Oracle® Fusion Middleware
Developing XML Applications for Oracle
WebLogic Server

15.1.1.0.0
(G31686-01
October 2025

ORACLE"

Oracle Fusion Middleware Developing XML Applications for Oracle WebLogic Server, 15.1.1.0.0
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience i
Documentation Accessibility i
Diversity and Inclusion i
Related Documentation ii
Conventions ii

1 Introduction

Samples for the XML Developer

XML Examples in the WebLogic Server Distribution
Summary of WebLogic Server XML Features

XML Document Parsers

XML Document Transformer

Streaming API for XML (StAX) Implementation

WebLogic XPath API

JAXP Pluggability Layer Implementation

WebLogic Servlet Attributes

XML Registry For Configuring Parsers and Transformers

XML Registry for Configuring External Entity Resolution
Endorsed Standards Override Mechanism for DOM/SAX: Not Supported
Learning More About XML

W W W NN DNDNMNDNPFP P P PP

2 XML Overview

What Is XML?
How Do You Describe an XML Document?
Why Use XML?
What Are XSL and XSLT?
What Are DOM and SAX?
SAX
DOM
What Is the Streaming API for XML (StAX)?
What Is JAXP?

a b~ b DO W WLWODNPR

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of v

JAXP Packages
New Feature of JAXP 1.4.4
Common Uses of XML and XSLT
Using XML and XSLT to Separate Content from Presentation

N O OO o O

XML as a Message Format for Business-to-Business Communication

3 Developing XML Applications with WebLogic Server

Developing XML Applications: Main Steps
Parsing XML Documents
Parsing XML Documents Using JAXP in SAX Mode
Parsing XML Documents Using JAXP in DOM Mode
Parsing XML Documents in a Servlet
Using the org.xml.sax.DefaultHandler Attribute to Parse a Document
Using the org.w3c.dom.Document Attribute to Parse a Document
Validating and Non-Validating Parsers
Handling Entity Resolution While Parsing an XML Document
General Information About External Entities
Using the WebLogic Server Entity Resolution Features
Using Parsers Other Than the Default
Generating New XML Documents
Generating XML from a DOM Document Tree
Generating XML Documents in a JSP
Transforming XML Documents
Using JAXP to Transform XML Data
Example of Transforming an XML Document Using JAXP
Using the JSP Tag to Transform XML Data
XSLT JSP Tag Syntax
XSLT JSP Tag Usage
Example of Using the XSLT JSP Tag in a JSP
Using Transformers Other Than the Default Transformer

© © 00 0 0 N N OO o o 01 o 01 A W W INDNPFP PP

=
N N O

4 Using the Streaming API for XML (StAX)

Overview of the Streaming API for XML
Description of the Cursor API
The XMLStreamReader Interface
The XMLStreamWriter Interface
Description of the Event Iterator API
Main Interfaces and Classes of StAX
Parsing XML With the XMLStreamReader Interface: Typical Steps
Example of Parsing XML Using StAX

a B W NN PP PP P

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page ii of v

Getting the XMLStreamReader Object 8

Determining the Specific XML Event Type 8
Getting the Full Name of an Element 10
Getting the Attributes of an Element 11
Getting the Namespaces of an Element 12
Getting Text Data 13
Getting Location Information 13
Closing the Input Stream 14
Generating XML Using the XMLStreamWriter Interface: Typical Steps 14
Example of Generating XML Using StAX 14
Getting the XMLStreamWriter Object 16
Adding the XML Declaration to the Output Stream 16
Adding Standard XML Events to the Output Stream 17
Adding Attributes and Namespace Declarations to a Start Element 17
Closing the Output Stream 18
Properties Defined for the XMLInputFactory Interface 18
Properties Defined for the XMLOutputFactory Interface 19

5 Using Advanced XML APIs

Using the WebLogic XPath API
Using the DOMXPath Class
Example of Using the DOMXPath Class
Main Steps When Using the DOMXPath Class
Using the StreamXPath Class
Example of Using the StreamXPath Class
Main Steps When Using the StreamXPath Class

o A b W PP

6 XML Programming Best Practices

When to Use the DOM, SAX, and StAX APIs

Increasing Performance of XML Validation

When to Use XML Schemas or DTDs

Configuring External Entity Resolution for Maximum Performance
Using SAX InputSources

N N NN PP

Improving Performance of Transformations

7 XML Programming Techniques

Transmitting XML Data Between A Jakarta Client and WebLogic Server
Handling XML Documents in a JMS Application

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page iii of v

Accessing External Entities That Do Not Have an HTTP Interface 3

8 XML Application Scoping

Overview of Application Scoping
The weblogic-application.xml File
xml
parser-factory
saxparser-factory
document-builder-factory
transformer-factory
schema-factory
xpath-factory
xml-input-factory
xml-output-factory
xml-event-factory
entity-mapping
entity-mapping-name
public-id
system-id
entity-uri
when-to-cache
cache-timeout-interval
Configuring a Parser or Transformer for an Enterprise Application
Configuring an External Entity for an Enterprise Application

~ o o oo oo dN~NDNDBDAEDBDMAMAMDBPMEARMDRANEWWWR PR

Configuring the External Entity Cache for an Enterprise Application

9] Administering WebLogic Server XML

Overview of Administering WebLogic Server XML
XML Administration Tasks
How the XML Registry Works
Parser Selection Within the XML Registry
XML Parser and Transformer Configuration Tasks
Configuring a Parser or Transformer Other Than the Default
Configuring a Parser for a Particular Document Type
External Entity Configuration Tasks
Configuring External Entity Resolution

A W W W WDNDNPRFP PP

Configuring the External Entity Cache

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page iv of v

A XML Reference

XML APIs A-1
Code Examples A-1
Related WebLogic Server Documentation A-1
Tutorials and Online Courses A-1
Other XML Specifications and Information A-2
B Using the WebLogic XML Streaming API (Deprecated)
Overview of the WebLogic XML Streaming API B-1
Javadocs for the WebLogic XML Streaming API B-2
Parsing an XML Document: Typical Steps B-2
Example of Parsing an XML Document B-3
Getting an XML Input Stream B-5
Getting a Buffered XML Input Stream B-5
Filtering the XML Stream B-6
Creating a Custom Filter B-6
Iterating Over the Stream B-7
Determining the Specific XMLEvent Type B-7
Getting the Attributes of an Element B-10
Positioning the Stream B-11
Getting a Substream B-11
Marking and Resetting a Buffered XML Input Stream B-12
Closing the Input Stream B-13
Generating a New XML Document: Typical Steps B-13
Example of Generating an XML Document B-13
Creating an XML Output Stream B-16
Adding Elements to the Output Stream B-16
Adding Attributes to an Element on the Output Stream B-17
Adding an Input Stream to an Output Stream B-17
Printing an Output Stream B-18
Closing the Output Stream B-18

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page v of v

ORACLE’

Preface

Audience

This document is a resource for software developers who design and develop applications that
include XML processing.

The topics in this document are relevant during the design and development phases of a
software project. The document also includes topics that are useful in solving application
problems that are discovered during test and pre-production phases of a project.

Although this document does include administration and monitoring information useful to
developers who want to test their applications in a development environment, the document
does not address production-phase administration, monitoring, or performance tuning topics
XML topics. For links to WebLogic Server® documentation and resources for these topics, see
Related Documentation.

It is assumed that the reader is familiar with Web technologies, XML, XSLT, the Java
programming language, and the Servlet and JSP APIs of the Jakarta EE specification. This
document emphasizes the value-added features provided by WebLogic Server XML and key
information about how to use WebLogic Server features and facilities to get an application that
performs XML processing up and running.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE
Preface

Related Documentation

This document contains XML-specific design and development information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

* Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic
Server components (such as Web applications and EJBs) and applications.

* Developing JAX-WS Web Services for Oracle WebLogic Server is a guide to developing
Web Services that are deployed and run on WebLogic Server.

* Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications.

For related information about XML outside the scope of this document, see links listed in
Learning More About XML and XML Reference.

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page ii of ii

Introduction

This chapter provides summary of WebLogic Server XML features and provides variety of code
samples for XML developers.

Samples for the XML Developer

In addition to this document, Oracle provides a variety of code samples for XML developers.
The examples and tutorials illustrate WebLogic Server XML in action, and provide practical
instructions on how to perform key XML development tasks.

Oracle recommends that you run some or all of the XML examples before programming your
own application that processes XML.

XML Examples in the WebLogic Server Distribution

WebLogic Server optionally installs APl code examples in the

ORACLE_HOVE\ wl server\ sanpl es\ server directory, where ORACLE_HOVE represents the
directory in which you installed WebLogic Server. For more information about the WebLogic
Server code examples, see Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

Summary of WebLogic Server XML Features

WebLogic Server consolidates XML technologies applicable to WebLogic Server and XML
applications based on WebLogic Server. The WebLogic Server XML subsystem allows
customers to use standard parsers, the WebLogic FastParser, XSLT transformers, and DTDs
and XML Schemas to process and convert XML files.

The following topics, which describe the features included in the WebLogic Server XML
subsystem, are presented in this section:

XML Document Parsers

WebLogic Server uses, by default, the XML parser that is included in the JDK.

You can also use any other XML parser of your choice by using the WebLogic Remote
Console to configure it in the XML Registry. You can configure a single instance of WebLogic
Server to use one parser for a particular application and use another parser for a different
application.

For information about parsing XML documents, see Parsing XML Documents.

XML Document Transformer

WebLogic Server uses, by default, the XML transformer that is included in the JDK.

You can also use any other XML transformer of your choice by using the WebLogic Remote
Console to configure it in the XML Registry. You can configure a single instance of WebLogic

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 3

ORACLE’

Chapter 1
Summary of WebLogic Server XML Features

Server to use one transformer for a particular application and use another transformer for a
different application.

For more information about transforming XML documents, see Transforming XML Documents.

Streaming API for XML (StAX) Implementation

WebLogic Server includes an implementation of the Streaming API for XML (StAX).
See Using the Streaming API for XML (StAX).

WebLogic XPath API

The WebLogic XPath API contains all of the classes required to perform XPath matching
against a document represented as a DOM an XM.| nput St r eam or an XM_Cut put St r eam

See Using the WebLogic XPath API.

JAXP Pluggability Layer Implementation

Java API for XML Processing (JAXP) 1.2 is a Java-standard, parser-independent API for XML.
For more information on JAXP, see What Is JAXP?.

@ Note

WebLogic Server uses the XML Registry, accessed through the WebLogic Remote
Console, to plug in parsers and transformers. This is different from the JAXP 1.2
specification which specifies the use of system properties to plug in parsers and
transformers.

WebLogic Servlet Attributes

WebLogic Server supports the following special Servlet attributes:
e org.xm.sax. Handl er Base

e org.xm .sax. hel pers. Def aul t Handl er

e org.w3c.dom Docunent

Calling the set Att ri but e (for SAX parsing) and get Att ri but e (for DOM parsing) methods on
a Servl et Request object with the preceding attributes will parse any given XML document.

See Parsing XML Documents in a Servlet.

XML Registry For Configuring Parsers and Transformers

The XML Registry simplifies administration and configuration tasks by separating these tasks
from the XML application. Use the WebLogic Remote Console to configure the parsers and
transformers for an instance of WebLogic Server.

See XML Parser and Transformer Configuration Tasks.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 3

ORACLE Chapter 1
Endorsed Standards Override Mechanism for DOM/SAX: Not Supported

XML Registry for Configuring External Entity Resolution

WebLogic XML supports external entity resolution through the XML Registry. See External
Entity Configuration Tasks.

Endorsed Standards Override Mechanism for DOM/SAX: Not
Supported

WebLogic Server does not support switching the server's DOM and SAX interfaces using the
endorsed standards override mechanism.

An endorsed standard is a Java API defined through a standards process other than the Java
Community Process (JCP). See Endorsed Standards Override Mechanism at https://
docs.oracle.com/en/javal/javase/17/docs/api/java.xml/javax/xml/transform/stax/StAXSource.html.

Learning More About XML

To learn more about XML, see the following online courses and tutorials. XML Reference,
provides links to additional information.

e A Technical Introduction to XML, available at htt p: // www. xm . conmd pub/ a/ 98/ 10/
ui de0. ht ni

XML, Java, and the Future of the Web, available at ht t p: // ww. xml . coml pub/ a/ w3j /
$3. bosak. htm

e Chapter 17 of The XML Bible: XSL Transformations, available at ht t p: / /
met al ab. unc. edu/ xm / books/ bi bl e/ updat es/ 14. ht n

e XSLT Tutorial by Miloslav Nic, available at ht t p: // zvon. or g/ xxI / XSLTut ori al / Qut put /
i ndex. ht m

* SAX 2.0: The Simple API for XML, available at ht t p: / / ww. saxpr oj ect . or g/

e Document Object Model (DOM), available at ht t p: / / www. w3. or g/ DOV

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 3

https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/transform/stax/StAXSource.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/transform/stax/StAXSource.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/transform/stax/StAXSource.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/transform/stax/StAXSource.html
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/a/w3j/s3.bosak.html
http://www.xml.com/pub/a/w3j/s3.bosak.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://zvon.org/xxl/XSLTutorial/Output/index.html
http://zvon.org/xxl/XSLTutorial/Output/index.html
http://www.saxproject.org/
http://www.w3.org/DOM/

XML Overview

This chapter describes Extensible Markup Language (XML) technology and the WebLogic
Server XML subsystem.
This chapter includes the following sections:

What Is XML?

Extensible Markup Language (XML) is a markup language used to describe the content and
structure of data in a document. It is a simplified version of Standard Generalized Markup
Language (SGML). XML is an industry standard for delivering content on the Internet. Because
it provides a facility to define new tags, XML is also extensible.

Like HTML, XML uses tags to describe content. However, rather than focusing on the
presentation of content, the tags in XML describe the meaning and hierarchical structure of
data. This functionality allows for the sophisticated data types that are required for efficient
data interchange between different programs and systems. Further, because XML enables
separation of content and presentation, the content, or data, is portable across heterogeneous
systems.

The XML syntax uses matching start and end tags (such as <nanme> and </ name>) to mark up
information. Information delimited by tags is called an element. Every XML document has a
single root element, which is the top-level element that contains all the other elements.
Elements that are contained by other elements are often referred to as sub-elements. An
element can optionally have attributes, structured as name-value pairs, that are part of the
element and are used to further define it.

The following sample XML file describes the contents of an address book:

<?xm version="1.0"?>

<addr ess_book>
<person gender="f">
<nanme>Jane Doe</ nane>
<addr ess>
<street>123 Main St.</street>
<city>San Franci sco</city>
<st at e>CA</ st at e>
<zi p>94117</ zi p>
</ addr ess>
<phone area_code=415>555-1212</ phone>
</ per son>
<person gender="ni>
<nanme>John Smit h</ nane>
<phone area_code=510>555-1234</ phone>
<emai | >j ohnsmi t h@onewher e. conx/ emai | >
</ per son>
</ addr ess_book>

The root element of the XML file is addr ess_book. The address book currently contains two
entries in the form of per son elements: Jane Doe and John Smith. Jane Doe's entry includes
her address and phone number; John Smith's includes his phone and email address. Note that
the structure of the XML document defines the phone element as storing the area code using

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE Chapter 2
How Do You Describe an XML Document?

the ar ea_code attribute rather than a sub-element in the body of the element. Also note that not
all sub-elements are required for the per son element.

How Do You Describe an XML Document?

There are two ways to describe an XML document: XML Schemas and DTDs.

XML Schemas define the basic requirements for the structure of a particular XML document. A
Schema describes the elements and attributes that are valid in an XML document, and the
contexts in which they are valid. In other words, a Schema specifies which tags are allowed
within certain other tags, and which tags and attributes are optional. Schemas are themselves
XML files.

The schema specification is a product of the World Wide Web Consortium (W3C). For detailed
information on XML schemas, see htt p: // www. w3. or g/ TR/ xnl schenma- 0/ .

The following example shows a schema that describes the preceding address book sample
XML document:

<xsd: schema xm ns: xsd="http://ww. w3. or g/ 1999/ XM_Schena" >

<xsd: conpl exType name="personType">

<xsd: el enent name="name" type="xsd:string"/>
<xsd: el enent name="address" type="addressType"/>
<xsd: el enent name="phone" type="phoneType"/ >
<xsd: el enent name="emai | " type="xsd:string"/>

<xsd:attribute name="gender" type="xsd:string"/>
</ xsd: conpl exType>

<xsd: conpl exType name="addressType">
<xsd: el enent name="street" type="xsd:string"/>

<xsd: el enent name="city" type="xsd: string"/>
<xsd: el enent name="state" type="xsd:string"/>
<xsd: el enent name="zi p" type="xsd: string"/>

</ xsd: conpl exType>

<xsd: si npl eType name="phoneType" >

<xsd:restriction base="xsd:string"/>

<xsd:attribute name="area_code" type="xsd:string"/>
</ xsd: si npl eType>

</ xsd: schema>

You can also describe XML documents using Document Type Definition (DTD) files, a
technology older than XML Schemas. DTDs are not XML files.

The following example shows a DTD that describes the preceding address book sample XML
document:

<! DOCTYPE address_bhook [

<l ELEMENT person (name, address?, phone?, enail?)>
<! ELEMENT nane (#PCDATA) >

< ELEMENT address (street, city, state, zip)>
< ELEMENT phone (#PCDATA) >

<! ELEMENT emai | (#PCDATA) >

< ELEMENT street (#PCDATA)>

<! ELEMENT city (#PCDATA) >

<! ELEMENT state (#PCDATA)>

<! ELEMENT zip (#PCDATA)>

<I ATTLI ST person gender CDATA #REQUI RED>

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 7

http://www.w3.org/TR/xmlschema-0/

ORACLE

Chapter 2
Why Use XML?

<l ATTLI ST phone area_code CDATA #REQUI RED>
1>

An XML document can include a Schema or DTD as part of the document itself, reference an
external Schema or DTD, or not include or reference a Schema or DTD at all. The following
excerpt from an XML document shows how to reference an external DTD called addr ess. dt d:

<?xm version=1.0?>
<! DOCTYPE address_book SYSTEM "address. dtd">
<addr ess_book>

XML documents only need to be accompanied by Schema or DTD if they need to be validated
by a parser or if they contain complex types. An XML document is considered valid if 1) it has
an associated Schema or DTD, and 2) it complies with the constraints expressed in the
associated Schema or DTD. If, however, an XML document only needs to be well-formed, then
the document does not have to be accompanied by a Schema or DTD. A document is
considered well-formed if it follows all the rules in the W3C Recommendation for XML 1.0. For
the full XML 1.0 specification, see ht t p: / / www. w3. or g/ XM./ .

Why Use XML?

What Are

What Are

An industry typically uses data exchange methods that are meaningful and specific to that
industry. With the advent of e-commerce, businesses conduct an increasing number of
relationships with a variety of industries and, therefore, must develop expert knowledge of the
various protocols used by those industries for electronic communication.

The extensibility of XML makes it a very effective tool for standardizing the format of data
interchange among various industries. For example, when message brokers and workflow
engines must coordinate transactions among multiple industries or departments within an
enterprise, they can use XML to combine data from disparate sources into a format that is
understandable by all parties.

XSL and XSLT?

The Extensible Stylesheet Language (XSL) is a W3C standard for describing presentation
rules that apply to XML documents. XSL includes both a transformation language, (XSLT), and
a formatting language. These two languages function independently of each other. XSLT is an
XML-based language and W3C specification that describes how to transform an XML
document into another XML document, or into HTML, PDF, or some other document format.

An XSLT transformer accepts as input an XML document and an XSLT document. The
template rules contained in an XSLT document include patterns that specify the XML tree to
which the rule applies. The XSLT transformer scans the XML document for patterns that match
the rule, and then it applies the template to the appropriate section of the original XML
document.

DOM and SAX?

DOM and SAX are two standard Java application programming interfaces (APIs) for parsing
XML data. Both are supported by the WebLogic Server default parser. The two APIs differ in
their approach to parsing, with each API having its strengths and weaknesses.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 7

http://www.w3.org/XML/

ORACLE

SAX

DOM

Chapter 2
What Is the Streaming API for XML (StAX)?

SAX stands for the Simple API for XML. It is a platform-independent language neutral standard
interface for event-based XML parsing. SAX defines events that can occur as a parser is
reading through an XML document, such as the start or the end of an element. Programmers
provide handlers to deal with different events as the document is parsed.

Programmers that use the SAX API to parse XML documents have full control over what
happens when these events occur and can, as a result, customize the parsing process
extensively. For example, a programmer might decide to stop parsing an XML document as
soon as the parser encounters an error that indicates that the document is invalid, rather than
waiting until the entire document is parsed, thus improving performance.

The WebLogic Server default parser (the parser included in the JDK) supports SAX Version
2.0. Programmers who have created programs that use Version 1.0 of SAX to parse XML
documents should read about the changes between the two versions and update their
programs accordingly. For detailed information about the differences between the two versions,
referto http: // wwv saxproj ect.org/.

DOM stands for the Document Object Model. It is platform- and language-neutral interface that
allows programs and scripts to access and update the content, structure, and style of XML
documents dynamically. DOM reads an XML document into memory and represents it as a
tree; each node of the tree represents a particular piece of data from the original XML
document. Because the tree structure is a standard programming mechanism for representing
data, traversing and manipulating the tree using Java is relatively easy, fast, and efficient. The
main drawback, however, is that the entire XML document has to be read into memory for
DOM to create the tree, which might decrease the performance of an application as the XML
documents get larger.

The WebLogic Server default parser (the parser included in the JDK) supports DOM Level 2.0
Core. Programmers who have created programs that use Level 1.0 of DOM to parse XML
documents should read about the changes between the two versions and update their
programs accordingly. For detailed information about the differences, refer to http://

www. W3. or g/ DOM DOMIR.

What Is the Streaming API for XML (StAX)?

In addition to SAX and DOM, you can also parse and generate an XML document using the
Streaming API for XML (StAX).

StAX is Java Community Process specification that describes a bi-directional API for reading
and writing XML. StAX gives parsing control to the programmer by exposing a simple iterator-
based APl and an underlying stream of events; the API includes methods such as next () and
hasNext () that allow the programmer to ask for the next event rather than handle the event in
a callback. This gives the programmer more procedural control over the processing of the XML
document.

Unlike DOM and SAX, StAX is not yet part of the Java API for XML Processing (JAXP).

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 7

http://www.saxproject.org/
http://www.w3.org/DOM/DOMTR
http://www.w3.org/DOM/DOMTR

ORACLE

Chapter 2
What Is JAXP?

