
Oracle® Fusion Middleware
Administering Zero Downtime Patching
Workflows

15c (15.1.1.0.0)
G32025-01
October 2025

Oracle Fusion Middleware Administering Zero Downtime Patching Workflows, 15c (15.1.1.0.0)

G32025-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documents i

Conventions ii

1 Introduction to Zero Downtime Patching

What Is Zero Downtime Patching? 1

Identifying a Zero Downtime Patch 1

Types of Patching Workflows 2

The Patching Workflow Process 2

Reverting an Update 3

Rolling Out a Patched Oracle Home: Overview 3

Rolling Out a New Java Version: Overview 5

Rolling Out Updated Applications: Overview 6

In-Memory Session Replication for ZDT Rollouts 8

2 Preparing for Zero Downtime Patching

ZDT Patching Restrictions 1

Preparing to Migrate Singleton Services 2

Creating a JSON File for Migrating Singleton Services 3

Preparing to Roll Out a Patched Oracle Home 5

Creating a Second Oracle Home 5

Applying Patches to the Second Oracle Home 7

Creating an Archive and Distributing It to Each Node 7

Preparing to Upgrade to a New Java Version 8

Preparing to Update to New Application Versions 8

The Effects of Staging Modes 8

Creating an Application Update JSON File 9

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page i of ii

3 Patching an Existing WebLogic Server Installation

Using Zero Downtime Patching 1

Obtaining a List of Applied Patches 2

4 Configuring and Monitoring Workflows

Strategies for Rolling Out a Patched Oracle Home 1

Starting the Administration Server 2

Using WLST to Initiate and Monitor Workflows 3

Rolling Out a New Oracle Home 6

Updating Your Java Version 7

Updating Both Oracle Home and the Java Version 7

Rolling Out Updated Applications 8

Reverting to the Previous Oracle Home, Java Home, or Applications 8

Initiating a Rolling Restart of Servers 9

Monitoring Workflow Progress 9

Running, Reverting, and Resuming Stopped Workflows 11

Useful WLST Commands for Workflows 11

Sample WLST Script 12

5 Modifying Workflows Using Custom Hooks

About Extension Points 1

The Patching Workflow Process for Custom Hooks 3

Specifying Extensions to Modify the Workflow 4

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page ii of ii

Preface

This document, Administering Zero Downtime Patching Workflows, describes how to move a
domain from an existing Oracle home to a patched Oracle home, update to a new Java
version, or update applications in a domain without any loss of service. It describes how to
create workflows that methodically apply the changes to the servers in the domain while
keeping the domain available. It also describes how to monitor the progress of workflow tasks
and revert the domain to its previous state.

Audience
This document is written for WebLogic Server administrators and operators who are
responsible for applying updates to a domain, such as Oracle patches to an Oracle home, new
Java versions, or application updates. It is assumed that readers are familiar with the
WebLogic Server Administration Console, WebLogic Scripting Tool (WLST), and the operating
system and platform on which Oracle WebLogic Server is installed.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. Seehttp://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents
See the following Oracle Fusion Middleware documents:

• Patching with OPatch

• Administering Node Manager for Oracle WebLogic Server

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Understanding the WebLogic Scripting Tool

• WLST Command Reference for WebLogic Server

• Deploying Applications to Oracle WebLogic Server

• MBean Reference for Oracle WebLogic Server

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page ii of ii

1
Introduction to Zero Downtime Patching

Zero Downtime Patching in Oracle WebLogic Server provides a way to create various
workflows to apply updates across a domain without interrupting your applications to service
requests. Learn how to apply an update across a domain, revert an update, and understand
the workflow process.

What Is Zero Downtime Patching?
Zero Downtime Patching (ZDT Patching) automates the rollout of out-of-place patching or
updates across a domain while allowing your applications to continue servicing requests. After
defining your patching strategy, you can use the WebLogic Scripting Tool (WLST) to
orchestrate the rollout of updates across some or all the servers in your domain.
Although WebLogic Server has supported rolling upgrades since version 9.2, the process has
always been manual. ZDT Patching automates this process by using workflows that you
define. You can patch or update any number of nodes in a domain with little or no manual
intervention. Changes are rolled out to one node at a time, allowing a load balancer, such as
Oracle Traffic Director, to redirect incoming traffic to the remaining nodes until the node has
been updated.

ZDT Patching also provides support for custom hooks. The ZDT custom hooks provide a
flexible mechanism for modifying the patching workflow by running additional scripts at specific
points in the patching rollout. This feature allows application developers and administrators to
include any operation that is specific to a particular type of rollout but that may not be
applicable to the base patching workflow. For more information about using this feature, see
Preparing to Modify Rollouts Using Custom Hooks.

Identifying a Zero Downtime Patch
You can identify a ZDT patch by the value of the patch uptime option in the patch metadata.

After you download a patch, open up patchdeploy.xml in the PATCH_HOME/etc/config
directory, where PATCH_HOME is the location of the patch directory that contains the patch.
If the value of patch-uptime-option is FMW_ROLLING_ORACLE_HOME, as shown in the following
example:

<patch-uptime-option>FMW_ROLLING_ORACLE_HOME<patch-uptime-option>

Or the value is FMW_ROLLING_SESSION:

<patch-uptime-option>FMW_ROLLING_SESSION<patch-uptime-option>

Then, the patch is suitable for ZDT patching.

If FMW_ROLLING_ORACLE_HOME or FMW_ROLLING_SESSION does not appear in the patch metadata,
then you know that the patch is not suitable for ZDT patching. As a result, the patch is not
compatible with a ZDT patch plan.

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 8

Types of Patching Workflows
You can create different types of workflows with ZDT Patching, for moving servers to a patched
Oracle home, updating to a new Java version, deploying updated applications, and more.

You can create a workflow that performs any one of these tasks. You also can create a
workflow that performs any combination of an Oracle home update, Java version update, and
application update.

• Moving servers to a patched Oracle home: The workflow transitions the Administration
Server or clusters or both, to another Oracle home that already has been patched using
the OPatch utility.

• Updating to a new Java version: The workflow updates the Administration Server or
clusters or both, to use a newly installed Java home.

• Deploying updated applications: The workflow deploys updated applications to the
selected clusters.

• Performing a rolling restart of servers: The workflow sequentially restarts the
Administration Server or servers in the selected clusters or both safely, including the
graceful shutdown of the servers and starting them up again.

Prior to creating a patching workflow, you must complete the preliminary steps for each of
these tasks with the exception of rolling restarts. See Preparing for Zero Downtime Patching.

The Patching Workflow Process
A ZDT Patching workflow constitutes a systematic set of steps that are run in a particular order
to roll out an update.

When you use a ZDT patching workflow to roll out an update, the rollout:

• Systematically works its way through each applicable node

• Identifies the servers on the node that are included in the rollout

• Gracefully shuts down those servers

• When switching to a patched Oracle home:

– Backs up the existing Oracle home to a backup directory

– Calls Node Manager to switch the contents of the current Oracle home to the contents
of the specified Oracle home

• When updating to a new Java version:

– Updates all scripts in the domain's Oracle home that contain a reference to Java home
to point to the new Java home

– Updates all scripts in the domain's home directory that contain a reference to Java
home to point to the new Java home

• When updating to new application versions:

– Locates the current directory for each application

– Moves the current directory for each application to a backup location

– Moves the directory for the new version of each application to the location of each
original application

Chapter 1
Types of Patching Workflows

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 8

• Restarts each server once the update has completed on the node

The workflow runs the appropriate steps in order and monitors the success of each step. If a
step fails, the workflow may attempt to retry it. If a step cannot be completed successfully, then
the workflow reverts each previous step in order. Updates can be reverted either automatically
or can be initiated manually, as described in Reverting an Update.

Reverting an Update
During the process of the patching workflow, ZDT Patching monitors the success and failure of
each step and provides the capability to revert to the previous step. You can configure the
revert process to run automatically, or initiate the process manually.

ZDT Patching is able to revert an update at any point in the process, even after it has
completed. Updates can be reverted:

• Automatically—When creating a workflow, you can opt to have the update revert
automatically if there is a failure. The update will be rolled back from the point of failure,
starting with the last successfully completed step.

• Manually—While a workflow is in progress, you can stop it and revert the process at any
point. The update will then be rolled back, starting with the last successfully completed
step.

After a workflow has completed, you can create a workflow to reverse the update that was
made. The revert process differs slightly depending on the update. If you are reverting to
the previous Oracle home, then you are provided with an option to specify that the process
is a rollback. For Java and applications, to revert you can point to the previous version of
Java or the application.

For information about reverting an update, see Running, Reverting, and Resuming Stopped
Workflows.

Rolling Out a Patched Oracle Home: Overview
You can roll out a patched Oracle home across your domain by using WLST while ensuring
that your application continues servicing requests.

Note

OPatchAutoFMW (installed in OPatch/auto/fmw directory) is deprecated and is
automatically removed when you update to OPatch 13.9.4.2.2 or later. You can
continue to use OPatchAutoCore (installed in OPatch/auto/core directory) for auto
updates during Fusion Middleware installation.

Before rolling out a patched Oracle home to all nodes in your domain, ensure that the following
conditions are met:

• The domain is distributed across all nodes and stored in the same location on all nodes.

• The existing Oracle home is in the same location on all nodes.

• Node Manager is running on all nodes.

• All Managed Servers in all clusters that will be included in the rollout are running.

Chapter 1
Reverting an Update

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 8

See ZDT Patching Restrictions, for additional requirements and restrictions. Figure 1-1 shows
the sequence of operations that are performed for an Oracle home rollout on each node,
regardless of how you perform the rollout.

To roll out a patched Oracle home, perform the following tasks:

1. Create and distribute the patched Oracle home archive.

Manually create and distribute the patched Oracle home archive:

a. Use the copyBinary command to create an archive of your existing Oracle home.

For details on this step and the next step, see Creating a Second Oracle Home.

b. Use the pasteBinary command to create an Oracle home to be patched on a
development or test system that has a domain topology similar to your production
domain. This gives you an Oracle home that has the same patch level and products as
you have on your production system.

c. Use OPatch to apply the desired patch or patches to the Oracle home on your
development or test system.

