
Oracle® Fusion Middleware
Understanding the WebLogic Scripting Tool

15c (15.1.1.0.0)
G31574-01
October 2025

Oracle Fusion Middleware Understanding the WebLogic Scripting Tool, 15c (15.1.1.0.0)

G31574-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation i

Conventions iv

1 Using the WebLogic Scripting Tool

Using WLST Online or Offline 1

Using WLST Online 1

Using WLST Offline 1

Interactive Mode, Script Mode, and Embedded Mode 2

Interactive Mode 2

Script Mode 2

Embedded Mode 2

Security for WLST 4

Securing the WLST Connection 4

Securing Access to Configuration Data 4

Securing Access from WLST Online 4

Writing and Reading Encrypted Configuration Values 5

Securing Access to Security Data 7

Connecting to Servers with Two-Way TLS Enabled 7

Main Steps for Using WLST in Interactive or Script Mode 9

Invoking WLST 9

Invoking WLST Using Provided Shell Scripts 9

Invoking WLST Using the java Command 10

Running Scripts 13

Invoking WLST From the Start Menu 13

Exiting WLST 13

Syntax for WLST Commands 13

Considerations When Invoking Multiple WLST Instances 14

Redirecting Error and Debug Output to a File 14

Getting Help for WLST 15

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page i of iv

Running WLST from Ant 15

WLST Task Parameters 16

WLST Task Parameters Specified as Nested Elements 16

WLST Ant Task Examples 16

CreateServer Target Example 17

Loop Target Example 17

Error Target Example 18

Importing WLST as a Jython Module 18

Customizing WLST 19

Adding Integrated Help for Custom Commands 20

Sample Scripts For Defining new WLST Commands 22

2 Creating WebLogic Domains Using WLST Offline

Creating and Using a Domain Template (Offline) 1

Creating and Updating a WebLogic Domain 2

Browsing Information About the Configuration Hierarchy (Offline) 4

Editing a WebLogic Domain (Offline) 5

Alternative: Using the configToScript Command 6

Considerations for Clusters, JDBC, and JMS Resources 7

Creating a Managed Server Domain on a Remote Machine 8

3 Managing the Server Life Cycle

Using WLST and Node Manager to Manage Servers 1

Using Node Manager to Start Servers on a Machine 2

Using Node Manager to Start Managed Servers in a WebLogic Domain or Cluster 3

Starting and Managing Servers Without Node Manager 4

Starting an Administration Server Without Node Manager 4

Managing Server State Without Node Manager 5

4 Navigating MBeans (WLST Online)

Navigating and Interrogating MBeans 1

Changing the Current Management Object 2

Navigating and Displaying Configuration MBeans Example 2

Browsing Runtime MBeans 4

Navigating and Displaying Runtime MBeans Example 5

Navigating Among MBean Hierarchies 6

Finding MBeans and Attributes 7

Accessing Other WebLogic MBeans and Custom MBeans 8

Accessing Custom MBeans in the Domain Runtime MBean Server 9

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page ii of iv

Accessing Custom MBeans in the Edit MBean Server 9

5 Configuring Existing WebLogic Domains

Using WLST Online to Update an Existing WebLogic Domain 1

Tracking Configuration Changes 2

Undoing or Canceling Changes 3

Additional Operations and Attributes for Change Management 3

Using WLST Offline to Update an Existing WebLogic Domain 4

Managing Security Data (WLST Online) 5

Determining If You Need to Access the Edit Hierarchy 6

Creating a User 6

Adding a User to a Group 6

Verifying Whether a User Is a Member of a Group 7

Listing Groups to Which a User Belongs 7

Listing Users and Groups in a Security Realm 8

Changing a Password 9

Protecting User Accounts in a Security Realm 9

Set Consecutive Invalid Login Attempts 10

Unlock a User Account 10

Configuring Additional LDAP Authentication Providers 10

Deploying Applications 12

Using WLST Online to Deploy Applications 12

Using WLST Offline to Deploy Applications 12

6 Updating the Deployment Plan

7 Getting Runtime Information

Accessing Runtime Information: Main Steps 1

Script for Monitoring Server State 2

Script for Monitoring the JVM 2

Configuring Logging 3

Working with the WebLogic Diagnostics Framework 4

A WLST Deployment Objects

WLSTPlan Object A-1

WLSTProgress Object A-2

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page iii of iv

B FAQs: WLST

General WLST B-1

Jython Support B-1

Using WLST B-2

C WLST Sample Configuration Scripts

Configuring SAML Single Sign On C-1

Sample: Configure WebLogic Server as an Identity Provider Site with SAML SSO C-2

Sample: Configure WebLogic Server as a Service Provider Site with SAML SSO C-4

D WLST Deprecated Features

Implicit Exports D-1

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page iv of iv

Preface

This preface describes the document accessibility features and conventions used in this guide
—Understanding the WebLogic Scripting Tool.

Audience
This document is written for WebLogic Server administrators and operators who deploy Jakarta
EE applications using the Java Platform, Enterprise Edition (Jakarta EE). It is assumed that
readers are familiar with Web technologies and the operating system and platform where
WebLogic Server is installed.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
For information about the WLST commands and their syntax, see:

• WebLogic Server WLST Online and Offline Command Reference in the WLST Command
Reference for Oracle WebLogic Server for the WLST commands that are available for
WebLogic Server.

• Introduction and Roadmap to the Infrastructure WLST Commands in the WLST Command
Reference for Infrastructure Components for the WLST commands that are available for
Oracle Fusion Middleware infrastructure components, including Java Required Files (JRF),
Web services, Metadata services (MDS), Application Development Framework (ADF),

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page i of iv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Dynamic Monitoring Service (DMS), Logging, Diagnostic Framework, and User Messaging
Service (UMS).

• Introduction and Roadmap in the WLST Command Reference for Infrastructure Security
for the WLST commands that are available for Oracle Fusion Middleware Infrastructure
Security components, including Oracle Platform Security Services, Auditing, SSL, wallets,
and OPSS Keystore Service.

• Introduction and Roadmap in the WebCenter WLST Command Reference for the WLST
commands that are available for WebCenter components, including WebCenter Portal,
WebCenter Content, and WebCenter Capture.

• Introduction and Roadmap in the WLST Command Reference for SOA Suite for the WLST
commands that are available for SOA, Business Process Management (BPM), Enterprise
Scheduler (ESS), and Managed File Transfer (MFT).

• Overview of the WebLogic Scripting Tool for Oracle Traffic Director in the WebLogic
Scripting Tool Command Reference for Oracle Traffic Director for the WLST commands
that are available for Oracle Traffic Director.

• Oracle HTTP Server WLST Custom Commands in Administering Oracle HTTP Server for
the WLST commands that are available for Oracle HTTP Server.

WLST is one of several interfaces for managing and monitoring WebLogic Server. For
information about the other management interfaces, see:

• Using Ant Tasks to Configure and Use a WebLogic Server Domain in Developing
Applications for Oracle WebLogic Server, describes using WebLogic Ant tasks for starting
and stopping WebLogic Server instances and configuring WebLogic domains.

• Deployment Tools in Deploying Applications to Oracle WebLogic Server describes several
tools that WebLogic Server provides for deploying applications and stand-alone modules.

• Oracle WebLogic Remote Console Online Help describes a Web-based graphical user
interface for managing and monitoring WebLogic domains.

• Creating WebLogic Domains Using the Configuration Wizard describes using a graphical
user interface to create a WebLogic domain or extend an existing one.

• Creating Templates and Domains Using the Pack and Unpack Commands describes
commands that recreate existing WebLogic domains quickly and easily.

• Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
describes using Java Management Extensions (JMX) APIs to monitor and modify
WebLogic Server resources.

• Monitoring Oracle WebLogic Server with SNMP describes using Simple Network
Management Protocol (SNMP) to monitor WebLogic domains.

• Administering Server Environments for Oracle WebLogic Server describes how you
design, configure, and manage WebLogic Server environments. It is a resource for system
administrators and operators responsible for implementing a WebLogic Server installation.

• Administering Node Manager for Oracle WebLogic Server describes how to configure and
use Node Manager to control and manage servers within a WebLogic Server environment.

WLST Sample Scripts
Oracle Fusion Middleware provides both WLST online and offline sample scripts.

The following sections describe the sample scripts that you can run or use as templates for
creating additional scripts:

For information about running scripts, see Running Scripts.

Preface

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page ii of iv

Note

The sample scripts are not installed by default. To install the server samples, you must
select the Complete With Examples option when installing WebLogic Server.

WLST Online Sample Scripts
The WLST online sample scripts demonstrate how to perform administrative tasks and initiate
WebLogic Server configuration changes while connected to a running server. WLST online
scripts are located in the following directory: ORACLE_HOME\
\wlserver\samples\server\examples\src\examples\wlst\online.

Table 1 summarizes WLST online sample scripts.

Table 1 WLST Online Sample Scripts

WLST Sample Script Description

cluster_creation.py Connects WLST to an Administration Server, starts an edit session, and creates
10 Managed Servers. It then creates two clusters, assigns servers to each
cluster, and disconnects WLST from the server.

cluster_deletion.py Removes the clusters and servers created in cluster_creation.py.

configJMSSystemResource.py Connects WLST to an Administration Server, starts an edit session, creates two
JMS Servers, and targets them to the Administration Server. Then creates JMS
topics, JMS queues, and JMS templates in a JMS System module. The JMS
queues and topics are targeted using sub-deployments.

deleteJMSSystemResource.py Removes the JMS System module created by
configJMSSystemResource.py.

jdbc_data_source_creation.py Connects WLST to an Administration Server, starts an edit session, and creates
a JDBC data source called myJDBCDataSource.

jdbc_data_source_deletion.py Removes the JDBC data source created by
jdbc_data_source_creation.py.

WLST Offline Sample Scripts
The WLST offline sample scripts demonstrate how to create WebLogic domains using the
domain templates that are installed with the software. The WLST offline scripts are located in
the following directory: ORACLE_HOME\wlserver\common\templates\scripts\wlst.

Table 2 summarizes WLST offline sample scripts.

Table 2 WLST Offline Sample Script

WLST Sample Script Description

basicWLSdomain.py Creates a simple WebLogic domain demonstrating how to open a domain
template, create and edit configuration objects, and write the domain
configuration information to the specified directory.

The sample consists of a single server, representing a typical development
environment. This type of configuration is not recommended for production
environments.

The script uses the Basic WebLogic Server Domain template.

Preface

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page iii of iv

Table 2 (Cont.) WLST Offline Sample Script

WLST Sample Script Description

clusterMedRecDomain.py Creates a single-cluster WebLogic domain, creating three Managed Servers
and assigning them to a cluster.

The script uses the Basic WebLogic Server Domain template and extends it
using the Avitek Medical Records Sample extension template.

distributedQueue.py Demonstrates two methods for creating distributed queues.

The script uses the Basic WebLogic Server Domain template and extends it
using the Avitek Medical Records Sample extension template.

sampleMedRecDomain.py Creates a WebLogic domain that defines resources similar to those used in the
Avitek MedRec sample. This example does not recreate the MedRec example in
its entirety, nor does it deploy any sample applications.

The script uses the Basic WebLogic Server Domain template.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page iv of iv

1
Using the WebLogic Scripting Tool

The WebLogic Scripting Tool (WLST) is a command-line scripting environment that you can
use to create, manage, and monitor WebLogic domains. It is based on the Java scripting
interpreter, Jython. In addition to supporting standard Jython features such as local variables,
conditional variables, and flow control statements, WLST provides a set of scripting functions
(commands) that are specific to WebLogic Server. You can extend the WebLogic scripting
language to suit your needs by following the Jython language syntax (see http://
www.jython.org).

Using WLST Online or Offline
You can use WLST as the command-line equivalent to the WebLogic Remote Console (WLST
online) or as the command-line equivalent to the Configuration Wizard (WLST offline).

The following sections describe how to use WLST online or offline:

Using WLST Online
You can use WLST to connect to a running Administration Server and manage the
configuration of an active WebLogic domain, view performance data about resources in the
domain, or manage security data (such as adding or removing users). You can also use WLST
to connect to Managed Servers, but you cannot modify configuration data from Managed
Servers.

WLST online is a Java Management Extensions (JMX) client. It interacts with a server's in-
memory collection of Managed Beans (MBeans), which are Java objects that provide a
management interface for an underlying resource. For information on WebLogic Server
MBeans, see Understanding WebLogic Server MBeans in Developing Custom Management
Utilities Using JMX for Oracle WebLogic Server.

Using WLST Offline
Without connecting to a running WebLogic Server instance, you can use WLST to create
domain templates, create a new domain based on existing templates, or extend an existing,
inactive domain. You cannot use WLST offline to view performance data about resources in a
WebLogic domain or modify security data (such as adding or removing users).

WLST offline provides read and write access to the configuration data that is persisted in the
domain's config directory or in a domain template JAR created using Template Builder. See
Browsing Information About the Configuration Hierarchy (Offline).

Note the following restrictions for modifying configuration data with WLST offline:

• Oracle recommends that you do not use WLST offline to manage the configuration of an
active WebLogic domain. Offline edits are ignored by running servers and can be
overwritten by JMX clients such as WLST online or the WebLogic Remote Console.

• As a performance optimization, WebLogic Server does not store most of its default values
in the WebLogic domain's configuration files. In some cases, this optimization prevents
management objects from being displayed by WLST offline (because WebLogic Server

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 1 of 22

http://www.jython.org/
http://www.jython.org/

has never written the corresponding XML elements to the domain's configuration files). For
example, if you never modify the default logging severity level for a WebLogic domain
while the domain is active, WLST offline will not display the domain's Log management
object.

If you want to change the default value of attributes whose management object is not
displayed by WLST offline, you must first use the create command to create the
management object. Then you can cd to the management object and change the attribute
value. See create in WLST Command Reference for Oracle WebLogic Server.

Interactive Mode, Script Mode, and Embedded Mode
WLST can be invoked in a variety of ways.

You can use any of the following techniques to invoke WLST commands:

Interactive Mode
Interactive mode, in which you enter a command and view the response at a command-line
prompt, is useful for learning the tool, prototyping command syntax, and verifying configuration
options before building a script. Using WLST interactively is particularly useful for getting
immediate feedback after making a critical configuration change. The WLST scripting shell
maintains a persistent connection with an instance of WebLogic Server.

WLST can write all of the commands that you enter during a WLST session to a file. You can
edit this file and run it as a WLST script. See startRecording and stopRecording in WLST
Command Reference for Oracle WebLogic Server.

Script Mode
Scripts invoke a sequence of WLST commands without requiring your input, much like a shell
script. Scripts contain WLST commands in a text file with a .py file extension, for example,
filename.py. You use script files with the Jython commands for running scripts.

Using WLST scripts, you can:

• Automate WebLogic Server configuration and application deployment

• Apply the same configuration settings, iteratively, across multiple nodes of a topology

• Take advantage of scripting language features, such as loops, flow control constructs,
conditional statements, and variable evaluations that are limited in interactive mode

• Schedule scripts to run at various times

• Automate repetitive tasks and complex procedures

• Configure an application in a hands-free data center

For information about sample scripts that WebLogic Server installs, see WLST Sample Scripts.

Embedded Mode
In embedded mode, you instantiate the WLST interpreter in your Java code and use it to run
WLST commands and scripts. All WLST commands and variables that you use in interactive
and script mode can be run in embedded mode. Prior to running the program with embedded
WLST, you must invoke the following command to set the appropriate environment variables:

• Windows: WL_HOME\server\bin\setWLSEnv.cmd

Chapter 1
Interactive Mode, Script Mode, and Embedded Mode

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 2 of 22

• UNIX: WL_HOME/server/bin/setWLSEnv.sh

On UNIX operating systems, the setWLSEnv.sh command does not set the environment
variables in all command shells. Oracle recommends that you execute this command using
the Korn shell or bash shell.

Example 1-1 illustrates how to instantiate the WLST interpreter and use it to connect to a
running server, create two servers, and assign them to clusters.

Example 1-1 Running WLST From a Java Class

package wlst;
import java.util.*;
import weblogic.management.scripting.utils.WLSTInterpreter;
import org.python.util.InteractiveInterpreter;

/**
 * Simple embedded WLST example that will connect WLST to a running server,
 * create two servers, and assign them to a newly created cluster and exit.
 * <p>Title: EmbeddedWLST.java</p>
 * <p>Copyright: Copyright (c) 2004</p>
 * <p>Company: Oracle</p>
 */

public class EmbeddedWLST
{
 static InteractiveInterpreter interpreter = null;
 EmbeddedWLST() {
 interpreter = new WLSTInterpreter();
 }

private static void connect() {
 StringBuffer buffer = new StringBuffer();
 buffer.append("connect('adminusername','adminpassword')");
 interpreter.exec(buffer.toString());
 }

private static void createServers() {
 StringBuffer buf = new StringBuffer();
 buf.append(startTransaction());
 buf.append("man1=create('msEmbedded1','Server')\n");
 buf.append("man2=create('msEmbedded2','Server')\n");
 buf.append("clus=create('clusterEmbedded','Cluster')\n");
 buf.append("man1.setListenPort(8001)\n");
 buf.append("man2.setListenPort(9001)\n");
 buf.append("man1.setCluster(clus)\n");
 buf.append("man2.setCluster(clus)\n");
 buf.append(endTransaction());
 buf.append("print 'Script ran successfully ...' \n");
 interpreter.exec(buf.toString());
 }

private static String startTransaction() {
 StringBuffer buf = new StringBuffer();
 buf.append("edit()\n");
 buf.append("startEdit()\n");
 return buf.toString();
 }

private static String endTransaction() {
 StringBuffer buf = new StringBuffer();
 buf.append("save()\n");
 buf.append("activate(block='true')\n");

Chapter 1
Interactive Mode, Script Mode, and Embedded Mode

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 3 of 22

 return buf.toString();
 }

public static void main(String[] args) {
 new EmbeddedWLST();
 connect();
 createServers();
 }
}

Security for WLST
WLST uses the WebLogic Security Framework to prevent unauthorized users from modifying a
WebLogic domain or from viewing encrypted data.

The following sections describe the actions you must take to satisfy WLST security
requirements:

Securing the WLST Connection
If you use WLST to connect to a WebLogic Server instance, Oracle recommends that you
connect to the server instance through the administration port. The administration port is a
special, secure port that all WebLogic Server instances in a WebLogic domain can use for
administration traffic.

By default, this port is not enabled, but Oracle recommends that you enable the administration
port in a production environment. The default value for the administration port is 9002.
Separating administration traffic from application traffic ensures that critical administration
operations (starting and stopping servers, changing a server's configuration, and deploying
applications) do not compete with high-volume application traffic on the same network
connection.

The administration port requires all communication to be secured using SSL. By default, all
servers in a WebLogic domain use demonstration certificate files for SSL, but these certificates
are not appropriate for a production environment.

For information about configuring the administration port, see Administration Port and
Administrative Channel in Administering Server Environments for Oracle WebLogic Server.

Securing Access to Configuration Data
A WebLogic domain stores its configuration data in a collection of XML documents that are
saved in the domain directory. For example, these configuration documents describe the
names, listen addresses, and deployed resources in the domain. When one or more servers in
a WebLogic domain are running, each server instance maintains an in-memory representation
of the configuration data as a collection of Managed Beans (MBeans).

You must use your own security measures to make sure that only authorized users can access
your domain's configuration files through the file system. Anyone who is authorized to access
the domain's configuration files through the file system can use a text editor, WLST offline, or
other tools to edit the configuration files.

Securing Access from WLST Online
If you use WLST to connect to a running instance of WebLogic Server, you must provide the
credentials (user name and password) of a user who has been defined in the active WebLogic
security realm. Once you are connected, a collection of security policies determine which

Chapter 1
Security for WLST

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 4 of 22

configuration attributes you are permitted to view or modify. (See Default Security Policies for
MBeans in the MBean Reference for Oracle WebLogic Server.)

When you invoke the WLST connect command, you can supply user credentials by doing any
of the following:

• Enter the credentials on the command line. This option is recommended only if you are
using WLST in interactive mode.

For example:

connect('adminusername', 'adminpassword', 'localhost:7001'

See connect in WLST Command Reference for Oracle WebLogic Server.

• Enter the credentials on the command line, and then use the storeUserConfig command
to create a user configuration file that contains your credentials in an encrypted form and a
key file that WebLogic Server uses to unencrypt the credentials. On subsequent WLST
sessions (or in WLST scripts), supply the name of the file instead of entering the
credentials on the command line. This option is recommended if you use WLST in script
mode because it prevents you from storing unencrypted user credentials in your scripts.

For example, to create the user configuration file and key file:

connect('adminusername', 'adminpassword', 'localhost:7001')
storeUserConfig('c:/myFiles/myuserconfigfile.secure',
'c:/myFiles/myuserkeyfile.secure')

To use the user configuration file and key file:

connect(userConfigFile='c:/myfiles/myuserconfigfile.secure',
userKeyFile='c:/myfiles/myuserkeyfile.secure')

See connect and storeUserConfig in WLST Command Reference for Oracle WebLogic
Server.

• Invoke the connect command from a directory that contains the domain's
boot.properties file. By default, when you create an Administration Server, WebLogic
Server encrypts the credentials and stores them in a boot.properties file. WLST can use
this file only if you start WLST from the domain directory.