@® Note

Previous versions of WebLogic Server included a similar proprietary API called
WebLogic XML Streaming API. This APl was a basis for StAX. Although the WebLogic
XML Streaming API is still accessible in this release of WebLogic Server, its
functionality has been deprecated as of release 9.0 of WebLogic Server. Programmers
should use StAX instead.

For detailed information about using StAX, see Using the Streaming API for XML (StAX).

What Is JAXP?

The previous section discusses two APIs, SAX and DOM, that programmers can use to parse
XML data. The Java API for XML Processing (JAXP) provides a means to get to these parsers.
JAXP also defines a pluggability layer that allows programmers to use any compliant parser or
transformer.

WebLogic Server implements JAXP to facilitate XML application development and the work
required to move XML applications built on WebLogic Server to other Web application servers.
JAXP was developed to make XML applications portable; it provides basic support for parsing
and transforming XML documents through a standardized set of Jakarta platform APls. JAXP
1.2, included in the WebLogic Server distribution, is configured to use the default parser.
Therefore, by default, XML applications built using WebLogic Server use JAXP.

The WebLogic Server distribution contains the interfaces and classes needed for JAXP 1.2.
JAXP 1.2 contains explicit support for SAX Version 2 and DOM Level 2.

JAXP Packages

JAXP contains the following two packages:

e javax.xmnl.parsers
e javax.xm .transform

The j avax. xnl . par ser s package contains the classes to parse XML data in SAX Version 2.0
and DOM Level 2.0 mode. To parse an XML document in SAX mode, a programmer first
instantiates a new SaxPar ser Fact or y object with the newl nst ance() method. This method
looks up the specific implementation of the parser to load based on a well-defined list of
locations. The programmer then obtains a SaxPar ser instance from the SaxPar ser Fact ory and
executes its par se() method, passing it the XML document to be parsed. Parsing an XML
document in DOM mode is similar, except that the programmer uses the Docunent Bui | der and
Docunent Bui | der Fact ory classes instead.

For detailed information on using JAXP to parse XML documents, see Parsing XML
Documents.

The j avax. xnl . transf or mpackage contains classes to transform XML data, such as an XML
document, a DOM tree, or SAX events, into a different format. The transformer classes work
similarly to the parser classes. To transform an XML document, a programmer first instantiates
a Transf or mer Fact or y object with the newl nst ance() method. This method looks up the
specific implementation of the XSLT transformer to load based on a well-defined list of
locations. The programmer then instantiates a new Tr ansf or mer object based on a specific
XSLT style sheet and executes its t ransf or n{) method, passing it the XML object to
transform. The XML object might be an XML file, a DOM tree, and so on.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE Chapter 2
Common Uses of XML and XSLT

For detailed information on using JAXP to transform XML objects, see Using JAXP to
Transform XML Data.

New Feature of JAXP 1.4.4

W3C recommends XML Schema 1.1 (in two parts), XML Schema 1.1 Part 2: Datatypes and
XML (https://www. w3. or g/ TR/ xm schemall- 2/) and Schema 1.1 Part 1: Structures (https://
www. w3. or ¢/ TR/ xm schemall-1/).

The following code snippet shows how to set Schema validation when using a SAX parser:

try {
SAXPar ser Factory spf = SAXParser Fact ory. newl nst ance();

spf. set NamespaceAwar e(true);
spf.setValidating(true);
SAXParser sp = spf.newSAXParser();
sp.setProperty("http://java.sun.conf xm /jaxp/ properties/schemalLanguage",
"http://ww. w3. org/ 2001/ XM_Schema") ;
sp.setProperty("http://java. sun.con xm /jaxp/ properties/schemaSource",
"http://ww. exanpl e. conf Report. xsd");
Def aul t Handl er dh = new Def aul t Handl er ();
sp. parse("http://ww. wonbats. con foo. xm ", dh);
} catch(SAXException se) {
se.printStackTrace();
}

See https://docs. oracl e.com en/javaljavase/ 17/ docs/ api/j ava. xm / nodul e-
sunmary. htn .

Common Uses of XML and XSLT

How you use XML and XSLT depends on your particular business needs.

Using XML and XSLT to Separate Content from Presentation

XML and XSLT are often used in applications that support multiple client types. For example,
suppose you have a Web-based application that supports both browser-based clients and
Wireless Application Protocol (WAP) clients. These clients understand different markup
languages, HTML and Wireless Markup Language (WML), respectively, but your application
must deliver content that is appropriate for both.

To accomplish this goal, you can write your application to first produce an XML document that
represents the data it is sending to the client. Then the application can transform the XML
document that represents the data into HTML or WML, depending on the client's browser type.
Your application can determine the client browser type by examining the User - Agent request
header of an HTTP request. Once the application knows the client browser type, it uses the
appropriate XSLT style sheet to transform the document into the correct markup language. See
the SnoopServiet example included in the exanpl es/ servl et s directory of your WebLogic
Server distribution for an example of how to access this type of header information.

This method of rendering the same XML document using different markup languages in
respective client types helps concentrate the effort required to support multiple client types into
the development of the appropriate XSLT style sheets. Additionally, it allows your application to
adapt to other clients types easily, if necessary.

For additional information about XSLT, see Other XML Specifications and Information .

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 7

https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xmlschema11-1/
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/module-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/module-summary.html

ORACLE Chapter 2
Common Uses of XML and XSLT

XML as a Message Format for Business-to-Business Communication

In a business-to-business (B2B) environment, Company A and Company B want to exchange
information about e-commerce transactions in which both are involved. Company A is a major
e-commerce site. Company B is a small affiliate that sells Company A's products to a niche
group of customers. When Company B sends customers to Company A, Company B is
compensated in two ways: it receives, from Company A, both money and information about
other customers that make the same sort of purchases as those made by the customers
referred by Company B. To exchange information, Company A and Company B must agree on
a data format for information that is machine readable and that operates with systems from
both companies easily. XML is the logical data format to use in this scenario, but selecting this
format is only the first step. The companies must then agree on the format of the XML
messages to be exchanged. Because Company A has a one-to-many relationship with its
affiliates, Company A must define the format of the XML messages that will be exchanged.

To define the format of XML messages, or XML documents, Company A creates two document
type definitions (DTDs): one that describes the information that A will provide about customers
and one that describes the information that A wants to receive about a newly affiliated
company. Company B must also create two DTDs: one to process the XML documents
received from Company A and one to prepare an XML document in a format that can be
processed by Company A.

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 7

Developing XML Applications with WebLogic
Server

This chapter describes how to use the Java programming language and the WebLogic Server
XML subsystem to develop XML applications. It is assumed that you know how to use Jakarta
Servlets and Jakarta Server Pages (JSPs) to write Java applications.

This chapter includes the following sections.

For information about how to write servlet and JSP applications, see Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

Developing XML Applications: Main Steps

Programmers using the WebLogic Server XML subsystem typically perform some or all of the
following programming tasks when developing XML applications:

1. Parse an XML document.

The XML document can originate from a number of sources. For example, a programmer
might develop a servlet to receive an XML document from a client, write an EJB to receive
an XML document from a Servlet or another EJB, and so on. In each instance, the XML
document may have to be parsed so that its data can be manipulated.

See Parsing XML Documents.

2. Generate a new XML document.

After a servlet or EJB has received and parsed an XML document and possibly
manipulated the data in some way, the Servlet or EJB might need to generate a new XML
document to send back to the client or to pass on to another EJB.

See Generating New XML Documents.

3. Transform XML data into another format.

After parsing an XML document or generating a new one, the Servlet or EJB may need to
transform it into another format, such as HTML, WML, or plain text.

See Using JAXP to Transform XML Data.

Parsing XML Documents

This section describes how to parse XML documents using JAXP in both DOM and SAX mode
and how to parse XML documents from a servlet.

@ Note

For detailed instructions on using the Streaming API for XML (StAX) to parse XML
documents, see Using the Streaming API for XML (StAX).

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 12

ORACLE

Chapter 3
Parsing XML Documents

You use the WebLogic Remote Console XML Registry to configure the following:
e Per-document-type parsers, which supersede the default parser for the specified document
type.

e External entity resolution, or the process that an XML parser goes through when requested
to find an external file in the course of parsing an XML document

For information on how to use the WebLogic Remote Console for these tasks, see
Administering WebL ogic Server XML.

These topics are in the following sections:

Parsing XML Documents Using JAXP in SAX Mode

The following code example shows how to configure a SAX parser factory to create a
validating parser. The example also shows how to register the MyHandl er class with the parser.
The MyHandl er class can override any method of the Def aul t Handl er class to provide custom
behavior for SAX parsing events or errors.

inport javax.xnl.parsers. SAXParser;
inport javax.xnl.parsers. SAXParser Factory;

MyHandl er handl er = new MyHandl er ();
/1 MyHandl er extends org.xnl.sax. hel pers. Def aul t Handl er.

//Qotain an instance of SAXParserFactory.
SAXPar ser Factory spf = SAXParser Fact ory. newl nstance();
/1 Specify a validating parser.
spf.setValidating(true); // Requires |oading the DTD.
//otain an instance of a SAX parser fromthe factory.
SAXPar ser sp = spf. newSAXParser();

/| Parse the documt .

sp. parse("http://server/file.xm", handler);

@® Note

If you want to use a parser other than the default parser, you must use the WebLogic
Remote Console to specify the parser in the XML Registry; otherwise the
SaxPar ser Fact ory. new nst ance method returns the default parser.

Parsing XML Documents Using JAXP in DOM Mode

The following code example shows how to parse an XML document and create an
org. w3c. dom Docurent tree from a Docunent Bui | der object:

i mport javax.xnl . parsers. Docunent Bui | der;
i mport javax.xm . parsers. Docunent Bui | der Fact ory;

i mport org.w3c. dom Docunent;

// Cbtain an instance of Docunent Buil der Factory.
Docurnrent Bui | der Fact ory dbf =

Docunent Bui | der Fact ory. newl nst ance() ;
/] Specify a validating parser.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 12

ORACLE

Chapter 3
Parsing XML Documents

dbf.setValidating(true); // Requires loading the DID.

/1 Qbtain an instance of a DocunentBuilder fromthe factory.
Docurrent Bui | der db = dbf. newDocunent Bui | der ();

/I Parse the docunent.

Docurent doc = db. parse(inputFile);

® Note

If you want to use a parser other than the default parser, you must use the WebLogic
Remote Console to specify it; otherwise the Docunent Bui | der Fact ory. new nst ance
method returns the default parser.

Parsing XML Documents in a Servlet

Support for the set Attri but e and get Attri but e methods was added to version 2.2 of the
Jakarta Servlet Specification. Attributes are objects associated with a request. The request
object encapsulates all information from the client request. In the HTTP protocol, this
information is transmitted from the client to the server by the HTTP headers and message
body of the request.

With WebLogic Server, you can use the set Attri but e and get Att ri but e methods to parse
XML documents. Use the set Attri but e method for SAX mode parsing and the get Attri but e
method for DOM mode parsing, as described in Using the org.xml.sax.DefaultHandler Attribute
to Parse a Document and Using the org.w3c.dom.Document Attribute to Parse a Document.

Before you can use the set Attri but e and get At t ri but e methods, however, you must

configure a WebLogic Server servlet filter called webl ogi c. servl et . XM_Par si ngHel per

(deployed by default on all WebLogic Server instances) as part of your Web application.
Configure the servlet filter by adding the following elements to the web. xm deployment

descriptor, located in the VEEB- | NF directory of your Web application:

<filter>

<filter-name>XM.Par si ngHel per</filter-name>

<filter-class>webl ogic. servl et. XM.Parsi ngHel per</filter-class>
</filter>

<filter-mappi ng>
<filter-name>XM.Par si ngHel per</filter-name>
<url-pattern>/*</url-pattern>
<di spat cher >REQUEST</ di spat cher >
</filter-mapping>

For more information on servlet filters, see Filters in Developing Web Applications, Serviets,
and JSPs for Oracle WebLogic Server.

Using the org.xml.sax.DefaultHandler Attribute to Parse a Document

The following code example shows how to use the set Attri but e method:

i mport webl ogi c. servl et. XM_Pr ocessi ngExcepti on;
i mport org.xm .sax. hel pers. Def aul t Handl er;

public void doPost (HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, |CException {

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 12

ORACLE Chapter 3
Parsing XML Documents

try {
request.setAttribute("org.xm . sax. hel pers. Def aul t Handl er ",

new Defaul t Handl er ());

} catch(XM.Processi ngException xpe) {
Systemout.printin("Error in processing XM.");
xpe. printStackTrace();
return;

You can also use the or g. xm . sax. Handl er Base attribute to parse an XML document, although
it is deprecated:

request.setAttribute("org.xm .sax. Handl er Base",
new Handl er Base());

® Note

This code example shows a simple way to parse a document using SAX and the

set Attri but e method. This method of parsing a document is a WebLogic Server
convenience feature, and it is not supported by other servlet vendors. Therefore, if you
plan to run your application on other servlet platforms, do not use this feature.

Using the org.w3c.dom.Document Attribute to Parse a Document

The following code example shows how to use the get Attri but e method.

i nport org.w3c. dom Docunent;
i nport webl ogi c. servl et. XMLProcessi ngExcepti on;

public void doPost (Htt pServl et Request request,
Ht t pSer vl et Response response)
throws Servlet Exception, |OException {

try {
Docunent doc = request.get Attribute("org.w3c.dom Docunent");

} cat ch(XM.Processi ngException xpe) {
Systemout.printIn("Error in processing X\");
xpe. print StackTrace();
return;

}

@® Note

This code example shows a simple way to parse a document using DOM and the

get Attri but e method. This method of parsing a document is a WebLogic Server
convenience feature, and it is not supported by other servlet vendors. Therefore, if you
plan to run your application on other servlet platforms, do not use this feature.

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 12

ORACLE Chapter 3
Parsing XML Documents

Validating and Non-Validating Parsers

As previously discussed, a well-formed document is one that is syntactically correct according
to the rules outlined in the W3C Recommendation for XML 1.0. A valid document is one that
follows the constraints specified by its DTD or schema.

A non-validating parser verifies that a document is well-formed, but does not verify that it is
valid. To turn on validation while parsing a document (assuming you are using a validating
parser), you must:

e Setthe SAXParserFactory. set Val i dati ng() method to true, as shown in the following
example:

SAXPar ser Factory factory = SAXParser Fact ory. newl nstance();
factory. setValidating(true);

e Ensure that the XML document you are parsing includes (either in-line or by reference) a
DTD or a schema.

Handling Entity Resolution While Parsing an XML Document

This section provides general information about external entities; how they are identified and
resolved by an XML parser; and the features provided by WebLogic Server to improve the
performance of external entity resolution in your XML applications.

General Information About External Entities

External entities are chunks of text that are not literally part of an XML document, but are
referenced inside the XML document. The actual text might reside anywhere - in another file
on the same computer or even somewhere on the Web. While parsing a document, if the
parser encounters an external entity reference, it fetches the referenced chunk of text, places
the text into the XML document, then continues parsing. An example of an external entity is a
DTD; rather than including the full text of the DTD in the XML document, the XML document
has a reference to the DTD that is stored in a separate file.

There are two ways to identify an external entity: a system identifier and a public identifier.
System identifiers use URIs to reference an external entity based on its location. Public
identifiers use a publicly declared name to refer the information.

The following example shows how a public identifier is used to reference the DTD for the
appl i cation. xm file that describes a Jakarta EE application archive (*. ear file):

<! DOCTYPE application PUBLIC "-//Sun M crosystens,
Inc.//DTD J2EE Application 1.2//EN'>

The following example shows a reference to an external DTD by a system identifier only:

<! DOCTYPE appl i cation SYSTEM "http://java. sun.conlj2ee/ dtds/application_1_2.dtd">

Here is a reference that uses both the public and system identifier; note that the keyword
SYSTEM is omitted:

<I DOCTYPE appl i cation
PUBLIC "-//Sun M crosystens, Inc.//DID J2EE Application 1.2//EN'
“http://java.sun.com j2ee/dtds/application_1_2.dtd">

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 12

ORACLE

Chapter 3
Generating New XML Documents

Using the WebLogic Server Entity Resolution Features

Use the following WebLogic Server features to improve the performance of external entity
resolution in your XML applications:

Permanently store a copy of an external entity on the computer that hosts the WebLogic
Administration Server.

Specify that WebLogic Server automatically retrieve and cache an external entity that
resides in an external repository that supports an HTTP interface, such as a URL. You can
specify that WebLogic Server cache the entity either in memory or on disk and specify
when the cached entry becomes stale, at which point WebLogic Server automatically
updates the cached entry.

Using the retrieve-and-cache feature, you do not have to actually copy the external entity
to the local computer. The XML application refers to the actual external entity only at
specified time intervals, rather than each time the document is parsed, thus potentially
greatly improving the performance of your application while also keeping as up to date with
the latest external entity as desired.

You use the XML Registry to create entity resolution entries to identify where the external entry
is located (locally or at a URL) and what the caching options are for entities on the Web. You
identify the external entity entry using a system or public identifier. Then, in your XML
document, when you reference this external entity, WebLogic Server fetches the local copy or
the cached copy (whichever you have configured) when parsing the document.

For detailed information on creating external entity registries with the XML Registry, refer to
External Entity Configuration Tasks.

Using Parsers Other Than the Default

If you use JAXP to parse your XML documents, the WebLogic Server XML Registry (which is
configured through the WebLogic Remote Console) offers the following options:

Accept the default parser as the server-wide parser.

Configure another parser of your choice (such as a different version of the Apache Xerces
parser) as the server-wide parser.

Configure a parser for a particular XML document type, based on its system or public
identifier, or its root element.

Generating New XML Documents

This section describes how to generate XML documents from a DOM document tree and by
using JSP.

@® Note

For detailed instructions on using the Streaming API for XML (StAX) to generate XML
documents, see Using the Streaming API for XML (StAX).

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 12

ORACLE

Generating

Generating

Chapter 3
Generating New XML Documents

XML from a DOM Document Tree

You can use the j avax. xmi . transf orm Transf or mer class to serialize a DOM object into an
XML stream, as shown in the following example segment:

i mport javax.xnl.parsers. Docunent Bui | der;
i mport javax.xm . parsers. Docunent Bui | der Factory;

i mport org.w3c. dom Docunent;

i mport javax.xm .transform Transforner;

i mport javax.xnl.transform TransfornerFactory;
i mport javax.xnl.transform dom DOVBour ce;

i mport javax.xnl.transform stream StreanResult;

import java.io.*;

TransfornerFactory trans_factory = TransformerFactory. newl nstance();
Transforner xm _out = trans_factory. newlransformer();

Properties props = new Properties();

props. put ("method", "xm");

xm _out . set Qut put Properties(props);

xm _out . transforn{ new DOVBour ce(doc), new StreamResul t(Systemout));

In the example, the Transf ormer . t ransf or m() method does the work of converting a DOM
object into an XML stream. The transf or n{) method takes as input a

javax. xn . transform dom DOVBour ce object, created from the DOM tree stored in the doc
variable, and converts it into a j avax. xm . transf orm stream StreanResul t object and writes
the resulting XML document to the standard output.

XML Documents in a JSP

You typically use JSPs to generate HTML, but you can also use a JSP to generate an XML
document.

Using JSPs to generate XML requires that you set the content type of the JSP page as follows:

<%@ page content Type="text/xm "%
. XML docunent

The following code shows an example of how to use JSP to generate an XML document:

<?xm version="1.0">
<%@ page content Type="text/xm " inport="java.text.DateFormat,java.util.Date" %

<nessage>
<text>
Hel o Vérld.
</text>
<ti mest anp>
<%
out. print (Dat eFor mat . get Dat el nst ance() . format (new Date()));
%
</timestanp>
</ message>

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 12

ORACLE

Chapter 3
Transforming XML Documents

Transforming XML Documents

Transformation refers to converting an XML document (the source of the transformation) into
another format, typically a different XML document, HTML, Wireless Markup Language (WML)
(the result of the transformation.) This section describes how to transform XML documents
using JAXP and from within a JSP using JSP tags.

Using JAXP to Transform XML Data

Version 1.2 of JAXP provides pluggable transformation, which means that you can use any
JAXP-compliant transformer engine.

JAXP provides the following interfaces to transform XML data into a variety of formats:
e javax.xm .transform

Contains the generic APIs for transforming documents. This package does not have any
dependencies on SAX or DOM and makes the fewest possible assumptions about the
format of the source and result.

e javax.xm .transform stream

Implements stream- and URI-specific transformation APIs. In particular, it defines the
St reanSour ce and St reanResul t classes that enable you to specify | nput St reans and
URLs as the source of a transformation and Qut put St r eans and URLSs as the results,
respectively.

e javax.xm .transformdom

Implements DOM-specific transformation APIs. In particular, it defines the DOVSour ce and
DOVResul t classes that enable you to specify a DOM tree as either the source or result, or
both, of a transformation.

e javax.xm .transform sax

Implements SAX-specific transformation APIs. In particular, it defines the SAXSour ce and
SAXResul t classes that enable you to specify or g. xm . sax. Cont ent Handl er events as
either the source or result, or both, of a transformation.

Transformation encompasses many possible combinations of inputs and outputs.

Example of Transforming an XML Document Using JAXP

The following example snippet shows how to use JAXP to transform nyXM.doc. xm into a
different XML document using the myst yl esheet . xsl stylesheet:

inport javax.xnl.transform Transforner;

inport javax.xnl.transform TransfornerFactory;
inport javax.xnl.transform stream Streanfour ce;
inport javax.xm .transformstream StreanResul t;

Transformer trans;

TransfornerFactory factory = TransformerFact ory. newl nstance();
String stylesheet = "file://styl esheets/nystyl esheet.xsl";
String xm _doc = "file://xm _docs/ myXM.doc. xm ";

trans = factory. newTransforner (new StreanSource(styl esheet));
trans. transform{new StreanSource(xm _doc),
new StreanResul t (Systemout));

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 12

ORACLE Chapter 3
Transforming XML Documents

For an example of how to transform a DOM document into an XML stream, see Using JAXP to
Transform XML Data.

Using the JSP Tag to Transform XML Data

WebLogic Server provides a small JSP tag library for convenient access to an XSLT
transformer from within a JSP. You can use this tag to transform XML documents into HTML,
WML, and so on.

@® Note

This feature is deprecated in WebLogic Server 12.1.2.0 and may be removed in a
future release.

The JSP tag library consists of one main tag, x: xsl t, and two subtags you can use within the
x:xslt tag: x: styl esheet and x: xn .

@® Note

The JSP tag library is provided for convenience only; the tag library is not required to
access XSLT transformers from within a JSP.

