracle® Fusion Middleware Disaster Recovery Guide
for more information on disaster recovery solutions for enterprise deployments. The following
sections provide the requirements and guidelines to recover XA transactions from failed
production domains.

Active-Passive XA Transaction Recovery
Learn about the domain configuration and requirements for XA transactions in an active-
passive recovery solution.

Requirements for XA Transactions in an Active-Passive Disaster Recovery Solution

This section provides the conditions and configuration requirements necessary to enable the
successful recovery of XA transactions following the failure of a production site in an active-
passive disaster recovery solution:

• All active-passive domain pairs are configured with symmetric topology, they are identical
and have the same domain configurations.

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 5

• With WebLogic Continuous Availability failover can be orchestrated with Oracle Site Guard.
Oracle Enterprise Manager Cloud Control is one option that provides the ability to manage
disaster recover of WebLogic Server domains across multiple data centers.

• The ability to maintain the workload at less than full capacity on the active and passive site
during runtime in order to achieve a consistent capacity during runtime and recovery.

• Only hostnames (not static IPs) must be used to specify the listen address of managed
servers. Configuration of these hostnames must be identical on all sites. As hostnames
between sites are identical but IPs are not, the hostname provides the dynamic ability to
simply start an identically configured server or domain on the recovery site.

– Before initiating the Transaction Recovery service by starting servers in the passive
domain, update the DNS server to point the DNS names to the machine(s) in passive
data center.

For example: Active domain Domain1 has two managed servers running on two
machines Mc1 and Mc2. In domain configuration, use the corresponding DNS names
dns-1 and dns-2. When the active domain fails and we want to activate corresponding
passive domain, update the DNS server and change configuration to point dns-1 and
dns-2 to Mc3 and Mc4 respectively. Then start passive Domain2.

– Do not use DNS names that include an underscore, they are not valid in WebLogic
Server domains. DNS names with a dash are valid.

• You have several options to store the TLog: a default store, JDBC TLog, LLR, and a
determiner resource. A default store must be in a common area (usually NFS or SAN). A
JDBC TLog uses a database as a common storage location to all WLS servers and is
typically replicated using DataGuard or Active DataGuard to ensure high availability. When
possible, eliminate XA transaction TLogs write by using determiner resources, see XA
Transactions without Transaction TLog Write.

• Transaction service migration within a cluster is only supported if the entire cluster,
including the corresponding domains and servers, is failed over to a recovery site.
Specifically, the administrator must insure the node manager and entire cluster,
corresponding domains, and any impacted servers have been shutdown on failed site
before starting them all on the recovery site.

• Transactions that span WebLogic domains can only be recovered in a site failover if all
domains involved in the transaction are failed over.

• The domain information is kept in a shared location(s) to ensure domain configurations are
in sync. Applications are kept in a shared location(s) to ensure they are in sync.

Note

Pack/Unpack could be another approach to keep configurations in sync.

See Setting Up and Managing Disaster Recovery Sites in Oracle® Fusion Middleware Disaster
Recovery Guide for detailed information on conditions and requirements for setting up active
and passive recovery sites for enterprise deployments.

Example Active-Passive Domain Configuration for XA Transaction Recovery
All active-passive domain pairs are configured with symmetric topology, they are identical and
have the same domain configurations. The failover process in an Active-Passive architecture is
either manual or controlled by an external tool.

Chapter 6
Active-Passive XA Transaction Recovery

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 5

http://docs.oracle.com/cd/E24628_01/index.htm

Figure 6-1 Domain Configuration for Active-Passive Recovery

An application running on Site1 starts a transaction. After it calls commit, the entire application
infrastructure tier comes down. In this example, the application session replication, file system
replication, and DB replication are taking place between the two sites.

If the entire WebLogic Server tier has not come down then all servers need to be shutdown
and all the identical servers in the passive domain need to be started. Since the domains,
clusters, servers, and resource all have identical names, as soon as the servers are started,
recovery will commence and all transactions will recover. It is recommended to do a graceful
shutdown of any server to allow work to drain.

Active-Active Stretch Cluster XA Transaction Recovery
Learn about the requirements and domain configuration for XA transactions in an active-active
recovery solution, where a WebLogic Server Cluster stretches across two sites.
When a server of the cluster fails, server and resource checkpoints are still written to the
TLOG. Checkpoints are written when the resources are first involved in a global transaction,
updated only if there are changes to the transaction participants, and purged only if they are no
longer used or become unavailable. Because checkpoints are created early in the transaction,
as long as there are no changes to the participants in the global transactions, there is little
danger of a checkpoint being out of sync during transaction service migration or transaction
recovery spanning multiple sites or data centers. another server of the cluster can take over
transaction recovery with service or server migration. This kind of architecture requires low
latency between the sites. See Multicast and Cluster Configuration in Administering Clusters
for Oracle WebLogic Server.

This section describes the domain configuration and requirements for XA transactions in an
active-active stretch cluster recovery solution.

Chapter 6
Active-Active Stretch Cluster XA Transaction Recovery

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 5

Requirements for XA Transactions in an Active-Active Stretch Cluster Disaster
Recovery Solution

This section describes the conditions and configuration requirements necessary to enable the
successful recovery of XA transactions following the failure of a production site in an active-
active stretch cluster disaster recovery solution.

Since this architecture uses service or server migration for XA transaction recovery, the
requirements are same as the conditions necessary for server migration. See Server Migration.

In addition, the network must meet the following requirements:

• Full support of IP multicast packet propagation. In other words, all routers and other
tunneling technologies must be configured to propagate multicast messages to clustered
server instances.

• Network latency low enough to ensure that most multicast messages reach their final
destination in approximately 10 milliseconds.

• Multicast Time-To-Live (TTL) value for the cluster high enough to ensure that routers do
not discard multicast packets before they reach their final destination. For instructions on
setting the Multicast TTL parameter, see Configure Multicast Time-To-Live (TTL).

See If Your Cluster Spans Multiple Subnets In a WAN in Administering Clusters for Oracle
WebLogic Server.

Example Active-Active Stretch Cluster for XA Transaction Recovery
In an active-active stretch cluster recovery solution, the JTA service or server migration is used
for transaction recovery. This architecture is recommended when there is low latency between
sites.

Figure 6-2 Domain Configuration for Active-Active Stretch Cluster Recovery

Chapter 6
Active-Active Stretch Cluster XA Transaction Recovery

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 5

In this example, an application running on Site 1 starts a transaction. After it calls commit, one
or more servers on Site 1 fails. If service or server migration are configured then the surviving
servers on Site 2 (in the stretch cluster) will take over recovery for the failed servers.

Additional Information on Maximum Availability Architecture
Oracle provides a number of resources which provide additional information on how to
configure environments that maximize availability.

See the following topics:

• http://www.oracle.com/technetwork/database/features/availability/fusion-middleware-
maa-155387.html

• Oracle® Fusion Middleware Disaster Recovery Guide

• Oracle® Fusion Middleware High Availability Guide

Chapter 6
Additional Information on Maximum Availability Architecture

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 5

http://www.oracle.com/technetwork/database/features/availability/fusion-middleware-maa-155387.html
http://www.oracle.com/technetwork/database/features/availability/fusion-middleware-maa-155387.html

7
Configuring Secure Inter-Domain and Intra-
Domain Transaction Communication

Learn about secure inter-domain and intra-domain communication and how to configure these
secure communication between servers during a transaction.

What is Secure Inter-Domain and Intra-Domain Transaction
Communication?

In a transaction communication if the participating servers are within the same domain it is an
intra-domain communication. When the servers participating in transactions are not in the
same domain then it is an inter-domain communication.

For a transaction manager to manage distributed transactions, the transaction manager must
be able to communicate with all participating servers and resources to prepare and then
commit or rollback the transactions. How a communication channel is configured depends on
whether the transaction route is:

• Intra-domain—The transaction communication is between servers participating in
transactions within the same domain. You must correctly configure compatible
communication channels using either Local Domain Security for all participating servers in
global transactions or security interoperability mode.

• Inter-domain—The transaction communication is between servers participating in
transactions that are not in the same domain. You must correctly configure compatible
communication channels using either Cross Domain Security for all participating domains
in global transactions or security interoperability mode.

Communication channels must be secure to prevent a malicious third-party from using man-in-
the-middle attacks to affect transaction outcomes and potentially gaining administrative control
over one or more domains.

Requirements for Transaction Communication
There are certain requirements when configuring communication channels for your transaction
environment.

• The domains and all participating resources must have unique names. That is, you cannot
have a server or a domain with the same name as an object in another domain or the
domain itself.

• Keep all the domains used by your process symmetric with respect to Cross Domain
Security configuration, as settings are set at the domain level.

• Configure one-way SSL to provide additional communication security to protect the
transaction from a man-in-the-middle attack.

• Only one data source with both of the following attribute conditions participate in a global
transaction, regardless of the domain in which the data source is configured:

– Logging Last Resource or Emulate two-phase Commit is selected.

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 6

– The data source uses a non-XA driver to create database connections.

Note

If more than one LLR or JTS resource participate in a global transaction, naming
conflicts will cause the global transaction to fail.

How to Determine the Communication to Use for Domain Transactions
Use Table 7-1 to determine the usage of Cross Domain Security, Local Domain Security, or
Security Interoperability Mode:

Table 7-1 Selecting a Channel Configuration

Channel
Configuration

S
e
r
v
e
r
C
o
n
n
e
c
t
i
o
n

Advantage Disadvantage

Cross Domain
Security

I
n
t
e
r
-
d
o
m
a
i
n

• Specific users are
configured to establish
communication between
a domain pair.

• With SSL, prevents man-
in-the-middle attacks.

• More complex configuration.
• Any change to the transaction flow, such as

changing participants, participant roles
(coordinator versus resource or
subcoordinator), adding or removing a
domain, or changing the transaction route,
requires a configuration change.

Local Domain
Security

I
n
t
r
a
-
d
o
m
a
i
n

• A specific user is
configured to establish
communication between
servers in the same
domain.

• More complex configuration

Chapter 7
Requirements for Transaction Communication

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 6

Table 7-1 (Cont.) Selecting a Channel Configuration

Channel
Configuration

S
e
r
v
e
r
C
o
n
n
e
c
t
i
o
n

Advantage Disadvantage

Security
Interoperability
Mode

• I
n
t
e
r
-
d
o
m
a
i
n

• I
n
t
r
a
-
d
o
m
a
i
n

• Very easy to configure.
• No need to understand

the transaction flow when
configuring Security
Interoperability Mode.

• When in default mode,
using the Admin channel
prevents man-in-the-
middle attacks.

If Admin channel is
configured and the
Security Interoperability
Mode is set to default,
messages are forwarded
using kernel identity. If
Admin channel is not
configured, the default
Interoperability Mode
behaves the same as the
performance
Interoperability Mode,
where messages are
forwarded using
anonymous user.

• All domains that have servers that participate
in the global transaction have the same
domain trust. This is not as secure as in Cross
Domain Security where the trust is established
only between a domain pair.

• When set to performance, you are not
required to set domain trust between the
domains.

• In some configurations, there is a narrow
possibility of man-in-the-middle attacks.

Configuring Secure Channel Communication
Learn how to configure secure communication channels between servers.

Local Domain Security
Local Domain Security uses a credential mapper to enable you to configure compatible
communication channels between servers in the same domain in global transactions. You can
designate a user to perform all JTA communication between servers in the domain.

When local domain security is enabled, JTA retrieves the designated user's credentials from a
credential mapper and uses them to authenticate a subject and then perform the requested

Chapter 7
Configuring Secure Channel Communication

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 6

operation. The user must be a local user that belongs to the CrossDomainConnector user group
and exists as an entry in the credential mapper.

See Enable Local Domain Security for JTA in Oracle WebLogic Remote Console Online Help.

Cross Domain Security
Cross Domain Security uses a credential mapper to enable you to configure compatible
communication channels between remote servers in global transactions. For every domain pair
that participates in a transaction, a credential mapper is configured. Every domain pair has a
different set of credentials which belong to the CrossDomainConnector security role.

Although it requires a more complex configuration, Cross Domain Security enables you to tailor
trust between individual domains. As described in Cross Domain Security Between WebLogic
Server Domains, subsystems such as JMS, JTA, MDB, and WAN replication implement cross-
domain security. (The EJB container does not implement the solution for cross-domain
security.)

See:

• Enabling Cross Domain Security Between WebLogic Server Domains in Administering
Security for Oracle WebLogic Server

• Configure a Credential Mapping for Cross-Domain Security in Administering Security for
Oracle WebLogic Server

Important Considerations When Configuring Cross Domain Security
When configuring Cross Domain Security, consider the following guidelines:

• Domain trust is not required for Cross Domain Security.

• For every domain pair that participates in a transaction, a credential mapper must be
correctly configured having a set of credentials which belong to the CrossDomainConnector
security role. If the credential mapping is not correct, transactions across the participating
domains fail. See Configure a Credential Mapping for Cross-Domain Security in
Administering Security for Oracle WebLogic Server.

• To interoperate with WebLogic domains that either do not support Cross Domain Security
or have Cross Domain Security disabled, you must add these domains to the Excluded
Domain Names list of every participating WebLogic Server domain that has Cross Domain
Security enabled. If the configuration of the Excluded Domain Names list and the
CrossDomainSecurityEnabled flag is not consistent in all participating domains, branches
of the transaction fail.

• If Cross Domain Security Enabled flag is enabled and the transaction has participating
servers that are remote and local, Cross Domain security will be used for RMI
communication with the remote servers.

• When enabling or disabling the Cross Domain Security Enabled flag, there may be a
period of time where transactions or other remote calls can fail. For transactions, if the
commit request fails, the commit is retried after the configuration change is complete. If a
transaction RMI call fails during any other request, then the transaction times out and the
transaction is rolled back. The rollback is retried until AbandonTimeoutSeconds.

