
Oracle® Fusion Middleware
Developing Oracle WebLogic Tuxedo
Connector Applications for Oracle WebLogic
Server

15c (15.1.1.0.0)
G31981-01
October 2025

Oracle Fusion Middleware Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server,
15c (15.1.1.0.0)

G31981-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Conventions i

1 Introduction to Oracle WebLogic Tuxedo Connector Programming

Developing Oracle WebLogic Tuxedo Connector Applications 1

Developing Oracle WebLogic Tuxedo Connector Clients 1

Developing Oracle WebLogic Tuxedo Connector Servers 2

Oracle WebLogic Tuxedo Connector Interoperability with Oracle Tuxedo CORBA objects
2

Oracle WebLogic Tuxedo Connector JATMI Primitives 2

Oracle WebLogic Tuxedo Connector TypedBuffers 3

New and Changed WTC Features for this Release 4

2 Developing Oracle WebLogic Tuxedo Connector Client EJBs

Joining and Leaving Applications 1

Joining an Application 1

Leaving an Application 2

Basic Client Operation 2

Get an Oracle Tuxedo Object 2

Perform Message Buffering 2

Send and Receive Messages 3

Request/Response Communication 3

Conversational Communication 5

Enqueuing and Dequeuing Messages 5

Close a Connection to an Oracle Tuxedo Object 6

Example Client EJB 6

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of iv

3 Developing Oracle WebLogic Tuxedo Connector Service EJBs

Basic Service EJB Operation 1

Access Service Information 1

Buffer Messages 1

Perform the Requested Service 2

Return Client Messages for Request/Response Communication 2

Use tpsend and tprecv for Conversational Communication 2

Example Service EJB 2

4 Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA
Interoperability

How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java
API 1

Using CosNaming Service 2

Example ToupperCorbaBean.java Code 2

Using FactoryFinder 3

WLEC to Oracle WebLogic Tuxedo Connector Migration 4

Example Code 4

How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector 5

How to Modify Inbound RMI/IIOP Applications to use the Oracle WebLogic Tuxedo
Connector 5

How to Develop Outbound RMI/IIOP Applications to use the Oracle WebLogic Tuxedo
Connector 6

How to Modify the ejb-jar.xml File to Pass a FederationURL to EJBs 6

How to Modify EJBs to Use FederationURL to Access an Object 7

How to Use FederationURL Formats 8

Using corbaloc URL Format 9

Examples of corbaloc:tgiop 9

Examples using -ORBInitRef 9

Examples Using -ORBDefaultInitRef 9

Using the corbaname URL Format 9

Examples Using -ORBInitRef 10

How to Manage Transactions for Oracle Tuxedo CORBA Applications 10

5 Oracle WebLogic Tuxedo Connector JATMI Transactions

Global Transactions 1

Jakarta Transaction API 1

Types of JTA Interfaces 1

Transaction 1

TransactionManager 2

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of iv

UserTransaction 2

JTA Transaction Primitives 2

Defining a Transaction 2

Starting a Transaction 2

Using TPNOTRAN 3

Terminating a Transaction 3

Oracle WebLogic Tuxedo Connector Transaction Rules 3

Example Transaction Code 4

6 Oracle WebLogic Tuxedo Connector JATMI Conversations

Overview of Oracle WebLogic Tuxedo Connector Conversational Communication 1

Oracle WebLogic Tuxedo Connector Conversation Characteristics 1

Oracle WebLogic Tuxedo Connector JATMI Conversation Primitives 2

Creating Oracle WebLogic Tuxedo Connector Conversational Clients and Servers 2

Creating Conversational Clients 2

Establishing a Connection to an Oracle Tuxedo Conversational Service 2

Example TuxedoConversationBean.java Code 3

Creating Oracle WebLogic Tuxedo Connector Conversational Servers 3

Sending and Receiving Messages 4

Sending Messages 4

Receiving Messages 4

Ending a Conversation 5

Oracle Tuxedo Application Originates Conversation 5

Oracle WebLogic Tuxedo Connector Application Originates Conversation 5

Ending Hierarchical Conversations 5

Executing a Disorderly Disconnect 5

Understanding Conversational Communication Events 6

Oracle WebLogic Tuxedo Connector Conversation Guidelines 7

7 Using FML with Oracle WebLogic Tuxedo Connector

Overview of FML 1

The Oracle WebLogic Tuxedo Connector FML API 1

FML Field Table Administration 2

Using the DynRdHdr Property for mkfldclass32 Class 3

Using TypedFML32 Constructors 4

Gaining TypedFML32 Performance Improvements 4

tBridge XML/FML32 Translation 5

FLAT 5

NO 5

FML32 Considerations 6

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iii of iv

Using the XmlFmlCnv Class for XML to and From FML/FML32 Translation 6

Limitations of XmlFmlCnv Class 7

MBSTRING Usage 7

Sending MBSTRING Data to an Oracle Tuxedo Domain 7

Receiving MBSTRING Data from an Oracle Tuxedo Domain 8

Using FML with Oracle WebLogic Tuxedo Connector 8

8 Oracle WebLogic Tuxedo Connector JATMI VIEWs

Overview of Oracle WebLogic Tuxedo Connector VIEW Buffers 1

How to Create a VIEW Description File 1

Example VIEW Description File 2

How to Use the viewj Compiler 3

How to Pass Information to and from a VIEW Buffer 4

How to Use VIEW Buffers in JATMI Applications 4

How to Get VIEW32 Data In and Out of FML32 Buffers 5

Using the XmlViewCnv Class for XML to and From View/View(32) Translation 6

Translating Nested Views 7

9 How to Create a Custom AppKey Plug-in

How to Create a Custom Plug-In 1

Example Custom Plug-in 1

10

Application Error Management

Testing for Application Errors 1

Exception Classes 1

Fatal Transaction Errors 1

Oracle WebLogic Tuxedo Connector Time-Out Conditions 1

Blocking vs. Transaction Time-out 2

Effect on commit() 2

Effect of TPNOTRAN 2

Guidelines for Tracking Application Events 2

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iv of iv

Preface

This document provides information about the development environment you will be using to
write code for applications that interoperate between Oracle WebLogic Server and Oracle
Tuxedo.

Audience
It is assumed that the reader is familiar with WebLogic Server concepts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of ii

1
Introduction to Oracle WebLogic Tuxedo
Connector Programming

This chapter provides information about the development environment you will be using to
write code for applications that interoperate between Oracle WebLogic Server and Oracle
Tuxedo.

Note

See Developing Jakarta Enterprise Beans Using Deployment Descriptors.

This chapter includes the following sections:

Developing Oracle WebLogic Tuxedo Connector Applications

Note

See Javadocs for WebLogic Classes for more information on the Oracle WebLogic
Tuxedo Connector JATMI. The Oracle WebLogic Tuxedo Connector classes are
located in the weblogic.wtc.jatmi and weblogic.wtc.gwt packages.

In addition to the Java code that expresses the logic of your application, you will be using the
Java Application -to-Transaction Monitor Interface (JATMI) to provide the interface between
Oracle WebLogic Server and Oracle Tuxedo.

Developing Oracle WebLogic Tuxedo Connector Clients

Note

See Developing Oracle WebLogic Tuxedo Connector Client EJBs.

A client process takes user input and sends a service request to a server process that offers
the requested service. Oracle WebLogic Tuxedo Connector JATMI client classes are used to
create clients that access services found in Oracle Tuxedo. These client classes are available
to any service that is made available through a the Oracle WebLogic Tuxedo Connector
WTCServer MBean.

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 4

Developing Oracle WebLogic Tuxedo Connector Servers

Note

See Developing Oracle WebLogic Tuxedo Connector Service EJBs.

Servers are processes that provide one or more services. They continually check their
message queue for service requests and dispatch them to the appropriate service subroutines.
Oracle WebLogic Tuxedo Connector uses EJBs to implement services which Oracle Tuxedo
clients invoke.

Oracle WebLogic Tuxedo Connector Interoperability with Oracle Tuxedo
CORBA objects

Note

See Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA
Interoperability.

The Oracle WebLogic Tuxedo Connector provides bi-directional interoperability between
Oracle WebLogic Server and Oracle Tuxedo CORBA objects. The Oracle WebLogic Tuxedo
Connector:

• Enables Oracle Tuxedo CORBA objects to invoke upon EJBs deployed in Oracle
WebLogic Server using the RMI/IIOP API (Inbound).

• Enables objects (such as EJBs or RMI objects) to invoke upon CORBA objects deployed in
Oracle Tuxedo using the RMI/IIOP API (Outbound).

• Enables objects (such as EJBs or RMI objects) to invoke upon CORBA objects deployed in
Oracle Tuxedo using a CORBA Java API (Outbound).

Oracle WebLogic Tuxedo Connector JATMI Primitives
The JATMI is a set of primitives used to begin and end transactions, allocate and free buffers,
and provide the communication between clients and servers.

Table 1-1 JATMI Primitives

Name Operation

tpacall Use for asynchronous invocations of an Oracle Tuxedo service during request/
response communication.tpacall has two forms:

• deferred synchronous
• asynchronous

tpacall Use for synchronous invocation of an Oracle Tuxedo service during request/
response communication.

tpconnect Use to establish a connection to an Oracle Tuxedo conversational service.

Chapter 1
Oracle WebLogic Tuxedo Connector JATMI Primitives

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 4

Table 1-1 (Cont.) JATMI Primitives

Name Operation

tpdiscon Use to abort a conversational connection and generate a TPEV_DISCONIMM
event when executed by the process controlling the conversation.

tpdequeue Use for receiving messages from an Oracle Tuxedo /Q during request/response
communication.

tpenqueue Use for placing a message on an Oracle Tuxedo /Q during request/response
communication.

tpgetrply Use for retrieving replies from an Oracle Tuxedo service during request/
response communication.

tprecv Use to receive data across an open connection from an Oracle Tuxedo
application during conversational communication.

tpsend Use to send data across a open connection to an Oracle Tuxedo application
during conversational communication.

tpterm Use to close a connection to an Oracle Tuxedo object.

Oracle WebLogic Tuxedo Connector TypedBuffers
Oracle WebLogic Tuxedo Connector provides an interface called TypedBuffers that
corresponds to Oracle Tuxedo typed buffers. Messages are passed to servers in typed buffers.
The Oracle WebLogic Tuxedo Connector provides the following buffer types:

Table 1-2 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that terminates with
the null character. Oracle Tuxedo equivalent: STRING.

TypedCArray Buffer type used when the data is an undefined array of characters (byte array),
any of which can be null. Oracle Tuxedo equivalent: CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field carries its own
identifier, an occurrence number, and possibly a length indicator. Oracle Tuxedo
equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger character fields, more fields,
and larger overall buffers. Oracle Tuxedo equivalent: FML32.

TypedXML Buffer type used when data is an XML based message. Oracle Tuxedo
equivalent: XML for Tuxedo Release 7.1 and higher.

TypedView Buffer type used when the application uses a Java structure to define the buffer
structure using a view description file. Oracle Tuxedo equivalent: VIEW.

TypedView32 Buffer type similar to View but allows for larger character fields, more fields, and
larger overall buffers. Oracle Tuxedo equivalent: VIEW32.

TypedMBString Buffer type used when the data is a wide array of characters to support multi-
byte characters. Oracle Tuxedo equivalent: MBSTRING.

Chapter 1
Oracle WebLogic Tuxedo Connector TypedBuffers

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 4

New and Changed WTC Features for this Release
See What's New in Oracle WebLogic Server for a comprehensive listing of the new WebLogic
Server features introduced in this release.

Chapter 1
New and Changed WTC Features for this Release

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 4

2
Developing Oracle WebLogic Tuxedo
Connector Client EJBs

This chapter describes how to create Oracle WebLogic Tuxedo Connector client EJBs. These
client EJBs take user input and send service requests to a server process or outbound object
that offers a requested service. Oracle WebLogic Tuxedo Connector JATMI client classes are
used to create clients that access services found in Oracle Tuxedo.

Note

See Javadocs for WebLogic Classes for more information on the Oracle WebLogic
Tuxedo Connector JATMI. The Oracle WebLogic Tuxedo Connector classes are
located in the weblogic.wtc.jatmi and weblogic.wtc.gwt packages.

This chapter includes the following sections:

Joining and Leaving Applications
Oracle Tuxedo and Oracle WebLogic Tuxedo Connector have different approaches to connect
to services.

Joining an Application
The following section compares how Oracle Tuxedo and Oracle WebLogic Tuxedo Connector
join an application:

• Oracle Tuxedo uses tpinit() to join an application.

• Oracle WebLogic Tuxedo Connector uses a WTCServer MBean to provide information
required to create a path to the Oracle Tuxedo service. Security and client authentication is
provided by configuring the Remote TDM and Imported Services MBean components of a
WTCServer MBean. This pathway is created when the Oracle WebLogic Server is started
and a WTCServer MBean is present in the config.xml file and assigned (targeted) to a
server.

• Oracle WebLogic Tuxedo Connector uses TuxedoConnectionFactory to get a
TuxedoConnection object and then uses getTuxedoConnection() to make a connection to
the Oracle Tuxedo object. The following example shows how a Oracle WebLogic Server
application joins an Oracle Tuxedo application using Oracle WebLogic Tuxedo Connector.

Example 2-1 Example Client Code to Join an Oracle Tuxedo Application

.

.

.
try {
 ctx = new InitialContext();
 tcf =
 (TuxedoConnectionFactory)

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

 ctx.lookup("tuxedo.services.TuxedoConnection");
 } catch (NamingException ne) {

// Could not get the tuxedo object, throw TPENOENT
throw new TPException(TPException.TPENOENT,
 "Could not get TuxedoConnectionFactory : " + ne);
 }

myTux = tcf.getTuxedoConnection();
.
.
.

Leaving an Application
The following section compares how Oracle Tuxedo and Oracle WebLogic Tuxedo Connector
leave an application:

• Oracle Tuxedo uses tpterm() to leave an application.

• Oracle WebLogic Tuxedo Connector uses the JATMI primitive tpterm() to close a
connection to an Oracle Tuxedo object.

• Oracle WebLogic Tuxedo Connector closes the pathway to an Oracle Tuxedo service
when a WTCServer MBean is assigned a new target server or the server is shutdown.

Basic Client Operation
A client may send and receive any number of service requests before leaving the application.

A client process uses Java and JATMI primitives to provide the following basic application
tasks:

Get an Oracle Tuxedo Object
Establish a connection to a remote domain by looking up tuxedo.services.TuxedoConnection
in the JNDI tree to get TuxedoConnectionFactory, and use it to get a TuxedoConnection object.

Perform Message Buffering
Use the following TypedBuffers when sending and receiving messages between your
application and Oracle Tuxedo:

Table 2-1 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that terminates with
the null character. Oracle Tuxedo equivalent: STRING.