XSLT JSP Tag Syntax

The XSLT JSP tag syntax is based on XML. A JSP tag consists of a start tag, an optional body,
and a matching end tag. The start tag includes the element name and optional attributes.

@® Note

This feature is deprecated in WebLogic Server 12.1.2.0 and may be removed in a
future release.

The following syntax describes how to use the three XSLT JSP tags provided by WebLogic
Server in a JSP. The attributes are optional, as are the subtags x: st yl esheet and x: xn . The
tables following the syntax describe the attributes of the x: xsl t and x: styl esheet tags; the
x:xnl tag does not have any attributes.

<x:xslt [xm="uri of XM file"]
[nedia="nedia type to deternine stylesheet"]
[styl esheet="uri of stylesheet"]
<x:xm >In-1ine XM. goes here
</ x:xm >
<x:styl esheet [nedia="media type to deternine stylesheet"]
[uri="uri of stylesheet"]
</ x:styl esheet >
</ x:xslt>

Table 3-1 describes the attributes of the x: xsl t tag.

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 12

ORACLE Chapter 3
Transforming XML Documents

Table 3-1 x:xslt JSP Tag Attributes

x:xslt Tag Required DataType Description
Attribute

xm No String Specifies the location of the XML file that you want to transform.
The location is relative to the document root of the Web
application in which the tag is used.

medi a No String Defines the document output type, such as HTML or WML, that
determines which stylesheet to use when transforming the XML
document.

This attribute can be used in conjunction with the medi a
attribute of any enclosed x: st yl esheet tags within the body of
the X: xsl t tag. The value of the medi a attribute of the X: xs| t
tag is compared to the value of the nedi a attribute of any
enclosed x: st yl esheet tags. If the values are equal, then the
stylesheet specified by the uri attribute of the X: st yl esheet
tag is applied to the XML document.

Note: It is an error to set both the nedi a and st yl esheet
attributes within the same x: xsl t tag.

styl eshee No String Specifies the location of the stylesheet to use to transform the
t XML document. The location is relative to the document root of
the Web application in which the tag is used.

Note: It is an error to set both the nedi a and st yl esheet
attributes within the same x: xsl t tag.

Table 3-2 describes the attributes of the x: styl esheet tag.

Table 3-2 x:stylesheet JSP Tag Attributes

x:stylesheet Required Data Type Description
Tag Attribute

nedi a No String Defines the document output type, such as HTML or WML,
that determines which stylesheet to use when transforming
the XML document.

Use this attribute in conjunction with the medi a attribute of
enveloping X: xsl t tag. The value of the nedi a attribute of
the X: Xsl t tag is compared to the value of the nedi a
attribute of the enclosed X: st yl esheet tags. If the values
are equal, then the stylesheet specified by the uri attribute
of the x: st yl esheet tag is applied to the XML document.

uri No String Specifies the location of the stylesheet to use when the
value of the nedi a attribute matches the value of the nedi a
attribute of the enveloping x: xsl t tag. The location is
relative to the document root of the Web application in which
the tag is used.

XSLT JSP Tag Usage

The x: xsl t tag can be used with or without a body, and its attributes are optional. This section
describes the rules that dictate how the tag behaves depending on whether you specify a body
or one or more attributes.

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 12

ORACLE

Chapter 3
Transforming XML Documents

@® Note

This feature is deprecated in WebLogic Server 12.1.2.0 and may be removed in a
future release.

If the x: xsl't JSP tag is an empty tag (no body), the following statements apply:

If no attributes are set, the XML document is processed using the servlet path and the
default media stylesheet. You specify the default media stylesheet in your XML file with the
<?xml - styl esheet > processing instruction; the default stylesheet is the one that does not
have a nedi a attribute.

This type of processing allows you to register the JSP page that contains the tag extension
as a file servlet that performs XSLT processing.

If only the medi a attribute is set, the XML document is processed using the servlet path
and the specified media type. The value of the nmedi a type attribute of the x: xsl t tag is
compared to the value of the medi a attribute of any <?xnl - st yl esheet > processing
instructions in your XML document; if any match then the corresponding stylesheet is
applied. If none match then the default media stylesheet is used. The media type attribute
is used to define the document output type (for example, XML, HTML, postscript, or WML).
This feature enables you to organize stylesheets by document output type.

If only the xnl attribute is set, the specified XML document is processed using the default
media stylesheet.

If the nedi a and xnml attributes are set, the specified XML document is processed using the
specified media type.

If the styl esheet attribute is defined, the XML document is processed using the specified
stylesheet.

@ Note

It is an error to set both the nmedi a and st yl esheet attributes within the same
X: xslt tag.

An XSLT JSP tag that has a body may contain <x: xm > tags and/or <x: st yl esheet > tags. The
following statements apply:

The <x: xm > tag allows you specify an XML document for inline processing. This tag has
no attributes.

The <x: styl esheet > tag, when used without any attributes, allows you specify the default
stylesheet inline.

Use the uri attribute of the <x: st yl esheet > tag to specify the location of the default
stylesheet.

If you want to specify different stylesheets for different media types, you can use multiple
<x: st yl esheet > tags with different values for the medi a attribute. You can specify a
stylesheet for each media type in the body of the tag, or specify the location of the
stylesheet with the uri attribute.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 12

ORACLE Chapter 3
Transforming XML Documents

Example of Using the XSLT JSP Tag in a JSP

The following snippet of code from a JSP shows how to use the XSLT JSP tag to transform
XML into HTML or WML, depending on the type of client that is requesting the JSP. If the client
is a browser, the JSP returns HTML,; if the client is a wireless device, the JSP returns WML.

@® Note

This feature is deprecated in WebLogic Server 12.1.2.0 and may be removed in a
future release.

First the JSP uses the get Header () method of the Ht t pSer vl et Request object to determine
the type of client that is requesting the JSP and sets the myMedi a variable to wr or ht m
appropriately. If the JSP set the nyMedi a variable to ht nl , then it applies the ht n . xsl|
stylesheet to the XML document contained in the cont ent variable. Similarly, if the JSP set the
myMedi a variable to wi , then it applies the wnl . xs| stylesheet.

<%
String clientType = request. get Header (" User - Agent");
/] default to WML client
String myMedia = "wn";

/1l if client is an HTM. browser

if (clientType.indexOf ("Mozilla") I=-1) {
myMedia = "http"

}
%

<x:xslt medi a="<%nyMedi a%" >
<x: xm ><%cont ent %</ x: xm >
<x:styl esheet nedia="htm" uri="htm.xsl"/>
<x:stylesheet nedia="wm" uri="wr.xsl"/>
</ x:xslt>

Using Transformers Other Than the Default Transformer

The WebLogic Server XML Registry (which you configure using the WebLogic Remote
Console) offers the following options:

* Accept the default transformer as the server-wide transformer.

« Configure a transformer other than the default transformer as the server-wide transformer.
The transformer must be JAXP-compliant.

For instructions on how to use the XML Registry to configure transforming options, see
Configuring a Parser or Transformer Other Than the Default.

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 12

Using the Streaming API for XML (StAX)

This chapter describes how to use the Streaming API for XML (StAX) to parse and generate
XML documents.
The chapter includes the following sections:

Overview of the Streaming API for XML

The Streaming API for XML (StAX), specified by JSR-173, is distributed as a standalone
technology as a part of the Java SE.

When a program parses an XML document using SAX, the program must create event
listeners that listen to parsing events as they occur; the program must react to events rather
than ask for a specific event. By contrast, when you use StAX, you can methodically step
through an XML document, ask for certain types of events (such as the start of an element),
iterate over the attributes of an element, skip ahead in the document, stop processing at any
time, get sub-elements of a particular element, and filter out elements as desired. Because you
are asking for events rather than reacting to them, using the StAX is often referred to as pull
parsing.

StAX includes two APIs, the cursor API and the event-iterator API, either of which can be used
for reading and writing XML. The following sections describe each API and their particular
strengths.

Description of the Cursor API

The basic function of the cursor API is to allow programmers to parse and generate XML as
easily and efficiently as possible. Of the two APIs in StAX, this is the one that most
programmers would use.

The cursor API iterates over a set of events, such as start elements, comments, and attributes,
although the events may be unrealized. The cursor APl has two main interfaces:
XML St r eanReader for parsing XML and XM_St reamN i t er for generating XML.

The XMLStreamReader Interface

The cursor APl uses the XM_St r eanReader interface to move a virtual cursor over an XML
document and allow access to the data and underlying state through method calls such as
hasNext (), next (), get Event Type(), and get Text (). The XM.St r eanReader interface allows
only forward, read-only access to the XML.

Use the XM.I nput Fact ory class to create a new instance of the XMLSt r eanrReader . You can set
a variety of properties when you get a new reader; for details, see Properties Defined for the
XMLInputFactory Interface.

When you use the next () method of the XM_St r eanReader interface to parse XML, the reader
gets the next parsing event and returns an integer that identifies the type of event just read.
Parsing events correspond to sections of an XML document, such as the XML declaration,
start and end element tags, character data, white space, comments, and processing
instructions. The XMLSt r eanConst ant interface specifies the event to which the integer returned

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 19

http://www.jcp.org/en/jsr/detail?id=173

ORACLE

Chapter 4
Overview of the Streaming API for XML

by the next () method corresponds. You can also use the get Event Type() method of
XM.St r eanReader to determine the event type.

The XMLSt r eanReader interface has numerous methods for getting at the specific data in the
XML document. Some of these methods include:

e getLocal Nane() —Returns the local name of the current event.
e getPrefix()—Returns the prefix of the current event.

e get Attribut eXXX()—Set of methods that return information about the current attribute
event.

e get NamespaceXXX() —Set of methods that return information about the current namespace
event.

e get Text XXX() —Set of methods that return information about the current text event.
e get Pl Dat a() —Returns the data section of the current processing instruction event.

Only certain methods are valid for each event type; the StAX processor throws a
java.lang.|l1egal StateException if you try to call a method on an invalid event type. For
example, it is an error to try to call the get At t ri but eXXX() methods on a namespace event.
See the StAX specification, at htt p: // www. j cp. org/en/j sr/ detail ?i d=173, for the complete
list of events and their valid XM_St r eanReader methods.

The XMLStreamWriter Interface

The cursor APl uses the XMLStreanW i t er interface to specify how to generate XML.

Use the XMLQut put Fact ory class to create a new instance of the XMLStream i t er. You can
set a property for repairing namespaces and prefixes when you get a new writer; for details,
see Properties Defined for the XMLOutputFactory Interface.

The XMLStreamW i t er interface defines a set of wri t eXXX() methods for writing standard parts
of an XML document, such as:

e witeStartE ement()
e witeEndDocunent ()
e witeAttribute()

* witeNamespace()

e witeCbhata()

Each part of an XML document, including the attributes and the namespaces, must be
explicitly written using these methods.

Use the fl ush() method to write any cached data to the output and the cl ose() method to
close the writer and free up any resources.

The XMLStreamW i t er, when generating XML, does not check that the generated document is
well-formed; it is the programmer's responsibility to create a well-formed XML document. To
print the special characters &, <, and >, use the wri t eChar act er s() method.

Description of the Event Iterator API

The event iterator APl is a layer on top of the cursor API. It is easy to extend and facilitates
pipelining. Pipelining refers to multiple XML-to-XML transformations. By using the event iterator
API, programmers do not have to deserialize and serialize the XML at each stage of the

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 19

http://www.jcp.org/en/jsr/detail?id=173

ORACLE Chapter 4
Overview of the Streaming API for XML

pipeline; rather, only at each end of the pipeline and use the APl methods such as
next Event () to communicate at the middle stages. The event iterator APl has two main
interfaces: XMLEvent Reader for parsing XML and XM_LEvent Wi t er for generating XML.

Because the cursor API is the most commonly used API in StAX, this section does not
describe in detail how to use the event iterator API, other than showing an example. For details
about using this API, see the StAX specification htt p: //ww. j cp. org/en/ | sr/ detail ?i d=173.

The following example shows a simple program that uses the XMLEvent Reader interface of
StAX to parse an XML document. The program takes a single parameter, an XML file, and
uses it to create an XM_LEvent Reader object. The program then uses the reader to iterate over
and print the stream of events.

package exanpl es. event;

import java.io.FileReader;

import javax.xnl.stream*;

i mport javax.xm .streamevents.*;
import javax.xnl.streamutil.*;

i mport javax.xm .nanespace. QNane;

/**
* Asinple exanple to iterate over events
*
* @ut hor Copyright (c) 2002 by BEA Systens.
*/

public class Parse {
private static String filename = null;
private static void printUsage() {
Systemout. println("usage: java exanpl es.event.Parse <xmfile>");

}

public static void main(String[] args) throws Exception {
try {
filename = args[0];
} catch (Arrayl ndexQut Of BoundsException ai oobe) {
print Usage();
Systemexit(0);
}

XM.I nput Factory factory = XM.I nput Fact ory. newl nstance();
XM.Event Reader r =
factory. creat eXM_Event Reader (new Fi | eReader (fil enane));
whil e(r.hasNext()) {
XM_Event e = r.nextEvent();
Systemout. println("ID:"+e. hashCode()+"["+e+"]");
}
}
}

Main Interfaces and Classes of StAX

Table 4-1 describes the main interfaces and classes of the Streaming API for XML

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 19

http://www.jcp.org/en/jsr/detail?id=173
https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr

ORACLE’

Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

Table 4-1 Main Interfaces and Classes of the Streaming API for XML

Interface or Class

Used in Cursor or Description
Event Iterator API?

XM.I nput Factory cl ass Both Factory class used to create an XMLSt r eanReader or
XM_.Event Reader instance.

XM_Qut put Factory cl ass Both Factory class used to create an XM_St reamW i t er or
XM_Event Wi t er instance.

XM.Event Factory cl ass Event Iterator Factory class used to create an XMLEvent instance.

XMLSt reanReader interface Cursor Interface used to parse an XML document. Enables you to
peek at the next event, get the next event, and check for more
events.

XML.StreamViter interface Cursor Interface used to generate an XML document. It provides a set

of wri t eXXX() methods for generating specific parts of an
XML document, such as start elements, attributes, and so on.

XM_Event Reader interface Event Iterator Interface used to parse XML events. It enables you to peek at
the next event, get the next event, and check for more events.

XM_.EventWiter interface Event Iterator Interface used to generate XML. It uses the add() method to
add XMLEvents to the output stream.

XM_Event Event Iterator Base interface for handling events. All specific XML events
extend from XMLEvent , such as St art El enent, Attri bute,
and so on.

XMLSt r eanExcept i on Both Base exception for unexpected processing errors, such as lack

exception

of well-formed XML document structure.

Parsing XML With the XMLStreamReader Interface: Typical

Steps

The following procedure describes the typical steps for using the XM_.St r eanReader interface of
the StAX cursor API to parse an XML document. The procedure uses the example from
Example of Parsing XML Using StAX in its description.

1.
2.

Import the j avax. xm . stream * classes.

Use the XM.I nput Fact ory. newl nst ance() method to instantiate an XM_I nput Fact ory, as
shown in the following code excerpt:

XMLl nput Factory xmif = XM.I nput Factory. new nstance();

See Properties Defined for the XMLInputFactory Interface for the list of properties you can
set.

Use the XMLI nput Fact ory. creat eXMLSt r eanReader () method to instantiate an
XML.St r eanReader object based on an XML document.

See Getting the XMLStreamReader Object.

Parse the XML document, using the hasNext () and next () methods to step through the
XML events, as shown in the following code excerpt:

whi | e(xm r. hasNext ()){
printEvent (xmr);
xmr.next();

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 19

ORACLE’

Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

In the example, xm r is the XMLSt r eanReader instance and the local pri nt Event () method
(not part of the StAX API) determines the specific event type, as described in the next step.

5. While parsing the XML document, determine the current specific event type and take
appropriate action. Event types include the start and end of an XML document, the start
and end of an XML element, comments, entity references, and so on.

See Determining the Specific XML Event Type.

6. If the current event type is a start element or end element, optionally get its attributes.

See Getting the Attributes of an Element.

7. If the current event type is a start or end element, optionally get its namespaces.

See Getting the Namespaces of an Element.

8. If the current event type includes text data, such as a CDATA or comment, optionally get
the actual data.

See Getting Text Data.

9. Optionally, get location information, such as the line number or column number, of the
current event.

See Getting Location Information.

10. Close the stream.

See Closing the Input Stream.

Example of Parsing XML Using StAX

The following example shows a simple program that uses the XM_St r eanReader interface of
StAX to parse an XML document.

The program takes a single parameter, an XML file, and uses it to create an
XMLStreamReader object. The program then uses the reader to iterate over the stream of
events, determining the type of each event, such as the start of an XML element, the list of
attributes of an element, a processing instruction, and so on. The program prints out
information about these events, using internal methods to print out the list of attributes and
namespaces when appropriate.

The code in bold is described in later sections.

package exanpl es. basi c;

inport java.io.FileReader;
inport java.util.lterator;
import javax.xml.stream.*;
inport javax.xnl.namespace. QNane;

/**

* This is a sinple parsing exanple that illustrates
* the XML.StreanReader cl ass.

*

* @uthor Copyright (c) 2003 by BEA Systens.

*/

public class Parse {
private static String filename = null;
private static void printUsage() {
Systemout. println("usage: java exanples. basic.Parse <xmfile>");

}

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 19

https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr

ORACLE

Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

public static void nmain(String[] args) throws Exception {

}

try {
filenane = args[0];

} catch (Arrayl ndexQut Of BoundsException ai oobe){
print Usage()
Systemexit(0);

}

Il

/1 Get an input factory

I

XMLInputFactory xmlif = XMLInputFactory.newlnstance();
Systemout. println("FACTORY: " + xmif);

I

/1 Instantiate a reader

I

XMLStreamReader xmlr = xmlif.createXMLStreamReader(new FileReader(filename));
Systemout.println("READER " + xmr + "\n");

/1

Il Parse the XM

/1

while(xmlr.hasNext()){
printEvent(xmlr);
xmlr.next();

}

/1

/1 Close the reader
/1

xmlr.close();

private static void printEvent(XM.StreanReader xmr) {

System.out.print("EVENT:["+xmlr.getLocation().getLineNumberQ+"]["+
xmlr_getLocation() .getColumnNumber(O)+"] ");

Systemout.print(" [");
switch (xmlr.getEventType()) {

case XMLStreamConstants.START_ELEMENT:
System.out.print(*'<");
printName(xmlr);
printNamespaces(xmlr);
printAttributes(xmir);
System.out.print(">");
break;
case XMLStreamConstants.END ELEMENT:
System.out.print("'</");
printName(xmlr);
System.out.print(">");
break;
case XMLStreamConstants.SPACE:
case XMLStreamConstants.CHARACTERS:
int start = xmlr.getTextStart();
int length = xmlr.getTextLength();
System.out.print(new String(xmlr.getTextCharacters(),
start,
length));

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 19

ORACLE Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

break;

case XMLStreamConstants.PROCESSING_INSTRUCTION:
System.out.print("'<?");
if (xmlr.hasText())
System.out.print(xmlr.getText());
System.out.print(*"?>");
break;

case XMLStreamConstants.CDATA:

System.out.print("<![CDATA[');

start = xmlr.getTextStart();

length = xmlr.getTextLength();

System.out.print(new String(xmlr.getTextCharacters(),
start,
length));

System.out.print("]11>");

break;

case XMLStreamConstants.COMMENT:
System.out.print("'<!--");
if (xmlr.hasText())
System.out.print(xmlr.getText());
System.out.print("-->");
break;

case XMLStreamConstants.ENTITY_REFERENCE:
System.out._print(xmlr.getLocalName()+"=");
it (xmlr_hasText())
System.out.print("["+xmlr._getText)+"1");
break;

case XMLStreamConstants.START_DOCUMENT:
System.out.print("<?xml'™);
System.out.print(" version=""+xmlr.getVersion()+""");
System.out.print(" encoding=""+xmlr.getCharacterEncodingScheme()+"""");
if (xmlr.isStandalone())
System.out.print(" standalone="yes"");
else
System.out.print(" standalone="no"");
System.out.print("?>");
break;

1
Systemout.printin("]");
}

private static void printNane(XM.StreanReader xmr){
if(xmlr_hasName()){
String prefix = xmlr.getPrefix();
String uri = xmlr.getNamespaceURI();
String localName = xmlr.getLocalName();
print Name(prefix,uri,local Narme)

}
}
private static void printNane(String prefix
String uri
String | ocal Nane) {
if (uri '=null & !'("".equals(uri))) Systemout.print("["'"+uri+""]:");

if (prefix !'=null) Systemout.print(prefix+":")
if (local Name !'= null) Systemout.print(local Nange);

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 19

ORACLE’

Chapter 4

Parsing XML With the XMLStreamReader Interface: Typical Steps

}

private static void printAttributes(XMStreanReader xmr){
for (int i=0; i < xmlr.getAttributeCount(); i++) {
printAttribute(xmlr,i);
1
}

private static void printAttribute(XM.StreanReader xmr, int index) {
String prefix = xmlr.getAttributePrefix(index);
String namespace = xmlr.getAttributeNamespace(index);
String localName = xmlr.getAttributeLocalName(index);
String value = xmlr.getAttributeValue(index);
Systemout.print(" ");
print Name(prefix, nanespace, | ocal Nane) ;
Systemout.print("=""+value+"'");

}

private static void printNanespaces(XM.StreanReader xmr){
for (int i=0; i < xmlr.getNamespaceCount(); i++) {
printNamespace(xmlr,i);
}
}

private static void printNanespace(XM.StreanReader xmr, int index) {
String prefix = xmlr.getNamespacePrefix(index);
String uri = xmlr.getNamespaceURI (index);
Systemout.print(" ");
if (prefix == null)
Systemout. print("xmns=""+uri+""");
el se
Systemout. print("xmns:"+prefix+"=""+uri+""'");

}

Getting the XMLStreamReader Object

Use the XMLI nput Fact ory. creat eXMLSt r eanReader () method to instantiate an
XM.St r eanReader object based on an XML document, as shown in the following code excerpt:

XM.StreanReader xmr = xmif.createXM.StreanReader (new Fil eReader (fil ename));

In the example, xnl i f is the XM.I nput Fact ory instance.

java.io.lnputStream

java.io. Reader (shown in the example)

The various signatures of the cr eat eXMLSt r eanReader () method allow for the following XML
document formats as parameters:

j avax. xnl . transf orm Sour ce (specified in the JAXP API htt ps://docs. oracl e. cont en/

javalj avase/ 17/ docs/ api /java. xm /j avax/ xm /transf orm Source. htm)

Determining the Specific XML Event Type

To determine the specific event type while parsing an XML document, use either the

XM_St r eanReader . next () or XMLSt r eanReader . get Event Type() methods. The next () method
reads the next event and returns an integer which identifies the read event type; the

get Event Type() method simply returns the integer identifying the current event type. The

Developing XML Applications for Oracle WebLogic Server

G31686-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 19

https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/transform/Source.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/transform/Source.html

ORACLE Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

XM_St r eanConst ant s superinterface of XMLSt r eanReader defines the event type constants,
shown in the following list:

* XM.StreanConst ants. ATTRI BUTE

e XM.StreanConst ants. CDATA

e XM.StreanConst ant s. CHARACTERS

e XM.StreanConst ant s. COWENT

¢ XM.StreanConstants. DTD

e XM.StreanConst ant s. END_DOCUMENT

e XM.StreanConst ants. END_ELEMENT

e XM.StreanConst ant s. ENTI TY_DECLARATI ON

e XM.StreanConstants. ENTI TY_REFERENCE

e XM.StreanConst ant s. NAVESPACE

e XM.StreanConstants. NOTATI ON_DECLARATI ON
e XM.StreanConst ant s. PROCESSI NG _| NSTRUCTI ON
e XM.StreanConst ant s. SPACE

e XM.StreanConst ant s. START_DOCUVENT

e XM.StreanConst ants. START_ELEMENT

The following example shows how to use the Java case statement to determine the particular
type of event that was returned by the XMLSt r eanReader . next () method. The example uses
the XMLSt r eanReader . get Event Type() method to determine the integer event type of the
current event returned by the next () method. For simplicity, the example simply prints that an
event has been found; later sections show further processing of the event.

switch (xmr.getEvent Type()) {

case XM.StreanConstants. START ELEMENT:
Systemout.print("Start El ement\n");
br eak;

case XM.StreanConstants. END ELEMENT:
Systemout. print("End El ement\n");
br eak;

case XM.StreantConst ant s. SPACE:
System out. print("Space\n");
br eak;

case XM.StreanConst ant s. CHARACTERS:
Systemout. print("Characters\n");
br eak;

case XM.StreanConst ants. PROCESSI NG | NSTRUCTI ON:
Systemout. print("Processing Instrcutions\n");
br eak;

case XM.StreanConst ant s. CDATA:
System out. print (" CDATAN");
br eak;

case XM.StreanConst ant s. COMMENT:

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 19

ORACLE

Chapter 4

Parsing XML With the XMLStreamReader Interface: Typical Steps

System out. print (" Conment\n");
br eak;

case XM.StreanConstants. DTD:
Systemout. print("DTDin");
br eak;

case XM.StreanConst ants. ENTI TY_REFERENCE:
Systemout.print("Entity Reference\n");
br eak;

case XM.StreanConstants. ENTI TY_DECLARATI ON:
Systemout.print("Entity Declaration\n");

br eak;

case XM.StreanConstants. START_DOCUMENT:
Systemout.print("Start Document\n");
br eak;

case XM.StreanConst ants. END_DOCUMENT:

Systemout. print("End Docunent\n");
br eak;

}

Getting the Full Name of an Element

The full name of an element includes its prefix, namespace URI, and local name; use the
get Prefix(), get NamespaceURI (), and get Local Name() methods of the XMLSt r eanReader
interface, respectively, to get this information once you determine that the current event is a

start or end element.

