
Oracle Fusion Middleware
Developing RMI Applications for Oracle
WebLogic Server

15c (15.1.1.0.0)
G31656-01
October 2025

Oracle Fusion Middleware Developing RMI Applications for Oracle WebLogic Server, 15c (15.1.1.0.0)

G31656-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation i

Conventions iii

1 Understanding WebLogic RMI

What is WebLogic RMI? 1

Features of WebLogic RMI 1

2 WebLogic RMI Features

WebLogic RMI Clients 1

WebLogic RMI Security Support 1

WebLogic RMI Transaction Support 1

Failover and Load Balancing RMI Objects 2

Clustered RMI Applications 2

Load Balancing RMI Objects 2

Parameter-Based Routing for Clustered Objects 3

Custom Call Routing and Collocation Optimization 4

Request Timeouts 4

Using a Connect Timeout 4

Using a Read Timeout 4

Example rtd.xml file with a Timeout 5

Example weblogic-ejb-jar.xml file with a Timeout 5

Creating Pinned Services 5

Dynamic Proxies in RMI 6

3 Using WebLogic RMI Annotations

Introduction to WebLogic RMI Annotations 1

Annotations for WebLogic RMI 3

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page i of iv

Rmi 3

Description 3

Attributes 3

RmiMethod 4

Description 4

Attributes 4

Exception Handling 4

Application Exceptions 5

System Exceptions 5

Cluster Failover 6

RMI Callback Objects 6

Annotation and WebLogic RMI Descriptor Merging 6

4 Using the WebLogic RMI Compiler

Overview of the WebLogic RMI Compiler 1

WebLogic RMI Compiler Features 1

Hot Code Generation 1

Proxy Generation 1

Additional WebLogic RMI Compiler Features 2

WebLogic RMI Compiler Options 2

Non-Replicated Stub Generation 4

Using Persistent Compiler Options 4

Java SE Enhancements 4

5 Using WebLogic RMI with T3 Protocol

RMI Communication in WebLogic Server 1

Determining Connection Availability 1

Using a WebLogic T3/T3s Client Proxy 1

6 How to Implement WebLogic RMI

Creating Classes That Can Be Invoked Remotely 1

Step 1. Write a Remote Interface 1

Step 2. Implement the Remote Interface 2

Step 3: Create a Client that Invokes Remote Methods 3

Setting Client Timeouts 3

Example HelloClient.java Client 4

Step 4. Compile the Java Classes 5

Run the RMI Hello Code Sample 6

Prerequisites 6

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page ii of iv

Setup the RMI Hello Example 6

Configure a Startup Class 6

Restart the examplesServer 7

Run the Example 7

7 WebLogic RMI Integration with Load Balancers

How WebLogic Server Supports Load Balancers 1

HTTP Tunneled T3 Load Balancing 1

How to Configure the External Listen Address 2

Example Custom Channel Configuration for a Load Balancer 2

Session Failover 3

Cookie Persistence 3

Pinned Objects 3

Stateful Session EJBs 3

Native T3 Load Balancing 3

Failover Support 3

8 Using RMI over IIOP

What is RMI over IIOP? 1

Overview of WebLogic RMI-IIOP 1

Support for RMI-IIOP with RMI (Java) Clients 2

Support for RMI-IIOP with Tuxedo Client 2

Support for RMI-IIOP with CORBA/IDL Clients 2

9 Configuring WebLogic Server for RMI-IIOP

Set the Listening Address 1

Setting Network Channel Addresses 1

Considerations for Proxys and Firewalls 1

Considerations for Clients with Multiple Connections 1

Accessing WebLogic Server Objects from a CORBA Client through Delegation 2

Overview of Delegation 2

Example of Delegation 3

Configuring CSIv2 authentication 4

Using RMI over IIOP with a Hardware Load Balancer 4

Limitations of WebLogic RMI-IIOP 5

Limitations Developing Java IDL Clients 5

Limitations of Passing Objects by Value 5

Propagating Client Identity 6

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page iii of iv

10

Best Practices for Application Design

Use java.rmi 1

Use PortableRemoteObject 1

Use WebLogic Work Areas 1

How to Handle Changes in Security Context 2

A CORBA Support for WebLogic Server

Specification References A-1

Supported Specification Details A-1

Tools A-2

Index

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page iv of iv

Preface

This document is written for application developers who want to build e-commerce applications
using Remote Method Invocation (RMI) and Internet Interop-Orb-Protocol (IIOP) features.

Audience
It is assumed that readers know Web technologies, object-oriented programming techniques,
and the Java programming language. This document emphasizes the value-added features
provided by WebLogic Server and key information about how to use WebLogic Server features
when developing applications with RMI.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
For information on topics related to WebLogic RMI, see the following documents:

• Java Remote Method Invocation API Guide includes basic tutorials on Remote Method
Invocation (RMI).

• Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic
Server applications.

• Developing JNDI Applications for Oracle WebLogic Server is a guide using the WebLogic
Java Naming and Directory Interface.

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page i of iii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/java/javase/17/rmi/

• Developing Standalone Clients for Oracle WebLogic Server is a guide to developing
common stand alone clients that interoperate with WebLogic Server.

• Tuning Performance of Oracle WebLogic Server contains information on monitoring and
improving the performance of WebLogic Server applications.

• https://www.oracle.com/technetwork/java/javase/tech/index-jsp-138209.html
provides an overview of CORBA and Java platform.

• http://docs.oracle.com/javase/8/docs/technotes/guides/idl/index.html contains
information using standard IDL (Object Management Group Interface Definition Language)
and IIOP.

• https://www.omg.org is the Object Management Group home page.

• CORBA Language Mapping Specification at http://www.omg.org/technology/
documents/index.htm

Samples and Tutorials
In addition to this document, Oracle provides a variety of code samples and tutorials for
developers. The examples and tutorials illustrate WebLogic Server in action, and provide
practical instructions on how to perform key development tasks.

Oracle recommends that you run some or all of the RMI examples before developing your own
applications.

Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample Java Platform, Enterprise Edition (Java EE) application
shipped with WebLogic Server that simulates an independent, centralized medical record
management system. The MedRec application provides a framework for patients, doctors, and
administrators to manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights Oracle-
recommended best practices. MedRec is optionally installed in the WebLogic Server
installation. You can start MedRec from the ORACLE_HOME\user_projects\domains\medrec
directory, where ORACLE_HOME is the directory you specified as Oracle Home when you installed
Oracle WebLogic Server. For more information about the WebLogic Server samples, see
Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

MedRec includes a service tier comprised primarily of Enterprise Java Beans (EJBs) that work
together to process requests from web applications, web services, and workflow applications,
and future client applications. The application includes message-driven, stateless session,
stateful session, and entity EJBs.

Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in the
ORACLE_HOME\wlserver\samples\server\examples\src\examples directory, where
ORACLE_HOME represents the directory in which you installed WebLogic Server. For more
information about the WebLogic Server code examples, see Sample Applications and Code
Examples in Understanding Oracle WebLogic Server.

New and Changed WebLogic Server Features
This section includes new and changed features for recent patch sets of WebLogic Server:

Preface

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page ii of iii

https://www.oracle.com/technetwork/java/javase/tech/index-jsp-138209.html
http://docs.oracle.com/javase/8/docs/technotes/guides/idl/index.html
https://www.omg.org
http://www.omg.org/technology/documents/index.htm
http://www.omg.org/technology/documents/index.htm

• New WebLogic RMI annotations that provide remote access to plain java objects. See
Using WebLogic RMI Annotations.

• A new connection attribute, WLContext.CONNECT_TIMEOUT, to define the length of time a
client waits for connections to the server to be bootstrapped or re-established.
WLContext.REQUEST_TIMEOUT is deprecated. See Using a Connect Timeout.

• A new connection attribute, WLContext.RESPONSE_READ_TIMEOUT, to define the length of
time that a client waits to receive a response from a server. WLContext.RMI_TIMEOUT is
deprecated. See Using a Read Timeout.

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page iii of iii

1
Understanding WebLogic RMI

This chapter describes the features of WebLogic RMI.
This chapter includes the following sections:

• What is WebLogic RMI?

• Features of WebLogic RMI

What is WebLogic RMI?
WebLogic Remote Method Invocation (RMI) enables an application to obtain a reference to a
remote object that exists within the network on a virtual machine. RMI provides remote
communication between the applications using objects that are distributed over multiple virtual
machines.

Remote Method Invocation (RMI) is the standard for distributed object computing in Java. RMI
enables an application to obtain a reference to an object that exists elsewhere in the network,
and then invoke methods on that object as though it existed locally in the client's virtual
machine. RMI specifies how distributed Java applications should operate over multiple Java
virtual machines.

This document contains information about using WebLogic RMI, but it is not a beginner's
tutorial on remote objects or writing distributed applications. If you are just beginning to learn
about RMI, visit http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/ and
review the RMI Tutorial.

Features of WebLogic RMI
RMI has several advantages over traditional remote procedure call systems because RMI is a
part of Java's object-oriented approach. View WebLogic RMI Features to know how each of
these features is implemented in the WebLogic framework.

The following table highlights important features of WebLogic implementation of RMI:

Table 1-1 WebLogic RMI Features

Feature WebLogic RMI

Overall performance Enhanced by WebLogic RMI integration into the WebLogic Server
framework, which provides underlying support for communications,
scalability, management of threads and sockets, efficient garbage
collection, and server-related support.

Standards compliant Compliance with the Java Platform Standard Edition 6.0 API
Specification

Annotations Provides annotation support that can be embedded inside remote
java objects.

Failover and Load balancing WebLogic Server support for failover and load balancing of RMI
objects.

Request Timeouts You can specify a timeout period for a remote call to complete.

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 2

http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/

Table 1-1 (Cont.) WebLogic RMI Features

Feature WebLogic RMI

WebLogic RMI compiler Stubs and skeletons dynamically generated by WebLogic RMI at run
time, which obviates need to explicitly run weblogic.rmic, except
for clusterable or Internet Inter-ORB Protocol (IIOP) clients.

Dynamic Proxies A class used by the clients of a remote object. In the case of RMI,
skeleton and a stub classes are used. The stub class is the instance
that is invoked upon in the client's Java Virtual Machine (JVM). The
skeleton class, which exists in the remote JVM, unmarshals the
invoked method and arguments on the remote JVM, invokes the
method on the instance of the remote object, and then marshals the
results for return to the client.

Security Support No Security Manager required. WebLogic Server implements
authentication, authorization, and Java EE security services.

Transaction Support WebLogic Server supports transactions in the Java Platform,
Enterprise Edition (Java EE) programming model.

Internet Protocol version 6 (IPv6)
Support

Support for 128 bit addressing space.