See Applying Patches to the Second Oracle Home.

d. Test and verify the patched Oracle home.

e. When you are satisfied that the patched Oracle home is stable, use copyBinary to
create an archive of the patched Oracle home.

For details on this and the next step, see Creating an Archive and Distributing It to
Each Node.

f. Distribute this archive to all nodes in your production system.

Note

There is no need to use pasteBinary to create the archive on each node. The
rollout process will create the new Oracle home on each node from the
archive.

2. Create a ZDT workflow to roll out the patched Oracle home to your Administration Server.
You can do this by using the WLST rolloutOracleHome command and specifying the
Administration Server as the rollout target. See Rolling Out a New Oracle Home.

3. After the workflow completes successfully, create another ZDT workflow to roll out the
patched Oracle home to the clusters in your domain. You can do this by using the WLST
rolloutOracleHome command and specifying a comma-separated list of clusters as the
rollout target.

Note

You can combine the last two steps into one workflow by specifying the domain as
the target in the rolloutOracleHome command.

Figure 1-1 Oracle Home Rollout Operations

This figure shows the sequence of operations that are performed for an Oracle home rollout on
each node, regardless of how you perform the rollout.

Chapter 1
Rolling Out a Patched Oracle Home: Overview

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 8

Rolling Out a New Java Version: Overview
You can roll out a new Java version across your domain without affecting the continuity of
servicing requests during the patching process. Use WLST to roll out updates to Java home.

Before rolling out a new Java version to all nodes in your domain, ensure that the following
conditions are met:

• The domain is distributed across all nodes and is stored in the same location on all nodes.

• Oracle home must be in the same location on all nodes.

• Node Manager is running on all nodes.

• All Managed Servers in all clusters that will be included in the rollout is running.

See ZDT Patching Restrictions, for additional requirements and restrictions.

To roll out a new Java version:

1. Install the new Java version on all nodes. The full path to this Java home must be the
same on all nodes.

See Preparing to Upgrade to a New Java Version.

2. Create a ZDT workflow to roll out the new Java home to your Administration Server. You
can do this by using the WLST rolloutJavaHome command and specify the Administration
Server as the rollout target. See Updating Your Java Version.

3. After the workflow completes successfully, create another ZDT workflow to roll out the new
Java home to the clusters in your domain. To do this, use the WLST rolloutJavaHome
command and specify a comma-separated list of clusters as the rollout target.

Note

You can combine the last two steps into one workflow by specifying the domain as
the target in the rolloutJavaHome command.

Chapter 1
Rolling Out a New Java Version: Overview

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 8

Rolling Out Updated Applications: Overview
ZDT provides the ability to update applications deployed to your domain without causing the
application to suffer downtime. Use WLST to roll out application updates.

This section provides an overview of how to roll out new application versions to Managed
Server nodes in your domain.

Prior to doing the rollout, ensure that the following conditions are met:

• The domain that is being updated is distributed across all nodes and must be stored in the
same location on all nodes.

• Oracle Home is in the same location on all nodes.

• Node Manager is running on all nodes.

• All Managed Servers in all clusters that will be included in the rollout is running.

Note

WebLogic Server does not support the rollout of applications deployed to the
Administration Server. Applications deployed to the Administration Server cannot be
updated without downtime because session replication can be applied only to
clustered instances, whereas Administration Server is a standalone instance.

See ZDT Patching Restrictions, for additional requirements and restrictions. The figures in this
section illustrate the scenario for patching staged, no-stage, and external staged applications.
During the rollout, the patched application source will be moved to the appropriate application
source location for each stage type.

To roll out new application versions to your Managed Servers:

1. Place a copy of the updated application directory as follows:

• (Stage mode) Place a copy of each updated application directory on the domain's
Administration Server.

• (No-stage mode and external stage mode) Place a copy of each updated application
directory on each node that will be affected. The directory must be the same on each
node.

See The Effects of Staging Modes.

2. Create a JavaScript Object Notation (JSON) file that defines each application name, the
path and file name for each updated application archive, and the path and file to which you
want to back up the original application archive.

See Creating an Application Update JSON File.

3. Create a ZDT workflow to roll out the new application versions. To do this, use the WLST
rolloutApplications command and specify a comma-separated list of clusters as the
rollout target.

Chapter 1
Rolling Out Updated Applications: Overview

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 8

Figure 1-2 Patching Staged Applications

Figure 1-3 Patching No-Stage Applications

Chapter 1
Rolling Out Updated Applications: Overview

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 8

Figure 1-4 Patching External Staged Applications

In-Memory Session Replication for ZDT Rollouts
During ZDT rollouts, the forceful shutdown of a server could lead to loss of in-memory
sessions. To avoid any loss of session data, set the rollout command to allow time for the
graceful shutdown of the server instance before shutting it down forcefully.

For web applications that use in-memory session replication, the in-memory sessions are
never replicated or persisted to allow for failover. As a result web applications may lose
session state due to sudden failure of a server or front-end misdirection causing the request to
land on a server without the session.

With regard to Zero Downtime (ZDT) rollouts, when you shut down any server that holds the in-
memory session, the server waits for that session to complete before shutting down. Because
the default value for session timeout is 1 hour, the server may be in the SUSPENDING state
for 1 hour or even longer if sessions continue to be used or updated. If you do not wait for the
session to complete its life cycle, then the state is lost because in-memory sessions are neither
replicated nor persisted for web applications.

If you do not want to wait for an hour or longer, then Oracle recommends that you set the
shutdownTimeout argument in the WLST rolloutcommand to the time (in seconds) that you
want the server to wait before shutting down. For information about using the shutdownTimeout
argument, see Table 4-1.

Chapter 1
In-Memory Session Replication for ZDT Rollouts

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 8

2
Preparing for Zero Downtime Patching

Before configuring a patching workflow, ensure that you perform the required preliminary steps
such as installing and patching a new Oracle home, installing a new Java version, or installing
updated applications on each node. There are also known restrictions to consider before
preparing for and creating a ZDT patching workflow in Oracle WebLogic Server.

ZDT Patching Restrictions
For the rollout orchestration to be successful, you must keep in mind certain restrictions before
you configure a patching workflow.

Prior to preparing for and creating a ZDT patching workflow, consider the following restrictions:

• The Managed Servers that are included in the workflow must be part of a cluster, and the
cluster must span two or more nodes.

• If you want to roll out an update to the Managed Servers without targeting and updating the
Administrations Server, then ensure that the Administration Server is on a different node
than any of the Managed Servers being updated.

• If you are updating to a patched Oracle home, the current Oracle home must be installed
locally on each node that will be included in the workflow. Although it is not required,
Oracle also recommends that the Oracle home be in the same location on each node.

• When you are rolling out a new Oracle home using WLST commands, you must specify
the path to the JAR archive that contains the Oracle home to roll out. Specifying a local
directory is not supported when you are rolling out a new Oracle home. Only if you are
rolling back to a previous Oracle home, you can specify the path to the local directory
which must be the backup Oracle home directory from the previous rollout that you want to
roll back to.

• If Managed Servers on a node belong to different clusters and those clusters share the
same Oracle home, then if you include one of those clusters in a workflow, you must also
include the other cluster in the workflow. For example, if Node 1 has Managed Server 1 in
Cluster 1 and Managed Server 2 in Cluster 2, and both Cluster 1 and Cluster 2 share the
same Oracle home, then if you include Cluster 1 in the workflow, you must also include
Cluster 2. This applies to Java home, Oracle home and application update rollouts.

• The domain directory must reside outside of the Oracle home directory.

• (Windows only) When you use the WebLogic Scripting Tool (WLST) to initiate a rollout of a
new Oracle home, you cannot run WLST from any Oracle home that will be updated as
part of the workflow. Instead, use one of the following options:

– Run WLST from an Oracle home on a node that will not be included in the workflow.
This Oracle home must be the same version as the Oracle home that is being updated
on other nodes.

– Run WLST from another Oracle home that is not part of the domain being updated.
This Oracle home must be the same version as the Oracle home that is being
updated. It can reside on any node, including the Administration Server node for the
domain being updated.

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 10

• (Windows only) Windows file locks may pose problems during the ZDT rollout operations.
You must attempt to rectify these common file handle lock issues before running a rollout
on Windows to avoid rollout failure:

– Using the WLST client on the Administration Server will cause the Oracle home
directory to be locked. This will cause any rollout on that node, including a domain
rollout to fail. To avoid this, use a WLST client installed on a node that is not targeted
by the rollout.

– Opening command terminals or applications residing in any directory under Oracle
home may cause a file lock. As a result, you will be unable to update that particular
Oracle home.

– Any command terminal or application that references the application source file or a
JAR file may cause a file lock, making it impossible to update that particular
application.

Preparing to Migrate Singleton Services
ZDT Patching rollouts provide support to migrate singleton services, such as JMS and JTA,
using the service migration feature of WebLogic Server. For better control of service migration
during a rollout, you can also use the JSON file-based migration option that ZDT supports.

All ZDT rollouts require a restart of the servers that are included in the rollout. One feature of
the rollout is detection and handling of singleton services, such as Java Transaction API (JTA)
and Java Messaging Service (JMS). To make these singleton services highly available during
the rollout operation, ZDT patching takes advantage of the service migration mechanisms
supported by WebLogic Server. For singleton services in your environment, service migration
can be configured in either of the following ways:

• For migrating a singleton service that is configured using migratable targets, the service
migration is configured as described in Service Migration in Administering Clusters for
Oracle WebLogic Server. If a service is configured using migratable targets and the
migration policy is set to exactly-once, then the service automatically migrates during the
graceful shutdown of a server. If, however, the migration policy for a service is manual or
failure-recovery, then you must take steps to ensure that the service is migrated safely
during server shutdown. To achieve this, you must define the migration properties in the
JSON file as described in Creating a JSON File for Migrating Singleton Services.

You must bear in mind the following issues restrictions when migrating singleton services
that is configured using migratable targets:

– The data store for JMS servers must reside at a shared location to be used by the
members of the cluster, without which the user might experience loss of messages.

– The ClusterMBean must be configured with the
setServiceActivationRequestResponseTimeout method and its value must be set
depending on the time taken for the migration to succeed.

– The JNDI NameNotFoundException is returned during lookup for JMS connection
factories and destinations. This is a known limitation. For information about this
limitation and its workaround, see note 1556832.1 at My Oracle Support.