TypedCArray Buffer type used when the data is an undefined array of characters (byte array),
any of which can be null. Oracle Tuxedo equivalent: CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field carries its own
identifier, an occurrence number, and possibly a length indicator. Oracle Tuxedo
equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger character fields, more fields,
and larger overall buffers. Oracle Tuxedo equivalent: FML32.

Chapter 2
Basic Client Operation

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

Table 2-1 (Cont.) TypedBuffers

Buffer Type Description

TypedXML Buffer type used when data is an XML based message. Oracle Tuxedo
equivalent: XML for Tuxedo Release 7.1 and higher.

TypedView Buffer type used when the application uses a Java structure to define the buffer
structure using a view description file. Oracle Tuxedo equivalent: View.

TypedView32 Buffer type similar to View but allows for larger character fields, more fields, and
larger overall buffers. Oracle Tuxedo equivalent: View32.

TypedMBString Buffer type used when the data is a wide array of characters to support multi-
byte characters. Oracle Tuxedo equivalent: MBSTRING.

Send and Receive Messages
Oracle WebLogic Tuxedo Connector clients support three types of communications with Oracle
Tuxedo service applications:

Request/Response Communication

Note

Oracle WebLogic Tuxedo Connector does not provide a JATMI primitive to support
setting the priority of a message request. All messages originating from a Oracle
WebLogic Tuxedo Connector client have a message priority of 50.

Use the following JATMI primitives to request and receive response messages between your
Oracle WebLogic Tuxedo Connector client application and Oracle Tuxedo:

Table 2-2 JATMI Primitives

Name Operation

tpacall Use for asynchronous invocations of an Oracle Tuxedo service. This JATMI
primitive has two forms:

• deferred synchronous
• asynchronous

tpacall Use for synchronous invocation of an Oracle Tuxedo service.

tpgetrply Use for retrieving replies from deferred synchronous calls to an Oracle Tuxedo
service.

tpcancel Use to cancel an outstanding message reply for a call descriptor returned by
tpacall.

Note: You can not use tpcancel to cancel a call descriptor associated with a
transaction.

Chapter 2
Basic Client Operation

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

Using Synchronous Service Calls
Use tpcall to send a request to a service and synchronously await for the reply. The service
specified must be advertised by your Oracle Tuxedo application. Logically, tpcall() has the
same functionality as calling tpacall() and immediately calling tpgetreply().

Using Deferred Synchronous Service Calls
A deferred synchronous tpacall allows you to send a request to an Oracle Tuxedo service
and not immediately wait for the reply. This allows you to send a request, perform other work,
and then retrieve the reply.

A deferred tpacall() service call sends a request to an Oracle Tuxedo service and
immediately returns from the call. The service specified must be advertised by your Oracle
Tuxedo application. Upon successful completion of the call, tpacall() returns an object that
serves as a descriptor. The calling thread is now available to perform other tasks. You can use
the call descriptor to:

• Get the correct reply for the sent request using tpgetreply()

• Cancel an outstanding message reply using tpcancel().

When you are ready to retrieve the reply, use tpgetreply() to dequeue the reply using the call
descriptor returned by tpacall(). If the reply is not immediately available, the calling thread
polls for the reply.

If tpacall() is in a transaction, you must receive the reply using tpgetreply() before the
transaction can commit. You can not use tpcancel to cancel a call descriptor associated with a
transaction. For example: If you make three tpacall() requests in a transaction, you must
make three tpgetreply() calls and successfully dequeue a reply for each of the three
requests for the transaction to commit.

Using Asynchronous Calls
The asynchronous tpacall allows you to send a request to an Oracle Tuxedo service and
release the thread resource that performed the call to the thread pool. This allows a very large
number of outstanding requests to be serviced with a much smaller number of threads.

An asynchronous tpacall() service call sends a request to an Oracle Tuxedo service. The
service specified must be advertised by your Oracle Tuxedo application. Upon successful
completion of the call, asynchronous tpacall() returns an object that serves as a descriptor.
The calling thread is now available to perform other tasks. You can use the call descriptor to
identify the correct message reply from TpacallAsynchReply for a sent message request or
cancel an outstanding message reply using tpcancel().

Note

You can not use the call descriptor to invoke tpgetreply().

When the service reply is ready, the callback object is invoked on a different thread. If the
original request succeeded, the TpacallAsynchReply.sucess method returns the reply from
the service. If the original request failed, the TpacallAsynchReply.failure method returns a
failure code.

You should implement the callback object using the following guidelines:

Chapter 2
Basic Client Operation

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

• The reply thread is obtained from the threadpool. The thread making the asynchronous
tpacall() does not wait for the reply message.

• The user context of the reply thread will be restored to that of the original caller of
asynchronous tpacall().

• It is up to the callback object to restore any additional context and resume whatever
processing was interrupted when the original asynchronous tpacall() was made.

• It is up to you to synchronize work within the multi threaded environment. For example: If
an asynchronous tpacall() request is made and the reply is returned immediately, it is
possible for the call back object to be modified by the reply thread before the calling thread
has finished.

• The reply thread will not retain the transaction context of the calling thread.

• If asynchronous tpacall() is in a transaction, you must receive the reply using
TpacallAsynchReply before the transaction can commit. You can not use tpcancel to
cancel a call descriptor associated with a transaction.

Conversational Communication

Note

See Oracle WebLogic Tuxedo Connector JATMI Conversations for more information
on Conversational Communication.

Use the following conversational primitives when creating conversational clients that
communicate with Oracle Tuxedo services:

Table 2-3 Oracle WebLogic Tuxedo Connector Conversational Client Primitives

Name Operation

tpconnect Use to establish a connection to an Oracle Tuxedo conversational service.

tpdiscon Use to abort a connection and generate a TPEV_DISCONIMM event when
executed by the process controlling the conversation.

tprecv Use to receive data across an open connection from an Oracle Tuxedo
application.

tpsend Use to send data across an open connection to an Oracle Tuxedo application.

Enqueuing and Dequeuing Messages
Use the following JATMI primitives to enqueue and dequeue messages between your Oracle
WebLogic Tuxedo Connector client application and Oracle Tuxedo:

Table 2-4 JATMI Primitives

Name Operation

tpdequeue Use for receiving messages from an Oracle Tuxedo /Q.

tpenqueue Use for placing a message on an Oracle Tuxedo /Q.

Chapter 2
Basic Client Operation

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

Close a Connection to an Oracle Tuxedo Object
Use tpterm() to close a connection to an object and prevent future operations on this object.

Example Client EJB
The following Java code provides an example of the ToupperBean.java client EJB which sends
a string argument to a server and receives a reply string from the server.

Example 2-2 Example Client Application

.

.

.
public String Toupper(String toConvert)
 throws TPException, TPReplyException
{
 Context ctx;
 TuxedoConnectionFactory tcf;
 TuxedoConnection myTux;
 TypedString myData;
 Reply myRtn;
 int status;

 log("toupper called, converting " + toConvert);

 try {
 ctx = new InitialContext();
 tcf = (TuxedoConnectionFactory) ctx.lookup(
 "tuxedo.services.TuxedoConnection");
 }
 catch (NamingException ne) {
 // Could not get the tuxedo object, throw TPENOENT
 throw new TPException(TPException.TPENOENT, "Could not get
 TuxedoConnectionFactory : " + ne);
 }

 myTux = tcf.getTuxedoConnection();

 myData = new TypedString(toConvert);

 log("About to call tpcall");
 try {
 myRtn = myTux.tpcall("TOUPPER", myData, 0);
}
 catch (TPReplyException tre) {
 log("tpcall threw TPReplyExcption " + tre);
 throw tre;
 }
 catch (TPException te) {
 log("tpcall threw TPException " + te);
 throw te;
 }
 catch (Exception ee) {
 log("tpcall threw exception: " + ee);
 throw new TPException(TPException.TPESYSTEM, "Exception: " + ee);
 }
 log("tpcall successfull!");

Chapter 2
Example Client EJB

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

 myData = (TypedString) myRtn.getReplyBuffer();

 myTux.tpterm();// Closing the association with Tuxedo

 return (myData.toString());
}
.
.
.

Chapter 2
Example Client EJB

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

3
Developing Oracle WebLogic Tuxedo
Connector Service EJBs

This chapter describes how to create Oracle WebLogic Tuxedo Connector service EJBs.
This chapter includes the following sections:

Basic Service EJB Operation
A service application uses Java and JATMI primitives to provide the following tasks:

Access Service Information
Use the TPServiceInformation class to access service information sent by the Oracle Tuxedo
client to run the service.

Table 3-1 JATMI TPServiceInformation Primitives

Buffer Type Description

getServiceData() Use to return the service data sent from the Oracle Tuxedo Client.

getServiceFlags() Use to return the service flags sent from the Oracle Tuxedo Client.

getServiceName() Use to return the service name that was called.

Buffer Messages
Use the following TypedBuffers when sending and receiving messages between your
application and Oracle Tuxedo:

Table 3-2 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that terminates with
the null character. Oracle Tuxedo equivalent: STRING.

TypedCArray Buffer type used when the data is an undefined array of characters (byte array),
any of which can be null. Oracle Tuxedo equivalent: CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field carries its own
identifier, an occurrence number, and possibly a length indicator. Oracle Tuxedo
equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger character fields, more fields,
and larger overall buffers. Oracle Tuxedo equivalent: FML32.

TypedXML Buffer type used when data is an XML based message. Oracle Tuxedo
equivalent: XML for Tuxedo Release 7.1 and higher.

TypedView Buffer type used when the application uses a Java structure to define the buffer
structure using a view description file. Tuxedo equivalent: VIEW.

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

Table 3-2 (Cont.) TypedBuffers

Buffer Type Description

TypedView32 Buffer type similar to View but allows for larger character fields, more fields, and
larger overall buffers. Oracle Tuxedo equivalent: VIEW32.

TypedXOctet Buffer type used when the data is an undefined array of characters (byte array)
any of which can be null. X_OCTET is identical in semantics to CARRAY. Oracle
Tuxedo equivalent: X_OCTET.

TypedXCommon Buffer type identical in semantics to View. Oracle Tuxedo equivalent: VIEW.

TypedXCType Buffer type identical in semantics to View. Oracle Tuxedo equivalent: VIEW.

TypedMBString Buffer type used when the data is a wide array of characters to support multi-
byte characters. Oracle Tuxedo equivalent: MBSTRING.

Perform the Requested Service
Use Java code to express the logic required to provide your service.

Return Client Messages for Request/Response Communication
Use the TuxedoReply class setReplyBuffer() method to respond to client requests.

Use tpsend and tprecv for Conversational Communication

Note

See Oracle WebLogic Tuxedo Connector JATMI Conversations.

Use the following JATMI primitives when creating conversational servers that communicate
with Oracle Tuxedo clients:

Table 3-3 Oracle WebLogic Tuxedo Connector Conversational Client Primitives

Name Operation

tpconnect Use to establish a connection to an Oracle Tuxedo conversational service.

tpdiscon Use to abort a connection and generate a TPEV_DISCONIMM event when executed
by the process controlling the conversation.

tprecv Use to receive data across an open connection from an Oracle Tuxedo application.

tpsend Use to send data across a open connection to an Oracle Tuxedo application.

Example Service EJB
The following provides an example of the TolowerBean.java service EJB which receives a
string argument, converts the string to all lower case, and returns the converted string to the
client.

Chapter 3
Example Service EJB

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

Example 3-1 Example Service EJB

.

.

.

public Reply service(TPServiceInformation mydata) throws TPException {
 TypedString data;
 String lowered;
 TypedString return_data;

 log("service tolower called");

 data = (TypedString) mydata.getServiceData();
 lowered = data.toString().toLowerCase();
 return_data = new TypedString(lowered);

 mydata.setReplyBuffer(return_data);
 return (mydata);
}
.
.
.

Chapter 3
Example Service EJB

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

4
Using Oracle WebLogic Tuxedo Connector for
RMI/IIOP and CORBA Interoperability

This chapter describes how to modify applications to use Oracle WebLogic Tuxedo Connector
to support interoperability between Oracle WebLogic Server and Oracle Tuxedo CORBA
objects.
You will need to perform some administration tasks to configure the Oracle WebLogic Tuxedo
Connector for CORBA interoperability. See Administration of Corba Applications in
Administering WebLogic Tuxedo Connector for Oracle WebLogic Server.

See CORBA Programming at https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/
interm/corbaprog.html.

This chapter includes the following sections:

How to Develop Oracle WebLogic Tuxedo Connector Client
Beans using the CORBA Java API

The Oracle WebLogic Tuxedo Connector enables objects (such as EJBs or RMI objects) to
invoke upon CORBA objects deployed in Oracle Tuxedo using the CORBA Java API
(Outbound). Oracle WebLogic Tuxedo Connector implements a WTC ORB which uses Oracle
WebLogic Server RMI-IIOP runtime and CORBA support. This enhancement provides the
following features:

• Support of out and inout parameters

• Support for a call a CORBA service from Oracle WebLogic Server using transactions and
security.

• Support for an ORB hosted in JNDI rather than an instance of the JDK ORB used in
previous releases.

• A wrapper is provided to allow users with legacy applications to use the new ORB without
modifying their existing applications. Oracle recommends that users migrate to the new
method of looking up the ORB in JNDI instead of doing:

ORB orb = ORB.init(args, Prop);

To use CORBA Java API, you must use the WTC ORB. Use one of the following methods to
obtain an ORB in your Bean:

Properties Prop;
Prop = new Properties();
Prop.put("org.omg.CORBA.ORBClass","weblogic.wtc.corba.ORB");
ORB orb = ORB.init(new String[0], Prop);

or

ORB orb = (ORB)(new InitialContext().lookup("java:comp/ORB"));

or

ORB orb = ORB.init();

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 10

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/interm/corbaprog.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/interm/corbaprog.html

You can use either of the following methods to reference objects deployed in Oracle Tuxedo:

• Using CosNaming Service

• Using FactoryFinder

Using CosNaming Service

Note

See How to Use FederationURL Formats.

1. The Oracle WebLogic Tuxedo Connector uses the CosNaming service to get a reference to
an object in the remote Oracle Tuxedo CORBA domain. This is accomplished by using a
corbaloc:tgiop or corbaname:tgiop object reference. The following statements use the
CosNaming service to get a reference to an Oracle Tuxedo CORBA Object:

// Get the simple factory.
org.omg.CORBA.Object simple_fact_oref =
 orb.string_to_object("corbaname:tgiop:simpapp#simple_factory");

Where:

• simpapp is the domain id of the Oracle Tuxedo domain specified in the Oracle Tuxedo
UBB.

• simple_factory is the name that the object reference was bound to in the Oracle Tuxedo
CORBA CosNaming server.

Example ToupperCorbaBean.java Code

Note

The following ToupperCorbaBean.java code provides an example of how to call the
WTC ORB and get an object reference using the COSNaming Service.

Example 4-1 Example Service Application

.

.