Chapter 1
Features of WebLogic RMI

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 2

2
WebLogic RMI Features

This chapter describes the WebLogic RMI features and guidelines required to program RMI for
use with WebLogic Server.
This chapter includes the following sections:

• WebLogic RMI Clients

• WebLogic RMI Security Support

• WebLogic RMI Transaction Support

• Failover and Load Balancing RMI Objects

• Request Timeouts

• Creating Pinned Services

• Dynamic Proxies in RMI

WebLogic RMI Clients
WebLogic RMI is divided between a client and server framework. The client run time does not
have server sockets and therefore does not listen for connections. It obtains its connections
through the server. Only the server knows about the client socket. Therefore if you plan to host
a remote object on the client, you must connect the client to WebLogic Server. WebLogic
Server processes requests for and passes information to the client. In other words, client-side
RMI objects can only be reached through a single WebLogic Server, even in a cluster. If a
client-side RMI object is bound into the JNDI naming service, it only be reachable as long as
the server that carried out the bind is reachable.

WebLogic RMI Security Support
WebLogic Server implements authentication, authorization, and Java EE security services. See
Developing Applications with the WebLogic Security Service.

WebLogic RMI Transaction Support
Oracle WebLogic Server supports transactions in the Java Platform, Enterprise Edition (Java
EE) programming model. For detailed information on using transactions in WebLogic RMI
applications, see the following:

• Transactions in WebLogic Server RMI Applications in Developing JTA Applications for
Oracle WebLogic Server provides an overview on how transactions are implemented in
WebLogic RMI applications.

• Transactions in RMI Applications in Developing JTA Applications for Oracle WebLogic
Server provides general guidelines when implementing transactions in RMI applications for
WebLogic Server.

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 6

Failover and Load Balancing RMI Objects
The following sections contain information on WebLogic Server support for failover and load
balancing of RMI objects:

• Clustered RMI Applications

• Load Balancing RMI Objects

• Parameter-Based Routing for Clustered Objects

• WebLogic RMI Integration with Load Balancers

Clustered RMI Applications
For clustered RMI applications, failover is accomplished using the object's replica-aware stub.
When a client makes a call through a replica-aware stub to a service that fails, the stub detects
the failure and retries the call on another replica.

To make Java EE services available to a client, WebLogic binds an RMI stub for a particular
service into its JNDI tree under a particular name. The RMI stub is updated with the location of
other instances of the RMI object as the instances are deployed to other servers in the cluster.
If a server within the cluster fails, the RMI stubs in the other server's JNDI tree are updated to
reflect the server failure.

You specify the generation of replica-aware stubs for a specific RMI object using the -
clusterable option of the WebLogic RMI compiler, as explained in Table 4-1. For example:

 $ java weblogic.rmic -clusterable classes

See Replication and Failover for EJBs and RMIs in Administering Clusters for Oracle
WebLogic Server.

Load Balancing RMI Objects
The load balancing algorithm for an RMI object is maintained in the replica-aware stub
obtained for a clustered object. You specify the load balancing algorithm for a specific RMI
object using the -loadAlgorithm <algorithm> option of the WebLogic RMI compiler. A load
balancing algorithm that you configure for an object overrides the default load balancing
algorithm for the cluster. The WebLogic Server RMI compiler supports the following load
balancing algorithms:

• Round Robin Load Balancing

• Weight-Based Load Balancing

• Random Load Balancing

• Server Affinity Load Balancing Algorithms

For example, to set load balancing on an RMI object to round robin, use the following rmic
options:

 $ java weblogic.rmic -clusterable -loadAlgorithm round-robin classes

To set load balancing on an RMI object to weight-based server affinity, use rmic options:

 $ java weblogic.rmic -clusterable -loadAlgorithm weight-based -stickToFirstServer
classes

Chapter 2
Failover and Load Balancing RMI Objects

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 6

See Load Balancing for EJBs and RMI Objects in Administering Clusters for Oracle WebLogic
Server.

Parameter-Based Routing for Clustered Objects
Parameter-based routing allows you to control load balancing behavior at a lower level. Any
clustered object can be assigned a CallRouter using the weblogic.rmi.cluster.CallRouter
interface. This is a class that is called before each invocation with the parameters of the call.
The CallRouter is free to examine the parameters and return the name server to which the call
should be routed.

 weblogic.rmi.cluster.CallRouter.

 Class java.lang.Object
 Interface weblogic.rmi.cluster.CallRouter
 (extends java.io.Serializable)

A class implementing this interface must be provided to the RMI compiler (rmic) to enable
parameter-based routing. Run rmic on the service implementation using these options (to be
entered on one line):

 $ java weblogic.rmic -clusterable -callRouter <callRouterClass> <remoteObjectClass>

The call router is called by the clusterable stub each time a remote method is invoked. The
router is responsible for returning the name of the server to which the call should be routed.

Each server in the cluster is uniquely identified by its name as defined with the WebLogic
Server Console. These are the names that the method router must use for identifying servers.

Consider the ExampleImpl class which implements a remote interface Example, with one
method foo:

 public class ExampleImpl implements Example {
 public void foo(String arg) { return arg; }
 }

This CallRouter implementation ExampleRouter ensures that all foo calls with 'arg' < " n " go to
server1 (or server3 if server1 is unreachable) and that all calls with 'arg' >= "n " go to server2
(or server3 if server2 is unreachable).

public class ExampleRouter implements CallRouter {
 private static final String[] aToM = { "server1", "server3" };
 private static final String[] nToZ = { "server2", "server3" };

 public String[] getServerList(Method m, Object[] params) {
 if (m.GetName().equals("foo")) {
 if (((String)params[0]).charAt(0) < 'n') {
 return aToM;
 } else {
 return nToZ;
 }
 } else {
 return null;
 }
 }
}

This rmic call associates the ExampleRouter with ExampleImpl to enable parameter-based
routing:

 $ rmic -clusterable -callRouter ExampleRouter ExampleImpl

Chapter 2
Failover and Load Balancing RMI Objects

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 6

Custom Call Routing and Collocation Optimization
If a replica is available on the same server instance as the object calling it, the call is not load-
balanced as it is more efficient to use the local replica. See Optimization for Collocated Objects
in Administering Clusters for Oracle WebLogic Server.

Request Timeouts
You can specify timeout period for the remote call to complete or the client receives a
weblogic.rmi.extensions.RequestTimeoutException.

WebLogic Server provides the following connect and read timeouts:

• Using a Connect Timeout

• Using a Read Timeout

Using a Connect Timeout
Use a connect timeout to define the length of time a client waits for connections to the server to
be bootstrapped or re-established. The following table describes how to set this timeout.

Table 2-1 Setting a Connect Timeout

Description Scope

System property: -Dweblogic.ConnectTimeout=seconds Server

Set KernelMBean.ConnectTimeout property Server

Set NetworkAccessPointMBean.connectTimeout property. For non-default
channels only and overrides a server scoped setting. Only connections established
using this channel definition are subject to this timeout.

Channel

Set WLContext.CONNECT_TIMEOUT to establish the connection to a server. (Within
the scope of the context, used for both bootstrapping a connection as well re-
establishing a lost connection.)

Thread

Using a Read Timeout
Use a read timeout to define the length of time that a client waits to receive a response from a
server. The following table describes various ways to set this timeout value.

Table 2-2 Setting a Read Timeout

Description Scope

Set WLContext.RESPONSE_READ_TIMEOUT in the JNDI (InitialContext)
environment used to lookup the remote stub.

Interface (stub)

Specify the method level annotation (@RmiMethod(timeout=<value>)) in the
remote object implementation class.

Method

Set a timeout attribute in method definition in an rtd.xml file for non-annotated
classes. See Example rtd.xml file with a Timeout.

Method

Chapter 2
Request Timeouts

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 6

Table 2-2 (Cont.) Setting a Read Timeout

Description Scope

Specify the method level annotation
@TransactionTimeoutSeconds(<timeout>) in the EJB bean implementation
class.

Method

Specify a remote-client-timeout in EJB descriptor (weblogic-ejb-jar.xml). See
Example weblogic-ejb-jar.xml file with a Timeout.

Method

Consider the following when implementing a read timeout:

• In the WebLogic Server EJB bean implementation, a transaction timeout
(@TransactionTimeoutSeconds) takes precedence over remote-client-timeout if it has a
greater value.

• The precedence of multiple read timeouts is determined using the following rules:

– A timeout specified in rtd.xml on the client overrides any other read timeout.

– A timeout specified using an RmiMethod annotation overrides a
WLContext.RESPONSE_READ_TIMEOUT.

Example rtd.xml file with a Timeout
The following code provides an example of an rtd.xml file that includes an timeout:

<rmi Name="foo">
 <method
 name="methodname"
 timeout="timeoutinmilliseconds">
 </method>
</rmi>

To generate an rtd.xml file on the client, set -
Dweblogic.RefreshClientRuntimeDescriptor=true on both the client and the server. When
the flag is true, a check is made to see if the rtd.xml file is available on the classpath. If
available, the file is read and the values specified are used.

Example weblogic-ejb-jar.xml file with a Timeout
The following code provides an example of how to specify a remote-client-timeout in the
weblogic-ejb-jar.xml file:

<weblogic-enterprise-bean>
 <ejb-name>AccountBean</ejb-name>
 . . .
 <remote-client-timeout>5</remote-client-timeout>
</weblogic-enterprise-bean>

Creating Pinned Services
You can also use weblogic.rmic to generate stubs that are not replicated in the cluster. These
stubs are known as "pinned " services, because after they are registered they are available
only from the host with which they are registered and will not provide transparent failover or
load balancing. Pinned services are available cluster-wide, because they are bound into the

Chapter 2
Creating Pinned Services

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 6

replicated cluster-wide JNDI tree. However, if the individual server that hosts the pinned
services fails, the client cannot failover to another server.

You specify the generation of non-replicated stubs for a specific RMI object by not using the -
clusterable option of the WebLogic RMI compiler, as explained in Table 4-1. For example:

 $ java weblogic.rmic classes

Dynamic Proxies in RMI
A dynamic proxy or proxy is a class used by the clients of a remote object. This class
implements a list of interfaces specified at runtime when the class is created. In the case of
RMI, dynamically generated bytecode and proxy classes are used. The proxy class is the
instance that is invoked upon in the client's Java Virtual Machine (JVM). The proxy class
marshals the invoked method name and its arguments; forwards these to the remote JVM.
After the remote invocation is completed and returns, the proxy class unmarshals the results
on the client. The generated bytecode — which exists in the remote JVM — unmarshals the
invoked method and arguments on the remote JVM, invokes the method on the instance of the
remote object, and then marshals the results for return to the client.

Chapter 2
Dynamic Proxies in RMI

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 6

3
Using WebLogic RMI Annotations

This chapter describes the WebLogic RMI annotations that provide remote access to plain java
objects.
WebLogic RMI provides a rich descriptor framework to associate various security, transactions,
clustering, and timeout attributes to a remote class and its methods. These attributes can be
specified as annotations in plain java implementation classes with non-remote interfaces when
the remote object implementation is bound to a WebLogic JNDI tree. See
weblogic.rmi.annotation in Java API Reference for Oracle WebLogic Server.