– As services migrate during the rollout, the JNDI lookup for JMS connection factories
and destinations fail. In such cases of server failure, JMS applications attempt to
reconnect to another available server for non-deterministic time till the migration
succeeds. See Recovering from a Server Failure in Developing JMS Applications for
Oracle WebLogic Server.

Chapter 2
Preparing to Migrate Singleton Services

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 10

https://support.oracle.com/

• For migrating a singleton service that is configured using the JMS cluster configuration, the
service migration is configured (depending on your cluster type) as described in Simplified
JMS Cluster and High Availability Configuration in Administering JMS Resources for
Oracle WebLogic Server. If a service is configured using the JMS Cluster configuration,
then the migration-policy must be set to Always to enable the automatic migration of
services during the graceful shutdown of a server. If the migration-policy is On-Failure or
Off, then you must take steps to ensure that the service is migrated safely during server
shutdown. You must also ensure that the automatic restart-in-place option is explicitly
disabled when using this simplified HA service migration model.

.

Note

ZDT rollout allows you to specify whether a singleton service should be migrated
before shutting down during patching. However, during the rollout operation, the user
is not allowed to specify the migration of servers on the same machine. This is
because, all servers on a machine experience shutdown during a rollout which may
cause unavoidable downtime for users. Ensure that you always specify migration of
services to a server on a different machine, failing which the rollout might fail.

Service migration involves shutting down one or more singleton services on the first
server that is being rolled out. This means that the service is made available on the
second server while rollout is in progress. Upon successful completion of the rollout,
the services are migrated back to the newly patched first server. Since this process
involves restarting of singleton services, the users can expect a brief downtime of
services when the service is shut down on the first server and has not fully started on
the second server. This would render the service unavailable and applications may
experience a brief outage. The period of downtime of services may depend on factors
including, hardware (both machine and network) performance, cluster size, the server
startup time, and persistent message backlog in case of JMS.

Creating a JSON File for Migrating Singleton Services
To ensure that the singleton service is migrated safely during server shutdown, you must
perform the following tasks:

• Create a JSON file to define migration properties for such services, as described in this
section

• Configure the rollout to use the JSON file as described in Configuring and Monitoring
Workflows.

The JSON file must start with the following line:

{"migrations":[

Each singleton service migration that you need to migrate is defined using the parameters
described in the following table.

Parameter Description

source The name of the source server from which the
service is to be migrated. This parameter is
required.

Chapter 2
Preparing to Migrate Singleton Services

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 10

Parameter Description

destination For migrationType of jms, jta, or all, the name
of the destination server to which the service is to
be migrated.

For migrationType of server, the name of
another machine (node) in the domain on which
Node Manager is running.

This parameter is required if the migrationType
is jms, jta, server, or all.

migrationType The type of migration, which can be one of the
following types:

• jms — Migrate all JMS migratable targets from
the source server to the destination server.

• jta — Migrate all JTA services from the
source server to the destination server.

• server — Invoke Whole Server Migration to
perform a server migration. The destination
must be a machine (node) on which Node
Manager is running.

• all — Migrate all services (for example, JTA
and JMS) from the source server to the
destination server.

• none — Disable service migration from the
source server. If you specify this type,
failback and destination are not needed.

failback If set to true, a failback operation is performed.
Failback restores a service to its original hosting
server, the server on which it was running before
the rollout.

The default value is false (no failback).

Note: A JTA service automatically fails back when
it is invoked for migration. Therefore, do not use the
failback option for JTA services, as it does not
apply to them. The rollout fails if you specify the
failback option.

The following sample JSON file shows how to define various migration scenarios.

 {"migrations":[

Migrate all JMS migratable targets on server1 to server2. Perform a failback
 {
 "source":"server1",
 "destination":"server2",
 "migrationType":"jms",
 "failback":"true"
 },

Migrate only JTA services from server1 to server3. Note that JTA migration
does not support the failback option, as it is not needed.
 {
 "source":"server1",
 "destination":"server3",
 "migrationType":"jta"
 },

Chapter 2
Preparing to Migrate Singleton Services

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 10

Disable all migrations from server2
 {
 "source":"server2",
 "migrationType":"none"
 },
 {

Migrate all services (for example, JTA and JMS) from server 3 to server1 with
no failback
 "source":"server3",
 "destination":"server1",
 "migrationType":"all"
 },

Use Whole Server Migration to migrate server4 to the node named machine 5 with
no failback
 {
 "source":"server4",
 "destination":"machine5",
 "migrationType":"server"
 }

]}

Preparing to Roll Out a Patched Oracle Home
Before rolling out a patched Oracle home to your Managed Servers, you must create an Oracle
home archive and distribute it to each node.

You can manually create the second Oracle home, use the OPatch utility to apply patches to it,
use the copyBinary command to create an archive of the patched Oracle home, and then copy
the archive to the nodes in your domain. See these sections for details:

The preparation process does not require you to shut down any of your Managed Servers, so
there is no effect on the availability of your applications.

Note

If your domain includes Oracle Fusion Middleware products other than Oracle
WebLogic Server (such as Oracle SOA Suite or Oracle WebCenter), and you have
patched those applications in your Oracle home, if you want to preserve currently
active sessions while doing the rollout, ensure that the patched versions are
compatible with ZDT patching. For example, the applied patches should have limited
changes to session shape and should be backward-compatible with other Oracle
Fusion Middleware products that are running in the domain.

Creating a Second Oracle Home
To manually create a patched Oracle home, you must first create a copy of your existing
Oracle home by using the copyBinary and pasteBinary commands. When using these
commands, you must keep in mind that the value of options specified must not contain a
space. For example, on Windows, you cannot pass the following as a value to the -javaHome
option:

C:\Program Files\jdk

Chapter 2
Preparing to Roll Out a Patched Oracle Home

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 10

Note

Oracle recommends that you create and patch the second Oracle home on a
nonproduction machine so that you can test the patches you apply, but this is not
required. However, you must perform the following steps on the node where you will
patch the new Oracle home. The Oracle home on that node must be identical to the
Oracle home you are using for your production domain.

To create the second Oracle home to which you will apply patches:

1. Change to the following directory, where ORACLE_HOME is the Oracle home that you want to
patch.

cd ORACLE_HOME/oracle_common/bin

2. Run the following command, where archive is the full path and file name of the archive file
to create, and oracle_home is the full path to your existing Oracle home. Note that
JAVA_HOME must be defined as the Java home that was used for your Oracle home
installation:

UNIX

./copyBinary.sh -javaHome $JAVA_HOME -archiveLoc archive -sourceOracleHomeLoc
oracle_home

Windows

copyBinary.cmd -javaHome %JAVA_HOME% -archiveLoc archive -sourceOracleHomeLoc
oracle_home

For example, the following command creates the Oracle home archive wls1221.jar in
network location /net/oraclehomes/ using the Oracle home located at /u01/
oraclehomes/wls1221:

./copyBinary.sh -javaHome $JAVA_HOME -archiveLoc /net/oraclehomes/wls1221.jar -
sourceOracleHomeLoc /u01/oraclehomes/wls1221

3. Run the following command to create the second Oracle home, where archive is the full
path and file name of the archive file you created, and patch_home is the full path to the
new Oracle home to which you will apply patches. Note that JAVA_HOME must be defined as
the Java home that was used for your original Oracle home installation:

UNIX

./pasteBinary.sh -javaHome $JAVA_HOME -archiveLoc archive -targetOracleHomeLoc
patch_home

Windows

pasteBinary.cmd -javaHome %JAVA_HOME% -archiveLoc archive -targetOracleHomeLoc
patch_home

For example, the following command creates the Oracle home wls1221_patched in /u01/
oraclehomes/ using the archive /net/oraclehomes/wls1221.jar:

./pasteBinary.sh -javaHome $JAVA_HOME -archiveLoc /net/oraclehomes/wls1221.jar -
targetOracleHomeLoc /u01/oraclehomes/wls1221_patched

Chapter 2
Preparing to Roll Out a Patched Oracle Home

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 10

Applying Patches to the Second Oracle Home
To patch the second Oracle home, use the OPatch tool to apply individual patches, bundle
patches, security patch updates, or patch set updates to the second, offline Oracle home. Prior
to applying a particular patch or group of patches, ensure that all prerequisite patches have
already been applied.

For information about how to prepare for and patch an Oracle home using OPatch, see
Patching Your Environment Using OPatch in Patching with OPatch.

Creating an Archive and Distributing It to Each Node
After you have created the patched Oracle home, use the following steps to create an Oracle
home archive and copy it to each node that will be involved in the rollout:

1. Change to the following directory, where ORACLE_HOME is the patched Oracle home that you
created.

cd ORACLE_HOME/oracle_common/bin

2. Run the following command, where archive is the full path and file name of the archive file
to create, and patched_home is the full path to the patched Oracle home you created. Note
that JAVA_HOMEmust be defined as the Java home that was used for your current Oracle
home installation.

UNIX

./copyBinary.sh -javaHome $JAVA_HOME -archiveLoc archive -sourceOracleHomeLoc
patched_home

Windows

copyBinary.cmd -javaHome %JAVA_HOME% -archiveLoc archive -sourceOracleHomeLoc
patched_home

For example, the following command creates the Oracle home archive wls1221.11.jar in
network location /net/oraclehomes/ using a patched Oracle home located at /01/
oraclehomes/wls1221_patched:

./copyBinary.sh -javaHome $JAVA_HOME -archiveLoc /net/oraclehomes/wls_1221.11.jar -
sourceOracleHomeLoc /u01/oraclehomes/wls1221_patched

3. On each node that will be included in the patching workflow, copy the archive file to the
parent folder of the Oracle home that you want to replace. For example, if the archive is in
network location /net/oraclehomes/wls_1221.11.jar and the Oracle home to be replaced
is located in /u01/oraclehomes/wls1221:

cp /net/oraclehomes/wls1221.11.jar /u01/oraclehomes/

If you are copying to a large number of nodes, you can use third-party software distribution
applications to perform this step.

After completing these steps, you are ready to create a workflow that includes patching your
Oracle home. See Configuring and Monitoring Workflows.

Chapter 2
Preparing to Roll Out a Patched Oracle Home

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 10

Note

If you want to also update your Java version or applications using the same patching
workflow, then perform the preparation steps for those upgrades before you create the
workflow.