.
public String Toupper(String toConvert)
throws RemoteException
{
 log("toupper called, converting " + toConvert);

 try {
 // Initialize the ORB.
 String args[] = null;
 Properties Prop;
 Prop = new Properties();
 Prop.put("org.omg.CORBA.ORBClass",
 "weblogic.wtc.corba.ORB");

 ORB orb = (ORB) new InitialContext().lookup("java:comp/ORB");

Chapter 4
How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java API

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 10

 // Get the simple factory.
 org.omg.CORBA.Object simple_fact_oref =
 orb.string_to_object("corbaname:tgiop:simpapp#simple_factory");

 //Narrow the simple factory.
 SimpleFactory simple_factory_ref =
 SimpleFactoryHelper.narrow(simple_fact_oref);

 // Find the simple object.
 Simple simple = simple_factory_ref.find_simple();

 // Convert the string to upper case.
 org.omg.CORBA.StringHolder buf =
 new org.omg.CORBA.StringHolder(toConvert);
 simple.to_upper(buf);
 return buf.value;
 }
 catch (Exception e) {
 throw new RemoteException("Can't call TUXEDO CORBA server: " +e);
 }
}
.
.
.

Using FactoryFinder

Note

See How to Use FederationURL Formats for more information on object references.

Oracle WebLogic Tuxedo Connector provides support for FactoryFinder objects using the
find_one_factory_by_id method. This is accomplished by using a corbaloc:tgiop or
corbaname:tgiop object reference. Use the following method to obtain the FactoryFinder
object using the ORB:

// String to Object.
org.omg.CORBA.Object fact_finder_oref =
 orb.string_to_object("corbaloc:tgiop:simpapp/FactoryFinder");

// Narrow the factory finder.
FactoryFinder fact_finder_ref =
 FactoryFinderHelper.narrow(fact_finder_oref);

// Use the factory finder to find the simple factory.
org.omg.CORBA.Object simple_fact_oref =
 fact_finder_ref.find_one_factory_by_id(SimpleFactoryHelper.id());

Where:

• simpapp is the domain id of the Oracle Tuxedo domain specified in the Oracle Tuxedo
UBB.

• FactoryFinder is the name that the object reference was bound to in the Oracle Tuxedo
CORBA server.

Chapter 4
How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java API

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 10

WLEC to Oracle WebLogic Tuxedo Connector Migration
WLEC is no longer available or supported in Oracle WebLogic Server. WLEC users should
migrate their applications to Oracle WebLogic Tuxedo Connector.

Example Code
The following code provides an example of how to call the WTC ORB and get an object
reference using FactoryFinder.

Example 4-2 Example FactoryFinder Code

.

.

.
public ConverterResult convert (String changeCase, String mixed)
throws ProcessingErrorException
{
 String result;
 try {
 // Initialize the ORB.
 String args[] = null;
 Properties Prop;
 Prop = new Properties();
 Prop.put("org.omg.CORBA.ORBClass","weblogic.wtc.corba.ORB");
 ORB orb = (ORB)new InitialContext().lookup("java:comp/ORB");

 org.omg.CORBA.Object fact_finder_oref =
 orb.string_to_object("corbaloc:tgiop:simpapp/FactoryFinder");

 // Narrow the factory finder.
 FactoryFinder fact_finder_ref =
 FactoryFinderHelper.narrow(fact_finder_oref);

 // find_one_factory_by_id
 org.omg.CORBA.Object simple_fact_oref =
 fact_finder_ref.find_one_factory_by_id(FactoryFinderHelper.id());

 // Narrow the simple factory.
 SimpleFactory simple_factory_ref =
 SimpleFactoryHelper.narrow(simple_fact_oref);

 // Find the simple object.
 Simple simple = simple_factory_ref.find_simple();

 if (changeCase.equals("UPPER")) {
 // Invoke the to_upper opeation on M3 Simple object
 org.omg.CORBA.StringHolder buf =
 new org.omg.CORBA.StringHolder(mixed);
 simple.to_upper(buf);
 result = buf.value;
 }
 else
 {
 result = simple.to_lower(mixed);
 }

 }
 catch (org.omg.CORBA.SystemException e) {e.printStackTrace();

Chapter 4
How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java API

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 10

 throw new ProcessingErrorException("Converter error: Corba system exception: " + e);
 }
 catch (Exception e) {
 e.printStackTrace();
 throw new ProcessingErrorException("Converter error: " + e);
 }
return new ConverterResult(result);
}
.
.
.

How to Develop RMI/IIOP Applications for the Oracle WebLogic
Tuxedo Connector

Note

See Developing RMI Applications for Oracle WebLogic Server.

RMI over IIOP (Internet Inter-ORB Protocol) extends RMI so that Java programs can interact
with Common Object Request Broker Architecture (CORBA) clients and execute CORBA
objects. The Oracle WebLogic Tuxedo Connector:

• Enables Oracle Tuxedo CORBA objects to invoke upon EJBs deployed in Oracle
WebLogic Server (Inbound).

• Enables objects (such as EJBs or RMI objects) to invoke upon CORBA objects deployed in
Oracle Tuxedo (Outbound).

The following sections provide information on how to modify RMI/IIOP applications to use the
Oracle WebLogic Tuxedo Connector to interoperate with Oracle Tuxedo CORBA applications:

How to Modify Inbound RMI/IIOP Applications to use the Oracle WebLogic
Tuxedo Connector

A client must pass the correct name to which the Oracle WebLogic Server's name service has
been bound to the COSNaming Service.

The following code provides an example for obtaining a naming context. "WLS" is the bind
name specified in the cnsbind command detailed in Administration of Corba Applications in
Administering WebLogic Tuxedo Connector for Oracle WebLogic Server.

Example 4-3 Example Code to Obtain a Naming Context

.

.

.
// obtain a naming context
 TP::userlog("Narrowing to a naming context");
 CosNaming::NamingContext_var context =
 CosNaming::NamingContext::_narrow(o);
 CosNaming::Name name;
 name.length(1);
 name[0].id = CORBA::string_dup("WLS");
 name[0].kind = CORBA::string_dup("");

Chapter 4
How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 10

.

.

.

How to Develop Outbound RMI/IIOP Applications to use the Oracle
WebLogic Tuxedo Connector

An EJB must use a FederationURL to obtain the initial context used to access a remote Oracle
Tuxedo CORBA object. Use the following sections to modify outbound RMI/IIOP applications to
use the Oracle WebLogic Tuxedo Connector:

• How to Modify the ejb-jar.xml File to Pass a FederationURL to EJBs

• How to Modify EJBs to Use FederationURL to Access an Object

How to Modify the ejb-jar.xml File to Pass a FederationURL to EJBs
The following code provides an example of how to configure an ejb-jar.xml file to pass a
FederationURL format to the EJB at run-time.

Example 4-4 Example ejb-jar.xml File Passing a FederationURL to an EJB

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN' 'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>

<ejb-jar>
 <small-icon>images/green-cube.gif</small-icon>
 <enterprise-beans>
 <session>
 <small-icon>images/orange-cube.gif</small-icon>
 <ejb-name>IIOPStatelessSession</ejb-name>
 <home>examples.iiop.ejb.stateless.TraderHome</home>
 <remote>examples.iiop.ejb.stateless.Trader</remote>
 <ejb-class>examples.iiop.ejb.stateless.TraderBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <env-entry>
 <env-entry-name>foreignOrb</env-entry-name>
 <env-entry-type>java.lang.String </env-entry-type>
 <env-entry-value>corbaloc:tgiop:simpapp</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>WEBL</env-entry-name>
 <env-entry-type>java.lang.Double </env-entry-type>
 <env-entry-value>10.0</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>INTL</env-entry-name>
 <env-entry-type>java.lang.Double </env-entry-type>
 <env-entry-value>15.0</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>tradeLimit</env-entry-name>
 <env-entry-type>java.lang.Integer </env-entry-type>
 <env-entry-value>500</env-entry-value>
 </env-entry>
 </session>
 </enterprise-beans>

Chapter 4
How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 10

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>IIOPStatelessSession</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

To pass the FederationURL to the EJB at run-time, add an env-entry for the EJB in the ejb-
jar.xml file for your application. You must assign the following env-entry sub-elements:

Assign env-entry-name
The env-entry-name element is used to specify the name of the variable used to pass the
value in the env-entry-value element to the EJB. The example code shown in Example 4-4
specifies the env-entry-name as foreignOrb.

Assign env-entry-type
The env-entry-type element is used to specify the data type (example String, Integer,
Double) of the env-entry-value element that is passed to the EJB. The example code shown
in Example 4-4 specifies that the foreignOrb variable passes String data to the EJB.

Assign env-entry-value
The env-entry-value element is used to specify the data that is passed to the EJB. The
example code shown in Example 4-4 specifies that the foreignOrb variable passes the
following FederationURL format to the EJB:

corbaloc:tgiop:simpapp

Where simpapp is the DOMAINID of the Oracle Tuxedo remote service specified in the Oracle
Tuxedo UBB.

How to Modify EJBs to Use FederationURL to Access an Object
This section provides information on how to use the FederationURL to obtain the InitialContext
used to access a remote Oracle Tuxedo CORBA object.

The following code provides an example of how to use FederationURL to get an InitialContext.

1. Retrieve the FederationURL format defined in the ejb-jar.xml file.

Example:

"ic.lookup("java:/comp/env/foreignOrb")

The example code shown in Example 4-4 specifies that the foreignOrb variable passes
the following FederationURL format to the EJB:

corbaloc:tgiop:simpapp

2. Concatenate the FederationURL format with "/NameService" to form the FederationURL.

Example:

"ic.lookup("java:/comp/env/foreignOrb") + "/NameService"

Chapter 4
How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 10

The resulting FederationURL is:

corbaloc:tgiop:simpapp/NameService

3. Get the InitialContext.

Example:

env.put(Context.PROVIDER_URL, (String)
 ic.lookup("java:/comp/env/foreignOrb") + "/NameService");
InitialContext cos = new InitialContext(env);

The result is the InitialContext of the Oracle Tuxedo CORBA object.

Example 4-5 Example TraderBean.java Code to get InitialContext

.

.

.
public void createRemote() throws CreateException {
 log("createRemote() called");

 try {
 InitialContext ic = new InitialContext();

 // Lookup a EJB-like CORBA server in a remote CORBA domain
 Hashtable env = new Hashtable();
 env.put(Context.PROVIDER_URL, (String)
 ic.lookup("java:/comp/env/foreignOrb")
 + "/NameService");

 InitialContext cos = new InitialContext(env);
 TraderHome thome =
 (TraderHome)PortableRemoteObject.narrow(
 cos.lookup("TraderHome_iiop"),TraderHome.class);
 remoteTrader = thome.create();
}
 catch (NamingException ne) {
 throw new CreateException("Failed to find value "+ne);
}
 catch (RemoteException re) {
 throw new CreateException("Error creating remote ejb "+re);
}
}
.
.
.

Use the following steps to use FederationURL to obtain an InitialContext for a remote Oracle
Tuxedo CORBA object:

How to Use FederationURL Formats
This section provides information on the syntax for the following FederationURL formats:

• The CORBA URL syntax is described in the CORBA specification. For more information, see
the OMG Web Site at http://www.omg.org/.

• The corbaloc:tgiop form is specific to the Oracle tgiop protocol.

Chapter 4
How to Use FederationURL Formats

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 10

http://www.omg.org/

Using corbaloc URL Format
This section provides the syntax for corbaloc URL format:

<corbaloc> = "corbaloc:tgiop":[<version>] <domain>["/"<key_string>]
<version> = <major> "." <minor> "@" | empty_string
<domain> = TUXEDO CORBA domain name
<major> = number
<minor> = number
<key_string> = <string> | empty_string

Examples of corbaloc:tgiop
This section provides examples on how to use corbaloc:tgiop.

orb.string_to_object("corbaloc:tgiop:simpapp/NameService");
orb.string_to_object("corbaloc:tgiop:simpapp/FactoryFinder");
orb.string_to_object("corbaloc:tgiop:simpapp/InterfaceRepository");
orb.string_to_object("corbaloc:tgiop:simpapp/Tobj_SimpleEventsService");
orb.string_to_object("corbaloc:tgiop:simpapp/NotificationService");
orb.string_to_object("corbaloc:tgiop:1.1@simpapp/NotificationService);

Examples using -ORBInitRef
You can also use the -ORBInitRef option to orb.init and resolve_initial_reference.

Given the following -ORBInitRef definitions:

-ORBInitRef FactoryFinder=corbaloc:tgiop:simp/FactoryFinder
-ORBInitRef InterfaceRepository=corbaloc:tgiop:simp/InterfaceRepository
-ORBInitRef Tobj_SimpleEventService=corbaloc:tgiop:simp/Tobj_SimpleEventsService
-ORBInitRef NotificationService=corbaloc:tgiop:simp/NotificationService

then:

orb.resolve_initial_references("NameService");
orb.resolve_initial_references("FactoryFinder");
orb.resolve_initial_references("InterfaceRepository");
orb.resolve_initial_references("Tobj_SimpleEventService");
orb.resolve_initial_references("NotificationService");

Examples Using -ORBDefaultInitRef
You can use the -ORBDefaultInitRef and resolve_initial_reference.

Given the following -ORBDefaultInitRef definition:

-ORBDefaultInitRef corbaloc:tgiop:simpapp

then:

orb.resolve_initial_references("NameService");

Using the corbaname URL Format
You can also use the corbaname format instead of the corbaloc format.

Chapter 4
How to Use FederationURL Formats

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 10

Examples Using -ORBInitRef
Given the following -ORBInitRef definition:

-ORBInitRef NameService=corbaloc:tgiop:simpapp/NameService

then:

orb.string_to_object("corbaname:rir:#simple_factory");
orb.string_to_object("corbaname:tgiop:simpapp#simple_factory");
orb.string_to_object("corbaname:tgiop:1.1@simpapp#simple_factory");
orb.string_to_object("corbaname:tgiop:simpapp#simple/simple_factory");

How to Manage Transactions for Oracle Tuxedo CORBA
Applications

Note

See Overview of Transactions in Tuxedo CORBA Applications in Using CORBA
Transactions at https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/trans/
gstrx.html#1018509.

The Oracle WebLogic Tuxedo Connector uses the Jakarta Transaction API (JTA) to manage
transactions with Oracle Tuxedo Corba Applications. See:

• Developing JTA Applications for Oracle WebLogic Server

• Transaction Design and Management Options in Developing Jakarta Enterprise Beans
Using Deployment Descriptors

Chapter 4
How to Manage Transactions for Oracle Tuxedo CORBA Applications

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 10

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/trans/gstrx.html#1018509
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/trans/gstrx.html#1018509
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/trans/gstrx.html#1018509
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/trans/gstrx.html#1018509

5
Oracle WebLogic Tuxedo Connector JATMI
Transactions

This chapter describes how to define and manage Oracle WebLogic Tuxedo Connector global
transactions using the Jakarta Transaction API (JTA).
This chapter includes the following sections:

Global Transactions
A global transaction is a transaction that allows work involving more than one resource
manager and spanning more than one physical site to be treated as one logical unit. A global
transaction is always treated as a specific sequence of operations that is characterized by the
following four properties:

• Atomicity: All portions either succeed or have no effect.