This chapter includes the following sections:

• Introduction to WebLogic RMI Annotations

• Annotations for WebLogic RMI

• Exception Handling

• Cluster Failover

• RMI Callback Objects

• Annotation and WebLogic RMI Descriptor Merging

Introduction to WebLogic RMI Annotations
WebLogic RMI provides annotation support that can be embedded inside a remote java object
and simplifies development by allowing you to avoid running weblogic.rmic tool on the
compiled class.

To make a plain java object remotely accessible, do the following:

1. Create an interface that you want to access on the client. This interface must extend
java.rmi.Remote. See Example 3-1.

2. Create an implementation class that implements the interface in Step 1.

3. Add the desired annotation @Rmi or @RmiMethod to the implementation class added in Step
2. The annotations need to be provided on the implementation class and methods, not on
the interfaces.

4. Compile and bundle the classes in an application.

5. Deploy the application.

6. Bind the annotated plain java object in the WebLogic JNDI tree.

7. A client looks up the plain java object as remote object from the WebLogic JNDI tree and
narrows it to the plain interfaces annotated as remote interfaces. The corresponding stub is
either generated on the client, downloaded, or pre-generated using the WebLogic RMI
compiler and made available on the client.

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 6

Note

Do not use the WebLogic RMIC option to generate stubs and skeletons based on
the Sun RMI compiler.

Example 3-1 Example RMI Annotation

package myrmi.example;

import java.rmi.RemoteException;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;

import weblogic.rmi.annotation.Rmi;
import weblogic.rmi.annotation.RmiMethod;

@Rmi(remoteInterfaces={MyRemoteInterface.class})
public class RmiMethodAnnotations implements MyRemoteInterface{
 public RmiMethodAnnotations() {
 }

 public int getIndex() throws RemoteException {
 return 0;
 }

 @RmiMethod(asynchronousResult=true)
 public Future<String> ejbAsynchronousSayHello(String name) {
 return new FutureTask(new MyRunnable(), new Object());
 }

 class MyRunnable implements Runnable {

 public void run() {
 }
 }
}

Example 3-2 Example RMI without Annotations

package myrmi.example;

import java.rmi.Remote;
import java.rmi.RemoteException;

import java.util.concurrent.Future;

public interface MyRemoteInterface extends Remote {

 int getIndex() throws RemoteException;

 public Future<String> ejbAsynchronousSayHello(String name);

 public String sayBye();

}

This allows the WebLogic RMI layer to treat the RmiMethodAnnotations object as remote
object when it is bound to the WLS JNDI tree.

Chapter 3
Introduction to WebLogic RMI Annotations

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 6

Example 3-2 provides an example of code that implements the same methods without using
annotations.

Annotations for WebLogic RMI
The following topics provide reference information about WebLogic RMI annotations:

• Rmi

• RmiMethod

Rmi
The following sections describe the annotation in more detail.

Description
Provides class-level annotation support for remote objects that specify the remote
implementation class.

See weblogic.rmi.annotation.Rmi.

Attributes
The following table summarizes the attributes.

Table 3-1 Attributes of the Rmi Annotation

Name Description Data Type Default
Value

callRouterClassn
ame

The CallRouter class that is called before each
invocation with the parameters of the call and it
returns the name server to which the call should be
routed. Parameter-based routing allows to provide a
more fine-grained load balancing behavior.

String ""

clusterable Indicates if the remote object is clusterable. boolean false

defaultRMIMethod
Params

Default RMI Method annotation. Can be over-ridden
with a method annotation.

RmiMethod @weblogic
.rmi.anno
tation.Rm
iMethod

loadAlgorithm Load Algorithm for clustered remote object. Legal
Values are:

• RANDOM
• ROUND_ROBIN
• WEIGHT_BASED
• SERVER_AFFINITY
• ROUND_ROBIN_AFFINITY
• RANDOM_AFFINITY
• WEIGHT_BASED_AFFINITY
• DEFAULT
Default is ROUND_ROBIN.

LoadAlgori
thmType

weblogic.
rmi.annot
ation.Loa
dAlgorith
mType.DEF
AULT

Chapter 3
Annotations for WebLogic RMI

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 6

Table 3-1 (Cont.) Attributes of the Rmi Annotation

Name Description Data Type Default
Value

stickToFirstServ
er

Enables sticky load balancing. The server chosen
for servicing the first request is used for all
subsequent requests. Only used for a clusterable
remote object.

boolean false

remoteInterfaces A comma-separated list of Interface class names to
be treated as remote interface

Class ""

RmiMethod
The following sections describe the annotation in more detail.

Description
Provides method-level annotation support for remote objects that specify the remote
implementation class.

See weblogic.rmi.annotation.RmiMethod.

Attributes
The following table summarizes the attributes.

Table 3-2 Attributes of the RmiMethod Annotation

Name Description Data Type Default
Value

asynchronousResu
lt

If true, marks a method for asynchronous
processing. Typically when a method is invoked, the
result is returned upon the completion of the method
execution. When asynchronousResult=true, the
return type of the method can be either void or a
Future object. If the type is a Future object, it can
be polled to see when the result is available. If the
type is a void, the method is treated as an
asynchronous one-way call.

boolean false

dispatchPolicy Specifies the Work Manager used to schedule
remote object requests.

String ""

idempotent Specifies an Idempotent method. boolean false

oneway Specifies a one-way call. boolean false

timeout Specifies a timeout for a remote call. int 0

transactional Specifies a transactional method. If not, suspend a
transaction before making the RMI call and resume
the transaction after the call completes.

boolean false

Exception Handling
The following sections provide information on WebLogic RMI annotation exception handling:

Chapter 3
Exception Handling

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 6

• Application Exceptions

• System Exceptions

Application Exceptions
Clients receive all checked application exceptions.

System Exceptions
Client receive all the errors and runtime exceptions encountered during remote method
invocation.

Remote exceptions are handled as follows:

• Checked exceptions are thrown directly to a client.

• Unchecked exceptions are wrapped in a RuntimeException and then thrown to the client.

• Generated EJB 3.0 objects annotate the remoteExceptionWrapper to be EJBException for
all EJB methods. Clients then receive all remote exceptions wrapped in EJBException.

You can specify the remoteExceptionWrapper annotation for an entire implementation class or
for a particular method which wraps all remote exceptions in the specified runtime exception
before throwing it back to the client. If the remoteExceptionWrapper annotation is not specified
then the remote exceptions are wrapped as shown in Table 3-3.

Table 3-3 Exception Wrapping in WebLogic Clients

Client Exception Wrapping

WL Full Client RemoteRuntimeException1 wraps RemoteException

WL Thin T3 Client RemoteRuntimeException2 wraps RemoteException

WLS-IIOP Client3 RemoteRuntimeException wraps java.rmi.ServerException
wraps RemoteException

or

RemoteRuntimeException wraps RemoteException

Thin Client java.lang.RuntimeException wraps ServerException wraps
RemoteException

or

RuntimeException wraps RemoteException

Java SE Client java.lang.RuntimeException wraps ServerException wraps
RemoteException

or

RuntimeException wraps RemoteException

1 weblogic.rmi.extensions.RemoteRuntimeException is a sub-class of RuntimeException
2 weblogic.rmi.extensions.RemoteRuntimeException is a sub-class of RuntimeException
3 The existing T3 protocol layer doesn't always wraps the RemoteException as
java.rmi.ServerException but the IIOP protocol always does it on the Server.

Chapter 3
Exception Handling

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 6

Cluster Failover
Clustered stubs automatically handle the failover of a remote call to another node in the cluster
based on the type of exception received. Wrapping remote exceptions, such as
RuntimeException, in the stub does not change the failover behavior for a remote object.

RMI Callback Objects
Passing a callback object with an annotated remote object requires the callback remote object
to extend java.rmi.Remote interface.

Note

Some client types can not support callback objects because they do not have access
to WebLogic classes. For example, the Java SE client.

Annotation and WebLogic RMI Descriptor Merging
Annotations specified in the implementation class cannot be over-ridden on the server. You
must ensure that the right set of descriptor values are used by merging the application
descriptors and deployment plans.

Chapter 3
Cluster Failover

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 6

4
Using the WebLogic RMI Compiler

This chapter describes how to use the features and options of the WebLogic RMI compiler.
This chapter includes the following sections:

• Overview of the WebLogic RMI Compiler

• WebLogic RMI Compiler Features

• WebLogic RMI Compiler Options

• Java SE Enhancements

Overview of the WebLogic RMI Compiler
The WebLogic RMI compiler (weblogic.rmic) is a command-line utility for generating and
compiling remote objects. Use weblogic.rmic to generate dynamic proxies on the client-side
for custom remote object interfaces in your application and provide hot code generation for
server-side objects.

You only need to explicitly run weblogic.rmic for clusterable or IIOP clients. WebLogic RMI
over IIOP extends the RMI programming model by providing the ability for clients to access
RMI remote objects using the Internet Inter-ORB Protocol (IIOP). See Using RMI over IIOP .

WebLogic RMI Compiler Features
The following sections provide information on WebLogic RMI Compiler features for this
release:

• Hot Code Generation

• Proxy Generation

• Additional WebLogic RMI Compiler Features

Hot Code Generation
When you run rmic, you use WebLogic Server's hot code generation feature to automatically
generate bytecode in memory for server classes. This bytecode is generated on the fly as
needed for the remote object. WebLogic Server no longer generates the skeleton class for the
object when weblogic.rmic is run.

Hot code generation produces the bytecode for a server-side class that processes requests
from the dynamic proxy on the client. The dynamically created bytecode de-serializes client
requests and executes them against the implementation classes, serializing results and
sending them back to the proxy on the client. The implementation for the class is bound to a
name in the JNDI tree in WebLogic Server.

Proxy Generation
The default behavior of the WebLogic RMI compiler is to produce proxies for the remote
interface and for the remote classes to share the proxies. A proxy is a class used by the clients

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 4

of a remote object. In the case of RMI, dynamically generated bytecode and proxy classes are
used.

For example, example.hello.HelloImpl and counter.example.CiaoImpl are represented by
a single proxy class and bytecode—the proxy that matches the remote interface implemented
by the remote object, in this case, example.hello.Hello.

When a remote object implements more than one interface, the proxy names and packages
are determined by encoding the set of interfaces. You can override this default behavior with
the WebLogic RMI compiler option -nomanglednames, which causes the compiler to produce
proxies specific to the remote class. When a class-specific proxy is found, it takes precedence
over the interface-specific proxy.

In addition, with WebLogic RMI proxy classes, the proxies are not final. References to
collocated remote objects are references to the objects themselves, not to the proxies.