For example, assume the case statement for a start element event in the sample program

looks like the following:

case XM.StreanConstants. START_ELEMENT:

Systemout. print("<");
print Nane(xmr);

print Nanespaces(xmr);
printAttributes(xmr);
Systemout. print(">");
br eak;

@® Note

The print Namespaces() and print Attributes() methods are discussed in other

sections.

The two local pri nt Name() methods can use the get XXX() methods as follows:

private static void printName(XM.StreanReader xmir){

i f(xmr.hasName()){
String prefix = xmr.getPrefix();
String uri = xnlr.get NanmespaceURI ();

String local Name = xmr. getLocal Name();

print Name(prefix,uri,|ocal Nane);

Developing XML Applications for Oracle WebLogic Server

G31686-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 19

ORACLE

Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

}
private static void printNane(String prefix,
String uri,
String local Nane) {
if (uri '=null & '("".equals(uri))) Systemout.print("[""+uri+""]:");

if (prefix !'=null) Systemout.print(prefix+":");
if (localNane != null) Systemout.print(local Nange);

}

Getting the Attributes of an Element

Once you determine that the current event is a start element, end element, or attribute, use the
get Attri but eXXX() methods of the XMLSt r eanReader interface to get the list of attributes and
their values.

@® Note

You can use the get At tri but eXXX() methods only on start element, end element, and
attribute events; a j ava. l ang. I | | egal St at eExcepti on is thrown if you try to execute
the methods on any other type of event.

Use the get Attri but eCount () method to return the number of attributes of the current element
and use the count in a loop that iterates over the list of attributes. The method does not include
namespaces in the count. Additional get Att ri but eXXX() methods return the prefix,
namespace URI, local name, and value for a particular attribute.

For example, assume the case statement for a start element event in our sample program
looks like the following:

case XM.StreanConstants. START_ELEMENT:

Systemout. print("<");
print Nane(xmr);

print Nanespaces(xnir);
printAttributes(xnr);
Systemout. print(">");
br eak;

@® Note

The print Name() and pri nt Namespaces() methods are discussed in other sections.

The following local print Attri but es() method shows one way of iterating through the list of
attributes; because attribute indices are zero-based, the f or loop starts at O:

private static void printAttributes(XM.StreanReader xmr){

for (int i=0; i < xmr.getAttributeCount(); i++) {
printAttribute(xmr,i);
}
}

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 19

ORACLE

Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

The following local print Attri but e() method shows how to print out all the information for a
particular attribute:

private static void printAttribute(XM.StreanReader xmr, int index) {
String prefix = xmr.getAttributePrefix(index);
String namespace = xnlr.get Attribut eNamespace(i ndex);
String local Nane = xnmlr.get AttributelLocal Nane(index);
String value = xnlr.getAttributeVal ue(index);
Systemout.print(" ");
print Nane(prefix, nanespace, | ocal Nare) ;
Systemout. print("=""+val ue+"'");

}

The print Nanme() method is described in Getting the Full Name of an Element.

Getting the Namespaces of an Element

Once you determine that the current event is a start element, end element, or namespace, use
the get NamespaceXXX() methods of the XMLSt r eanReader interface to get the list of
namespaces declared for the event.

® Note

You can use the get NanmespaceXXX() methods only on start element, end element, and
namespace events; a j ava. | ang. | I | egal St at eExcepti on is thrown if you try to
execute the methods on any other type of event.

Use the get NamespaceCount () method to return the number of namespaces declared for the
current event, and use the count in a loop that iterates over the list. If the current event is an
end element, the count refers to the number of namespaces that are about to go out of scope.
Additional get NanmespaceXXX() methods return the prefix and namespace URI for a particular
namespace.

For example, assume the case statement for a start element event in our sample program
looks like the following:

case XM.StreanConstants. START _ELEVMENT:

Systemout. print("<");
print Nane(xmr);

print Nanespaces(xmr);
printAttributes(xmr);
Systemout. print(">");
break;

® Note

The printName() and print Attributes() methods are discussed in other sections.

The following local pri nt Nanespaces() method shows one way of iterating through the list of
namespaces for the start element; because namespace indices are zero-based, the f or loop
starts at O:

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 19

ORACLE

Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

private static void printNamespaces(XM.StreanReader xmr){
for (int i=0; i < xnir.getNamespaceCount(); i++) {
print Namespace(xmr,i);
}
}

The following local pri nt Nanmespace() method shows how to print out all the information for a
particular namespace:

private static void printNanespace(XM.StreanReader xmr, int index) {
String prefix = xmr. get NanespacePrefix(index);
String uri = xnlr.get NamespaceURI (i ndex);
Systemout.print(" ");
if (prefix == null)
Systemout. print("xmns=""+uri+""");
el se
Systemout. print("xmns:"+prefix+"=""+uri+""");
}

The get NanespacePref i x() method returns null for the default namespace declaration.

Getting Text Data

The XMLSt r eanReader interface includes various get Text XXX() methods for getting text data
from events such as comments and CDATA.

Use the get Text Start () method to get the offset into the text character array where the first
character of the current text event is stored. Use the get Text Lengt h() method to get the
length of the sequence of characters within the text character array. Finally, use the

get Text Char act er s() method to return this character array for the current event. The
character array contains text information about only the current event; as soon as you call the
next () method to read the next event on the input stream, the character array is filled with new
information.

The following example shows how to print out text data for the CDATA event:

case XM.StreanConst ants. CDATA:

Systemout. print ("<![CDATA[");

start = xmr.getTextStart();

[ength = xmr. get Text Lengt h();

Systemout. print(new String(xmr.getText Characters(),
start,
I ength));

Systemout.print("]]>");

br eak;

If you want to first check that the character event actually has text, use the hasText () method,
as shown in the following example:

case XM.StreanConst ants. COMVENT:
Systemout.print("<l--");
if (xmr.hasText())
Systemout. print(xmr.getText());
Systemout.print("-->");
br eak;

Getting Location Information

The Locat i on interface of the StAX API provides methods for getting location information
about an event, such as the line number or column number, as well as the public ID and

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 19

ORACLE’

Chapter 4
Generating XML Using the XMLStreamWriter Interface: Typical Steps

system ID of the XML being parsed. Use the get Locati on() method of the XM_St r eanReader
interface to return a Locat i on object for the current event, as shown in the following example:

System out. print ("EVENT: ["+xnlr.getLocation().getLineNunber()+"]["+
xm r. get Location(). get Col umNunber () +"] ");

Closing the Input Stream

It is good programming practice to close the XM.St r eanReader explicitly when you are finished
with it, to free up resources. To close the reader, use the XM.St r eanReader . ¢l ose() method,
as shown in the following example:

/1

/1 Close the reader
/1

xmr.close();

Generating XML Using the XMLStreamWriter Interface: Typical

Steps

The following procedure describes the typical steps for using the XMLSt reamV i t er interface of
the StAX cursor API to generate a new XML document.

1. Import the j avax. xni . stream * classes.

2. Use the XML.Qut put Fact ory. newl nst ance() method to instantiate an XM_Qut put Fact ory,
as shown in the following code excerpt:

XM_Qut put Factory xm of = XM.Qut put Fact ory. newl nstance();

See Properties Defined for the XMLOutputFactory Interface for the list of properties you
can set.

3. Use the XM.Qut put Fact ory. createXM.StreamWiter () method to instantiate an
XM.Streami it er object, passing it the name of the file or object that will contain the XML.

See Getting the XMLStreamWriter Object.

4. Add the XML declaration to the output. See Adding the XML Declaration to the Output
Stream.

5. Add standard XML objects, such as start elements, comments, and characters, to the
output. See Adding Standard XML Events to the Output Stream.

6. Add attributes and namespace declarations to a start element. See Adding Attributes and
Namespace Declarations to a Start Element.

7. Close the output stream. See Closing the Output Stream.

Example of Generating XML Using StAX

The following example shows a simple program that uses the XM_St reamiW i t er interface of
StAX to generate an XML document.

The program first creates an instance of an XML.St ream\W i t er, specifying that the output be
written to the file out Fi | e. xn in the current directory. Then, using various wri t eXXX()
methods, it builds an XML file that looks like the following:

<?xm version="1.0" encoding="utf-8 7>

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 19

ORACLE

Chapter 4
Generating XML Using the XMLStreamWriter Interface: Typical Steps

<l--this is a coment-->
<person xm ns:one="http://namespaceOne" gender="f">

<one: nane hair="pigtails" freckl es="yes">Pi ppi Longstocki ng</one: nane>
</ person>

The XM.Stream¥ i t er interface does not check for that an XML document is well-formed; it is
the programmer's responsibility to ensure that, for example, each start element has a
corresponding end element, and so on. The example also shows how to use the
writeCharacters("\n") method to add new lines to the output to make the XML more
readable when writing to a text file.

The code in bold is described in later sections.

package exanpl es. basi c;

inport java.io.FileQutputStream
import java.util.lterator;

import javax.xml.stream.*;

inport javax.xn .namespace. QNane;

/‘k*

* This is a sinple exanple that illustrates howto use the
* the XM_StreamWiter class to generate XM.

*

The generated XML file | ooks like this:
<?xm version="1.0" encoding="utf-8 ?>

*
*
*
*
* <l--this is a coment-->

* <person xm ns:one="http://nanespaceOne" gender="f">

* <one: name hair="pigtails" freckl es="yes">Pi ppi Longstocki ng</one: name>
* </person>

*

*

* @ut hor Copyright (c) 2003 by BEA Systens.

*/

public class Generate {

public static void main(String args[]) throws Exception {

I

/1 Get an output factory

I

XMLOutputFactory xmlof = XMLOutputFactory.newlnstance();
Systemout. println("FACTORY: " + xm of);

I

/1 Instantiate a witer

I

XMLStreamWriter xmlw = xmlof.createXMLStreamWriter(new FileOutputStream
(outFile.xml™));

Systemout.printIn("READER. " + xmw + "\n");

/1
/| Cenerate the XML
/1

Il Wite the default XM declaration
xmlw._writeStartDocument();
xmlw_writeCharacters(''\n");
xmlw_writeCharacters(''\n");

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 19

https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr

ORACLE’

Chapter 4

Generating XML Using the XMLStreamWriter Interface: Typical Steps

Il Wite a conment
xmlw._writeComment(*"this is a comment™);
xmlw._writeCharacters(''\n");

Il Wite the root el ement "person” with a single attribute "gender"
xmlw._writeStartElement(*'person™);

xmlw.writeNamespace(*'one", "http://namespaceOne');
xmlw_writeAttribute('gender”,"f");

xmlw._writeCharacters(''\n");

/1l Wite the "nane" element with sone content and two attributes
xmlw.writeCharacters(" ");

xmlw_writeStartElement(*'one”, "name', "http://namespaceOne™);
xmlw_writeAttribute("hair”,"pigtails™);
xmlw.writeAttribute("freckles", "yes");
xmlw._writeCharacters("'Pippi Longstocking™);

/1 End the "name" el enent
xmlw._writeEndElement();
xmlw._writeCharacters(''\n");

/1 End the "person" el enent
xmlw.writeEndElement();

/1 End the XM. docunent
xmlw.writeEndDocument();

/1 Cose the XM.StreamWiter to free up resources
xmlw.close();

Getting the XMLStreamWriter Object

Use the XMLQut put Fact ory. creat eXMLSt reamW i t er () method to instantiate an
XM.Streami i t er object based on an XML document, as shown in the following code excerpt:

In the example, xn of is the XM_Qut put Fact or y instance.

j ava.io. Qut put St r eam(shown in the example)

java.io. Witer

XM.StreamWiter xmw = xm of . createXM.StreamWiter(new FileCutputStream ("outFile.xm"));

The various signatures of the creat eXMLSt reamW i t er () method allow for the following XML
document formats as parameters:

javax. xnl . transform Result (specified in the JAXP API https://docs. oracl e. cont en/

javalj avase/ 17/ docs/ api /java.xm /javax/ xm /transform Result. htm)

Adding the XML Declaration to the Output Stream

xml w. writeStartDocument ();

Developing XML Applications for Oracle WebLogic Server

G31686-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

Use the XM_StreamNiter.witeStartDocunent () method to add the XML declaration as the
first line of the XML document, as shown in the following code excerpt:

October 8, 2025
Page 16 of 19

https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/transform/Result.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/transform/Result.html

ORACLE

Chapter 4
Generating XML Using the XMLStreamWriter Interface: Typical Steps

With no arguments, the method writes the default XML declaration:
<?xm version="1.0" encoding="utf-8 ?>

If you want to specify a different encoding or XML version, use the following flavors of the
writeStartDocunent () method:

e witeStartDocunent (java.lang. String version)
e witeStartDocunent (java.lang. String encoding, java.lang.String version)

Setting the encoding with the wri t eSt art Docunent () method does not set the actual encoding
of the underlying output; it simply specifies what value is written for the encodi ng attribute of
the XML declaration. To actually set the encoding of the output, you must specify the encodi ng
parameter when creating the instance of the XMLSt r eamV i t er with the appropriate

XM_Qut put Factory. creat eXML.Stream i t er () method.

Adding Standard XML Events to the Output Stream

Use the XMLStreamNiter. witeXXX() methods to add standard XML events, such as start
elements, end elements, comments, CDATA, entity references, and so on to the output
stream.The XXX refers to the particular event, such aswiteStartEl ement (),

writ eEndEl ement (), writeComment (), witeCData(), and so on. You can create most
elements by passing the name or text data as a Stri ng.

The XMLStreamW i t er interface does not validate your data, nor does it check that the
document is well-formed; it is the programmer's responsibility to ensure that, for example, each
start element has a corresponding end element, and so on. It is also up to the programmer to
ensure that the start and end element events are correctly nested. To make the output XML
more human-readable when writing to a text file, use the wri t eCharacters("\n") method to
add new lines in appropriate places.

For example, assume you want to create the following snippet of XML.:

<l-- This is a comment -->
<nane>Jane Doe</ nane>

The Java code to add this element to an output stream is as follows:

xm w. writeComrent ("This is a comrent");
xm w. writeCharacters("\n");

xm w. writeStartEl ement ("name");
xm w. wri teCharacters("Jane Doe");
xm w. wri t eEndEl enent () ;

xm w. writeCharacters("\n");

Adding Attributes and Namespace Declarations to a Start Element

Use the witeAttribute() method right after a start element event to add attributes to the
element. You can specify a prefix for the attribute, as well as the URI it is bound to, or specify
no prefix at all.

For example, assume you want to create the following snippet of XML:

<person gender="f">

The Java code to produce this XML is as follows:

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 17 of 19

ORACLE’

Chapter 4
Properties Defined for the XMLInputFactory Interface

xm w. writeStartEl enent (" person");
xmw witeAttribute("gender","f");
xm w. writeCharacters("\n");

Use the wri t eNarmespace() method to write a namespace to the output stream. It is up to the
programmer to ensure that the current event allows namespace writing, such as start element;
if the current event does not allow namespace writing, a

javax. xnm . stream XM.St r eanExcept i on is thrown. Use appropriate flavors of other

wr it eXXX() methods to specify a prefix for an event and the URI to which it is bound.

For example, the following XML output shows a namespace declaration for the <per son>
element, and the one prefix specified for the <one> child element:

<person xnins:one="http://nanmespacetne" gender="f">
<one: nane hair="pigtails" freckl es="yes">Pi ppi Longstocki ng</ one: name>
</ person>

The Java code to produce this XML is as follows:

Il Wite the root el ement "person” with a single attribute "gender"
xm w. writeStartEl enent ("person");

xm w. wri t eNanespace("one", "http://namespacene");

xm w. writeAttribute("gender","f");

xm w. writeCharacters("\n");

/I Wite the "nane" element with sone content and two attributes
xm w. writeCharacters("” ");

xm w. writeStartEl enent("one", "name", "http://nanespaceOne");
xmw writeAttribute("hair","pigtails");

xmw writeAttribute("freckles","yes");

xm w. writeCharacters("Pippi Longstocking");

/1 End the "name" el enent
xm w. wri t eEndEl enent ();
xm w. writeCharacters("\n");

/1 End the "person" el enent
xm w. wri t eEndEl enent ();

Closing the Output Stream

It is good programming practice to explicitly close the XMLSt r eamW i t er when you are finished
with it to free up resources. To close the writer, use the XMLStreamVi ter. cl ose() method, as
shown in the following example:

/] Cose the XM_StreamWiter to free up resources
xm w. cl ose();

Properties Defined for the XMLInputFactory Interface

Table 4-2 lists the standard properties you can set when using the XM.I nput Fact ory to
generate an XML_St r eanReader or XMLEvent Reader object.

All properties in Table 4-2 are preceded with j avax. xni . stream such as
javax. xnl . streamisValidating.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 18 of 19

ORACLE Chapter 4
Properties Defined for the XMLOutputFactory Interface

Table 4-2 Standard XMLInputFactory Properties
|

Property Description Return Type Default
Value
i sValidating Specifies whether implementation-specific DTD Boolean False

validation is enabled or disabled.

i sNarmespaceAwar e Specifies whether namespace processing is Boolean True
enabled or disabled. Used for XML 1.0 support.

i sCoal escing Specifies whether to coalesce adjacent Boolean False
character data.

i SRepl aci ngEnt i t yRef erences Specifies whether internal entity references Boolean True
should be replaced with their replacement text
and reported as characters.

i sSupportingExternal Entitie Specifies whether to resolve external parsed Boolean False
S entities.
support DTD Specifies whether the processor used is one Boolean True

that supports or does not support DTDs.

reporter Specifies the implementation of XMLReporter Null
j avax. xm . stream XM_Report er that
should be used. Specifies the implementation
of j avax. xm . stream XM_.Report er that
should be used.

resol ver Specifies the implementation of XMLResolver Null
j avax. xn . stream XM.Resol ver that
should be used.

al | ocat or Specifies the implementation of util. XMLEventAllocator Null
javax.xm .streamutil.XMEvent Al'l oca
t or that should be used.

Properties Defined for the XMLOutputFactory Interface

Table 4-3 lists the standard properties you can set when using the XMLQut put Fact ory to
generate an XMLSt reamW it er or XM_LEvent Wi t er object.

All properties in Table 4-3 are preceded with j avax. xm . st ream such as
javax. xnl .streamisValidating.

Table 4-3 Standard XMLOutputFactory Properties

Property Description Return Type Default
Value
i sRepai ri ngNanespaces Specifies that the writer use default namespace Boolean False

prefix declarations.

There are strict rules about how the StAX processor
repairs namespaces and prefixes when generating
XML. For details, see the StAX specification at
http://www. | cp.org/en/jsr/detail ?i d=173.

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 19 of 19

http://www.jcp.org/en/jsr/detail?id=173

Using Advanced XML APIs

This chapter describes how to use the WebLogic XPath API.
This chapter includes the following section:

Using the WebLogic XPath AP

The WebLogic XPath API contains all of the classes required to perform XPath matching
against a document represented as a DOV, an XM.| nput St r eam or an XM.Qut put St ream Use
the API if you want to identify a subset of XML elements within an XML document that conform
to a given pattern.

For additional API reference information about the WebLogic XPath API, see
webl ogi c. xnm . xpat h in the Java API Reference for Oracle WebLogic Server.

Using the DOMXPath Class

This section describes how to use the DOVWXPat h class of the WebLogic XPath API to perform
XPath matching against an XML document represented as a DOM The section first provides an
example and then a description of the main steps used in the example.