For example, if you have not deleted the domain's boot.properties file, you can start
WLST and invoke the connect command as follows:

c:\mydomain\> java weblogic.WLST
wls:/offline> connect()

See connect in WLST Command Reference for Oracle WebLogic Server.

Writing and Reading Encrypted Configuration Values
Some attributes of a WebLogic domain's configuration are encrypted to prevent unauthorized
access to sensitive data. For example, the password that a JDBC data source uses to connect
to an RDBMS is encrypted.

The attribute values are saved in the domain's configuration document as an encrypted string.
In a running server instance, the values are available as an MBean attribute in the form of an
encrypted byte array. The names of encrypted attributes end with Encrypted. For example, the
ServerMBean exposes the password that is used to secure access through the IIOP protocol in
an attribute named DefaultIIOPPasswordEncrypted.

Oracle recommends the following pattern for writing and reading encrypted attributes:

Chapter 1
Security for WLST

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 5 of 22

With WLST offline:

• To write an encrypted value, pass the name of the encrypted attribute and an unencrypted
string to the set command. For example:

set('DefaultIIOPPasswordEncrypted', '<password>')

WLST encrypts the string and writes the encrypted value to the domain's configuration file.

See set in WLST Command Reference for Oracle WebLogic Server.

• WLST offline does not display the unencrypted value of an encrypted attribute. If you use
the ls command to display management attributes, WLST offline returns asterisks as the
value of encrypted attributes. If you use the get command, WLST offline returns a byte
array that represents asterisks.

For example:

wls:/offline/wl_server/Server/examplesServer>ls()

returns

...
-rw- DefaultIIOPPasswordEncrypted ********
...

While

wls:/offline/wl_server/Server/examplesServer>get('DefaultIIOPPasswordEncrypted')

returns

array([42, 42, 42, 42, 42, 42, 42, 42], byte)

See ls and get in WLST Command Reference for Oracle WebLogic Server.

With WLST online, for each encrypted attribute, an MBean also contains an unencrypted
version. For example, ServerMBean contains an attribute named
DefaultIIOPPasswordEncrypted which contains the encrypted value and an attribute named
DefaultIIOPPassword, which contains the unencrypted version of the value.

To write and read encrypted values with WLST online:

• To write an encrypted value, start an edit session. Then do either of the following:

– Pass the name of the unencrypted attribute and an unencrypted string to the set
command. For example:

set('DefaultIIOPPassword', '<password>')

– Pass the name of the encrypted attribute and an encrypted byte array to the set
command. You can use the encrypt command to create the encrypted byte array (see
encrypt in WLST Command Reference for Oracle WebLogic Server). For example:

set('DefaultIIOPPasswordEncrypted', encrypt('<password>'))

– Note

Do not pass an unencrypted string to the encrypted attribute. The encrypted
attribute assumes that the value you pass to it is already encrypted.

When you activate the edit, WebLogic Server writes the encrypted value to the domain's
configuration file.

Chapter 1
Security for WLST

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 6 of 22

• To read the encrypted value of the attribute, pass the name of the encrypted attribute to the
get command. For example:

get('DefaultIIOPPasswordEncrypted')

returns

array([105, 114, 111, 110, 115, 116, 101, 101, 108], byte)

Securing Access to Security Data
The user names and passwords of WebLogic Server users, security groups, and security roles
are not stored in a WebLogic domain's XML configuration files. Instead, a WebLogic domain
uses a separate software component called an Authentication provider to store, transport,
and provide access to security data. Authentication providers can use different types of
systems to store security data. The Authentication provider that WebLogic Server installs uses
an embedded LDAP server.

When you use WLST offline to create a domain template, WLST packages the Authentication
provider's data store along with the rest of the domain documents. If you create a domain from
the domain template, the new domain has an exact copy of the Authentication provider's data
store from the domain template.

You cannot use WLST offline to modify the data in an Authentication provider's data store.

You can, however, use WLST online to interact with an Authentication provider and add,
remove, or modify users, groups, and roles. See Managing Security Data (WLST Online).

Connecting to Servers with Two-Way TLS Enabled
By default, WebLogic Server is configured with one-way TLS, where only the server must
present a certificate to the client. When two-way TLS is enabled, a client is required to present
a certificate to the server to complete the TLS connection.

If a WebLogic Server instance has two-way TLS enabled, then before you can use WLST to
connect to the instance, you must update the WLST connect command to provide identity and
trust properties, in addition to user credentials.

For more information on using TLS in WebLogic Server, see Overview of Configuring SSL in
WebLogic Server in Administering Security for Oracle WebLogic Server.

1. Obtain and store identity and trust for WebLogic Server. You can use either the
demonstration keystores included in WebLogic Server or configure your own custom
keystores. See Using Keystores and Certificates in a Development Environment in
Administering Security for Oracle WebLogic Server or Obtaining and Storing Certificates
for Production Environments in Administering Security for Oracle WebLogic Server,
respectively.

2. Invoke WLST Offline to create or edit a user configuration file.

3. Go to the user configuration file that you plan to use to connect to the domain.

By default, a user configuration file that was generated by WLST is stored in your home
directory as determined by your JVM.

4. Optional: If one does not exist already, create a user key file. Otherwise, skip to the next
step.

createUserKey([userKeyFile])

Chapter 1
Security for WLST

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 7 of 22

For information on user key files and how to use createUserKey, see createUserKey in
WLST Command Reference for Oracle WebLogic Server.

5. Add properties to the user configuration file to configure identity and trust for the WLST
client. You can use the addPropertyToUserConfig command or update the file manually.

addPropertyToUserConfig(propertyName, propertyValue, [userConfigFile],
[userKeyFile])

For a list of the properties you should add, see addPropertyToUserConfig in WLST
Command Reference for Oracle WebLogic Server.

addPropertyToUserConfig automatically encrypts credential and passphrase properties.

6. If you added the properties manually, encrypt the credential and passphrase properties in
the user configuration file.

encryptUserConfig([userConfigFile], [userKeyFile])

For more information, see encryptUserConfig in WLST Command Reference for Oracle
WebLogic Server.

If you used addPropertyToUserConfig to add identity and trust properties to the user
configuration file, then the credential and passphrase properties are already encrypted.
Running encryptUserConfig will have no additional effect.

7. Save your changes, then close the domain.

8. Optional: If you want to restrict which TLS protocol versions or cipher suites are allowed,
then update the WLST properties environment variable to specify the supported TLS
protocol versions, cipher suites, or both.

For example:

export WLST_PROPERTIES="-Djdk.tls.client.protocols=TLSv1.2,TLSv1.3 -
Djdk.tls.client.cipherSuites=TLS_AES_256_GCM_SHA384"

When you connect to your domain, use the connect command with the user configuration file
that contains the configured TLS properties.

For example:

connect(userConfigFile='C:/myfiles/myuserconfigfile.secure',
userKeyFile='C:/myfiles/myuserkeyfile.secure')

Note

If you want to ensure that all administration clients are required to use two-way TLS,
then set the TwoWayTLSRequiredForAdminClients attribute in
SecurityConfigurationMBean to true.

Chapter 1
Security for WLST

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 8 of 22

Main Steps for Using WLST in Interactive or Script Mode
When you use WLST interactive or script mode, you should understand how to invoke it, exit it,
and its syntax.

The following sections summarize the steps for setting up and using WLST:

Invoking WLST
You can invoke WLST in the following ways:

• Execute the appropriate shell script for your environment and enter WLST commands from
the WLST shell. See Invoking WLST Using Provided Shell Scripts.

• Execute the java weblogic.WLST command. See Invoking WLST Using the java
Command.

• Run a prepared WLST script when invoking the WLST shell script. See Running Scripts.

• Execute the WebLogic Scripting Tool command from the Start menu (Windows only).

Note

If you notice that it takes a long time to create or update a domain using WLST on a
UNIX or Linux operating system, set the CONFIG_JVM_ARGS environment variable to the
following value to resolve this issue:

-Djava.security.egd=file:/dev/urandom

See also Running WLST from Ant.

Invoking WLST Using Provided Shell Scripts
To invoke WLST using a shell script, execute the command that is appropriate for your
environment. This is the recommended way to invoke WLST. Environment variables are
automatically set when you invoke WLST this way. You can then enter WLST commands from
within the WLST shell.

Note

The following commands apply only to standalone WebLogic Server installations
(those that do not include other Fusion Middleware components). Many Fusion
Middleware components supply custom WLST commands. To use them, you must
invoke WLST from the appropriate directory. See Using Custom WLST Commands in
Administering Oracle Fusion Middleware.

UNIX

cd ORACLE_HOME/oracle_common/common/bin
./wlst.sh

ORACLE_HOME is the Oracle Home directory you specified at installation.

Chapter 1
Main Steps for Using WLST in Interactive or Script Mode

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 9 of 22

To set WLST properties in a UNIX environment prior to running WLST in secure mode (t3s)
with JKS Custom Trust keystore:

export WLST_PROPERTIES="-
Dweblogic.security.SSL.trustedCAKeyStore=<custom_key_store_location>/trust.jks"
-Dweblogic.security.SSL.ignoreHostnameVerification=true
./wlst.sh

Note

To avoid log file name collisions when multiple WLST offline processes are running,
set the following property in the environment prior to invoking WLST:

export WLST_PROPERTIES="-Dwlst.offline.log=./logs/debug.log"

Windows

cd ORACLE_HOME\oracle_common\common\bin
wlst.cmd

ORACLE_HOME is the Oracle Home directory you specified at installation.

Invoking WLST Using the java Command
To invoke WLST using the java command, you must first set up your environment for WLST. To
set up your environment for WLST:

1. Install and configure the WebLogic Server software, as described in Installing the Oracle
WebLogic Server and Coherence Software in Installing and Configuring Oracle WebLogic
Server and Coherence.

2. Add WebLogic Server classes to the CLASSPATH environment variable and
WL_HOME\server\bin to the PATH environment variable, where WL_HOME refers to the full
path to the WebLogic Server home directory.

You can use the setWLSEnv script to set the required variables:

• Windows: WL_HOME\server\bin\setWLSEnv.cmd

• UNIX: WL_HOME/server/bin/setWLSEnv.sh

On UNIX operating systems, the setWLSEnv.sh command does not set the
environment variables in all command shells. Oracle recommends that you execute
this command using the Korn shell or bash shell.

After setting up your environment, use the following syntax to invoke WLST.

java
 [-Dweblogic.security.SSL.ignoreHostnameVerification=true
 -Dweblogic.security.TrustKeyStore=DemoTrust]
 [-Dweblogic.security.JavaStandardTrustKeyStorePassPhrase=password]
 [-Dweblogic.security.CustomTrustKeyStoreFileName=filename
 -Dweblogic.security.TrustKeystoreType=pkcs12
 [-Dweblogic.security.CustomTrustKeyStorePassPhrase=password]]
 [-Dweblogic.security.SSL.hostnameVerifier=classname]
 weblogic.WLST
 [-loadProperties propertyFilename]
 [-skipWLSModuleScanning]
 [[-i] filePath.py]

Chapter 1
Main Steps for Using WLST in Interactive or Script Mode

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 10 of 22

See Table 1-1 for a description of the WLST command options. See Table 1-2 for a description
of the SSL arguments. Table 1-3 lists additional optional startup arguments for WLST.

Table 1-1 Command Options for WLST

Option Description

-loadProperties propertyFilename Use this option to load properties into the WLST session, where
propertyFilename is the name of a file that contains name=value pairs.

You cannot use this option when you are importing WLST as a Jython module
(see Importing WLST as a Jython Module).

Instead of using this command-line option, you can use the loadProperties
WLST command. See loadProperties in WLST Command Reference for Oracle
WebLogic Server.

-skipWLSModuleScanning Use this option to reduce startup time by skipping package scanning and
caching for WebLogic Server modules.

-[-i] filePath.py Use this option to run a WLST script, where filePath.py is an absolute or
relative pathname for the script.

By default, WLST exits (stops the Java process) after it executes the script.
Include -i to prevent WLST from exiting.

Note: If a WLST script named wlstProfile.py exists in the directory from
which you invoke WLST or in user.home (the home directory of the operating
system user account as determined by the JVM), WLST automatically runs the
wlstProfile.py script; you do not need to specify the name of this WLST
script file on the command-line.

Instead of using this command-line option, you can use the following command
after you start WLST:

execfile('filePath.py').

Table 1-2 SSL Arguments

Argument Definition

-Dweblogic.security.SSL.
ignoreHostnameVerification=true

Use this system property if you plan to connect WLST to a WebLogic
Server instance through an SSL listen port and you want to disable
host name verification.

-
Dweblogic.security.TrustKeyStore=Keysto
re

Use this system property if you plan to connect WLST to a WebLogic
Server instance through an SSL listen port.

Set -Dweblogic.security.TrustKeyStore=Trust to one of:

• DemoTrust to cause WLST to trust the CA certificates in the
demonstration trust keystore:
DOMAIN_HOME\security\DemoTrust.p12.

• DomainTrust to cause WLST to trust the certificates in the
Domain Keystores: DOMAIN_HOME/security/pki.

When using Domain Keystores, you must specify
weblogic.security.TrustKeyStore even if you're not using
an HTTPS or T3S URL to communicate with the Administration
Server.

• JavaStandardTrust to cause WLST to trust the certificates in
the Java Standard Trust keystore.

• CustomTrust to cause WLST to trust certificates in a custom
trust keystore as specified by the
weblogic.security.CustomTrustKeyStore property.

By default, WLST trusts only the CA certificates in the Java Standard
Trust keystore: SDK_HOME\jre\lib\security\cacerts.

Chapter 1
Main Steps for Using WLST in Interactive or Script Mode

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 11 of 22

Table 1-2 (Cont.) SSL Arguments

Argument Definition

-Dweblogic.security.
JavaStandardTrustKeyStorePassPhrase
=password

Password that was used to secure the Java Standard Trust keystore.

If the Java Standard Trust keystore is protected by a password, and if
you want to trust its CA certificates, you must use this argument.

By default, the Java Standard Trust keystore is not protected by a
password.

-Dweblogic.security.
CustomTrustKeyStoreFileName= filename-
Dweblogic.security.
TrustKeystoreType=pkcs12

Causes WLST to trust the CA certificates in a custom keystore that is
located at filename. You must use both arguments to trust custom
keystores. The filename must match exactly the
ServerMBean.CustomTrustKeyStoreFileName value persisted in
config.xml; if the value specified in the
CustomTrustKeyStoreFileName attribute is a relative pathname,
you must also specify the same relative pathname in this argument.

-Dweblogic.security.
CustomTrustKeyStorePassPhrase=password

Password that was used to secure the custom keystore.

You must use this argument only if the custom keystore is protected by
a password.

-Dweblogic.security.SSL.
hostnameVerifier=classname

Name of a custom Host Name Verifier class. The class must
implement the weblogic.security.SSL.HostnameVerifier
interface.

Table 1-3 Additional WLST Startup Arguments

Argument Description

-Dwlst.debug.init=value If true, debug mode is turned on. If false, debug mode is
turned off. The default is false.

-Dweblogic.wlstHome=path1: path2: ...: pathn

-Dweblogic.wlstHome=path1; path2; ...; pathn

A comma-separated list of directory paths from which to
load .py files at startup. Note that the path separator is ':' on
UNIX operating systems and ';' on Windows.

-Dwlst.offline.log=path Sets the path and file name for WLST offline logging, for
example, -Dwlst.offline.log=./logs/debug.log.

-Dwlst.offline.log.priority=debug Sets the log priority level to debug for WLST offline logging.

Example 1-2 Examples of Invoking WLST Using the Java Command

To use WLST in script mode:

java weblogic.WLST c:/Oracle/Middleware/wlserver/common/templates/scripts/wlst/
distributeQueues.py

To run a WLST script on a WebLogic Server instance that uses the SSL listen port and the
demonstration certificates:

java -Dweblogic.security.SSL.ignoreHostnameVerification=true
-Dweblogic.security.TrustKeyStore=DemoTrust weblogic.WLST
 c:/Oracle/Middleware/wlserver/common/templates/scripts/wlst/distributeQueues.py

To use WLST in interactive mode:

java weblogic.WLST

To connect to a WebLogic Server instance after you start WLST in interactive mode:

Chapter 1
Main Steps for Using WLST in Interactive or Script Mode

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 12 of 22

wls:/offline> connect('adminusername','adminpassword','localhost:7001')

Running Scripts
You can run WLST scripts in the following ways:

• Include the script in the wlst.cmd or wlst.sh command:

wlst.sh /oracle/middleware/wlserver/common/templates/scripts/wlst/
distributedQueues.py

• Include the script in the java weblogic.WLST command. You can either include the full
path to the script, as shown here:

java weblogic.WLST c:/Oracle/Middleware/wlserver/common/templates/scripts/wlst/
distributedQueues.py

or you can navigate to the directory where the script is located before invoking WLST, in
which case you only need to include the script name in the command:

cd C:/Oracle/Middleware/wlserver/common/templates/scripts/wlst
java weblogic.WLST distributeQueues.py

• After invoking interactive WLST, use the execfile() command:

wls:offline> execfile('c:/Oracle/Middleware/wlserver/common/templates/scripts/wlst/
distributedQueues.py')

Note

If you use backslashes (\) in the path name, be aware that WLST interprets them
as a special character, which you must escape. See Syntax for WLST Commands.

Invoking WLST From the Start Menu
On Windows, a shortcut on the Start menu sets the environment variables and invokes WLST
(Oracle WebLogic > WebLogic Server > Tools > WebLogic Scripting Tool).

Exiting WLST
To exit WLST, enter the exit() command:

wls:/mydomain/serverConfig> exit()
Exiting WebLogic Scripting Tool ...

Syntax for WLST Commands
Follow this syntax when entering WLST commands or writing them in a script:

• Command names and arguments are case sensitive.

• Enclose arguments in single or double quotes. For example, 'newServer' or "newServer".

• If you specify a backslash character (\) in a string, either precede the backslash with
another backslash or precede the entire string with a lower-case r character. The \ or r
prevents Jython from interpreting the backslash as a special character.

For example when specifying a file path name that contains a backslash:

Chapter 1
Main Steps for Using WLST in Interactive or Script Mode

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 13 of 22

readTemplate('c:\\userdomains\\mytemplates\\mytemplate.jar', 'Expanded')

or

readTemplate(r'c:\userdomains\mytemplates\mytemplate.jar', 'Expanded')

Note

When specifying path names in WLST commands on a Windows machine, you
can use a forward slash (/). For example:

readTemplate('c:/userdomains/templates/template.jar', 'Expanded')

is as valid as

readTemplate('c:\\userdomains\\templates\\template.jar', 'Expanded')

• When using WLST offline, the following characters are not valid in names of management
objects: period (.), forward slash (/), or backward slash (\).

If you need to cd to a management object whose name includes a forward slash (/),
surround the object name in parentheses. For example:

cd('JMSQueue/(jms/REGISTRATION_MDB_QUEUE)')

Considerations When Invoking Multiple WLST Instances
At WLST startup, Jython stores information in a temporary directory based on the username of
the person who started WLST. If the same user invokes two different WLST instances which
will run at the same time, conflicts may occur when saving this information in the temporary
directory.

If you plan to invoke multiple WLST instances with the same username, Oracle recommends
that you define the java.io.tmpdir system property to point to a temporary directory that will
not be shared by other WLST instances that are running at the same time. For example,
include the following parameter in the Java command you use to start WLST:

-Djava.io.tmpdir=C:\mytempdir

Redirecting Error and Debug Output to a File
You can redirect error and debug information to a file.

To redirect WLST information, error, and debug messages from standard output to a file, enter

redirect(outputFile,[toStdOut])
stopRedirect()

This command also redirects the output of the dumpStack() and dumpVariables() commands.

For example, to redirect WLST output to the logs/wlst.log file under the directory from which
you started WLST, enter the following command:

wls:/mydomain/serverConfig> redirect('./logs/wlst.log')

See redirect and stopRedirect in WLST Command Reference for Oracle WebLogic Server.

Chapter 1
Redirecting Error and Debug Output to a File

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 14 of 22

Getting Help for WLST
WLST provides command line help for each command.

To display information about WLST commands and variables, enter the help command.

If you specify the help command without arguments, WLST summarizes the command
categories. To display information about a particular command, variable, or command category,
specify its name as an argument to the help command. To list a summary of all online or offline
commands from the command line using the following commands, respectively:

help('online')
help('offline')

The help command supports a query. For example, help('get*') displays the syntax and
usage information for all commands that begin with get.

For example, to display information about the disconnect command, enter the following
command:

wls:/mydomain/serverConfig> help('disconnect')

The command returns the following:

Description:
Disconnect from a WebLogic Server instance.
Syntax:
disconnect()
Example:
wls:/mydomain/serverConfig> disconnect()

Running WLST from Ant
WebLogic Server provides a custom Ant task, wlst, which invokes a WLST script from an Ant
build file. You can create a WLST script (.py) file and then use this task to invoke the script file,
or you can create a WLST script in a nested element within this task.

For more information about Ant, see the Apache Ant Manual at http://ant.apache.org/
manual/.

The wlst task is predefined in the version of Ant that is installed with WebLogic Server. To add
this version of Ant to your build environment, run the following script, where WL_HOME is the
directory in which you installed WebLogic Server.