Cross Domain Security is Not Transitive
Servers participating in a transaction set cross-domain credential mapping with each other.

Chapter 7
Configuring Secure Channel Communication

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 6

Unlike domain-trust, the cross domain security configuration is not transitive; that is, because A
trusts B and B trusts C, it is not therefore also true that A trusts C.

Consider the follow scenario:

• DomainA has Server1 (coordinator)

• DomainB has Server2 (sub-coordinator)

• DomainC has Server3 and Server4 (Server3 is a sub-coordinator)

• DomainD has Server5 (does not participate in the transaction)

To set the cross-domain credential mapping in this scenario, do the following:

1. Set cross-domain security in DomainA for DomainB

2. Set cross-domain security in DomainB for DomainA

3. Set cross-domain security in DomainA for DomainC

4. Set cross-domain security in DomainC for DomainA

5. Set cross-domain security in DomainB for DomainC

6. Set cross-domain security in DomainC for DomainB

Because DomainD does not participate in the transaction, using cross-domain credential
mapping is not required. However, see Adding Domains to the Exclude List Based on
Transaction Participation for further clarification.

To present this information in another way, consider Table 7-2. A table cell containing Yes
indicates that you must configure cross domain security for this domain combination.

Table 7-2 Setting Cross Domain Security with Three Participating Domains

— DomainA DomainB DomainC DomainD

DomainA NA Yes Yes No

DomainB Yes NA Yes No

DomainC Yes Yes NA No

DomainD No No No NA

If you were then to add DomainD and leave a DomainE out of the cross-domain security
configuration, the cross-domain credential map would be as shown in Table 7-3. A table cell
containing Yes indicates that you must configure cross domain security for this domain
combination.

Table 7-3 Setting Cross Domain Security with Five Participating Domains

— DomainA DomainB DomainC DomainD DomainE

DomainA NA Yes Yes Yes No

DomainB Yes NA Yes Yes No

DomainC Yes Yes NA Yes No

DomainD Yes Yes Yes NA No

DomainE No No No No NA

Chapter 7
Configuring Secure Channel Communication

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 6

Adding Domains to the Exclude List Based on Transaction Participation
The exclude list provides a mechanism for a server in a domain with Cross Domain Security
configured to participate in a transaction with a server in another domain that does not support
or have Cross Domain Security enabled.

If any server in a domain in which cross domain security is not configured participates in a
transaction with any server in a domain in which cross domain security is configured, add that
domain to the exclude list of the domain that has cross domain security configured.

You do not need to add the domain to the exclude list of all domains that have cross domain
security configured; the domain must explicitly participate in a transaction with the domain in
question for this requirement to take effect.

Note

You may find it more convenient to add the names of all domains for which cross-
domain security is not enabled to the list of excluded domains. If you exclude only
those domains that do not participate in transactions, the exclusions may be sufficient
only in the case of transactions. As described in ”Excluding Domains From Cross-
Domain Security”, in Administering Security for Oracle WebLogic Server the more
common use case is to exclude all domains for which cross-domain security is not
enabled.

Consider the following scenario:

• Transaction #1:

– DomainA has Server1 (coordinator)

– DomainB has Server2 (sub-coordinator)

– DomainC has Server3 and Server4 (Server3 is a sub-coordinator)

– DomainD has Server5 (does not participate in the transaction, cross-domain security
not configured)

• Transaction #2:

– DomainB has Server6 (coordinator)

– DomainD has Server5 (sub-coordinator, cross-domain security not configured)

In this case DomainD has to be in the exclusion list of DomainB because of Transaction #2.

You do not need to include it in the exclusion list of DomainA or DomainC because DomainD
does not participate in any transactions with servers in these two domains.

Chapter 7
Configuring Secure Channel Communication

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 6

8
Java Transaction API and Oracle WebLogic
Extensions

Learn about the Java Transaction API (JTA) and extensions to the API provided by Oracle.

JTA API Overview
Learn about the JTA API with the help of brief overview. WebLogic Server supports the
jakarta.transaction package and the javax.transaction.xa package, which implement the
Java Transaction API (JTA) for Java applications.

For more information about JTA, see the Java Transaction API (JTA) Specification published at
https://jakarta.ee/specifications/transactions/2.0/. For a detailed description of the
jakarta.transaction and javax.transaction.xa interfaces, see the JTA Javadoc.

JTA includes the following components:

• An interface for demarcating and controlling transactions from an application,
jakarta.transaction.UserTransaction. You use this interface as part of a Java client
program or within an EJB as part of a bean-managed transaction.

• An interface for allowing a transaction manager to demarcate and control transactions for
an application, jakarta.transaction.TransactionManager. This interface is used by an
EJB container as part of a container-managed transaction and uses the
jakarta.transaction.Transaction interface to perform operations on a specific
transaction.

• Interfaces that allow the transaction manager to provide status and synchronization
information to an applications server, jakarta.transaction.Status and
jakarta.transaction.Synchronization. These interfaces are accessed only by the
transaction manager and cannot be used as part of an applications program.

• Interfaces for allowing a transaction manager to work with resource managers for XA-
compliant resources (javax.transaction.xa.XAResource) and to retrieve transaction
identifiers (javax.transaction.xa.Xid). These interfaces are accessed only by the
transaction manager and cannot be used as part of an applications program.

Oracle WebLogic Extensions to JTA
Extensions to the Java Transactions API are provided where the JTA specification does not
cover implementation details and where additional capabilities are required.

Oracle WebLogic provides the following capabilities based on interpretations of the JTA
specification:

• Client-initiated transactions—the JTA transaction manager interface
(jakarta.transaction.TransactionManager) is made available to clients and bean
providers through JNDI. This allows clients and EJBs using bean-managed transactions to
suspend and resume transactions.

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

http://www.oracle.com/technetwork/java/javaee/jta/index.html

Note

A suspended transaction must be resumed in the same server process in which it
was suspended.

• Scope of transactions—transactions can operate within and between clusters and
domains.

• Enhanced jakarta.transaction.TransactionSynchronizationRegistry support—
WebLogic Server provides the ability to lookup the TransactionSynchronizationRegistry
object in JNDI using the standard name of java:comp/
TransactionSynchronizationRegistry. Oracle extends support by providing two
additional global JNDI names: jakarta/transaction/
TransactionSynchronizationRegistry and weblogic/transaction/
TransactionSynchronizationRegistry. See
jakarta.transaction.TransactionSynchronizationRegistry at https://jakarta.ee/
specifications/transactions/2.0/apidocs/jakarta/transaction/
transactionsynchronizationregistryl.

Oracle WebLogic Server provides the following classes and interfaces as extensions to JTA:

• weblogic.transaction.RollbackException (extends
jakarta.transaction.RollbackException)

This class preserves the original reason for a rollback for use in more comprehensive
exception information.

• weblogic.transaction.TransactionManager (extends
jakarta.transaction.TransactionManager)

The WebLogic JTA transaction manager object supports this interface, which allows XA
resources to register and unregister themselves with the transaction manager on startup. It
also allows a transaction to be resumed after suspension.

This interface includes the following methods:

– registerStaticResource, registerDynamicResource, and unregisterResource

– registerResource— (new in WebLogic Server 8.1) This method includes support for
properties that determine how the resource is controlled by the transaction manager.

– getTransaction

– forceResume and forceSuspend

– begin

• weblogic.transaction.Transaction (extends jakarta.transaction.Transaction)

The WebLogic JTA transaction object supports this interface, which allows users to get and
set transaction properties.

This interface includes the following methods:

– setName and getName

– addProperties, setProperty, getProperty, and getProperties

– setRollbackReason and getRollbackReason

– getHeuristicErrorMessage

– getXID and getXid

Chapter 8
Oracle WebLogic Extensions to JTA

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

http://docs.oracle.com/javaee/7/api/index.html?javax/transaction/TransactionSynchronizationRegistry.html
http://docs.oracle.com/javaee/7/api/index.html?javax/transaction/TransactionSynchronizationRegistry.html
http://docs.oracle.com/javaee/7/api/index.html?javax/transaction/TransactionSynchronizationRegistry.html

– getStatusAsString

– getMillisSinceBegin

– getTimeToLiveMillis

– isTimedOut

• weblogic.transaction.TransactionHelper

This class enables you to obtain the current transaction manager and transaction. It
replaces TxHelper.

This interface includes the following static methods:

– getTransaction

– getUserTransaction

– getTransactionManager

• weblogic.transaction.TxHelper (Deprecated, use TransactionHelper instead)

This class enables you to obtain the current transaction manager and transaction.

This interface includes the following static methods:

– getTransaction, getUserTransaction, getTransactionManager

– status2String

• weblogic.transaction.XAResource (extends javax.transaction.xa.XAResource)

This class provides delistment capabilities for XA resources.

This interface includes the following method:

– getDelistFlag

• weblogic.transaction.nonxa.NonXAResource

This interface enables resources that do not support the
javax.transaction.xa.XAResource interface to easily integrate with the WebLogic Server
transaction manager. The transaction manager supports a variation of the Last Agent two-
phase commit optimization that allows a non-XA resource to participate in a distributed
transaction. The protocol issues a two-phase commit to the non-XA resource and uses the
result of the operation to base the commit decision for the transaction.

For a detailed description of the WebLogic extensions to the jakarta.transaction and
javax.transaction.xa interfaces, see the weblogic.transaction package summary in the
Java API Reference for Oracle WebLogic Server.

Chapter 8
Oracle WebLogic Extensions to JTA

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

9
Logging Last Resource Transaction
Optimization

Understand how WebLogic Server supports Logging Last Resource (LLR) transaction
optimization through JDBC data sources. LLR is a performance enhancement option that
enables one non-XA resource to participate in a global transaction with the same ACID
guarantee as XA.
LLR is a refinement of the "Last Agent Optimization." It differs from Last Agent Optimization in
that it is transactionally safe. The LLR resource uses a local transaction for its transaction
work. The WebLogic Server transaction manager prepares all other resources in the
transaction and then determines the commit decision for the global transaction based on the
outcome of the LLR resource's local transaction.

In a global two-phase commit (2PC) transaction with an LLR participant, the WebLogic Server
transaction manager follows these basic steps:

• Calls prepare on all other (XA-compliant) transaction participants.

• Inserts a commit record to a table on the LLR participant (rather than to the file-based
transaction log).

• Commits the LLR participant's local transaction (which includes both the transaction
commit record insert and the application's SQL work).

• Calls commit on all other transaction participants.

• After the transaction completes successfully, lazily deletes the database transaction log
entry as part of a future transaction.

This chapter includes the following sections:

For more information about the advantages of LLR, see Understanding the Logging Last
Resource Transaction Option in Administering JDBC Data Sources for Oracle WebLogic
Server.

About the LLR Optimization Transaction Optimization
When there is one database participant in a 2PC transaction, the Logging Last Resource (LLR)
Optimization transaction option can significantly improve transaction performance by
eliminating some XA overhead for database processing and by avoiding the use of JDBC XA
drivers, which typically are less efficient than non-XA drivers.

In many cases a global transaction becomes a two-phase commit (2PC) transaction because it
involves a database operation (using JDBC) and another non-database operation, such as a
message queueing operation (using JMS). In cases such as this where there is one database
participant in a 2PC transaction, the Logging Last Resource (LLR) Optimization transaction
option can significantly improve transaction performance by eliminating some XA overhead for
database processing and by avoiding the use of JDBC XA drivers, which typically are less
efficient than non-XA drivers. The LLR transaction option does not incur the same data risks as
borne by the Emulate Two-Phase Commit JDBC data source option and the NonXAResource
resource adapter (Connector) option.

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

Logging Last Resource Processing Details
At server boot or data source deployment, LLR data sources load or create a table on the
database from which the data source pools database connections. The table is created in the
schema determined by the user specified to create database connections. If the database table
cannot be created or loaded, then server boot fails.

Within a global transaction, the first connection obtained from an LLR data source reserves an
internal JDBC connection that is dedicated to the transaction. The internal JDBC connection is
reserved on the specific server that is also the transactions' coordinator. All subsequent
transaction operations on any connections obtained from a same-named data source on any
server are routed to this same single internal JDBC connection.

When an LLR transaction is committed, the WebLogic Server transaction manager handles the
processing transparently. From an application perspective, the transaction semantics remain
the same, but from an internal perspective, the transaction is handled differently than standard
XA transactions. When the application commits the global transaction, the WebLogic Server
transaction manager atomically commits the local transaction on the LLR connection before
committing transaction work on any other transaction participants. For a two-phase commit
transaction, the transaction manager also writes a 2PC record on the database as part of the
same local transaction. After the local transaction completes successfully, the transaction
manager calls commit on all other global transaction participants. After all other transaction
participants complete the commit phase, the related LLR 2PC transaction record is freed for
deletion. The transaction manager lazily deletes the transaction record after a short interval or
with another local transaction.

If the application rolls back the global transaction or the transaction times out, the transaction
manager rolls back the work in the local transaction and does not store a 2PC record in the
database.

To enable the LLR transaction optimization, you create a JDBC data source with the Logging
Last Resource transaction protocol, then use database connections from the data source in
your applications. WebLogic Server automatically creates the required table on the database.

Also see Understanding the Logging Last Resource Transaction Option in Administering JDBC
Data Sources for Oracle WebLogic Server.