Example of Using the DOMXPath Class

The sample Java program at the end of this section uses the following XML document in its
matching:

<?xm version="1.0" encodi ng="us-ascii"'?>
<l-- "Purchaseorder". -->

<pur chaseor der
depart nent =" Sal es”
dat e="01- 11- 2001"
rai sedby=""Pi kachu"

>
<item
| D="101">
<title>Laptop</title>
<quantity>5</quantity>
<make>Del | </ make>
<itenp
<item
| D="102">
<title>Desktop</title>
<quantity>15</quantity>
<make>Del | </ make>
<itenp
<item

| D="103">

<title>Ofice Software</title>
<quantity>10</quantity>
<make>M crosoft </ make>

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE

Chapter 5
Using the WebLogic XPath API

<litenp
</ pur chaseor der >

The Java code example is as follows:

package exanpl es. xni . xpat h;

i mport java.io.lCOException;

import java.util.lterator;

import java.util. Set;

i mport javax.xnl . parsers. Docunent Bui | der;

i mport javax.xm . parsers. Docunent Bui | der Fact ory;
i mport javax.xm .parsers. ParserConfigurationException;
i mport org.w3c. dom Docunent;

i mport org.w3c. dom Node;

i mport org.xm .sax. SAXExcepti on;

i mport webl ogi c. xm . xpat h. DOMXPat h;
i mport webl ogi c. xm . xpat h. XPat hExcepti on;

/**

* This class provides a sinple exanple of howto use the DOVXPat h
* APl

*

* @uthor Copyright (c) 2002 by BEA Systens, Inc.
*
/

public abstract class DOWXPat hExanpl e {
public static void main(String[] ignored)
throws XPat hException, ParserConfigurationException,

SAXException, | CException

/] create a domrepresentation of the docunent
String file = "purchaseorder.xm";
Docunent Bui | der Factory factory = Docunent Bui | der Fact ory. newl nst ance();
factory. set NamespaceAware(true); // doesn't natter for this exanple
Docunent Bui | der buil der = factory. newDocument Bui | der ();
Docunment doc = buil der. parse(file);
/'l create some instances of DOMKPath to eval uate against the
/'l docunent.
DOMXPath total Items = // count number of itens
new DOMXPat h("count (purchaseorder/item");
DOWXPat h atLeast10 = // titles of items with quantity >= 10
new DOMXPat h("purchaseorder/itenfquantity >= 10]/title");
/1 eval uate them agai nst the document

doubl e count = totalltens.eval uat eAsNunber (doc);

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 7

https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr

ORACLE Chapter 5
Using the WebLogic XPath API

Set nodeset = atLeast 10. eval uat eAsNodeset (doc);
/] output results
Systemout.println(file+" contains "+count+" total itens.");
Systemout.println("The following itens have quantity >= 10:");
if (nodeset !'= null) {
Iterator i = nodeset.iterator();
whi | e(i.hasNext()) {
Node node = (Node)i.next();
Systemout. println(" "+node. get NodeNare() +

": "+node. get First Child().getNodeVal ue());

}

/1 note that at this point we are free to continue using eval uate

/] atleast10 and total ltenms against other docunents

}
Main Steps When Using the DOMXPath Class

The following procedure describes the main steps to use the DOMXPat h class to perform XPath
matching against an XML document represented as a DOM

1. Create an org. w3c. dom Docunent object from an XML document, as shown in the
following code excerpt:

String file = "purchaseorder.xm";
Docunent Bui | der Factory factory =
Docunent Bui | der Fact ory. newl nst ance();
Docunent Bui | der buil der = factory. newDocument Bui | der ();
Docunent doc = buil der. parse(file);

2. Create a DOMXPat h object to represent the XPath expression you want to evaluate against
the DOM.

The following example shows an XPath expression that counts the items in a purchase
order:

DOWXPath total Itens =
new DOMXPat h("count (purchaseorder/item");

The following example shows an XPath expression that returns the titles of items whose
quantity is greater or equal to 10:

DOWXPat h at Least 10 =
new DOWMXPat h("purchaseorder/itenfquantity >= 10]/title");

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE

Chapter 5
Using the WebLogic XPath API

Evaluate the XPath expression using one of the DOVWXPat h. eval uat eAsXXX() methods,
where XXX refers to the data type of the returned data, such as Bool ean, Nodeset , Nunber,
or String.

The following example shows how to use the eval uat eAsNunber () method to evaluate the
total I tens XPath expression:

doubl e count = totalltens. eval uat eAsNurber (doc);
Systemout.printIn(file+" contains "+count+" total items.");

The following example shows how to use the eval uat eAsNodeset () method to return a Set
of or g. w3c. dom Nodes which you can iterate through in the standard way:

Set nodeset = atLeast 10. eval uat eAsNodeset (doc);

Systemout. println("The followi ng itens have quantity >= 10:");
if (nodeset != null) {
Iterator i = nodeset.iterator();
whi l e(i.hasNext()) {
Node node = (Node)i.next();
Systemout.println(" "+node. get NodeName() +
": "+node. get Fi rst Chil d().get NodeVal ue());
}

}

For additional API reference information about the WebLogic XPath API, see
webl ogi c. xm . xpat h in the Java API Reference for Oracle WebLogic Server.

Using the StreamXPath Class

The example in this section shows how to use the St r eanXPat h class of the WebLogic XPath
API to perform XPath matching against an XM.I nput St r eam The section first provides an
example and then a description of the main steps used in the example. Although the example
shows how to match only against an XM.I nput St r eam you can use similar code to match
against an XMLQut put St r eam

Example of Using the StreamXPath Class

The sample Java program at the end of this section uses the following XML document in its
matching:

<?xm version="1.0" encodi ng="us-ascii'?>
- "Stock Quotes". -->

<st ock_quot es>
<stock_quot e symbol =' BEAS' >

<when>
<dat e>01/ 27/ 2001</ dat e>
<time>3: 40P\K/ ti me>

</ when>
<price type="ask" val ue="65. 1875"/ >
<price type="open" val ue="64.00"/>

<price type="dayhi gh" val ue="66.6875"/>
<price type="dayl ow' val ue="64.75"/>
<change>+2. 1875</ change>

<vol ume>7050200</ vol unme>

</ stock_quot e>
<stock_quot e symbol =' MSFT' >

<when>

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE

Chapter 5

Using the WebLogic XPath API

<dat e>01/ 27/ 2001</ dat e>
<time>3: 40P\k/ ti ne>

</ when>
<price type="ask" val ue="55. 6875"/>
<price type="open" val ue="50. 25"/ >

<price type="dayhi gh" val ue="56"/>
<price type="dayl ow' value="52.9375"/>
<change>+5. 25</ change>

<vol ume>64282200</ vol une>

</ stock_quot e>
</ st ock_quot es>

The Java code for the example is as follows:

package exanpl es. xni . xpat h;

import java.io.File;

i mport webl ogi c.xm .stream Attribute;

i mport webl ogi c. xm . stream Start El enent;

i mport webl ogi c. xm . stream XM_.Event ;

i mport webl ogi c. xm . stream XM.I nput St r eam

i mport webl ogi c. xm . stream XM.I nput St r eanfact ory;
i mport webl ogi c. xm . stream XM.St r eanExcept i on;
i mport webl ogi c. xm . xpat h. St r eanXPat h;

i mport webl ogi c. xm . xpat h. XPat hExcepti on;

i mport webl ogi c. xm . xpat h. XPat hSt r eanfact ory;
i mport webl ogi c. xm . xpat h. XPat hSt r eamObser ver ;

/**

* This class provides a sinple exanple of howto use the StreanXPath
* APl

*

* @uthor Copyright (c) 2002 by BEA Systens, Inc.

|

public abstract class StreanmXPat hExanple {
public static void main(String[] ignored)

{

throws XPat hException, XM.StreanmException

/] Create instances of StreamXPath for two xpaths we want to match
/] against this tream

StreamXPat h symbol s =
new StreanXPat h("stock_quot es/ st ock_quote");
StreamXPat h openi ngPrices =
new StreanXPat h("stock_quot es/ st ock_quot e/ price[@ype='open']");

/] Create an XPathStreanfFactory.
XPat hStreanfactory factory = new XPat hStreanfFactory();

/I Create and install two XPathStreanmbservers. In this case, we
/'l just use to anonynous classes to print a nessage when a

/] callback is received. Note that a given observer can observe
/1 nmore than one xpath, and a given xpath can be observed by

/1 mutliple observers.

factory.install (synbols, new XPathStreanmtbserver () {
public void observe(XM.Event event) {
Systemout. println("Mtched a quote: "+event);

}

Developing XML Applications for Oracle WebLogic Server

G31686-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr

ORACLE

}

Chapter 5
Using the WebLogic XPath API

public void observeAttribute(StartEl enent e, Attribute a) {} //ignore

public void observeNamespace(StartEl enent e, Attribute a) {} //ignore

Ik

/1 Note that we get matches for both a start and an end el ements,
/1 even in the case of <price/> which is an enpty elenment - this
Il is the behavior of the underlying streanng parser.
factory.install (openingPrices, new XPathStreantbhserver () {
public void observe(XM.Event event) {
Systemout. println("Matched an opening price: "+event);

public void observeAttribute(StartEl ement e, Attribute a) {} //ignore
public void observeNanmespace(StartEl ement e, Attribute a) {} //ignore
1)
/1 get an XM.Input Stream on the docunent
String file = "stocks.xm";
XMLI nput St ream sour ceStream = XM.I nput St r eanfact ory. new nstance().
newl nput Strean{new File(file));
/1 use the factory to create an XM.InputStreamthat will do xpath
/1 mat ching against the source stream
XM.I nput St ream mat chi ngStream = factory. creat eStrean{sourceStrean;
Il now iterate through the stream
Systemout. println("Matching against xm streamfrom"+file);
whi | e(mat chi ngSt ream hasNext ()) {
/1 we don't do anything with the events in our exanple - the
/'l XPat hStreanObserver instances that we installed in the
/] factory will get callbacks for appropriate events
XM_Event event = matchingStream next();

}

Main Steps When Using the StreamXPath Class

The following procedure describes the main steps to use the StreanXPat h class to perform
XPath matching against an XML document represented as an XML.I nput St r eam

1.

Create a St reanXPat h object to represent the XPath expression you want to evaluate
against the XM.I nput St ream

StreamXPat h synbol s =
new StreamXPat h("st ock_quot es/ st ock_quote");

The following example shows an XPath expression that matches stock quotes using their
opening price:

StreamXPat h openingPrices = new StreanXPat h("stock_quot es/ st ock_quot e/
price[@ype='open']");

Create an XPat hSt r eanfact or y. Use this factory class to specify the set of St r eamXPat h
objects that you want to evaluate against an XM.I nput St r eamand to create observers
(using the XPat hSt r eantbser ver interface) used to register a callback whenever an XPath
match occurs. The following example shows how to create the XPat hSt r eanfact ory:

XPat hStreanfFactory factory = new XPat hStreanfFactory();

Create and install the observers using the XPat hSt reanfactory.instal | () method,
specifying the XPath expression with the first St r eanXPat h parameter, and an observer
with the second XPat hSt r eantbser ver parameter. The following example shows how to
use an anonymous class to implement the XPat hSt r eanObser ver interface. The

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE

Chapter 5
Using the WebLogic XPath API

implementation of the observe() method simply prints a message when a callback is
received. In the example, the observeAttribute() and obser veNanespace() methods do
nothing.

factory.install(synbols, new XPathStreantbserver () {
public void observe(XM.Event event) {
Systemout. println("Mtched a quote: "+event);

public void observeAttribute(StartEl enent e, Attribute a)
public void observeNanespace(StartEl enent e, Attribute a)

}
)

Create an XM.I nput St r eamfrom an XML document:

{}
{}

String file = "stocks. xm";

XMLI nput St ream sour ceStream =
XM.I nput St reanfact ory. newl nstance(). newl nput Strean{new File(file));

Use the creat eSt rean() method of the XPat hSt r eanfact ory to create a new
XM.I nput St r eamthat will perform XPath matching against the original XM.I nput St r eam

XMLI nput St ream mat chi ngStream =
factory. createStrean(sourceStrean;

Iterate over the new XMLInputStream. During the iteration, if an XPath match occurs, the
registered observer is notified:

whi | e(mat chi ngSt ream hasNext ()) {
XM.Event event = matchingStream next();

}

For additional API reference information about the WebLogic XPath API, see
webl ogi c. xm . xpat h in the Java API Reference for Oracle WebLogic Server.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 7

XML Programming Best Practices

This chapter describes the best programming practices to use when creating Java applications
that process XML data.
This chapter includes the following sections:

When to Use the DOM, SAX, and StAX APIs

You can parse an XML document with the DOM, SAX, or StAX APlIs. This section describes
the pros and cons of each API.

The DOM API is good for small documents, or those that contain under a thousand elements.
Because DOM constructs a tree of your XML data, it is ideal for editing the structure of your
XML document by adding or deleting elements.

The DOM API parses the entire XML document and converts it into a DOM tree before you can
begin processing it. This cost might be beneficial if you know that you need to access the
entire document. If you occasionally need to access only part of the XML document, the cost
could decrease the performance of your application with no added benefit. In this case the
SAX or StAX API is preferable.

The SAX APl is the most lightweight of the APIs. It is ideal for parsing shallow documents
(documents that do not contain much nesting of elements) with unique element names. SAX
uses a callback structure; this means that programmers handle parsing events as the API is
reading an XML document, which is a relatively efficient and quick way to parse.

However, the callback nature of SAX also means that it is not the best API to use if you want to
modify the structure of your XML data. Additionally, programming your application to handle
callbacks is not always straight-forward and intuitive.

The StAX APl is based on SAX, so all the reasons for using SAX also apply to the StAX API. In
addition, the StAX API is more intuitive to use than SAX, because programmers ask for events
rather than react to them as they happen. The StAX API is also best if you plan to pass the

entire XML document as a parameter; it is easier to pass an input stream than it is to pass SAX
events. Finally, the StAX API was designed to be used when binding XML data to Java objects.

Increasing Performance of XML Validation

If the performance of your XML application decreases due to a parser validation issue, and you
need to validate your XML documents, you might improve the performance of your application
by writing your own customized code that validates the data as it is being received or parsed,
rather than using the set Val i dati ng() method of the Docunent Bui | der Fact ory or

SaxPar ser Factory.

When you turn on validation while parsing an XML document with SAX or DOM, the parser
might do more validation of the document than you really need, thus decreasing the overall
performance of the application. Instead, consider choosing certain points during the parsing of
the document when you want to check that the XML document is valid, and add your own Java
code at those points.

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 3

ORACLE’

Chapter 6
When to Use XML Schemas or DTDs

For example, assume you are writing an application that uses the WebLogic XML Streaming
API to processes an XML purchase order. Because you know that the first element of the
document should be <pur chase_or der >, you can quickly verify that the document appears to
be valid by pulling the first element off the stream and checking its name. This check does not
ensure that the entire XML document is valid, of course, but you can continue checking for
known elements as you pull elements from the stream. These quick checks are much faster
than using the standard set Val i dati ng() methods.

When to Use XML Schemas or DTDs

There are two ways to describe the structure of an XML document: DTDs and XML Schemas.

The current trend is to use Schemas to describe XML documents. Schemas are much more
expressive than DTDs because the set of available data types to describe XML elements is
much richer and you can describe more specifically what is valid in an XML document. In
addition, you can only use Schemas, and not DTDs, in SOAP messages. Because SOAP is
the main messaging protocol used in Web services, consider using Schemas to describe any
XML documents that might be used as either input or output parameters to Web services.

Still, DTDs have a few advantages. DTDs are more widely supported than Schemas, although
that is changing rapidly. Because DTDs are less expressive than Schemas, they are easier to
write and manage.

However, Oracle recommends that you use Schemas to describe your XML documents.

Configuring External Entity Resolution for Maximum Performance

Oracle highly recommends you store external entities locally whenever possible rather than
always retrieving the entity over the network. Storage improves the performance of your
applications because it is much faster to look up an entity on the same machine as WebLogic
Server than it is to look it up over a network connection.

For detailed information on configuring external entity resolution for WebLogic Server, see
External Entity Configuration Tasks.

Using SAX InputSources

When you use the SAX API to parse an XML document, you first create an | nput Sour ce object
from the XML document and then pass the | nput Sour ce object to the parse() method. You
can create the | nput Sour ce object from either a j ava. i 0. I nput St reamor j ava. i 0. Reader
object based on your XML data.

Oracle recommends that you create an | nput Sour ce from aj ava. i o. | nput St r eamobject
whenever possible. When passed an | nput St r eamobject, the SAX parser auto-detects the
character encoding of the XML data and automatically instantiates an | nput St r eanReader
object for you, using the correct character encoding. In other words, the parser does all the
character encoding work for you, which is more likely to be error-free at runtime than if you
decide to specify the character encoding yourself.

Improving Performance of Transformations

XSLT is a language for transforming an XML document into a different format, such as another
XML document, HTML, WML, and so on. To use XSLT, you create a stylesheet that defines
how each element in the input XML document should be transformed in the output document.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 3

ORACLE Chapter 6
Improving Performance of Transformations

Although XSLT is a powerful language, creating stylesheets for complex transformations can
be very complicated. In addition, the actual transformation requires a lot of resources and
might decrease the performance of your application.

Therefore, if your transformations are complex, consider writing your own transformation code
in your application rather than using XSLT stylesheets. Also consider using the DOM API. First
parse the XML document, manipulate the resulting DOM tree as needed, then write out the
new document, using custom Java code to transform it into its final format.

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 3

XML Programming Techniques

This chapter describes specific XML programming techniques for developing a Jakarta EE
application with WebLogic Server that processes XML data.
This chapter includes the following sections:

Transmitting XML Data Between A Jakarta Client and WebLogic

Server

In a typical Jakarta EE application, a client application sends XML data to a servlet or a JSP
that processes the XML data. The servlet or JSP then either sends the data on to another
Jakarta EE component, such as a JMS destination or an EJB, or sends the processed XML
data back to the client in the form of another XML document.

To send XML data from a Jakarta client to a WebLogic Server-hosted servlet or JSP which
then returns the data to the client, use the j ava. net . URLConnect i on class. This class
represents the communication link between an application and an URL, which in this case is
the URL that invokes the servlet or JSP. Instances of the URLConnect i on class send the XML
document using the HTTP POST method.

The following Jakarta client program from the WebLogic XML examples shows how to transmit
XML data between the program and a JSP:

i mport java.net.*;
import java.io.*;
import java.util.*;
public class dient {
public static void main(String[] args) throws Exception {
if (args.length < 2) {
Systemout. println("Usage: java exanples.xm .Cient URL Filenane");
}

el se {
try {
URL url = new URL(args[0]);
String document = args[1];
Fi | eReader fr = new Fil eReader (docunent);
char[] buffer = new char[1024*10];
int bytes_read = 0;
if ((bytes_read = fr.read(buffer)) !=-1)
{
URLConnection urlc = url.openConnection();
urlc. set Request Property(" Content- Type", "text/xm");
urlc. set DoQut put (true);
urlc. set Dol nput (true);
PrintWiter pw = new PrintWiter(urlc.getCQutputStream));
Il send xm to jsp
pw.wite(buffer, 0, bytes_read);
pw. cl ose();
Buf f eredReader in = new Buf f eredReader (new
I nput St reanReader (url c. getl nput Stream()));
String inputlLine;
while ((inputLine = in.readLine()) !'= null)
System out. println(inputLine);

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 3

ORACLE Chapter 7
Handling XML Documents in a JMS Application

in.close();

}

}
catch (Exception e) {

e.printStackTrace();

}
}
}
}

The example shows how to open a URL connection to the JSP by using a URL from the
argument list; obtain the output stream from the connection; and print the XML document
provided in the argument list to the output stream, thus sending the XML data to the JSP. The
example then shows how to use the get | nput St rean{) method of the URLConnect i on class to
read the XML data that the JSAP returns to the client application.

The following code segments from a sample JSP show how the JSP receives XML data from
the client application, parses the XML document, and sends XML data back:

Buf f eredReader br = new Buf f er edReader (request . get Reader());
Docurrent Bui | der Fact ory fact = Document Bui | der Fact ory. newl nstance();
Docurmrent Bui | der db = fact. newDocunent Bui | der () ;

Document doc = db. parse(new | nput Source(br));

PrintWiter responseWiter = response.getWiter();
responseWiter.println("<?xm version="1.0"?>");

For detailed information on programming WebLogic servlets and JSPs, see Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

Handling XML Documents in a JMS Application

WebLogic Server provides the following extensions to some Jakarta Message (JMS) classes to
handle XML documents in a JMS application:

* webl ogi c. j ns. ext ensi ons. W.Sessi on, which extends the JMS class
jakarta.jns. Session

* webl ogi c.] ns. ext ensi ons. W.QueueSessi on, which extends the JMS class
jakarta.jnms. QueueSessi on

e webl ogi c. | ns. ext ensi ons. W.Topi cSessi on, which extends the JMS class
jakarta.jns. Topi cSessi on

e webl ogi c. j ns. ext ensi ons. XM_Message, which extends the JMS class
jakarta.jns. Text Message

If you use the XM_Message class to send and receive XML documents in a JMS application,
rather than the more generic Text Message class, you can use XML-specific message selectors
to filter unwanted messages. In particular, you can use the method JM5_BEA SELECT to specify
an XPath query to search for an XML fragment in the XML document. Based on the results of
the query, a message consumer might decide not to receive the message, thus possibly
reducing network traffic and improving performance of the JMS application.

To use the XM_LMessage class to contain XML messages in a JMS application, you must create
either a W.QueueSessi on or W.Topi cSessi on object, depending on whether you want to use
JMS queues or topics, rather than the generic QueueSessi on or Topi cSessi on objects, after

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 3

ORACLE’

Chapter 7
Accessing External Entities That Do Not Have an HTTP Interface

you have created a JMS Connect i on. Then use the cr eat eXM_.Message() method of the
W Sessi on interface to create an XM_LMessage object.

For detailed information on using XM_Message objects in your JMS application, see Developing
JMS Applications for Oracle WebLogic Server.

Accessing External Entities That Do Not Have an HTTP Interface

WebLogic Server can retrieve and cache external entities that reside in external repositories,
as long as they have an HTTP interface, such as a URL, that returns the entity. See External
Entity Configuration Tasks for detailed information on using the XML Registry to configure
external entities.