WL_HOME\server\bin\setWLSEnv.cmd (or setWLSEnv.sh on UNIX)

On UNIX operating systems, the setWLSEnv.sh command does not set the environment
variables in all command shells. Oracle recommends that you execute this command using the
Korn shell or bash shell.

If you want to use the wlst task with your own Ant installation, include the following task
definition in your build file:

<taskdef name="wlst"
 classname="weblogic.ant.taskdefs.management.WLSTTask" />

Chapter 1
Getting Help for WLST

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 15 of 22

http://ant.apache.org/manual/
http://ant.apache.org/manual/

WLST Task Parameters
Table 1-4 lists the wlst task parameters that you specify as attributes of the <wlst> element.

Table 1-4 wlst Parameters

Attribute Description Required

properties="propsFile" Name and location of a properties file that contains name-value
pairs that you can reference in your WLST script.

No

fileName="fileName" Name and location of the WLST script file that you would like to
execute. If the specified WLST script file does not exist, this
task fails.

Yes, if no nested
<script> is
used.

arguments="arglist" List of arguments to pass to the script. These arguments are
accessible using the sys.argv variable.

No

failOnError="value" Boolean value specifying whether the Ant build will fail if this
task fails.

No; default is
true.

executeScriptBeforeFile="value" Boolean value specifying whether this task invokes the script in
the nested <script> element before the script file specified by
the fileName attribute. This attribute defaults to true,
specifying that the embedded script is invoked first.

No; default is
true.

debug="value" Boolean value specifying whether debug statements should be
output when this task is executed.

No; default is
false.

replaceProperties="value" Boolean value that specifies whether ant property expansion
will work in the specified WLST script.

No; default is
true.

WLST Task Parameters Specified as Nested Elements
Table 1-5 describes the wlst task parameters that you specify as nested elements of the
<wlst> element.

Table 1-5 Parameters Specified as Nested Elements

Attribute Description Required

script The script to be executed. Required, if you do not use the fileName
attribute to name a script file.

classpath The classes to add to the classpath.

This element is the standard Ant
classpath element. You can specify a
reference to a path element that you have
defined elsewhere in the build file or nest
elements that specify the files and
directories to add to the class path. See
"Path-like Structures" in Apache Ant
Manual at http://ant.apache.org/
manual/using.html#path

No. Use if your script requires classes that
are not already on the classpath.

WLST Ant Task Examples
The following sections show examples for the createServer, loop, and error targets.

Chapter 1
Running WLST from Ant

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 16 of 22

http://ant.apache.org/manual/using.html#path
http://ant.apache.org/manual/using.html#path

CreateServer Target Example
In the following example, the createServer target does the following:

• Adds classes to the task's classpath.

• Executes the script in the nested script element. This script connects to a WebLogic
domain's Administration Server at t3://localhost:7001. (Note that
executeScriptBeforeFile is set to true, so this is invoked before the specified WLST
script file.)

• Executes the script file myscript.py that is specified by the fileName attribute. The script
file is located in the directory from which you started Ant. You could use such a file to start
an edit session, create a new server, save, and activate the configuration changes.

• Defines three arguments that are passed to the script. These arguments are accessible
using the sys.argv variable.

• Continues execution, as per the failOnError="false" setting, even if the wlst Ant task
fails to execute.

• Disables debugging.

<target name="configServer">
 <wlst debug="false" failOnError="false" executeScriptBeforeFile="true"
 fileName="./myscript.py">
 <classpath>
 <pathelement location="${my.classpath.dir}"/>
 </classpath>
 <script>
 connect('adminusername','adminpassword','t3://localhost:7001')
 </script>
 </wlst>
</target>

Loop Target Example
In the following example, the loop target does the following:

• Adds classes to the task's classpath using a path reference.

• Executes the WLST script file myscript.py in the directory from which you started Ant.
(Note that executeScriptBeforeFile is set to false, so the WLST script file is executed
first, before the embedded script.)

• Executes the embedded script to connect to the server at t3://localhost:7001 and
access and print the list of servers in the WebLogic domain.

• Results in a build failure if the wlst task fails to execute, as per the failOnError="true"
setting.

• Enables debugging.

<path id="my.classpath">
 <pathelement location="${my.classpath.dir}"/>
</path>

<target name="loop">
 <wlst debug="true" executeScriptBeforeFile="false"
 fileName="./myscript.py" failOnError="true">
 <classpath>
 <pathelement location="${my.classpath.dir}"/>

Chapter 1
Running WLST from Ant

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 17 of 22

 </classpath>
 <script replaceProperties="true">
 print 'In the target loop'
 connect('${admin.user}','${admin.password}','t3://localhost:7001')
 svrs = cmo.getServers()
 print 'Servers in the domain are'
 for x in svrs: print x.getName()
 </script>
 </wlst>
</target>

Error Target Example
In the following example, the error target:

• Executes the embedded script to print the variable, thisWillCauseNameError.

• Continues execution, as per the failOnError="false" setting, even if the
thisWillCauseNameError variable does not exist and the wlst Ant task fails to execute.

• Enables debugging.

<target name="error">
 <wlst debug="true" failOnError="false">
 <script>print thisWillCauseNameError</script>
 </wlst>
</target>

Importing WLST as a Jython Module
Advanced users can import WLST from WebLogic Server as a Jython module. After importing
WLST, you can use it with your other Jython modules and invoke Jython commands directly
using Jython syntax.

The main steps include converting WLST definitions and method declarations to a .py file,
importing the WLST file into your Jython modules, and referencing WLST from the imported
file.

To import WLST as a Jython module:

1. Invoke WLST.

cd ORACLE_HOME/oracle_common/common/bin
./wlst.sh
wls:/offline>

2. Use the writeIniFile command to convert WLST definitions and method declarations to
a .py file.

wls:/offline> writeIniFile("wl.py")
The Ini file is successfully written to wl.py
wls:/offline>

3. Open a new command shell and invoke Jython directly by entering the following command:

c:\>java org.python.util.jython

The Jython package manager processes the JAR files in your classpath. The Jython
prompt appears:

>>>

4. Import the WLST module into your Jython module using the Jython import command.

Chapter 1
Importing WLST as a Jython Module

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 18 of 22

>>>import wl

5. Now you can use WLST methods in the module. For example, to connect WLST to a
server instance:

wl.connect('username','password')
....

Note

When using WLST as a Jython module, in all WLST commands that have a block
argument, block is always set to true, specifying that WLST will block user
interaction until the command completes. See WLST Command and Variable
Reference in WLST Command Reference for Oracle WebLogic Server.

When running recorded scripts directly in a Jython interpreter, Boolean values of
true and false can cause an error. Before running recorded scripts in a Jython
interpreter, make one of the following changes to the script:

• Add the following two lines to the script to define the true and false values:

• true=1
false=0

• Change true and false values to wl.true or wl.false, where wl is the name
from the import.

Customizing WLST
You can customize WLST using the WLST home directory, which is located at WL_HOME/
common/wlst, by default, where WL_HOME refers to the top-level installation directory for
WebLogic Server. All Python scripts that are defined within the WLST home directory are
imported at WLST startup.

Note

You can customize the default WLST home directory by passing the following
argument on the command line:

-Dweblogic.wlstHome=<another-directory>

Table 1-6 describes ways to customize WLST.

Table 1-6 Customizing WLST

To define custom... Do the following... For a sample script, see...

WLST commands Create a Python script defining the new commands
and copy that file to WL_HOME/common/wlst.

Sample Scripts For Defining new
WLST Commands

WLST commands within a
library

Create a Python script defining the new commands
and copy that file to WL_HOME/common/wlst/lib.

The scripts located within this directory are imported
as Jython libraries.

Sample Scripts For Defining new
WLST Commands

Chapter 1
Customizing WLST

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 19 of 22

Table 1-6 (Cont.) Customizing WLST

To define custom... Do the following... For a sample script, see...

WLST commands as a
Jython module

Create a Python script defining the new commands
and copy that file to WL_HOME/common/wlst/
modules.

This script can be imported into other Jython modules,
as described in Importing WLST as a Jython Module.

WL_HOME/common/wlst/modules/
wlstModule.py

A JAR file, jython-modules.jar,
which contains all of the Jython
modules that are available in Jython
2.7.1, is also available within this
directory.

Integrated help for custom
WLST commands

Define the help text for each command group and
command in a resource bundle.

Use addHelpCommandGroup to add a command group
to the list of command groups that are displayed by the
help() command.

Use addHelpCommand to add a command to the list of
commands that is displayed by the
help('commandGroup') command.

Typically, you will call the addHelpCommandGroup and
addHelpCommand from the .py file that contains the
definition of your custom commands.

See Adding Integrated Help for Custom Commands.

Not applicable.

Adding Integrated Help for Custom Commands
You can customize WLST to include integrated help for any custom WLST commands you've
defined. To add integrated help, you define the help text for each command group and
command in a resource bundle, which can be either a class or a property resource file. You
can define the help for multiple command groups in the same resource bundle.

Note

The resource bundle must be present in the classpath.

The resource bundle contains the following entries for each command group:

<commandGroup>_ShortDescription=\
 <short description of command group>
<commandGroup>_Description=\
 \n<description of command group>

For example, the following lines define the short description and description for the command
group navigate:

navigate_ShortDescription=\
 Lists commands for navigating the hierarchy of beans.
navigate_Description=\
 \n Navigates the hierarchy of beans and controls the prompt display. \n

When you enter the help() command to display a list of command groups, the short
description for navigate is displayed in the listing:

Chapter 1
Customizing WLST

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 20 of 22

wls:/offline>help()
WLST is a command line scripting tool to configure and administer a WebLogic Server. Try:
 help('all') List all WLST commands available.
 help('browser') List commands for browsing the hierarchy.
 help('navigate') List commands for navigating the bean hierarchy.

When you enter the help('navigate') command, the description is displayed above the list of
commands in the group:

wls:/offline> help('navigate')
Navigates the hierarchy of beans and controls the prompt display.
 help('mycd') Navigate the hierarchy of beans.
 help('myprmpt') Toggle the display of path information at the prompt.

The resource bundle contains help text entries for commands using a standard pattern. For
each command name, there are several entries:

<commandName>_ShortDescription
<commandName>_Description
<commandName>_Example
<commandName>_Syntax

The following defines the help for mycd command:

mycd_ShortDescription=\
 Navigate the hierarchy of beans.

mycd_Description=\
 \nNavigate the hierarchy of configuration or runtime beans. This \
 \ncommand uses a model that is similar to navigating a file system \
 \nin a Windows or UNIX command shell. For example, to navigate back \
 \nto a parent configuration or runtime bean, enter mycd(".."). The \
 \ncharacter string .. (dot-dot) refers to the directory immediately \
 \nabove the current directory. To get back to the root configuration \
 \nbean after navigating to a configuration or runtime bean that is \
 \ndeep in the hierarchy, enter mycd("/"). \

mycd_Example=\
 wls:/mydomain/serverConfig> mycd('Servers')\n\
 wls:/mydomain/serverConfig/Servers> mycd('myserver)\n\
 wls:/mydomain/serverConfig/Servers/myserver>mycd('../..')\n\
 wls:/mydomain/serverConfig>

mycd_syntax=\
 mycd(mbeanName)
 \n- mbeanName = Path to the configuration or runtime bean in the namespace.\
 \n

The short description is shown to the right of the command name when you enter the
help('commandGroup') command to list all commands in a group:

wls:/offline> help('navigate')
Navigates the hierarchy of beans and controls the prompt display.
 help('mycd') Navigate the hierarchy of beans.
 help('myprmpt') Toggle the display of path information at the prompt.

The description, example, and syntax are displayed when you enter the help('commandName')
command:

wls:/offline> help('mycd')

Description:

Chapter 1
Customizing WLST

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 21 of 22

Navigate the hierarchy of configuration or runtime beans. This
command uses a model that is similar to navigating a file system
in a Windows or UNIX command shell. For example, to navigate back
to a parent configuration or runtime bean, enter mycd(".."). The
character string .. (dot-dot) refers to the directory immediately
above the current directory. To get back to the root configuration
bean after navigating to a configuration or runtime bean that is
deep in the hierarchy, enter mycd("/").

Syntax:
mycd(mbeanName)
- mbeanName = Path to the configuration or runtime bean in the namespace.

Example:

wls:/mydomain/serverConfig> mycd('Servers')\n\
wls:/mydomain/serverConfig/Servers> mycd('myserver)\n\
wls:/mydomain/serverConfig/Servers/myserver>mycd('../..')\n\
wls:/mydomain/serverConfig>

After defining the help text in the resource bundle, use addHelpCommandGroup to add the
command group name to the list of command groups output by the help() command. Use
addHelpCommand to add each command in a group to the list of commands displayed by the
help('commandGroup') command. See addHelpCommandGroup and addHelpCommand in the
WLST Command Reference for Oracle WebLogic Server.

For more information on resource bundles and localization, refer to http://
download.oracle.com/javase/6/docs/api/java/util/ResourceBundle.html.

Sample Scripts For Defining new WLST Commands
The following sample script demonstrates how to define a new WLST command.

def wlstHomeSample():
 print 'Sample wlst home command'

Within this script, the wlstHomeSample() command is defined, which prints a text string:

wls:/offline> wlstHomeSample()
Sample wlst home command

When defining new WLST commands in this way, store the .py file in the WL_HOME/common/
wlst directory.

The following sample script demonstrate usage of the WLST lib directory, where layered
products and ISVs can add commands to WLST in their namespace. The script has the same
structure as the previous example. It differs only in that it is stored in the WL_HOME/common/
wlst/lib directory instead of the WL_HOME/common/wlst directory.

def wlstExampleCmd():
 print 'Example command'

Within this script, the wlstExampleCmd() command is defined, which prints a text string:

wls:/offline> wlstLibSample.wlstExampleCmd()
Example command

Note that you must create the WLST lib directory if it does not already exist.

Chapter 1
Customizing WLST

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 22 of 22

http://download.oracle.com/javase/6/docs/api/java/util/ResourceBundle.html
http://download.oracle.com/javase/6/docs/api/java/util/ResourceBundle.html

2
Creating WebLogic Domains Using WLST
Offline

You can create and configure WebLogic domains using WebLogic Scripting Tool (WLST)
offline. WLST enables you to create a new WebLogic domain or update an existing WebLogic
domain without connecting to a running WebLogic Server (that is, using WLST offline)—
supporting the same functionality as the Configuration Wizard.
For information about sample scripts that you can use to create WebLogic domains, see WLST
Offline Sample Scripts.

For more information about the Configuration Wizard, see Overview of the Configuration
Wizard in Creating WebLogic Domains Using the Configuration Wizard.

Creating and Using a Domain Template (Offline)
A domain template is a JAR file that contains domain configuration documents, applications,
security data, startup scripts, and other information needed to create a WebLogic domain.

Note

If you notice that it takes a long time to create or update a domain using WLST, set the
CONFIG_JVM_ARGS environment variable to the following value to resolve this issue:

-Djava.security.egd=file:/dev/urandom

To create and use a domain template, perform the steps described in Table 2-1.

Table 2-1 Steps for Creating a Domain Template (Offline)

To... Use this command... See...

Open an existing WebLogic
domain or select the
templates for the domain

readDomain(domainDirName)

selectTemplate(templateName,
TemplateVersion)

loadTemplates()

readDomain, selectTemplate and
loadTemplates in WLST
Command Reference for Oracle
WebLogic Server

(Optional) Modify the
WebLogic domain

Browsing and editing commands Browsing Information About the
Configuration Hierarchy (Offline)

Editing a WebLogic Domain
(Offline)

Set the password for the
default user, if it is not already
set.

The default username and
password must be set before
you can write the domain
template.

cd('/Security/domainname/User/username')

cmo.setPassword('password')

WLST Offline Sample Scripts

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 1 of 8

Table 2-1 (Cont.) Steps for Creating a Domain Template (Offline)

To... Use this command... See...

Write the domain
configuration information to a
domain template.

writeTemplate(templateName) writeTemplate in WLST
Command Reference for Oracle
WebLogic Server

Use the template to create a
domain.

createDomain(domainTemplate,

domainDir, user, password)

Note: The Configuration Wizard can also use the domain
template. See Introduction to WebLogic Domains in
Creating WebLogic Domains Using the Configuration
Wizard.

createDomain in WLST
Command Reference for Oracle
WebLogic Server

Example 2-1 shows the basic commands needed to create a domain template from an existing
domain:

Example 2-1 Creating a Domain Template From an Existing Domain

Read the domain from the domain home located at /domains/mydomain
readDomain('/domains/mydomain')

Create the template jar mydomain.jar in /templates
writeTemplate('/templates/mydomain.jar')

Creating and Updating a WebLogic Domain
Creating or updating a WebLogic domain includes three phases to the configuration session as
described in the following section.

• Load and merge the configuration using readTemplate (for creating) or readDomain (for
updating) optionally followed by one or more addTemplate() calls.

• Modify the configuration by navigating the configuration tree and updating attributes.

• Save the configuration using writeDomain (for creating), updateDomain (for updating), or
writeTemplate (for creating a template), followed by closeTemplate or closeDomain as
appropriate.

Note

WLST offline will raise an Exception on writeDomain() and updateDomain() calls, if a
port conflict is found. Duplicate port validation is triggered when enabling any port,
such as the listen port, SSL port, or administration port, that conflicts with an existing,
enabled port. To resolve this conflict, you must explicitly change the port values.

The following examples demonstrate the sequence of commands for creating a domain from a
single template and creating a domain from multiple templates. More extensive sample WLST
offline scripts are available in the following directory:

ORACLE_HOME/wlserver/common/templates/scripts/wlst

Example 2-2 shows the basic sequence of commands needed to create a domain from a
single template. This example creates a basic WebLogic Server domain from the wls.jar
template.

Chapter 2
Creating and Updating a WebLogic Domain

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 2 of 8

Example 2-2 Creating a Domain From a Single Template

Read the template to use for creating the domain
readTemplate('oracle_home/middleware/wlserver/common/templates/wls/wls.jar')

Set the listen address and listen port for the Administration Server
cd('Servers/AdminServer')
set('ListenAddress','')
set('ListenPort', 7001)

Enable SSL on the Administration Server and set the SSL listen address and
port
create('AdminServer','SSL')
cd('SSL/AdminServer')
set('Enabled', 'True')
set('ListenPort', 7002)

Set the domain password for the WebLogic Server administration user
cd('/')
cd('Security/base_domain/User/adminusername')
cmo.setPassword('adminpassword')

If the domain already exists, overwrite the domain
setOption('OverwriteDomain', 'true')

write the domain and close the template
writeDomain('/domains/mydomain')
closeTemplate()

exit()

Example 2-3 shows how to create a new domain using a domain template and one or more
extension templates. This example creates the basic WebLogic Server domain from the wls.jar
template and then extends the domain by adding the WebLogic Web Services Extension
template to the domain.

Example 2-3 Creating a Domain From Multiple Templates

Select the WebLogic domain template, and
then load it
selectTemplate('Basic WebLogic Server Domain')
selectTemplate('Oracle JRF')
loadTemplates()
Set the listen address and listen port for the Administration Server
cd('Servers/AdminServer')
set('ListenAddress','')
set('ListenPort', 7001)

Enable SSL on the Administration Server and set the SSL listen address and
port
create('AdminServer','SSL')
cd('SSL/AdminServer')
set('Enabled', 'True')

set('ListenPort', 7002)

Set the domain password for the WebLogic Server administration user
cd('/')
cd('Security/base_domain/User/adminusername')
cmo.setPassword('adminpassword')

Chapter 2
Creating and Updating a WebLogic Domain

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 3 of 8

If the domain already exists, overwrite the domain
setOption('OverwriteDomain', 'true')

write the domain and close the templates
writeDomain('/domains/mydomain')

selectTemplate('Oracle JRF')
loadTemplates()
closeTemplate()

exit()

Browsing Information About the Configuration Hierarchy (Offline)
WLST offline provides read and write access to the configuration data that is persisted in the
WebLogic domain's config directory or in a domain template JAR created using Template
Builder. This data is a collection of XML documents and expresses a hierarchy of management
objects

. The schemas that define a WebLogic domain's configuration document are in the following
locations:

• http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd

• http://xmlns.oracle.com/weblogic/security/1.0/security.xsd

• http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-
diagnostics.xsd

• In JAR files under WL_HOME/server/lib/schema, where WL_HOME is the directory in which
you install WebLogic Server. Within this directory:

– The domain.xsd document is represented in the weblogic-domain-binding.jar under
the pathname META-INF/schemas/schema-0.xsd.

– The security.xsd document is represented in the weblogic-domain-binding.jar
under the pathname META-INF/schemas/schema-1.xsd.

– The weblogic-diagnostics.xsd document is represented in the diagnostics-
binding.jar under the pathname META-INF/schemas/schema-0.xsd.

WLST represents this hierarchy as a file system. The root of the file system is the management
object that represents the WebLogic domain. Below the domain directory is a collection of
directories for managed-object types; each instance of the type is a subdirectory under the
type directory; and each management attribute and operation is a file within a directory. The
name of an instance directory matches the value of the management object's Name attribute. If
the management object does not have a Name attribute, WLST generates a directory name
using the following pattern: NO_NAME_number, where number starts at 0 (zero) and increments by
1 for each additional instance.