For a list of data source configuration and usage requirements and limitations, see the
following topics in Administering JDBC Data Sources for Oracle WebLogic Server:

• Programming Considerations and Limitations for LLR Data Sources

• Administrative Considerations and Limitations for LLR Data Sources

LLR Database Table Details
Each WebLogic server instance maintains a database "LLR" table on the database to which a
JDBC LLR data source pools database connections. These tables are used for storing
transaction log records, and are automatically created.If multiple LLR data sources are
deployed on the same WebLogic server instance and connect to the same database instance
and database schema, they also share the same LLR table.
LLR table names are automatically generated unless administrators choose to configure them.
The default table name is WL_LLR_SERVERNAME. For some DBMS systems, the maximum length
for a table name is 18 characters. You should consider maximum table name length when
configuring your environment.

Note the following restrictions regarding LLR database tables:

Chapter 9
Logging Last Resource Processing Details

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

• The server does not boot if an LLR table is unreachable during boot. LLR transaction
records must be available to correctly resolve in-doubt transactions during recovery, which
runs automatically at server startup.

• Multiple servers must not share the same LLR table. On server startup, WebLogic Server
checks to ensure that the domain and server name of the JDBC data source match the
domain and server name stored in the table when the table is created. If WebLogic Server
detects that multiple servers are sharing the same LLR table, WebLogic Server instance
shuts down one or more of the servers.

To change the table name used to store transaction log records for the resource, follow these
steps:

1. On the Servers: Configuration: General page, click Show Advanced Fields to show the
advanced configuration options.

2. In JDBC LLR Table Name, enter the name of the table to use to store transaction records
for the resource, then click Save.

Note

The table names while using dynamic servers needs to follow certain
considerations. See, Limitations and Considerations When Using Dynamic
Clusters.

3. Repeat steps 2 and 3 for each server on which the LLR-enabled data source is deployed.

4. Click Activate Changes in the Change Center.

Note

You must restart all servers for the change to take effect.

LLR Table Transaction Log Records
For each committed 2PC LLR transaction, the transaction manager automatically inserts a
transaction record into an LLR database table. Once LLR transactions complete, the
transaction manager lazily deletes their transaction records. If an LLR table transaction log
record delete fails, the server logs a warning message and retry the delete again later.

If you move a database that contains LLR transaction records, ensure that you move the LLR
table contents to the new database so that transactions can be completed properly.

Note

Do not manually delete the LLR transaction records or the LLR table in a production
system. Doing so can lead to silent heuristic transaction failures which are not logged.

Failure and Recovery Processing for LLR
Learn how WebLogic transaction manager processes transaction failures for LLR.

Chapter 9
Failure and Recovery Processing for LLR

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

In general, the WebLogic transaction manager processes transaction failures in the following
way:

• For two-phase commit errors that occur before the local transaction commit is attempted,
the transaction manager immediately throws a transaction rolled back exception.

• For two-phase commit errors that occur during the local transaction commit, the behavior
depends on whether the transaction record is written to the database:

– If the record is written, the transaction manager commits the transaction.

– If the record is not written, the transaction manager rolls back the transaction.

– If it is unknown whether the record is written, the transaction manager throws an
ambiguous commit failure exception and attempts to complete the transaction every 5
seconds until the transaction abandon timeout. If the transaction is still incomplete, the
transaction manager logs an abandoned transaction message.

Coordinating Server Crash
If a transaction's coordinating server crashes before an LLR resource stores its transaction log
record or before an LLR resource commits, the transaction rolls back. If the server crashes
after the LLR resource is committed, the transactions eventually fully commit. During server
boot, the transaction coordinator uses the LLR resource to read the transaction log record from
the database and then use the recovered information to commit any unfinished work on any
participating non-LLR XA resources.

JDBC Connection Failure
If the JDBC connection in an LLR resource fails during a 2PC transaction record insert, the
transaction manager rolls back the transaction.

If the JDBC connection in an LLR resource fails during the commit of the local transaction, the
result depends on whether the transaction is a one-phase commit (1PC, where the LLR
resource is the only participant) or 2PC:

• For a 1PC transaction, the transaction are fully committed, fully rolled back, or block
waiting for the resolution of the local transaction. The outcome of the transaction is fully
ACID because it is eventually fully committed or fully rolled back.

• For a 2PC transaction, the outcome is as described in Failure and Recovery Processing for
LLR.

LLR Transaction Recover During Server Startup
During server startup, the transaction manager for each WebLogic server must recover
incomplete transactions coordinated by the server, including LLR transactions. To do so, each
server attempts to read the transaction records from the LLR database tables for each LLR
data source. If the server cannot access the LLR database tables or if the recovery fails, the
server instance does not start and the transaction manager marks the server with a bad health
state: HealthState.HEALTH_FAILED.

If a timeout occurs during recovery, it may be due to unresolved local transactions that have
locked rows within the LLR log tables. Such local transactions must be resolved so that the
transaction manager can determine the state of the global transaction whose record is stored
in the locked row. Local database transactions can only be diagnosed and resolved using each
database's specific tools (the commands differ from database to database).

Chapter 9
Failure and Recovery Processing for LLR

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

Failover Considerations for LLR
Consider the following notes and limitations regarding failover with LLR:

• A transaction log (TLog) is still required for LLR transactions:

– TLog still stores transaction manager "checkpoint" records

– TLog must still be reachable or copied on failover

• LLR supports server migration and transaction recovery service migration. To use the
transaction recovery service migration, ensure that each LLR resource be targeted to
either the cluster or the set of candidate servers in the cluster. See Recovering
Transactions For a Failed Clustered Server.

Optimizing Performance with LLR
Learn how to optimize performance with LLR by running applications directly on the
coordinating server and use connection instances that are directly hosted on the coordinator.
Also, to improve performance in environments using Oracle RAC, you can specify a LLR table
for each data source instead of for each server to better utilize the local node caches in Oracle
RAC clusters.

This section includes the following information:

Optimizing Transaction Coordinator Location
Within a global transaction with an LLR participant, WebLogic Server automatically routes all
connection operations to the transaction's coordinating server. This routing can be expensive.
You may see better performance if you optimize your applications to run directly on the
coordinating server if possible, and optimize your applications to use connection instances that
are directly hosted on the coordinator.

For client applications that begin a transaction, the coordinator of transaction is the first
WebLogic server the client calls under the transaction (any RMI, EJB, JDBC, or JMS call). In
the JMS case, this is the server that hosts the client's JMS connection, which is not necessarily
the same as the server that hosts the JMS destination.

For server side applications, the coordinator of the transaction is the local server if a local
resource is invoked first (including JMS destinations and JDBC connections) unless a remote
server is called first (any remotely hosted JDBC connection, EJB, RMI call, or JMS
connection). This includes remote servers in other clusters or domains.

Varied Performance for Read-Only Operations Through an LLR Data
Source

The LLR optimization provides a significant increase in performance for insert, update, and
delete operations. However, for read operations with LLR, performance is somewhat slower
than read operations with XA. For best performance, you may want to configure a non-LLR
JDBC data source for read-only operations.

Chapter 9
Optimizing Performance with LLR

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

Dedicating LLR Tables by Data Source
To improve performance in environments using Oracle RAC, you can specify a LLR table for
each data source instead of for each server to better utilize the local node caches in Oracle
RAC clusters.

Use the following system property to set the specification of a LLR table by data source when
starting a WebLogic Server instance:

-Dweblogic.llr.table.datasourcename=tablename

where: datasourcename is the name of a data source and tablename is the name of the LLR
table that maps to datasourcename.

For example, using the system property:

-Dweblogic.llr.table.LLRDS1=myllrtable1

When the server starts:

• a INFO message is written to stdout

LLR data source LLRDS1 using LLR table myllrtable1

• All LLR entries for the server that use data source LLRDS1 are stored in the LLR table
named mylltable1.

Define one table for each data source on each server on which the data source is targeted.
The same table cannot be shared by different WLS instances. If LLRDS1 is targeted to two
WebLogic Server instances S1 and S2, then create two tables: S1_LLRDS1 and S2_LLRDS1,
and specify the proper system properties for each server.

For example:

For instance S1, use -Dweblogic.llr.table.LLRDS1=S1_LLRDS1

For instance S2, use -Dweblogic.llr.table.LLRDS1=S2_LLRDS1

Note

In the next WebLogic Server release, the node-id will automatically be captured in an
extended LLR table allowing data to be partitioned to the respective WebLogic Server
node without needing to manually allocate a table per data source.

Limitations
JTA service migration does not support LLR tables that are dedicated by data source.

First Resource Commit Ordering
To specify a resource as the first resource committed in a transaction, set the connection pool
driver boolean property weblogic.jdbc.CommitFirstResourceOrdering to true.

A LLR resource cannot be used for resource commit ordering. In such a scenario, if you still
want to use resource commit ordering, an XA datasource can be used instead of a the local
transaction-based LLR non-XA resource.

Chapter 9
First Resource Commit Ordering

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

Therefore, to specify a resource as the first resource committed in a transaction, set the
connection pool driver boolean property weblogic.jdbc.CommitFirstResourceOrdering to
true.

When registering a data source that has weblogic.jdbc.CommitFirstResourceOrdering set to
true, the data source container will set the weblogic.transaction.first.resource.commit
registration property to true when registering with the transaction manager.

See Configuring Services in Oracle WebLogic Remote Console Online Help.

Chapter 9
First Resource Commit Ordering

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

10
Transactions in EJB Applications

Learn how to integrate transactions in Jakarta Enterprise Beans (EJBs) applications that run
under Oracle WebLogic Server.

Before You Begin
Before proceeding with transactions in WebLogic Server EJB applications, you should be
familiar with the concepts of the EJB transactions and its implementation with the help of
sample code fragments provided for EJB applications.

Before you begin, you should read Introducing Transactions, particularly the following topics:

• Transactions in WebLogic Server EJB Applications

• Transactions Sample EJB Code

This document describes the Oracle WebLogic Server implementation of transactions in
Jakarta Enterprise Beans. The information in this document supplements the Jakarta
Enterprise Beans Specification 2.1.

Note

Before proceeding with the rest of this chapter, you should be familiar with the
contents of the EJB Specification 2.1 document, particularly the concepts and material
presented in chapter Support for Transactions.

For information about implementing Jakarta Enterprise Beans in WebLogic Server applications,
see Developing Enterprise JavaBeans for Oracle WebLogic Server.

General Guidelines
Understand the guidelines for implementing transactions in EJB applications for WebLogic
Server.

The following general guidelines apply when implementing transactions in EJB applications for
WebLogic Server:

• The EJB specification allows for flat transactions only. Transactions cannot be nested.

• The EJB specification allows for distributed transactions that span multiple resources (such
as databases) and supports the two-phase commit protocol for both EJB CMP 2.1 and EJB
CMP 1.1.

• Use standard programming techniques to optimize transaction processing. For example,
properly demarcate transaction boundaries and complete transactions quickly.

• Use a database connection from a local TxDataSource—on the WebLogic Server instance
on which the EJB is running. Do not use a connection from a TxDataSource on a remote
WebLogic Server instance.

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 8

• Be sure to tune the EJB cache to ensure maximum performance in transactional EJB
applications. See Developing Enterprise JavaBeans for Oracle WebLogic Server.

For general guidelines about the WebLogic Server Transaction Service, see Capabilities and
Limitations.

Transaction Attributes
Learn about the transaction attributes for container-managed and bean-managed transactions.

About Transaction Attributes for EJBs
Transaction attributes determine how transactions are managed in EJB applications. For each
EJB, the transaction attribute specifies whether transactions are demarcated by the WebLogic
Server EJB container (container-managed transactions) or by the EJB itself (bean-managed
transactions). The setting of the transaction-type element in the deployment descriptor
determines whether an EJB is container-managed or bean-managed. See Chapter 8, "Support
for Transactions," and Chapter 13, "Deployment Descriptor," in the EJB Specification 4.0, for
more information about the transaction-type element.

In general, the use of container-managed transactions is preferred over bean-managed
transactions because application coding is simpler. For example, in container-managed
transactions, transactions do not need to be started explicitly.

WebLogic Server fully supports method-level transaction attributes as defined in Section 8.6.3
in the EJB Specification 4.0.

Transaction Attributes for Container-Managed Transactions
For container-managed transactions, the transaction attribute is specified in the container-
transaction element in the deployment descriptor. Container-managed transactions include
all entity beans and any stateful or stateless session beans with a transaction-type set to
Container. For more information about these elements, see Developing Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Server.

The Application Assembler can specify the following transaction attributes for EJBs and their
business methods:

• NotSupported

• Supports

• Required

• RequiresNew

• Mandatory

• Never

For a detailed explanation about how the WebLogic Server EJB container responds to the
trans-attribute setting, see section 8.7.3.2 in the EJB Specification 4.0 at https://
jakarta.ee/specifications/enterprise-beans/4.0/jakarta-enterprise-beans-spec-
core-4.0.

The WebLogic Server EJB container automatically sets the transaction timeout if a timeout
value is not defined in the deployment descriptor. The container uses the value of the Timeout
Seconds configuration parameter. The default timeout value is 30 seconds.

Chapter 10
Transaction Attributes

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 8

http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://www.oracle.com/technetwork/java/javaee/ejb/index.html

For EJBs with container-managed transactions, the EJBs have no access to the
jakarta.transaction.UserTransaction interface, and the entering and exiting transaction
contexts must match. In addition, EJBs with container-managed transactions have limited
support for the setRollbackOnly and getRollbackOnly methods of the
jakarta.ejb.EJBContext interface, where invocations are restricted by rules specified in
Sections 8.6.3.8 and 8.6.3.9 of the EJB Specification 4.0.

Transaction Attributes for Bean-Managed Transactions
For bean-managed transactions, the bean specifies transaction demarcations using methods
in the jakarta.transaction.UserTransaction interface. Bean-managed transactions include
any stateful or stateless session beans with a transaction-type set to Bean. Entity beans
cannot use bean-managed transactions.