Preparing to Upgrade to a New Java Version
Before upgrading to a new Java version, you must copy the new Java version to each node
you want to include in the upgrade. Before installing the new Java version, there are certain
conditions that must be met.

Preparation for upgrading to a new version of Java does not require you to shut down
Managed Servers, so there will be no interruption to application availability.

To upgrade to a new version of Java:

1. Prior to installing the new Java version, ensure that Node Manager and the Managed
Servers are running on all nodes on which you plan to install the new version. This
prevents the Java installer from changing the existing Java home path. However, you do
not need to have the Node Manager running on the node on which the Administration
Server is running.

2. On each node to be included in the upgrade, install the new Java version to the same path
on each node. The full path to the new Java version must be the same on each node for
the upgrade to be successful.

After copying the new Java version to each node, you are ready to create a workflow that
includes upgrading to a new Java home. See Configuring and Monitoring Workflows.

Preparing to Update to New Application Versions
Before rolling out an application update, the new application version is distributed to all
affected nodes depending on the staging mode you used when you staged the application. You
must create a JSON file to specify the properties of applications that require an update.

This section describes how to prepare for updating to new applications using a ZDT workflow.
It contains the following sections:

The Effects of Staging Modes
Applications deployed across Managed Servers can be deployed using one of three staging
modes: stage mode, no-stage mode, and external-stage mode. The selected mode indicates
how the application will be distributed and kept up-to-date.

How you prepare for an application update workflow depends on the mode you used when you
staged the application.

Chapter 2
Preparing to Upgrade to a New Java Version

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 10

Staging Mode Required Preparation and Result

Stage Place a copy of the updated application directory
on the domain's Administration Server.

Result: The workflow will replace the original
application directory on the Administration Server
and WebLogic Server will copy it to each Managed
Server.

No-stage Place a copy of the updated application directory
on each node that will be affected. This directory
must be in the same location on each node.

Result: The workflow will update each node in turn
by replacing the existing application directory with
the updated application directory, and will move the
original application directory to the specified
backup location.

External stage Place a copy of the updated application directory
on each node that will be affected. This directory
must be in the same location on each node.

Result: The workflow will detect that the
application is an external-stage application, figure
out the correct path for the stage directory for each
Managed Server on the node, copy the updated
application to that location, and move the original
application to the specified backup location.

For detailed information about the various staging modes, see Staging Mode Descriptions and
Best Practices in Deploying Applications to Oracle WebLogic Server.

Creating an Application Update JSON File
You can update one or more applications in your domain with a single workflow. Application
updates are accomplished by creating a JSON file that, for each application, defines:

• The application name (applicationName)

• The path and file name for the updated application archive (patchedLocation)

• The path and file to which you want to back up the original application archive
(backupLocation).

Note

Oracle recommends that you avoid using backslash (Windows) while specifying the
paths in the JSON file. This is because these paths are interpreted by Java and a
backslash may trigger a different character representation.

When configuring the workflow using WLST, you must specify the name of the JSON file to use
for the update.

Chapter 2
Preparing to Update to New Application Versions

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 10

The following example shows the structure of a JSON file that is intended to update two
applications, MyApp and AnotherApp, to a new version. You can use a single JSON file to
update as many applications as necessary.

{"applications":[
{
"applicationName":"MyApp",
"patchedLocation":"/u01/applications/MyAppv2.war",
"backupLocation": "/u01/applications/MyAppv1.war"
},
{
"applicationName":"AnotherApp",
"patchedLocation":"/u01/applications/AnotherAppv2.war",
"backupLocation": "/u01/applications/AnotherAppv1.war"
}
]}

After copying the updated application to all required locations and creating the JSON file, you
are ready to create a workflow that includes application updates. See Configuring and
Monitoring Workflows.

Chapter 2
Preparing to Update to New Application Versions

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 10

3
Patching an Existing WebLogic Server
Installation

You can patch an existing WebLogic Server installation using either ZDT Patching or manually
rolling an update of your servers.

Note

If you are upgrading from Oracle WebLogic Server 10.3.6, you will use the Oracle
OPatch instead of the BEA Smart Update (BSU) patching technology that was used in
Oracle WebLogic Server 10.3.6. You will need to modify any installation and patching
automation you have created for your Oracle WebLogic Server 10.3.6 environments to
adapt to the new installation and patching technologies.

Use ZDT Patching only if your domain contains three or more nodes and all the servers that
you want to patch are assigned to clusters.

Manually performing a rolling update of your servers results in no loss of service to your
customers. Use this method to patch individual servers that are not part of a cluster or if the
domain contains fewer than three nodes. See Using Zero Downtime Patching.

You can also check the list of patches that have already been applied to a WebLogic Server
instance. See Obtaining a List of Applied Patches.

See the following sections about different patching methods.

Using Zero Downtime Patching
As of WebLogic Server 12.2.1, you can use ZDT Patching to automate the process of applying
individual patches, bundle patches or patch set updates to a WebLogic Server installation.

With ZDT patching, you can use WLST to:

• Create and patch a second Oracle Home.

• Distribute the patched Oracle Home to all of your nodes.

• Configure a patching workflow to update the desired servers in your domain.

Use a patching workflow to revert patches that you have previously applied to a WebLogic
Server installation using ZDT Patching.

For more details about ZDT Patching, see Introduction to Zero Downtime Patching .

Note

OPatchAutoFMW (installed in OPatch/auto/fmw directory) is deprecated and is
automatically removed when you update to OPatch 13.9.4.2.2 or later.

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 4

Obtaining a List of Applied Patches
Oracle WebLogic Server provides the ability to display the list of patches that have been
applied to a WebLogic Server instance. The patch list can be obtained from either of the
following sources:

• Using the weblogic.log.DisplayPatchInfo System Property

• Using the ServerRuntimeMBean.PatchList Attribute

When you use one of the preceding sources, the following details are provided for each
applied patch:

• Associated bug number

• Patch number

• Date the patch was applied

• Brief description

Using the weblogic.log.DisplayPatchInfo System Property

The weblogic.log.DisplayPatchInfo system property contains a log of all patches that have
been applied to a WebLogic Server instance, and can be accessed by either of the following
methods:

• Specifying the -Dweblogic.log.DisplayPatchInfo=true JVM option in the command line
that starts the server instance. As the server starts, the startup messages in stdout
include the list of applied patches, and they are also retained in the server log file. Note
that to minimize logging overhead during startup, the default value of this option is false.

• Running the weblogic.version utility. This utility can obtain the patch list regardless of
whether the -Dweblogic.log.DisplayPatchInfo=true startup option is used, and does not
require the WebLogic Server instance to be starting or running.

The following example shows running the weblogic.version utility. This example includes
specifying the classpath of the weblogic.jar file corresponding to the specific server instance
whose patch list is to be displayed.

bash-4.1$ java -classpath wlserver/server/lib/weblogic.jar weblogic.version

WebLogic Server 12.2.1.1.0 Thu Jun 2 16:21:58 PDT 2016 1784838
24907328;20845986;Mon Mar 13 14:40:42 PDT 2017;WLS PATCH SET UPDATE 12.2.1.1.170117
19795066;19149348;Mon Mar 13 14:33:28 PDT 2017;One-off
18905788;18668039;Mon Mar 13 14:32:57 PDT 2017;One-off
19632480;19278519;Mon Mar 13 14:32:26 PDT 2017;One-off
19002423;18804275;Mon Mar 13 14:31:50 PDT 2017;One-off
19030178;19234068;Mon Mar 13 14:31:22 PDT 2017;One-off
19154304;19278518;Mon Mar 13 14:30:54 PDT 2017;One-off

Use 'weblogic.version -verbose' to get subsystem information

Use 'weblogic.utils.Versions' to get version information for all modules

Using the ServerRuntimeMBean.PatchList Attribute

The list of patches that have been applied to a WebLogic Server instance is also available from
the ServerRuntimeMBean.PatchList attribute. The value of this attribute is independent of the

Chapter 3
Obtaining a List of Applied Patches

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 4

weblogic.log.DisplayPatchInfo system property. You can access the
ServerRuntimeMBean.PatchList attribute using any of the following clients:

• WLST - See Example 3-1

• REST API - See Example 3-2

• JMX - See Example 3-3

Note

To access the patch list from ServerRuntimeMBean, you must be an authenticated user
whose identity can be mapped to the Admin role.

Regardless of the client that you use to obtain the patch information, each patch entry has the
following format:

<BugNumber>;<PatchID>;<DateApplied>;<Description>

Example 3-1 Using WLST

The following example shows using WLST to connect to a server instance and obtain its list of
applied patches:

wls:/offline> connect('username','password','t3://localhost:7001')
Connecting to t3://localhost:7001 with userid weblogic ...
Successfully connected to Admin Server "myserver" that belongs to domain "mydomain".

Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be used instead.

wls:/mydomain/serverConfig/> serverRuntime()
Location changed to serverRuntime tree.
 This is a read-only tree with ServerRuntimeMBean as the root.
For more help, use help('serverRuntime').

wls:/mydomain/serverRuntime/> print cmo.getPatchList()
array(java.lang.String,['24907328;20845986;Mon Mar 13 14:40:42 PDT 2017;WLS PATCH SET
UPDATE 12.2.1.1.170117', '19795066;19149348;Mon Mar 13 14:33:28 PDT 2017;One-off',
'18905788;18668039;Mon Mar 13 14:32:57 PDT 2017;One-off', '19632480;19278519;Mon Mar 13
14:32:26 PDT 2017;One-off', '19002423;18804275;Mon Mar 13 14:31:50 PDT 2017;One-off',
'19030178;19234068;Mon Mar 13 14:31:22 PDT 2017;One-off', '19154304;19278518;Mon Mar 13
14:30:54 PDT 2017;One-off'])
wls:/mydomain/serverRuntime/>

Example 3-2 Using the REST API

The following example shows using the REST API to return the patch list:

Request:
http://localhost:7001/management/weblogic/latest/serverRuntime?
links=none&fields=name,patchList

Response: {
 "patchList": [
 "24907328;20845986;Mon Mar 13 14:40:42 PDT 2017;WLS PATCH SET UPDATE
12.2.1.1.170117",
 "19795066;19149348;Mon Mar 13 14:33:28 PDT 2017;One-off",
 "18905788;18668039;Mon Mar 13 14:32:57 PDT 2017;One-off",
 "19632480;19278519;Mon Mar 13 14:32:26 PDT 2017;One-off",
 "19002423;18804275;Mon Mar 13 14:31:50 PDT 2017;One-off",

Chapter 3
Obtaining a List of Applied Patches

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 4

 "19030178;19234068;Mon Mar 13 14:31:22 PDT 2017;One-off",
 "19154304;19278518;Mon Mar 13 14:30:54 PDT 2017;One-off"
],
 "name": "myserver"
}

Example 3-3 Using a JMX Client

Using a JMX application, you can access the applied patch list of a WebLogic Server instance
by invoking the getPatchList method, as in the following example:

/**
 * @include-api for-public-api
 * Returns array of informational strings for installed patches. Each info string
 * is of the form: <bug-id>;<patch-id>;<date-applied>;<patch-description>
 * For example:
 * 24907328;20845986;Mon Mar 13 14:40:42 PDT 2017;WLS PATCH SET UPDATE 12.2.1.1.170117
 *
 * @return Array of informational strings for installed patches at a server.
 * @roleAllowed Monitor
 * @unharvestable
 */
public String[] getPatchList();

Chapter 3
Obtaining a List of Applied Patches

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 4

4
Configuring and Monitoring Workflows

Configure ZDT Patching workflows in Oracle WebLogic Server to roll out a patched Oracle
home, upgrade to a new Java version, update the applications on your Managed Servers, or a
combination of these tasks. Use WLST to create and monitor workflows.
This chapter describes how to configure and monitor a patching workflow that moves Managed
Servers to a patched Oracle home, updates the Java version on your Managed Servers,
updates the applications on your Managed Servers, or any combination of these update tasks.

Note

Before initiating the update process, you must have completed all appropriate
preparation steps for the type of update you are doing, as described in Preparing for
Zero Downtime Patching.

For Windows-based domains, before initiating a workflow to update an Oracle home,
on each node, ensure that there are no locked directories or files in the Oracle home
being updated, as this can prevent the Oracle home from being moved to the specified
backup directory. A directory can be locked by something as simple as having a DOS
command window open to that directory. A file can be locked by having it open in an
application.

Strategies for Rolling Out a Patched Oracle Home
You must roll out the patched Oracle home to the Administration Server first before rolling it out
to the targeted clusters. You can do this by either using two sequential workflows or by using a
single workflow.

When you roll out a new Oracle home using WLST, you must ensure that the patched Oracle
home is first rolled out to the Administration Server. There are two approaches you can take to
do this:

• Use one workflow to roll out the patched Oracle home to the Administration Server, and
then use a second workflow to roll out the patched Oracle home to your clusters. Oracle
recommends using this approach, but it is not required.

In this scenario, using WLST, you would run either the rolloutOracleHome or
rolloutUpdate command, and specify the name of the Administration Server as the target.
You would then run rolloutOracleHome or rolloutUpdate again, and specify cluster
targets.

• Use only one workflow to roll out the patched Oracle home to the entire domain. The
workflow will automatically roll out the patched Oracle home in the Administration Server
first, before rolling it out to the target clusters.

In this scenario, using WLST, you would run either the rolloutOracleHome or
rolloutUpdate command, and specify the domain name as the target.

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 13

Starting the Administration Server
Before you initiate the rollout operation, it is important that you start the Administration Server
using Node Manager. If there is no Node Manager configured for the Administration Server,
then you can start the Administration Server by using the startWebLogic script.

If the Administration Server will be included in a workflow, then you can start the Administration
server using either the startWebLogic script or the Node Manager. The Administration Server
will be automatically restarted during the rollout operation if the specified target for the rollout is
a domain. However, when the rollout operation restarts the Administration Server, you might
experience a brief downtime when you will not be able to connect to WLST.

To start the Administration Server before you initiate the rollout operation, you can start the
Administration server in one of the following ways:

• Using the startWebLogic script

If there is no Node Manager configured for the Administration Server, then you can start
the Administration Server by using the startWebLogic script. To start the Administration
Server using this script, see Starting an Administration Server with a Startup Script in
Administering Server Startup and Shutdown for Oracle WebLogic Server.

• Using the Node Manager

If a Node Manager is configured for the Administration Server, then you must start the
Administration Server using the Node Manager. To start the Administration Server using
the Node Manager, perform the following steps:

1. If the Administration Server is running and was started using the startWebLogic script in
the domain home, use the stopWebLogic command to shut it down:

UNIX

cd domain_home/bin
./stopWebLogic.sh

Windows

cd domain_home\bin
stopWebLogic.cmd

2. Ensure that Node Manager is running on the host.

3. Start WLST. See Invoking WLST in Understanding the WebLogic Scripting Tool.

4. Use the nmConnect command to establish a Node Manager session. For example, use the
following command to connect to the domain mydomain located in /domains/mydomain
using SSL, where the NodeManager port is 5556:

wls:/myserver/serverConfig> nmConnect('username', 'password, 'localhost',
'5556', 'mydomain', '/domains/mydomain','ssl')

5. After successfully connecting, run the nmStart command. For example, use the following
command if the Administration Server is called AdminServer and the domain is located in /
domains/mydomain:

nmStart('AdminServer', '/domains/mydomain')

See Starting the Administration Server Using Node Manager in Administering Node Manager
for Oracle WebLogic Server.

Chapter 4
Starting the Administration Server

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 13

Using WLST to Initiate and Monitor Workflows
WLST includes a set of ZDT Patching commands that you can use to roll out a patched Oracle
home, a new Java version or a combination of both, or new application versions.

This section describes the WLST commands that you can use to initiate workflows to update
your Managed Servers, and provides sample WLST scripts demonstrating various workflow
(rollout) scenarios.

Note

When using the WLST rolloutOracleHome or rolloutUpdate commands to initiate a
rollout of a new Oracle home for a Windows-based domain, you cannot run WLST
from any Oracle home that will be updated as part of the workflow. See ZDT Patching
Restrictions.

Use the following WLST commands to perform automated rolling updates of your servers. You
must run these commands from the Administration Server for the target domain.

• rolloutOracleHome — Rolls out a patched Oracle home to your Managed Servers or
reverts your Managed Servers to a previous Oracle home. The patched Oracle home
archive that you use in this command can be one that was created using the copyBinary
and pasteBinary commands.

• rolloutJavaHome — Updates your Managed Servers to use a new Java version.

• rolloutUpdate — Updates your Managed Servers to use a patched Oracle home and a
new Java version. The patched Oracle home archive that you use in this command can be
one that was created using the copyBinary and pasteBinary commands.

• rolloutApplications—Updates specified applications that are running on your Managed
Servers.

Note

When specifying paths for Windows in rollout commands, you must use backslashes
instead of forward slashes. To avoid unnecessary errors, ensure that the backslashes
are escaped. (For example, C:\\myhome\\files\\apps.json). See Syntax for WLST
Commands in Understanding the WebLogic Scripting Tool.

When you run one of these WLST commands, the command determines which servers need
to be updated and in which order, and creates a patching workflow to update them safely. This
workflow includes:

• Performing a graceful shutdown of Managed Servers one at a time. This does not include
Managed Servers that are currently in ADMIN or STANDBY mode. This includes migration
of singleton services if the migrationProperties option is included in the rollout
command.

• Replacing the Oracle home directory (if applicable)

• Replacing the Java home directory (if applicable)

Chapter 4
Using WLST to Initiate and Monitor Workflows

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 13

• Replacing application directories (if applicable)

• Restarting Node Manager on the node

• Restarting the Managed Servers on the node

Table 4-1 describes the parameters available for the WLSTrolloutcommands.

Table 4-1 Arguments for WLST rollout Commands

Argument Description

target Required for all rollout commands.

Specifies which Managed Servers will be included in the update. target can be
one of the following:

domain_name — Specify a domain name as the target if you want the
Administration Server and all Managed Servers in that domain to be updated.

clusters — Specify a cluster name or a comma-separated list of cluster names if
you want to update all Managed Servers in the specified cluster or clusters, but not
Managed Servers in other clusters.

servers — Specify a server name or a comma-separated list of server names if
you only want to update those Managed Servers. Note that the servers you specify
must still be part of a cluster; they cannot be unclustered servers.

Note: Typically, you should specify a server target only when updating the
Administration Server. Oracle recommends that you not update individual Managed
Servers in most cases as sessions may not be preserved and downtime for users
may not be avoided. However, you can safely specify Managed Server targets if
you have added one or more new Managed Servers and they are not at the same
Java version as your other Managed Servers.

rolloutOracleHo
me

Applies only to and is required for the rolloutOracleHome command.

Specifies the location of the Oracle home archive (JAR file) or local Oracle home
directory to roll out, thereby replacing the existing Oracle home.

backupOracleHom
e

Applies only to and is required for the rolloutOracleHome command.

Specifies the full path of the directory to which the existing Oracle home will be
moved. This effectively renames the original Oracle home. For example, if your
original Oracle home is /u01/Oracle_Homeand you specify /u01/
Oracle_Home_backupfor this parameter, /u01/Oracle_Homewill be moved
(renamed) to /u01/Oracle_Home_backup.

isRollback Optional. Applies only to the rolloutOracleHome and rolloutUpdate
commands.

javaHome Applies to and is required for the rolloutJavaHome command. Optionally, this
argument may be required by the rolloutUpdate command.

Specifies the location of the new Java home to use.

applicationProp
erties

Applies to and is required for the rolloutApplications command. Optionally,
this argument may be required by the rolloutUpdate command.

Specifies the full path to the JSON file that defines one or more application names,
application archive locations, and application backup locations.

Chapter 4
Using WLST to Initiate and Monitor Workflows

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 13

Table 4-1 (Cont.) Arguments for WLST rollout Commands

Argument Description

options One or more of the following options can be included in the rollout commands:

• isDryRun — If TRUE, the workflow operation will be evaluated but not run. The
default is FALSE.

• isAutoRevertOnFailure — If TRUE, the workflow operation should
automatically revert on failure. If FALSE, the workflow operation will stop on a
failure and you can resume or revert it. The default is TRUE.