Chapter 2
Browsing Information About the Configuration Hierarchy (Offline)

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 4 of 8

http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd
http://xmlns.oracle.com/weblogic/security/1.0/security.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd

Note

As a performance optimization, WebLogic Server does not store most of its default
values in the domain's configuration files. In some cases, this optimization prevents
entire management objects from being displayed by WLST offline (because WebLogic
Server has never written the corresponding XML elements to the domain's
configuration files). For example, if you never modify the default logging severity level
for a WebLogic domain while the domain is active, WLST offline will not display the
domain's Log management object.

If you want to change the default value of attributes whose management object is not
displayed by WLST offline, you must first use the create command to create the
management object. Then you can cd to the management object and change the
attribute value. See create in WLST Command Reference for Oracle WebLogic
Server.

To navigate the hierarchy, you use such WLST commands as cd, ls, and pwd in a similar way
that you would navigate a file system in a UNIX or Windows command shell (see Table 2-2).

Table 2-2 Displaying WebLogic Domain Configuration Information (Offline)

To... Use this command... See this section in WLST
Command Reference for Oracle
WebLogic Server

Navigate the hierarchy of management
objects

cd(path) cd

List child attributes or management
objects for the current management
object

ls(['a' | 'c']) ls

Toggle the display of the management
object navigation path information at the
prompt

prompt(['off'|'on']) prompt

Display the current location in the
configuration hierarchy

pwd() pwd

Display all variables used by WLST dumpVariables() dumpVariables

Display the stack trace from the last
exception that occurred while performing
a WLST action

dumpStack() dumpStack

Editing a WebLogic Domain (Offline)
You can edit a WebLogic domain offline.

To edit a WebLogic domain using WLST offline, you can perform any of the tasks defined in
Table 2-3.

Chapter 2
Editing a WebLogic Domain (Offline)

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 5 of 8

Table 2-3 Editing a WebLogic Domain

To... Use this command... See this section in WLST
Command Reference for Oracle
WebLogic Server

Add an application
to a WebLogic
domain

selectTemplate(templateName)

loadTemplate(templateName)

selectTemplate and loadTemplates

Assign resources
to one or more
destinations (such
as assigning
servers to
clusters)

assign(sourceType, sourceName, destinationType,
destinationName)

assign

Unassign
resources

unassign(sourceType, sourceName, destinationType,
destinationName)

unassign

Create and delete
management
objects

create(name, childMBeanType) delete(name,
childMBeanType)

create

delete

Get and set
attribute values

get(attrName) set(attrName, value) get

set

Set configuration
options

setOption(optionName, value) setOption

Load SQL files
into a database

loadDB(dbVersion, connectionPoolName) loadDB

Note

If you notice that it takes a long time to create or update a domain using WLST, set the
CONFIG_JVM_ARGS environment variable to the following value to resolve this issue:

-Djava.security.egd=file:/dev/urandom

Alternative: Using the configToScript Command
WLST includes a command, configToScript, that reads an existing WebLogic domain and
outputs a WLST script that can recreate the WebLogic domain.

See configToScript in WLST Command Reference for Oracle WebLogic Server.

Chapter 2
Alternative: Using the configToScript Command

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 6 of 8

Note

If you use configToScript for a domain that contains other Fusion Middleware
components in addition to WebLogic Server, be aware that configToScript does not
include the configuration for those components in the resulting WLST script. Only the
WebLogic Server configuration is included in the script.

configToScript will be deprecated in a future release. Oracle recommends that you
use pack and unpack to recreate the domain on remote servers. See Overview of the
Pack and Unpack Commands in Creating Templates and Domains Using the Pack and
Unpack Commands.

Unlike creating and using a domain template, the configToScript command creates multiple
files that must be used together. (A domain template is a single JAR file.) In addition, the script
that the configToScript command creates:

• Can only be run by WLST.

A domain template can be used by WLST or the Configuration Wizard.

• Requires a WebLogic Server instance to be running. If a server isn't running, the script
starts one.

WLST offline or the Configuration Wizard can use domain templates to create WebLogic
domains without starting a server instance.

• Contains only references to applications and other resources. When you run the generated
script, the applications and resources must be accessible to the WebLogic domain through
the file system.

A domain template is a JAR file that contains all applications and resources needed to
create a WebLogic domain. Because the domain template is self-contained, you can use it
to create WebLogic domains on separate systems that do not share file systems.

Considerations for Clusters, JDBC, and JMS Resources
When using WLST offline to create or extend a clustered WebLogic domain with a template
that has applications containing application-scoped JDBC and/or JMS resources, you may
need to perform additional steps (after the domain is created or extended) to make sure that
the application and its application-scoped resources are targeted and deployed properly in a
clustered environment.

For more information on the targeting and deployment of application-scoped modules, see
Deploying Applications and Modules with weblogic.deployer in Deploying Applications to
Oracle WebLogic Server.

If you want to use JDBC resources to connect to a database, modify the environment as the
database vendor requires. Usually this entails adding driver classes to the CLASSPATH variable
and vendor-specific directories to the PATH variable. To set the environment that the sample
Derby database requires as well as add an SDK to the PATH variable and the WebLogic Server
classes to the CLASSPATH variable, invoke the following script:

(Windows) ORACLE_HOME\user_projects\domains\wl_server\setExamplesEnv.cmd
(UNIX) ORACLE_HOME/user_projects/domains/wl_server/setExamplesEnv.sh

Chapter 2
Considerations for Clusters, JDBC, and JMS Resources

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 7 of 8

Creating a Managed Server Domain on a Remote Machine
If your WebLogic domain contains multiple Managed Servers, and each Managed Server
domain directory is located on a remote machine on which the Administration Server does not
reside, you can use the WLST writeTemplate command in online mode. When you execute
the writeTemplate command while connected to the Administration Server from a remote
machine, it dynamically packs the domain on the Administration Server into a template JAR file
and transfers the template JAR to the specified directory.

The following sample WLST script demonstrates how to use writeTemplate to create or
update a Managed Server domain on a remote machine. Run the script on each remote
machine in the domain.

import os

wlsHome = os.getenv('WL_HOME')
mwHome = os.path.join(wlsHome, '..')

#Substitute the administrator user name and password values below as needed
connect('adminusername','adminpassword','localhost:7001')

#The path on the local machine where the template will be created,
#it should not already exist.
templatePath = 'user_templates/myTemplate.jar'

#get the packed template from the Administration Server
writeTemplate(templatePath)

#disconnect from online WLST connection to the Administration Server
disconnect()

#select and load the template that was downloaded from the Administration
#Server.
selectCustomTemplate(templatePath)

loadTemplates()

#specify the domain directory where the domain needs to be created
domainPath = 'domains/myRemoteDomain')

#create the domain
writeDomain(domainPath)

Note

When you use the writeDomain() command to copy the domain to the remote node,
you must have write permissions to the applications directory (c:/Oracle/
Middleware/user_projects/applications/mydomain/).

Chapter 2
Creating a Managed Server Domain on a Remote Machine

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 8 of 8

3
Managing the Server Life Cycle

You can use the WebLogic Scripting Tool (WLST) to manage and monitor the server life cycle.
During its lifetime, a server can transition through a number of operational states, such as
shutdown, starting, standby, admin, resuming, and running.
For more information about the server life cycle, see Understanding Server Life Cycle in
Administering Server Startup and Shutdown for Oracle WebLogic Server.

For information on other techniques for starting and stopping server instances, see Starting
and Stopping Servers in Administering Server Startup and Shutdown for Oracle WebLogic
Server.

Using WLST and Node Manager to Manage Servers
Node Manager is a utility that enables you to control the life cycles of multiple servers through
a single WLST session and a single network connection. (It can also automatically restart
servers after a failure.)

For more information about Node Manager, see Node Manager Overview in Administering
Node Manager for Oracle WebLogic Server.

You can use WLST to do the following with Node Manager:

• Start a Node Manager.

• Connect to a Node Manager, then use the Node Manager to start and stop servers on the
Node Manager machine. See Figure 3-1.

Figure 3-1 Starting Servers on a Machine

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 1 of 6

A Node Manager process may be associated with a specific WebLogic domain or it may be
associated with a particular machine. If associated with a domain, you can use the Node
Manager process only to control server instances in that domain. If associated with a machine,
you can use the same Node Manager process to control server instances in any WebLogic
domain, as long as the server instances reside on the same machine as the Node Manager
process.

For information about the commands that WLST can use while acting as a Node Manager
client, see Node Manager Commands in Administering Node Manager for Oracle WebLogic
Server. For information about Node Manager configuration, see Default Node Manager
Configuration Administering Node Manager for Oracle WebLogic Server.

• Connect to an Administration Server and then use the Administration Server to start and
stop servers in the domain. See Figure 3-2.

Figure 3-2 Starting Servers in a WebLogic Domain

In this case, WLST is a client of the Administration Server, and the Administration Server uses
one or more Node Managers to start Managed Servers.

For information about the life cycle commands that WLST can use while acting as an
Administration Server client, see Life Cycle Commands in WLST Command Reference for
Oracle WebLogic Server.

Using Node Manager to Start Servers on a Machine
WLST can connect to a Node Manager that is running on any machine and start one or more
WebLogic Server instances on the machine. A WebLogic domain's Administration Server does
not need to be running for WLST and Node Manager to start a server instance using this
technique.

To connect WLST to a Node Manager and start servers:

Chapter 3
Using WLST and Node Manager to Manage Servers

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 2 of 6

1. Configure Node Manager to start servers.

See Configuring Java Node Manager in Administering Node Manager for Oracle WebLogic
Server.

2. Start WLST.

3. Start Node Manager.

If Node Manager is not already running, use the startNodeManager script in either
DOMAIN_HOME/bin or WL_HOME/server/bin to start it. See Starting Java-based Node
Manager Using Scripts in Administering Node Manager for Oracle WebLogic Server.

4. Connect WLST to a Node Manager by entering the nmConnect command.

wls:/offline>nmConnect('username','password','nmHost','nmPort',
'domainName','domainDir','nmType')

For example,

nmConnect('adminusername', 'adminpassword', 'localhost', '5556',
'mydomain','c:/bea/user_projects/domains/mydomain','SSL')
Connecting to Node Manager ...
Successfully connected to Node Manager.
wls:/nm/mydomain>

For detailed information about the nmConnect command arguments, see nmConnect in
WLST Command Reference for Oracle WebLogic Server.

5. Use the nmStart command to start a server.

wls:/nm/mydomain>nmStart('AdminServer')
starting server AdminServer
...
Server AdminServer started successfully
wls:/nm/mydomain>

6. Monitor the status of the Administration Server by entering the nmServerStatus command.

wls:/nm/mydomain>nmServerStatus('serverName')
RUNNING
wls:/nm/mydomain>

7. Stop the server by entering the nmKill command.

wls:/nm/mydomain>nmKill('serverName')
Killing server AdminServer
Server AdminServer killed successfully
wls:/nm/mydomain>

For more information about WLST Node Manager commands, see Node Manager Commands
in WLST Command Reference for Oracle WebLogic Server.

Using Node Manager to Start Managed Servers in a WebLogic Domain or
Cluster

To start Managed Servers and clusters using Node Manager:

1. Configure Node Manager to start servers.

See Configuring Java Node Manager in Administering Node Manager for Oracle WebLogic
Server.

2. Start WLST.

Chapter 3
Using WLST and Node Manager to Manage Servers

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 3 of 6

3. Start Node Manager.

If Node Manager is not already running, use the startNodeManager script in either
domain_home/bin or WL_HOME/server/bin to start it. For more information, see Starting
Java-based Node Manager Using Scripts in Administering Node Manager for Oracle
WebLogic Server.

4. Start an Administration Server.

5. Connect WLST to the Administration Server instance using the connect command.

wls:/offline> connect('username','password')

Connecting to weblogic server instance running at t3://localhost:7001 as
username weblogic ...
Successfully connected to Admin Server 'myserver' that belongs to domain
'mydomain'.
Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be used
instead.

wls:/mydomain/serverConfig>

For detailed information about connect command arguments, see connect in WLST
Command Reference for Oracle WebLogic Server.

6. Do any of the following:

• To start a Managed Server, enter the following command, where managedServerName is
the name of the server.

start('managedServerName','Server')

• To start a cluster, enter the following command, where clusterName is the name of the
cluster.

start('clusterName','Cluster')

See start in WLST Command Reference for Oracle WebLogic Server.

Starting and Managing Servers Without Node Manager
You can start and manage an Administration Server without Node Manager.

If you do not use Node Manager, WLST cannot start Managed Servers. For information on
other techniques for starting and stopping server instances, see Starting and Stopping Servers
in Administering Server Startup and Shutdown for Oracle WebLogic Server.

The following sections describe starting and managing server state without using the Node
Manager:

Starting an Administration Server Without Node Manager
To start an Administration Server without using Node Manager:

1. If you have not already done so, use WLST to create a WebLogic domain.

See Creating WebLogic Domains Using WLST Offline.

2. Open a shell (command prompt) on the computer on which you created the domain.

3. Change to the directory in which you located the domain.

4. Set up your environment by running one of the following scripts.

Chapter 3
Starting and Managing Servers Without Node Manager

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 4 of 6

• bin\setDomainEnv.cmd (Windows)

• bin/setDomainEnv.sh (UNIX: Oracle recommends that you run this script from the
Korn shell.)

On Windows, you can use a shortcut on the Start menu to set your environment variables
and invoke WLST (Tools > WebLogic Scripting Tool).

5. Invoke WLST by as described in Invoking WLST.

The WLST prompt appears.

wls:/offline>

6. Use the WLST startServer command to start the Administration Server.

startServer([adminServerName], [domainName], [url], [adminusername],
[adminpassword],[domainDir], [block], [timeout], [serverLog],
[systemProperties], [jvmArgs] [spaceAsJvmArgsDelimiter])

For detailed information about startServer command arguments, see startServer in
WLST Command Reference for Oracle WebLogic Server.

For example,

wls:offline/>startServer('AdminServer','mydomain','t3://localhost:7001',
'adminusername','adminpassword','c:/domains/mydomain',
'true',60000,'false')

After WLST starts a server instance, the server runs in a separate process from WLST; exiting
WLST does not shut down the server.

Managing Server State Without Node Manager
WLST life cycle commands enable you to control the states through which a server instance
transitions. See Life Cycle Commands in Administering Node Manager for Oracle WebLogic
Server. Oracle recommends that you enable and use the WebLogic domain's administration
port when you connect to servers and issue administrative commands. See Securing the
WLST Connection.

The commands in Example 3-1 explicitly move a server instance through the following server
states: RUNNING->ADMIN->RUNNING->SHUTDOWN.

Start WebLogic Server before running this script.

Example 3-1 WLST Life Cycle Commands

Specify the SSL arguments when starting WLST using JKS Custom Trust keystore.
export WLST_PROPERTIES="-
Dweblogic.security.SSL.trustedCAKeyStore=<custom_key_store_location>/trust.jks"
-Dweblogic.security.SSL.ignoreHostnameVerification=true

./wlst.sh

Connect to the Administration Server
connect("username","password","t3://localhost:7001")

First enable the Administration Port. This is not a requirement.
After you enable the Administration Port in a domain, WebLogic Server
persists the setting in its configuration files. You do not need to repeat
the process in future WLST sessions.
edit()
startEdit()
cmo.setAdministrationPortEnabled(1)

Chapter 3
Starting and Managing Servers Without Node Manager

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 5 of 6

activate(block="true")

check the state of the server
state("myserver")

now move the server from RUNNING state to ADMIN
suspend("myserver", block="true")

reconnect to the server
exit()
connect("username","password","t3://localhost:7001")

check the state
state("myserver")

now resume the server to RUNNING state
resume("myserver",block="true")

check the state
state("myserver")

now take a thread dump of the server
threadDump("./dumps/threadDumpAdminServer.txt")

finally shutdown the server
shutdown(block="true")

Chapter 3
Starting and Managing Servers Without Node Manager

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 6 of 6

4
Navigating MBeans (WLST Online)

You can navigate, interrogate, and edit MBeans using WebLogic Scripting Tool (WLST) online.

Navigating and Interrogating MBeans
WLST online provides simplified access to MBeans. While JMX APIs require you to use JMX
object names to interrogate MBeans, WLST enables you to navigate a hierarchy of MBeans in
a fashion similar to navigating a hierarchy of files in a file system.

WebLogic Server organizes its MBeans in a hierarchical data model. In the WLST file system,
MBean hierarchies correspond to drives; MBean types and instances are directories; MBean
attributes and operations are files. WLST traverses the hierarchical structure of MBeans using
commands such as cd, ls, and pwd in a way that’s similar to how you would navigate a file
system in a UNIX or Windows command shell. After navigating to an MBean instance, you
interact with the MBean using WLST commands.

In the configuration hierarchy, the root directory is DomainMBean (see DomainMBean in the
MBean Reference for Oracle WebLogic Server). The MBean type is a subdirectory under the
root directory. Each instance of the MBean type is a subdirectory under the MBean type
directory and MBean attributes and operations are nodes (like files) under the MBean instance
directory.

The name of the MBean instance directory matches the value of the MBean's Name attribute. If
the MBean does not have a Name attribute, WLST generates a directory name using the
following pattern: NO_NAME_number, where number starts at 0 (zero) and increments by 1 for
each additional MBean instance.

Figure 4-1 Configuration MBean Hierarchy

WLST first connects to a WebLogic Server instance at the root of the server's configuration
MBeans, a single hierarchy whose root is DomainMBean. WLST commands provide access to all
the WebLogic Server MBean hierarchies within a WebLogic domain, such as a server's run-
time MBeans, run-time MBeans for domain-wide services, and an editable copy of all the

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 1 of 9

configuration MBeans in the domain. See Tree Commands in WLST Command Reference for
Oracle WebLogic Server.

For more information about MBean hierarchies, see WebLogic Server MBean Data Model in
Developing Custom Management Utilities Using JMX for Oracle WebLogic Server.

Changing the Current Management Object
WLST online provides a variable, cmo, that represents the current management object. You can
use this variable to perform any get, set, or invoke method on the management object. For
example, the cmo variable enables the following command:

wls:/mydomain/edit> cmo.setAdministrationPort(9092)

The variable is available in all WLST hierarchies except custom and jndi.

WLST sets the value of cmo to the current WLST path. Each time you change directories,
WLST resets the value of cmo to the current WLST path. For example, when you change to the
serverRuntime hierarchy, cmo is set to ServerRuntime. When you change to the serverConfig
hierarchy, cmo is set to DomainMBean. If you change to the Servers directory under
DomainMBean, cmo is set to an instance of ServerMBean (see Example 4-1).

Example 4-1 Changing the Current Management Object

wls:/offline> connect('username','password')
Connecting to weblogic server instance running at t3://localhost:7001 as username
weblogic ...
Successfully connected to Admin Server 'myserver' that belongs to domain 'mydomain'.
Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be used instead.
wls:/mydomain/serverConfig> cmo
[MBeanServerInvocationHandler]com.bea:Name=mydomain,Type=Domain
wls:/mydomain/serverConfig> cd('Servers')
wls:/mydomain/serverConfig/Servers> cmo
[MBeanServerInvocationHandler]com.bea:Name=mydomain,Type=Domain
wls:/mydomain/serverConfig/Servers> cd('myserver')
wls:/mydomain/serverConfig/Servers/myserver> cmo
[MBeanServerInvocationHandler]com.bea:Name=myserver,Type=Server

For more information on WLST variables, see WLST Variable Reference in WLST Command
Reference for Oracle WebLogic Server.

Navigating and Displaying Configuration MBeans Example
The commands in Example 4-2 instruct WLST to connect to an Administration Server instance
and display attributes, operations, and child MBeans in DomainMBean.

Note

The read, write, and execute indicators assume that there are no restrictions to the
current user's access privileges. A specific user might not be able to read values that
WLST indicates as readable because the user might not have been given appropriate
permission by the policies in the WebLogic Security realm. See Default Security
Policies for MBeans in the MBean Reference for Oracle WebLogic Server.

To navigate back to a parent MBean, enter the cd('..') command:

Chapter 4
Navigating and Interrogating MBeans

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 2 of 9

wls:/mydomain/serverConfig/Servers/myserver/Log/myserver> cmo
[MBeanServerInvocationHandler]mydomain:Name=myserver,Server=myserver,Type=Log
wls:/mydomain/serverConfig/Servers/myserver/Log/myserver> cd('..')
wls:/mydomain/serverConfig/Servers/myserver/Log>
wls:/mydomain/serverConfig/Servers/myserver/Log> cmo
[MBeanServerInvocationHandler]mydomain:Name=myserver,Type=Server

After navigating back to the parent MBean type, WLST changes the cmo from LogMBean to
ServerMBean.

To get back to the root MBean after navigating to an MBean that is deep in the hierarchy, enter
the cd('/') command.