For stateless session beans, the entering and exiting transaction contexts must match. For
stateful session beans, the entering and exiting transaction contexts may or may not match. If
they do not match, the WebLogic Server EJB container maintains associations between the
bean and the non-terminated transaction.

Session beans with bean-managed transactions cannot use the setRollbackOnly and
getRollbackOnly methods of the jakarta.ejb.EJBContext interface.

Participating in a Transaction
Understand usage of the term "participating in a transaction”, which is generally used when
bean is invoked in container-managed transaction or bean-managed transaction.

When the EJB Specification 2.1 uses the phrase "participating in a transaction", Oracle
interprets this to mean that the bean meets either of the following conditions:

• The bean is invoked in a transactional context (container-managed transaction).

• The bean begins a transaction using the UserTransaction API in a bean method invoked
by the client (bean-managed transaction), and it does not suspend or terminate that
transaction upon completion of the corresponding bean method invoked by the client.

Transaction Semantics
Learn about the transaction semantics for container-managed and bean-managed
transactions.

• Transaction Semantics for Container-Managed Transactions

• Transaction Semantics for Bean-Managed Transactions

The EJB Specification 2.1 describes semantics that govern transaction processing behavior
based on the EJB type (entity bean, stateless session bean, or stateful session bean) and the
transaction type (container-managed or bean-managed). These semantics describe the
transaction context at the time a method is invoked and define whether the EJB can access
methods in the jakarta.transaction.UserTransaction interface. EJB applications must be
designed with these semantics in mind.

Transaction Semantics for Container-Managed Transactions
For container-managed transactions, transaction semantics vary for each bean type.

Chapter 10
Participating in a Transaction

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 8

Transaction Semantics for Stateful Session Beans
Table 10-1 describes the transaction semantics for stateful session beans in container-
managed transactions.

Table 10-1 Transaction Semantics for Stateful Session Beans in Container-Managed
Transactions

Method Transaction Context at the Time the
Method Was Invoked

Can Access
UserTransaction Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified No

ejbRemove() Unspecified No

ejbActivate() Unspecified No

ejbPassivate() Unspecified No

Business method Yes or No based on transaction attribute No

afterBegin() Yes No

beforeCompletion() Yes No

afterCompletion() No No

Transaction Semantics for Stateless Session Beans
Table 10-2 describes the transaction semantics for stateless session beans in container-
managed transactions.

Table 10-2 Transaction Semantics for Stateless Session Beans in Container-Managed
Transactions

Method Transaction Context at the Time the
Method Was Invoked

Can Access
UserTransaction Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified No

ejbRemove() Unspecified No

Business method Yes or No based on transaction attribute No

Transaction Semantics for Entity Beans
Table 10-3 describes the transaction semantics for entity beans in container-managed
transactions.

Chapter 10
Transaction Semantics

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 8

Table 10-3 Transaction Semantics for Entity Beans in Container-Managed Transactions

Method Transaction Context at the Time the
Method Was Invoked

Can Access
UserTransaction Methods?

Constructor Unspecified No

setEntityContext() Unspecified No

unsetEntityContext() Unspecified No

ejbCreate() Determined by transaction attribute of
matching create

No

ejbPostCreate() Determined by transaction attribute of
matching create

No

ejbRemove() Determined by transaction attribute of
matching remove

No

ejbFind() Determined by transaction attribute of
matching find

No

ejbActivate() Unspecified No

ejbPassivate() Unspecified No

ejbLoad() Determined by transaction attribute of
business method that invoked
ejbLoad()

No

ejbStore() Determined by transaction attribute of
business method that invoked
ejbStore()

No

Business method Yes or No based on transaction attribute No

Transaction Semantics for Bean-Managed Transactions
For bean-managed transactions, the transaction semantics differ between stateful and
stateless session beans. For entity beans, transactions are never bean-managed.

Transaction Semantics for Stateful Session Beans
Table 10-4 describes the transaction semantics for stateful session beans in bean-managed
transactions.

Table 10-4 Transaction Semantics for Stateful Session Beans in Bean-Managed
Transactions

Method Transaction Context at the Time the
Method Was Invoked

Can Access
UserTransaction Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified Yes

ejbRemove() Unspecified Yes

ejbActivate() Unspecified Yes

ejbPassivate() Unspecified Yes

Chapter 10
Transaction Semantics

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 8

Table 10-4 (Cont.) Transaction Semantics for Stateful Session Beans in Bean-Managed
Transactions

Method Transaction Context at the Time the
Method Was Invoked

Can Access
UserTransaction Methods?

Business method Typically, no unless a previous method
execution on the bean had completed
while in a transaction context

Yes

afterBegin() Not applicable Not applicable

beforeCompletion() Not applicable Not applicable

afterCompletion() Not applicable Not applicable

Transaction Semantics for Stateless Session Beans
Table 10-5 describes the transaction semantics for stateless session beans in bean-managed
transactions.

Table 10-5 Transaction Semantics for Stateless Session Beans in Bean-Managed
Transactions

Method Transaction Context at the Time the
Method Was Invoked

Can Access
UserTransaction Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified Yes

ejbRemove() Unspecified Yes

Business method No Yes

Session Synchronization
A stateful session bean using container-managed transactions can implement the
jakarta.ejb.SessionSynchronization interface to provide transaction synchronization
notifications.

In addition, all methods on the stateful session bean must support one of the following
transaction attributes: REQUIRES_NEW, MANDATORY or REQUIRED. For more information about the
jakarta.ejb.SessionSynchronization interface, see Section 6.5.3 in the EJB Specification
2.1.

Synchronization During Transactions
If a bean implements SessionSynchronization, the WebLogic Server EJB container makes
few callbacks to the bean during the transaction time. A synchronization cycle can occur when
a registered object receives a beforeCompletion callback.

The WebLogic Server EJB container typically makes the following callbacks to the bean during
transaction commit time:

• afterBegin()

Chapter 10
Session Synchronization

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 8

• beforeCompletion()

• afterCompletion()

The EJB container can call other beans or involve additional XA resources in the
beforeCompletion method. The number of calls is limited by the
beforeCompletionIterationLimit attribute. This attribute specifies how many cycles of
callbacks are processed before the transaction is rolled back. A synchronization cycle can
occur when a registered object receives a beforeCompletion callback and then enlists
additional resources or causes a previously synchronized object to be reregistered. The
iteration limit ensures that synchronization cycles do not run indefinitely.

Setting Transaction Timeouts
Bean providers can specify the timeout period for transactions in EJB applications. If the
duration of a transaction exceeds the specified timeout setting, then the Transaction Service
rolls back the transaction automatically.

Note

You must set the timeout before you begin() the transaction. Setting a timeout does
not affect transaction transactions that have begun.

Timeouts are specified according to the transaction type:

• Container-managed transactions. The Bean Provider configures the trans-timeout-
seconds attribute in the weblogic-ejb-jar.xml deployment descriptor.

• Bean-managed transactions. An application calls the
UserTransaction.setTransactionTimeout method.

Note

DBMS provides a DISTRIBUTED_LOCK_TIMEOUT setting, specifying the duration for
which the XA transactions can hold the locks. If this is lower than the JTA timeout, the
DBMS may abort the transactions.

Handling Exceptions in EJB Transactions
WebLogic Server EJB applications must catch and handle specific exceptions thrown during
transactions.

For detailed information about handling exceptions, see Chapter 9, "Exception Handling," in
the EJB Specification 4.0.

For more information about how exceptions are thrown by business methods in EJB
transactions, see the following tables in Section 9.3.1: Table 7 (for container-managed
transactions) and Table 8 (for bean-managed transactions).

For a client's view of exceptions, see Section 9.4, particularly Section 9.4.1 (application
exceptions), Section 9.4.2(java.rmi.RemoteException), Section 9.4.2.1

Chapter 10
Setting Transaction Timeouts

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 8

(jakarta.transaction.TransactionRolledBackException), and Section 9.4.2.2
(jakarta.transaction.TransactionRequiredException).

Chapter 10
Handling Exceptions in EJB Transactions

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 8

11
Transactions in RMI Applications

Learn about the guidelines and additional references for using transactions in RMI applications
that run under Oracle WebLogic Server.
This chapter includes the following sections:

Before You Begin
Before proceeding with transactions in WebLogic Server RMI applications, you should be
familiar with the concepts of the RMI transactions and its implementation.

Before you begin, read Introducing Transactions, particularly the following topics:

• Transactions in WebLogic Server RMI Applications

• Transactions Sample RMI Code

For more information about RMI applications, see Developing Stand-alone Clients for Oracle
WebLogic Server.

General Guidelines
There are certain guidelines for implementing transactions in RMI applications for WebLogic
Server.

• WebLogic Server allows for flat transactions only. Transactions cannot be nested.

• Use standard programming techniques to optimize transaction processing. For example,
properly demarcate transaction boundaries and complete transactions quickly.

• For RMI applications, callback objects are not recommended for use in transactions
because they are not subject to WebLogic Server administration.

By default, all method invocations on the remote objects are transactional. If a callback
object is required, you must compile these classes using the WebLogic RMI compiler using
the -nontransactional flag. See Using the WebLogic RMI Compiler and WebLogic RMI
Compiler Options in Developing RMI Applications for Oracle WebLogic Server.

• In RMI applications, an RMI client can initiate a transaction, but all transaction processing
must occur on server objects or remote objects hosted by WebLogic Server. Remote
objects hosted on a client JVM cannot participate in the transaction processing.

As a work-around, you can suspend the transaction before making a call to a remote
object on a client JVM, and then resume the transaction after the remote operation returns.

For general guidelines about the WebLogic Server Transaction Service, see Capabilities and
Limitations.

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 1

12
Using JDBC XA Drivers with WebLogic Server

Get an overview of XA JDBC drivers with WebLogic Server in distributed transactions. These
drivers provide connectivity between WebLogic Server connection pools and the DBMS.
Drivers used in distributed transactions are designated by the driver name followed by /XA; for
example, Oracle Thin/XA Driver.
An XA data source DB user requires certain DBA table grants in order to recover pending
transaction branches from the Oracle database. We now provide the ability to use two different
DB credentials one for XA recover processing (with DBA privileges) and different DB
credentials for application processing (no DBA privileges).

Data Source configuration allows specification of a database user and password that are used
to create JDBC connections for XA recover processing. These credentials can be different from
the database user and password used for JDBC application data. Configuration of separate XA
recover credentials is optional and existing data source configurations will continue to support
XA recovery as long as the database user is granted the appropriate permissions.

The XA recover credentials will be specified in a XA data source configuration using the WLS-
internal driver properties weblogic.jdbc.xaRecoverUser and
weblogic.jdbc.xaRecoverPassword. If XA recover credential properties are defined in a non-XA
data source configuration they are ignored.

Using Oracle Thin/XA Driver
WebLogic Server ships with the Oracle Thin Driver pre-configured and ready to use.

If you want to update the driver or use a different version, see Using API Extensions in JDBC
Drivers in Developing JDBC Applications for Oracle WebLogic Server.

Set the Environment for the Oracle Thin/XA Driver
The following sections explain how to set the environment for the Oracle Thin/XA Driver.

Configure WebLogic Server
For information on how to configure WebLogic Server for use with the Oracle Thin/XA Driver,
see Using API Extensions in JDBC Drivers in Developing JDBC Applications for Oracle
WebLogic Server.

Enable XA on the Database Server
To prepare the database for XA, perform these steps:

1. Log on to sqlplus as system user, for example, sqlplus sys/password@<DATABASE ALIAS
NAME>

2. Execute the following command: @xaview.sql

The xaview.sql script resides in the $ORACLE_HOME/rdbms/admin directory

3. All database users for which XA data sources are defined need to be granted the following
permissions individually or through one or more roles:

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 2

• grant select on dba_pending_transactions to <user/role>;

• grant execute on dbms_xa to <user/role>;

Where <user/role> is either a data base user or a role.

If the above steps are not performed on the database server, normal XA database queries and
updates may work fine. However, when the WebLogic Server Transaction Manager performs
recovery on a re-boot after a crash, recover for the Oracle resource fails with XAER_RMERR.
Crash recovery is a standard operation for an XA resource.

Oracle Thin/XA Driver Configuration Properties
For information on how to configure data source properties, see Configuring JDBC Data
Sources in Administering JDBC Data Sources for Oracle WebLogic Server.

Using Other XA Drivers
To use other XA-compliant JDBC drivers, you must include the path to the driver class libraries
in your CLASSPATH and follow the configuration instructions provided by the vendor.

Using WebLogic-branded Data Direct Drivers
For information on how to configure WebLogic Server for use with WebLogic-branded Data
Direct drivers, see Using WebLogic-branded DataDirect Drivers in Developing JDBC
Applications for Oracle WebLogic Server

Additional Considerations
Your data base vendor may provide instructions to perform steps to prepare your environment
for XA. These steps may include how to:

• Enable your data base server for XA. This may include granting additional user
permissions.

• Compensate for vendor-specific transactional behavior, such as threading, timeout, and
rollback behavior.

• Use vendor-specific connection properties.

Consult your data base vendor documentation for specific details.

Chapter 12
Using Other XA Drivers

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 2

13
Coordinating XAResources with the WebLogic
Server Transaction Manager

Understand how external, third-party systems can participate in distributed transactions
coordinated by the WebLogic Server transaction manager by registering a
jakarta.transaction.xa.XAResource implementation with the WebLogic Server transaction
manager. The WebLogic Server transaction manager then drives the XAResource as part of its
Two-Phase Commit (2PC) protocol. This is referred to as "exporting transactions."
By exporting transactions, you can integrate third-party transaction managers with the
WebLogic Server transaction manager if the third-party transaction manager implements the
XAResource interface. With an exported transaction, the third-party transaction manager would
act as a subordinate transaction manager to the WebLogic Server transaction manager.