• isSessionCompatible — This option is applicable to all
rolloutcommands, as it affects rollout time regardless of whether the rollout
impacts session handling.

The default is FALSE, which means that the last server to be updated on each
cluster waits for all existing sessions to complete. This ensures that a
compatible server is available in the cluster to handle sessions that must be
served by a Managed Server that is still running on the existing version.

If set to TRUE, this indicates that the session state in servers is 100%
compatible between the existing version and the new version. Therefore, the
last Managed Server in the update sequence in a cluster will shut down
without waiting for all existing sessions to complete.

Oracle recommends that you set this to FALSE unless you are absolutely sure
that the session state is identical. This may cause the rollout to take longer
due to the wait for session completion.

Note: Serialization and deserialization in WebLogic Server differs slightly from
Java serialization and deserialization. Therefore, additional fields on classes
may result in a session being incompatible with servers on the new version,
requiring that they be served by a server on the existing version. For example,
a User class that adds a field such as Information will cause that session to be
incompatible between versions.

• migrationProperties — The full path to a JSON file that defines singleton
service migrations to be performed during the rollout. For more information
about this file and service migration, see Preparing to Migrate Singleton
Services.

• shutdownTimeout — Time (in seconds) WLST waits for a server to shut
down gracefully before shutting it down forcefully. The forceful shutdown of
servers may cause undesirable consequences, such as loss of session data
and loss of in-flight transactions. A value of less than 1 second is ignored.

If isSessionCompatible is set to TRUE, then the shutdownTimeout option
defaults to zero, which means that WLST waits forever for the server to shut
down gracefully.

If isSessionCompatible is set to FALSE, then the user must specify a value
for the shutdownTimeout option. Oracle recommends that you specify a
value that gives typical applications plenty of time to complete. Because
different applications have different behaviors, this value must be decided by
the user.

• DelayBetweenNodes — Use this option to specify the number of seconds to
wait between the shutdown of servers on one node and the shutdown of
servers on the next node in the workflow. This delay allows for:

– The servers on the first node to be restarted and join the cluster
– The load balancer to evenly distribute traffic
– Any slow (lazy) stateful session bean clients to continue making requests

before shutdown of the servers on the next node begins
If not specified, this value defaults to 60 seconds. If you are not concerned
about the lazy stateful session bean clients, you can include this option and
set it to a lower value.

Chapter 4
Using WLST to Initiate and Monitor Workflows

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 13

Table 4-1 (Cont.) Arguments for WLST rollout Commands

Argument Description

• coherenceServiceHATarget — Use this option to specify the High
Availability (HA) Status of Coherence services on a managed Coherence
server which must be met before the server is shutdown. The ZDT workflow
checks and waits until all Coherence services attain the specified status. The
rollout workflow can prevent cache data loss by waiting until the HA Status is
met. The valid values are none, machine-safe, and node-safe. A value of
machine-safe is generally preferred and ensures that a machine loss during
the rollout process does not result in data loss. A value of node-safe ensures
that loss to a single Coherence node does not result in data loss.

• coherenceServiceHAWaitTimeout — Use this option to specify the amount
of time to wait for the Coherence HA Status task in the workflow. If the HA
Status is not met within the specified time, then the task times-out. The task
completes and managed Coherence servers are shutdown as soon as the HA
Status is met within the specified time. The default value is 60 seconds.

• extension—The full path to the location of the extension jar file, optionally
followed by a comma-separated list of script parameters specified as name-
value pairs. If you specify the script parameters using this option, then these
parameter values will override the values specified in the
extensionConfiguration.json file.

• extensionProperties—The full path to the extensionProperties.json
file that is used to specify one or more extension jars. The
extensionProperties.json file is typically used to specify multiple
extension jars and additional extension parameters.

You can also use WLST to monitor the progress of a workflow. See Monitoring Workflow
Progress.

Rolling Out a New Oracle Home
Use the rolloutOracleHome command if you only want to do one of the following tasks:

• Update your Administration Server to use a patched Oracle home.

• Update your entire domain (Administration Server and clustered Managed Servers) to use
a patched Oracle home.

• Update clustered Managed Servers to use a patched Oracle home.

• Revert your Administration Server, clustered Managed Servers, or domain to use the
previous unpatched Oracle home.

rolloutOracleHome has the following syntax:

rolloutOracleHome(target, rolloutOracleHome, backupOracleHome, [isRollback],
[options=options])

This command supports the isDryRun, isAutoRevertOnFailure, and isSessionCompatible
options. You can include a comma-separated list of one or more options in this command. For
information about these options, see Using WLST to Initiate and Monitor Workflows.

The following example shows how to roll out a new Oracle home to the domain mydomain. The
JAR file for the patched Oracle home is located at /net/wls/wls_patched.jar. The original
Oracle home will be moved (renamed) to /u01/Oracle_Home_backup. The process will not
automatically revert if it fails.

Chapter 4
Using WLST to Initiate and Monitor Workflows

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 13

connect('adminname', 'adminpassword', 't3://hostname:port')
domain='/domains/mydomain'
progress=rolloutOracleHome(domain, '/net/wls/wls_patched.jar',
'/u01/Oracle_Home_backup', options='isAutoRevertOnFailure=FALSE')

Note

Specifying a local Oracle home directory in the rolloutOracleHome command is not
supported when you are rolling out a new Oracle home. See ZDT Patching
Restrictions.

Updating Your Java Version
Use the rolloutJavaHome command if you only want to do one of the following tasks:

• Update your Administration Server to use a new Java version.

• Update your entire domain (Administration Server and Managed Servers) to use a new
Java version.

• Update your Managed Servers to use a new Java version.

• Revert your Administration Server, Managed Servers, or domain to use the previous Java
version.

rolloutJavaHome has the following syntax:

rolloutJavaHome(target, javaHome, [options=options])

This command supports the isDryRun and isAutoRevertOnFailure options. You can include
one or more options in a comma-separated list in this command. For information about these
options, see Using WLST to Initiate and Monitor Workflows.

The following example shows how to roll out a new Java home to clusters Cluster1, Cluster2,
Cluster3. The new Java home location is /u01/jdk-17.0.16. The isAutoRevertOnFailure
option is not included in this example; therefore, the workflow will automatically revert if the
process fails.

connect('adminname', 'adminpassword', 't3://hostname:port')
clusters='Cluster1,Cluster2,Cluster3'
progress=rolloutJavaHome(clusters, '/u01/jdk-17.0.16')

Updating Both Oracle Home and the Java Version
Use the rolloutUpdate command if you only want to do one of the following tasks:

• Update your Administration Server to use both a patched Oracle home and a new Java
version.

• Update your entire domain (Administration Server and clustered Managed Servers) to use
both a patched Oracle home and a new Java version.

• Update your Managed Servers to use both a patched Oracle home and a new Java
version.

Chapter 4
Using WLST to Initiate and Monitor Workflows

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 13

• Revert your Administration Server, Managed Servers, or domain to the previous Oracle
home and previous Java version.

rolloutUpdate has the following syntax:

rolloutUpdate(target, rolloutOracleHome, backupOracleHome, [isRollback], [javaHome],
[options=options])

This command supports the isDryRun, isAutoRevertOnFailure, and isSessionCompatible
options. You can include one or more options in a comma-separated list in this command. For
information about these options, see Using WLST to Initiate and Monitor Workflows.

The following example shows how to roll out a new Oracle home and a new Java home to the
Administration Server. The JAR file for the patched Oracle home is located at /net/wls/
wls_patched.jar. The original Oracle home will be moved (renamed) to /u01/
Oracle_Home_backup. The new Java home location is /u01/jdk-17.0.16. The
isAutoRevertOnFailure option is not included in this example; therefore, the workflow will
automatically revert if the process fails.

connect('adminname', 'adminpassword', 't3://hostname:port')
server='AdminServer'
progress=rolloutUpdate(server, '/net/wls/wls_patched.jar',
'/u01/Oracle_Home_backup', '/u01/jdk-17.0.16')

Rolling Out Updated Applications
Use the rolloutApplications command if you want to do one of the following tasks:

• Update your Managed Servers to use a new version of one or more applications.

• Revert your Managed Servers to the previous version of one or more applications.

rolloutApplications has the following syntax:

rolloutApplications(target, applicationProperties, [options=options])

This command supports the isDryRun, isAutoRevertOnFailure, and isSessionCompatible
options. You can include one or more options in a comma-separated list in this command. For
information about these options, see Using WLST to Initiate and Monitor Workflows.

The following example shows how to roll out the applications defined in the JSON-formatted
application properties file /u01/scratch/app_update.json to all clusters Cluster1, Cluster2,
Cluster3 on a UNIX system.

connect('adminname', 'adminpassword', 't3://hostname:port')
clusters='Cluster1,Cluster2,Cluster3'
progress=rolloutApplications(clusters, '/u01/scratch/app_update.json')

Reverting to the Previous Oracle Home, Java Home, or Applications
After a successful rollout, if you want to roll back to the previous Oracle home, Java home, or
application version, you must perform the following two steps to complete the rollback
operation:

• Use the rolloutUpdate command to roll back to the previous Oracle home and Java
home. However, you must keep the following restrictions in mind before you run the
rolloutUpdate command to roll back:

Chapter 4
Using WLST to Initiate and Monitor Workflows

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 13

– You must specify the backed up Oracle home as the Oracle home directory to roll out.
This directory should be the backup directory from the previous rollout.

– Once you specify the backup Oracle home directory as the Oracle home directory to
roll back to, you must not specify the new Java home in the command. The Java home
will be automatically rolled back to the original Java home that was used in the
previous Oracle home that you have specified to roll back to.

• Use the rolloutApplications command to rollback to the previous application version by
specifying the old application archive in the json file. For more information about using this
command, see Rolling Out Updated Applications

.

The following example shows how to roll back to the previous Oracle home, Java home and
applications. In this example, myDomain is the name of the domain to roll back to, /pathto/
unpatchedOracleHomeBackup/ is the location of the backup Oracle home directory from the
previous rollout, /pathto/unpatchedOracleHomeBackup1/ is the path of the directory to which
the existing Oracle home will be moved. To enable the roll back operation, the isRollback
parameter must be set to true as shown in the example:

rolloutUpdate('myDomain', '/pathto/unpatchedOracleHomeBackup/', '/pathto/
unpatchedOracleHomeBackup1/', 'true')

Initiating a Rolling Restart of Servers
Use the rollingRestart command if you want to do one of the following tasks:

• Initiate a rolling restart of all servers in a domain.