Example 4-2 Navigating and Displaying Configuration MBeans

wls:/offline> connect('username','password')
wls:/mydomain/serverConfig> ls()
dr-- AdminConsole
dr-- AppDeployments
dr-- BridgeDestinations
dr-- Clusters
dr-- CoherenceClusterSystemResources
dr-- CoherenceServers
dr-- CustomResources
dr-- DeploymentConfiguration
dr-- Deployments
...
-r-- AdminServerName myserver
-r-- AdministrationMBeanAuditingEnabled false
-r-- AdministrationPort 9002
-r-- AdministrationPortEnabled false
-r-- AdministrationProtocol t3s
-r-- ArchiveConfigurationCount 5
...
wls:/mydomain/serverConfig> cd('Servers')
wls:/mydomain/serverConfig/Servers> ls()
dr-- AdminServer
dr-- managed1
dr-- myserver
wls:/mydomain/serverConfig/Servers> cd('myserver')
wls:/mydomain/serverConfig/Servers/myserver> ls()
dr-- COM
dr-- CandidateMachines
dr-- Cluster
dr-- CoherenceClusterSystemResource
dr-- DefaultFileStore
dr-- ExecutiveQueues
dr-- FederationServices
dr-- IIOP
dr-- JTAMigrateableTarget
dr-- Log
dr-- Machine
dr-- NetworkAccessPoints
...
-r-- AcceptBacklog 50
-r-- AdminReconnectIntervalSeconds 10
-r-- AdministrationPort 0
-r-- AdministrationProtocol t3s
-r-- AutoKillIfFailed false
-r-- AutoMigrationEnabled false
-r-- AutoRestart true
....

Chapter 4
Navigating and Interrogating MBeans

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 3 of 9

wls:/mydomain/serverConfig/Servers/myserver> cd('Log/myserver')
wls:/mydomain/serverConfig/Servers/myserver/Log/myserver> ls()
dr-- DomainLogBroadcastFilter
dr-- LogFileFilter
dr-- MemoryBufferFilter
dr-- StdoutFilter

-r-- BufferSize 8
-r-- DateForatPattern MMM d, yyyy h:mm:ss a z
-r-- DomainLogBroadcastFilter null
-r-- DomainLogBroadcastSeverity Warning
-r-- DomainLogBroadcasterBufferSize 1
-r-- FileCount 7
-r-- FileMinSize 500
-r-- FileName myserver.log
-r-- FileTimeSpan 24
-r-- LogFileFilter null
-r-- LogFileRotationDir null
-r-- LogFileSeverity Debug
-r-- LoggerSeverity Info
-r-- LoggerSeverityProperties null
-r-- MemoryBufferFilter null
-r-- MemoryBufferSeverity Debug
-r-- MemoryBufferSize 500
-r-- Name myserver
-r-- Notes null
-r-- NumberOfFilesLimited false
-r-- RedirectStderrToServerLogEnabled false
-r-- RedirectStdoutToServerLogEnabled false
-r-- RotateLogOnStartup true
-r-- RotationTime 00:00
-r-- RotationType bySize
-r-- ServerLogBridgeUseParentLoggersEnabled false
-r-- StdoutFilter null
-r-- StdoutFormat standard
-r-- StdoutLogStack true
-r-- StdoutSeverity Warning
-r-- Type Log

-r-x freezeCurrentValue Void : String(attributeName)

-r-x isSet Boolean : String(propertyName)
String(propertyName)
-r-x unSet Void : String(propertyName)

In the ls command output information, d designates an MBean with which you can use the cd
command (analogous to a directory in a file system), r indicates a readable property, w
indicates a writeable property, and x an executable operation.

Browsing Runtime MBeans
Similar to the configuration information, WebLogic Server run-time MBeans are arranged in a
hierarchical data structure. When connected to an Administration Server, you access the run-
time MBean hierarchy by entering the serverRuntime or the domainRuntime command.

The serverRuntime command places WLST at the root of the server run-time management
objects, ServerRuntimeMBean; the domainRuntime command, at the root of the domain-wide
run-time management objects, DomainRuntimeMBean. When connected to a Managed Server,
the root of the run-time MBeans is ServerRuntimeMBean. The domain run-time MBean

Chapter 4
Browsing Runtime MBeans

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 4 of 9

hierarchy exists on the Administration Server only; you cannot use the domainRuntime
command when connected to a Managed Server.

See ServerRuntimeMBean and DomainRuntimeMBean in the MBean Reference for Oracle
WebLogic Server.

Using the cd command, WLST can navigate to any of the run-time child MBeans. The
navigation model for run-time MBeans is the same as the navigation model for configuration
MBeans. However, run-time MBeans exist only on the same server instance as their underlying
managed resources (except for the domain-wide run-time MBeans on the Administration
Server) and they are all un-editable.

Navigating and Displaying Runtime MBeans Example
The commands in Example 4-3 instruct WLST to connect to an Administration Server instance,
navigate, and display server and domain run-time MBeans.

Example 4-3 Navigating and Displaying Runtime MBeans

wls:/offline > connect('username','password')
wls:/mydomain/serverConfig> serverRuntime()
Location changed to serverRuntime tree. This is a read-only tree with
ServerRuntimeMBean as the root.
For more help, use help('serverRuntime')
wls:/mydomain/serverRuntime> ls()
dr-- ApplicationRuntimes
dr-- ClusterRuntime
dr-- ConnectorServiceRuntime
...
dr-- JDBCServiceRuntime
dr-- JMSRuntime
dr-- JTARuntime
dr-- JVMRuntime
dr-- LibraryRuntimes
dr-- MailSessionRuntimes
dr-- RequestClassRuntimes
dr-- ServerChannelRuntimes
dr-- ServerSecurityRuntime
dr-- ServerServices
dr-- ThreadPoolRuntime
dr-- WLDFAccessRuntime
dr-- WLDFRuntime
dr-- WTCRuntime
dr-- WorkManagerRuntimes

-r-- ActivationTime 1093958848908
-r-- AdminServer true
-r-- AdminServerHost
-r-- AdminServerListenPort 7001
-r-- AdminServerListenPortSecure false
-r-- AdministrationPort 9002
-r-- AdministrationPortEnabled false
...
wls:/mydomain/serverRuntime> domainRuntime()
Location changed to domainRuntime tree. This is a read-only tree with DomainRuntimeMBean
as the root.
For more help, use help('domainRuntime')
wls:/mydomain/domainRuntime> ls()
dr-- DeployerRuntime
...
dr-- ServerLifecycleRuntimes

Chapter 4
Browsing Runtime MBeans

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 5 of 9

dr-- ServerRuntimes

-r-- ActivationTime Tue Aug 31 09:27:22 EDT 2004
-r-- Clusters null
-rw- CurrentClusterDeploymentTarget null
-rw- CurrentClusterDeploymentTimeout 0
-rw- Name mydomain
-rw- Parent null
-r-- Type DomainRuntime

-r-x lookupServerLifecycleRuntime javax.management.ObjectName

: java.lang.String
wls:/mydomain/domainRuntime>

The commands in Example 4-4 instruct WLST to navigate and display run-time MBeans on a
Managed Server instance.

Example 4-4 Navigating and Displaying Runtime MBeans on a Managed Server

wls:/offline> connect('username','password','t3://localhost:7701')
Connecting to weblogic server instance running at t3://localhost:7701 as username
weblogic ...
Successfully connected to managed Server 'managed1' that belongs to domain 'mydomain'.
Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be used instead.
wls:/mydomain/serverConfig> serverRuntime()
wls:/mydomain/serverRuntime> ls()
dr-- ApplicationRuntimes
dr-- ClusterRuntime
...
dr-- JMSRuntime
dr-- JTARuntime
dr-- JVMRuntime
dr-- LibraryRuntimes
dr-- MailSessionRuntimes
dr-- RequestClassRuntimes
dr-- ServerChannelRuntimes
dr-- ServerSecurityRuntime
dr-- ThreadPoolRuntime
dr-- WLDFAccessRuntime
dr-- WLDFRuntime
dr-- WTCRuntime
dr-- WorkManagerRuntimes
-r-- ActivationTime 1093980388931
-r-- AdminServer false
-r-- AdminServerHost localhost
-r-- AdminServerListenPort 7001
-r-- AdminServerListenPortSecure false
-r-- AdministrationPort 9002
-r-- AdministrationPortEnabled false
...
wls:/mydomain/serverRuntime>

Navigating Among MBean Hierarchies
You can navigate among the MBean hierarchies.

To navigate to a configuration MBean from the run-time hierarchy, enter the serverConfig
command or, if connected to an Administration Server only, the domainConfig command. This

Chapter 4
Navigating Among MBean Hierarchies

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 6 of 9

places WLST at the configuration MBean to which you last navigated before entering the
serverRuntime or domainRuntime command.

The commands in the following example instruct WLST to navigate from the run-time MBean
hierarchy to the configuration MBean hierarchy and back:

wls:/mydomain/serverRuntime/JVMRuntime/managed1> serverConfig()
Location changed to serverConfig tree. This is a read-only tree with DomainMBean as the
root.
For more help, use help('serverConfig')
wls:/mydomain/serverConfig> cd ('Servers/managed1')
wls:/mydomain/serverConfig/Servers/managed1> cd('Log/managed1')
wls:/mydomain/serverConfig/Servers/managed1/Log/managed1> serverRuntime()
wls:/mydomain/serverRuntime/JVMRuntime/managed1>

Entering the serverConfig command from the run-time MBean hierarchy again places WLST
at the configuration MBean to which you last navigated.

wls:/mydomain/serverRuntime/JVMRuntime/managed1> serverConfig()
wls:/mydomain/serverConfig/Servers/managed1/Log/managed1>

See Tree Commands in WLST Command Reference for Oracle WebLogic Server.

Alternatively, you can use the currentTree command to store your current MBean hierarchy
location and to return to that location after navigating away from it. See currentTree in WLST
Command Reference for Oracle WebLogic Server.

For example:

wls:/mydomain/serverConfig/Servers/managed1/Log/managed1> myLocation = currentTree()
wls:/mydomain/serverConfig/Servers/managed1/Log/managed1> serverRuntime()
wls:/mydomain/serverRuntime> cd('JVMRuntime/managed1')
wls:/mydomain/serverRuntime/JVMRuntime/managed1>myLocation()
wls:/mydomain/serverConfig/Servers/managed1/Log/managed1>

Finding MBeans and Attributes
To locate a particular MBean and attribute, you use the find command. WLST returns the
pathname to the MBean that stores the attribute and its value.

You can use the getMBean command to return the MBean specified by the path. See find and
getMBean in WLST Command Reference for Oracle WebLogic Server.

For example:

wls:/mydomain/edit !> find('DebugEjbCaching')

finding 'DebugEjbCaching' in all registered MBean instances ...

/Servers/AdminServer/ServerDebug/AdminServer false

/Servers/managed2/ServerDebug/managed2 false

wls:/mydomain/edit !> bean=getMBean('Servers/managed2/ServerDebug/managed2')
wls:/mydomain/edit !> print bean
[MBeanServerInvocationHandler]bea.com:Name=managed2,Type=ServerDebug,
Server=managed2
wls:/mydomain/edit !>

Chapter 4
Finding MBeans and Attributes

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 7 of 9

Note

getMBean does not throw an exception when an instance is not found.

Alternatively, the getPath command returns the MBean path for a specified MBean instance or
ObjectName for the MBean in the current MBean hierarchy. See getPath in WLST Command
Reference for Oracle WebLogic Server.

For example:

wls:/mydomain/serverConfig> path=getPath('com.bea:Name=myserver,Type=Server')
wls:/mydomain/serverConfig> print path
Servers/myserver

Accessing Other WebLogic MBeans and Custom MBeans
In addition to accessing WebLogic Server MBeans, WLST can access MBeans that WebLogic
Integration and WebLogic Portal provide. It can also access MBeans that you create and
register (custom MBeans) to configure or monitor your own resources.

(For information on creating and registering your own MBeans, see Instrumenting and
Registering Custom MBeans in Developing Manageable Applications Using JMX for Oracle
WebLogic Server.)

To navigate other WebLogic MBeans or custom MBeans, enter the custom command or the
domainCustom command, depending on the MBean server (Runtime or Domain Runtime) on
which the custom MBean is registered. You can use custom when WLST is connected to an
Administration Server or a Managed Server instance. You can use domainCustom only when
WLST is connected to an Administration Server. See Accessing Custom MBeans in the
Domain Runtime MBean Server, for information about domainCustom.

WLST treats all non-WebLogic Server MBeans as custom MBeans:

• Instead of arranging custom MBeans in a hierarchy, WLST organizes and lists custom
MBeans by JMX object name. All MBeans with the same JMX domain name are listed in
the same WLST directory. For example, if you register all of your custom MBeans with
JMX object names that start with mycompany:, then WLST arranges all of your MBeans in a
directory named mycompany.

• Custom MBeans cannot use the cmo variable because a stub is not available.

• Custom MBeans are editable, but not subject to the WebLogic Server change
management process. You can use MBean get, set, invoke, and create and delete
commands on them without first entering the startEdit command. See Using WLST
Online to Update an Existing WebLogic Domain. Note that this applies to the custom()
tree, but not to the editCustom() tree.

Here is an example of navigating custom MBeans on the Runtime MBean Server:

wls:/mydomain/serverConfig> custom()
Location changed to custom tree. This is a writable tree with No root.
For more help, use help('custom')
wls:/mydomain/custom> ls()
drw- mycompany
drw- anothercompany
wls:/mydomain/custom> cd("mycompany")
wls:/mydomain/custom/mycompany> ls()
drw- mycompany:y1=x

Chapter 4
Accessing Other WebLogic MBeans and Custom MBeans

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 8 of 9

drw- mycompany:y2=x
wls:/mydomain/custom/mycompany> cd("mycompany:y1=x")
wls:/mydomain/custom/mycompany/mycompany:y1=x> ls()
-rw- MyAttribute 10
wls:/mydomain/custom/mycompany/mycompany:y1=x>

Accessing Custom MBeans in the Domain Runtime MBean Server
Use the domainCustom() command to browse and invoke methods or perform operations on
custom MBeans that are registered in the Domain Runtime MBean Server. This is similar to
using the custom() command to access custom MBeans that are registered in the Runtime
MBean Server, as described in Accessing Other WebLogic MBeans and Custom MBeans. You
can use the domainCustom() command only when WLST is connected to the Administration
Server.

For information on using domainCustom(), see domainCustom in WLST Command Reference
for Oracle WebLogic Server.

For information on how to access custom MBeans in the Domain Runtime MBean server, see
Make Local Connections to the Domain Runtime MBean Server in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server. For information on creating and
registering your own MBeans, see Instrumenting and Registering Custom MBeans in
Developing Manageable Applications Using JMX for Oracle WebLogic Server.

Accessing Custom MBeans in the Edit MBean Server
Use the editCustom() command to browse, change and invoke methods or perform
operations on custom MBeans that are registered in the Edit MBean Server. This is similar to
using the custom() command, but custom MBeans in the Edit MBeanServer also allow edit
operations. You can use the editCustom() command only when WLST is connected to the
Administration Server.

For more information about editCustom(), see editCustom in the WLST Command Reference
for Oracle WebLogic Server.

Oracle system components, such as Oracle HTTP Server, may define custom MBeans that are
present in the Edit MBeanServer. These MBeans are editable and are subject to the WebLogic
Server change-managed process.

Chapter 4
Accessing Other WebLogic MBeans and Custom MBeans

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 9 of 9

5
Configuring Existing WebLogic Domains

You can use WebLogic Scripting Tool (WLST) both online and offline to update an existing
WebLogic domain.

Using WLST Online to Update an Existing WebLogic Domain
Because WLST online interacts with an active WebLogic domain, all online changes to a
domain are controlled by the change management process, which loosely resembles a
database transaction.

For more information on making and managing configuration changes, see Configuration
Change Management Process in Understanding Domain Configuration for Oracle WebLogic
Server.

Table 5-1 describes the steps for using WLST online to update an existing WebLogic domain.

Table 5-1 Steps for Updating an Existing WebLogic Domain (Online)

To... Use this command... See this section in WLST Command
Reference for Oracle WebLogic
Server:

Access the edit MBean hierarchy edit()

This command places WLST at the root
of the edit MBean hierarchy, which is the
editable DomainMBean.

edit

Obtain a lock on the current
configuration

To indicate that configuration changes
are in process, an exclamation point (!)
appears at the end of the WLST
command prompt.

startEdit([waitTimeInMillis],
[timeoutInMillis], [exclusive])

startEdit

Modify the WebLogic domain Browsing and online editing commands Browse Commands

Editing Commands

(Optional) Validate your edits validate() validate

Save your changes save() save

Distribute your changes to the working
configuration MBeans on all servers in
the WebLogic domain

activate([timeout], [block]) activate

Release your lock on the configuration stopEdit([defaultAnswer]) stopEdit

(Optional) Determine if a change you
made to an MBean attribute requires
you to re-start servers

You can use the showChanges
command to determine the changes you
made to the configuration.

isRestartRequired([attributeNam
e])

isRestartRequired

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 1 of 13

The WLST online script in Example 5-1 connects WLST to an Administration Server, initiates
an edit session that creates a Managed Server, saves and activates the change, initiates
another edit session, creates a startup class, and targets it to the newly created server.

Example 5-1 Creating a Managed Server

connect("username","password")
edit()
startEdit()
svr = cmo.createServer("managedServer")
svr.setListenPort(8001)
svr.setListenAddress("address")
save()
activate(block="true")

startEdit()
sc = cmo.createStartupClass("my-startupClass")
sc.setClassName("com.bea.foo.bar")
sc.setArguments("foo bar")

get the server mbean to target it
tBean = getMBean("Servers/managedServer")
if tBean != None:
 print "Found our target"
 sc.addTarget(tBean)
save()
activate(block="true")
disconnect()
exit()

Tracking Configuration Changes
For all changes that are initiated by WLST, you can use the showChanges command, which
displays all the changes that you made to the current configuration from the start of the WLST
edit session, including any MBean operations that were implicitly performed by the server. See
Example 5-2.

Example 5-2 Displaying Changes

connect("username","password")
wls:/mydomain/serverConfig> edit()
wls:/mydomain/edit> startEdit()
Starting an edit session ...
Started edit session, please be sure to save and activate your
changes once you are done.
wls:/mydomain/edit !> cmo.createServer('managed2')
[MBeanServerInvocationHandler]mydomain:Name=managed2,Type=Server
wls:/mydomain/edit !> cd('Servers/managed2')
wls:/mydomain/edit/Servers/managed2 !> cmo.setListenPort(7702)
wls:/mydomain/edit/Servers/managed2 !> cmo.setListenAddress("localhost")
wls:/mydomain/edit/Servers/managed2 !> showChanges()
Changes that are in memory and saved to disc but not yet activated are:

All changes that are made but not yet activated are:

MBean Changed : com.bea:Name=Len,Type=Domain
Operation Invoked : create
Attribute Modified : Servers
Attributes Old Value : null
Attributes New Value : managed2
Server Restart Required : false

Chapter 5
Using WLST Online to Update an Existing WebLogic Domain

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 2 of 13

MBean Changed : com.bea:Name=managed2,Type=Server
Operation Invoked : modify
Attribute Modified : ListenPort
Attributes Old Value : null
Attributes New Value : 7702
Server Restart Required : false

wls:/mydomain/edit/Servers/managed2 !> save()
Saving all your changes ...
Saved all your changes successfully.
wls:/mydomain/edit !> activate()
Activating all your changes, this may take a while ...
The edit lock associated with this edit session is released
once the activation is completed.
Activation completed
wls:/mydomain/edit/Servers/managed2>

The WLST online script in Example 5-3 connects WLST to a running server instance as an
administrator, gets the activation task, and prints the user and the status of the task. It also
prints all the changes that took place.

The getActivationTask function provides information about the activation request and returns
the latest ActivationTaskMBean which reflects the state of changes that a user is currently
making or made recently in the current WLST session. You invoke the methods that this
interface provides to get information about the latest activation task in progress or just
completed. For detailed information, see ActivationTaskMBean in the MBean Reference for
Oracle WebLogic Server.

Example 5-3 Checking the Activation Task

at = getActivationTask()
changes = at.getChanges()
newstate = at.getState()
print "The user for this Task is "+at.getUser()+ "and the state is:"
print newstate
print "The changes are:"
print changes

Undoing or Canceling Changes
WLST offers two commands to undo or cancel changes:

• The undo command reverts all unsaved or unactivated edits.

You specify whether to revert all unactivated edits (including those that have been saved to
disk), or all edits made since the last save operation. See undo in WebLogic Scripting Tool
Command Reference.

• The cancelEdit command releases the edit lock and discards all unsaved changes. See
cancelEdit in WLST Command Reference for Oracle WebLogic Server.

Additional Operations and Attributes for Change Management
The standard change-management commands described in the previous section are
convenience commands for invoking operations in the ConfigurationManagerMBean. In
addition to these operations, the ConfigurationManagerMBean contains attributes and
operations that describe edit sessions. For detailed information, see
ConfigurationManagerMBean in the MBean Reference for Oracle WebLogic Server.

Chapter 5
Using WLST Online to Update an Existing WebLogic Domain

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 3 of 13

To access this MBean, use the WLST getConfigManager command. See getConfigManager in
WLST Command Reference for Oracle WebLogic Server.

The WLST online script in Example 5-4 connects WLST to a server instance as an
administrator, checks if the current editor making changes is not the administrator, then
cancels the configuration edits. The script also purges all the completed activation tasks. You
can use this script to make a fresh start to edit changes, but you should verify that the changes
made by other editors are not needed.