WebLogic Server can also participate in distributed transactions coordinated by third-party
systems (sometimes referred to as foreign transaction managers). The WebLogic Server
processing occurs as part of the work of the external transaction. The third-party transaction
manager then drives the WebLogic Server transaction manager as part of its commit
processing. This is referred to as "importing transactions."

Details about coordinating third-party systems within a transaction (exporting transactions) are
described in this section. Details about participating in transactions coordinated by third-party
systems (importing transactions) are described in Participating in Transactions Managed by a
Third-Party Transaction Manager. Note that WebLogic Server IIOP, WebLogic Tuxedo
Connector (WTC) gateway, and Oracle Java Adapter for Mainframe (JAM) gateway internally
use the same mechanism described in these chapters to import and export transactions in
WebLogic Server.

This chapter includes the following sections:

Overview of Coordinating Distributed Transactions with Foreign
XAResources

In order to participate in distributed transactions coordinated by the WebLogic Server
transaction manager, third-party systems must implement the
javax.transaction.xa.XAResource interface and then register its XAResource object with the
WebLogic Server transaction manager.

For details about implementing the javax.transaction.xa.XAResource interface, refer to the
Java Platform Enterprise Edition API Specifications at:

https://docs.oracle.com/en/java/javase/17/docs/api/java.transaction.xa/javax/
transaction/xa/XAResource.html

During transaction processing, you must enlist the XAResource object of the third-party system
with each applicable transaction object.

Figure 13-1 shows the process for third-party systems to participate in transactions
coordinated by the WebLogic Server transaction manager.

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 11

http://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html
http://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html

Figure 13-1 Distributed Transactions with Third-Party Participants

Depending on the enlistment mode that you use when you enlist an XAResource object with a
transaction, WebLogic Server may automatically delist the XAResource object at the
appropriate time. For more information about enlistment and delistment, see Enlisting and
Delisting an XAResource in a Transaction. For more information about registering XAResource
objects with the WebLogic Server transaction manager, see Registering an XAReosurce to
Participate in Transactions.

Registering an XAResource to Participate in Transactions
In order to participate in distributed transactions coordinated by the WebLogic Server
transaction manager, third-party systems must implement the
javax.transaction.xa.XAResource interface and then register its XAResource object with the
WebLogic Server transaction manager.

Registration is required to:

• Specify the transaction branch qualifier for the XAResource. The branch qualifier identifies
the transaction branch of the resource manager instance and is used for all distributed
transactions that the resource manager (RM) instance participates in. Each transaction
branch represents a unit of work in the distributed transaction and is isolated from other
branches. Each transaction branch receives exactly one set of prepare-commit calls during
Two-Phase Commit (2PC) processing. The WebLogic Server transaction manager uses
the resource name as the transaction branch qualifier.

A resource manager instance is defined by the XAResource.isSameRM method.
XAResource instances that belong to the same resource manager instance should return
true for isSameRM. Note that you should avoid registering the same resource manager
instance under different resource names (for example, different resource branches) to
avoid confusion of transaction branches.

• Specify the enlistment mode. For a resource manager instance to participate in a specific
distributed transaction, it enlists an XAResource instance with the JTA
jakarta.transaction.Transaction object. The WebLogic Server transaction manager
provides three enlistment modes: static, dynamic, and object-oriented. Enlistment modes
are discussed in greater detail in Enlisting and Delisting an XAResource in a Transaction.

• Bootstrap the XAResource if the WebLogic Server transaction manager must perform crash
recovery. (The JTA Specification does not define a standard API to do so; see the Java
Transaction API at https://jakarta.ee/specifications/transactions/2.0/).

Chapter 13
Registering an XAResource to Participate in Transactions

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 11

http://www.oracle.com/technetwork/java/javaee/jta/index.html

The Java Transaction API suggests that the transaction manager is responsible for
assigning the branch qualifiers. However, for recovery to work properly, the same
transaction branch qualifier must be supplied both at normal processing and upon crash
recovery. As the transaction branch qualifier is specified during registration, registration
with the WebLogic Server transaction manager is required to support crash recovery and
normal transaction processing.

During recovery, the WebLogic Server transaction manager performs the following tasks:

– It reads its transaction log records and for those XA resources that participated in the
distributed transactions that were logged, it continues the second phase of the 2PC
protocol to commit the XA resources with the specified branch qualifier.

– It resolves any other in-doubt transactions of the XA resources by calling
XAResource.recover. It then commits or rolls back the returned transactions (Xids)
that belonged to it. (Note that the returned Xids would have the specified branch
qualifier.)

Note

Registration is a per-process action (compared with enlistment and delistment
which is per-transaction).

Failure to register the XAResource implementation with the WebLogic Server transaction
manager may result in unexpected transaction branching behavior. If registration is not
performed before the XA resource is enlisted with a WebLogic Server distributed transaction,
the WebLogic Server transaction manager uses the class name of the XAResource instance
as the resource name (and thus the branch qualifier), which may cause undesirable resource
name and transaction branch conflicts.

Each resource manager instance should register itself only once with the WebLogic Server
transaction manager. Each resource manager instance, as identified by the resource name
during registration, adds significant overhead to the system during recovery and commit
processing and health monitoring, increases memory used by associated internal data
structures, reduces efficiency in searching through internal maps, and so forth. Therefore, for
scalability and performance reasons, you should not indiscriminately register XAResource
instances under different transaction branches.

Note that the JTA XAResource adopts an explicit transaction model, where the Xid is always
explicitly passed in the XAResource methods and a single resource manager instance handles
all of the transactions. This is in contrast to the CORBA OTS Resource, which adopts an
implicit transaction model, where there is a different OTS Resource instance for each
transaction that it participates in. You should use the JTA model when designing an
XAResource.

Each foreign resource manager instance should register an XAResource instance with the
WebLogic Server transaction manager upon server startup. In WebLogic Server, you can use
startup classes to register foreign transaction managers.

Follow these steps to register the resource manager with the WebLogic Server transaction
manager:

1. Obtain the WebLogic Server transaction manager using JNDI or the TxHelper interface:

import javax.transaction.xa.XAResource;
import weblogic.transaction.TransactionManager;
import weblogic.transaction.TxHelper;
InitialContext initCtx = ... ; // initialized to the initial context
TransactionManager tm = TxHelper.getTransactionManager();

Chapter 13
Registering an XAResource to Participate in Transactions

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 11

or

TransactionManager tm =
(TransactionManager)initCtx.lookup("weblogic.transaction.TransactionManager");

or

TransactionManager tm =
(TransactionManager)initCtx.lookup("jakarta.transaction.TransactionManager");

2. Register the XA resource instance with the WebLogic Server transaction manager:

String name = ... ; // name of the RM instance
XAResource res = ... ; // an XAResource instance of the RM instance
tm.registerResource(name, res); // register a resource with the standard enlistment
mode

or

tm.registerDynamicResource(name, res); // register a resource with the dynamic
enlistment mode

or

tm.registerStaticResource(name, res); // register a resource with the static
enlistment mode

Refer to Enlisting and Delisting an XAResource in a Transaction for a detailed discussion of
the different enlistment modes. Note that when you register the XAResource, you specify the
enlistment mode that is subsequently used, but you are not actually enlisting the resource
during the registration process. Actual enlistment should be done with the transaction (not at
server startup) using a different API, which is also discussed in detail in Enlisting and Delisting
an XAResource in a Transaction.

Each XAResource instance that you register is used for recovery and commit processing of
multiple transactions in parallel. Ensure that the XAResource instance supports resource
sharing as defined in JTA Specification Version 1.0.1B Section 3.4.6.

Note

Duplicate registration of the same XAResource is ignored.

You should unregister the XAResource from the WebLogic Server transaction manager when
the resource no longer accept new requests. Use the following method to unregister the
XAResource:

tm.unregisterResource(name, res);

Enlisting and Delisting an XAResource in a Transaction
For an XAResource to participate in a distributed transaction, the XAResource instance must
be enlisted with the Transaction object. Depending on the enlistment mode, you may need to
perform different actions.

The WebLogic Server transaction manager supports the following enlistment modes:

• Standard Enlistment

• Dynamic Enlistment

Chapter 13
Enlisting and Delisting an XAResource in a Transaction

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 11

• Static Enlistment

Even though you enlist the XAResource with the Transaction object, the enlistment mode is
determined when you register the XAResource with the WebLogic Server transaction manger,
not when you enlist the resource in the Transaction. See Registering an XAReosurce to
Participate in Transactions.

XAResource.start and end calls can be expensive. The WebLogic Server transaction manager
provides the following optimizations to minimize the number of these calls:

• Delayed delistment:

Whether or not your XAResource implementation performs any explicit delistment or not,
the WebLogic Server transaction manager always delays delisting of any XAResource
instances that are enlisted in the current transaction until immediately before the following
events, at which time the XAResource is delisted:

– Returning the call to the caller, whether it is returned normally or with an exception

– Making a call to another server

• Ignored duplicate enlistment:

The WebLogic Server transaction manager ignores any explicit enlistment of an
XAResource that is enlisted. This may happen if the XAResource is explicitly delisted
(which is delayed or ignored by the WebLogic Server transaction manager as mentioned
above) and is subsequently re-enlisted within the duration of the same call.

By default, the WebLogic Server transaction manager delists the XAResource by calling
XAResource.end with the TMSUSPEND flag. Some database management systems may keep
cursors open if XAResource.end is called with TMSUSPEND, so you may prefer to delist an
XAResource by calling XAResource.end with TMSUCCESS wherever possible. To do so, you can
implement the weblogic.transaction.XAResource interface (instead of the
javax.transaction.xa.XAResource), which includes the getDelistFlag method. For more
information, see weblogic.transaction.XAResource in the Java API Reference for Oracle
WebLogic Server.

Standard Enlistment
With standard enlistment mode, enlist the XAResource instance only once with the Transaction
object. Also, it is possible to enlist multiple XAResource instances of the same branch with the
same transaction. The WebLogic Server transaction manager ensures that XAResource.end is
called on all XAResource instances when appropriate (as discussed below). The WebLogic
Server transaction manager ensures that each branch receives only one set of prepare-commit
calls during transaction commit time. However, attempting to enlist a particular XAResource
instance when it is already enlisted is ignored.

Standard enlistment simplifies enlistment, but it may also cause unnecessary enlistment and
delistment of an XAResource if the resource is not accessed at all within the duration of a
particular method call.

To enlist an XAResource with the Transaction object, follow these steps:

1. Obtain the current Transaction object using the TransactionHelper interface:

import weblogic.transaction.Transaction; // extends javax.transaction.Transaction
import weblogic.transaction.TransactionHelper;
Transaction tx = TransactionHelper.getTransaction();

2. Enlist the XAResource instance with the Transaction object:

tx.enlistResource(res);

Chapter 13
Enlisting and Delisting an XAResource in a Transaction

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 11

After the XAResource is enlisted with the Transaction, the WebLogic Server transaction
manager manages any subsequent delistment (as described in Enlisting and Delisting an
XAResource in a Transaction) and re-enlistment. For standard enlistment mode, the WebLogic
Server transaction manager re-enlists the XAResource in the same Transaction upon the
following occasions:

• Before a request is executed

• After a reply is received from another server. (The WebLogic Server transaction manager
delists the XAResource before sending the request to another server.)

Dynamic Enlistment
With the dynamic enlistment mode, you must enlist the XAResource instance with the
Transaction object before every access of the resource. With this enlistment mode, only one
XAResource instance from each transaction branch is allowed to be enlisted for each
transaction at a time. The WebLogic Server transaction manager ignores attempts to enlist
additional XAResource instances (of the same transaction branch) after the first instance is
enlisted, but before it is delisted.

With dynamic enlistment, enlistments and delistments of XAResource instances are minimized.

The steps for enlisting the XAResource are the same as described in Standard Enlistment.

Static Enlistment
With static enlistment mode, you do not need to enlist the XAResource instance with any
Transaction object. The WebLogic Server transaction manager implicitly enlists the
XAResource for all transactions with the following events:

• Before a request is executed

• After a reply is received from another server

Note

Consider the following before using the static enlistment mode:

– Static enlistment mode eliminates the requirement to enlist XAResources.
However, unnecessary enlistment and delistment may result, if the resource is
not used in a particular transaction.

– A faulty XAResource may adversely affect all transactions even if the resource
is not used in the transaction.

– A single XAResource instance is used to associate different transactions with
different threads at the same time. That is, XAResource.start and
XAResource.end can be called on the same XAResource instance in an
interleaved manner for different Xids in different threads. You must ensure that
the XAResource supports such an association pattern, which is not required
by the JTA specification.

Due to the performance overhead, poor fault isolation, and demanding transaction
association requirement, static enlistment should only be used with discretion and
after careful consideration.

Chapter 13
Enlisting and Delisting an XAResource in a Transaction

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 11

Commit processing
During commit processing, the WebLogic Server transaction manager either uses the
XAResource instances currently enlisted with the transaction, or the XAResource instances
that are registered with the transaction manager to perform the two-phase commit.

The WebLogic Server transaction manager ensures that each transaction branch receives only
one set of prepare-commit calls. You must ensure that any XAResource instance can be used
for commit processing for multiple transactions simultaneously from different threads, as
defined in JTA Specification Version 1.0.1B Section 3.4.6.

Recovery
When a WebLogic Server server is restarted, the WebLogic Server transaction manager reads
its own transaction logs (with log records of transactions that are successfully prepared, but
may not have completed the second commit phase of 2PC processing). The WebLogic Server
transaction manager then continues to retry commit of the XAResources for these
transactions.