The dynamic proxy class is the serializable class that is passed to the client. A client acquires
the proxy for the class by looking up the class in the WebLogic JNDI. The client calls methods
on the proxy just as if it were a local class and the proxy serializes the requests and sends
them to WebLogic Server.

Additional WebLogic RMI Compiler Features
Other features of the WebLogic RMI compiler include the following:

• Signatures of remote methods do not need to throw RemoteException.

• Remote exceptions can be mapped to RuntimeException.

• Remote classes can also implement non-remote interfaces.

WebLogic RMI Compiler Options
The WebLogic RMI compiler accepts any option supported by the Java compiler; for example,
you could add -d \classes examples.hello.HelloImpl to the compiler option at the
command line. All other options supported by the Java compiler can be used and are passed
directly to the Java compiler.

The following table lists java weblogic.rmic options. Enter these options after java
weblogic.rmic and before the name of the remote class.

 $java weblogic.rmic [options] <classes>...

Table 4-1 WebLogic RMI Compiler Options

Option Description

-help Prints a description of the options.

-version Prints version information.

-d <dir> Specifies the target (top level) directory for compilation.

-dispatchPolicy <queueName> Specifies a configured execute queue that the service should use
to obtain execute threads in WebLogic Server.

-oneway Specifies all calls are one-way calls.

-idl Generates IDLs for remote interfaces.

-idlOverwrite Overwrites existing IDL files.

Chapter 4
WebLogic RMI Compiler Options

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 4

Table 4-1 (Cont.) WebLogic RMI Compiler Options

Option Description

-idlVerbose Displays verbose information for IDL information.

-idlDirectory <idlDirectory> Specifies the directory where IDL files will be created (Default is
the current directory).

-idlFactories Generates factory methods for valuetypes.

-idlNoValueTypes Prevents the generation of valuetypes and the methods/attributes
that contain them.

-idlNoAbstractInterfaces Prevents the generation of abstract interfaces and the methods/
attributes that contain them.

-idlStrict Generates IDL according to OMG standard.

-idlVisibroker Generate IDL compatible with Visibroker 4.5 C++.

-idlOrbix Generate IDL compatible with Orbix 2000 2.0 C++.

-iiopTie Generate CORBA skeletons using Sun's version of rmic.

-iiopSun Generate CORBA stubs using Sun's version of rmic.

-nontransactional Suspends the transaction before making the RMI call and
resumes after the call completes.

-compiler <javac> Specifies the Java compiler. If not specified, the -compilerclass
option will be used.

-compilerclass
<com.sun.tools.javac.Main>

Compiler class to invoke.

-clusterable This cluster-specific options marks the service as clusterable
(can be hosted by multiple servers in a WebLogic Server cluster).
Each hosting object, or replica, is bound into the naming service
under a common name. When the service stub is retrieved from
the naming service, it contains a replica-aware reference that
maintains the list of replicas and performs load-balancing and
fail-over between them.

-loadAlgorithm <algorithm> Only for use in conjunction with -clusterable. Specifies a service-
specific algorithm to use for load-balancing and fail-over (Default
is weblogic.cluster.loadAlgorithm). Must be one of the following:
round-robin, random, or weight-based.

-callRouter <callRouterClass> This cluster-specific option used in conjunction with -clusterable
specifies the class to be used for routing method calls. This class
must implement weblogic.rmi.cluster.CallRouter. If specified, an
instance of the class is called before each method call and can
designate a server to route to based on the method parameters.
This option either returns a server name or null. Null means that
you use the current load algorithm.

-stickToFirstServer This cluster-specific option used in conjunction with -clusterable
enables "sticky " load balancing. The server chosen for servicing
the first request is used for all subsequent requests.

-methodsAreIdempotent This cluster-specific option used in conjunction with -clusterable
indicates that the methods on this class are idempotent. This
allows the stub to attempt recovery from any communication
failure, even if it can not ensure that failure occurred before the
remote method was invoked. By default (if this option is not
used), the stub only retries on failures that are guaranteed to
have occurred before the remote method was invoked.

Chapter 4
WebLogic RMI Compiler Options

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 4

Table 4-1 (Cont.) WebLogic RMI Compiler Options

Option Description

-iiop Generates IIOP stubs from servers.

-iiopDirectory Specifies the directory where IIOP proxy classes are written.

-timeout Used in conjunction with remote-client-timeout .

-commentary Emits commentary.

-nomanglednames Causes the compiler to produce proxies specific to the remote
class.

-g Compile debugging information into the class.

-O Compile with optimization.

-nowarn Compile without warnings.

-verbose Compile with verbose output.

-verboseJavac Enable Java compiler verbose output.

-nowrite Prevent the generation of .class files.

-deprecation Provides warnings for deprecated calls.

-classpath <path> Specifies the classpath to use.

-J<option> Use to pass flags through to the Java runtime.

-keepgenerated Allows you to keep the source of generated stub and skeleton
class files when you run the WebLogic RMI compiler.

-disableHotCodeGen Causes the compiler to create stubs at skeleton classes when
compiled.

Non-Replicated Stub Generation
You can also use weblogic.rmic to generate stubs that are not replicated in the cluster. These
stubs are known as "pinned " services, because after they are registered they are available
only from the host with which they are registered and will not provide transparent failover or
load balancing. Pinned services are available cluster-wide, because they are bound into the
replicated cluster-wide JNDI tree. However, if the individual server that hosts the pinned
services fails, the client cannot failover to another server.

Using Persistent Compiler Options
During deployment, appc and ejbc run each EJB container class through the RMI compiler to
create RMI descriptors necessary to dynamically generate stubs and skeletons. Use the
weblogic-ejb-jar.xml file to persist iiop-security-descriptor elements. See weblogic-ejb-
jar.xml Elements in Developing Jakarta Enterprise Beans Using Deployment Descriptors.

Java SE Enhancements
You can find additional information on Java SE enhancements for Java RMI in the Java
Remote Method Invocation API Guide.

Chapter 4
WebLogic RMI Compiler Options

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 4

https://docs.oracle.com/en/java/javase/17/rmi/
https://docs.oracle.com/en/java/javase/17/rmi/

5
Using WebLogic RMI with T3 Protocol

This chapter provides information on using WebLogic RMI with T3 protocol.
This chapter includes the following sections:

• RMI Communication in WebLogic Server

• Determining Connection Availability

• Using a WebLogic T3/T3s Client Proxy

RMI Communication in WebLogic Server
RMI communications in WebLogic Server use the T3 protocol to transport data between
WebLogic Server and other Java programs, including clients and other WebLogic Server
instances. A server instance keeps track of each Java Virtual Machine (JVM) with which it
connects, and creates a single T3 connection to carry all traffic for a JVM. See Enable T3
Protocol in Oracle WebLogic Remote Console Online Help.

For example, if a Java client accesses an enterprise bean and a JDBC connection pool on
WebLogic Server, a single network connection is established between the WebLogic Server
JVM and the client JVM. The EJB and JDBC services can be written as if they had sole use of
a dedicated network connection because the T3 protocol invisibly multiplexes packets on the
single connection.

Determining Connection Availability
Any two Java programs with a valid T3 connection—such as two server instances, or a server
instance and a Java client—use periodic point-to-point "heartbeats " to announce and
determine continued availability. Each end point periodically issues a heartbeat to the peer,
and similarly, determines that the peer is still available based on continued receipt of
heartbeats from the peer.

• The frequency with which a server instance issues heartbeats is determined by the
heartbeat interval, which by default is 60 seconds.

• The number of missed heartbeats from a peer that a server instance waits before deciding
the peer is unavailable is determined by the heartbeat period, which by default, is 4.
Hence, each server instance waits up to 240 seconds, or 4 minutes, with no messages—
either heartbeats or other communication—from a peer before deciding that the peer is
unreachable.

• Changing timeout defaults is not recommended.

Using a WebLogic T3/T3s Client Proxy
The WebLogic T3/T3s Client Proxy provides the ability to route outbound client requests to a
proxy WebLogic T3 server. In this situation, each client routes all outbound requests to the
proxy server. The proxy server then directs the request to the WebLogic Server instance that
services the request. On both of client and server side, the configuration affects all applications
using a T3 connection as client. For example, if an application creates T3 connection to access

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 2

a WebLogic T3 server, such as calling methods on remote objects using WebLogic RMI, the
proxy configuration is applied to the connection logic.

To enable a client proxy, set the following properties:

T3:

-Dhttp.proxyHost=<proxy hostname>
-Dhttp.proxyPort=<proxy port>
-Dhttp.nonProxyHosts=<hostnames>

T3s:

-Dhttps.proxyHost=<proxy hostname>
-Dhttps.proxyPort=<proxy port>
-Dhttps.nonProxyHosts=<hostnames>

where:

• proxy hostname is the network address of the user's proxy server.

• proxy port is the port number. If not explicitly set, the value of the port number is set to
80.

• hostnames is a "|" separated list of one or more host names that WebLogic Server
excludes from a proxy configuration. You can use the wildcard character "*" for matching.
For example: -Dhttp.nonProxyHosts="*.oracle.com|localhost".

Chapter 5
Using a WebLogic T3/T3s Client Proxy

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 2

6
How to Implement WebLogic RMI

This chapter describes the java.rmi.Remote interface which is the basic building block for all
remote objects even though it contains no methods. You extend this "tagging" interface—that
is, it functions as a tag to identify remote classes—to create your own remote interface, with
method stubs that create a structure for your remote object. Then you implement your own
remote interface with a remote class. This implementation is bound to a name in the registry,
where a client or server can look up the object and use it remotely.
If you have written RMI classes, you can drop them in WebLogic RMI by changing the import
statement on a remote interface and the classes that extend it. To add remote invocation to
your client applications, look up the object by name in the registry. WebLogic RMI exceptions
are identical to and extend java.rmi exceptions so that existing interfaces and
implementations do not have to change exception handling.

This chapter includes the following sections:

• Creating Classes That Can Be Invoked Remotely

• Run the RMI Hello Code Sample

Creating Classes That Can Be Invoked Remotely
You can write the RMI classes and drop them in WebLogic RMI and change the import
statement on a remote interface and the classes that extend the remote interface. WebLogic
RMI generates code that has flexible runtime, and creates dynamic bytecode that is
independent of the class that implements the interface.

You can write your own WebLogic RMI classes in just a few steps.

• Step 1. Write a Remote Interface

• Step 2. Implement the Remote Interface

• Step 3: Create a Client that Invokes Remote Methods

• Step 4. Compile the Java Classes

Step 1. Write a Remote Interface
Every class that can be remotely invoked implements a remote interface. Write the remote
interface in adherence with the following guidelines.

• A remote interface must extend the interface java.rmi.Remote, which contains no method
signatures. Include method signatures that will be implemented in every remote class that
implements the interface.