If you want to access an external entity that is stored in a repository that does not have an
HTTP interface, you must create an interface. For example, assume you store the DTDs for
your XML documents in a database table, with columns for the system id, public id, and text of
the DTD. To access the DTD as an external entity from a WebLogic XML application, you could
create a servlet that uses JDBC to access the DTDs in the database.

Because you invoke servlets with URLs, you now have an HTTP interface to the external
entity. When you create the entity registry entry in the XML Registry, you specify the URL that
invokes the servlet as the location of the external entity. When WebLogic Server is parsing an
XML document that contains a reference to this external entity, it invokes the servlet, passing it
the public and system id, which the servlet can internally use to query the database.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 3

XML Application Scoping

This chapter describes application scoping and how to configure parsers, transformers,
external entities, and the external entity cache for a particular application.
This chapter includes the following sections:

Overview of Application Scoping

Application scoping refers to configuring resources for a particular enterprise application rather
than for an entire WebLogic Server configuration. In the case of XML, these resources include
parser, transformer, external entity, xpath, schema, xmlinput, xmlOutput, xmIEntity and external
entity cache configuration. The main advantage of application scoping is that it isolates the
resources for a given application to the application itself. Using application scoping, you can
configure different parsers for different applications, store the DTDs for an application within
the EARfile or exploded enterprise directory, and so on.

Another advantage of using application scoping is that by associating the resources with the
EAR file, you can run this EAR file on another instance of WebLogic Server without having to
configure the resources for that server.

To configure XML resources for a particular application, you add information to the webl ogi c-
application.xm deployment descriptor file located in the META- | NF directory of the EAR file or
exploded enterprise application directory.

@® Note

You use the WebLogic Remote Console to configure parser, transformer, and external
entity resources for a WebLogic Server instance, as described in Administering
WebLogic Server XML.

The weblogic-application.xml File

The webl ogi c-appl i cation. xnl file is the WebLogic Server-specific deployment descriptor for
an enterprise application. It contains configuration information about the XML, JDBC, and EJB
resources used by an enterprise application. The standard Jakarta EE deployment descriptor
is called appl i cation.xn .

The following sample webl ogi c-appl i cation. xnl file shows how to configure XML resources
for an enterprise application; the body of the various elements are shown in bold:
<webl ogi c- appl i cati on>
<xni >
<parser-factory>
<saxparser-factory>
com.sun.org.apache._xerces. internal . jaxp.SAXParserFactorylImpl
</ saxpar ser-factory>

<document - bui | der-fact ory>
com.sun.org.apache.xerces. internal . jaxp.DocumentBuilderFactorylmpl

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE

Chapter 8
The weblogic-application.xml File

</ docunent - bui | der-factory>
<transfornmer-factory>
com.sun.org.apache.xalan.internal .xsltc.trax.TransformerFactorylmpl
</transforner-factory>
<xpat h-factory>
com.sun.org.apache.xpath. internal. jaxp.XPathFactorylmpl
</ xpath-factory
<schema- factory>
com.sun.org.apache.xerces.internal.jaxp.validation.XMLSchemaFactory
</ schena-factory>
<xm -input-factory>
com.ctc.wstx.stax.WstxInputFactory
</xm -input-factory>
<xnl - out put -factory>
com.ctc.wstx.stax.WstxOutputFactory
</ xm -out put-factory>
<xn -event-factory>
com.ctc.wstx.stax.WstxEventFactory
</ xm -event-factory>

</ parser-factory>
<entity-nmappi ng>

<entity- mappi ng- name>My Mapping</entity- mappi ng- name>
<public-id>-//BEA Systems, Inc.//DTD for cars//EN</public-id>
<systemi d>http://www.bea.com/dtds/car.dtd</ systemi d>
<entity-uri>dtds/car.dtd</entity-uri>

</ entity-mppi ng>
</ xm >
</ webl ogi c-appl i cation>

The main element for configuring XML resources is <xnl >. Figure 8-1 describes the sub-
elements of the <xm > element; the sections following this figure describe each element.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 7

ORACLE Chapter 8
The weblogic-application.xml File

Figure 8-1 Sub-Elements of the <xmlI> Element in weblogic-application.xml

=—

weblogic-application
L xml

— parser-factory

— saxparser-factory

— document-builder-factory

— transformer-factory

|
|
N —)

— entity-mapping-name
— public-id
— system-id
— entity-url

— when-to-cache

'— cache-timeout-interval

Basic Key

Optional
One or more

Zero or more

xml

The main element for configuring XML resources, such as parsers, transformers, external
entities, and the external entity cache for an enterprise application.

parser-factory

The parent element for specifying a particular parser or transformer for an enterprise
application.

saxparser-factory

Element that specifies the factory class to be used for SAX style parsing in this application. If
this element is not specified, the default SAX parser factory specified for the WebLogic Server
instance is used.

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE Chapter 8
The weblogic-application.xml File

document-builder-factory

Element that specifies the factory class to be used for DOM style parsing in this application. If
this element is not specified, the default DOM parser factory specified for the WebLogic Server
instance is used.

transformer-factory

Element that specifies the factory class to be used when transforming documents using the
j avax. xnl . t ransf or mpackages in this application. If this element is not specified, the default
XSLT transformer factory specified for the WebLogic Server instance is used.

schema-factory

Element that enables applications deployed to WebLogic Server to configure and obtain a
Schema object used to validate XML documents using schema. If this element is not specified,
the default schema factory specified for the WebLogic Server instance is used.

xpath-factory

Element that enables applications deployed to WebLogic Server to configure and obtain a
XPat h object used to search XML elements. If this element is not specified, the default XPath
factory specified for the WebLogic Server instance is used.

xml-input-factory

Element that enables applications deployed to WebLogic Server to configure and obtain a
XM_Event Reader / XMLSt r eanReader object used to read XML streams. If this element is not
specified, the default XML input factory specified for the WebLogic Server instance is used.

xml-output-factory

Element that enables applications deployed to WebLogic Server to configure and obtain a
XM_Event Wi ter/ XM.Stream/ it er object used to write XML streams. If this element is not
specified, the default XML output factory specified for the WebLogic Server instance is used.

xml-event-factory

Element that enables applications deployed to WebLogic Server to configure and obtain a
XM.Event object used to parse or build XML streams. If this element is not specified, the
XMLEvent factory specified for the WebLogic Server instance is used.

entity-mapping

The parent element for mapping an entity declaration in an XML file to a local copy of the
entity, such as a DTD or Schema.

entity-mapping-name

Element that specifies the name of the entity mapping declaration.

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE Chapter 8
Configuring a Parser or Transformer for an Enterprise Application

public-id
Element that specifies the public ID of the entity, such as:

-/ BEA Systens, Inc.//DID for cars//EN

system-id
Element that specifies the system ID of the entity, such as:

http:// ww. bea. conf dtds/ car. dtd

entity-uri
Element that specifies the URI of the entity. The path is relative to the main directory of the

EAR archive or the exploded directory.

For example, dt ds/ car. dt d indicates that there is a directory called dt ds in the main EAR
archive (parallel to the META- | NF directory) and it contains a file called car . dt d.

when-to-cache

Element that specifies when you should cache the external entity. Valid values are:

e cache-on-ref erence—WebLogic Server caches the external entity referenced by a URL
the first time the entity is referenced in an XML document.

e cache-at-initializati on—WebLogic Server caches the entity when the server starts.
e cache- never —WebLogic Server never caches the external entity.

The default value is cache- on-r ef er ence.

cache-timeout-interval

Element that specifies the number of seconds after which the cached external entity becomes
stale, or out-of-date. WebLogic Server re-retrieves the external entity from the specified URL or
pathname relative to the main directory of the EAR archive or exploded directory if the cached
copy has been in the cache for longer than this interval.

The default value for this field is 120 seconds.

Configuring a Parser or Transformer for an Enterprise Application

You can specify that an XML application use a parser or transformer different from the default
parser or transformer configured for WebLogic Server by updating the webl ogi c-
application. xm file of the EAR file or exploded directory that contains the XML application.

To configure a parser or transformer, other than the default, for an enterprise application, follow
these steps:

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE

1.

Chapter 8
Configuring an External Entity for an Enterprise Application

@® Note

The following factory types follow the same process detailed below: XPat hFact ory,
SchemaFact ory, XM.I nput Fact ory, XM_.Qut put Fact ory and XM.Event Fact ory.

Use the <par ser - f act or y> sub-element of the <xnl > element to configure factory classes
for both SAX and DOM style parsing and for XSLT transformations for the enterprise
application, as shown in the following example:

<parser-factory>
<saxparser-factory>
com.sun.org.apache.xerces.internal . jaxp.SAXParserFactorylImpl
</ saxpar ser-factory>
<docunent - bui | der - fact ory>
com.sun.org.apache.xerces. internal.jaxp.DocumentBuilderFactorylmpl
</ docunent - bui | der-factory>
<transformer-factory>
com.sun.org.apache.xalan.internal .xsltc.trax.TransformerFactorylmpl
</transforner-factory>
</ parser-factory>

The application corresponding to this webl ogi c- appl i cation. xm file uses the

com sun. or g. apache. xerces. i nternal . j axp. SAXPar ser Fact or yl npl factory class for
SAX style parsing, the

com sun. or g. apache. xerces. i nternal . j axp. Document Bui | der Fact oryl npl factory class
for DOM style parsing, and the

com sun. or g. apache. xal an. i nternal . xsl tc. trax. Transf or mer Fact oryl npl class for
XSLT transformations.

If you want the parser or transformer classes to be local to the EAR archive, put the JAR
file that contains the classes anywhere you want in the EAR file, then update the O ass-
Pat h variable in the META- | NF/ MANI FEST. MF file.

For example, if you put the parser or transformer classes in a JAR file called nypar ser. j ar
in the directory | i b/ xm , update the MANI FEST. M file as shown:

Mani f est-Version: 1.0
Created-By: 1.3.1 01 (Sun Mcrosystems Inc.)
C ass-Path: |ib/xm/nyparser.jar

If you want to store the parser or transformer classes in a location other than the EAR
archive, be sure that you update the WebLogic Server CLASSPATH variable to include the
full pathname of the JAR file that contains the classes.

Configuring an External Entity for an Enterprise Application

You can store a local copy of an external entity, such as a DTD, in the EAR archive or
exploded directory rather than always retrieving it from the Web.

To configure an external entity for an enterprise application:

1.
2.
3.

Create the directory | i b/ xm / r egi st ry under the main directory of the EAR archive.
Copy the external entity, such as a DTD, to the directory.

Update the webl ogi c- appl i cation.xm file, using the <enti ty- mappi ng> sub-element of
the <xn > element to map the name of the entity to entity declarations in any XML files
processed by the application, as shown in the following example:

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE’

Chapter 8
Configuring the External Entity Cache for an Enterprise Application

<entity- mappi ng>
<entity-mappi ng- nane>My Mapping</entity- mappi ng- name>
<public-id>-//BEA Systems, Inc.//DTD for cars//EN</public-id>
<system i d>http://www.bea.com/dtds/car.dtd</systemi d>
<entity-uri>dtds/car.dtd</entity-uri>

</entity-mappi ng>

In the example, a local copy of a DTD called car. dt d is stored in the | i b/ xm / regi stry/
dt ds directory under the main directory of the EAR archive or exploded directory. The
public ID of the entity is -// BEA Systens, Inc.//DID for cars//ENand the systemid is
http://ww. bea. conf dt ds/ car . dt d. Whenever the application is parsing an XML file and
it encounters an entity declaration using either one of the IDs, it will substitute the car. dtd
file.

® Note

Specify an <ent it y- mappi ng> element for each entity declaration for which you
want to map a local copy of the entity.

Configuring the External Entity Cache for an Enterprise
Application

You can specify that WebLogic Server cache external entities that are referenced with a URL
or a pathname relative to the main directory of the EAR archive, either at server-startup or
when the entity is first referenced.

Caching the external entity saves the remote access time and provides a local backup in the
event that the Administration Server cannot be accessed while an XML document is being
parsed, due to the network or the Administration server being down.

You can configure the expiration date of a cached entity, at which point WebLogic Server re-
retrieves the entity from the URL or directory of the EAR and re-caches it.

Use the <when-t 0- cache> and <cache-t i meout - i nt er val > subelements of the <entity-
mappi ng> element to configure external entity caching for an enterprise application, as shown
in the following example:

<entity- mappi ng>
<entity- mappi ng- name>My Mapping</entity- mappi ng- nane>
<public-id>-//BEA Systems, Inc.//DTD for cars//EN</public-id>
<system i d>http://www.bea.com/dtds/car.dtd</systemi d>
<entity-uri>dtds/car.dtd</entity-uri>
<when-t 0- cache>cache-at-initialization</ when-t o-cache>
<cache-ti meout -i nterval >300</ cache-ti meout -i nterval >

</ entity-mappi ng>

In the example, the car. dt d is stored in the | i b/ xm / r egi st ry/ dt ds directory under the main
directory of the EAR archive or exploded directory. WebLogic Server caches a copy of the DTD
in its memory when it first starts up, and then refreshes the cached copy if it is stored for longer
than 300 seconds.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 7

Administering WebLogic Server XML

This chapter describes administering XML in WebLogic Server using the XML Registry, which
is accessed through the WebLogic Remote Console.
This chapter includes the following sections:

Overview of Administering WebLogic Server XML

You access the XML Registry through the WebLogic Remote Console and use it to configure
WebLogic Server for XML applications. To access the WebLogic Remote Console, see Get
Started in the Oracle WebLogic Remote Console Online Help.

XML Administration Tasks

You create, configure, and use the XML Registry using the WebLogic Remote Console. Using
the WebLogic Remote Console XML Registry has several benefits:

Configuration of XML Registry changes take effect automatically at run time, provided you
use JAXP in your XML applications.

When you make changes to the XML Registry, it is not necessary to change your XML
application code.

Entity resolution is done locally. You can use the XML Registry either to define a local copy
of an entity or to specify that WebLogic Server cache an entity from the Web for a specified
duration and use the cached copy rather than the one out on the Web.

You can use the XML Registry to specify:

An alternative server-wide XML parser instead of the default parser.
An XML parser per document type.
An alternative server-wide transformer instead of the default transformer.

External entities that are to be resolved by using local copies of the entities. Once you
specify these entities, the Administration Server stores local copies of them in the file
system and automatically distributes them to the server's parser at parse time. This feature
eliminates the need to construct and set SAX EntityResolvers.

External entities to be cached by WebLogic Server after retrieval from the Web. You
specify how long these external entities should be cached before WeblLogic Server re-
retrieves them and when WebLogic should first retrieve the entities, either at application
run time or when WebLogic Server starts.

These capabilities are for use on the server side only.

How the XML Registry Works

You can create as many XML Registries as you like; however, you can associate only one XML
Registry with a particular instance of WebLogic Server.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 4

ORACLE

Chapter 9
XML Parser and Transformer Configuration Tasks

If an instance of WebLogic Server does not have an XML Registry associated with it, then the
default parser and transformer are used when parsing or transforming documents. The default
parser and transformer are those included in the JDK.

Once you associate an XML Registry with an instance of WebLogic Server, all XML
configuration options are available for XML applications that use that server.

You can make the following types of entries for a given XML registry:

e Configure parsers and transformers.

» Configure external entity resolution.

® Note

The XML Registry is case sensitive. For example, if you are configuring a parser
for an XML document type whose root element is <CAR>, you must enter CAR in the
Root Element Tag field and not car or Car.

Parser Selection Within the XML Registry

The XML Registry is automatically consulted whenever you use JAXP to parse or transform
your XML applications. WebLogic Server follows an ordered lookup when determining which
parser class to load:

1. Use the parser defined for a particular document type.

2. Use the alternative server-wide parser defined in the XML Registry associated with the
WebLogic Server instance.

3. Use the default parser (the parser included in the JDK).

The process is also true for transformers, except for the first step, because you cannot define a
transformer for a particular document type.

Additionally, when WebLogic Server starts, a SAX entity resolver is automatically set so that it
can resolve entities that are declared in the registry. As a result, users are not required to
modify their XML application code to control the parsers used, or to set the location of local
copies of external entities. The parser being used and the location of the external entity is
controlled by the XML Registry.

@® Note

If you elect to use an API provided by a parser instead of JAXP, the XML Registry has
no effect on the processing of XML documents. For this reason, it is highly
recommended that you always use JAXP in your XML applications.

XML Parser and Transformer Configuration Tasks

By default, WebLogic Server is configured to use the default parser and transformer to parse
and transform XML documents. The default parser and transformer are those included in the
JDK. As long as you use the default, you do not have to perform any configuration tasks for
your XML applications. If you want to use a parser or transformer other than the default, you
must use the XML Registry to configure them.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 4

ORACLE Chapter 9
External Entity Configuration Tasks

Configuring a Parser or Transformer Other Than the Default

First, you have to create an XML registry that defines SAX and DOM parsers and transformers.
Then, you associate (or plug-in) the new XML Registry with an instance of WebLogic Server so
that the server starts to use the new parsers and transformer.

@® Note

You can plug-in only those parsers and transformers that are compatible with the
default WebLogic Server parser transformer. The default parser and transformer are
those that are included in the JDK.

Follow the steps outlined in Create an XML Registry in the Oracle WebLogic Remote Console
Online Help.

Configuring a Parser for a Particular Document Type

When you configure a parser for a particular document type, you can use the document's
system id, public id, or root element to identify the document type.

@® Note

WebLogic Server searches only the first 1000 bytes of an XML document when
attempting to identify its document type. If it does not find a DOCTYPE identifier in
those first 1000 bytes, it stops searching the document and uses the parser configured
for the WebLogic Server instance to parse the document.

To configure a parser for a particular document type, see Step 4 under Create an XML Registry
in the Oracle WebLogic Remote Console Online Help.

External Entity Configuration Tasks

Use the XML Registry to configure external entity resolution and to configure and monitor the
external entity cache.

Configuring External Entity Resolution

You can configure external entity resolution with WebLogic Server in the following two ways:

e Physically copy the entity files to a directory accessible by WebLogic Administration Server
and specify that the Administration Server use the local copy whenever the external entity
is referenced in an XML document.

e Specify that a Managed Server cache external entities that are referenced with a URL or a
pathname relative to the Administration Server, either at server startup or when the entity is
first referenced.

Caching the external entity in a Managed Server saves the remote access time and
provides a local backup in the event that the Administration Server cannot be accessed

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 4

ORACLE Chapter 9
External Entity Configuration Tasks

while an XML document is being parsed, due to the network or the Administration Server
being down.

You can configure the expiration date for a cached entity, at which point WebLogic Server
re-retrieves the entity from the URL or Administration Server and re-caches it.

Configuring the External Entity Cache

You can configure the following properties of the external entity cache:

e Size, in KB, of the cache memory. The default value for this property is 500 KB.
e Size, in MB, of the persistent disk cache. The default value for this property is 5 MB.

* Number of seconds after which external entities in the cache become stale after they have
been cached by WebLogic Server. This is the default value for the entire server - you can
override this value for specific external entities when you configure the entity. The default
value for this property is 120 seconds (2 minutes).

To configure the external entity cache, see Create an XML Entity Cache in the Oracle
WebLogic Remote Console Online Help.

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 4

XML Reference

This appendix provides links to additional information about the XML specifications, application
programming interfaces (APIs), and tools supported by WebLogic Server.
This appendix includes the following sections:

XML APIs

SAX 2.0 API, at htt p: //wwv. saxproj ect.org/

DOM (Document Object Model) Level 2 Specification, at ht t p: / / www. w3. or g/ TR/ DOW
Level - 2/

JAXP API specification, at ht t ps: // docs. oracl e. cond en/ j ava/ j avase/ 17/ docs/ api /
java. xm / nodul e- sunmary. ht m

Code Examples

XML code examples and supporting documentation are optionally included in the WebLogic
Server ORACLE_HOVE\ wl ser ver\ sanpl es\ server directory, where ORACLE_HOVE represents the
directory in which you installed WebLogic Server. For more information about the WebLogic
Server code examples, see Sample Applications and Code Examples in Understanding Oracle
WeblLogic Server.

Related WebLogic Server Documentation

Developing JAX-WS Web Services for Oracle WebLogic Server

Developing Jakarta Enterprise Beans Using Deployment Descriptors
Developing JMS Applications for Oracle WebLogic Server

Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Tutorials and Online Courses

A Technical Introduction to XML, available at htt p: // ww. xm . coml pub/ a/ 98/ 10/
gui de0. ht m

XML Authoring Tutorial, available at ht t p: / / www. xm . com pub/ a/ ar chi ve

Tutorials for using the Java 2 platform and XML technology available at ht t p: //
devel operlife.com

XML, Java, and the Future of the Web, available at ht t p: / / www. X . coml pub/ a/ w3j /
s3. bosak. ht m

Chapter 17 of the XML Bible: XSL Transformations, available at htt p: //
met al ab. unc. edu/ xm / books/ bi bl e/ updat es/ 14. ht m

XSL Tutorial by Miloslav Nic, available at htt p: // zvon. or g/ xxI / XSLTut ori al / Qut put/
i ndex. ht m

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-1 of A-2

http://www.saxproject.org/
http://www.w3.org/TR/DOM-Level-2/
http://www.w3.org/TR/DOM-Level-2/
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/module-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/module-summary.html
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/a/98/10/guide0.html
https://www.xml.com/pub/a/archive
http://developerlife.com
http://developerlife.com
http://www.xml.com/pub/a/w3j/s3.bosak.html
http://www.xml.com/pub/a/w3j/s3.bosak.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://zvon.org/xxl/XSLTutorial/Output/index.html
http://zvon.org/xxl/XSLTutorial/Output/index.html

ORACLE’

Appendix A
Other XML Specifications and Information

XML Schema Part 0: Primer, available at ht t ps: //ww. w3. or g/ TR/ xm schema- 0/

Other XML Specifications and Information

XML 1.0 specification, available at ht t p: / / www. w3. or g/ TR/ REC- xm /
XMLSchema Part 1: Structures, available at ht t p: / / www. W3. or g/ TR/ xml schena- 1/

XML Schema Part 2: Datatypes, available at ht t p: / / www. W3. or g/ TR/ xm schema- 2
Namespaces in XML, available at ht t p: / / www. w3. or g/ TR/ REC- xni - nanes/

Extensible Stylesheet Language (XSL) 1.0 Specification, available at http: //
www. W3. or g/ TR/ xsl /

JSR-000031 XML Data Binding Specification, available at http://jcp. org/en/jsr/
det ai | ?i d=031

XML Path Language (XPath) Version 1.0 Specification, available at http://
www. W3. or g/ TR/ xpat h

XML Linking Language (XLink) Specification, available at ht t p: / / www. W3. or g/ TR/ xl i nk

XML Pointer Language (XPointer) Specification, available at ht t p: / / waw. w3. or g/ TR WD
xptr

W3C (World Wide Web Consortium) home page at ht t p: / / www. w3c. or g

XML.com home page at htt p: // www. xmi . com

XML.org, The XML Industry Portal, available at ht t p: / / www. xn . or g/

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-2 of A-2

https://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/xsl/
http://jcp.org/en/jsr/detail?id=031
http://jcp.org/en/jsr/detail?id=031
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xlink
http://www.w3.org/TR/WD-xptr
http://www.w3.org/TR/WD-xptr
http://www.w3c.org
http://www.xml.com
http://www.xml.org/

Using the WebLogic XML Streaming API
(Deprecated)

This appendix describes how to use the WebLogic XML Streaming API to parse and generate
XML documents.