Example 5-4 Using the Configuration Manager

connect('adminusername','adminpassword')
user = cmgr.getCurrentEditor()
if user != "weblogic":
 cmgr.undo()
 cmgr.cancelEdit()
cmgr.purgeCompletedActivationTasks()

Using WLST Offline to Update an Existing WebLogic Domain
You can update an existing WebLogic domain using WLST offline.

Note

Oracle recommends that you do not use WLST offline to manage the configuration of
an active WebLogic domain. Offline edits are ignored by running servers and can be
overwritten by JMX clients such as WLST online or the WebLogic Remote Console.

The commands in the following table are used to read an existing domain, update the
domain as needed, and close the domain in offline mode. During this process, if a
connection factory is targeted to a subdeployment, after running the updateDomain
command and restarting the domain, default-targeting-enabled is set to true for
the connection factory.

To update an existing WebLogic domain using WLST offline, perform the steps described in
Table 5-2.

Table 5-2 Steps for Updating an Existing WebLogic Domain (Offline)

To... Use this command... See ...

Open an existing
WebLogic domain
for update

readDomain(domainDirName) readDomain in WLST Command Reference for Oracle
WebLogic Server

Extend the current
WebLogic domain
(optional)

selectTemplate(templateName)

loadTemplates()

selectTemplate and loadTemplates in WLST Command
Reference for Oracle WebLogic Server

Modify the
WebLogic domain
(optional)

Browsing and editing commands Browsing Information About the Configuration
Hierarchy (Offline)

Editing a WebLogic Domain (Offline)

Save the WebLogic
domain

updateDomain() updateDomain in WLST Command Reference for
Oracle WebLogic Server

Close the
WebLogic domain

closeDomain() closeDomain in WLST Command Reference for Oracle
WebLogic Server

Chapter 5
Using WLST Offline to Update an Existing WebLogic Domain

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 4 of 13

The WLST Offline script in Example 5-5 disables the SSL/TLS requirements that are typically
required when a domain is in secured production mode.

It uses WLST Offline to disable the administration port, enable plain-text HTTP ports, and
disable SSL/TLS. It also disables secure replication on the clusters in the domain.

Example 5-5 Disabling SSL/TLS on a Domain in Secured Production Mode

readDomain('DOMAIN_HOME')
cd('/')
cmo.setAdministrationPortEnabled(false)
cmo.setListenPortEnabled(true)
cmo.setSSLEnabled(false)
cd('/Clusters')
redirect('/dev/null','false')
clusters=ls(returnMap='true')
redirect('/dev/null','true')

for cls in clusters:
 cd('/Clusters/' + cls)
 # Set replication to secure
 cmo.setSecureReplicationEnabled(false)

updateDomain()
closeDomain()

Managing Security Data (WLST Online)
You can manage security data, such as authentication providers, using WLST online.

In the WebLogic Security Service, an Authentication provider is the software component that
proves the identity of users or system processes. An Authentication provider also remembers,
transports, and makes that identity information available to various components of a system
when needed.

A security realm can use different types of Authentication providers to manage different sets of
users and groups. (See Authentication Providers in Developing Security Providers for Oracle
WebLogic Server. You can use WLST to invoke operations on the following types of
Authentication providers:

• The default WebLogic Server Authentication provider, AuthenticatorMBean. By default, all
security realms use this Authentication provider to manage users and groups.

• Custom Authentication providers that extend
weblogic.security.spi.AuthenticationProvider and extend the optional Authentication
SSPI MBeans. See SSPI MBean Quick Reference in Developing Security Providers for
Oracle WebLogic Server

For information about additional tasks that the AuthenticationProvider MBeans support, see
AuthenticationProviderMBean in the MBean Reference for Oracle WebLogic Server.

Chapter 5
Managing Security Data (WLST Online)

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 5 of 13

Note

It is possible to use WLST offline to edit certain types of security data, such as
authentication providers. However, we recommend that you use WLST online
whenever possible and only use WLST offline to edit security data if required by
constraints in your environment .

The following sections describe basic tasks for managing users and groups using WLST.

Determining If You Need to Access the Edit Hierarchy
If you are using WLST to change the configuration of a security MBean, you must access the
edit hierarchy and start an edit session. For example, if you change the value of the
LockoutThreshold attribute in UserLockoutManagerMBean, you must be in the edit hierarchy.

If you invoke security provider operations to add, modify, or remove data in a security provider
data store, WLST does not allow you to be in the edit hierarchy. Instead, invoke these
commands from the serverConfig or domainConfig hierarchy. For example, you cannot invoke
the createUser operation in an AuthenticatorMBean MBean from the edit hierarchy. WLST
enforces this restriction to prevent the possibility of incompatible changes. For example, an edit
session could contain an unactivated change that removes a security feature and will invalidate
modifications to the provider's data.

Creating a User
To create a user, invoke the UserEditorMBean.createUser method, which is extended by the
security realm's AuthenticationProvider MBean. See the createUser method of the
UserEditorMBean in the MBean Reference for Oracle WebLogic Server.

The method requires three input parameters. The password must be at least eight characters,
with one special character or numeric character.

username password user-description

WLST cannot invoke this command from the edit hierarchy, but it can invoke the command
from the serverConfig or domainConfig hierarchy.

The following WLST online script invokes createUser on the default authentication provider.

Example 5-6 Creating a User

from weblogic.management.security.authentication import UserEditorMBean

print "Creating a user ..."
atnr=cmo.getSecurityConfiguration().getDefaultRealm().lookupAuthentication
Provider("DefaultAuthenticator")
atnr.createUser('new_user','adminpassword','new_admin')
print "Created user successfully"

Adding a User to a Group
To add a user to a group, invoke the GroupEditorMBean.addMemberToGroup method, which is
extended by the security realm's AuthenticationProvider MBean. See the
addMemberToGroup method in the MBean Reference for Oracle WebLogic Server.

The method requires two input parameters:

Chapter 5
Managing Security Data (WLST Online)

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 6 of 13

groupname username

WLST cannot invoke this command from the edit hierarchy, but it can invoke the command
from the serverConfig or domainConfig hierarchy.

The following WLST online script invokes addMemberToGroup on the default Authentication
Provider. For information on how to run this script, see Invoking WLST.

Example 5-7 Adding a User to a Group

from weblogic.management.security.authentication import GroupEditorMBean

print "Adding a user ..."
atnr=cmo.getSecurityConfiguration().getDefaultRealm().lookupAuthenticationProvider("Defau
ltAuthenticator")
atnr.addMemberToGroup('Administrators','my_user')
print "Done adding a user"

Verifying Whether a User Is a Member of a Group
To verify whether a user is a member of a group, invoke the GroupEditorMBean.isMember
method, which is extended by the security realm's AuthenticationProvider MBean. See the
isMember method in the MBean Reference for Oracle WebLogic Server.

The method requires three input parameters:

groupname username boolean

where boolean specifies whether the command searches within child groups. If you specify
true, the command returns true if the member belongs to the group that you specify or to any
of the groups contained within that group.

WLST cannot invoke this command from the edit hierarchy, but it can invoke the command
from the serverConfig or domainConfig hierarchy.

The following WLST online script invokes isMember on the default Authentication Provider. For
information on how to run this script, see Invoking WLST.

Example 5-8 Verifying Whether a User is a Member of a Group

from weblogic.management.security.authentication import GroupEditorMBean
user = "my_user"
print "Checking if "+user+ " is a Member of a group ... "
atnr=cmo.getSecurityConfiguration().getDefaultRealm().lookupAuthenticationProvider("Defau
ltAuthenticator")
if atnr.isMember('Administrators',user,true) == 0:
 print user+ " is not member of Administrators"
else:
 print user+ " is a member of Administrators"

Listing Groups to Which a User Belongs
To see a list of groups that contain a user or a group, invoke the
MemberGroupListerMBean.listMemberGroups method, which is extended by the security
realm's AuthenticationProvider MBean. See the listMemberGroups method of the
MemberGroupListerMBean in the MBean Reference for Oracle WebLogic Server.

The method requires one input parameter:

memberUserOrGroupName

Chapter 5
Managing Security Data (WLST Online)

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 7 of 13

where memberUserOrGroupName specifies the name of an existing user or a group.

WLST cannot invoke this command from the edit hierarchy, but it can invoke the command
from the serverConfig or domainConfig hierarchy.

The following WLST online script invokes listMemberGroups on the default Authentication
provider. For information on how to run this script, see Invoking WLST.

Example 5-9 Listing Groups to Which a User Belongs

from weblogic.management.security.authentication import MemberGroupListerMBean

print "Listing the member groups ..."
atnr=cmo.getSecurityConfiguration().getDefaultRealm().lookupAuthenticationProvider
("DefaultAuthenticator")
x = atnr.listMemberGroups('my_user')
print x

The method returns a cursor value (for example, Cursor_16), which refers to a list of names.
The NameLister.haveCurrent, getCurrentName, and advance operations iterate through the
returned list and retrieve the name to which the current cursor position refers. See
NameListerMBean in the MBean Reference for Oracle WebLogic Server.

Listing Users and Groups in a Security Realm
To see a list of user or group names, you invoke a series of methods, all of which are available
through the AuthenticationProvider interface:

• The GroupReaderMBean.listGroups and UserReaderMBean.listUsers methods take two
input parameters: a pattern of user or group names to search for, and the maximum
number of names that you want to retrieve.

Because a security realm can contain thousands (or more) of user and group names that
match the pattern, the methods return a cursor, which refers to a list of names.

See the listGroups operation in the GroupReaderMBean and the listUsers operation in the
UserReaderMBean in the MBean Reference for Oracle WebLogic Server.

• The NameLister.haveCurrent, getCurrentName, and advance operations iterate through
the returned list and retrieve the name to which the current cursor position refers. See
NameListerMBean in the MBean Reference for Oracle WebLogic Server.

• The NameLister.close operation releases any server-side resources that are held on
behalf of the list.

WLST cannot invoke these commands from the edit hierarchy, but it can invoke them from the
serverConfig or domainConfig hierarchy.

The WLST online script in Example 5-10 lists all the users in a realm and the groups to which
they belong. For information on how to run this script, see Invoking WLST.

Example 5-10 Listing Users and Groups

from weblogic.management.security.authentication import UserReaderMBean
from weblogic.management.security.authentication import GroupReaderMBean

realm=cmo.getSecurityConfiguration().getDefaultRealm()
atns = realm.getAuthenticationProviders()
for i in atns:
 if isinstance(i,UserReaderMBean):
 userReader = i
 cursor = i.listUsers("*",0)

Chapter 5
Managing Security Data (WLST Online)

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 8 of 13

 print 'Users in realm '+realm.getName()+' are: '
 while userReader.haveCurrent(cursor):
 print userReader.getCurrentName(cursor)
 userReader.advance(cursor)
 userReader.close(cursor)

for i in atns:
 if isinstance(i,GroupReaderMBean):
 groupReader = i
 cursor = i.listGroups("*",0)
 print 'Groups in realm are: '
 while groupReader.haveCurrent(cursor):
 print groupReader.getCurrentName(cursor)
 groupReader.advance(cursor)
 groupReader.close(cursor)

Changing a Password
To change a user's password, invoke the UserPasswordEditorMBean.changeUserPassword
method, which is extended by the security realm's AuthenticationProvider MBean. See the
changeUserPassword method in the MBean Reference for Oracle WebLogic Server.

WLST cannot invoke this command from the edit hierarchy, but it can invoke the command
from the serverConfig or domainConfig hierarchy.

The following WLST online script invokes changeUserPassword on the default Authentication
Provider. For information on how to run this script, see Invoking WLST.

Example 5-11 Changing a Password

from weblogic.management.security.authentication import UserPasswordEditorMBean

print "Changing password ..."
atnr=cmo.getSecurityConfiguration().getDefaultRealm().lookupAuthenticationProvider("Defau
ltAuthenticator")
atnr.changeUserPassword('my_user','my_password','new_password')
print "Changed password successfully"

Protecting User Accounts in a Security Realm
The UserLockoutManagerMBean provides a set of attributes to protect user accounts from
intruders. By default, these attributes are set for maximum protection. You can decrease the
level of protection for user accounts. For example, you can set whether or not lockout is
enabled, increase the time period in which invalid login attempts are made before locking the
user account, or change the amount of time a user account is locked.

The UserLockoutManagerRuntimeMBean provides a set of attributes for collecting lockout
statistics, and operations for managing user lockouts. For example, you can get the number of
users currently locked out, get the number of invalid login attempts since the server was
started, or clear the lockout on a user account.

For more information about lockout configuration, see the UserLockoutManagerMBean
interface in the MBean Reference for Oracle WebLogic Server. For information about collecting
lockout statistics and performing lockout operations, see the
UserLockoutManagerRuntimeMBean interface in the MBean Reference for Oracle WebLogic
Server

Note that because these tasks edit MBean attributes, WLST must connect to the
Administration Server, navigate to the edit hierarchy, and start an edit session.

Chapter 5
Managing Security Data (WLST Online)

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 9 of 13

The following tasks provide examples for invoking UserLockoutManagerRuntimeMBean
methods:

Set Consecutive Invalid Login Attempts
The following WLST online script sets the number of consecutive invalid login attempts before
a user account is locked out. For information on how to run this script, see Invoking WLST.

Example 5-12 Setting Consecutive Invalid Login Attempts

from weblogic.management.security.authentication import UserLockoutManagerMBean

edit()
startEdit()

#You have two choices for getting a user lockout manager to configure
1 - to configure the default realm's UserLockoutManager:
ulm=cmo.getSecurityConfiguration().getDefaultRealm().getUserLockoutManager()

2 - to configure another realm's UserLockoutManager:
#ulm=cmo.getSecurityConfiguration().lookupRealm("anotherRealm").getUserLockoutManager()

ulm.setLockoutThreshold(3)
save()
activate()

Unlock a User Account
The following WLST online script unlocks a user account. For information on how to run this
script, see Invoking WLST.

Example 5-13 Unlocking a User Account

from weblogic.management.runtime import UserLockoutManagerRuntimeMBean

serverRuntime()
ulm=cmo.getServerSecurityRuntime().getDefaultRealmRuntime().getUserLockoutManagerRuntime(
)
#note1 : You can only manage user lockouts for the default realm starting from
#when the server was booted (versus other non-active realms).
#note2 : If the default realm's user lockout manager's LockoutEnabled attribute
#is false, then the user lockout manager's runtime MBean will be null.
#That is, you can only manage user lockouts in the default realm if its user
#lockout manager is enabled.

if ulm != None:
 ulm.clearLockout("myuser")

Configuring Additional LDAP Authentication Providers
In some cases, such as when installing some Oracle Fusion Middleware products, you must
add an additional external LDAP authentication providers to the WebLogic Server security
providers. This can be done either by using the WebLogic Remote Console (see Configure
Authentication and Identity Assertion Providers) or by using WLST.

Example 5-14 shows how to use WLST to add an Oracle Internet Directory (OID)
authentication provider. To add other types of LDAP authentication providers, substitute the
appropriate class type in the createAuthenticationProvider command, as shown in
Table 5-3.

Chapter 5
Managing Security Data (WLST Online)

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 10 of 13

http://www.oracle.com/pls/topic/lookup?ctx=fmw122130&id=WLACH03012
http://www.oracle.com/pls/topic/lookup?ctx=fmw122130&id=WLACH03012

Note

For important information about switching LDAP authentication providers if the
corresponding LDAP server will contain the user or users who start the domain, see
Requirements for Using an LDAP Authentication Provider in Administering Security for
Oracle WebLogic Server.

Example 5-14 Adding an Authentication Provider

connect ('adminUser','adminPassword','t3://'+adminServerHost+':'+adminServerPort)
edit()
startEdit()
cd('/SecurityConfiguration/'+domainName+'/Realms/myrealm')
In the following command, substitute the appropriate class type
cmo.createAuthenticationProvider(LDAPProviderName,
'weblogic.security.providers.authentication.OracleInternetDirectoryAuthenticator')
cd('/SecurityConfiguration/'+domainName+'/Realms/myrealm/AuthenticationProviders
/'+LDAPProviderName)
cmo.setControlFlag('SUFFICIENT')
cd('/SecurityConfiguration/'+domainName+'/Realms/myrealm/
AuthenticationProviders/'+LDAPProviderName)
cmo.setHost(LDAPHost)
cmo.setPort(LDAPPort)
cmo.setPrincipal(LDAPAdmin)
set("Credential",LDAPAdminPassword)
cmo.setGroupBaseDN(LDAPGroupBase)
cmo.setUserBaseDN(LDAPUserBase)
cmo.setUserNameAttribute(usernameattribute)
cmo.setUserObjectClass('inetOrgPerson')
cd('/SecurityConfiguration/'+domainName+'/Realms/myrealm/AuthenticationProviders
/DefaultAuthenticator')
cmo.setControlFlag('SUFFICIENT')
cd('/SecurityConfiguration/'+domainName+'/Realms/myrealm')
set('AuthenticationProviders',jarray.array([ObjectName('Security:Name=myrealm'
+LDAPProviderName), ObjectName('Security:Name=myrealmDefaultAuthenticator'),
ObjectName('Security:Name=myrealmDefaultIdentityAsserter')], ObjectName))
activate()

Table 5-3 lists the class types to specify for each type of Authentication Provider

Table 5-3 Class Types for External LDAP Authentication Providers

Provider Class Type

Oracle Internet Directory weblogic.security.providers.authentication.OracleInternetDirectoryAuthenticat
or

Oracle Virtual Directory weblogic.security.providers.authentication.OracleVirtualDirectoryAuthenticator

Microsoft AD weblogic.security.providers.authentication.ActiveDirectoryAuthenticator

OpenLDAP weblogic.security.providers.authentication.OpenLDAPAuthenticator

eDirectory weblogic.security.providers.authentication.NovellAuthenticator

SunOne LDAP weblogic.security.providers.authentication.IPlanetAuthenticator

Chapter 5
Managing Security Data (WLST Online)

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 11 of 13

Deploying Applications
The process for deploying applications varies depending on whether you use WLST offline or
WLST online.

The following topics describe the process:

Using WLST Online to Deploy Applications
When WLST is connected to a domain's Administration Server, use the deploy command to
deploy applications. (See deploy in WLST Command Reference for Oracle WebLogic Server.)

The command in Example 5-15 deploys a sample application from the WebLogic Server
ExamplesServer domain.

Example 5-15 Deploying Applications

Deploying Applications

deploy("examplesWebApp","C:/Oracle/Middleware/wlserver/samples/server/examples/build/
examplesWebApp")

Note

Please note the following when using WLST online to deploy applications:

• Deployment operations must be performed through the Administration Server.
Your WLST client must connect to the Administration Server to invoke deployment
commands.

• You do not need to be in an edit session to deploy applications.

For more information about using WLST for deploying applications, see Deployment Tools in
Deploying Applications to Oracle WebLogic Server.

Using WLST Offline to Deploy Applications
Table 5-4 describes the steps for using WLST offline to deploy applications in an existing
domain.

Table 5-4 Steps for Deploying Applications (Offline)

To... Use this command... See ...

Use the Template Builder to
create an application
template.

not applicable Creating an Extension Template Using the
Domain Template Builder in Creating Domain
Templates Using the Domain Template Builder

Open an existing WebLogic
domain or template

readDomain(domainDirName) readDomain and readTemplate in WLST
Command Reference for Oracle WebLogic
ServerWebLogic Scripting Tool Command
Reference

Chapter 5
Deploying Applications

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 12 of 13

Table 5-4 (Cont.) Steps for Deploying Applications (Offline)

To... Use this command... See ...

Add an extension template to
the WebLogic domain

selectTemplate(templateName)

loadTemplates()

selectTemplate and loadTemplates in WLST
Command Reference for Oracle WebLogic
Server

Save the WebLogic domain updateDomain() updateDomain in WLST Command Reference
for Oracle WebLogic Server

Close the WebLogic domain closeDomain() closeDomain in WLST Command Reference for
Oracle WebLogic Server

For an example of using the addTemplate command, see the following sample WLST script,
where WL_HOME refers to the top-level installation directory for WebLogic Server:

WL_HOME\common\templates\scripts\wlst\clusterMedRecDomain.py

Chapter 5
Deploying Applications

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 13 of 13

6
Updating the Deployment Plan

You can use WebLogic Scripting Tool (WLST) to retrieve and update an application's
deployment plan. When using WLST to update an application's deployment plan, you define
variable definitions and variable assignments. A variable definition identifies a new
value; a variable assignment associates the new value with the descriptor entity to be
changed.
The following procedure describes how to use WLST in interactive mode. For information
about using WLST in script or embedded mode, see Using the WebLogic Scripting Tool.

To update a deployment plan using WLST in interactive mode, perform the following steps:

Note

The example commands provided in the following procedure demonstrate how to
update and configure the MedRec application, which is installed on your system if you
installed the Server Examples.

1. Create a deployment plan for the application.

2. Start WLST in interactive mode.

3. Enter the following command to load the application and deployment plan. For example:

plan=loadApplication(loadApplication('c:/Oracle/Middleware/user_projects/
applications/mydomain/modules/medrec/assembly/target/medrec.ear',
'c:/Oracle/Middleware/user_projects/applications/mydomain/modules/medrec/
assembly/target/Plan.xml')

The WLST loadApplication command returns a WLSTPlan object that you can access to
make changes to the deployment plan. For more information about the WLSTPlan object,
see WLSTPlan Object.