• The remote interface must be public. Otherwise a client gets an error when attempting to
load a remote object that implements it.

• It is not necessary for each method in the interface to declare java.rmi.RemoteException
in its throws block. The exceptions that your application throws can be specific to your
application, and can extend RuntimeException. WebLogic RMI subclasses
java.rmi.RemoteException, so if you already have existing RMI classes, you will not have
to change your exception handling.

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 7

• Your Remote interface may not contain much code. All you need are the method
signatures for methods you want to implement in remote classes.

Here is an example of a remote interface with the method signature sayHello().

WebLogic RMI supports more flexible runtime code generation; WebLogic RMI supports
dynamic proxies and dynamically created bytecode that are type-correct but are otherwise
independent of the class that implements the interface. If a class implements a single
remote interface, the proxy and bytecode that is generated by the compiler will have the
same name as the remote interface. If a class implements more than one remote interface,
the name of the proxy and bytecode that result from the compilation depend on the name
mangling used by the compiler.

Example 6-1 Hello.java Remote Interface

package examples.rmi.hello;

import java.rmi.RemoteException;
/**
 * This interface is the remote interface.
 *
 * Copyright (c) 1999,2012, Oracle and/or its affiliates. All Rights Reserved.
 */
public interface Hello extends java.rmi.Remote {
 String sayHello() throws RemoteException;
}

Step 2. Implement the Remote Interface
Write the class be invoked remotely. The class should implement the remote interface that you
wrote in Step 1, which means that you implement the method signatures that are contained in
the interface. All the code generation that takes place in WebLogic RMI is dependent on this
class file.

• Your class can implement more than one remote interface. Your class can also define
methods that are not in the remote interface, but you cannot invoke those methods
remotely.

• Example 6-2 implements a class that creates a HelloImpl and binds it to the unique name,
HelloServer, in the registry. The method sayHello() provides a greeting.

• The main() method creates an instance of the remote object and registers it in the
WebLogic JNDI tree, by binding it to a name (a URL that points to the implementation of
the object). A client that needs to obtain a proxy to use the object remotely will be able to
look up the object by name.

WebLogic RMI does not require that you set a Security Manager in order to integrate security
into your application. Security is handled by WebLogic Server support for SSL and ACLs.

Example 6-2 HelloImpl.java Remote Interface Implementation

package examples.rmi.hello;

import javax.naming.*;
import java.rmi.RemoteException;

/**
 * Copyright (c) 1999,2012, Oracle and/or its affiliates. All Rights Reserved.
 */
public class HelloImpl implements Hello{
 private String name;

Chapter 6
Creating Classes That Can Be Invoked Remotely

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 7

 /**
 * Constructs a HelloImpl with the specified string.
 *
 * @param s String message
 */
 public HelloImpl(String s) throws RemoteException {
 super();
 name = s;
 }

 /**
 * Returns a string.
 *
 * @return String message
 * @exception java.rmi.RemoteException
 */
 public String sayHello() throws java.rmi.RemoteException {
 return "Hello World!";
 }

 /**
 * Allows the WebLogic Server to instantiate this implementation
 * and bind it in the registry.
 */
 public static void main(String args[]) throws Exception {

 try {
 HelloImpl obj = new HelloImpl("HelloServer");
 Context ctx = new InitialContext();
 ctx.bind("HelloServer", obj);
 System.out.println("HelloImpl created and bound in the registry " +
 "to the name HelloServer");

 }
 catch (Exception e) {
 System.err.println("HelloImpl.main: an exception occurred:");
 System.err.println(e.getMessage());
 throw e;
 }
 }
}

Step 3: Create a Client that Invokes Remote Methods
In general, once you create an initial context, it takes just a single line of code to get a
reference to the remote object. Do this with the Naming.lookup() method. The following
sections provide additional information on creating clients:

• Setting Client Timeouts

• Example HelloClient.java Client

Setting Client Timeouts
You can set client side timeouts while configuring your initial context:

• To set the amount of time a request waits for a connection response, use the
weblogic.jndi.connectTimeout.

Chapter 6
Creating Classes That Can Be Invoked Remotely

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 7

• To set the amount of time a request waits for a response from the remote server after a
connection has been established, use the weblogic.jndi.responseReadTimeout.

• See Request Timeouts.

For example:

. . .
// Get an InitialContext
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,"weblogic.jndi.WLInitialContextFactory");
env.put(Context.PROVIDER_URL, url);
env.put("weblogic.jndi.connectTimeout", new Long(15000));
env.put("weblogic.jndi.responseReadTimeout", new Long(15000));
return new InitialContext(env);
. . .

Example HelloClient.java Client
Here is a short WebLogic client application that uses an object created in Example 6-2.

Example 6-3 Example HelloClient.java Client

package examples.rmi.hello;

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
 * This client uses the remote HelloServer methods.
 *
 * @author Copyright (c) 1999,2012, Oracle and/or its affiliates. All Rights Reserved.
 */
public class HelloClient
{
 // Defines the JNDI context factory.
 public final static String JNDI_FACTORY="weblogic.jndi.WLInitialContextFactory";
 int port;
 String host;

 private static void usage() {
 System.err.println("Usage: java examples.rmi.hello.HelloClient " +
 "<hostname> <port number>");
 }

 public HelloClient() {}

 public static void main(String[] argv) throws Exception {
 if (argv.length < 2) {
 usage();
 return;
 }
 String host = argv[0];
 int port = 0;
 try {
 port = Integer.parseInt(argv[1]);
 }
 catch (NumberFormatException nfe) {
 usage();
 throw nfe;
 }

Chapter 6
Creating Classes That Can Be Invoked Remotely

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 7

 try {
 InitialContext ic = getInitialContext("t3://" + host + ":" + port);
 Hello obj = (Hello) ic.lookup("HelloServer");
 System.out.println("Successfully connected to HelloServer on " +
 host + " at port " +
 port + ": " + obj.sayHello());
 }
 catch (Exception ex) {
 System.err.println("An exception occurred: "+ex.getMessage());
 throw ex;
 }
 }

 private static InitialContext getInitialContext(String url)
 throws NamingException
 {
 Hashtable<String,String> env = new Hashtable<String,String>();
 env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY);
 env.put(Context.PROVIDER_URL, url);
 return new InitialContext(env);
 }

}

Step 4. Compile the Java Classes
Use javac or some other Java compiler to compile the .java files to produce .class files for
the remote interface and the class that implements it.

Example 6-4 provides an Ant script that can be used in the WebLogic Server examples
environment to compile the .java files and install the .class files into the serverclasses and
clientclasses directories configured for the WebLogic Server examplesServer.

Example 6-4 Example build.xml file to Compile Java Classes

<?xml version="1.0" encoding="ISO-8859-1"?>
<project name="rmi.hello" default="all" basedir=".">
 <property environment="env"/>
 <property file="../../../examples.properties"/>
 <property name="build.compiler" value="${compiler}"/>
 <!-- set global properties for this build -->
 <property name="source" value="${basedir}"/>
 <target name="all" depends="build"/>
 <target name="build" depends="compile.server, compile.client"/>
 <!-- Compile server classes into the serverclasses directory -->
 <target name="compile.server">
 <javac srcdir="${source}"
 destdir="${server.classes.dir}"
 includes="Hello.java, HelloImpl.java"
 classpath="${ex.classpath};${server.classes.dir}"
 deprecation="${deprecation}" debug="${debug}" debugLevel="${debugLevel}"
 />
 </target>
 <!-- Compile client classes into the clientclasses directory -->
 <target name="compile.client">
 <javac srcdir="${source}"
 destdir="${client.classes.dir}"
 includes="HelloClient.java"
 classpath="${ex.classpath};${server.classes.dir}"
 deprecation="${deprecation}" debug="${debug}" debugLevel="${debugLevel}"

Chapter 6
Creating Classes That Can Be Invoked Remotely

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 7

 />
 </target>
</project>

Run the RMI Hello Code Sample
Use the following instructions to run the WebLogic RMI Hello example:

• Prerequisites

• Setup the RMI Hello Example

• Configure a Startup Class

• Restart the examplesServer

• Run the Example

Prerequisites
Install WebLogic server, including the examples. It is assumed that you know how to start the
examplesServer and how to set an environment in a shell to run examples.

Setup the RMI Hello Example
Use the following steps to setup the Hello example:

1. Open a shell and set the samples environment.

2. Change to the ORACLE_HOME\wlserver\samples\server\examples\src\examples
directory, where ORACLE_HOME refers to the directory in which you installed WebLogic
Server. For more information on the WebLogic Server code examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

3. Create an rmi directory with a subdirectory named hello.

4. Copy and save the contents of Example 6-1 as a file named Hello.java in the hello
directory.

5. Copy and save the contents of Example 6-2 as a file named HelloImpl.java in the hello
directory.

6. Copy and save the contents of Example 6-3 as a file named HelloClient.java in the
hello directory.

7. Copy and save the contents of Example 6-4 as a file named build.xml in the hello
directory.

8. Execute the following command from the shell where you copied the example files:

ant build

Configure a Startup Class
Start an instance of the examplesServer. Create a startup class with the following information:

• Name: MyHello

• Class Name: examples.rmi.hello.HelloImpl

• Targets: examplesServer

Chapter 6
Run the RMI Hello Code Sample

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 7

See Configure Startup Classes in Oracle WebLogic Remote Console Online Help.

Note

In this example, the build script makes sure that the startup class is in a location on
the server's classpath.

Restart the examplesServer
Restart the examplesServer. As the server boots, you should see the following in the server
log:

HelloImpl created and bound in the registry to the name HelloServer

Once the server is running, you can verify that HelloServer is registered by viewing the JNDI
tree.

Run the Example
Execute the following command from the shell where you copied the example files:

java examples.rmi.hello.HelloClient localhost 7001

The results are:

Successfully connected to HelloServer on localhost at port 7001: Hello World!

Chapter 6
Run the RMI Hello Code Sample

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 7

7
WebLogic RMI Integration with Load
Balancers

This chapter describes WebLogic RMI support for load balancers, including hardware load
balancers and web servers with a web server plug-in.
This chapter includes the following sections:

• How WebLogic Server Supports Load Balancers

• HTTP Tunneled T3 Load Balancing

• Native T3 Load Balancing

• Failover Support

How WebLogic Server Supports Load Balancers
WebLogic Server clients that use RMI can interoperate with a load balancer using the following
mechanisms:

• When tunneling T3 over HTTP/HTTPS, WebLogic Server supports routing through a
hardware load balancer or a web server with a web server plug-in provided that request
forwarding mechanism to the WebLogic Cluster is configured to use sticky session routing.
See HTTP Tunneled T3 Load Balancing.

• When using T3 directly, WebLogic Server supports using a hardware load balancer to
bootstrap the initial T3 connections to the cluster by specifying a PROVIDER_URL that points
to the load balancer when creating the JNDI InitialContext. See Native T3 Load
Balancing.