• Consistency: Operations are performed that correctly transform the resources from one
consistent state to another.

• Isolation: Intermediate results are not accessible to other transactions, although other
processes in the same transaction may access the data.

• Durability: All effects of a completed sequence cannot be altered by any kind of failure.

Jakarta Transaction API

Note

See the JTA API at https://jakarta.ee/specifications/platform/9.1/jakarta-
platform-spec-9.1#jakarta-transaction-api-jta.

The Oracle WebLogic Tuxedo Connector uses the Jakarta Transaction API (JTA) to manage
transactions.

Types of JTA Interfaces
JTA offers three types of transaction interfaces:

Transaction
The Transaction interface allows operations to be performed against a transaction in the
target Transaction object. A transaction object is created to correspond to each global
transaction created. Use the Transaction interface to enlist resources, synchronize
registration, and perform transaction completion and status query operations.

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 5

https://jakarta.ee/specifications/platform/9.1/jakarta-platform-spec-9.1#jakarta-transaction-api-jta
https://jakarta.ee/specifications/platform/9.1/jakarta-platform-spec-9.1#jakarta-transaction-api-jta

TransactionManager
The TransactionManager interface allows the application server to communicate to the
Transaction Manager for transaction boundaries demarcation on behalf of the application. Use
the TransactionManager interface to communicate to the transaction manager on behalf of
container-managed EJB components.

UserTransaction
The UserTransaction interface is a subset of the TransactionManager interface. Use the
UserTransaction interface when it is necessary to restrict access to Transaction object.

JTA Transaction Primitives
The following table maps the functionality of Oracle Tuxedo transaction primitives to equivalent
JTA transaction primitives.

Table 5-1 Mapping Oracle Tuxedo Transaction Primitives to JTA Equivalents

Oracle Tuxedo Oracle Tuxedo Functionality JTA Equivalent

tpabort Use to end a transaction. or rollback

tpcommit Use to complete a transaction. commit

tpgetlev Use to determine if a service routine is
in transaction mode.

getStatus

tpbegin Use to begin a transaction. setTransactionTimeout begin

Defining a Transaction
Transactions can be defined in either client or server processes. A transaction has three parts:
a starting point, the program statements that are in transaction mode, and a termination point.

To explicitly define a transaction, call the begin() method. The same process that makes the
call, the initiator, must also be the one that terminates it by invoking a commit(),
setRollbackOnly(), or rollback(). Any service subroutines that are called between the
transaction delimiter become part of the current transaction.

Starting a Transaction

Note

Setting setTransactionTimeout() to unrealistically large values delays system
detection and reporting of errors. Use time-out values to ensure response to service
requests occur within a reasonable time and to terminate transactions that have
encountered problem, such as a network failure. For productions environments, adjust
the time-out value to accommodate expected delays due to system load and database
contention.

Chapter 5
Defining a Transaction

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 5

A transaction is started by a call to begin(). To specify a time-out value, precede the begin()
statement with a setTransactionTimeout(int seconds) statement.

To propagate the transaction to Oracle Tuxedo, you must do the following:

• Look up a TuxedoConnectionFactory object in the JNDI.

• Get a TuxedoConnection object using getTuxedoConnection().

Using TPNOTRAN
Service routines that are called within the transaction delimiter are part of the current
transaction. However, if tpcall() or tpacall() have the flags parameter set to TPNOTRAN, the
operations performed by the called service do not become part of that transaction. As a result,
services performed by the called process are not affected by the outcome of the current
transaction.

Terminating a Transaction
A transaction is terminated by a call to commit(), rollback(), or setRollbackOnly(). When
commit() returns successfully, all changes to the resource as a result of the current transaction
become permanent. In order for a commit() to succeed, the following two conditions must be
met:

• The calling process must be the same one that initiated the transaction with a begin()

• The calling process must have no transaction replies outstanding

If either condition is not true, the call fails and an exception is thrown.

setRollbackOnly() and rollback() are used to indicate an abnormal condition and to roll
back any call descriptors to their original state.

• Use setRollbackOnly() if further processing or cleanup is needed before rolling back the
transaction.

• Use rollback() if no further processing or cleanup is required before rolling back the
transaction.

Oracle WebLogic Tuxedo Connector Transaction Rules
You must follow certain rules while in transaction mode to insure successful completion of a
transaction. The basic rules of etiquette that must be observed while in a transaction mode
follow:

• You must propagate the transaction to Oracle Tuxedo using a TuxedoConnection object
after you initiate a transaction with a begin().

• tpterm() closes a connection to an object and prevents future operations on this object.

• Processes that are participants in the same transaction must require replies for their
requests.

• Requests requiring no reply can be made only if the flags parameter of tpacall() is set to
TPNOREPLY.

• A service must retrieve all asynchronous transaction replies before calling commit().

• The initiator must retrieve all asynchronous transaction replies before calling begin().

Chapter 5
Oracle WebLogic Tuxedo Connector Transaction Rules

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 5

• The asynchronous replies that must be retrieved include those that are expected from non-
participants of the transaction, that is, replies expected for requests made with a tpacall()
suppressing the transaction but not the reply.

• If a transaction has not timed out but is marked abort-only, further communication should
be performed with the TPNOTRAN flag set so that the work done as a result of the
communication has lasting effect after the transaction is rolled back.

• If a transaction has timed out:

– the descriptor for the timed out call becomes stale and any further reference to it will
return TPEBADDESC.

– further calls to tpgetrply() or tprecv() for any outstanding descriptors will return the
global state of transaction time-out by setting tperrono to TPETIME.

– asynchronous calls can be make with the flags parameter of tpacall() set to
TPNOREPLY | TPNOBLOCK | TPNOTRAN.

• Once a transaction has been marked abort-only for reasons other than time-out, a call to
tpgetrply() will return whatever represents the local state of the call, that is, it can either
return success or an error code that represents the local condition.

• Once a descriptor is used with tpgetrply() to retrieve a reply, it becomes invalid and any
further reference to it will return TPEBADDESC.

• Once a descriptor is used with tpsend() or tprecv() to report an error condition, it becomes
invalid and any further reference to it will return TPEV_DISCONIMM.

• Once a transaction is aborted, all outstanding transaction call descriptions (made without
the TPNOTRAN flag) become stale, and any further reference to them will return
TPEBADDESC.

• Oracle WebLogic Tuxedo Connector does not guarantee that all calls for a particular
transaction Id are routed to a particular server instance when load balancing. Load
balancing is performed on a per call basis.

Example Transaction Code
The following provides a code example for a transaction:

Example 5-1 Example Transaction Code

public class TransactionSampleBean implements SessionBean {

.....

public int transaction_sample () {

 int ret = 0;
 try {
 javax.naming.Context myContext = new InitialContext();
 TransactionManager tm = (jakarta.transaction.TransactionManager)
 myContext.lookup("jakarta.transaction.TransactionManager");

// Begin Transaction
 tm.begin ();

 TuxedoConnectionFactory tuxConFactory = (TuxedoConnectionFactory)
 ctxt.lookup("tuxedo.services.TuxedoConnection");

// You could do a local JDBC/XA-database operation here
// which will be part of this transaction.

Chapter 5
Example Transaction Code

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 5

.....

// NOTE 1: Get the Tuxedo Connection only after
// you begin the transaction if you want the
// Tuxedo call to be part of the transaction!

// NOTE 2: If you get the Tuxedo Connection before
// the transaction was started, all calls made from
// that Tuxedo Connection are out of scope of the
// transaction.

 TuxedoConnection myTux = tuxConFactory.getTuxedoConnection();

// Do a tpcall. This tpcall is part of the transaction.
 TypedString depositData = new TypedString("somecharacters,5000.00");

 Reply depositReply = myTux.tpcall("DEPOSIT", depositData, 0);

// You could also do tpcalls which are not part of
// transaction (For example, Logging all attempted
// operations etc.) by setting the TPNOTRAN Flag!
 TypedString logData =
 new TypedString("DEPOSIT:somecharacters,5000.00");

 Reply logReply = myTux.tpcall("LOGTRAN", logData,
 ApplicationToMonitorInterface.TPNOTRAN);

// Done with the Tuxedo Connection. Do tpterm.
 myTux.tpterm ();

// Commit Transaction...
 tm.commit ();

// NOTE: The TuxedoConnection object which has been
// used in this transaction, can be used after the
// transaction only if TPNOTRAN flag is set.
}
 catch (NamingException ne) {
 System.out.println ("ERROR: Naming Exception looking up JNDI: " + ne);
 ret = -1;
}
 catch (RollbackException re) {
 System.out.println("ERROR: TRANSACTION ROLLED BACK: " + re);
 ret = 0;
}
 catch (TPException te) {
 System.out.println("ERROR: tpcall failed: TpException: " + te);
 ret = -1;
}
 catch (Exception e) {
 log ("ERROR: Exception: " + e);
 ret = -1;
}

 return ret;
}

Chapter 5
Example Transaction Code

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 5

6
Oracle WebLogic Tuxedo Connector JATMI
Conversations

This chapter describes how to define and manage Oracle Tuxedo conversations in your
applications. Tuxedo conversations are a supported method for message exchange between
Oracle WebLogic Server and Oracle Tuxedo applications.

Note

See Writing Conversational Clients and Servers in Programming a Tuxedo ATMI
Application in C at https://docs.oracle.com/en/database/oracle/tuxedo/22/otxac/writing-
conversational-clients-and-servers1.html.

This chapter includes the following sections:

Overview of Oracle WebLogic Tuxedo Connector Conversational
Communication

Oracle WebLogic Tuxedo Connector supports Oracle Tuxedo conversations as a method to
exchange messages between Oracle WebLogic Server and Oracle Tuxedo applications. In this
form of communication, a virtual connection is maintained between the client and the server
and each side maintains information about the state of the conversation. The process that
opens a connection and starts a conversation is the originator of the conversation. The process
with control of the connection is the initiator; the process without control is called the
subordinate. The connection remains active until an event occurs to terminate it.

During conversational communication, a half-duplex connection is established between the
initiator and the subordinate. Control of the connection is passed between the initiator and the
subordinate. The process that has control can send messages (the initiator); the process that
does not have control can only receive messages (the subordinate).

Oracle WebLogic Tuxedo Connector Conversation
Characteristics

Oracle WebLogic Tuxedo Connector JATMI conversations have the following characteristics:

• Data is passed using TypedBuffers. The type and sub-type of the data must match one of
the types and sub-types recognized by the service.

• The logical connection between the conversational client and the conversational server
remains active until it is terminated.

• Any number of messages can be transmitted across a connection between a
conversational client and the conversational server.

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

https://docs.oracle.com/en/database/oracle/tuxedo/22/otxac/writing-conversational-clients-and-servers1.html
https://docs.oracle.com/en/database/oracle/tuxedo/22/otxac/writing-conversational-clients-and-servers1.html
https://docs.oracle.com/en/database/oracle/tuxedo/22/otxac/writing-conversational-clients-and-servers1.html
https://docs.oracle.com/en/database/oracle/tuxedo/22/otxac/writing-conversational-clients-and-servers1.html

• A Oracle WebLogic Tuxedo Connector conversational client initiates a request for service
using tpconnect rather than a tpcall or tpacall.

• Oracle WebLogic Tuxedo Connector conversational clients and servers use the JATMI
primitives tpsend to send data and tprecv to receive data.

• A conversational client only sends service requests to a conversational server.

• Conversational servers are prohibited from making calls to tpforward.

Oracle WebLogic Tuxedo Connector JATMI Conversation
Primitives

Use the following Oracle WebLogic Tuxedo Connector primitives when creating conversational
clients and servers that communicate between Oracle WebLogic Server and Oracle Tuxedo:

Table 6-1 Oracle WebLogic Tuxedo Connector Conversational Client Primitives

Name Operation

tpconnect Use to establish a connection to an Oracle Tuxedo conversational service.

tpdiscon Use to abort a connection and generate a TPEV_DISCONIMM event.

tprecv Use to receive data across an open connection from an Oracle Tuxedo
application.

tpsend Use to send data across a open connection to an Oracle Tuxedo application.

Creating Oracle WebLogic Tuxedo Connector Conversational
Clients and Servers

The following sections provide information on how to create conversational clients and servers.

Creating Conversational Clients
Follow the steps outlined in Developing Oracle WebLogic Tuxedo Connector Client EJBs to
create Oracle WebLogic Tuxedo Connector conversational clients. The following section
provide information on how to use tpconnect to open a connection and start a conversation.

Establishing a Connection to an Oracle Tuxedo Conversational Service
A Oracle WebLogic Tuxedo Connector conversational client must establish a connection to the
Oracle Tuxedo conversational service. Use the JATMI primitive tpconnect to open a connection
and start a conversation. A successful call returns an object that can be used to send and
receive data for a conversation.

The following table describes tpconnect parameters:

Table 6-2 Oracle WebLogic Tuxedo Connector JATMI tpconnect Parameters

Parameter Description

svc Character pointer to a conversational service name. If you do not specify a svc,
the call will fail and TPException is set to TPEV_DISCONIMM.

Chapter 6
Oracle WebLogic Tuxedo Connector JATMI Conversation Primitives

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

Table 6-2 (Cont.) Oracle WebLogic Tuxedo Connector JATMI tpconnect Parameters

Parameter Description

data Pointer to the data buffer. When establishing a connection, you can send data
simultaneously by setting the data parameter to point to a buffer. The type and
subtype of the buffer must be recognized by the service being called. You can
set the value of data to NULL to specify that no data is to be sent.

flags Use flags or combinations of flags as required by your application needs. Valid
flag values are:

TPSENDONLY: specifies that the control is being retained by the originator.
The called service is subordinate and can only receive data. Do not use in
combination with TPRECVONLY.

TPRECVONLY: specifies that control is being passed to the called service.The
originator becomes subordinate and can only receive data. Do not use in
combination with TPSENDONLY.

TPNOTRAN: specifies that when svc is invoked and the originator is
transaction mode, svc is not part of the originator's transaction. A call remains
subject to transaction timeouts. If svc fails, the originator's transaction is
unaffected.

TPNOBLOCK: specifies that a request is not sent if a blocking condition exists.
If TPNOBLOCK is not specified, the originator blocks until the condition subsides,
a transaction timeout occurs, or a blocking timeout occurs.

TPNOTIME: specifies that the originator will block indefinitely and is immune to
blocking timeouts. If the originator is in transaction mode, the call is subject to
transaction timeouts.

Example TuxedoConversationBean.java Code
The following provides a code example to use tpconnect to start a conversation:

Example 6-1 Example Conversation Code

.

.