@® Note

The WebLogic XML Streaming API has been deprecated as of release 9.0 of
WebLogic Server. You should instead use the Streaming API for XML (StAX), a
standard specification from the Java Community Process. For details, see Using the
Streaming API for XML (StAX).

This appendix includes the following sections:

Overview of the WebLogic XML Streaming API

The WebLogic XML Streaming API provides an easy and intuitive way to parse and generate
XML documents. It is similar to the SAX API, but enables a procedural, stream-based handling
of XML documents rather than requiring you to write SAX event handlers, which can get
complicated when you work with complex XML documents. In other words, the streaming API
gives you more control over parsing than the SAX API.

When a program parses an XML document using SAX, the program must create event
listeners that listen to parsing events as they occur; the program must react to events rather
than ask for a specific event. By contrast, when you use the streaming API, you can
methodically step through an XML document, ask for certain types of events (such as the start
of an element), iterate over the attributes of an element, skip ahead in the document, stop
processing at any time, get sub-elements of a particular element, and filter out elements as
desired. Because you are asking for events rather than reacting to them, using the streaming
API is often referred to as pull parsing.

You can parse many types of XML documents with the streaming API, such as XML files on
the operating system, DOM trees, and sets of SAX events. You convert these XML documents
into a stream of events, or an XM.I nput St r eam and then step through the stream, pulling
events such as the start of an element, the end of the document, and so on, off the stack as
needed.

The WebLogic Streaming API uses the WebLogic FastParser as its default parser.

For a complete example of parsing an XML document using the streaming API, see the
ORACLE_HOVE\ W ser ver\ sanpl es\ server directory, where ORACLE_HOME represents the
directory in which you installed WebLogic Server. For more information about the WebLogic
Server code examples, see Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

Table B-1 describes the main interfaces and classes of the WebLogic Streaming API.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-1 of B-18

ORACLE’

Appendix B
Javadocs for the WebLogic XML Streaming API

Table B-1 Interfaces and Classes of the XML Streaming API
|

Interface or Class Description

XM.I nput St reanfact ory Factory used to create XMLI nput St r eamobjects for parsing XML
documents.

XM.I nput St ream Interface used to contain the input stream of events.

Buf f er edXMLI nput St r eam Extension of the XMLI nput St r eaminterface to allow marking and
resetting of the stream.

XMLQut put St r eanfact ory Factory used to create XMLQut put St r eamobjects for generating
XML documents.

XMLQut put St ream Interface used write events.

El ement Fact ory Utility to create instances of the interfaces used in this API.

XM_Event Base interface for all types of events in an XML document, such as
the start of an element, the end of an element, and so on.

Start El enent Most important of the XMLEvent sub-interfaces. Used to get
information about a start element in an XML document.

Attributelterator Object used to iterate over the set of attributes of an element.

Attribute Object that describes a particular attribute of an element.

Javadocs for the WebLogic XML Streaming API

The following Javadocs provide reference material for the WebLogic XML Streaming API
features described in this chapter as well as additional features not explicitly documented:

webl ogi c. xm . stream

webl ogi c. xm . stream uti |

Parsing an XML Document: Typical Steps

The following procedure describes the typical steps for using the WebLogic XML Streaming
API to parse and manipulate an XML document.

The first two steps are required. The next steps you take depend on how you want to process

the XML file.

1. Import the webl ogi c. xni . stream * classes.

2. Get an XML stream of events from an XML file, a DOM tree, or a set of SAX events. You
can also filter the XML stream to get only certain types of events, names of specific
elements, and so on. See Getting an XML Input Stream.

3. lterate over the stream, returning generic XMLEvent types. See lterating Over the Stream.

4. For each generic XMLEvent type, determine the specific event type. Event types include the
start of an XML document, the end of an element, an entity reference, and so on. See
Determining the Specific XMLEvent Type.

5. Get the attributes of an element. See Getting the Attributes of an Element.

6. Position the stream by skipping over event, skipping to a particular event, and so on. See
Positioning the Stream.

7. Get the children of an element. See Getting a Substream.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-2 of B-18

ORACLE

8. Close the stream. See Closing the Input Stream.

Example of Parsing an XML Document

The following program shows an example of using the XML Streaming API to parse an XML

document.

Appendix B
Parsing an XML Document: Typical Steps

The program takes a single parameter, an XML file, that it converts into an XML input stream. It
then iterates over the stream, determining the type of each event, such as the start of an XML
element, the end of the XML document, and so on. The program prints out information for
three types of events: start elements, end elements, and the character data that forms the
body of an element. The program does nothing when it encounters the other types of events,
such as comments or start of the XML document.

@® Note

The code in bold font is described in detail in the sections following the example.

package exanpl es. xm . stream

i nport webl ogi c.
i nport webl ogi c.
i nport webl ogi c.
i nport webl ogi c.
i nport webl ogi c.
i nport webl ogi c.
i nport webl ogi c.
i nport webl ogi c.
i nport webl ogi c.
i nport webl ogi c.
i nport webl ogi c.
i nport webl ogi c.
i nport webl ogi c.
i nport webl ogi c.
i nport webl ogi c.
i nport webl ogi c.
i nport webl ogi c.
i nport webl ogi c.
i nport webl ogi c.

xm
xm
xm
xm
xm
xm
xm
xm
xm
xm
xm
xm
xm
xm
xm
xm
xm
xm
xm

.stream Attribute;

.stream Attributelterator;

. stream ChangePr ef i xMappi ng;

. stream Char act er Dat a;

. stream Conmment ;

. stream XM_Event ;

. stream EndDocunent ;

. stream EndEl enent ;

.stream EntityRef erence;

. stream Processi nglnstruction;
. stream Space;

.stream St art Docunent ;
.stream Start PrefixMappi ng;
.stream Start El ement ;

. stream EndPref i xMappi ng;

. stream XM.I nput St ream

. stream XM.I nput St r eanfact ory;
. stream XM_Nane;

. stream XM.St r eanExcepti on;

inport java.io.FilelnputStream
i mport java.io.FileNot FoundExcepti on;
public class Conpl exParse {

/**

* Hel per method to get a handl e on a stream

*
*
*
*
*
*

/

Takes in a name and returns a stream This
met hod usese the | nputStreanfactory to create an
i nstance of an XM.I nput Stream
@aram nane The file to parse
@eturn XM.InputStreamthe streamto parse

public XM.I nput Stream get Strean(String nane)

throws XM.StreanException,

{

Fi | eNot FoundExcepti on

XMLInputStreamFactory factory = XMLInputStreamFactory.newlnstance();
XMLInputStream stream = factory.newlnputStream(new FilelnputStream(name));
return stream

}
/

* %

* Deternmines the type of event, such as the start

Developing XML Applications for Oracle WebLogic Server

G31686-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-3 of B-18

ORACLE

Appendix B
Parsing an XML Document: Typical Steps

* of an elenment, end of a docunment, and so on. |If the
* event is of type START_ELEMENT, END ELEMENT, or
* CHARACTER DATA, the method prints out appropriate info
* otherwise, it does nothing
* @aramevent The XM. event that has been parsed
*/
public void parse(XM.Event event)
throws XM.StreanException
{
switch(event.getType()) {
case XMLEvent.START_ELEMENT:
StartElement startElement = (StartElement) event;
System.out.print("'<" + startElement.getName().getQualifiedName());
Attributelterator attributes = startElement.getAttributesAndNamespaces();
while(attributes.hasNext()){
Attribute attribute = attributes.next();
System.out.print(" " + attribute.getName().getQualifiedName() +
"="" + attribute.getvalue() + """);
}
System.out.print(">");
break;
case XMLEvent.END_ELEMENT:
System.out.print(""</" + event.getName().getQualifiedName() +'">");
break;
case XMLEvent.SPACE:
case XMLEvent.CHARACTER_DATA:
CharacterData characterData = (CharacterData) event;
System.out.print(characterData.getContent());
break;
case XMLEvent.COMMENT:
// Print comment
break;
case XMLEvent.PROCESSING_INSTRUCTION:
// Print Processinglnstruction
break;
case XMLEvent.START_DOCUMENT:
// Print StartDocument
break;
case XMLEvent.END_DOCUMENT:
// Print EndDocument
break;
case XMLEvent.START_PREFIX_MAPPING:
// Print StartPrefixMapping
break;
case XMLEvent.END_PREFIX_MAPPING:
// Print EndPrefixMapping
break;
case XMLEvent.CHANGE_PREFIX_MAPPING:
// Print ChangePrefixMapping
break;
case XMLEvent.ENTITY_REFERENCE:
// Print EntityReference
break;
case XMLEvent.NULL_ELEMENT:
throw new XMLStreamException(Attempt to write a null event.");
default:
throw new XMLStreamException(*'Attempt to write unknown event
["+event.getType()+"1");
}
}

/**

* Helper method to iterate over a stream

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-4 of B-18

ORACLE

Appendix B
Parsing an XML Document: Typical Steps

* @aram name The file to parse

*/

public void parse(XMI nput Stream strean)
throws XM.StreanException

{
while(stream.hasNext()) {
XMLEvent event = stream.next();
parse(event);
stream cl ose();
}

/** Main nmethod. Takes a single argument: an XM file
* that will be converted into an XM. input stream
*/
public static void nmain(String args[])
throws Exception
{

Conpl exPar se conpl exPar se= new Conpl exPar se();
conpl exPar se. par se(conpl exPar se. get Strean(args[0]));
}
}

Getting an XML Input Stream

You can use the XML Streaming API to convert a variety of objects, such as XML files, DOM
trees, or SAX events, into a stream of events.

The following example shows how to create a stream of events from an XML file:

XM.I nput St reanfactory factory = XM.I nput Streanfact ory. newl nstance();
XM.I nput St ream stream = factory. new nput Strean(new Fi | el nput Strean{nanme));

First you create a new instance of the XM.I nput St r eanfact or y, then use the factory to create
a new XM.I nput St r eamfrom the XML file referred to in the nanme variable.

The following example shows how to create a stream from a DOM tree:

Docunent Bui | der Fact ory dbf = Docunent Bui | der Fact ory. newl nst ance() ;

dbf.set Val i dating(fal se);

dbf . set NamespaceAwar e(true);

Docurnent Bui | der db = dbf. newDocunent Bui | der ();

Docunment doc = db. parse(new java.io.File(file));

XM.I nput St ream stream = XM.I nput St r eanfact ory. newl nst ance() . new nput St rean(doc) ;

Getting a Buffered XML Input Stream

After you finish iterating over an XM.I nput St r eamobject, you cannot access the stream again.
If, however, you need to process the stream again, such as send it to another application or
iterate over it again in some other way, use a Buf f er edXM.| nput St r eamobject rather than a
plain XM | nput St r eamobject.

Use the newBuf f er edl nput St rean{) method of the XMLl nput St r eanfact ory class to create a
buffered XML input stream, as shown in the following example:

XM.I nput St reanfactory factory = XM.I nput Streanfact ory. newl nst ance();
Buf f er edXMLI nput St r eam buf stream =

factory. newBuf f er edl nput St rean(fact ory. newl nput St r ean(new

Fil el nput Streamnane)));

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-5 of B-18

ORACLE

Appendix B
Parsing an XML Document: Typical Steps

You can use the mar k() and reset () methods of the Buf f er edXM.I nput St r eamobject to mark
a particular spot in the stream, continue processing the stream, then reset the stream back to
the marked spot. See Marking and Resetting a Buffered XML Input Stream.

Filtering the XML Stream

Filtering an XML stream refers to creating a stream that contains only specified types of
events. For example, you can create a stream that contains only start elements, end elements,
and the character data that make up the body of an XML element. Another example is filtering
an XML stream so that only elements with a specified name appear in the stream.

To filter an XML stream, you specify a filter class as the second parameter to the

XM.I nput St r eanfact ory. newt nput St rean() method. You specify the events that you want in
the XML stream as parameters to the filter class. The following example shows how to use the
TypeFi | ter class to specify that you want only start and end XML elements and character data
in the resulting XML stream:

i mport webl ogic.xm .streamutil. TypeFilter;
XM.I nput St reanfact ory factory = XM.I nput Streanfact ory. newl nstance();
XM.I nput St ream stream = factory. new nput Strean(new Fi | el nput Strean(nane),
new TypeFi |t er (XM_LEvent. START_ELEMENT |
XMLEvent . END_ELEMENT |
XMLEvent . CHARACTER DATA)) ;

Table B-2 describes the filters provided by the WebLogic XML Streaming API. They are part of
the webl ogi c. xm . stream uti | package.

Table B-2 Filters Provided by WebLogic XML Streaming API
|

Name of Filter

Description Sample Usage

TypeFil ter

Filter an XML stream based on
specified event types, such as
XM_Event . START_ELEMENT,
XM_Event . END_ELEMENT, and so on.
See Determining the Specific
XMLEvent Type for a full list of event
types.

TypeFilter takes an integer bitmask as
input; you OR the values to create this
bitmask, as shown in the sample.

new TypeFilter (XM.Event.START_ELEMENT |
XM_Event . END_ELEMENT |
XM_Event . CHARACTER DATA)

NaneFi | t er

Filter an XML stream based on the
name of an element in the XML
document.

new NanmeFilter ("Book")

NameSpaceFi | t er Filter an XML stream based on the

specified namespace URI. new NameSpaceFilter ("http://namespace.org")

NamespaceTypeFi | t er Filter an XML stream based on

new NanmespaceFilter ("http://nanespace.org",

specified event types and namespace XMLEvent . START ELEMENT)

URI. This filter combines the
functionality of TypeFi | t er and

- The example returns a stream where all start elements
NameSpaceFi | ter. P

have the specified namespace.

Creating a Custom Filter

You can also create your own filter if the ones included in the APl do not meet your needs.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-6 of B-18

ORACLE

Appendix B
Parsing an XML Document: Typical Steps

Create a class that implements the El enent Fi | t er interface and contains a method called
accept (XMLEvent) . This method tells the XM.I nput St r eanfact ory. newl nput St r ean()
method whether to add a particular event to the stream or not, as shown in the following
example:

package ny.filters;

i mport webl ogi c. xm . stream XM.Nane;
i mport webl ogi c. xm . stream El ement Fil ter;
i mport webl ogi c. xm . stream events. Nul | Event;

public class SuperDooperFilter inplements ElenentFilter {
protected String nane;

public SuperDooperFilter(String name)
{

this.nane = nane;

}

public bool ean accept (XM.Event e) {
i f (name. equal s(e. get Nane(). get Local Name()))
return true;
return fal se;

}
}

In your XML application, be sure to import the new filter class:
import my.filters. SuperDooperFilter

Specify the filter as the second parameter to the newl nput St r ean() method, passing to the
filter class the types of events you want to appear in the XML stream in whatever format
required by your filter class:

XM.I nput St reanfactory factory = XM.I nput Streanfact ory. newl nstance();
XM.I nput St ream stream = factory. new nput Strean(new Fi | el nput Strean{ nane),
new Super Dooper Fil ter(param);

lterating Over the Stream

Once you have a stream of events, the next step is to methodically step through it using the
XM.I nput St ream next () and XM.I nput St ream hasNext () methods, as shown in the following
example:

whi | e(stream hasNext ()) {
XM_Event event = stream next();
System out. print(event);

Determining the Specific XMLEvent Type

The XML.I nput St r eam next () method returns an object of type XM_Event . XM_LEvent has
subinterfaces that further classify what this event might be, such as the start of the XML
document, the end of an element, an entity reference, and so on. The XM_.Event interface also
contains corresponding fields, or constants, as well as a set of methods that you can use to
identify the actual event. Figure B-1 shows the hierarchy of the XMLEvent interface and its
subinterfaces.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-7 of B-18

ORACLE’

Appendix B

Parsing an XML Document: Typical Steps

Figure B-1 Hierarchy of the XMLEvent Interface and Its Subinterfaces

XMLEvent

StartElement

EndElement

StartDocument

EndDocument

Comment
CharacterData 4—[
Space

EntityReference
Processinglnstruction

StartPrefixMapping

ChangePrefixMapping

EndPrefixMapping

Table B-3 lists the subclasses and fields of the XMLEvent class that you can use to identify a
particular event while parsing the XML stream

Table B-3 Subclasses and Fields of the XMLEvent Class
]

XMLEvent Subclass

Field of the XMLEvent Class

used to Identify Subclass

Method used to Identify

Subclass

Description of the Subclass
Event

ChangePr ef i xMappi ng CHANGE_PREFI X_MAPPI NG

isChangePrefixMapping

Signals that a prefix mapping
has changed from an old
namespace to a new
namespace.

Char act er Dat a

CHARACTER DATA

isCharacterData

Signals that the returned
XMLEvent object contains the
character data from the body of
the element.

Comment

COMMENT

isComment

Signals that the returned
XM.Event object contains an
XML comment.

EndDocurnent

END_DOCUMENT

isEndDocument

Signals the end of the XML
document.

EndEl enent

END_ELEMENT

isEndElement

Signals the end of an element in
the XML document.

EndPr ef i xMappi ng

END_PREFI X_MAPPI NG

isEndPrefixMapping

Signals that a prefix mapping
has gone out of scope.

EntityReference

ENTI TY_REFERENCE

isEntityReference

Signals that the returned
XM.Event object contains an
entity reference.

Processi nglnstructi
on

PROCESSI NG_| NSTRUCTI ON

isProcessinglnstruction

Signals that the returned
XMLEvent object contains a
processing instruction.

Developing XML Applications for Oracle WebLogic Server

G31686-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-8 of B-18

ORACLE

Appendix B

Parsing an XML Document: Typical Steps

Table B-3 (Cont.) Subclasses and Fields of the XMLEvent Class
|

XMLEvent Subclass

Field of the XMLEvent Class
used to Identify Subclass

Method used to Identify
Subclass

Description of the Subclass
Event

Space SPACE isSpace Signals that the returned
XMLEvent object contains
whitespace.

St art Docunent START_DOCUMENT isStartDocument Signals the start of an XML

document.

St art El enent

START_ELEMENT

isStartElement

Signals the start of a element in
the XML document.

StartPrefixMpping

START_PREFI X_MAPPI NG

isStartPrefixMapping

Signals that a prefix mapping
has started its scope.

The following example shows how to use the Java case statement to determine the particular
type of event that was returned by the XM.I nput St ream next () method. For simplicity, the

example simply prints that an event has been found,; later sections show further processing of
the event.

switch(event. get Type()) {
case XM.Event. START ELEMENT:
/1 Start of an el ement

Systemout.println ("Start El ement\n");

break;

case XMLEvent.END ELEMENT:
/] End of an el enent

Systemout.println ("End El enent\n");

break;

case XM.Event . PROCESSI NG _| NSTRUCTI ON:

/'l Processing Instruction

Systemout.println ("Processing instruction\n");

break;

case XM.Event. SPACE:
/'l Wi tespace

Systemout.println ("Wite space\n");

break;

case XM.Event. CHARACTER DATA:
/| Character data

Systemout.println ("Character data\n");

break;

case XM.Event. COVMENT:
/1 Comment

Systemout. println ("Comrent\n");

break;

case XM.Event. START DOCUMENT:

/] Start of the XML docunent

Systemout.println ("Start Docunment\n");

break;

case XM.Event. END DOCUMENT:
/1 End of the XML Docunent

Systemout.println ("End Docunent\n");

Developing XML Applications for Oracle WebLogic Server

G31686-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-9 of B-18

ORACLE

Appendix B
Parsing an XML Document: Typical Steps

br eak;

case XM.Event. START_PREFI X_MAPPI NG
/1 The start of a prefix mapping scope
Systemout.println ("Start prefix mapping\n");
br eak;

case XMLEvent. END_PREFI X _MAPPI NG
/1 The end of a prefix nmapping scope
Systemout.println ("End prefix mapping\n");
br eak;

case XM.Event. CHANGE_PREFI X_MAPPI NG
/1 Prefix mapping has changed nanespaces
Systemout. println ("Change prefix mapping\n");
br eak;

case XM.Event. ENTI TY_REFERENCE:
/1 An entity reference
Systemout.println ("Entity reference\n");
br eak;

defaul t:

throw new XM.StreanException("Attenpt to parse unknown event
[" + event.getType() + "]");
}

Getting the Attributes of an Element

To get the attributes of an element in an XML document, you must first cast the XM_Event
object that was returned by the XMLI nput St r eam next () method to a St art El ement object.

Because you do not know how many attributes an element might have, you must first create an
Attributelterator objectto contain the entire list of attributes, and then iterate over the list
until there are no more attributes. The following example describes how to do this as part of
the START_ELEMENT case of the swi t ch statement shown in Iterating Over the Stream:

case XM.Event. START_ELEMENT:

StartEl ement startEl enent = (StartEl enent) event;
Systemout.print("<" + startEl enent. getNane().getQualifiedName());
Attributelterator attributes = startEl ement. get AttributesAndNanespaces();
whil e(attributes. hasNext ()){

Attribute attribute = attributes.next();

Systemout.print(" " + attribute.getName().getQualifiedNane() +

"='" + attribute.getValue() +"'");

}

Systemout. print(">");
br eak;

The example first creates a St art El enent object by casting the returned XM_Event to

Start El ement . It then creates an Attri but el t er at or object using the method

Start El ement . get Attri but esAndNanespaces(), and iterates over the attributes using the
Attributelterator.hasNext () method. For each Attribute, it uses the

Attributes. getNane().getQualifiedNane() and Attribute. get Val ue() methods to return
the name and value of the attribute.

You can also use the get Namespace() and get Attri but es() methods to return just the
namespaces or attributes on their own.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-10 of B-18

ORACLE Appendix B
Parsing an XML Document: Typical Steps

Positioning the Stream

Table B-4 describes the methods of the XM.I nput St r eaminterface that you can use to skip
ahead to specific locations in the stream.