Note

All other uses of a hardware load balancer with WebLogic RMI are unsupported—
regardless of whether or not they work.

HTTP Tunneled T3 Load Balancing
When tunneling T3 over HTTP (or HTTPS), the WebLogic Server runtime creates an
HttpSession for each RMI session and passes the session ID back and forth between the
client and the server using the normal HTTP mechanisms. This allows the web server plug-in
or hardware load balancer to route all RMI requests from a particular client back to the same
server in the cluster for the duration of that session. Oracle does not recommend enabling
tunneling on channels that are available external to the firewall.

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 4

Note

External load balancers distribute initial context requests that come from Java clients
over T3 and the default channel. However, do not route client requests, following the
initial context request, through the load balancers. When using the T3 protocol with
external load balancer, you must ensure that only the initial context request is routed
through the load balancer and that subsequent requests are routed and controlled
using WebLogic Server load balancing.

How to Configure the External Listen Address
WebLogic Server provides an External Listen Address to provide an IP address to use in
RMI stubs to allow clients to connect to the server through a Network Address Translating
(NAT) Firewall. As long as the NAT firewall maps a unique external IP address to the unique
internal IP address of the server, each stub delivered to the client uniquely identifies the cluster
member holding the object that the stub is a proxy for. The External Listen Address is set
differently for default and custom network channels:

• For the default channel, use the ExternalDNSName attribute on the ServerMBean. See
ExternalDNSName in MBean Reference for Oracle WebLogic Server.

• For a custom channel, use the PublicAddress and PublicPort on the
NetworkAccessMBean. See NetworkAccessPointMBean in MBean Reference for Oracle
WebLogic Server.

Example Custom Channel Configuration for a Load Balancer
Configure a T3 network channel on all WebLogic Server instances in the cluster. The network
channel accepts tunneled traffic from the load balancer. To ensure all client requests are routed
through the load balancer, set External Listen Address to the end point where loadbalancer,
or the web server, accepts traffic from the client. Enable HTTP protocol and set tunneling-
enabled=true. Configure the load balancer or web server to route http traffic to WebLogic
Server. If using Oracle HTTP Server (OHS) as a webserver, this can be achieved by changing
the httpd.conf configuration file. For example:

The WebLogic Server config.xml:

<network-access-point>
 <name>tunnelChannel</name>
 <protocol>t3</protocol>
 <listen-address>example.com</listen-address>
 <listen-port>11001</listen-port>
 <http-enabled-for-this-protocol>true</http-enabled-for-this-protocol>
 <tunneling-enabled>true</tunneling-enabled>
 <outbound-enabled>false</outbound-enabled>
 <enabled>true</enabled>
 <two-way-ssl-enabled>false</two-way-ssl-enabled>
 <client-certificate-enforced>false</client-certificate-enforced>
</network-access-point><network-access-point>
. . .

OHS/Webtier's httpd.conf file

<LocationMatch ^/bea_wls_internal/>
SetHandler weblogic-handler
WeblogicCluster example.com:11001

Chapter 7
HTTP Tunneled T3 Load Balancing

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 4

</LocationMatch>
. . .

Session Failover
Session failover is transparent to the client. When a server shuts down the client RJVM
receives a PeerGone exception. This causes the HTTPClientJVMConnection to be closed.
When the next request comes from the same client, the request is failed over to the next
member in the cluster for both stateless and stateful beans. If an exception occurs during
request processing, that request is not failed over and the exception is propagated to the client.

Cookie Persistence
The tunneling client caches the cookie it receives after initial request and sends it back in every
subsequent request.

Pinned Objects
In a cluster, even if an object is pinned and the replicate_bindings!= false, the stub is
replicated to all the members of the cluster. Tunneling does not affect the normal pinned object
behavior.

Stateful Session EJBs
If External Listen Address is not set, the stub that the client gets back has the list of
available hosts to route to and the behavior is similar to sending direct t3 requests.

If External Listen Address is set then failover does not work because the primary and
secondary hosts get set to the externalDNSName and load balancer hangs trying to route to
itself.

Native T3 Load Balancing
If the cluster member fails, the client invocation on a non-cluster-aware stub also fails since the
firewall does not attempt to redirect the request to another cluster member. For a cluster-aware
stub invocation, the request should be transparently routed around the failure and the
invocation delivered to a different cluster member using the External Listen Address
contained in the cluster-aware stub. See How to Configure the External Listen Address.

Use the hardware load balancer to load balance the initial T3 connection request when
creating the JNDI InitialContext by specifying a PROVIDER_URL that points to the load
balancer provided that the External Listen Address is not set to point to the hardware load
balancer. This configuration works because the hardware load balancer is only involved in
routing the initial TCP connection request to one of the managed servers. Once the connection
is established, all RMI stubs contain the server's ListenAddress (or External Listen Address
in the case of a NAT firewall) that uniquely identifies the server for which the stub is acting as a
proxy.

Failover Support
WebLogic RMI does not support failover when used with a hardware loadbalancer.

For information on how WebLogic Server RMI handles failover, see Failover and Load
Balancing RMI Objects.

Chapter 7
Native T3 Load Balancing

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 4

Chapter 7
Failover Support

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 4

8
Using RMI over IIOP

This chapter provides a high-level view of RMI over IIOP (RMI-IIOP) and RMI-IIOP
interoperability between this release and prior WebLogic Server releases.
This chapter includes the following sections:

• What is RMI over IIOP?

• Overview of WebLogic RMI-IIOP

What is RMI over IIOP?
RMI over IIOP extends RMI to work across the IIOP protocol. This has two benefits that you
can leverage. In a Java to Java paradigm, this allows you to program against the standardized
Internet Interop-Orb-Protocol (IIOP). If you are not working in a Java-only environment, it
allows your Java programs to interact with Common Object Request Broker Architecture
(CORBA) clients and execute CORBA objects. CORBA clients can be written in a variety of
languages (including C++) and use the Interface-Definition-Language (IDL) to interact with a
remote object.

Overview of WebLogic RMI-IIOP
WebLogic Server provides its own ORB implementation which is instantiated by default when
programs call ORB.init(), or when "java:comp/ORB" is looked up in JNDI. See CORBA
Support for WebLogic Server for information how WebLogic Server complies with
specifications for CORBA support in Java SE.

The WebLogic Server implementation of RMI-IIOP allows you to:

• Connect Java RMI clients to WebLogic Server using the standardized IIOP protocol

• Connect CORBA/IDL clients, including those written in C++, to WebLogic Server

• Interoperate between WebLogic Server and Tuxedo clients

• Connect a variety of clients to EJBs hosted on WebLogic Server

How you develop your RMI-IIOP applications depends on what services and clients you are
trying to integrate. See Developing Standalone Clients for Oracle WebLogic Server for more
information on how to create applications for various clients types that use RMI and RMI-IIOP.

The following diagram shows RMI Object Relationships for objects that use IIOP.

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 2

Figure 8-1 RMI Object Relationships

Client

WebLogic Server

RMI
Object

Stub

ORB RMI
runtime

IIOP

Support for RMI-IIOP with RMI (Java) Clients
You can use RMI-IIOP with Java/RMI clients, taking advantage of the standard IIOP protocol.
WebLogic Server provides multiple options for using RMI-IIOP in a Java-to-Java environment,
including the new Java EE Application Client (thin client), which is based on the new small
footprint client jar. To use the new thin client, you need to have the wlclient.jar (located in
WL_HOME/server/lib) on the client side's CLASSPATH. For more information on RMI-IIOP
client options, see Developing Standalone Clients for Oracle WebLogic Server.

Support for RMI-IIOP with Tuxedo Client
WebLogic Server contains an implementation of the WebLogic Tuxedo Connector, an
underlying technology that enables you to interoperate with Tuxedo servers. Using WebLogic
Tuxedo Connector, you can leverage Tuxedo as an ORB, or integrate legacy Tuxedo systems
with applications you have developed on WebLogic Server. See the Developing Oracle
WebLogic Tuxedo Connector Applications for Oracle WebLogic Server.

Support for RMI-IIOP with CORBA/IDL Clients
The developer community requires the ability to access Java EE services from CORBA/IDL
clients. However, Java and CORBA are based on very different object models. Because of this,
sharing data between objects created in the two programming paradigms was, until recently,
limited to Remote and CORBA primitive data types. Neither CORBA structures nor Java
objects could be readily passed between disparate objects. To address this limitation, the
Object Management Group (OMG) created the Objects-by-Value Specification at http://
www.omg.org/technology/documents/index.htm. This specification defines the enabling
technology for exporting the Java object model into the CORBA/IDL programming model--
allowing for the interchange of complex data types between the two models. WebLogic Server
can support Objects-by-Value with any CORBA ORB that correctly implements the
specification.

Chapter 8
Overview of WebLogic RMI-IIOP

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 2

http://www.omg.org/technology/documents/index.htm
http://www.omg.org/technology/documents/index.htm

9
Configuring WebLogic Server for RMI-IIOP

This chapter describes the concepts and procedures necessary to configure WebLogic Server
to interoperate using RMI over IIOP (RMI-IIOP).
This chapter includes the following sections:

• Set the Listening Address

• Setting Network Channel Addresses

• Accessing WebLogic Server Objects from a CORBA Client through Delegation

• Configuring CSIv2 authentication

• Using RMI over IIOP with a Hardware Load Balancer

• Limitations of WebLogic RMI-IIOP

• Propagating Client Identity

Set the Listening Address
To facilitate the use of IIOP, always specify a valid IP address or DNS name for the Listen
Address attribute in the configuration file (config.xml) to listen for connections.

The Listen Address default value of null allows it to "listen on all configured network
interfaces". However, this feature only works with the T3 protocol. If you need to configure
multiple listen addresses for use with the IIOP protocol, then use the Network Channel feature,
as described in Configuring Network Resources in Administering Server Environments for
Oracle WebLogic Server.

Setting Network Channel Addresses
The following sections provide information to consider when implementing IIOP network
channel addresses for thin clients.

Considerations for Proxys and Firewalls
Many typical environments use firewalls, proxys, or other devices that hide the application
server's true IP address. Because IIOP relies on a per-object addressing scheme where every
object contains a host and port, anything that masks the true IP address of the server will
prevent the external client from maintaining a connection. To prevent this situation, set the
PublicAddress on the server IIOP network channel to the virtual IP that the client sees.

Considerations for Clients with Multiple Connections
IIOP clients publish addressing information that is used by the application server to establish a
connection. In some situations, such as running a VPN where clients have more than one
connection, the server cannot see the IP address published by the client. In this situation, you
have two options:

• Use a bi-directional form of IIOP. Use the following WebLogic flag:

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 7

-Dweblogic.corba.client.bidir=true

In this instance, the server does not need the IP address published by the client because
the server uses the inbound connection for outbound requests.