.
Context ctx;
Conversation myConv;
TuxedoConnection myTux;
TuxedoConnectionFactory tcf;
.
.
.
ctx = new InitialContext();
tcf = (TuxedoConnectionFactory) ctx.lookup ("tuxedo.services.TuxedoConnection");
myTux = tcf.getTuxedoConnection();
flags =ApplicationToMonitorInterface.TPSENDONLY;
myConv = myTux.tpconnect("CONNECT_SVC",null,flags);
.
.
.

Creating Oracle WebLogic Tuxedo Connector Conversational Servers
Follow the steps outlined in Developing Oracle WebLogic Tuxedo Connector Service EJBs, to
create Oracle WebLogic Tuxedo Connector conversational servers.

Chapter 6
Creating Oracle WebLogic Tuxedo Connector Conversational Clients and Servers

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

Sending and Receiving Messages
Once a conversational connection is established between a Oracle WebLogic Server
application and an Oracle Tuxedo application, the communication between the initiator (sends
message) and subordinate (receives message) is accomplished using send and receive calls.
The following sections describe how Oracle WebLogic Tuxedo Connector applications use the
JATMI primitives tpsend and tprecv:

Sending Messages
Use the JATMI primitive tpsend to send a message to an Oracle Tuxedo application.

The following table describes tpsend parameters:

Table 6-3 Oracle WebLogic Tuxedo Connector JATMI tpconnect Parameters

Parameter Description

data Pointer to the buffer containing the data sent with this conversation.

flags The flag can be one of the following:

TPRECVONLY: specifies that after the initiator's data is sent, the initiator gives
up control of the connection. The initiator becomes subordinate and can only
receive data.

TPNOBLOCK: specifies that the request is not sent if a blocking condition
exists. If TPNOBLOCK is not specified, the originator blocks until the condition
subsides, a transaction timeout occurs, or a blocking timeout occurs.

TPNOTIME: specifies that an initiator is willing to block indefinitely and is
immune from blocking timeouts. The call is subject to transaction timeouts.

Receiving Messages
Use the JATMI primitive tprecv to receive messages from an Oracle Tuxedo application.

The following table describes tprecv parameters:

Table 6-4 Oracle WebLogic Tuxedo Connector JATMI tprec Parameters

Parameter Description

flags The flag can be one of the following:

TPNOBLOCK: specifies that tprecv does not wait for a reply to arrive. If a
reply is available, tprecv gets the reply and returns. If this flag is not specified
and a reply is not available, tprecv waits for one of the following to occur: a
reply, a transaction timeout, or a blocking timeout.

TPNOTIME: specifies that tprecv waits indefinitely for a reply. With this flag,
tprecv is immuned from blocking timeouts but is still subject to transaction
timeouts.

A flag value of 0 specifies that the initiator blocks until the condition subsides or
a timeout occurs.

Chapter 6
Sending and Receiving Messages

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

Ending a Conversation
A conversation between Oracle WebLogic Server and Oracle Tuxedo ends when the server
process successfully completes its tasks. The following sections describe how a conversation
ends:

Oracle Tuxedo Application Originates Conversation
An Oracle WebLogic Server conversational server ends a conversation by a successful call to
return. A TPEV_SVCSUCC event is sent to the Oracle Tuxedo client that originated
connection to indicate that the service finished successfully. The connection is then
disconnected in an orderly manner.

Oracle WebLogic Tuxedo Connector Application Originates Conversation
An Oracle Tuxedo conversational server ends a conversation by a successful call to tpreturn.
A TPEV_SVCSUCC event is sent to the Oracle WebLogic Tuxedo Connector client that
originated connection to indicate that the service finished successfully. The connection is then
disconnected in an orderly manner.

Ending Hierarchical Conversations
The order in which an conversation ends is important to gracefully end hierarchal
conversations.

Assume there are two active connections: A-B and B-C. If B is a Oracle WebLogic Tuxedo
Connector application in control of both connections, a call to return has the following effect:
the call fails and a TPEV_SVCERR event is posted on all open connections, and the
connections are closed in a disorderly manner.

In order to terminate both connections in an orderly manner, the application must execute the
following sequence:

1. B calls tpsend with TPRECVONLY to transfer control of the B-C connection to the Oracle
Tuxedo application C.

2. C calls departure with rval set to TPSUCCESS, TPFAIL, or TPEXIT.

3. B calls return and posts an event (TPEV_SVCSUCC or TPEV_SVCFAIL) for A.

Conversational services can make request/response calls. Therefore, in the preceding
example, the calls from B to C may be executed using tpacall() or tpcall() instead of tpconnect.
Conversational services are not permitted to make calls to tpforward.

Executing a Disorderly Disconnect
Oracle WebLogic Server conversational clients or servers execute a disorderly disconnect is
through a call to tpdiscon. This is the equivalent of "pulling the plug" on a connection.

A call to tpdiscon:

• Immediately tears down the connection and generates a TPEV_DISCONIMM at the other
end of the connection. Any data that has not yet reached its destination may be lost. If the
conversation is part of a transaction, the transaction must be rolled back.

• Can only be called by the initiator of the conversation.

Chapter 6
Ending a Conversation

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

Understanding Conversational Communication Events
Oracle WebLogic Tuxedo Connector JATMI uses five events to manage conversational
communication. The following table lists the events, the functions for which they are returned,
and a detailed description of each.

Table 6-5 Oracle WebLogic Tuxedo Connector Conversational Communication Events

Event Received by Description

TPEV_SENDONLY Tuxedo tprecv Control of the connection has passed; this Oracle
Tuxedo process can now call tpsend

TPEV_SENDONLY JATMI tprecv Control of the connection has passed; this JATMI
process can now call tpsend

TPEV_DISCONIMM Tuxedo tprecv,
tpsend, tpreturn

The connection has been torn down and no further
communication is possible. The JATMI tpdiscon
posts this event in the originator of the connection.
The originator sends it to all open connections
when tpreturn is called. Connections are closed
in a disorderly manner and if a transaction exists, it
is aborted.

TPEV_DISCONIMM JATMI tprecv, tpsend,
return

The connection has been torn down and no further
communication is possible. The Oracle Tuxedo
tpdiscon posts this event in the originator of the
connection. The originator sends it to all open
connections when return is called. Connections
are closed in a disorderly manner and if a
transaction exists, it is aborted.

TPEV_SVCERR Tuxedo tpsend or JATMI
tpsend

Received by the originator of the connection
indicating that the subordinate program issued a
tpreturn (Oracle Tuxedo) or return (JATMI) and
ended without control of the connection.

TPEV_SVCERR Tuxedo tprecv or JATMI
tprecv

Received by the originator of the connection
indicating that the subordinate program issued a
successful tpreturn (Oracle Tuxedo) or a
successful return (JATMI) without control of the
connection, but an error occurred before the call
completed.

TPEV_SVCSUCC Tuxedo tprecv Received by the originator of the connection,
indicating that the subordinate service finished
successfully; that is, return was successfully
called.

TPEV_SVCSUCC JATMI tprecv Received by the originator of the connection,
indicating that the subordinate service finished
successfully; that is, tpreturn was called with
TPSUCCESS.

TPEV_SVCFAIL Tuxedo tpsend or JATMI
tpsend

Received by the originator of the connection
indicating that the subordinate program issued a
tpreturn (Oracle Tuxedo) or return (JATMI) and
ended without control of the connection. The
service completed with status of TPFAIL or TPEXIT
and the data is set to null.

Chapter 6
Understanding Conversational Communication Events

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

Table 6-5 (Cont.) Oracle WebLogic Tuxedo Connector Conversational Communication
Events

Event Received by Description

TPEV_SVCFAIL Tuxedo tprecv or JATMI
tprecv

Received by the originator of the connection
indicating that the subordinate program finished
unsuccessfully. The service completed with status
of TPFAIL or TPEXIT.

Oracle WebLogic Tuxedo Connector Conversation Guidelines
Use the following guidelines while in conversation mode to insure successful completion of a
conversation:

• Use the JATMI conversational primitives as defined in the Oracle WebLogic Tuxedo
Connector Conversation interface and ApplicationToMonitorInterface interface.

– Always use a flag.

– Only use flags defined in the Oracle WebLogic Tuxedo Connector JATMI.

• Oracle WebLogic Tuxedo Connector does not have a parameter that can be used to limit
the number of simultaneous conversations to prevent overloading the Oracle WebLogic
Server network.

• If Oracle Tuxedo exceeds the maximum number of possible conversations (defined by the
MAXCONV parameter), TPEV_DISCONIMM is the expected Oracle WebLogic Tuxedo
Connector exception value.

• A tprecv to an unauthorized Oracle Tuxedo service results in a TPEV_DISCONIMM
exception value.

• If a Oracle WebLogic Tuxedo Connector client is connected to an Oracle Tuxedo
conversational service which does tpforward to another conversational service,
TPEV_DISCONIMM is the expected Oracle WebLogic Tuxedo Connector exception value.

• Conversations may be initiated within a transaction. Start the conversation as part of the
program statements in transaction mode. See Oracle WebLogic Tuxedo Connector JATMI
Transactions.

• If an Oracle WebLogic Tuxedo Connector remote domain experiences a TPENOENT, the
remote domain will send back a disconnect event message and be caught on the Oracle
WebLogic Tuxedo Connector application tprecv as a TPEV_DISCONIMM exception.

Chapter 6
Oracle WebLogic Tuxedo Connector Conversation Guidelines

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

7
Using FML with Oracle WebLogic Tuxedo
Connector

This chapter describes how Oracle WebLogic Tuxedo Connector uses the Field Manipulation
Language (FML).
This chapter includes the following sections:

Overview of FML

Note

See Programming a Tuxedo ATMI Application Using FML at https://
docs.oracle.com/cd/E72452_01/tuxedo/docs1222/fml/index.html.

FML is a set of java language functions for defining and manipulating storage structures called
fielded buffers. Each fielded buffer contains attribute-value pairs in fields. For each field:

• The attribute is the field's identifier.

• The associated value represents the field's data content.

• An occurrence number.

There are two types of FML:

• FML16 based on 16-bit values for field lengths and identifiers. It is limited to 8191 unique
fields, individual field lengths of 64K bytes, and a total fielded buffer size of 64K bytes.

• FML32 based on 32-bit values for the field lengths and identifiers. It allows for about 30
million fields, and field and buffer lengths of about 2 billion bytes.

The Oracle WebLogic Tuxedo Connector FML API

Note

The Oracle WebLogic Tuxedo Connector implements a subset of FML functionality.
See FML32 Considerations.

The FML application program interface (API) is documented in the weblogic.wtc.jatmi
package included in the Javadocs for WebLogic Server Classes.

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 8

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/fml/index.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/fml/index.html

FML Field Table Administration
Field tables are generated in a manner similar to Oracle Tuxedo field tables. The field tables
are text files that provide the field name definitions, field types, and identification numbers that
are common between the two systems. To interoperate with an Oracle Tuxedo system using
FML, the following steps are required:

1. Copy the field tables from the Oracle Tuxedo system to Oracle WebLogic Tuxedo
Connector environment.

For example: Your Oracle Tuxedo distribution contains a bank application example called
bankapp. It contains a file called bankflds that has the following structure:

#Copyright (c) 1990 Unix System Laboratories, Inc.
#All rights reserved
#ident "@(#) apps/bankapp/bankflds $Revision: 1.3 $"
Fields for database bankdb
name number type flags comments
ACCOUNT_ID 110 long - -
ACCT_TYPE 112 char - -
ADDRESS 109 string - -
.
.
.

2. Converted the field table definition into Java source files. Use the mkfldclass utility
supplied in the weblogic.wtc.jatmi package. This class is a utility function that reads a
FML32 Field Table and produces a Java file which implements the FldTbl interface. There
are two instances of this utility:

• mkfldclass

• mkfldclass32

Use the correct instance of the command to convert the bankflds field table into FML32
java source. The following example uses mkfldclass.

java weblogic.wtc.jatmi.mkfldclass bankflds

The resulting file is called bankflds.java and has the following structure:

import java.io.*;
import java.lang.*;
import java.util.*;
import weblogic.wtc.jatmi.*;

public final class bankflds
 implements weblogic.wtc.jatmi.FldTbl
{
 /** number: 110 type: long */
 public final static int ACCOUNT_ID = 33554542;
 /** number: 112 type: char */
 public final static int ACCT_TYPE = 67108976;
 /** number: 109 type: string */
 public final static int ADDRESS = 167772269;
 /** number: 117 type: float */
.
.
.

3. Compile the resulting bankflds.java file using the following command:

Chapter 7
FML Field Table Administration

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 8

javac bankflds.java

The result is a bankflds.class file. When loaded, the Oracle WebLogic Tuxedo Connector
uses the class file to add, retrieve and delete field entries from an FML32 field.

4. Add the field table class file to your application CLASSPATH.

5. Update your WTCServer MBean.

• Update the WTCResources MBean to reflect the fully qualified location of the field table
class file.

• Use the keywords required to describe the FML buffer type: fml16 or fml32.

• You can enter multiple field table classes in a comma separated list.

For example:

<wtc-resources>
 <name>BankappResources</name>
 <fld-tbl16-class>my.bankflds</fld-tbl16-class>
 <fld-tbl16-class>your.bankflds</fld-tbl16-class>
 <fld-tbl16-class>more.bankflds</fld-tbl16-class>
</wtc-resources>

6. Restart your Oracle WebLogic Server to load the field table class definitions.

Using the DynRdHdr Property for mkfldclass32 Class
Oracle WebLogic Tuxedo Connector provides a property that provides an alternate method to
compile FML tables. You may need to use the DynRdHdr utility if:

• You are using very large FML tables and the .java method created by the mkfldclass32
class exceeds the internal Java Virtual Machine limit on the total complexity of a single
class or interface.

• You are using very large FML tables and are unable to load the class created when
compiling the .java method.

Use the following steps to use the DynRdHdr property when compiling your FML tables:

1. Convert the field table definition into Java source files.

java -DDynRdHdr=Path_to_Your_FML_Table weblogic.wtc.jatmi.mkfldclass32 userTable

The arguments for this command are defined as follows:

Table 7-1 Argument

Attribute Description

-DDynRdHdr Oracle WebLogic Tuxedo Connector property used to
compile an FML table.

Path_to_Your_FML_Table Path name of your FML table. This may be either a fully
qualified path or a relative path that can be found as a
resource file using the server's CLASSPATH.

weblogic.wtc.jatmi.mkfldclass32 This class is a utility function that reads an FML32 Field
Table and produces a Java file which implements the
FldTbl interface.

userTable Name of the .java method created by the
mkfldclass32 class.