• Initiate a rolling restart of all servers in a specific cluster or clusters.

rollingRestart has the following syntax:

rolloutRestart(target, [options=options])

This command can include one or more options in a comma-separated list.

The following example shows how to perform a rolling restart of all servers in Cluster1 and
Cluster2.

connect('adminname', 'adminpassword', 't3://hostname:port')
clusters='Cluster1,Cluster2'
progress=rollingRestart(clusters)

Monitoring Workflow Progress
Each rollout command returns a WorkFlowTaskRuntimeMBean that you can use to poll the
current status of the workflow. To monitor the progress of a rollout, use a rolloutcommand in
the following format:

progress=rollout_command

For example, use this command if you are rolling out a new Oracle home:

progress=rolloutOracleHome(DomainA, '/net/patched/wls1221p.jar',
'/net/backups/wls1221', options='isAutoRevertOnFailure=FALSE')

Chapter 4
Using WLST to Initiate and Monitor Workflows

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 13

You can then use the methods of the WorkflowTaskRuntimeMBean to return information about
the workflow. See WorkflowTaskRuntimeMBean in the MBean Reference for Oracle WebLogic
Server. Here are some examples:

progress.getWorkflowId()

Returns the ID of the workflow.

progress.getProgressString()
'Workflow wf0011 Running: 13/36'

Returns a human-readable message containing information about the current workflow
progress. In this example, workflow wf0011is currently running and has completed 13 of the 36
workflow commands.

progress.getStatus()
STARTED

Returns the current status of the workflow, which can be STARTED, SUCCESS, RETRY, REVERTING,
FAIL, REVERTED, REVERT_FAIL, CANCELED, or REVERT_CANCELED.

The following Python script segment demonstrates one way to use the progress object to
monitor a workflow and output the progress of a rollout task. Sample output is shown after the
script.

Print the starting information
rolloutName = progress.getName()
startTime = progress.getStartTime()
print "Started rollout task \"" + rolloutName + "\" at " + str(startTime)

Check the state every 2 minutes
domainRuntime()
cd('RolloutService/rollout-service/ActiveWorkflows')
cd(progress.getWorkflowId())
while(get('Running')==1):
 progressString = progress.getProgressString()
 print progressString
 time.sleep(120)

Print the ending information
endTime = progress.getEndTime()
state = progress.getState()
print "rollout \"" + rolloutName + "\" finished with state

Output
Started rollout task "Domain1Rollout" at 2014-07-22 07:29:06.528971
Running step 1 of 9
Running step 2 of 9
Running step 3 of 9
Running step 4 of 9
Running step 5 of 9
Running step 6 of 9
Running step 7 of 9
Running step 8 of 9

Chapter 4
Using WLST to Initiate and Monitor Workflows

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 13

Running step 9 of 9
rollout "Domain1Rollout" finished with state "SUCCESS" at
2014-07-22 07:47:15.538299

Running, Reverting, and Resuming Stopped Workflows
A workflow can stop in either the running or reverting direction for the following reasons:

• The workflow failed while running, with the isAutoRevertOnFailure option set to FALSE.

• The workflow was manually canceled.

• An unrecoverable error occurred during a revert operation.

When a workflow is stopped, you can resolve any errors manually. You can then set the
workflow to continue to run or revert by using the following methods on the
RolloutServiceRuntimeMBean:

Method Description

executeWorkflow(Workf
lowTaskRuntimeMBean)

Takes a progress object that is eligible to be resumed and resumes it in the
execute direction. If the last successful operation on the workflow was an
execute, then the execute will resume with the next execute step. If the last
successful operation on the workflow was a revert, then the execute will
resume by running that revert step.

revertWorkflow(Workfl
owTaskRuntimeMBean)

Takes a progress object that is eligible to be resumed and resumes it in the
revert direction. If the last successful operation on the workflow was an
execute, then the revert will resume with that step. If the last successful
operation on the workflow was a revert, then the revert will resume by
reverting the next step in the revert sequence.

canResume(WorkflowTas
kRuntimeMBean)

Returns true if the workflow stopped before it was completed and is not
currently running in either direction. A workflow in this state is eligible to be
resumed in either the execute or revert direction.

Useful WLST Commands for Workflows
This section describes several WLST commands that you may find useful.

• To get a list of completed workflows:

wls:/domain_name/domainRuntime/RolloutService/rollout-service> completeWfs=
cmo.getCompleteWorkflows()

• To get a list of active workflows:

wls:/domain_name/domainRuntime/RolloutService/rollout-service> activeWfs =
cmo.getActiveWorkflows()

• To look up a workflow by ID and retrieve its status:

wls:/domain_name/domainRuntime/RolloutService/rollout-service>
 progress=cmo.getWorkflowTask('workflow_id')
wls:/Domain1221/domainRuntime/RolloutService/rollout-service> progress.getStatus()

• To cancel a running workflow:

wls:/domain_name/domainRuntime/RolloutService/rollout-service>
 progress=cmo.getWorkflowTask('workflow_id')

Chapter 4
Using WLST to Initiate and Monitor Workflows

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 11 of 13

wls:/domain_name/domainRuntime/RolloutService/rollout-service> progress.cancel()

• To delete a completed workflow:

wls:/domain_name/domainRuntime/RolloutService/rollout-service>
cmo.deleteWorkflow('workflow_id')

Sample WLST Script
This section contains a sample WLST script that illustrates how to perform a rolling restart of
all servers in a cluster called cluster1 with single service migration. In this script, the following
arguments are defined:

• username — The WebLogic Server administrator user name.

• password — The WebLogic Server administrator password.

• adminURL — The host name and port number of the domain's Administration Server.

• target — The target or targets for the operation. See Table 4-1.

• options — The rollout option or options for the operation. See Table 4-1.

The following example shows a sample WLST script for a rollout operation.

import sys, socket
import os
import time
from java.util import Date
from java.text import SimpleDateFormat

argUsername = sys.argv[1]
argPassword = sys.argv[2]
argAdminURL = sys.argv[3]
argTarget = sys.argv[4]
argOptions = sys.argv[5]

try:
 connect(argUsername, argPassword, argAdminURL)
 progress = rollingRestart(argTarget, argOptions)
 lastProgressString = ""

 progressString=progress.getProgressString()
 # for testing progressString="12 / 12"
 steps=progressString.split('/')

 while not (steps[0].strip() == steps[1].strip()):
 if not (progressString == lastProgressString):
 print "Completed step " + steps[0].strip() + " of " + steps[1].strip()
 lastProgressString = progressString

 java.lang.Thread.sleep(1000)

 progressString=progress.getProgressString()
 steps=progressString.split('/')
 if(len(steps) == 1):
 print steps[0]

Chapter 4
Using WLST to Initiate and Monitor Workflows

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 12 of 13

 break;

 if(len(steps) == 2):
 print "Completed step " + steps[0].strip() + " of " + steps[1].strip()

 t = Date()
 endTime=SimpleDateFormat("hh:mm:ss").format(t)

 print ""
 print "RolloutDirectory task finished at " + endTime
 print ""

 state = progress.getStatus()
 error = progress.getError()

 stateString = '%s' % state
 if stateString != 'SUCCESS':
 #msg = 'State is %s and error is: %s' % (state,error)
 msg = "State is: " + state
 raise(msg)
 elif error is not None:
 msg = "Error not null for state: " + state
 print msg
 #raise("Error not null for state: %s and error is: %s" + (state,error))
 raise(error)
except Exception, e:
 e.printStackTrace()
 dumpStack()
 raise("Rollout failed")

exit()

To run this script, save it in a Python (.py) file and then enter commands similar to this. If you
are running WLST on Windows, see ZDT Patching Restrictions, for important information
about using WLST on Windows.

$ORACLE_HOME/oracle_common/common/bin/wlst.sh
/u01/scripts/rollout/RollingRestart.py username password
t3://hostname:port cluster1 "migrationProperties=/u01/json/mig.txt"

Chapter 4
Using WLST to Initiate and Monitor Workflows

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 13 of 13

5
Modifying Workflows Using Custom Hooks

Modify the existing ZDT Patching workflow in Oracle WebLogic Server by adding custom logic
specific to your business at predefined points called extension points.

About Extension Points
Extension points are placeholders in the ZDT Patching workflow where you can insert custom
logic. ZDT Patching provides extension points and predefined environment variables for
rollouts.

The ZDT custom hooks feature identifies certain points in a patching workflow where additional
commands can be run to customize its behavior. These points are referred to as extension
points. You can customize the behavior of a workflow by inserting collections of resources,
called extensions, at each predefined extension point.

Table 5-1 lists the available extension points for workflows along with their descriptions and
use cases.

Table 5-1 Extension Points Available for Workflows

Name Description Use Cases

ep_OnlineBeforeUpdate Use this extension point at the initial
stage of the workflow before the
patching operation starts on each
node. This is typically the point
where prerequisite checks can be
performed.

• Pre-upgrade quiesce to
disable or pause external
domains that are fed into
the cluster.

• Run any SQL script that
may be needed to prepare
for an application update.

ep_EachNode Use this extension point when the
workflow needs to perform any
additional operation across each
node.

• Add checks to ensure that
there is enough disk
space on all the nodes for
the rollout of Oracle home.

• Ensure that any new
shared file system
artifacts are accessible on
each node.

ep_OfflineBeforeUpdate Use this extension point at the
stage of the workflow when all
servers are shut down, just before
the Oracle home or Java home
update starts.

• Back up files or
directories.

ep_OfflineAfterUpdate Use this extension point to perform
any custom operation after Oracle
home or Java home have been
patched and before the servers
start.

• Validate the versions of
software components
included in the rollout.

• Modify any Java
properties in the Java
home.

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 7

Table 5-1 (Cont.) Extension Points Available for Workflows

Name Description Use Cases

ep_OnlineAfterServerStart Use this extension point to perform
any custom operation after the
update has completed on each
node and the server has restarted.

Perform server and
application-level administrative
tasks, such as:
• Check JDBC, JTA or JMS

subsystem.
• Deploy or redeploy any

additional application at
this point.