• Use the following JDK property to set the address the server uses for outbound
connections:

-Dcom.sun.CORBA.ORBServerHost=client_ipaddress

where client_ipaddress is an address published by the client.

Accessing WebLogic Server Objects from a CORBA Client
through Delegation

WebLogic Server provides services that allow CORBA clients to access RMI remote objects.
As an alternative method, you can also host a CORBA ORB (Object Request Broker) in
WebLogic Server and delegate incoming and outgoing messages to allow CORBA clients to
indirectly invoke any object that can be bound in the server.

Overview of Delegation
Here are the main steps to create the objects that work together to delegate CORBA calls to
an object hosted by WebLogic Server.

1. Create a startup class that creates and initializes an ORB so that the ORB is co-located
with the JVM that is running WebLogic Server.

2. Create an IDL (Interface Definition Language) that will create an object to accept incoming
messages from the ORB.

3. Compile the IDL. This will generate a number of classes, one of which will be the Tie class.
Tie classes are used on the server side to process incoming calls, and dispatch the calls to
the proper implementation class. The implementation class is responsible for connecting to
the server, looking up the appropriate object, and invoking methods on the object on behalf
of the CORBA client.

The following figure is a diagram of a CORBA client invoking an EJB by delegating the call to
an implementation class that connects to the server and operates upon the EJB. Using a
similar architecture, the reverse situation will also work. You can have a startup class that
brings up an ORB and obtains a reference to the CORBA implementation object of interest.
This class can make itself available to other WebLogic objects throughout the JNDI tree and
delegate the appropriate calls to the CORBA object.

Chapter 9
Accessing WebLogic Server Objects from a CORBA Client through Delegation

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 7

Figure 9-1 CORBA Client Invoking an EJB with a Delegated Call

WebLogic Server

ORB

Startup
class

EJBean

Impl
class

Tie
class

CORBA
client

Creates and
initializes

Example of Delegation
The following code example creates an implementation class that connects to the server, looks
up the Foo object in the JNDI tree, and calls the bar method. This object is also a startup class
that is responsible for initializing the CORBA environment by:

• Creating the ORB

• Creating the Tie object

• Associating the implementation class with the Tie object

• Registering the Tie object with the ORB

• Binding the Tie object within the ORB's naming service

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
import java.rmi.*;
import javax.naming.*;
import weblogic.jndi.Environment;

public class FooImpl implements Foo
{
 public FooImpl() throws RemoteException {
 super();
 }
 public void bar() throws RemoteException, NamingException {
 // look up and call the instance to delegate the call to...
 weblogic.jndi.Environment env = new Environment();
 Context ctx = env.getInitialContext();
 Foo delegate = (Foo)ctx.lookup("Foo");
 delegate.bar();
 System.out.println("delegate Foo.bar called!");
 }
 public static void main(String args[]) {
 try {
 FooImpl foo = new FooImpl();

 // Create and initialize the ORB

Chapter 9
Accessing WebLogic Server Objects from a CORBA Client through Delegation

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 7

 ORB orb = ORB.init(args, null);

 // Create and register the tie with the ORB
 _FooImpl_Tie fooTie = new _FooImpl_Tie();
 fooTie.setTarget(foo);
 orb.connect(fooTie);

 // Get the naming context
 org.omg.CORBA.Object o = \
 orb.resolve_initial_references("NameService");
 NamingContext ncRef = NamingContextHelper.narrow(o);

 // Bind the object reference in naming

 NameComponent nc = new NameComponent("Foo", "");
 NameComponent path[] = {nc};
 ncRef.rebind(path, fooTie);

 System.out.println("FooImpl created and bound in the ORB registry.");
 }
 catch (Exception e) {
 System.out.println("FooImpl.main: an exception occurred:");
 e.printStackTrace();
 }
 }
}

Configuring CSIv2 authentication
The Common Secure Interoperability Specification, Version 2 (CSIv2) is an Open Management
Group (OMG) specification that addresses the requirements of Common Object Request
Broker Architecture (CORBA) security for interoperable authentication, delegation, and
privileges. See Common Secure Interoperability Version 2 (CSIv2) in Understanding Security
for Oracle WebLogic Server.

Use the following steps to use CSIv2 to authenticate an inbound call from a remote domain:

1. Update the Identity Asserter. See Configuring Identity Assertion Providers in Administering
Security for Oracle WebLogic Server.

2. Update the User Name Mapper. See Configuring a User Name Mapper in Administering
Security for Oracle WebLogic Server.

3. Add all users required by the application in the remote domain to the WebLogic
AuthenticationProvider. See Create a User in Oracle WebLogic Remote Console Online
Help.

Using RMI over IIOP with a Hardware Load Balancer

Note

This feature works correctly only when the bootstrap is through a hardware load-
balancer.

Chapter 9
Configuring CSIv2 authentication

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 7

An optional enhancement for WebLogic Server Oracle ORB and higher, supports hardware
load balancing by forcing reconnection when bootstrapping. This allows hardware load-
balancers to balance connection attempts

In most situations, once a connection has been established, the next NameService lookup is
performed using the original connection. However, since this feature forces re-negotiation of
the end point to the hardware load balancer, all in-flight requests on any existing connection
are lost.

Use the -Dweblogic.system.iiop.reconnectOnBootstrap system property to set the
connection behavior of the Oracle ORB. Valid values are:

• true—Forces re-negotiation of the end point.

• false—Default value.

Environments requiring a hardware load balancer should set this property to true.

Limitations of WebLogic RMI-IIOP
The following sections outline various issues relating to WebLogic RMI-IIOP.

Limitations Developing Java IDL Clients
Oracle strongly recommends developing Java clients with the RMI client model if you are going
to use RMI-IIOP. Developing a Java IDL client can cause naming conflicts and classpath
problems, and you are required to keep the server-side and client-side classes separate.
Because the RMI object and the IDL client have different type systems, the class that defines
the interface for the server-side will be very different from the class that defines the interface on
the client-side.

Limitations of Passing Objects by Value
To pass objects by value, you need to use value types, (see http://www.omg.org/cgi-bin/
doc?formal/01-02-33, You implement value types on each platform on which they are defined
or referenced. This section describes the difficulties of passing complex value types,
referencing the particular case of a C++ client accessing an Entity bean on WebLogic Server.

One problem encountered by Java programmers is the use of derived datatypes that are not
usually visible. For example, when accessing an EJB finder the Java programmer will see a
Collection or Enumeration, but does not pay attention to the underlying implementation
because the JDK run-time will classload it over the network. However, the C++, CORBA
programmer must know the type that comes across the wire so that he can register a value
type factory for it and the ORB can unmarshal it.

Simply running ejbc on the defined EJB interfaces will not generate these definitions because
they do not appear in the interface. For this reason ejbc will also accept Java classes that are
not remote interfaces—specifically for the purpose of generating IDL for these interfaces.
Review the /iiop/ejb/entity/cppclient example to see how to register a value type factory.

Java types that are serializable but that define writeObject() are mapped to custom value
types in IDL. You must write C++ code to unmarshal the value type manually.

Chapter 9
Limitations of WebLogic RMI-IIOP

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 7

http://www.omg.org/cgi-bin/doc?formal/01-02-33
http://www.omg.org/cgi-bin/doc?formal/01-02-33

Note

When using Tuxedo, you can specify the -i qualifier to direct the IDL compiler to
create implementation files named FileName_i.h and FileName_i.cpp. For example,
this syntax creates the TradeResult_i.h and TradeResult_i.cpp implementation
files:

idl -IidlSources -i idlSources\examples\iiop\ejb\iiop\TradeResult.idl

The resulting source files provide implementations for application-defined operations on a
value type. Implementation files are included in a CORBA client application.

Propagating Client Identity
Until recently insufficient standards existed for propagating client identity from a CORBA client.
If you have problems with client identity from foreign ORBs, you may need to implement one of
the following methods:

• The identity of any client connecting over IIOP to WebLogic Server will default to
<anonymous>. You can set the user and password in the config.xml file to establish a
single identity for all clients connecting over IIOP to a particular instance of WebLogic
Server, as shown in the example below:

<Server
Name="myserver"
NativeIOEnabled="true"
DefaultIIOPUser="Bob"
DefaultIIOPPassword="Gumby1234"
ListenPort="7001">

• You can also set the IIOPEnabled attribute in the config.xml. The default value is "true";
set this to "false" only if you want to disable IIOP support. No additional server
configuration is required to use RMI over IIOP beyond ensuring that all remote objects are
bound to the JNDI tree to be made available to clients. RMI objects are typically bound to
the JNDI tree by a startup class. EJB homes are bound to the JNDI tree at the time of
deployment. WebLogic Server implements a CosNaming Service by delegating all lookup
calls to the JNDI tree.

• This release supports RMI-IIOP corbaname and corbaloc JNDI references. See http://
www.omg.org/cgi-bin/doc?formal/01-02-33. One feature of these references is that you
can make an EJB or other object hosted on one WebLogic Server available over IIOP to
other Application Servers. So, for instance, you could add the following to your ejb-
jar.xml:

<ejb-reference-description>
<ejb-ref-name>WLS</ejb-ref-name>
<jndi-name>corbaname:iiop:1.2@localhost:7001#ejb/javaee/interop/foo</jndi-name>
</ejb-reference-description>

The reference-description stanza maps a resource reference defined in ejb-jar.xml to the
JNDI name of an actual resource available in WebLogic Server. The ejb-ref-name specifies a
resource reference name. This is the reference that the EJB provider places within the ejb-
jar.xml deployment file. The jndi-name specifies the JNDI name of an actual resource factory
available in WebLogic Server.

Chapter 9
Propagating Client Identity

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 7

http://www.omg.org/cgi-bin/doc?formal/01-02-33
http://www.omg.org/cgi-bin/doc?formal/01-02-33

Note

The iiop:1.2 contained in the <jndi-name> section. This release contains an
implementation of GIOP (General-Inter-Orb-Protocol) 1.2. The GIOP specifies formats
for messages that are exchanged between inter-operating ORBs. This allows
interoperability with many other ORBs and application servers. The GIOP version can
be controlled by the version number in a corbaname or corbaloc reference.

These methods are not required when using WLInitialContextFactory in RMI clients or can
be avoided by using the WebLogic C++ client.