As discussed in Registering an XAResource to Participate in Transactions, one purpose of the
WebLogic Server transaction manager resource registration API is for bootstrapping
XAResource instances for recovery. You must ensure that an XAResource instance is
registered with the WebLogic Server transaction manager upon server restart. The WebLogic
Server transaction manager retries the commit call every minute, until a valid XAResource
instance is registered with the WebLogic Server transaction manager.

When a transaction manager that is acting as a transaction coordinator crashes, it is possible
that the coordinator may not have logged some in-doubt transactions in the coordinator's
transaction log. Thus, upon server restart, the coordinator must call XAResource.recover on
the resource managers, and roll back the in-doubt transactions that were not logged. As with
commit retries, the WebLogic Server transaction manager retries XAResource.recover every 5
minutes, until a valid XAResource instance is registered with the WebLogic Server transaction
manager.

The WebLogic Server transaction manager checkpoints a new XAResource in its transaction
log records when the XAResource is first enlisted with the WebLogic Server transaction
manager. Upon server restart, the WebLogic Server transaction manager then calls
XAResource.recover on all the resources previously checkpointed (removed from the
transaction log records after the transaction completed). A resource is only removed from a
checkpoint record if it has not been accessed for the last
PurgeResourceFromCheckpointIntervalSeconds interval (default is 24 hours). Therefore, to
reduce the resource recovery overhead, you should ensure that only a small number of
resource manager instances are registered with the WebLogic Server transaction manager.

When implementing XAResource.recover, you should use the flags as described in the X/
Open XA specification as follows:

• When the WebLogic Server transaction manager calls XAResource.recover with
TMSTARTRSCAN, the resource returns the first batch of in-doubt Xids.

The WebLogic Server transaction manager then calls XAResource.recover with TMNOFLAGS
repeatedly, until the resource returns either null or a zero-length array to signal that there
are no more Xids to recover. If the resource has returned all the Xids in the previous
XAResource.recover(TMSTARTRSCAN) call, then it can either return null or a zero-length
array here, or it may also throw XAER_PROTO, to indicate that it has finished and forgotten
the previous recovery scan. A common XAResource.recover implementation problem is

Chapter 13
Commit processing

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 11

ignoring the flags or always returning the same set of Xids on
XAResource.recover(TMNOFLAGS). This causes the WebLogic Server transaction manager
recovery to loop infinitely, and subsequently fail.

• The WebLogic Server transaction manager XAResource.recover with TMENDRSCAN flag to
end the recovery scan. The resource may return additional Xids.

Resource Health Monitoring
To prevent losing server threads to faulty XAResources, WebLogic Server JTA has an internal
resource health monitoring mechanism. A resource is considered active if either there are no
pending requests or the result from any of the XAResource pending requests is not
XAER_RMFAIL. If an XAResource is not active within two minutes, the WebLogic Server
transaction manager declares it dead.

Any further requests to the XAResource are shunned, and an XAER_RMFAIL XAException is
thrown.

The two minute interval can be configured using the maxXACallMillis JTAMBean attribute.
You can configure maxXACallMillis in the config.xml file. For example:

<Domain>
....
<JTA
 MaxXACallMillis="240000"
/>
....
</Domain>

To receive notification from the WebLogic Server transaction manager and to inform the
WebLogic Server transaction manager whether it is indeed dead when the resource is about to
be declared dead, you can implement weblogic.transaction.XAResource (which extends
jakarta.transaction.xa.XAResource) and register it with the transaction manager. The
transaction manager calls the detectUnavailable method of the XAResource when it is about
to declare it unavailable. If the XAResource returns true, then it is not declared unavailable. If
the XAResource is indeed unavailable, it can use this opportunity to perform cleanup and re-
registration with the transaction manager. See weblogic.transaction.XAResource in the Java
API Reference for Oracle WebLogic Server.

Jakarta EE Connector Architecture Resource Adapter
Besides registering with the WebLogic Server transaction manager directly, you can also
implement the Jakarta EE Connector Architecture resource adapter interfaces. When you
deploy the resource adapter, the WebLogic Server Jakarta EE container registers the resource
manager's XAResource with the WebLogic Server transaction manager automatically.

See Developing Resource Adapters for Oracle WebLogic Server.

Implementation Tips
Learn some tips for exporting and importing transactions with the WebLogic Server transaction
manager.

Chapter 13
Resource Health Monitoring

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 11

Sharing the WebLogic Server Transaction Log
The WebLogic Server transaction manager exposes the transaction log to be shared with
system applications such as gateways. This provides a way for system applications to take
advantage of the box-carring (batching) transaction log optimization of the WebLogic Server
transaction manager for fast logging. Note that it is important to release the transaction log
records in a timely fashion. (The WebLogic Server transaction manager only removes a
transaction log file if all the records in it are released). Failure to do so may result in a large
number of transaction log files, and could lead to re-commit of a large number of already
committed transactions, or in an extreme case, circular collision and overwriting of transaction
log files.

The WebLogic Server transaction manager exposes a transaction logger interface:
weblogic.transaction.TransactionLogger. It is only available on the server, and it can be
obtained with the following steps:

1. Get the server transaction manager:

import weblogic.transaction.ServerTransactionManager;
import weblogic.transaction.TxHelper;
ServerTransactionManager stm =
(ServerTransactionManager)TxHelper.getTransactionManager();

2. Get the TransactionLogger:

TransactionLogger tlog = stm.getTransactionLogger();

The XAResource's log records must implement the
weblogic.transaction.TransactionLoggable interface in order to be written to the
transaction log. For more information about the weblogic.transaction.TransactionLogger
interface and usage of the TransactionLogger interface, see
weblogic.transaction.TransactionLogger in the Java API Reference for Oracle WebLogic
Server.

Transaction global properties
A WebLogic Server JTA transaction object is associated with both local and global properties.
Global properties are propagated with the transaction propagation context among servers, and
are also saved as part of the log record in the transaction log. You can access the transaction
global properties as follows:

1. Obtain the transaction object:

import weblogic.transaction.Transaction;
import weblogic.transaction.TransactionHelper;
Transaction tx = TransactionHelper.getTransaction(); // Get the transaction
associated with the thread

or

Transaction tx = TxHelper.getTransaction(xid); // Get the transaction with the given
Xid

2. Get or set the properties on the transaction object:

tx.setProperty("foo", "fooValue");
tx.getProperty("bar");

See weblogic.transaction.TxHelper in the Java API Reference for Oracle WebLogic Server.

Chapter 13
Implementation Tips

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 11

TxHelper.createXid
You can use the TxHelper.createXid(int formatId, byte[] gtrid, byte[] bqual) method
to create Xids, for example, to return to the WebLogic Server transaction manager on
recovery.

See weblogic.transaction.TxHelper in the Java API Reference for Oracle WebLogic Server.

Changes in the Resource Registration Name
This release changes the behavior of the resource registration name for XA data source
configurations. In previous releases, the JTA registration name was simply the name of the
data source. Now, the registration name is a combination of data source name and domain.

All resources registered with JTA now have a corresponding runtime MBean that exposes XA
usage statistics for the resource. This altered (qualified) the JMX ObjectName of the MBean,
and may impact existing applications that perform a JMX lookup of such a runtime MBean by
name. In previous releases, a data source configuration with a name of mydatasource in
domain mydomain would have a JTA resource runtime MBean registered under the object
name:

com.bea:ServerRuntime=myserver,Name=mydatasource,Type=TransactionResourceRuntime,
JTARuntime=JTARuntime

For this release, the new qualified object name is:

com.bea:ServerRuntime=myserver,Name=mydatasource_mydomain,Type=TransactionResourc
eRuntime,JTARuntime=JTARuntime

The transaction branch qualifier is also derived from the JTA resource registration name. Any
pending transaction branches for XA data sources at the time of upgrade may not be
recoverable after upgrade. Oracle recommends that no pending transactions are left pending
in database resources prior to upgrade. Otherwise, any pending database transactions may
need to be resolved manually by a database administrator. See

This release provides a new system property to disable the qualifying of the registration name:

-Dweblogic.jdbc.qualifyRMName=false

FAQs
Get to know about the most frequently asked questions related to transactions.

• Why does the XAResource's Xid have a branch qualifier, but not the transaction manager's
transaction?

WebLogic Server JTA transaction objects do not have branch qualifiers (for example,
TxHelper.getTransaction().getXid().getBranchQualifier() would be null). Since the
branch qualifiers are specific to individual resource managers, the WebLogic Server
transaction manager only sets the branch qualifiers in the Xids that are passed into
XAResource methods.

• What is the TxHelper.getTransaction() method used for?

The WebLogic Server JTA provides the TxHelper.getTransaction() API to return the
transaction associated with the current thread. However, note that WebLogic Server JTA
suspends the transaction context before calling the XAResource methods, so you should

Chapter 13
Changes in the Resource Registration Name

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 11

only rely on the Xid input parameter to identify the transaction, but not the transaction
associated with the current thread.

Additional Documentation about JTA
Additional documentation for a connection-based Resource Usage scenario, which illustrates
the JTA interaction between the transaction manager and resource manager is provided in the
JTA specification.

Refer to the JTA specification 2.0 Section 4.1 for a connection-based Resource Usage
scenario, which illustrates the JTA interaction between the transaction manager and resource
manager. The JTA specification is available at https://jakarta.ee/specifications/
transactions/2.0/.

Chapter 13
Additional Documentation about JTA

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 11

http://www.oracle.com/technetwork/java/javaee/jta/index.html
http://www.oracle.com/technetwork/java/javaee/jta/index.html

14
Participating in Transactions Managed by a
Third-Party Transaction Manager

Learn how WebLogic Server participates in distributed transactions coordinated by third-party
systems (referred to as foreign transaction managers). The WebLogic Server processing
occurs as part of the work of the external transaction. The foreign transaction manager then
drives the WebLogic Server transaction manager as part of its commit processing. This is
referred to as "importing" transactions into WebLogic Server.

Overview of Participating in Foreign-Managed Transactions
The WebLogic Server transaction manager exposes a javax.transaction.xa.XAResource
implementation using the weblogic.transaction.InterposedTransactionManager interface. A
foreign transaction manager can access the InterposedTransactionManager interface to
coordinate the WebLogic Server transaction manager XAResource during its commit
processing.

When importing a transaction from a foreign transaction manager into the WebLogic Server
transaction manager, you must register the WebLogic Server interposed transaction manager
(ITM) as a subordinate with the foreign transaction manager. The WebLogic Server transaction
manager then acts as the coordinator for the imported transaction within WebLogic Server.

WebLogic Server supports two configuration schemes for importing transactions:

• Using a client-side gateway (implemented externally to WebLogic Server) that uses the
client interposed transaction manager

• Using a server-side gateway implemented on a WebLogic Server instance that uses the
server interposed transaction manager

Although there are some differences in limitations and in implementation details, the basic
behavior is the same for importing transactions in both configurations:

1. Lookup the WebLogic Server transaction manager and register it as an XAResource as
necessary in the third-party system.

2. Enlist and delist applicable transaction participants during transaction processing.

3. Send the prepare message to the WebLogic Server transaction manager, which then acts
as a subordinate transaction manager and coordinates the prepare phase for transaction
participants within WebLogic Server.

4. Send the commit or roll back message to the WebLogic Server transaction manager, which
then acts as a subordinate transaction manager and coordinates the second phase of the
two-phase commit process for transaction participants within WebLogic Server.

5. Unregister, as necessary.

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 8

Importing Transactions with the Client Interposed Transaction
Manager

You can use the client interposed transaction manager in WebLogic Server to drive the two-
phase commit process for transactions that are coordinated by a third-party transaction
manager and include transaction participants within WebLogic Server, such as JMS resources
and JDBC resources. The client interposed transaction manager is an implementation of the
javax.transaction.xa.XAResource interface.

You access the client interposed transaction manager directly from the third-party application,
typically from a gateway in the third-party application. The transaction manager in the third-
party system then sends the prepare and commit messages to the gateway, which propagates
the message to the WebLogic Server transaction manger. The WebLogic Server transaction
manager then acts as a subordinate transaction manager and coordinates the transaction
participants within WebLogic Server. Figure 14-1 shows the interaction between the two
transaction managers and the client-side gateway.

Figure 14-1 Importing Transactions into WebLogic Server Using a Client-Side Gateway

Figure 14-2 shows the flow of interactions between a foreign transaction manager, WebLogic
Server client-side JTA objects, and the WebLogic Server transaction manager.

Chapter 14
Importing Transactions with the Client Interposed Transaction Manager

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 8

Figure 14-2 State Diagram Illustrating Steps to Import a Transaction Using the Client Interposed
Transaction Manager

To access the interposed transaction manager in WebLogic Server using a client-side gateway,
you must perform the following steps:

Get the Client Interposed Transaction Manager
In a client-side gateway, the you can get the WebLogic server interposed transaction
manager's XAResource with the getClientInterposedTransactionManager method. For
example:

import javax.naming.Context;
import weblogic.transaction.InterposedTransactionManager;
import weblogic.transaction.TxHelper;
Context initialCtx;
String serverName;
InterposedTransactionManager itm =
TxHelper.getClientInterposedTransactionManager(initialCtx, serverName);

The server name parameter is the name of the server that acts as the interposed transaction
manager for the foreign transaction. When the foreign transaction manager performs crash
recovery, it must contact the same WebLogic Server server to obtain the list of in-doubt
transactions that were previously imported into WebLogic Server.

Chapter 14
Importing Transactions with the Client Interposed Transaction Manager

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 8

See weblogic.transaction.TxHelper in the Java API Reference for Oracle WebLogic Server.