Table B-4 Methods Used to Position the Input Stream

Method of Description
XMLInputStream

skip() Positions the input stream to the next stream event.

Note: The next event might not necessarily be an actual element in the
XML file; for example, it could be a comment or white space.

skip(int) Positions the input stream to the next event of this type.

Examples of event types are XM_.Event . START_ELEMENT and
XMLEvent . END_DOCUMENT. Refer to Table B-3 for the full list of event

types.

ski p(XMLNane) Positions the input stream to the next event of this name.

ski p(XM.Nane, int) Positions the input stream to the next event of this name and type.

ski pEl ement () Skips to the next element (does not skip to the sub-elements of the current
element).

peek() Checks the next event without actually reading it from the stream.

The following example shows how you can modify the basic code for iterating over an input
stream to skip over the character data in the body of an XML element:

whi | e(stream hasNext ()) {
XM_Event peek = stream peek();
if (peek.getType() == XM.Event.CHARACTER DATA) {
stream skip();
conti nue;

}

XM_Event event = stream next();
parse(event);

}

The example shows how to use the XM.I nput St r eam peek() method to determine the next
event on the stream. If the type of event is XMLEvent . CHARACTER_DATA, then skip the event and
go to the next one.

Getting a Substream

Use the XMLI nput St r eam get SubSt r ean() method to get a copy of the next element, including
all its subelements. The get Subst rean() method returns an XM.I nput St r eamobject. Your
position in the parent stream (or the stream from which you called get SubSt r ean()) does not
move. In the parent stream, if you want to skip the element you just got with get SubSt r ean(),
use the ski pEl enent () method.

The get SubSt ream) method keeps a count of the START_ELEMENT and END_ELEMENT events it
encounters, and as soon as the number is equal (or in other words, as soon as it finds the
complete next element) it stops and returns the resulting substream as an XM.I nput St ream
object.

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-11 of B-18

ORACLE

Appendix B
Parsing an XML Document: Typical Steps

For example, assume that you are using the XML Streaming API to parse the following XML
document, but you are only interested in the substream delineated by the <cont ent > and </
cont ent > tags:

<book>
<title>The History of the Wrld</title>
<aut hor>Jul i et Shackel | </ aut hor >
<publ i sher >CrazyDays Publ i shi ng</ publ i sher>
<cont ent >
<chapter title="Just a Speck of Dust'>
<synopsi s>The world as a speck of dust</synopsis>
<para>Once the world was just a speck of dust...</para>
</ chapt er >
<chapter title='Life Appears'>
<synopsi s>Move over dust, here cones |ife.</synopsis>
<para>Happi |y, the dust got a conpanion: life...</para>
</ chapt er >
</ cont ent >
</ book>

The following code fragment shows how you can skip to the <cont ent > start element tag, get
the substream, and parse it using a separate Conpl exPar se object:

if (stream skip(El ementFactory. createXM.Nane("content")))
{
Conpl exPar se conpl exParse = new Conpl exParse();
conpl exPar se. par se(stream get SubStrean())

}

When you call this method on the previous XML document, you get the following output:

<cont ent >
<chapter title="Just a Speck of Dust'>
<synopsi s>The world as a speck of dust</synopsi s>
<para>Once the world was just a speck of dust...</para>
</ chapter>
<chapter title='Life Appears'>
<synopsi s>Move over dust, here cones |ife.</synopsis>
<para>Happi |y, the dust got a conpanion: life...</para>
</ chapter>
</ cont ent >

Marking and Resetting a Buffered XML Input Stream

If you are using a Buf f er edXMLI nput St r eamobject, you can use the nark() and reset ()
methods to mark the stream at a particular spot, process the stream, and then subsequently
reset the stream back to the marked spot. These methods are useful if you want to further
manipulate the stream after initially iterating over it.

® Note

If you read a buffered stream without marking it, you cannot access what you've just
read. In other words, just because the stream is buffered, it does not automatically
mean you can reread it. You must mark it first.

The following example shows a typical use of the Buf f er edXM.I nput St r eamobject:

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-12 of B-18

ORACLE’

Appendix B
Generating a New XML Document: Typical Steps

XM.I nput St reanfactory factory = XM.I nput Streanfact ory. newl nst ance();
Buf f er edXMLI nput St r eam buf stream =
factory. newBuf f er edl nput St rean(fact ory. newl nput St r ean{ new

Fi | el nput Strean(nanme)));

/!l mark the start of the stream
buf st ream mark();

Il process it locally
buf f er edPar se. par se(buf stream;

/1 reset the streamto the mark
buf streamreset();

Il send streamoff to another application
Conpl exPar se conpl exParse = new Conpl exParse();
conpl exPar se. parse(buf streanj;

Closing the Input Stream

It is good programming practice to explicitly close the XML input stream when you are finished
with it. To close an input stream, use the XM.I nput St ream cl ose() method, as shown in the
following example:

/1 close the input stream
i nput.close();

Generating a New XML Document: Typical Steps

The following procedure describes the typical steps for using the WebLogic XML Streaming
API to generate a new XML document.

The first two steps are required. The next steps you take depend on how you want to generate
the XML file.

1. Import the webl ogi c. xm . stream * classes.

2. Create an XML output stream to which to write the XML document. See Creating an XML
Output Stream.

3. Add events to the XML output stream. See Adding Elements to the Output Stream.

4. Add attributes to the XML output stream. See Adding Attributes to an Element on the
Output Stream.

5. Add an input stream to the output stream. See Adding an Input Stream to an Output
Stream.

6. Print the output stream. See Printing an Output Stream.

7. Close the output stream. See Closing the Output Stream.

Example of Generating an XML Document

The following program shows an example of using the XML Streaming API to generate an XML
document.

The program first creates an output stream based on a Pri nt Wi t er object, then adds
elements to the output stream to create a simple XML purchase order, described in the
comments of the program. The program also shows how to add an input stream based on a
separate XML file to the output stream.

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-13 of B-18

ORACLE

Appendix B
Generating a New XML Document: Typical Steps

@® Note

The topics following the example describe it in more detail.

package exanpl es. xm . stream

/

mport webl ogi c. xm . st ream XM.I nput St ream

mport webl ogi c. xm . stream XM_Qut put St r eam

mport webl ogi c. xm . st ream XM.I nput St r eanfact ory;
mport webl ogi c. xm . st ream XM_Nane;

mport webl ogi c. xm . stream XM_Event ;

mport webl ogi c. xm . stream St art El enent;

mport webl ogi c. xm . st ream EndEl enent ;

mport webl ogi c. xm . stream Attri bute;

mport webl ogi c. xm . stream El enent Fact ory;

mport webl ogi c. xm . stream XM_St r eanExcept i on;
mport webl ogi c. xm . st ream XM_Qut put St r eanfact ory;

mport java.io.FilelnputStream
mport java.io. Fil eNot FoundExcepti on;
mport java.io.PrintWiter;

*

Programthat prints out a very sinple purchase order that |ooks
l'ike the follow ng:

<pur chase_or der>
<name>Jul i et Shackel | </ nane>
<itemid="1234" quantity="2">Fabul ous Chair</itenp
<I-- this is a coment-->
<anot her file>
This comes fromanother file called "another file.xm"
</another _file>
</ purchase_or der >

In the preceding XM file, the <another_file> element is actually another
XM file that is passed as an argument to the program converted into an
XM.I nput Stream then added to the output stream

k% %k ok ok %k ok % % k% X %k ok X ¥

-

public class PrintPurchaseOrder {

*

/
Hel per nethod to get a handle on a stream
Takes in a nane and returns a stream This

met hod uses the InputStreanfactory to create an
instance of an XM.I nput Stream

@aram nane The file to parse

@eturn XM.InputStreamthe streamto parse

I . R

-

public XM.Input Stream get | nput Strean(String nane)
throws XM.StreanException, FileNotFoundException

XM.I nput Streanfactory factory = XM.I nput StreanfFact ory. newl nstance();
XMLI nput Stream stream = factory. new nput Strean(new Fi | el nput Strean(nane));
return stream
}
public static void main(String args[])
throws Exception

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-14 of B-18

ORACLE

Appendix B
Generating a New XML Document: Typical Steps

{
Print PurchaseOrder printer = new PrintPurchaseOr der();
I
/] Create an output stream
I

XMLQut put StreanfFactory factory = XM.Qut put Streanfact ory. new nstance();
XMLQut put St ream out put = factory. newQut put St rean(new
PrintWiter(Systemout,true));
/1 add the <purchase_order> root el enent
out put . add(El enent Fact ory. creat eStart El ement (" pur chase_order"));
out put . add(El ement Fact ory. creat eCharacterData("\n"));

/1 add the <name> el enent

out put . add(El enent Factory. creat eStart El ement (" name"));

out put . add(El enent Fact ory. creat eCharact erData("Jul i et Shackel1"));
out put . add(El ement Fact ory. cr eat eEndEl ement (" name"));

out put . add(El ement Fact ory. creat eCharacterData("\n"));

—_———=

/] add the <iten> elenent along with the id and quantity attributes

out put . add(El ement Factory. createStartEl ement ("itent));

out put. add(El enent Factory. createAttribute("id","1234"));

out put . add(El enment Factory. createAttribute("quantity","2"));

out put . add(El enent Fact ory. cr eat eChar act er Dat a(" Fabul ous Chair"));
out put . add(El ement Fact ory. creat eEndEl ement ("itent));

out put . add(El ement Fact ory. creat eCharacterData("\n"));

/1 add a comrent
output.add("<!-- this is a comrent-->");
out put . add(El ement Factory. creat eCharacterData("\n"));

/] create an input streamfromeach XM. file argument then add it to the output
for (int i=0; i < args.length; i++)

Il

/]l Get an input streamand add it to the output stream

Il

out put.add(printer.getlnputStreamargs[i]));

/1 Finally, end the root "purchase_order" el ement
out put . add(El enent Fact ory. cr eat eEndEl enent (" pur chase_order"));
out put . add(El ement Fact ory. creat eCharacterData("\n"));

/1

/1l Print the results to the screen
/1

out put. flush();

/1 Oose the output streans
out put. cl ose();

}

The preceding program produces the following output:

<pur chase_or der >

<name>Jul i et Shackel | </ name>
<itemid="1234" quantity="2">Fabul ous Chair</itenm>
<l-- this is a comment-->
<another _file>
This is fromanother file.
</anot her file>

</ pur chase_or der >

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-15 of B-18

ORACLE Appendix B
Generating a New XML Document: Typical Steps

Creating an XML Output Stream

One of the first steps in generating an XML document using the Weblogic XML Streaming API
is to create an output stream which holds the document as it is being built. Creating an XML
output stream is similar to creating an input stream: you first create an instance of the

XM_Qut put St reanfact ory and then create an output stream with the

XMLQut put St r eanfact ory. newQut put St rean{) method, as shown in the following example:

XM.Qut put St reanfactory factory = XM.Qut put Streanfact ory. newl nst ance();
XMLQut put St ream out put = factory. newCut put St rean(new
PrintWiter(Systemout,true));

The following example shows how to create an XM.CQut put St reambased on a DOM tree:

Docunent Bui | der Fact ory dbf = Docunent Bui | der Fact ory. newl nst ance() ;
dbf . set Val i dating(fal se);
dbf . set NamespaceAwar e(true);
Docurent doc = dbf. newDocunent Bui | der (). newDocument () ;
XM_Qut put St ream out =
XM.Qut put St r eanfact ory. newl nst ance() . newQut put St rean(doc) ;

You can use the XMLQut put St r eanfact ory. newQut put St rean{) method to create an output
stream based on the following four Java objects, depending on what the final form of the XML
document will be (such as a file on the operating system, a DOM tree, and so on):

e java.io.QutputStream
e java.io.Witer
e org.xnl.sax. Content Handl er

e org.w3c. dom Docunent

Adding Elements to the Output Stream

Use the XMLQut put St r eam add(XMLEvent) method to add elements to the output stream. Use
the El ement Fact ory to create the particular element.

The El enent Fact ory interface includes methods to create each type of element; the general
format is El ement Fact ory. creat eXXX() where XXX refers to the particular element, such as
createStartEl ement (), creat eCharact er Dat a(), and so on. You can create most elements by
passing the name as a Stri ng or as an XM_Nane.

@ Tip
The XMLQut put St r eamdoes not validate your XML.

@® Note

Each time you create a start element, you must explicitly also create an end element
at some point. The same rule applies to creating a start document.

For example, assume you want to create the following snippet of XML:

Developing XML Applications for Oracle WebLogic Server
G31686-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-16 of B-18

ORACLE

Appendix B
Generating a New XML Document: Typical Steps

<name>Jul i et Shackel | </ name>

The Java code to add this element to an output stream is as follows:

out put . add
out put . add
out put . add
out put . add

El ement Factory. creat eSt art El enent ("nane"));

El ement Fact ory. creat eCharact erData("Jul i et Shackel |"));
El ement Fact ory. cr eat eEndEl enent (" nanme")) ;

El ement Fact ory. creat eCharacterData("\n"));

—_—~—==

The final cr eat eChar act er Dat a() method adds a newline character to the output stream. This
is optional, but useful if you want to create human-readable XML.

Adding Attributes to an Element on the Output Stream

out put .
out put .
out put .
out put
out put .
out put .

add
add
add
. add
add
add

Use the XMLQut put St ream add(Attri bute) to add attributes to an element you have just
created. Use the El ement Fact ory. createAttri but e() method to create a particular attribute.

For example, assume you want to create the following snippet of XML.:

<itemid="1234" quantity="2">Fabul ous Chair</iten>

The Java code to add this element to an output stream is as follows:

out put . add
out put . add
out put . add
out put . add
out put . add
out put . add

El enment Factory. createStartEl enent ("itent));

El ement Factory. createAttribute("id","1234"));

El ement Factory. createAttri bute("quantity","2"));

El ement Fact ory. creat eChar act er Dat a(" Fabul ous Chair"));
El ement Fact ory. cr eat eEndEl enent ("itent'));

El ement Fact ory. createCharacterData("\n"));

—~N——== =

@® Note

Be sure you add attributes to an element after you create the start element but before
you create the corresponding end element. Otherwise, although your code will compile
successfully, you will get a runtime error when you try to run the program. For
example, the following code returns an error because the attributes are added to the

<i t en» element after the element has been explicitly ended:

(IEl ement Factory. createStartEl ement ("itent));

(IEl ement Fact ory. creat eEndEl ement ("itent));

(El ement Factory. createAttribute("id","1234"));

(El ement Factory. createAttribute("quantity","2"));

(2l ement Fact ory. creat eChar act er Dat a(" Fabul ous Chair"));
(El ement Fact ory. creat eCharacter Data("\n"));

Adding an Input Stream to an Output Stream

When creating an XML output stream, you might want to add an existing XML document, such
as an XML file or a DOM tree, to the output stream. To do this, you must first convert the XML
document to an XML input stream, then use XM_.Qut put St r eam add(XM.I nput St r ean) method
to add the input stream to the output stream.

The following example first shows a method called getinputStream() that creates an XML input
stream from an XML file and then how to use the method to add the created input stream to an
output stream:

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-17 of B-18

ORACLE

Appendix B
Generating a New XML Document: Typical Steps

/**

* Hel per method to get a handle on a stream

* Takes in a name and returns a stream This

* nmethod uses the InputStreanfactory to create an
* instance of an XM.I nput Stream

* @aram name The file to parse

* @eturn XM.InputStreamthe streamto parse

*/

publi ¢ XM.I nput Stream get | nput Strean{ Stri ng name)
throws XM.StreanException, FileNot FoundException
{
XM.I nput St reanfactory factory = XM.I nput Streanfact ory. newl nst ance();
XM.I nput St ream stream = factory. new nput Strean{new Fi |l el nput Strean{nane));
return stream

/] create an input streamfromeach XM. file argument then add it to the output
for (int i=0; i < args.length; i++)

Il

/]l Get an input streamand add it to the output stream

Il

out put.add(printer.getlnputStreamargs[i]));

Printing an Output Stream

Use the XMLQut put Stream f | ush() method to print out the XML output stream to whatever
object you created it from. For example, if you created an XML output stream from a
Print Witer object, then the fl ush() method prints the stream to the standard output.

@® Note

If you are writing to an XMLOutputStream based on a DOM tree, you must execute the
fl ush() method before you can manipulate the DOM.

The following example shows how to print an output stream:

/1

/1 Print the results to the screen
/1

out put. flush();

Closing the Output Stream

It is good programming practice to explicitly close the XML output stream when you are
finished with it. To close an output stream, use the XM_.Qut put St ream cl ose() method, as
shown in the following example:

/'l close the output stream
out put. cl ose();

Developing XML Applications for Oracle WebLogic Server

G31686-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-18 of B-18

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Introduction
	Samples for the XML Developer
	XML Examples in the WebLogic Server Distribution

	Summary of WebLogic Server XML Features
	XML Document Parsers
	XML Document Transformer
	Streaming API for XML (StAX) Implementation
	WebLogic XPath API
	JAXP Pluggability Layer Implementation
	WebLogic Servlet Attributes
	XML Registry For Configuring Parsers and Transformers
	XML Registry for Configuring External Entity Resolution

	Endorsed Standards Override Mechanism for DOM/SAX: Not Supported
	Learning More About XML

	2 XML Overview
	What Is XML?
	How Do You Describe an XML Document?
	Why Use XML?
	What Are XSL and XSLT?
	What Are DOM and SAX?
	SAX
	DOM

	What Is the Streaming API for XML (StAX)?
	What Is JAXP?
	JAXP Packages
	New Feature of JAXP 1.4.4

	Common Uses of XML and XSLT
	Using XML and XSLT to Separate Content from Presentation
	XML as a Message Format for Business-to-Business Communication

	3 Developing XML Applications with WebLogic Server
	Developing XML Applications: Main Steps
	Parsing XML Documents
	Parsing XML Documents Using JAXP in SAX Mode
	Parsing XML Documents Using JAXP in DOM Mode
	Parsing XML Documents in a Servlet
	Using the org.xml.sax.DefaultHandler Attribute to Parse a Document
	Using the org.w3c.dom.Document Attribute to Parse a Document
	Validating and Non-Validating Parsers
	Handling Entity Resolution While Parsing an XML Document
	General Information About External Entities
	Using the WebLogic Server Entity Resolution Features
	Using Parsers Other Than the Default

	Generating New XML Documents
	Generating XML from a DOM Document Tree
	Generating XML Documents in a JSP

	Transforming XML Documents
	Using JAXP to Transform XML Data
	Example of Transforming an XML Document Using JAXP
	Using the JSP Tag to Transform XML Data
	XSLT JSP Tag Syntax
	XSLT JSP Tag Usage
	Example of Using the XSLT JSP Tag in a JSP
	Using Transformers Other Than the Default Transformer

	4 Using the Streaming API for XML (StAX)
	Overview of the Streaming API for XML
	Description of the Cursor API
	The XMLStreamReader Interface
	The XMLStreamWriter Interface
	Description of the Event Iterator API
	Main Interfaces and Classes of StAX

	Parsing XML With the XMLStreamReader Interface: Typical Steps
	Example of Parsing XML Using StAX
	Getting the XMLStreamReader Object
	Determining the Specific XML Event Type
	Getting the Full Name of an Element
	Getting the Attributes of an Element
	Getting the Namespaces of an Element
	Getting Text Data
	Getting Location Information
	Closing the Input Stream

	Generating XML Using the XMLStreamWriter Interface: Typical Steps
	Example of Generating XML Using StAX
	Getting the XMLStreamWriter Object
	Adding the XML Declaration to the Output Stream
	Adding Standard XML Events to the Output Stream
	Adding Attributes and Namespace Declarations to a Start Element
	Closing the Output Stream

	Properties Defined for the XMLInputFactory Interface
	Properties Defined for the XMLOutputFactory Interface

	5 Using Advanced XML APIs
	Using the WebLogic XPath API
	Using the DOMXPath Class
	Example of Using the DOMXPath Class
	Main Steps When Using the DOMXPath Class
	Using the StreamXPath Class
	Example of Using the StreamXPath Class
	Main Steps When Using the StreamXPath Class

	6 XML Programming Best Practices
	When to Use the DOM, SAX, and StAX APIs
	Increasing Performance of XML Validation
	When to Use XML Schemas or DTDs
	Configuring External Entity Resolution for Maximum Performance
	Using SAX InputSources
	Improving Performance of Transformations

	7 XML Programming Techniques
	Transmitting XML Data Between A Jakarta Client and WebLogic Server
	Handling XML Documents in a JMS Application
	Accessing External Entities That Do Not Have an HTTP Interface

	8 XML Application Scoping
	Overview of Application Scoping
	The weblogic-application.xml File
	xml
	parser-factory
	saxparser-factory
	document-builder-factory
	transformer-factory
	schema-factory
	xpath-factory
	xml-input-factory
	xml-output-factory
	xml-event-factory
	entity-mapping
	entity-mapping-name
	public-id
	system-id
	entity-uri
	when-to-cache
	cache-timeout-interval

	Configuring a Parser or Transformer for an Enterprise Application
	Configuring an External Entity for an Enterprise Application
	Configuring the External Entity Cache for an Enterprise Application

	9 Administering WebLogic Server XML
	Overview of Administering WebLogic Server XML
	XML Administration Tasks
	How the XML Registry Works
	Parser Selection Within the XML Registry

	XML Parser and Transformer Configuration Tasks
	Configuring a Parser or Transformer Other Than the Default
	Configuring a Parser for a Particular Document Type

	External Entity Configuration Tasks
	Configuring External Entity Resolution
	Configuring the External Entity Cache

	A XML Reference
	XML APIs
	Code Examples
	Related WebLogic Server Documentation
	Tutorials and Online Courses
	Other XML Specifications and Information

	B Using the WebLogic XML Streaming API (Deprecated)
	Overview of the WebLogic XML Streaming API
	Javadocs for the WebLogic XML Streaming API
	Parsing an XML Document: Typical Steps
	Example of Parsing an XML Document
	Getting an XML Input Stream
	Getting a Buffered XML Input Stream
	Filtering the XML Stream
	Creating a Custom Filter
	Iterating Over the Stream
	Determining the Specific XMLEvent Type
	Getting the Attributes of an Element
	Positioning the Stream
	Getting a Substream
	Marking and Resetting a Buffered XML Input Stream
	Closing the Input Stream

	Generating a New XML Document: Typical Steps
	Example of Generating an XML Document
	Creating an XML Output Stream
	Adding Elements to the Output Stream
	Adding Attributes to an Element on the Output Stream
	Adding an Input Stream to an Output Stream
	Printing an Output Stream
	Closing the Output Stream