Chapter 9
Propagating Client Identity

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 7

10
Best Practices for Application Design

This chapter describes recommended design patterns when programming with RMI and RMI
over IIOP.
This chapter includes the following sections:

• Use java.rmi

• Use PortableRemoteObject

• Use WebLogic Work Areas

• How to Handle Changes in Security Context

Use java.rmi
Oracle recommends RMI users use java.rmi, see https://docs.oracle.com/en/java/javase/17/
docs/api/java.rmi/java/rmi/package-summary.html. Although the WebLogic API contains the
weblogic.rmi API, it is deprecated and is only provided as a compatibility API. Other WebLogic
APIs provided for compatibility are:

• weblogic.rmi.registry

• weblogic.rmi.server

• weblogic.rmi.extensions

Use PortableRemoteObject
To maintain code portability, always use PortableRemoteObject when casting the home
interfaces. For example:

Propshome home = (PropsHome)
PortableRemoteObject.narrow(
ctx.lookup("Props"),
PropsHome.class);

Use WebLogic Work Areas
A best practice is to use Work Areas:

• Work Contexts allow Jakarta EE developers to define properties as application context
which implicitly flow across remote requests and allow downstream components to work in
the context of the invoking client. Work Contexts allow developers to pass properties
without including them in a remote call. A Work Context is propagated with each remote
call-allowing the called component to add or modify properties defined in the Work
Context; similarly, the calling component can access the Work Context to obtain new or
updated properties.

• Work Contexts ease the processing of implementing and maintaining functionality that
requires that information to be passed to remote components, such as diagnostics
monitoring, application transactions, and application load-balancing. Work Contexts are
also a useful mechanism for providing information to third-party components.

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 2

https://docs.oracle.com/en/java/javase/17/docs/api/java.rmi/java/rmi/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.rmi/java/rmi/package-summary.html
http://docs.oracle.com/javase/6/docs/api/javax/rmi/PortableRemoteObject.html

• Work Contexts can propagate user-defined properties across all request scopes supported
by WebLogic Server-a Work Context is available to all of the objects that can exist within
the request scope, including RMI calls. See Developing Applications for Oracle WebLogic
Server.

How to Handle Changes in Security Context
WLS RMI does not carry forward the security context in the stub. The thread that establishes
the stub has the right subject in its thread context. If the stub is later used in a different thread
or the stub is used after the current thread context has changed as a result of some
operations, subsequent calls using the stub may fail with SecurityException. Operations that
can change the context of a thread include establishing a new initial context and running WLST
programmatically. Thread context changes often surface as cross-domain security issues when
using JMS, JTA, and MDBs in multi-domain configurations.

If an RMI stub is going to be used in a different thread, the application can use a JSR-237 work
manager to schedule the new thread in the thread context that the stub is created so that the
thread context is propagated to the new thread. For cases where this is not possible, or cases
where the context of the original thread changes somehow, the application should reestablish
the context under which the stub should be invoked with JAAS. The following public APIs can
be used to reestablish the security context:

• weblogic.security.Security.getCurrentSubject()—obtain the current object on the
thread.

• weblogic.security.Security.runAs()—resume the subject.

Chapter 10
How to Handle Changes in Security Context

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 2

A
CORBA Support for WebLogic Server

This appendix provides the official specifications for CORBA support for this release of
WebLogic Server.
This appendix includes the following sections:

• Specification References

• Supported Specification Details

• Tools

Specification References
In general, this release of WebLogic Server adheres to the OMG specifications required by
Jakarta EE. For this release, the WebLogic ORB is compliant with following specification
references:

• CORBA 2.6: formal/01-12-01 at http://www.omg.org/cgi-bin/doc?formal/01-12-01

• CORBA 2.3.1: formal/99-10-07 at http://www.omg.org/cgi-bin/doc?formal/99-10-07

• IDL to Java language mapping: ptc/03-09-04 at http://www.omg.org/cgi-bin/doc?ptc/
03-09-04

• Revised IDL to Java language mapping 1.3: formal/00-11-03 at http://www.omg.org/cgi-
bin/doc?formal/00-11-03

• Java to IDL language mapping: ptc/00-01-06 at http://www.omg.org/cgi-bin/doc?ptc/
00-01-06

• Interoperable Naming Service: ptc/00-08-07 at http://www.omg.org/cgi-bin/doc?ptc/
00-08-07

• Transaction Service 1.2.1: formal/2001-11-03 at http://www.omg.org/cgi-bin/doc?
formal/2001-11-03

Note

If the above links do not take you to the referenced specification, the OMG may have
changed the URL. You can search http://www.omg.org for the correct specification.

Supported Specification Details
Not all of the above specifications are implemented in the WebLogic ORB in this release. The
following section provides a precise list of the supported specifications by chapter or section:

• CORBA 2.6, chapters 1-3, 6-7, 13 and 15.

• Revised IDL to Java language mapping, section 1.21.8.2, the orb.properties file.

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-1 of A-2

http://www.omg.org/cgi-bin/doc?formal/01-12-01
http://www.omg.org/cgi-bin/doc?formal/99-10-07
http://www.omg.org/cgi-bin/doc?ptc/03-09-04
http://www.omg.org/cgi-bin/doc?ptc/03-09-04
http://www.omg.org/cgi-bin/doc?formal/00-11-03
http://www.omg.org/cgi-bin/doc?formal/00-11-03
http://www.omg.org/cgi-bin/doc?ptc/00-01-06
http://www.omg.org/cgi-bin/doc?ptc/00-01-06
http://www.omg.org/cgi-bin/doc?ptc/00-08-07
http://www.omg.org/cgi-bin/doc?ptc/00-08-07
http://www.omg.org/cgi-bin/doc?formal/2001-11-03
http://www.omg.org/cgi-bin/doc?formal/2001-11-03
http://www.omg.org

• CORBA 2.6, chapter 4 and 5, excepting details relevant to excluded features from other
chapters, such as PortableInterceptors.

• CORBA 2.6, sections 10.6.1 and 10.6.2 are supported for repository IDs.

• CORBA 2.6, section 10.7 for TypeCode APIs.

• CORBA 2.6, chapter 11, Portable Object Adapter (POA) excepting details relevant to
excluded features from other chapters, such as PortableInterceptors.

• CORBA 2.6, chapter 26, conformance level 0 plus stateful.

• The Interoperable Naming Service.

• Section 1.21.8 of the Revised IDL to Java Language Mapping Specification (ptc/00-11-03)
has been changed from the version in the IDL to Java Language Mapping Specification
(ptc/00-01-08).

• Transaction Service 1.2.1, as defined by the EJB 2.1 specification.

Tools
For this release, the WebLogic ORB is compliant with the following tools:

• The IDL to Java compiler (idlj) is the one that comes bundled with Java SE and is
compliant with following specification references:

– CORBA 2.3.1, chapter 3 (IDL definition).

– CORBA 2.3.1, chapters 5 and 6 (semantics of Value types).

– CORBA 2.3.1, section 10.6.5 (pragmas).

– The IDL to Java mapping specification.

– The Revised IDL to Java language mapping specification section 1.12.1 (local
interfaces).

• The Java to IDL compiler (the IIOP backend for rmic) complies with:

– CORBA 2.6, chapters 5 and 6 (value types).

– The Java to IDL language mapping. Note that this implicitly references section 1.21 of
the IDL to Java language mapping.

– IDL generated by the -idl flag complies with CORBA 2.6 chapter 3.

Appendix A
Tools

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-2 of A-2

Index

Developing RMI Applications for Oracle WebLogic Server
G31656-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Index-1 of Index-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Samples and Tutorials
	Avitek Medical Records Application (MedRec) and Tutorials
	Examples in the WebLogic Server Distribution

	New and Changed WebLogic Server Features

	Conventions

	1 Understanding WebLogic RMI
	What is WebLogic RMI?
	Features of WebLogic RMI

	2 WebLogic RMI Features
	WebLogic RMI Clients
	WebLogic RMI Security Support
	WebLogic RMI Transaction Support
	Failover and Load Balancing RMI Objects
	Clustered RMI Applications
	Load Balancing RMI Objects
	Parameter-Based Routing for Clustered Objects
	Custom Call Routing and Collocation Optimization

	Request Timeouts
	Using a Connect Timeout
	Using a Read Timeout
	Example rtd.xml file with a Timeout
	Example weblogic-ejb-jar.xml file with a Timeout

	Creating Pinned Services
	Dynamic Proxies in RMI

	3 Using WebLogic RMI Annotations
	Introduction to WebLogic RMI Annotations
	Annotations for WebLogic RMI
	Rmi
	Description
	Attributes

	RmiMethod
	Description
	Attributes

	Exception Handling
	Application Exceptions
	System Exceptions

	Cluster Failover
	RMI Callback Objects
	Annotation and WebLogic RMI Descriptor Merging

	4 Using the WebLogic RMI Compiler
	Overview of the WebLogic RMI Compiler
	WebLogic RMI Compiler Features
	Hot Code Generation
	Proxy Generation
	Additional WebLogic RMI Compiler Features

	WebLogic RMI Compiler Options
	Non-Replicated Stub Generation
	Using Persistent Compiler Options
	Java SE Enhancements

	5 Using WebLogic RMI with T3 Protocol
	RMI Communication in WebLogic Server
	Determining Connection Availability
	Using a WebLogic T3/T3s Client Proxy

	6 How to Implement WebLogic RMI
	Creating Classes That Can Be Invoked Remotely
	Step 1. Write a Remote Interface
	Step 2. Implement the Remote Interface
	Step 3: Create a Client that Invokes Remote Methods
	Setting Client Timeouts
	Example HelloClient.java Client

	Step 4. Compile the Java Classes

	Run the RMI Hello Code Sample
	Prerequisites
	Setup the RMI Hello Example
	Configure a Startup Class
	Restart the examplesServer
	Run the Example

	7 WebLogic RMI Integration with Load Balancers
	How WebLogic Server Supports Load Balancers
	HTTP Tunneled T3 Load Balancing
	How to Configure the External Listen Address
	Example Custom Channel Configuration for a Load Balancer

	Session Failover
	Cookie Persistence
	Pinned Objects
	Stateful Session EJBs

	Native T3 Load Balancing
	Failover Support

	8 Using RMI over IIOP
	What is RMI over IIOP?
	Overview of WebLogic RMI-IIOP
	Support for RMI-IIOP with RMI (Java) Clients
	Support for RMI-IIOP with Tuxedo Client
	Support for RMI-IIOP with CORBA/IDL Clients

	9 Configuring WebLogic Server for RMI-IIOP
	Set the Listening Address
	Setting Network Channel Addresses
	Considerations for Proxys and Firewalls
	Considerations for Clients with Multiple Connections

	Accessing WebLogic Server Objects from a CORBA Client through Delegation
	Overview of Delegation
	Example of Delegation

	Configuring CSIv2 authentication
	Using RMI over IIOP with a Hardware Load Balancer
	Limitations of WebLogic RMI-IIOP
	Limitations Developing Java IDL Clients
	Limitations of Passing Objects by Value

	Propagating Client Identity

	10 Best Practices for Application Design
	Use java.rmi
	Use PortableRemoteObject
	Use WebLogic Work Areas
	How to Handle Changes in Security Context

	A CORBA Support for WebLogic Server
	Specification References
	Supported Specification Details
	Tools

	Index