Get the XAResource from the Interposed Transaction Manager
After you get the interposed transaction manager, you must get the XAResource object
associated with the interposed transaction manager:

import javax.transaction.xa.XAResource;
XAResource xar = itm.getXAResource();

Cluster-wide Recovery
You can configure cluster-wide transaction recovery of distributed transactions across all the
interposed transaction managers of a cluster by selecting the Enable Cluster-Wide Recovery
attribute on the Configure Domain JTA Options page in the Oracle WebLogic Remote Console
Online Help.

When enabled, each interposed transaction manager in a WebLogic cluster is aware of the
transaction distribution across the entire cluster. This allows the interposed transaction
manager on each cluster member to determine if it should handle a given XA call or forward it
to the appropriate interposed transaction manager on another cluster member. In addition:

• An XAResource.recover call on a single ITM within a WebLogic cluster returns a list of in-
doubt transactions of all interposed transaction manager 's within the cluster.

• If a cluster member fails, the interposed transaction manager is migrated to another cluster
member within the same cluster.

• If a WebLogic distributed destination is present on a cluster, messages could be load
balanced to other cluster members other than the member hosting the interposed
transaction manager. If this occurs, the interposed transaction manager transparently
handles any XA calls and forwards them to the correct cluster member instance. In the
situation that the cluster member that hosts the destination fails. The interposed
transaction manager transparently handles the potential failover of that destination
member.

Limitations of the Client Interposed Transaction Manager
Note the following limitations when importing transactions using a client-side gateway:

• You cannot use the TxHelper.getServerInterposedTransactionManager() method in
client-side gateways.

Importing Transactions with the Server Interposed Transaction
Manager

You can use the server interposed transaction manager in WebLogic Server to drive the two-
phase commit process for transactions that are coordinated by a third-party transaction
manager and include transaction participants within WebLogic Server, such as JMS resources
and JDBC resources. The server interposed transaction manager is an implementation of the
javax.transaction.xa.XAResource interface.

You access the server interposed transaction manager by creating a server-side gateway on
WebLogic Server and then accessing the gateway from a third-party system. The transaction
manager in the third-party system then sends the prepare and commit messages to the server-
side gateway, which propagates the message to the WebLogic Server transaction manager.

Chapter 14
Importing Transactions with the Server Interposed Transaction Manager

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 8

The WebLogic Server transaction manager then acts as a subordinate transaction manager
and coordinates the transaction participants within WebLogic Server. Figure 14-3 shows the
interaction between the two transaction managers and the server-side gateway.

Figure 14-3 Importing Transactions into WebLogic Server Using a Server-Side
Gateway

To access the interposed transaction manager in WebLogic Server using a server-side
gateway, you must perform the following steps:

Get the Server Interposed Transaction Manager
In a server-side gateway, you can get the interposed transaction manager's XAResource as
follows:

import javax.naming.Context;
import weblogic.transaction.InterposedTransactionManager;
import weblogic.transaction.TxHelper;
InterposedTransactionManager itm = TxHelper.getServerInterposedTransactionManager();

See weblogic.transaction.TxHelper in the Java API Reference for Oracle WebLogic Server.

After you get the interposed transaction manager, you must get the XAResource. See Get the
XAResource from the Interposed Transaction Manager.

Limitations of the Server Interposed Transaction Manager
Note the following limitations when importing transactions using a server-side gateway:

• Do not use the TxHelper.getClientInterposedTransactionManager() method in a
server-side gateway on a WebLogic Server server. Doing so causes performance issues.

• You can only use one WebLogic Server server interposed transaction manager at a time.
Do not use multiple server interposed transaction managers (on the same thread) to import
transactions at the same time. (See Transaction Processing for Imported Transactions for
more information about this limitation and how transactions are processed with the
WebLogic Server interposed transaction manager.)

Chapter 14
Importing Transactions with the Server Interposed Transaction Manager

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 8

Transaction Processing for Imported Transactions
You can import a foreign transaction into WebLogic Server using the foreign transaction
manager or gateway.

To import a foreign transaction into WebLogic Server, the foreign transaction manager or
gateway can do the following:

xar.start(foreignXid, TMNOFLAGS);

This operation associates the current thread with the imported transaction. All subsequent calls
made to other servers propagate the imported WebLogic Server transaction, until the
transaction is disassociated from the thread.

Note

The flag is ignored by the WebLogic Server transaction manager. If the foreign Xid has
been imported previously on the same WebLogic Server server, WebLogic Server
associates the current thread with the previously imported WebLogic Server
transaction.

To disassociate the imported transaction from the current thread, the foreign transaction
manager or gateway should do the following:

xar.end(foreignXid, TMSUCCESS);

Note that the WebLogic Server transaction manager ignores the flag.

Transaction Processing Limitations for Imported Transactions
Note the following processing limitations and behavior for imported transactions:

• After a WebLogic Server transaction is started, the gateway cannot call start again on the
same thread. With a client-side gateway, you can only call xar.start on one client
interposed transaction manager at a time. Attempting to call xar.start on another client
interposed transaction manager (before xar.end was called on the first one) throws an
XAException with XAER_RMERR. With a server-side gateway, attempting to call xar.start on
a client or server interposed transaction manager also throws a XAException with
XAER_RMERR if there is an active transaction associated with the current thread.

• The WebLogic Server interposed transaction manager's XAResource exhibits loosely-
coupled transaction branching behavior on different WebLogic Server servers. That is, if
the same foreign Xid is imported on different WebLogic Server servers, they are imported
to different WebLogic Server transactions.

• The WebLogic Server transaction manager does not flatten the transaction tree, for
example, the imported transaction of a previously exported WebLogic Server transaction
are in a separate branch from the original WebLogic Server transaction.

• A foreign transaction manager should ensure that all foreign Xids that are imported into
WebLogic Server are unique and are not reused within the sum of the transaction abandon
timeout period and the transaction timeout period. Failure to do so may result in log
records that are never released in the WebLogic Server transaction manager. This could
lead to inefficient crash recovery.

Chapter 14
Transaction Processing for Imported Transactions

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 8

Commit Processing for Imported Transactions
Learn how foreign transaction manager prepares the interposed transaction manager for the
commit process of imported transactions.

The foreign transaction manager should drive the interposed transaction manager in the 2PC
protocol as it does the other XAResources. Note that the beforeCompletion callbacks
registered with the WebLogic Server JTA (for example, the EJB container) are called when the
foreign transaction manager prepares the interposed transaction manager's XAResource. The
afterCompletion callbacks are called during XAResource.commit or XAResource.rollback.

The WebLogic Server interposed transaction manager honors the XAResource contract as
described in the Java Transaction API at https://jakarta.ee/specifications/
transactions/2.0/.

• Once prepared by a foreign transaction manager, the WebLogic Server interposed
transaction manager waits persistently for a commit or rollback outcome from the foreign
transaction manager until the transaction abandon timeout expires.

• The WebLogic Server interposed transaction manager remembers heuristic outcomes
persistently until being told to forget about the transaction by the foreign transaction
manager or until transaction abandon timeout.

The WebLogic Server transaction manager logs a prepare record for the imported transaction
after all the WebLogic Server participants are successfully prepared. If there are multiple
WebLogic Server participants for the imported transaction, the transaction manager logs a
prepare record even if the XAResource.commit is a one-phase commit.

Recovery for Imported Transactions
During the crash recovery of the foreign transaction manager, the foreign transaction manager
must get the XAResource of the WebLogic Server interposed transaction manager again, and
call recover on it. The WebLogic Server interposed transaction manager then returns the list of
prepared or heuristically completed transactions. The foreign transaction manager should then
resolve those in-doubt transactions: either commit or rollback the prepared transactions, and
call forget on the heuristically completed transactions.

Transactions that Span Transaction Manager Systems
You can configure tight coupling of transaction branches that span different transaction
manager systems by selecting the Enable Tightly Coupled Transactions attribute on the
Cluster:Configuration:JTA page in the WebLogic Remote Console.

When he Enable Tightly Coupled Transactions attribute is enabled, WebLogic Server uses
the transaction identifier of a transaction imported by the interposed transaction manager for
XA calls rather than an internally mapping a transaction id. This tighter coupling of transaction
managers typically improves performance and applies to inter-domain WebLogic transactions
and transactions imported from Tuxedo .

Chapter 14
Commit Processing for Imported Transactions

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 8

http://www.oracle.com/technetwork/java/javaee/jta/index.html
http://www.oracle.com/technetwork/java/javaee/jta/index.html

Note

• Oracle does not support tightly coupled transactions with other external
transaction processing systems for which interoperability is enabled using WSAT.
However, for EJBs and applications within a single cluster that uses the same
transaction id, tight coupling can be enabled. For more information about WSAT,
see Using Web Services Atomic Transactions in Developing JAX-WS Web
Services for Oracle WebLogic Server.

If a transaction between WebLogic and Tuxedo resources uses a GridLink Data
Source with GridLink Affinity enabled, the XA Affinity context is automatically used for
the transaction.

Chapter 14
Transactions that Span Transaction Manager Systems

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 8

http://docs.oracle.com/middleware/1221/wls/WSGET/jax-ws-atomictransaction.htm#WSGET382

15
Troubleshooting Transactions

Learn about the troubleshooting tools and tasks that are used in determining why transactions
fail and deciding what actions to take to correct the problem.

Overview
WebLogic Server includes the ability to monitor currently running transactions and ensure that
adequate information is captured in the case of heuristic completion. It also provides the ability
to monitor performance of database queries, transactional requests, and bean methods.

Troubleshooting Tools
WebLogic Server provides aids like exceptions, transaction identifier, transaction status, and so
on for transaction troubleshooting.

This topic has following sections:

Exceptions
WebLogic JTA supports all standard JTA exceptions. For more information about standard JTA
exceptions, see the API Javadoc for the following packages:

• jakarta.transaction

• javax.transaction.xa

In addition to the standard JTA exceptions, WebLogic Server provides the class
weblogic.transaction.RollbackException. This class extends
jakarta.transaction.RollbackException and preserves the original reason for a rollback.
Before rolling a transaction back, or before setting it to rollbackonly, an application can
supply a reason for the rollback. All rollbacks triggered inside the transaction service set the
reason (for example, timeouts, XA errors, unchecked exceptions in beforeCompletion, or
inability to contact the transaction manager). Once set, the reason cannot be overwritten.

When a transaction is logged in Database using TLOG store and SQL query, if it takes more
than 30 seconds then the SystemException: Transaction could not be logged, is thrown.
To solve this issue, look at database performance and Automatic Workload Repository reports
to understand the cause of slow down and accordingly perform database tuning.

Transaction Identifier
The Transaction Service assigns a transaction identifier (Xid) to each transaction. This ID can
isolate information about a specific transaction in a log file. You can retrieve the transaction
identifier using the getXID method in the weblogic.transaction.Transaction interface. For
detailed information on methods for getting the transaction identifier, see
weblogic.transaction.Transaction in the Java API Reference for Oracle WebLogic Server.

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 5

https://jakarta.ee/specifications/transactions/2.0/apidocs/
https://docs.oracle.com/en/java/javase/17/docs/api/java.transaction.xa/module-summary.html

Transaction Name and Properties
WebLogic JTA provides extensions to jakarta.transaction.Transaction that support
transaction naming and user-defined properties. These extensions are included in the
weblogic.transaction.Transaction interface.

The transaction name indicates a type of transaction (for example, funds transfer or ticket
purchase) and should not be confused with the transaction ID, which identifies a unique
transaction on a server. The transaction name makes it easier to identify a transaction type in
the context of an exception or a log file.

User-defined properties are key/value pairs, where the key is a string identifying the property
and the value is the current value assigned to the property. Transaction property values must
be objects that implement the Serializable interface. You manage properties in your
application using the set and get methods defined in the weblogic.transaction.Transaction
interface. Once set, properties stay with a transaction during its entire lifetime and are passed
between machines as the transaction travels through the system. Properties are saved in the
transaction log, and are restored during crash recovery processing. If a transaction property is
set more than once, the latest value is retained.

For detailed information on methods for setting and getting the transaction name and
transaction properties, see weblogic.transaction.Transaction in the Java API Reference for
Oracle WebLogic Server.

Transaction Status
The Java Transaction API provides transaction status codes using the
jakarta.transaction.Status class. Use the getStatusAsString method in
weblogic.transaction.Transaction to return the status of the transaction as a string. The
string contains the major state as specified in jakarta.transaction.Status with an additional
minor state (such as logging or pre-preparing).

Transaction Statistics
Transaction statistics are provided for all transactions handled by the transaction manager on a
server. These statistics include the number of total transactions, transactions with a specific
outcome (such as committed, rolled back, or heuristic completion), rolled back transactions by
reason, and the total time that transactions were active. For detailed information about
transaction statistics, see View Transaction Statistics in the Oracle WebLogic Remote Console
Online Help.

Transaction Monitoring
The Remote Console enables you to monitor transactions. Monitoring tasks are performed at
the server level. Transaction statistics are displayed for a specific server.

Debugging JTA Resources
Once you have narrowed the problem down to a specific application, you can activate
WebLogic Server's debugging features to track down the specific problem within the
application.

Chapter 15
Troubleshooting Tools

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 5

Enabling Debugging
You can enable debugging by setting the appropriate ServerDebug configuration attribute to
"true." Optionally, you can also set the server StdoutSeverity to "Debug".

You can modify the configuration attribute in any of the following ways.

Enable Debugging Using the Command Line
Set the appropriate properties on the command line. For example,

-Dweblogic.debug.DebugJDBCJTA=true
-Dweblogic.log.StdoutSeverity="Debug"

This method is static and can only be used at server startup.