• Directing administrative
requests to applications to
ensure that the
applications behave as
expected.

ep_OnlineAfterUpdate Use this extension point to perform
any additional operation after the
servers have restarted, and the
application is continuing servicing
requests.

• Perform any basic checks
to ensure that affected
applications are functional
and accessible.

ep_RolloutSuccess Use this extension point to define
any custom logic, such as sending
notifications, after the patching is
successful.

• Send out an e-mail to the
administrator to notify the
status of the upgrade.

This feature also provides certain predefined environment variables that can be passed at the
extension points. Some predefined environment variables are available for use with online
extension points, while others can be used with offline extension points. Online extension
points can be run when the server is running, whereas offline extension points are available for
use when the server is shut down. Both offline and online extension points can be run either on
the remote node or on the local node. Table 5-2 provides a list of all the environment variables
that are available for use with online and offline extension points.

Table 5-2 Predefined Environment Variables for Extension Points

Variable Name Description Available for Use with Offline
or Online Extension points

javaHome The location of the existing Java
home

Offline

newJavaHome The location of the new Java
home to use

Offline

mwHome The location of the Middleware
home

Offline

domainDir The location of the domain
directory

Offline

domainTmp The location of the directory
under the domain home where
temporary files may be stored

Offline

patched The location of patched Oracle
home

Offline

Chapter 5
About Extension Points

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 7

Table 5-2 (Cont.) Predefined Environment Variables for Extension Points

Variable Name Description Available for Use with Offline
or Online Extension points

backupDir The location where the existing
Oracle home will be moved

Offline

isRevert Controls run or revert operations
in scripts

Offline

currentNodeName The full name of the node
currently being updated. This
variable is not applicable to the
ep_OnlineBeforUpdate or
ep_RolloutSuccess extension
points.

Online

currentServerNames A comma-separated list of names
of servers on the targeted node.
This variable is not applicable to
ep_OnlineBeforeUpdate or
ep_RolloutSuccess extension
points.

Online

applicationInfo The application name, application
location, and application backup,
separated by commas for each
application. Separate multiple
applications by colon:

<appName>,<appLoc>,<appBac
kUp>:<appName2>,<appLoc2>,
<appBackUp2>
For example, "scrabble,/
pathTo/scrabblev2,/pathTo/
scrabbleV1Backup:cart,/
pathTo/cartV3,/pathTo/
cartV2Backup

Online

The Patching Workflow Process for Custom Hooks
You can customize operations in the workflow that is run either on the Administration server
node or on a remote node.

When the workflow process reaches a user hook, the user specified extension at that
extension point is run. Any script that exits with a code of zero is considered to have completed
successfully, whereas a script that returns a non-zero exit code is considered failed. If no errors
occur, the processing resumes. If an error occurs during the running of an extension, then the
workflow is rolled back to its previous state. Note that the scripts do not have in-built retry or
resume methods. A script is attempted once, and if it fails, the workflow does not retry it.
Therefore, if your script performs an operation that needs to be retried, then you must write the
retry logic in the script.

During the workflow, the output generated by offline scripts to STDOUT or STDERR is
propagated to the Administration Server log file. Similarly, output generated by a script that is
run locally is also written to the Administration Server log file. This includes error output or non-
error output.

Chapter 5
The Patching Workflow Process for Custom Hooks

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 7

Figure 5-1 illustrates the typical scenarios for workflows, and how they include different
extension points.

Figure 5-1 Patching Workflow with Extension Points

This figure shows the extension points available in a typical workflow for updating Oracle home
or Java home.

Specifying Extensions to Modify the Workflow
The custom hooks feature provides several ways to introduce extensions in the workflow. You
can specify the extensions in either of the two JSON files, extensionConfiguration.json or
extensionProperties.json, or pass them directly as options in the rollout commands.
Regardless of how you pass the extension parameters, these parameters ultimately map to
script parameters that are translated into environment variables.

This flexibility lets you override or customize parameters at different levels. When you use
more than one way of specifying extension parameters, then the following is the order in which
script parameters are overridden:

Chapter 5
Specifying Extensions to Modify the Workflow

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 7

• Extension parameters specified in the extensionConfiguration.json file.

• Extension parameters specified in the extension properties JSON file to override the
parameters set in the extensionConfiguration.json file.

• Extension parameters specified as options in the WLST rollout commands to override the
parameters specified in the two JSON files. You can use the same extension JAR in
different environments by customizing only the options in the rollout commands for each
workflow.

The following sections provide more information about using these methods to specify
extensions.

Creating a JSON Configuration File

The extensionConfiguration.json file is a JSON format file that contains an array of
extension definitions. Each extension definition must specify the following:

• The name of the predefined extension point where the extension is inserted in the
workflow.

• The fully qualified name of the class file to run at that extension point.

Optionally, any additional parameters used by the extension. The additional extension
parameters must be declared in the JSON format. The specified class file can use one of the
standard extensions supplied by WebLogic Server. The following sample
extensionConfiguration.json file shows how to define extensions.

{"extensions":[
{
"extensionPoint":"ep_OnlineBeforeUpdate",
"extensionClass":"weblogic.management.patching.extensions.ScriptExecutorExtens
ion",
"extensionParameters":{"scriptName":"checkJar.sh","jarPath":"/tmp/
extension.jar"}
},
{
"extensionPoint":"ep_EachNode",
"extensionClass":"weblogic.management.patching.extensions.ScriptExecutorExtens
ion",
"extensionParameters":{"scriptName":"checkDiskSpace.sh"}
},
{
"extensionPoint":"ep_OnlineAfterUpdate",
"extensionClass":"weblogic.management.patching.extensions.ScriptExecutorExtens
ion",
"extensionParameters":{"scriptName":"checkApps.sh","appUrls":"http://
localhost:8004/Coke/Simple_stage/handle,http://localhost:8006/Coke/
Simple_stage/handle"}
},
{
"extensionPoint":"ep_RolloutSuccess",
"extensionClass":"weblogic.management.patching.extensions.ScriptExecutorExtens
ion",
"extensionParameters":{"scriptName":"emailSuccess.sh"}
}
]}

Chapter 5
Specifying Extensions to Modify the Workflow

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 7

After you create the extensionConfiguration.json file, you must place it along with other
related native scripts in a JAR file, such as, sampleExtension.jar. The JAR file that you create
must have a directory structure that adheres to Oracle standards. If more than one extension is
specified at a single extension point, then the extensions are run in the order in which they
appear in the extensionConfiguration.json file. Each JAR file should contain only one
extensionConfiguration.json file. Figure 5-2 shows the structure of an extension JAR file.

During the rollout, the scripts are extracted in the patching directory under DOMAIN_HOME/bin.

Figure 5-2 Extension Jar File Structure

Creating a JSON Properties File

Alternatively, you can specify the extension information in another JSON file, such as,
extensionProperties.json file. You can use this file when you need to pass multiple
extensions in a workflow and when these extensions are placed in multiple JAR files. Note that
the JSON properties file is different from the extensionConfiguration.json file; the
extensionConfiguration.json file is specific to the scripts within its own JAR file, whereas the
JSON properties file gives you a convenient way to include multiple extension JAR files in the
workflow. Each JSON properties file includes the path to one or more JAR files that contain the
extension configuration information and optionally includes any additional parameters.

The following snippet shows the format of a sample extensionProperties.json file.

{"extensionProperties":[
{
"extensionJar":"/pathTo/extension.jar",
"extensionParameters":{"scriptName":"updateProperties.sh", "appURL":"http://
localhost:7005/context?param1=val1¶m2=val2,http://localhost:7006/context2?
param1=val1¶m2=val2"}
}
]}

Chapter 5
Specifying Extensions to Modify the Workflow

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 7

Including Options in the WLST Rollout Commands

You can pass extension parameters in either of the two JSON files or pass them directly to the
WLST rollout commands using the extension or extensionProperties options. For more
information about how to use these options to specify extension parameters, see the
arguments for WLST rollout commands in Using WLST to Initiate and Monitor Workflows.

Note

When you create JSON files to include your extensions and place them in extensions
jars, be sure to meet the following conditions:

• Place extension jars on all remote nodes before the rollout.

• Specify the path to the extension jar that contains the extension parameters to roll
out. The same path must exist on all nodes.

• On a Windows system, avoid using the backslash character when you specify the
paths in the JSON file.

• Do not include commas in the values of the script parameters in the JSON files.

Chapter 5
Specifying Extensions to Modify the Workflow

Administering Zero Downtime Patching Workflows
G32025-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Introduction to Zero Downtime Patching
	What Is Zero Downtime Patching?
	Identifying a Zero Downtime Patch
	Types of Patching Workflows
	The Patching Workflow Process
	Reverting an Update
	Rolling Out a Patched Oracle Home: Overview
	Rolling Out a New Java Version: Overview
	Rolling Out Updated Applications: Overview
	In-Memory Session Replication for ZDT Rollouts

	2 Preparing for Zero Downtime Patching
	ZDT Patching Restrictions
	Preparing to Migrate Singleton Services
	Creating a JSON File for Migrating Singleton Services

	Preparing to Roll Out a Patched Oracle Home
	Creating a Second Oracle Home
	Applying Patches to the Second Oracle Home
	Creating an Archive and Distributing It to Each Node

	Preparing to Upgrade to a New Java Version
	Preparing to Update to New Application Versions
	The Effects of Staging Modes
	Creating an Application Update JSON File

	3 Patching an Existing WebLogic Server Installation
	Using Zero Downtime Patching
	Obtaining a List of Applied Patches

	4 Configuring and Monitoring Workflows
	Strategies for Rolling Out a Patched Oracle Home
	Starting the Administration Server
	Using WLST to Initiate and Monitor Workflows
	Rolling Out a New Oracle Home
	Updating Your Java Version
	Updating Both Oracle Home and the Java Version
	Rolling Out Updated Applications
	Reverting to the Previous Oracle Home, Java Home, or Applications
	Initiating a Rolling Restart of Servers
	Monitoring Workflow Progress
	Running, Reverting, and Resuming Stopped Workflows
	Useful WLST Commands for Workflows
	Sample WLST Script

	5 Modifying Workflows Using Custom Hooks
	About Extension Points
	The Patching Workflow Process for Custom Hooks
	Specifying Extensions to Modify the Workflow