Chapter 7
FML Field Table Administration

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 8

2. Compile the userTable file using the following command:

javac userTable.java

3. Add the userTable.class file to your application CLASSPATH.

4. Update the WTCResources MBean to reflect the fully qualified location of the
userTable.class file.

5. Target your WTC server. The userTable.class is loaded when the WTCServer service
starts.

Once you have created the userTable.class file, you can modify the FML table and deploy
the changes without having to manually create an updated userTable.class. When the WTC
server is started, Oracle WebLogic Tuxedo Connector will load the updated FML table using
the location specified in the Resources tab of your WTC server configuration. If the
Path_to_Your_FML_Table attribute changes, you will need to use the preceding procedure to
update your userTable.java and userTable.class files.

Using TypedFML32 Constructors
Two new constructors for TypedFML32 are available to improve performance. The following
topic provides explanation as to when to use these constructors.

The constructors are defined in the Javadocs for WebLogic Server Classes.

Gaining TypedFML32 Performance Improvements
To gain TypedFML32 performance improvements, you can choose to give size hints to
TypedFML32 constructors. There are two parameters that are available to those constructor:

• A parameter that hints for maximum number of fields. This includes all the occurrences.

• A parameter for the total number of field IDs used in the buffer.

For instance, a field table used by the buffer contains 20 field IDs, and each field can occur 20
times. In this case, the first parameter should be 400 for the maximum number of fields. The
second parameter should be 20 for the total number of field IDs.

TypeFML32 mybuffer = new TypeFML32(400, 20);

Note

This usually works well with any size of buffer; however, it does not work well with
extremely small buffers.

If you have an extremely small buffer, use those constructor without hints. An example of an
extremely small buffer is a buffer with less than 16 total occurrences. If the buffer is extremely
large, for example contains more than 250000 total field occurrences, then the application
should consider splitting it into several buffers smaller than 250000 total field occurrences.

Chapter 7
Using TypedFML32 Constructors

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 8

tBridge XML/FML32 Translation

Note

The data type specified must be FLAT or NO. If any other data type is specified, the
redirection fails.

The TranslateFML element of the WTCtBridgeRedirect MBean is used to indicate if FML32
translation is performed on the message payload. There are two types of FML32 translation:
FLAT and NO.

FLAT
The message payload is translated using the Oracle WebLogic Tuxedo Connector internal
FML32/XML translator. Fields are converted field-by-field values without knowledge of the
message structure (hierarchy) and repeated grouping.

In order to convert an FML32 buffer to XML, the tBridge pulls each instance of each field in the
FML32 buffer, converts it to a string, and places it within a tag consisting of the field name. All
of these fields are placed within a tag consisting of the service name. For example, an FML32
buffer consisting of the following fields:

NAME JOE
ADDRESS CENTRAL CITY
PRODUCTNAME BOLT
PRICE 1.95
PRODUCTNAME SCREW
PRICE 2.50

The resulting XML buffer would be:

<FML32>
 <NAME>JOE</NAME>
 <ADDRESS>CENTRAL CITY</ADDRESS>
 <PRODUCTNAME>BOLT</PRODUCTNAME>
 <PRODUCTNAME>SCREW</PRODUCTNAME>
 <PRICE>1.95</PRICE>
 <PRICE>2.50</PRICE>
</FML32>

NO
No translation is used.

For JMS to Oracle Tuxedo, the tBridge maps a JMS TextMessage into an Oracle Tuxedo
TypedBuffer (TypedString) and vice versa depending on the direction of the redirection. JMS
BytesMessage are mapped into Oracle Tuxedo TypedBuffer (TypedCarray) and vice versa.

For Oracle Tuxedo to JMS, passing an FML/FML32 buffer behaves as if translateFML is set to
FLAT. Therefore, in this case, setting translateFML to NO has no effect and if the Oracle
Tuxedo buffer is of type FML/FML32, the translation takes place automatically.

Chapter 7
tBridge XML/FML32 Translation

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 8

FML32 Considerations
Remember to consider the following information when working with FML32:

• For XML input, the root element is required but ignored.

• For XML output, the root element is always <FML32>.

• The field table names must be loaded as described in FML Field Table Administration.

• The tBridge translator is capable of only "flat" or linear grouping. This means that
information describing FML32 ordering is not maintained, therefore buffers that contain a
series of repeating data could be presented in an unexpected fashion. For example,
consider a FML32 buffer that contains a list of parts and their associated price. The
expectation would be PART A, PRICE A, PART B, PRICE B, etc. however since there is no
structural group information contained within the tBridge, the resulting XML could be PART
A, PART B, etc., PRICE A, PRICE B, etc.

• When translating XML into FML32, the translator ignores STRING values. For example,
<STRING></STRING> is skipped in the resulting FML32 buffer. All other types cause WTC to
log an error resulting in translation failure.

• Embedded FML is not supported in this release.

• Embedded VIEW fields within FML32 buffers are supported in this release.

• TypedCArray is supported for FML/FML32 to XML conversion. Select from the following list
of supported field types:

– SHORT

– LONG

– CHAR

– FLOAT

– DOUBLE

– STRING

– CARRAY

– INT (FML32)

– DECIMAL (FML32)

• If you need to pass binary data, encode to a field type of your choice and decode the XML
on the receiving side.

• If you need to use CARRAY fields in an XML input buffer, you must first encode the content
using base64. You must decode the base64 data after it is received and before it is
processed by an application.

Using the XmlFmlCnv Class for XML to and From FML/FML32
Translation

An alternative option to using the tBridge to automatically translate XML buffers to and from
FML/FML32 is to use the XmlFmlCnv class which supports ordering, grouping and beautifying
functionality. The following code listing is an example that uses the XmlFmlCnv class for
conversion to and from XML buffer formats.

Chapter 7
Using the XmlFmlCnv Class for XML to and From FML/FML32 Translation

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 8

import weblogic.wtc.jatmi.TypedFML32;
import weblogic.wtc.jatmi.FldTbl;
import weblogic.wtc.gwt.XmlFmlCnv;

public class xml2fml
{
 public static void main(String[] args) {
 String xmlDoc = "<XML><MyString>hello</MyString></XML>";
 TypedFML32 fmlBuffer = new TypedFML32(new MyFieldTable());
 XmlFmlCnv c = new XmlFmlCnv();
 fmlBuffer = c.XMLtoFML32(xmlDoc, fmlBuffer.getFieldTables());
 String result = c.FML32toXML(fmlBuffer);
 System.out.println(result);
}
}

See Class XmlFmlCnv.

Limitations of XmlFmlCnv Class
The FLD_MBSTRING field in FML32 is not supported by the XmlFmlCnv.FML32toXML method in
this release.

MBSTRING Usage
A TypedMBString object can be used almost identically as a TypedString object in a WTC
application code. The only difference is that TypedMBString has a codeset encoding name
associated to the string data.

This section includes the following topics.

Sending MBSTRING Data to an Oracle Tuxedo Domain
When an Oracle Tuxedo message that contains an MBSTRING data is sent to another Oracle
Tuxedo domain, TypedMBString uses the conversion function of java.lang.String class to
convert between Unicode and an external encoding. The TypedMBString has a codeset
encoding name associated to the string data.

When a TypedMBString object is created by a WTC application code, the encoding name is set
to null. The null value of the encoding name means that the default encoding name is used for
Unicode string to byte array conversion while sending the MBSTRING data to a remote
domain. By default, the Java's default encoding name for byte array string is used for the
default encoding name.You can specify encoding or accept the default encoding. The following
order defines the order of precedence for TypedMBString.

1. Specify the encoding name by setMBEncoding() method.

2. Specify the encoding name through the setDefaultMBEncoding() method of
weblogic.wtc.jatmi.MBEncoding class.

3. Specify the encoding name through the RemoteMBEncoding attribute of the
WTCResourcesMBean.

4. MBENCODINGPROPERTY system property value.

5. Accept the Java default encoding name.

Chapter 7
MBSTRING Usage

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 8

Receiving MBSTRING Data from an Oracle Tuxedo Domain
When an Oracle Tuxedo message that contains an MBSTRING data is received from a remote
domain, the following actions take place.

1. WTC determines the encoding of the MBSTRING data by the codeset tcm in the received
message.

2. WTC creates a TypedMBString object.

A TypedMBString object can be used almost identically as a TyepdString object in WTC
application code. However, the TypedMBString has a codeset encoding name associated
to the string data.

3. WTC passes the TypedMBString object to the WTC application code. The application code
knows the encoding of the received MBSTRING data by the instance method
getMBEncoding().

Using FML with Oracle WebLogic Tuxedo Connector
FLD_MBSTRING is a field type added to TypedFML32. In this case, a TypedMBString object is
passed to the TypedFML32 method as the associated object type of FLD_MBSTRING. You can
specify the encoding name used for the MBSTRING conversion for a FLD_MBSTRING field.

The following order defines the order of precedence for TypedFML32.

1. Specify the encoding name by setMBEncoding() method of the TypedMBString object for
the field.

2. Specify the encoding name by setMBEncoding() method of the TypedFML32 object.

3. Specify the encoding name through the setDefaultMBEncoding() method of
weblogic.wtc.jatmi.MBEncoding class.

4. Specify the encoding name through the RemoteMBEncoding attribute of the
WTCResourcesMBean.

5. MBENCODINGPROPERTY system property value.

6. Accept the Java default encoding name.

Note

The following methods must be updated when using FLD_MBSTRING:
Fldtype(), Fchg(), Fadd(), Fget(), and Fdel().

The on-demand encoding methods and auto-conversion methods needed in
Oracle Tuxedo, such as Fmbpack32() and Fmbunpack32() are not needed by
Oracle WebLogic Tuxedo Connector.

Chapter 7
MBSTRING Usage

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 8

8
Oracle WebLogic Tuxedo Connector JATMI
VIEWs

This chapter describes how to use Oracle WebLogic Tuxedo Connector VIEW buffers.
This chapter includes the following sections:

Overview of Oracle WebLogic Tuxedo Connector VIEW Buffers

Note

See Using a VIEW Typed Buffer in Programming a Tuxedo ATMI Application Using C
at https://docs.oracle.com/en/database/oracle/tuxedo/22/otxac/using-view-typed-buffer.html.

Oracle WebLogic Tuxedo Connector allows you to create a Java VIEW buffer type analogous
to an Oracle Tuxedo VIEW buffer type derived from an independent C structure. This allows
Oracle WebLogic Server applications and Oracle Tuxedo applications to pass information
using a common structure. Oracle WebLogic Tuxedo Connector VIEW buffers do not support
FML VIEWs or FML VIEWs/Java conversions.

How to Create a VIEW Description File

Note

fbname and null fields are not relevant for independent Java and C structures and are
ignored by the Java and C VIEW compiler. You must include a value (for example, a
dash) as a placeholder in these fields.

Your Oracle WebLogic Server application and your Oracle Tuxedo application must share the
same information structure as defined by the VIEW description. The following format is used
for each structure in the VIEW description file:

$ /* VIEW structure */
VIEW viewname
type cname fbname count flag size null

where

• The file name is the same as the VIEW name.

• You can have only one VIEW description per file.

• The VIEW description file is the same file used for both the Oracle WebLogic Tuxedo
Connector viewj compiler and the Oracle Tuxedo viewc compiler.

• viewname is the name of the information structure.

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

https://docs.oracle.com/en/database/oracle/tuxedo/22/otxac/using-view-typed-buffer.html
https://docs.oracle.com/en/database/oracle/tuxedo/22/otxac/using-view-typed-buffer.html

• You can include a comment line by prefixing it with the # or $ character.

• The following table describes the fields that must be specified in the VIEW description file
for each structure.

Table 8-1 VIEW Description File Fields

Field Description

type Data type of the field. Can be set to short, long, float, double, char,
string, carray, or dec_t (packed decimal).

cname Name of the field as it appears in the information structure.

fbname Ignored.

count Number of times field occurs.

flag Specifies any of the following optional flag settings:

• N—zero-way mapping
• C—generate additional field for associated count member (ACM)
• L—hold number of bytes transferred for STRING and CARRAY

size For STRING and CARRAY buffer types, specifies the maximum length of the
value. This field is ignored for all other buffer types.

null User-specified NULL value, or minus sign (-) to indicate the default value
for a field. NULL values are used in VIEW typed buffers to indicate empty C
structure members.

The default NULL value for all numeric types is 0 (0.0 for dec_t). For
character types, the default NULL value is `\0'. For STRING and CARRAY
types, the default NULL value is " ".

Constants used, by convention, as escape characters can also be used to
specify a NULL value. The VIEW compiler recognizes the following escape
constants: \ddd (where d is an octal digit), \0, \n, \t, \v, \r, \f, \\, \', and \".

You may enclose STRING, CARRAY, and char NULL values in double or
single quotes. The VIEW compiler does not accept unescaped quotes
within a user-specified NULL value.

You can also specify the keyword NONE in the NULL field of a VIEW
member description, which means that there is no NULL value for the
member. The maximum size of default values for string and character array
members is 2660 characters.

Example VIEW Description File
The following provides an example VIEW description which uses VIEW buffers to send
information to and receive information from an Oracle Tuxedo application. The file name for
this VIEW is infoenc.

Example 8-1 Example VIEW Description

VIEW infoenc
#type cname fbname count flag size null
float amount AMOUNT 2 - - 0.0
short status STATUS 2 - - 0
int term TERM 2 - - 0
char mychar MYCHAR 2 - - -
string name NAME 1 - 16 -
carray carray1 CARRAY1 1 - 10 -
dec_t decimal DECIMAL 1 - 9 - #size ignored by viewj/viewj32
END

Chapter 8
How to Create a VIEW Description File

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

How to Use the viewj Compiler
To compile a VIEW typed buffer, run the viewj command, specifying the package name and the
name of the VIEW description file as arguments. The output file is written to the current
directory.

To use the viewj compiler, enter the following command:

java weblogic.wtc.jatmi.viewj [options] [package] viewfile

To use the viewj32 compiler, enter the following command:

java weblogic.wtc.jatmi.viewj32 [options] [package] viewfile

The arguments for this command are defined as follows:

Table 8-2 Argument

Argument Description

options • -associated_fields:

Use to set AssociatedFieldHandling to true. This allows set and get
accessor methods to use the values of the associated length and count fields if
they are specified in the VIEW description file. If not specified, the default value
for AssociatedFieldHandling is false.

• -bean_names:

Use to create set and get accessor names that follow JavaBeans naming
conventions. The first character of the field name is changed to upper case
before the set or get prefix is added. The signature of indexed set accessors
for array fields changes from the default signature of void setAfield(T
value, int index) to void setAfield(int index, T value).

• -compat_names:

Use to create set and get accessor names that are formed by taking the field
name from the VIEW description file and adding a set or get prefix. Provides
compatibility with releases prior to WebLogic Server 8.1 SP2. Default value is -
compat_names if -bean_names or -compat_names is not specified.

• -modify_strings:

Use to generate different Java code for encoding strings sent to Oracle Tuxedo
and decoding strings received from Oracle Tuxedo. Encoding code adds a null
character to the end of each string. Decoding code truncates each string at the
first null character received.