4. Identify the configuration options that you want to update and their corresponding XPath
values. You can determine the XPath value for configuration options by using the
weblogic.PlanGenerator utility. You can copy and paste the XPath from the generated
plan into your active deployment plan. See weblogic.PlanGenerator Command Line
Reference in Deploying Applications to Oracle WebLogic Server.

5. Determine if variable definitions and variable assignments are currently defined in your
deployment plan for the configuration options identified in the previous step. To do so,
enter one of the following commands:

a. To display variables:

plan.showVariables()
Name Value
----- -----
SessionDescriptor_cookieMaxAgeSecs_12910569321171 -1
SessionDescriptor_invalidationIntervalSecs_12910568567990 75
SessionDescriptor_maxInMemorySessions_12910569321170 -1
SessionDescriptor_timeoutSecs_12900890060180 3600

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 1 of 2

b. To display variable assignments:

plan.showVariableAssignments()
medrec.ear
 |
 META-INF/weblogic-application.xml
 |
 SessionDescriptor_timeoutSecs_12900890060180
medrec.ear
 |
 META-INF/weblogic-application.xml
 |
 SessionDescriptor_invalidationIntervalSecs_12910568567990
medrec.ear
 |
 META-INF/weblogic-application.xml
 |
 SessionDescriptor_maxInMemorySessions_12910569321170
medrec.ear
 |
 META-INF/weblogic-application.xml
 |
 SessionDescriptor_cookieMaxAgeSecs_12910569321171

6. If the variable definition and assignment are not defined, create them and set the XPath
value for the variable assignment, as follows:

a. Create the variable definition. Use the createVariable() method to specify the
variable name and value. For example:

v=plan.createVariable('new_var', '3')

b. Create the variable assignment. Use the createVariableAssignment() method to
specify the name of the variable, the application to which is applies, and the
corresponding deployment descriptor. For example:

va=plan.createVariableAssignment('new_var', 'medrec.ear', 'META-INF/
weblogic-application.xml')
Creating VariableAssignment for ModuleOverride medrec.ear and
ModuleDescriptor with URI META-INF/weblogic-application.xml.
Created VariableAssignment with name new_var successfully.

c. Set the XPath value for the variable assignment by pasting the XPath value from the
deployment plan you generated with weblogic.PlanGenerator in Step 4. For example:

va.setXpath('weblogic-application/session-descriptor/new_var')

Note

To get the correct XPath values for the desired variable assignment, Oracle
recommends that you use the weblogic.PlanGenerator utility to generate a
template deployment plan with empty values. You can then cut or copy the
XPath values from the template deployment plan and paste them into the
WLST script.

7. Save the deployment plan. For example:

plan.save()

Chapter 6

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 2 of 2

7
Getting Runtime Information

You can use the WebLogic Scripting Tool (WLST) to retrieve information that WebLogic Server
instances produce to describe their run-time state, configure logging, and use the WebLogic
Diagnostic Framework.

Accessing Runtime Information: Main Steps
The Administration Server hosts the domain run-time hierarchy which provides access to any
MBean on any server in the WebLogic domain. You can access the runtime information using
WLST.

If the Administration Server is not running for a WebLogic domain, WLST can connect to
individual Managed Servers to retrieve run-time data.

Accessing the run-time information for a WebLogic domain includes the following main steps:

1. Invoke WLST and connect to a running Administration Server instance. See Invoking
WLST.

2. Navigate to the domain run-time MBean hierarchy by entering the domainRuntime
command.

wls:/mydomain/serverConfig>domainRuntime()

The domainRuntime command places WLST at the root of the domain-wide run-time
management objects, DomainRuntimeMBean.

3. Navigate to ServerRuntimes and then to the server instance which you are interested in
monitoring.

wls:/mydomain/domainRuntime>cd('ServerRuntimes/myserver')

4. At the server instance, navigate to and interrogate run-time MBeans.

wls:/mydomain/domainRuntime/ServerRuntimes/myserver>cd('JVMRuntime/
myserver')>
wls:/mydomain/domainRuntime/ServerRuntimes/myserver/JVMRuntime/myserver>
ls()

-r-- HeapFreeCurrent 130361120
-r-- HeapFreePercent 74
-r-- HeapSizeCurrent 268435456
-r-- HeapSizeMax 536870912
-r-- JavaVMVendor Oracle Corporation
-r-- JavaVendor Oracle Corporation
-r-- JavaVendorVersion null
-r-- JavaVersion 17.0.8.0.1
-r-- Name myserver
-r-- OSName Linux
-r-- OSVersion 4.14.35-1902.4.8.el7uek.x86_64
-r-- Type JVMRuntime
-r-- Uptime 104166

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 1 of 4

-r-x runGC Void :

The following sections provide example scripts for retrieving run-time information about
WebLogic Server server instances and WebLogic domain resources.

Script for Monitoring Server State
The WLST online script in Example 7-1 navigates the domain run-time hierarchy and checks
the status of a Managed Server every 5 seconds. It restarts the server if the server state
changes from RUNNING to any other status. It assumes that WLST is connected to the
WebLogic domain's Administration Server.

Example 7-1 Monitoring Server State

Node Manager needs to be running to run this script.

import thread
import time

def checkHealth(serverName):
 while 1:
 slBean = getSLCRT(serverName)
 status = slBean.getState()
 print 'Status of Managed Server is '+status
 if status != "RUNNING":
 print 'Starting server '+serverName
 start(serverName, block="true")
 time.sleep(5)

def getSLCRT(svrName):
 domainRuntime()
 slrBean = cmo.lookupServerLifecycleRuntime(svrName)
 return slrBean

checkHealth("myserver")

Script for Monitoring the JVM
The WLST online script in Example 7-2 monitors the HJVMHeapSize for all running servers in a
WebLogic domain; it checks the heap size every 3 minutes and prints a warning if the heap
size is greater than a specified threshold. It assumes that the URL for the WebLogic domain's
Administration Server is t3://localhost:7001.

For information on how to run this script, see Invoking WLST.

Example 7-2 Monitoring the JVM Heap Size

waitTime=180000
THRESHOLD=300000000
uname = "adminusername"
pwd = "adminpassword"
url = "t3://localhost:7001"
def monitorJVMHeapSize():
 connect(uname, pwd, url)
 while 1:
 serverNames = getRunningServerNames()
 domainRuntime()
 for name in serverNames:
 print 'Now checking '+name.getName()

Chapter 7
Accessing Runtime Information: Main Steps

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 2 of 4

 try:
 cd("/ServerRuntimes/"+name.getName()+"/JVMRuntime/"+name.getName())
 heapSize = cmo.getHeapSizeCurrent()
 if heapSize > THRESHOLD:
 # do whatever is neccessary, send alerts, send email etc
 print 'WARNING: The HEAPSIZE is Greater than the Threshold'
 else:
 print heapSize
 except WLSTException,e:
 # this typically means the server is not active, just ignore
 # pass
 print "Ignoring exception " + e.getMessage()
 java.lang.Thread.sleep(waitTime)

def getRunningServerNames():
 # only returns the currently running servers in the domain
 return domainRuntimeService.getServerRuntimes()

if __name__== "main":
 monitorJVMHeapSize()

Configuring Logging
Using WLST, you can configure a server instance's logging and message output.

To determine which log attributes can be configured, see LogMBean and LogFileMBean in the
MBean Reference for Oracle WebLogic Server. The reference also indicates valid values for
each attribute.

The WLST online script in Example 7-3 sets attributes of LogMBean (which extends
LogFileMBean). For information on how to run this script, see Invoking WLST.

Example 7-3 Configuring Logging

Connect to the server
connect("adminusername","adminpassword","t3://localhost:7001")
edit()
startEdit()

set CMO to the server log config
cd("Servers/myserver/Log/myserver")
ls ()

change LogMBean attributes
set("FileCount", 5)
set("FileMinSize", 400)

list the current directory to confirm the new attribute values
ls ()

save and activate the changes
save()
activate()

all done...
exit()

Chapter 7
Configuring Logging

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 3 of 4

Working with the WebLogic Diagnostics Framework
The WebLogic Diagnostic Framework (WLDF) is a monitoring and diagnostic framework that
can collect diagnostic data that servers and applications generate. You configure WLDF to
collect the data and store it in various sources, including log records, data events, and
harvested metrics.

To view example scripts that demonstrate using WLST to configure the WebLogic Diagnostic
Framework, see WebLogic Scripting Tool Examples in Configuring and Using the Diagnostics
Framework for Oracle WebLogic Server.

To view the collected diagnostics information using WLST, use one of the following commands
to export the data from the WLDF repositories:

• From WLST offline, use the exportDiagnosticDatacommand, described in WLST
Command Reference for Oracle WebLogic Server.

• From WLST online, use exportDiagnosticDataFromServer command, described in WLST
Command Reference for Oracle WebLogic Server.

Chapter 7
Working with the WebLogic Diagnostics Framework

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Page 4 of 4

A
WLST Deployment Objects

WLST provides deployment objects that enable you to make changes to a deployment plan
and to check the status of a deployment command..

WLSTPlan Object
The WLSTPlan object enables you to make changes to an application deployment plan after
loading an application using the loadApplication command.

loadApplication in WLST Command Reference for Oracle WebLogic Server describes the
command in more detail.

The following table Table A-1describes the WLSTPlan object methods that you can use to
operate on the deployment plan.

Table A-1 WLSTPlan Object Methods

To operate on the... Use this method... To...

Deployment Plan DeploymentPlanBean getDeploymentPlan() Return the DeploymentPlanBean
for the current application.

Deployment Plan void save() throws FileNotFoundException,
ConfigurationException

Save the deployment plan to a file
from which it was read.

Module Descriptors ModuleDescriptorBean createModuleDescriptor(String
uri, String moduleOverrideName)

Create a
ModuleDescriptorBean with the
specified uri for the
ModuleOverrideBean
moduleOverrideName

Module Overrides ModuleOverrideBean[] getModuleOverride(String
name)

Return the ModuleOverrideBean
name.

Module Overrides ModuleOverrideBean[] getModuleOverrides() Return all ModuleOverrideBean
objects that are available in the
deployment plan.

Module Overrides void showModuleOverrides() Print all of the
ModuleOverrideBean objects
that are available in the
deployment plan as name/type
pairs.

Variables VariableBean createVariable(String name, String
value)

Create a VariableBean name
with this specified value that can
override the value in the
deployment plan.

Variables void destroyVariable(String name) Destroy the VariableBean name.

Variables VariableBean getVariable(String name) Return the VariableBean name.

Variables VariableBean[] getVariables() Return all VariableBean objects
that are available in the
deployment plan.

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Appendix A-1 of A-3

Table A-1 (Cont.) WLSTPlan Object Methods

To operate on the... Use this method... To...

Variables void setVariableValue(String name, String value) Set the variable name to the
specified value.

Variables void showVariables() Print all of the VariableBean
objects in the deployment plan as
name/value pairs.

Variable Assignment VariableAssignmentBean
createVariableAssignment(String name, String
moduleOverrideName, String moduleDescriptorUri)

Create a
VariableAssignmentBean for
the ModuleDescriptorBean
moduleDescriptorUri for the
ModuleOverrideBean
moduelOverrideName.

Variable Assignment void destroyVariableAssignment(String name, String
moduleOverrideName, String moduleDescriptorName)

Destroy the
VariableAssignmentBean name
for the ModuleDescriptorBean
moduleOverrideName for the
ModuleDescriptorBean
moduleDescriptorName.

Variable Assignment VariableAssignmentBean
getVariableAssignment(String name, String
moduleOverrideName, String moduleDescriptorName)

Return the
VariableAssignmentBean name
for the ModuleDescriptorBean
moduleOverrideName for the
ModuleDescriptorBean
moduleDescriptorName.

WLSTProgress Object
The WLSTProgress object enables you to check the status of an executed deployment
command.

The WLSTProgress object is returned by the following commands (refer to the associated
command section in WLST Command Reference for Oracle WebLogic Server):

Table A-2 describes the WLSTProgress object methods that you can use to check the status of
the current deployment action.

Table A-2 WLSTProgress Object Methods

Use this method... To...

String getCommandType() Return the deployment CommandType of this event. This command
returns one of the following values: distribute, redeploy, start,
stop, or undeploy.

String getMessage() Return information about the status of this event.

ProgressObject
getProgressObject()

Return the ProgressObject that is associated with the current
deployment action.

String getState() Retrieve the state of the current deployment action. CommandType of this
event. This command returns one of the following values: running,
completed, failed, or released (indicating that the object has been
released into production).

Appendix A
WLSTProgress Object

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Appendix A-2 of A-3

Table A-2 (Cont.) WLSTProgress Object Methods

Use this method... To...

boolean isCompleted() Determine if the current deployment action has been completed.

boolean isFailed() Determine if the current deployment action has failed.

boolean isRunning() Determine if the current deployment action is running.

void printStatus() Print the current status of the deployment action, including the command
type, the state, additional messages, and so on.

Appendix A
WLSTProgress Object

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Appendix A-3 of A-3

B
FAQs: WLST

Frequently asked questions relating to WLST tend to fall into three categories: General WLST
questions, Jython support questions and using WLST questions.

General WLST
General questions about WLST are addressed.

What is the relationship between WLST and the existing WebLogic Server command-line
utilities, such as wlconfig and weblogic.Deployer?

WLST functionality includes the capabilities of the following WebLogic Server command-line
utilities:

• wlconfig Ant task tool for making WebLogic Server configuration changes (see Using Ant
Tasks to Configure and Use a WebLogic Server Domain in Developing Applications for
Oracle WebLogic Server)

• weblogic.Deployer utility for deploying applications. (see Deployment Tools in Deploying
Applications to Oracle WebLogic Server)

When would I choose to use WLST over the other command-line utilities or the
WebLogic Remote Console?

You can create, configure, and manage WebLogic domains using WLST, command-line
utilities, and the WebLogic Remote Console interchangeably. The method that you choose
depends on whether you prefer using a graphical or command-line interface, and whether you
can automate your tasks by using a script.

What is the distinction between WLST online and offline?

You can use WLST online (connected to a running Administration Server or Managed Server
instance) and offline (not connected to a running server).

WLST online interacts with an active WebLogic domain and provides simplified access to
Managed Beans (MBeans), WebLogic Server Java objects that you can also manage through
JMX. Online, WLST provides access to information that is persisted as part of the internal
representation of the configuration.

WLST offline enables you to create a new WebLogic domain or update an existing WebLogic
domain without connecting to a running WebLogic Server—supporting the same functionality
as the Configuration Wizard. Offline, WLST only provides access to information that is
persisted in the config directory.

Jython Support
WLST supports Jython.

What version of Jython is used by WLST?

The WLST scripting environment is based on the Java scripting interpreter, Jython 2.7.1.

Can I run regular Jython scripts from within WLST?

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Appendix B-1 of B-4

Yes. WebLogic Server developers and administrators can extend the WebLogic scripting
language to suit their environmental needs by following the Jython language syntax. See
http://www.jython.org.

Using WLST
General questions about using WLST are addressed.

If I have SSL or the administration port enabled for my server, how do I connect using
WLST?

To connect to a WebLogic Server instance through an SSL listen port on a server that is using
the demonstration SSL keys and certificates, invoke WLST using the following command:

java -Dweblogic.security.SSL.ignoreHostnameVerification=true -
Dweblogic.security.TrustKeyStore=DemoTrust weblogic.WLST

Otherwise, at a command prompt, enter the following command:

java weblogic.WLST

In the event of an error, can I control whether WLST continues or exits?

Yes, using the exitonerror variable. Set this variable to true to specify that execution should
exit when WLST encounters an error, or to false to continue execution. This variable defaults
to true. See WLST Variable Reference in WLST Command Reference for Oracle WebLogic
Server.

Why do I have to specify (and) after each command, and enclose arguments in single-
or double-quotes?

This is the proper Jython syntax. See http://www.jython.org.

Can I start a server, deploy applications, and then shut down the server using WLST?

Yes, see the documentation for the following groups of WLST commands:

• Life Cycle Commands in WLST Command Reference for Oracle WebLogic Server

• Deployment Commands in WLST Command Reference for Oracle WebLogic Server

Can WLST connect to a Managed Server?

Yes. You can connect to a Managed Server using the connect command. While connected to a
Managed Server, you can view run-time data for the server and manage the security data that
is in your Authentication provider's data store (for example, you can add and remove users).
You cannot modify the WebLogic domain's configuration. See connect in WLST Command
Reference for Oracle WebLogic Server.

Can WLST use variables that I define in a properties file?

Yes. You can use the loadProperties command to load your variables and values from a
properties file. When you use the variables in your script, during execution, the variables are
replaced with the actual values from the properties file. See loadProperties in WLST Command
Reference for Oracle WebLogic Server.

Does the configToScript command convert security MBeans in config.xml?

Yes, the security MBeans are converted. However, the information within the Embedded LDAP
is not converted.

How can I access custom MBeans that are registered in the WebLogic MBeanServer?

Appendix B
Using WLST

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Appendix B-2 of B-4

http://www.jython.org
http://www.jython.org

To navigate to the custom MBean hierarchy on the Runtime MBean Server, use the custom
command. To navigate to the custom MBean hierarchy on the Domain Runtime MBean Server,
use the domainCustom command. See Tree Commands in WLST Command Reference for
Oracle WebLogic Server.

Why am I not seeing all the MBeans that are registered in the MBeanServer?

There are internal and undocumented MBeans that are not shown by WLST.

Why does WLST offline not display the same MBeans as WLST online?

As a performance optimization, WebLogic Server does not store most of its default values in
the WebLogic domain's configuration files. In some cases, this optimization prevents entire
management objects from being displayed by WLST offline (because WebLogic Server has
never written the corresponding XML elements to the WebLogic domain's configuration files).
For example, if you never modify the default logging severity level for a WebLogic domain
while the domain is active, WLST offline will not display the domain's Log management object.

If you want to change the default value of attributes whose management object is not displayed
by WLST offline, you must first use the create command to create the management object.
Then you can cd to the management object and change the attribute value. See create in
WLST Command Reference for Oracle WebLogic Server.

When browsing custom MBeans, why do I get the following error message: No stub
Available?

When browsing the custom MBeans, the cmo variable is not available.

Can I connect to a WebLogic Server instance through HTTP?

If you are connecting to a WebLogic Server instance through HTTP, ensure that the
TunnelingEnabled attribute is set to true for the WebLogic Server instance. See
TunnelingEnabled in MBean Reference for Oracle WebLogic Server.

Can I invoke WLST through Ant?

Yes, you can initiate a new weblogic.WLST process inside an Ant script and pass your script
file as an argument.

Can WLST scripts execute on the server side?

Yes. You can create an instance of the WLST interpreter in your Java code and use it to run
WLST commands and scripts. You can then call the WLST scripts as a startup class or as part
of ejbCreate so that they execute on the server side. See Embedded Mode.

Can I customize WLST?

Yes. You can update the WLST home directory to define custom WLST commands, WLST
commands within a library, and WLST commands as a Jython module. For more information,
see Customizing WLST.

How do I execute custom WLST commands?

You execute custom WLST commands in the same way as WebLogic Server WLST
commands. Once you define custom commands in a .py file, they are available for use from
the WLST command line and within scripts.

Similarly, if you have installed Fusion Middleware (FMW) components that include custom
WLST commands, the commands are available for use from the WLST command line or within
scripts.

Appendix B
Using WLST

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Appendix B-3 of B-4

For pointers to the documentation for the custom WLST commands, see Related
Documentation in WLST Command Reference for Oracle WebLogic Server.

You can display help for these commands by entering the help(), help('commandGroup'), and
help('commandName') commands on the WLST command line.

Appendix B
Using WLST

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Appendix B-4 of B-4

C
WLST Sample Configuration Scripts

You can use these sample WLST scripts as templates to build your own WLST scripts tailored
to your environment.

Additional sample scripts are available as part of a WebLogic Server installation. For more
information, see WLST Sample Scripts.

Configuring SAML Single Sign On
Use WLST to enable SAML Single Sign On (SSO) on WebLogic Server domains.

When you enable SAML SSO on a WebLogic domain, you need to configure security or
authentication providers, SAML 2.0 general services, and, depending on the role of the
domain, either Identity Provider services or Service Provider services. For more information on
the general process for configuring SAML SSO in WebLogic, see Configuring SAML 2.0
Services in Administering Security for Oracle WebLogic Server.

Import Partner Properties

Before you use WLST offline to configure SAML SSO, you need to export your federated
partners' metadata files, create either an Identity Provider partner properties file or a Service
Provider partner properties file, and place both files in the DOMAIN_HOME/security directory.

1. Use WSLT online to export metadata files from your federated partners. WLST offline does
not support exporting metadata.