Enable Debugging Using the WebLogic Remote Console
Use the WebLogic Remote Console to set the debugging values:

1. Log into WebLogic Remote Console and navigate to Edit Tree.

2. In the left pane, expand Environment and select Servers.

3. Click the server which you want to enable or disable debugging to view the settings page
for that server.

4. Click the Debug tab.

5. Select the check box for the debug attributes you want to modify.

6. Click Save.

7. Click the Shopping Cart icon and select Commit Changes.

Enable Debugging Using the WebLogic Scripting Tool
Use the WebLogic Scripting Tool (WLST) to set the debugging values. For example, the
following command runs a program for setting debugging values called debug.py:

java weblogic.WLST debug.py

The debug.py program contains the following code:

user='user1'
password='password'
url='t3://localhost:7001'
connect(user, password, url)
edit()
cd('Servers/myserver/ServerDebug/myserver')
startEdit()
set('DebugJDBCJTA','true')
save()
activate()

Note that you can also use WLST from Java. The following example shows a Java file used to
set debugging values:

import weblogic.management.scripting.utils.WLSTInterpreter;
import java.io.*;
import weblogic.jndi.Environment;

Chapter 15
Troubleshooting Tools

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 5

import jakarta.naming.Context;
import jakarta.naming.InitialContext;
import jakarta.naming.NamingException;

public class test {
 public static void main(String args[]) {
 try {
 WLSTInterpreter interpreter = null;
 String user="user1";
 String pass="pw12ab";
 String url ="t3://localhost:7001";
 Environment env = new Environment();
 env.setProviderUrl(url);
 env.setSecurityPrincipal(user);
 env.setSecurityCredentials(pass);
 Context ctx = env.getInitialContext();

 interpreter = new WLSTInterpreter();
 interpreter.exec
 ("connect('"+user+"','"+pass+"','"+url+"')");
 interpreter.exec("edit()");
 interpreter.exec("startEdit()");
 interpreter.exec
 ("cd('Servers/myserver/ServerDebug/myserver')");
 interpreter.exec("set('DebugJDBCJTA','true')");
 interpreter.exec("save()");
 interpreter.exec("activate()");

 } catch (Exception e) {
 System.out.println("Exception "+e);
 }
 }
}

Using the WLST is a dynamic method and can enable debugging while the server is running.

Changes to the config.xml File
Changes in debugging characteristics, through the WebLogic Remote Console, or WLST, or
command line are persisted in the config.xml file. See Example 15-1:

Example 15-1 Example Debugging Stanza for JTA

.

.

.
<server>
<name>myserver</name>
<server-debug>
<debug-scope>
<name>weblogic.transaction</name>
<enabled>true</enabled>
</debug-scope>
<debug-jdbcjta>true</debug-jdbcjta>
</server-debug>
</server>
.
.
.

This sample config.xml fragment shows a transaction debug scope (set of debug attributes)
and a single JTA attribute.

Chapter 15
Troubleshooting Tools

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 5

JTA Debugging Scopes
It is possible to see the tree view of the DebugScope definitions using java
weblogic.diagnostics.debug.DebugScopeViewer.

You can enable the following registered debugging scopes for JTA:

• DebugJDBCJTA (scope weblogic.jdbc.transaction) - not currently used.

• DebugJTAXA (scope weblogic.transaction.xa) - traces for XA resources.

• DebugJTANonXA (scope weblogic.transaction.nonxa) - traces for non-XA resources.

• DebugJTAXAStackTrace (scope weblogic.transaction.stacktrace) - detailed tracing that
prints stack traces at various critical locations.

• DebugJTARMI (scope weblogic.transaction.rmi) - not currently used.

• DebugJTA2PC (scope weblogic.transaction.twopc) - traces all two-phase commit operations.

• DebugJTA2PCStackTrace (scope weblogic.transaction.twopcstacktrace) - detailed two-
phase commit tracing that prints stack traces.

• DebugJTATLOG (scope weblogic.transaction.tlog) - traces transaction logging information.

• DebugJTAJDBC (scope weblogic.transaction.jdbc, weblogic.jdbc.transaction) - traces
information about reading/writing JTA records.

• DebugJTARecovery (scope weblogic.transaction.recovery) - traces recovery information.

• DebugJTAGateway (scope weblogic.transaction.gateway) - traces information about
imported transactions.

• DebugJTAGatewayStackTrace (scope weblogic.transaction.gatewaystacktrace) - stack
traces related to imported transactions.

• DebugJTANaming (scope weblogic.transaction.naming) - traces transaction naming
information.

• DebugJTANamingStackTrace (scope weblogic.transaction.namingstacktrace) - traces
transaction naming information.

• DebugJTAResourceHealth (scope weblogic.transaction.resourcehealth) - traces information
about XA transaction resource health.

• DebugJTAMigration (scope weblogic.transaction.migration) - traces information about
Transaction Log migration.

• DebugJTALifecycle (scope weblogic.transaction.lifecycle) - traces information about the
transaction server lifecycle (initialization, suspension, resuming, and shutdown).

• DebugJTALLR (scope weblogic.transaction.llr) - traces all Logging Last Resource
operations.

• DebugJTAHealth (scope weblogic.transaction.health) - traces information about transaction
subsystem health.

• DebugJTATransactionName (scope weblogic.transaction.name) - traces transaction names.

• DebugJTAResourceName (scope weblogic.transaction.resourcename) - traces transaction
resource names.

Chapter 15
Troubleshooting Tools

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 5

Index

Developing JTA Applications for Oracle WebLogic Server
G31654-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Index-1 of Index-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Introducing Transactions
	Overview of Transactions in WebLogic Server Applications
	ACID Properties of Transactions
	Supported Programming Model
	Supported API Models
	Distributed Transactions and the Two-Phase Commit Protocol
	Support for Business Transactions

	When to Use Transactions
	What Happens During a Transaction
	Transactions in WebLogic Server EJB Applications
	Container-managed Transactions
	Bean-managed Transactions

	Transactions in WebLogic Server RMI Applications

	Transactions Sample Code
	Transactions Sample EJB Code
	Importing Packages
	Using JNDI to Return an Object Reference
	Starting a Transaction
	Completing a Transaction

	Transactions Sample RMI Code
	Importing Packages
	Using JNDI to Return an Object Reference to the UserTransaction Object
	Starting a Transaction
	Completing a Transaction

	2 Configuring Transactions
	Overview of Transaction Configuration
	Configuring JTA
	Unregister Resource Grace Period
	Additional Attributes for Managing Transactions
	XA Transaction Cluster Affinity

	Configuring Network Channels for JTA Communication
	Using Transaction Log Files to Recover Transactions
	Using the Default Persistent Store
	Setting the Path for the Default Persistent Store
	Setting the Default Persistent Store Synchronous Write Policy

	Using a JDBC TLOG Store
	Last Logging Resource
	XA Transactions without Transaction TLog Write
	What is a Determiner Resource?
	Best Practices When Using Determiner Resources

	Configuring XA Transactions without TLogs
	How to Configure a Determiner
	How to Remove a Determiner
	Limitations and Considerations When Configuring Transactions without TLogs

	Read-Only, One-Phase Commit Optimizations
	Configuring Read-only, One-phase Commit Optimization and Two-phase Commit Disablement
	Monitoring Read-only, One-phase Transaction Statistics

	3 Managing Transactions
	Monitoring Transactions
	Handling Heuristic Completions
	Moving a Server
	Abandoning Transactions
	Transaction Completion Timeout

	Manually Resolving Current (Inflight) Transactions
	Manual Commit and Rollback Options

	Transaction Recovery After a Server Fails
	Transaction Recovery Service Actions After a Crash
	Recovering Transactions For a Failed Non-Clustered Server
	Recovering Transactions For a Failed Clustered Server
	Server Migration
	Automatic Transaction Recovery Service Migration
	Manual Transaction Recovery Service Migration
	What Occurs During Transaction Recovery Service Migration

	Managed Server Independence
	Limitations of Migrating the Transaction Recovery Service
	Preparing to Migrate the Transaction Recovery Service
	Constraining Servers to Which the Transaction Recovery Service Can Migrate
	Manually Migrating the Transaction Recovery Service to the Original Server

	How to Remove Transaction Records
	How to Remove the TLog in the LLR Database
	How to Remove the TLog Files from the Default Store
	How to Remove the TLog from a JDBC TLog Store

	4 Using Transaction Guard
	Overview of Transaction Guard
	Enabling Transaction Guard
	Enabling Transaction Guard for WebLogic Data Sources
	Enabling Transaction Guard for Database Service

	Data Source Statistics for Transaction Guard

	5 Transaction Service
	About the Transaction Service
	Capabilities and Limitations
	Lightweight Clients with Delegated Commit
	Client-initiated Transactions
	Transaction Integrity
	Transaction Termination
	Flat Transactions
	Relationship of the Transaction Service to Transaction Processing
	Multithreaded Transaction Client Support
	Transaction Id
	Transaction Name and Properties
	Transaction Status
	Transaction Statistics
	General Constraints

	Transaction Scope
	Transaction Service in EJB Applications
	Transaction Service in RMI Applications
	Transaction Service Interoperating with OTS
	Server-Server 2PC
	Client Demarcated Transactions

	6 Transaction Recovery Spanning Multiple Sites or Data Centers
	Understanding XA Transaction Recovery in Disaster Recovery
	Active-Passive XA Transaction Recovery
	Example Active-Passive Domain Configuration for XA Transaction Recovery

	Active-Active Stretch Cluster XA Transaction Recovery
	Example Active-Active Stretch Cluster for XA Transaction Recovery

	Additional Information on Maximum Availability Architecture

	7 Configuring Secure Inter-Domain and Intra-Domain Transaction Communication
	What is Secure Inter-Domain and Intra-Domain Transaction Communication?
	Requirements for Transaction Communication
	How to Determine the Communication to Use for Domain Transactions

	Configuring Secure Channel Communication
	Local Domain Security
	Cross Domain Security
	Important Considerations When Configuring Cross Domain Security
	Cross Domain Security is Not Transitive
	Adding Domains to the Exclude List Based on Transaction Participation

	8 Java Transaction API and Oracle WebLogic Extensions
	JTA API Overview
	Oracle WebLogic Extensions to JTA

	9 Logging Last Resource Transaction Optimization
	About the LLR Optimization Transaction Optimization
	Logging Last Resource Processing Details
	LLR Database Table Details
	LLR Table Transaction Log Records

	Failure and Recovery Processing for LLR
	Coordinating Server Crash
	JDBC Connection Failure
	LLR Transaction Recover During Server Startup
	Failover Considerations for LLR

	Optimizing Performance with LLR
	Optimizing Transaction Coordinator Location
	Varied Performance for Read-Only Operations Through an LLR Data Source
	Dedicating LLR Tables by Data Source
	Limitations

	First Resource Commit Ordering

	10 Transactions in EJB Applications
	Before You Begin
	General Guidelines
	Transaction Attributes
	About Transaction Attributes for EJBs
	Transaction Attributes for Container-Managed Transactions
	Transaction Attributes for Bean-Managed Transactions

	Participating in a Transaction
	Transaction Semantics
	Transaction Semantics for Container-Managed Transactions
	Transaction Semantics for Stateful Session Beans
	Transaction Semantics for Stateless Session Beans
	Transaction Semantics for Entity Beans

	Transaction Semantics for Bean-Managed Transactions
	Transaction Semantics for Stateful Session Beans
	Transaction Semantics for Stateless Session Beans

	Session Synchronization
	Synchronization During Transactions
	Setting Transaction Timeouts
	Handling Exceptions in EJB Transactions

	11 Transactions in RMI Applications
	Before You Begin
	General Guidelines

	12 Using JDBC XA Drivers with WebLogic Server
	Using Oracle Thin/XA Driver
	Set the Environment for the Oracle Thin/XA Driver
	Configure WebLogic Server
	Enable XA on the Database Server

	Oracle Thin/XA Driver Configuration Properties

	Using Other XA Drivers
	Using WebLogic-branded Data Direct Drivers
	Additional Considerations

	13 Coordinating XAResources with the WebLogic Server Transaction Manager
	Overview of Coordinating Distributed Transactions with Foreign XAResources
	Registering an XAResource to Participate in Transactions
	Enlisting and Delisting an XAResource in a Transaction
	Standard Enlistment
	Dynamic Enlistment
	Static Enlistment

	Commit processing
	Recovery
	Resource Health Monitoring
	Jakarta EE Connector Architecture Resource Adapter
	Implementation Tips
	Sharing the WebLogic Server Transaction Log
	Transaction global properties
	TxHelper.createXid

	Changes in the Resource Registration Name
	FAQs
	Additional Documentation about JTA

	14 Participating in Transactions Managed by a Third-Party Transaction Manager
	Overview of Participating in Foreign-Managed Transactions
	Importing Transactions with the Client Interposed Transaction Manager
	Get the Client Interposed Transaction Manager
	Get the XAResource from the Interposed Transaction Manager
	Cluster-wide Recovery
	Limitations of the Client Interposed Transaction Manager

	Importing Transactions with the Server Interposed Transaction Manager
	Get the Server Interposed Transaction Manager
	Limitations of the Server Interposed Transaction Manager

	Transaction Processing for Imported Transactions
	Transaction Processing Limitations for Imported Transactions

	Commit Processing for Imported Transactions
	Recovery for Imported Transactions
	Transactions that Span Transaction Manager Systems

	15 Troubleshooting Transactions
	Overview
	Troubleshooting Tools
	Exceptions
	Transaction Identifier
	Transaction Name and Properties
	Transaction Status
	Transaction Statistics
	Transaction Monitoring
	Debugging JTA Resources
	Enabling Debugging
	Enable Debugging Using the Command Line
	Enable Debugging Using the WebLogic Remote Console
	Enable Debugging Using the WebLogic Scripting Tool
	Changes to the config.xml File
	JTA Debugging Scopes

	Index