• -xcommon:

Use to generate output class as extending TypedXCommon instead of
TypedView.

• -xtype:

Use to generate output class as extending TypedXCType instead of
TypedView.

Note: -compat_names and -bean_names are mutually exclusive options.

package The package name to be included in the .java source file.

Example: examples.wtc.atmi.simpview

viewfile Name of the VIEW description file.

Example: Infoenc

For example:

Chapter 8
How to Use the viewj Compiler

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

• A VIEW buffer is compiled as follows:

java weblogic.wtc.jatmi.viewj -compat_names examples.wtc.atmi.simpview infoenc

• A VIEW32 buffer is compiled as follows:

java weblogic.wtc.jatmi.viewj32 -compat_names -modify_strings
examples.wtc.atmi.simpview infoenc

How to Pass Information to and from a VIEW Buffer
The output of the viewj and viewj32 command is a .java source file that contains set and
get accessor methods for each field in the VIEW description file. Use these set and get
accessor methods in your Java applications to pass information to and from a VIEW buffer.

The AssociatedFieldHandling flag is used to specify if the set and get methods use the
values of the associated length and count fields if they are specified in the VIEW description
file.

• set methods set the count for an array field and set the length for a string or carray field.

• Array get methods return an array that is at most the size of the associated count field.

• String and carray get methods return data that is at most the length of the associated
length field.

Use one of the following to set or get the state of the AssociatedFieldHandling flag:

• Use the -associated_fields option for the viewj and viewj32 compiler to set the
AssociatedFieldHandling flag to true.

• Invoke the void setAssociatedFieldHandling(boolean state) method in your Java
application to set the state of the AssociatedFieldHandling flag.

– If false, the set and get methods ignore the length and count fields.

– If true, the set and get methods use the values of the associated length and count
fields if they are specified in the VIEW description file.

– The default state is false.

• Invoke the boolean getAssociatedFieldHandling() method in your Java application to
return the current state of AssociatedFieldHandling.

How to Use VIEW Buffers in JATMI Applications
Use the following steps when incorporating VIEW buffers in your JATMI applications:

1. Create a VIEW description file for your application as described in How to Create a VIEW
Description File.

2. Compile the VIEW description file as described in How to Use the viewj Compiler.

3. Use the set and get accessor methods to pass information to and receive information from
a VIEW buffer as described in How to Pass Information to and from a VIEW Buffer.

See the examples/wtc/atmi/simpview/ViewClient.java file in your Oracle WebLogic
Server distribution for an example of how a client uses accessors to pass information to
and from a VIEW buffer.

Please note that for this release, WTC samples are available on the BEA dev2dev website
in the Code Library.

Chapter 8
How to Pass Information to and from a VIEW Buffer

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

4. Import the output of the VIEW compiler into your source code.

5. If necessary, compile the VIEW description file for your Oracle Tuxedo application and
include the output in your C source file as described in Using a VIEW Typed Buffer in
Programming a Tuxedo ATMI Application Using C at https://docs.oracle.com/en/
database/oracle/tuxedo/22/otxac/managing-typed-buffers1.html.

6. Configure a WTCServer MBean with a Resources Mbean that specifies the VIEW buffer
type (VIEW or VIEW32) and the fully qualified class name of the compiled Java VIEW
description file. The class of the compiled Java VIEW description file should be in your
CLASSPATH.

7. Build and launch your Oracle Tuxedo application.

8. Build and launch your Oracle WebLogic Server Application.

How to Get VIEW32 Data In and Out of FML32 Buffers
A helper class is available to add and get VIEW32 data in and out of an FML32 buffer. The
class name is wtc.jatmi.FViewFld. This class assists programmers in developing JATMI-
based applications that use VIEW32 field type for FML32 buffers.

No change to configuration is required. You still configure the VIEW32 class path using the
ViewTbl32Classes attribute in the WTCResources section of the WLS configuration file.

The following access methods are available in this helper class.

• FViewFld(String vname, TypedView32 vdata);

• FviewFld(FviewFld to_b_clone);

• void setViewName(String vname)

• String getViewName();

• void setViewData(TypedView32 vdata)

• void TypedView32 getViewData();

Example 8-2 How to Add and Retrieve an Embedded TypedView32 buffer in a
TypedFML32 Buffer

String toConvert = new String("hello world");
TypedFML32 MyData = new TypedFML32(new MyFieldTable());
Long d1 = new Long(1234);
Float d2 = new Float(12.32);
MyView data = new myView();
FviewFld vfld;
data.setamount((float)100.96);
data.setstatus((short)3);
vfld = new FviewFld("myView", data);

try {
 myData.Fchg(MyFieldTable.FLD0, 0, toConvert);
 myData.Fchg(MyFieldTable.FLD1, 0, 1234);
 myData.Fchg(MyFieldTable.FLD2, 0, d2);
 myData.Fchg(MyFieldTable.myview, 0, vfld);
} catch (Ferror fe) {
 log("An error occurred putting data into the FML32 buffer. The error is " + fe);
}

try {
 myRtn = myTux.tpcall("FMLVIEW", myData, 0);
} catch(TPReplyException tre) {

Chapter 8
How to Use VIEW Buffers in JATMI Applications

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

https://docs.oracle.com/en/database/oracle/tuxedo/22/otxac/managing-typed-buffers1.html
https://docs.oracle.com/en/database/oracle/tuxedo/22/otxac/managing-typed-buffers1.html

….
}
TypedFML32 myDataBack = (TypedFML32)myRtn.getReplyBuffer();
 Integer myNewLong;
 Float myNewFloat;
 myView View;
 String myNewString;

try {
 myNewString = (String)myDataBack.Fget(MyFieldTable.FLD0, 0);
 myNewLong = (Integer)myDataBack.Fget(MyFieldTable.FLD1, 0);
 myNewFloat = (Float)myDataBack.Fget(MyFieldTable.FLD2, 0);
 vfld = (FviewFld)myDataBack.Fget(MyFieldTable.myview, 0);
 view = (myView)vfld.getViewData();
} catch (Ferror fe) {
 ….
}

The following code listing is an example FML Description(MyFieldTable) related to the example
in Example 8-2.

*base 20000
#name number type flags comments
FLD0 10 string - -
FLD1 20 long - -
FLD2 30 float - -
myview 50 view32 - defined in View description file

Using the XmlViewCnv Class for XML to and From View/
View(32) Translation

Use the XmlViewCnv class to perform XML to View /View(32) or View/View(32) to XML
translation. The following code listing is an example that uses the XmlViewCnv class for
conversion to and from XML buffer formats.

import examples.wtc.atmi.simpview.infoenc; // View class import
weblogic.wtc.gwt.XmlViewCnv;
import weblogic.wtc.jatmi.TypedBuffer;

public class xml2view
{
 public static void main(String[] args) {
 String xmlDoc =
 "<VIEW32><infoenc><amount>1000.0</amount><infoenc></VIEW32>";

 infoenc convertMe = new infoenc();
 convertMe = (infoenc) XmlViewCnv.XMLToView(
 xmlDoc,
 convertMe.getClass(),
 convertMe.getSubtype());

 convertMe = (infoenc) echo.Echo(convertMe);

 result = XmlViewCnv.ViewToXML(
 (TypedBuffer) convertMe,
 convertMe.getClass(),
 true);

 System.out.println(result);

Chapter 8
Using the XmlViewCnv Class for XML to and From View/View(32) Translation

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

 }
}

Translating Nested Views
Nested views are views which contains one or more members of type struct, which are
themselves a view. This section provides an example of converting a nested view to XML.

The following is a nested view file:

VIEW file
VIEW MYVIEW1
#type Cname Fbname Count Flag Size null
long long1 - 1 - - 0
string string1 - 1 - 20 '\0`
END

VIEW MYVIEW2
#type Cname Fbname Count Flag Size null
long long1 - 1 - - 0
bool bool1 - 1 - - 0
signedchar schar1 - 1 - - 0
struct MYVIEW1 myview1 2 - - NONE
END

The translated XML string is:

<VIEW32>
 <MYVIEW2>
 <bool1>true</bool1>
 <long1>100</long1>
 <myview1><VIEW32><MYVIEW1>
 <string1>aa11</string1>
 <long1>100</long1>
 </MYVIEW1></VIEW32></myview1>
 <myview1><VIEW32><MYVIEW1>
 <string1>bb22</string1>
 <long1>100</long1>
 </MYVIEW1></VIEW32></myview1>
 <schar1>100</schar1>
 </MYVIEW2>
</VIEW32>

Chapter 8
Using the XmlViewCnv Class for XML to and From View/View(32) Translation

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

9
How to Create a Custom AppKey Plug-in

This chapter describes how to create custom AppKey generator plug-ins.
This chapter includes the following sections:

How to Create a Custom Plug-In

Note

You cannot customize Oracle Tuxedo AAA tokens.

1. Create your custom Java plug-in using the AppKey and UserRec interfaces. You can
provide any required initialization parameters or a property file using the param parameter
of the init method.

2. Compile your plug-in. Example:

javac exampleAppKey.java

3. Update your CLASSPATH to include the path to your compiled plug-in. Example:

export CLASSPATH=$CLASSPATH:/home/mywork

4. Start your server.

5. Configure your WTC server to use the Custom Plug-in. For more information, see the
Custom Plug-in in Administering WebLogic Tuxedo Connector for Oracle WebLogic Server.

Example Custom Plug-in
The exampleAppKey.java file is an example of a custom plug-in. It utilizes a tpusrfile file as
the database to store the AppKey.

Example 9-1 exampleAppKey.Java Custom Plug-In

import java.io.*;
import java.lang.*;
import java.util.*;
import java.security.Principal;
import weblogic.wtc.jatmi.AppKey;
import weblogic.wtc.jatmi.UserRec;
import weblogic.wtc.jatmi.DefaultUserRec;
import weblogic.wtc.jatmi.TPException;
import weblogic.security.acl.internal.AuthenticatedSubject;
import weblogic.security.WLSPrincipals;

/**
 * @author Copyright (c) 2002 by BEA Systems, Inc.
 */

/**
 * @exclude

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

https://docs.oracle.com/cd/E23003_01/html/en/cpyr.htm

 * Sample AppKey plug-in using TPUSRFILE as the database for APPKEY.
 * It is installed through "Custom" option.
 * The syntax for option custom plug parameter input contains the full
 * pathname to the <tpusrfile>
 *
 * @author BEA Systems, Inc.
 */
public class exampleAppKey implements AppKey {
 private String anon_user = null;
 private String tpusrfile = null;
 private File myfile;
 private HashMap userMap;
 private long l_time;
 private int dfltAppkey;
 private boolean allowAnon;
 private final static int USRIDX = 0;
 private final static int PWDIDX = 1;
 private final static int UIDIDX = 2;
 private final static int GIDIDX = 3;
 private final static int CLTIDX = 4;

 private final static byte[] tpsysadm_string = {
 (byte)'t', (byte)'p', (byte)'s', (byte)'y', (byte)'s',
 (byte)'a', (byte)'d', (byte)'m' };
 private final static byte[] tpsysop_string = {
 (byte)'t', (byte)'p', (byte)'s', (byte)'y', (byte)'s', (byte)'o',
 (byte)'p' };

 public void init(String param, boolean anonAllowed, int dfltAppKey)
 throws TPException {

 if (param == null) {
 System.out.println("Error: tpusrAppKey.init@param == null");
 throw new TPException(TPException.TPESYSTEM,
 "Invalid input parameter");
 }

 // get the tpusrfile name
 parseParam(param);

 myfile = new File(tpusrfile);
 if (myfile.exists() != true) {
 System.out.println("Error: exampleAppKey.init@file \"" + param
 + "\" does not exist");
 throw new TPException(TPException.TPESYSTEM,
 "Failed to find TPUSR file");
 }
 if (myfile.isFile() != true) {
 System.out.println("Error: exampleAppKey.init@the specified name \"" +
 param + "\" is not a file");
 throw new TPException(TPException.TPESYSTEM,
 "Invalid TPUSR file");
 }
 if (myfile.canRead() != true) {
 System.out.println("Error: exampleAppKey.init@file \"" + param +
 "\" is not readable");
 throw new TPException(TPException.TPESYSTEM,
 "Bad TPUSR file permission");
 }

 userMap = new HashMap();

Chapter 9
Example Custom Plug-in

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

 // create the cache
 if (createCache(tpusrfile) == -1) {
 System.out.println("Error: exampleAppkey.init@fail to create user cache");
 throw new TPException(TPException.TPESYSTEM,
 "fail to create user cache");
 }

 l_time = myfile.lastModified();
 anon_user = weblogic.security.WLSPrincipals.getAnonymousUsername();
 allowAnon = anonAllowed;
 dfltAppkey = dfltAppKey;

 System.out.println("exampleAppKey installed!");

 return;
 }

 public void uninit() throws TPException {
 if (userMap != null) {
 userMap.clear();
 }
 return;
 }

 public UserRec getTuxedoUserRecord(AuthenticatedSubject subj) {
 Object[] obj = subj.getPrincipals().toArray();
 if (obj == null || obj.length == 0) {
 // a subject without principals is an anonymous user
 if (allowAnon) {
 return new DefaultUserRec(anon_user, dfltAppkey);
 }
 System.out.println("Error: exampleAppKey.
 getTuxedoUserRecord@return " +
 "anonymous user not allowed");
 return null;
 }

 // looping through all Principal names if necessary to get first user
 // name defined in tpuser file
 Principal user;
 String username;
 int key;
 UserRec rec;

 for (int i = 0; i < obj.length; i++) {
 user = (Principal)obj[i];
 username = user.getName();
 if (username.equals(anon_user)) {
 return new DefaultUserRec(anon_user, dfltAppkey);
 }
 if ((rec = (UserRec)userMap.get(username)) != null) {
 return rec;
 }
 }
 System.out.println("WARN: exampleAppKey.getTuxedoUserRecord@return " +
 "null UserRec");
 return null;
 }

 private int createCache(String fname) {
 FileInputStream fin;
 byte[] line;

Chapter 9
Example Custom Plug-in

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

 try {
 fin = new FileInputStream(fname);

 while ((line = readOneLine(fin)) != null) {
 DefaultUserRec newUser = parseOneLine(line);
 if (newUser != null) {
 userMap.put(newUser.getRemoteUserName(), newUser);
 }
 }
 fin.close();
 }
 catch (FileNotFoundException fnfe) {
 System.out.println("Error: exampleAppKey.createCache@reason: " + fnfe);
 return -1;
 }
 catch (SecurityException se) {
 System.out.println("Error: exampleAppKey.createCache@reason: " + se);
 return -1;
 }
 catch (IOException ioe) {
 System.out.println("Error: exampleAppKey.createCache@reason: " + ioe);
 return -1;
 }
 catch (Exception e) {
 System.out.println("Error: exampleAppKey.createCache@reason: " + e);
 return -1;
 }
 return 0;
 }

 private byte[] readOneLine(FileInputStream fh) {
 int len = 80;
 byte[] line = new byte[len];
 int inp = -1;
 int idx = 0;

 try {
 while ((inp = fh.read()) != -1) {
 if (idx == 0 && (inp == '\n' || inp == '\0')) {
 continue;
 }
 if (inp == '\n') {
 break;
 }
 if (idx == (len - 1)) {
 byte[] tmp = new byte[len + 80];
 System.arraycopy(line, 0, tmp, 0, len);
 line = tmp;
 len += 80;
 }
 line[idx] = (byte)inp;
 idx++;
 }
 }
 catch (Exception e) {
 System.out.println("Error: exampleAppKey.readOneLine@reason: " + e);
 return null;
 }

 if (inp == -1 && idx == 0) {
 return null;