2. Create a partner properties file :

• If using WebLogic Server as an Identity Provider, then create a file and name it
saml2sppartner.properties. Use the following example as a reference. Any
properties preceded by # are optional.

saml2.sp.partners=401kPartner,hmoPartner
401kPartner.metadata.file=401ksp_metadata.xml

hmoPartner.metadata.file=hmosp_metadata.xml
hmoPartner.enabled=true
hmoPartner.description=
hmoPartner.mapperClassname=
hmoPartner.wantAssertionsSigned=false
hmoPartner.timeToLive=100
hmoPartner.timeToLiveOffset=50
hmoPartner.generateAttributes=false
hmoPartner.keyInfoIncluded=false
hmoPartner.includeOneTimeUseCondition=false

• If using WebLogic Server as a Service Provider, then create a file and name it
saml2idppartner.properties. Use the following example as a reference. Any
properties preceded by # are optional.

saml2.idp.partners=company1Partner,company2Partner
company1Partner.description=Company1 IDP Partner
company1Partner.metadata.file=company1idp_metadata.xml
company1Partner.enabled=true

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Appendix C-1 of C-7

company1Partner.redirectUris=/company1app/target.jsp,/company1app/index.jsp

company2Partner.metadata.file=company2idp_metadata.xml
company2Partner.redirectUris=/company2app/target.jsp,/company2app/welcome.jsp
company2Partner.issuerUri=
company2Partner.enabled=true
company2Partner.virtualUserEnabled=true

company2Partner.mapperClassname=com.bea.security.saml2.providers.SAML2IdentityAss
erterNameMapper
company2Partner.wantAssertionsSigned=false
company2Partner.processAttributes=false

3. Save the partner metadata file(s) and the partner properties file in the DOMAIN_HOME/
security directory.

Sample: Configure WebLogic Server as an Identity Provider Site with SAML
SSO

Use this sample WLST script as a starting point to create your own script that configures SAML
2.0 Single Sign On (SSO) on a WebLogic Server instance working as an Identity Provider.

Note

If you use WLST offline to configure SAML SSO, then you need to create a Service
Provider partner properties file. This properties file specifies important SAML 2.0
partner metadata that is required by your federated partners. For more information on
partner properties files, see Import Partner Properties.

Example C-1 Configure WebLogic Server as an Identity Provider site and enable SAML
SSO

Update placeholder text with real values. Placeholder text is enclosed by @ symbols. For
example, @admin_username@.

def getEnvVar(var):
 val=os.environ.get(var)
 if val==None:
 print "ERROR: Env var ",var, " not set."
 sys.exit(1)
 return val

Configure SAML2 Credential Mappers
def configSAML2CM():
 cd('/SecurityConfiguration/@domainName@/Realms/@realmName@')
 create('@saml2CMName@', 'com.bea.security.saml2.providers.SAML2CredentialMapper',
'CredentialMapper')
 cd('CredentialMappers')
 cd('@saml2CMName@')
 cmo.setIssuerURI('@url@/company1idp_entityid')

Configure SAML2 SSO Service
def configSSOService(AdminServerName):
 cd('/Server')
 cd(AdminServerName)
 create(AdminServerName, 'SingleSignOnServices')
 cd('SingleSignOnServices')

Appendix C
Configuring SAML Single Sign On

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Appendix C-2 of C-7

 cd(AdminServerName)
 cmo.setContactPersonGivenName('company1ContactPersonGivenName')
 cmo.setContactPersonSurName('company1ContactPersonSurName')
 cmo.setContactPersonType('technical')
 cmo.setContactPersonCompany('company1ContactPersonCompany')
 cmo.setContactPersonTelephoneNumber('company1ContactPersonTelephoneNumber')
 cmo.setContactPersonEmailAddress('company1ContactPersonEmailAddress')
 cmo.setOrganizationName('company1OrganizationName')
 cmo.setOrganizationURL('company1OrganizationURL')
 cmo.setEntityID('@url@/company1idp_entityid')
 cmo.setPublishedSiteURL('@url@/saml2')
 cmo.setLoginURL('@url@/loginapp/loginapp.jsp')
 cmo.setIdentityProviderPOSTBindingEnabled(true)
 cmo.setIdentityProviderArtifactBindingEnabled(true)
 cmo.setIdentityProviderRedirectBindingEnabled(true)
 cmo.setIdentityProviderPreferredBinding('HTTP/POST')
 cmo.setSSOSigningKeyAlias('company1IdPSSOSigningKeyAlias')
 ssoSigningKeyPassPhraseEncrypted=encrypt('company1IdPSSOSigningKeyPassPhrase',
'@domainPath@')
 cmo.setSSOSigningKeyPassPhraseEncrypted(ssoSigningKeyPassPhraseEncrypted)

 twoWaySSLEnabled='@twoWaySSLEnabled@'
 if twoWaySSLEnabled == 'true':
 cmo.setTransportLayerSecurityKeyAlias('company1IdPTLSKeyAlias')

transportLayerSecurityKeyPassPhraseEncrypted=encrypt('company1IdPTLSKeyPassPhrase',
'@domainPath@')

cmo.setTransportLayerSecurityKeyPassPhraseEncrypted(transportLayerSecurityKeyPassPhraseEn
crypted)

 cmo.setIdentityProviderEnabled(true)

Configure SSL
def configSSL(AdminServerName):
 cd('/Servers')
 cd(AdminServerName)
 cmo.setKeyStores('CustomIdentityAndCustomTrust')
 cmo.setCustomTrustKeyStoreFileName('@certsDir@/company1IdPTrust.jks')
 customTrustKeyStorePassPhraseEncrypted=encrypt('company1IdPTrustKeyStorePassPhrase',
'@domainPath@')
 cmo.setCustomTrustKeyStorePassPhraseEncrypted(customTrustKeyStorePassPhraseEncrypted)
 cmo.setCustomIdentityKeyStoreFileName('@certsDir@/company1IdPIdentity.jks')

customIdentityKeyStorePassPhraseEncrypted=encrypt('company1IdPIdentityKeyStorePassPhrase'
, '@domainPath@')

cmo.setCustomIdentityKeyStorePassPhraseEncrypted(customIdentityKeyStorePassPhraseEncrypte
d)

 create(AdminServerName, 'SSL')
 cd('/Servers/' + AdminServerName + '/SSL')
 cd(AdminServerName)
 cmo.setEnabled(true)
 cmo.setListenPort(int('@sport@'))
 cmo.setTwoWaySSLEnabled(Boolean('@twoWaySSLEnabled@'))
 cmo.setClientCertificateEnforced(Boolean('@clientCertificateEnforced@'))
 cmo.setHostnameVerificationIgnored(false)
 cmo.setServerPrivateKeyAlias('company1IdPServerKeyAlias')
 serverPrivateKeyPassPhraseEncrypted=encrypt('company1IdPServerKeyPassPhrase',
'@domainPath@')
 cmo.setServerPrivateKeyPassPhraseEncrypted(serverPrivateKeyPassPhraseEncrypted)

Appendix C
Configuring SAML Single Sign On

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Appendix C-3 of C-7

Optional: Create cluster

Create IDP domain

readDomain('@domainPath@')
configSAML2CM()
configSSOService('@adminServerName@')

updateDomain()
closeDomain()
print 'Domain Updated with Identity Provider configured'

exit()

Sample: Configure WebLogic Server as a Service Provider Site with SAML
SSO

Use this sample WLST script as a starting point to create your own script that configures SAML
2.0 Single Sign On (SSO) on a WebLogic Server instance working as a Service Provider.

Note

If you use WLST offline to configure SAML SSO, then you need to create an Identity
Provider partner properties file. This properties file specifies important SAML 2.0
partner metadata that is required by your federated partners. For more information on
partner properties files, see Import Partner Properties.

Example C-2 Configure WebLogic Server as a Service Provider site and enable SAML
SSO

Update placeholder text with real values. Placeholder text is enclosed by @ symbols. For
example, @admin_username@.

def getEnvVar(var):
 val=os.environ.get(var)
 if val==None:
 print "ERROR: Env var ",var, " not set."
 sys.exit(1)
 return val

Create domain
def createDomain(domainName, adminServerName):
 readTemplate('@templateJar@')
 set('Name', domainName)
 setOption('DomainName', domainName)
 cd('/Servers/AdminServer')
 set('ListenPort', '@admin_port@')
 set('Name', adminServerName)
 cd('/Security/' + domainName + '/User/weblogic')
 cmo.setName('@admin_username@')
 cmo.setPassword('@admin_password@')
 setOption('OverwriteDomain', 'true')
 writeDomain('@domainPath@')
 closeTemplate()
 print 'Domain Created'

Appendix C
Configuring SAML Single Sign On

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Appendix C-4 of C-7

Create a cluster
def createCluster(clusterName):
 cd('/')
 cl=create(clusterName, 'Cluster')
 cluster_type='@cluster_type@'
 number_of_ms=int('@number_of_ms@')
 managed_server_name_base='@managed_server_name_base@'
 managed_server_name_base_svc='@managed_server_name_base_svc@'

 if cluster_type == "CONFIGURED":
 for index in range(0, number_of_ms):
 cd('/')
 msIndex = index+1
 name = managed_server_name_base + msIndex
 name_svc = managed_server_name_base_svc + msIndex
 create(name, 'Server')
 cd('/Servers/' + name + '/')
 print('managed server name is ' + name)
 set('ListenPort', '@server_port@')
 set('NumOfRetriesBeforeMSIMode', 0)
 set('RetryIntervalBeforeMSIMode', 1)
 set('Cluster', clusterName)

 else:
 print('Configuring Dynamic Cluster ' + clusterName)
 templateName = '@cluster_name@-template'
 print('Creating Server Template: ' + templateName)
 st1=create(templateName, 'ServerTemplate')
 print('Done creating Server Template: ' + templateName)
 cd('/ServerTemplates/' + templateName)
 cmo.setListenPort('@server_port@')
 cmo.setCluster(cl)
 print('Done setting attributes for Server Template: ' + templateName);
 cd('/Clusters/' + clusterName)
 create(clusterName, 'DynamicServers')
 cd('DynamicServers/' + clusterName)
 set('ServerTemplate', st1)
 set('ServerNamePrefix', managed_server_name_base)
 set('DynamicClusterSize', number_of_ms)
 set('MaxDynamicClusterSize', number_of_ms)
 set('CalculatedListenPorts', false)

 print('Done setting attributes for Dynamic Cluster: ' + clusterName);

Configure SAML Authentication Provider
def configSAMLAtn():
 cd('/SecurityConfiguration/@domainName@/Realms/@realmName@')
 samlatn = create('@samlAtnName@',
'weblogic.security.providers.saml.SAMLAuthenticator', 'AuthenticationProvider')
 samlatn.setControlFlag('SUFFICIENT')

Configure SAML2 Identity Asserter
def configSAML2IA():
 cd('/SecurityConfiguration/@domainName@/Realms/@realmName@')
 create('@saml2IAName@', 'com.bea.security.saml2.providers.SAML2IdentityAsserter',
'AuthenticationProvider')
 cd('AuthenticationProvider')
 cd('@saml2IAName@')
 # cmo.setReplicatedCacheEnabled(Boolean('@replicatedCacheEnabled@'))

def reConfigDefaultAtn():
 cd('/SecurityConfiguration/@domainName@/Realms/@realmName@')

Appendix C
Configuring SAML Single Sign On

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Appendix C-5 of C-7

 delete('DefaultAuthenticator', 'AuthenticationProvider')
 delete('DefaultIdentityAsserter','AuthenticationProvider')
 defaultAtn=create('DefaultAuthenticator',
'weblogic.security.providers.authentication.DefaultAuthenticator',
'AuthenticationProvider')
 defaultAtn.setControlFlag('REQUIRED')
 create('DefaultIdentityAsserter',
'weblogic.security.providers.authentication.DefaultIdentityAsserter',
'AuthenticationProvider')

Configure SAML2 SSO Service
def configSSOService(AdminServerName):
 cd('/Server')
 cd(AdminServerName)
 create(AdminServerName, 'SingleSignOnServices')
 cd('SingleSignOnServices')
 cd(AdminServerName)
 cmo.setContactPersonGivenName('401kContactPersonGivenName')
 cmo.setContactPersonSurName('401kContactPersonSurName')
 cmo.setContactPersonType('technical')
 cmo.setContactPersonCompany('401kContactPersonCompany')
 cmo.setContactPersonTelephoneNumber('401kContactPersonTelephoneNumber')
 cmo.setContactPersonEmailAddress('401kContactPersonEmailAddress')
 cmo.setOrganizationName('401kOrganizationName')
 cmo.setOrganizationURL('401kOrganizationURL')
 cmo.setEntityID('@url@/401ksp_entityid')
 cmo.setPublishedSiteURL('@url@/saml2')
 cmo.setServiceProviderPOSTBindingEnabled(true)
 cmo.setServiceProviderArtifactBindingEnabled(true)
 cmo.setServiceProviderPreferredBinding('HTTP/POST')
 cmo.setSSOSigningKeyAlias('401kSPSSOSigningKeyAlias')
 ssoSigningKeyPassPhraseEncrypted=encrypt('401kSPSSOSigningKeyPassPhrase',
'@domainPath@')
 cmo.setSSOSigningKeyPassPhraseEncrypted(ssoSigningKeyPassPhraseEncrypted)

 twoWaySSLEnabled='@twoWaySSLEnabled@'
 if twoWaySSLEnabled == 'true':
 cmo.setTransportLayerSecurityKeyAlias('401kSPTLSKeyAlias')
 transportLayerSecurityKeyPassPhraseEncrypted=encrypt('401kSPTLSKeyPassPhrase',
'@domainPath@')

cmo.setTransportLayerSecurityKeyPassPhraseEncrypted(transportLayerSecurityKeyPassPhraseEn
crypted)

 cmo.setServiceProviderEnabled(true)
 print "SP Service configured."

Configure Keystores
def configSSL(AdminServerName):
 cd('/Servers')
 cd(AdminServerName)
 cmo.setKeyStores('CustomIdentityAndCustomTrust')
 cmo.setCustomTrustKeyStoreFileName('@certsDir@/401kSPTrust.jks')
 customTrustKeyStorePassPhraseEncrypted=encrypt('401kSPTrustKeyStorePassPhrase',
'@domainPath@')
 cmo.setCustomTrustKeyStorePassPhraseEncrypted(customTrustKeyStorePassPhraseEncrypted)
 cmo.setCustomIdentityKeyStoreFileName('@certsDir@/401kSPIdentity.jks')
 customIdentityKeyStorePassPhraseEncrypted=encrypt('401kSPIdentityKeyStorePassPhrase',
'@domainPath@')

cmo.setCustomIdentityKeyStorePassPhraseEncrypted(customIdentityKeyStorePassPhraseEncrypte
d)

Appendix C
Configuring SAML Single Sign On

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Appendix C-6 of C-7

 create(AdminServerName, 'SSL')
 cd('/Servers/' + AdminServerName + '/SSL')
 cd(AdminServerName)
 cmo.setEnabled(true)
 cmo.setListenPort(int('@sport@'))
 cmo.setTwoWaySSLEnabled(Boolean('@twoWaySSLEnabled@'))
 cmo.setClientCertificateEnforced(Boolean('@clientCertificateEnforced@'))
 cmo.setHostnameVerificationIgnored(false)
 cmo.setServerPrivateKeyAlias('401kSPServerKeyAlias')
 serverPrivateKeyPassPhraseEncrypted=encrypt('401kSPServerKeyPassPhrase', '@domainPath@')
 cmo.setServerPrivateKeyPassPhraseEncrypted(serverPrivateKeyPassPhraseEncrypted)

Open the existing domain and configure SP
createDomain = '@createDomain@'
createCluster = '@createCluster@'

if createDomain == 'true':
 createDomain('@domainName@', '@adminServerName@')

readDomain('@domainPath@')
if createCluster == 'true':
 createCluster('@clusterName@')

configSAMLAtn()
configSAML2IA()
reConfigDefaultAtn()
configSSOService('@adminServerName@')
configSSL('@adminServerName@')

updateDomain()
closeDomain()
print 'Domain Updated with Service Provider Configured'

exit()

Appendix C
Configuring SAML Single Sign On

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Appendix C-7 of C-7

D
WLST Deprecated Features

Some WLST features are deprecated.

Implicit Exports
Implicit imports are deprecated, beginning in Release 12.2.1.2.

Currently, by default, when WLST is started, the weblogic.jar is automatically added to the
Jython sys.path so that all weblogic-related classes referenced in weblogic.jar are loaded into
the WLST namespace. You can just reference these weblogic classes in your py script by
calling weblogic.class directly. There is no need to import those weblogic classes explicitly by
calling them using from weblogic import class. This provides a convenient way to reference
weblogic classes in your py script.

However, loading weblogic classes into the WLST namespace during WLST startup adds
execution time during startup and can cause performance issues.

Currently, you can disable auto-loading during the WLST startup by setting the following
system property to true:

python.cachedir.skip

In a future release, WLST will disable weblogic class auto-loading during WLST startup. At that
point, you will need to explicitly import classes using from weblogic import class. For example:

from weblogic.security.service import EJBResourceejbRes = EJBResource('DDPoliciesEar',
'DDPolinEarMiniAppBean.jar', 'DDRolesAndPolicies', 'getSubject', 'Remote', None)

Understanding the WebLogic Scripting Tool
G31574-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 9, 2025
Appendix D-1 of D-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	WLST Sample Scripts
	WLST Online Sample Scripts
	WLST Offline Sample Scripts

	Conventions

	1 Using the WebLogic Scripting Tool
	Using WLST Online or Offline
	Using WLST Online
	Using WLST Offline

	Interactive Mode, Script Mode, and Embedded Mode
	Interactive Mode
	Script Mode
	Embedded Mode

	Security for WLST
	Securing the WLST Connection
	Securing Access to Configuration Data
	Securing Access from WLST Online
	Writing and Reading Encrypted Configuration Values

	Securing Access to Security Data
	Connecting to Servers with Two-Way TLS Enabled

	Main Steps for Using WLST in Interactive or Script Mode
	Invoking WLST
	Invoking WLST Using Provided Shell Scripts
	Invoking WLST Using the java Command
	Running Scripts
	Invoking WLST From the Start Menu

	Exiting WLST
	Syntax for WLST Commands
	Considerations When Invoking Multiple WLST Instances

	Redirecting Error and Debug Output to a File
	Getting Help for WLST
	Running WLST from Ant
	WLST Task Parameters
	WLST Task Parameters Specified as Nested Elements
	WLST Ant Task Examples
	CreateServer Target Example
	Loop Target Example
	Error Target Example

	Importing WLST as a Jython Module
	Customizing WLST
	Adding Integrated Help for Custom Commands
	Sample Scripts For Defining new WLST Commands

	2 Creating WebLogic Domains Using WLST Offline
	Creating and Using a Domain Template (Offline)
	Creating and Updating a WebLogic Domain
	Browsing Information About the Configuration Hierarchy (Offline)
	Editing a WebLogic Domain (Offline)
	Alternative: Using the configToScript Command
	Considerations for Clusters, JDBC, and JMS Resources
	Creating a Managed Server Domain on a Remote Machine

	3 Managing the Server Life Cycle
	Using WLST and Node Manager to Manage Servers
	Using Node Manager to Start Servers on a Machine
	Using Node Manager to Start Managed Servers in a WebLogic Domain or Cluster

	Starting and Managing Servers Without Node Manager
	Starting an Administration Server Without Node Manager
	Managing Server State Without Node Manager

	4 Navigating MBeans (WLST Online)
	Navigating and Interrogating MBeans
	Changing the Current Management Object
	Navigating and Displaying Configuration MBeans Example

	Browsing Runtime MBeans
	Navigating and Displaying Runtime MBeans Example

	Navigating Among MBean Hierarchies
	Finding MBeans and Attributes
	Accessing Other WebLogic MBeans and Custom MBeans
	Accessing Custom MBeans in the Domain Runtime MBean Server
	Accessing Custom MBeans in the Edit MBean Server

	5 Configuring Existing WebLogic Domains
	Using WLST Online to Update an Existing WebLogic Domain
	Tracking Configuration Changes
	Undoing or Canceling Changes
	Additional Operations and Attributes for Change Management

	Using WLST Offline to Update an Existing WebLogic Domain
	Managing Security Data (WLST Online)
	Determining If You Need to Access the Edit Hierarchy
	Creating a User
	Adding a User to a Group
	Verifying Whether a User Is a Member of a Group
	Listing Groups to Which a User Belongs
	Listing Users and Groups in a Security Realm
	Changing a Password
	Protecting User Accounts in a Security Realm
	Set Consecutive Invalid Login Attempts
	Unlock a User Account

	Configuring Additional LDAP Authentication Providers

	Deploying Applications
	Using WLST Online to Deploy Applications
	Using WLST Offline to Deploy Applications

	6 Updating the Deployment Plan
	7 Getting Runtime Information
	Accessing Runtime Information: Main Steps
	Script for Monitoring Server State
	Script for Monitoring the JVM

	Configuring Logging
	Working with the WebLogic Diagnostics Framework

	A WLST Deployment Objects
	WLSTPlan Object
	WLSTProgress Object

	B FAQs: WLST
	General WLST
	Jython Support
	Using WLST

	C WLST Sample Configuration Scripts
	Configuring SAML Single Sign On
	Sample: Configure WebLogic Server as an Identity Provider Site with SAML SSO
	Sample: Configure WebLogic Server as a Service Provider Site with SAML SSO

	D WLST Deprecated Features
	Implicit Exports