Chapter 9
Example Custom Plug-in

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

 }

 byte[] tmp = new byte[idx];
 System.arraycopy(line, 0, tmp, 0, idx);

 return tmp;
 }

 private DefaultUserRec parseOneLine(byte[] line) {
 String name;
 int key = 0;
 DefaultUserRec usr;
 int firstCharacter;
 int i;
 int sidx;
 int fldlen;
 int fn;
 byte[] buid = null;
 byte[] bgid = null;
 byte[] clt = null;
 byte[] uname = null;

 firstCharacter = (int)line[0];
 if (firstCharacter == '#' || firstCharacter == '\n' ||
 firstCharacter == '!' || firstCharacter == '\0' ||
 firstCharacter == '\r') {
 return null;
 }
 fldlen = 0;
 sidx = 0;
 for (i = 0, fn = 0; i < line.length && fn <= CLTIDX; i++) {
 if (line[i] == (byte)':') {
 switch (fn) {
 case USRIDX:
 uname = new byte[fldlen];
 System.arraycopy(line, sidx, uname, 0, fldlen);
 break;
 case UIDIDX:
 buid = new byte[fldlen];
 System.arraycopy(line, sidx, buid, 0, fldlen);
 break;
 case GIDIDX:
 bgid = new byte[fldlen];
 System.arraycopy(line, sidx, bgid, 0, fldlen);
 break;
 case CLTIDX:
 if (line[sidx] == (byte)'T' &&
 line[sidx+1] == (byte)'P' &&
 line[sidx+2] == (byte)'C' &&
 line[sidx+3] == (byte)'L' &&
 line[sidx+4] == (byte)'T' &&
 line[sidx+5] == (byte)'N' &&
 line[sidx+6] == (byte)'M' &&
 line[sidx+7] == (byte)',') {
 sidx += 8;
 fldlen -= 8;
 }
 if (fldlen > 0) {
 clt = new byte[fldlen];
 System.arraycopy(line, sidx, clt, 0, fldlen);
 }
 break;

Chapter 9
Example Custom Plug-in

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

 default:
 break;
 } // end of switch
 fn++;
 fldlen = 0;
 sidx = i + 1;
 } // end of if
 else {
 fldlen++;
 }
 }

 // try to tolerate incomplete line
 if (fn <= CLTIDX && fldlen > 0) {
 switch (fn) {
 case USRIDX:
 uname = new byte[fldlen];
 System.arraycopy(line, sidx, uname, 0, fldlen);
 break;
 case UIDIDX:
 buid = new byte[fldlen];
 System.arraycopy(line, sidx, buid, 0, fldlen);
 break;
 case GIDIDX:
 bgid = new byte[fldlen];
 System.arraycopy(line, sidx, bgid, 0, fldlen);
 break;
 case CLTIDX:
 if (line[sidx] == (byte)'T' &&
 line[sidx+1] == (byte)'P' &&
 line[sidx+2] == (byte)'C' &&
 line[sidx+3] == (byte)'L' &&
 line[sidx+4] == (byte)'T' &&
 line[sidx+5] == (byte)'N' &&
 line[sidx+6] == (byte)'M' &&
 line[sidx+7] == (byte)',') {
 sidx += 8;
 fldlen -= 8;
 }
 clt = new byte[fldlen];
 System.arraycopy(line, sidx, clt, 0, fldlen);
 break;
 }
 }

 if (uname == null || buid == null || bgid == null) {
 return null;
 }

 name = new String(uname);
 if (clt != null) {
 if (Arrays.equals(tpsysadm_string, clt) == true) {
 key = TPSYSADM_KEY;
 }
 else if (Arrays.equals(tpsysop_string, clt) == true) {
 key = TPSYSOP_KEY;
 }
 }

 if (key == 0) {
 Integer u_val;
 Integer g_val;

Chapter 9
Example Custom Plug-in

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

 int uid = 0;
 int gid = 0;

 try {
 u_val = new Integer(new String(buid));
 g_val = new Integer(new String(bgid));
 uid = u_val.intValue();
 gid = g_val.intValue();
 uid &= UIDMASK;
 gid &= GIDMASK;
 key = uid | (gid << GIDSHIFT);
 }
 catch (NumberFormatException nfe) {
 System.out.println("Error: exampleAppKey.readOneLine@reason: " + nfe);
 return null;
 }
 }

 return new DefaultUserRec(name, key);
 }

 private void parseParam(String param) {
 String str;

 // trim the input
 tpusrfile = param.trim();

 return;
 }
}

Chapter 9
Example Custom Plug-in

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

10
Application Error Management

This chapter describes mechanisms used to manage and interpret error conditions in your
applications that occur when using Oracle WebLogic Tuxedo Connector.
This chapter includes the following sections:

Testing for Application Errors

Note

To view an example that demonstrates how to test for error conditions, see Example
Transaction Code.

Your application logic should test for error conditions after the calls that have return values and
take suitable steps based on those conditions. In the event that a function returned a value,
you may invoke a functions that tests for specific values and performs the appropriate
application logic for each condition.

Exception Classes
The Oracle WebLogic Tuxedo Connector throws the following exception classes:

• Ferror: Exception thrown for errors occurring while manipulating FML.

• TPException: Exception thrown that represents a TPException failure.

• TPReplyException: Exception thrown that represents a TPException failure when user
data is associated with the exception thrown.

Fatal Transaction Errors
In managing transactions, it is important to understand which errors prove fatal to transactions.
When these errors are encountered, transactions should be explicitly aborted on the
application level by having the initiator of the transaction call commit(). Transactions fail for the
following reasons:

• The initiator or participant of the transaction caused it to be marked for rollback.

• The transaction timed out.

• A commit() was called by a participant rather than by the originator of a transaction.

Oracle WebLogic Tuxedo Connector Time-Out Conditions
There are two types of time-out which can occur when using the Oracle WebLogic Tuxedo
Connector:

• Blocking time-out.

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

• Transaction time-out.

Blocking vs. Transaction Time-out
Blocking time-out is exceeding the amount of time a call can wait for a blocking condition to
clear up. Transaction time-out occurs when a transaction takes longer than the amount of
timed defined for it in setTransactionTimeout(). By default, if a process is not in transaction
mode, blocking time-outs are performed. When the flags parameter of a a communication call
is set to TPNOTIME, it applies to blocking time-outs only. If a process is in transaction mode,
blocking time-out and the TPNOTIME flag are not relevant. The process is sensitive to
transaction time-out only as it has been defined for it when the transaction was started. The
implications of the two different types of time-out follow:

• If a process is not in transaction mode and a blocking time-out occurs on an asynchronous
call, the communication call that blocked will fail, but the call descriptor is still valid and
may be used on a re-issue call. Further communication in general is unaffected.

• In the case of transaction time-out, the call descriptor to an asynchronous transaction reply
(done without the TPNOTRAN flag) becomes stale and may no longer be referenced. The
only further communication allowed is the one case described earlier of no reply, no
blocking, and no transaction.

Effect on commit()
The state of a transaction if time-out occurs after the call to commit() is undetermined. If the
transaction timed out and the system knows that it was aborted, setRollbackOnly() or
rollback() returns with an error.

If the state of the transaction is in doubt, you must query the resource to determine if any of the
changes that were part of that transaction have been applied to it in order to discover whether
the transaction committed or aborted.

Effect of TPNOTRAN

Note

A transaction can time-out while waiting for a reply that is due from a service that is
not part of that transaction.

When a process is in transaction and makes a communications call with flags set to TPNOTRAN,
it prohibits the called service from becoming a participant of that transaction. The success or
failure of the service does not influence the outcome of that transaction.

Guidelines for Tracking Application Events
You can track the execution of your applications by using System.out.println() to write
messages to the Oracle WebLogic Server trace log. Create a log() method that takes a
variable of type String and use the variable name as the argument to the call, or include the
message as a literal within quotation marks as the argument to the call. In the following
example, a series of messages are used to track the progress of a tpcall().

Chapter 10
Guidelines for Tracking Application Events

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

Example 10-1 Example Event Logging

.

.

.
log("About to call tpcall");
try {
myRtn = myTux.tpcall("TOUPPER", myData, 0);
}
catch (TPReplyException tre) {
log("tpcall threw TPReplyExcption " + tre);
throw tre;
}
catch (TPException te) {
log("tpcall threw TPException " + te);
throw te;
}
catch (Exception ee) {
log("tpcall threw exception: " + ee);
throw new TPException(TPException.TPESYSTEM, "Exception: " + ee);
}
log("tpcall successfull!");
.
.
.
private static void
log(String s)
{System.out.println(s);}
.
.
.

Chapter 10
Guidelines for Tracking Application Events

Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server
G31981-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Conventions

	1 Introduction to Oracle WebLogic Tuxedo Connector Programming
	Developing Oracle WebLogic Tuxedo Connector Applications
	Developing Oracle WebLogic Tuxedo Connector Clients
	Developing Oracle WebLogic Tuxedo Connector Servers
	Oracle WebLogic Tuxedo Connector Interoperability with Oracle Tuxedo CORBA objects

	Oracle WebLogic Tuxedo Connector JATMI Primitives
	Oracle WebLogic Tuxedo Connector TypedBuffers
	New and Changed WTC Features for this Release

	2 Developing Oracle WebLogic Tuxedo Connector Client EJBs
	Joining and Leaving Applications
	Joining an Application
	Leaving an Application

	Basic Client Operation
	Get an Oracle Tuxedo Object
	Perform Message Buffering
	Send and Receive Messages
	Request/Response Communication
	Using Synchronous Service Calls
	Using Deferred Synchronous Service Calls
	Using Asynchronous Calls

	Conversational Communication
	Enqueuing and Dequeuing Messages

	Close a Connection to an Oracle Tuxedo Object

	Example Client EJB

	3 Developing Oracle WebLogic Tuxedo Connector Service EJBs
	Basic Service EJB Operation
	Access Service Information
	Buffer Messages
	Perform the Requested Service
	Return Client Messages for Request/Response Communication
	Use tpsend and tprecv for Conversational Communication

	Example Service EJB

	4 Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA Interoperability
	How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java API
	Using CosNaming Service
	Example ToupperCorbaBean.java Code

	Using FactoryFinder
	WLEC to Oracle WebLogic Tuxedo Connector Migration
	Example Code

	How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector
	How to Modify Inbound RMI/IIOP Applications to use the Oracle WebLogic Tuxedo Connector
	How to Develop Outbound RMI/IIOP Applications to use the Oracle WebLogic Tuxedo Connector
	How to Modify the ejb-jar.xml File to Pass a FederationURL to EJBs
	Assign env-entry-name
	Assign env-entry-type
	Assign env-entry-value

	How to Modify EJBs to Use FederationURL to Access an Object

	How to Use FederationURL Formats
	Using corbaloc URL Format
	Examples of corbaloc:tgiop
	Examples using -ORBInitRef
	Examples Using -ORBDefaultInitRef

	Using the corbaname URL Format
	Examples Using -ORBInitRef

	How to Manage Transactions for Oracle Tuxedo CORBA Applications

	5 Oracle WebLogic Tuxedo Connector JATMI Transactions
	Global Transactions
	Jakarta Transaction API
	Types of JTA Interfaces
	Transaction
	TransactionManager
	UserTransaction

	JTA Transaction Primitives

	Defining a Transaction
	Starting a Transaction
	Using TPNOTRAN

	Terminating a Transaction

	Oracle WebLogic Tuxedo Connector Transaction Rules
	Example Transaction Code

	6 Oracle WebLogic Tuxedo Connector JATMI Conversations
	Overview of Oracle WebLogic Tuxedo Connector Conversational Communication
	Oracle WebLogic Tuxedo Connector Conversation Characteristics
	Oracle WebLogic Tuxedo Connector JATMI Conversation Primitives
	Creating Oracle WebLogic Tuxedo Connector Conversational Clients and Servers
	Creating Conversational Clients
	Establishing a Connection to an Oracle Tuxedo Conversational Service
	Example TuxedoConversationBean.java Code

	Creating Oracle WebLogic Tuxedo Connector Conversational Servers

	Sending and Receiving Messages
	Sending Messages
	Receiving Messages

	Ending a Conversation
	Oracle Tuxedo Application Originates Conversation
	Oracle WebLogic Tuxedo Connector Application Originates Conversation
	Ending Hierarchical Conversations

	Executing a Disorderly Disconnect
	Understanding Conversational Communication Events
	Oracle WebLogic Tuxedo Connector Conversation Guidelines

	7 Using FML with Oracle WebLogic Tuxedo Connector
	Overview of FML
	The Oracle WebLogic Tuxedo Connector FML API
	FML Field Table Administration
	Using the DynRdHdr Property for mkfldclass32 Class

	Using TypedFML32 Constructors
	Gaining TypedFML32 Performance Improvements

	tBridge XML/FML32 Translation
	FLAT
	NO
	FML32 Considerations

	Using the XmlFmlCnv Class for XML to and From FML/FML32 Translation
	Limitations of XmlFmlCnv Class

	MBSTRING Usage
	Sending MBSTRING Data to an Oracle Tuxedo Domain
	Receiving MBSTRING Data from an Oracle Tuxedo Domain
	Using FML with Oracle WebLogic Tuxedo Connector

	8 Oracle WebLogic Tuxedo Connector JATMI VIEWs
	Overview of Oracle WebLogic Tuxedo Connector VIEW Buffers
	How to Create a VIEW Description File
	Example VIEW Description File

	How to Use the viewj Compiler
	How to Pass Information to and from a VIEW Buffer
	How to Use VIEW Buffers in JATMI Applications
	How to Get VIEW32 Data In and Out of FML32 Buffers

	Using the XmlViewCnv Class for XML to and From View/View(32) Translation
	Translating Nested Views

	9 How to Create a Custom AppKey Plug-in
	How to Create a Custom Plug-In
	Example Custom Plug-in

	10 Application Error Management
	Testing for Application Errors
	Exception Classes
	Fatal Transaction Errors

	Oracle WebLogic Tuxedo Connector Time-Out Conditions
	Blocking vs. Transaction Time-out
	Effect on commit()
	Effect of TPNOTRAN

	Guidelines for Tracking Application Events

