
Oracle® Fusion Middleware
Developing XML Applications for Oracle
WebLogic Server

15.1.1.0.0
G31686-01
October 2025

Oracle Fusion Middleware Developing XML Applications for Oracle WebLogic Server, 15.1.1.0.0

G31686-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation ii

Conventions ii

1 Introduction

Samples for the XML Developer 1

XML Examples in the WebLogic Server Distribution 1

Summary of WebLogic Server XML Features 1

XML Document Parsers 1

XML Document Transformer 1

Streaming API for XML (StAX) Implementation 2

WebLogic XPath API 2

JAXP Pluggability Layer Implementation 2

WebLogic Servlet Attributes 2

XML Registry For Configuring Parsers and Transformers 2

XML Registry for Configuring External Entity Resolution 3

Endorsed Standards Override Mechanism for DOM/SAX: Not Supported 3

Learning More About XML 3

2 XML Overview

What Is XML? 1

How Do You Describe an XML Document? 2

Why Use XML? 3

What Are XSL and XSLT? 3

What Are DOM and SAX? 3

SAX 4

DOM 4

What Is the Streaming API for XML (StAX)? 4

What Is JAXP? 5

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of v

JAXP Packages 5

New Feature of JAXP 1.4.4 6

Common Uses of XML and XSLT 6

Using XML and XSLT to Separate Content from Presentation 6

XML as a Message Format for Business-to-Business Communication 7

3 Developing XML Applications with WebLogic Server

Developing XML Applications: Main Steps 1

Parsing XML Documents 1

Parsing XML Documents Using JAXP in SAX Mode 2

Parsing XML Documents Using JAXP in DOM Mode 2

Parsing XML Documents in a Servlet 3

Using the org.xml.sax.DefaultHandler Attribute to Parse a Document 3

Using the org.w3c.dom.Document Attribute to Parse a Document 4

Validating and Non-Validating Parsers 5

Handling Entity Resolution While Parsing an XML Document 5

General Information About External Entities 5

Using the WebLogic Server Entity Resolution Features 6

Using Parsers Other Than the Default 6

Generating New XML Documents 6

Generating XML from a DOM Document Tree 7

Generating XML Documents in a JSP 7

Transforming XML Documents 8

Using JAXP to Transform XML Data 8

Example of Transforming an XML Document Using JAXP 8

Using the JSP Tag to Transform XML Data 9

XSLT JSP Tag Syntax 9

XSLT JSP Tag Usage 10

Example of Using the XSLT JSP Tag in a JSP 12

Using Transformers Other Than the Default Transformer 12

4 Using the Streaming API for XML (StAX)

Overview of the Streaming API for XML 1

Description of the Cursor API 1

The XMLStreamReader Interface 1

The XMLStreamWriter Interface 2

Description of the Event Iterator API 2

Main Interfaces and Classes of StAX 3

Parsing XML With the XMLStreamReader Interface: Typical Steps 4

Example of Parsing XML Using StAX 5

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of v

Getting the XMLStreamReader Object 8

Determining the Specific XML Event Type 8

Getting the Full Name of an Element 10

Getting the Attributes of an Element 11

Getting the Namespaces of an Element 12

Getting Text Data 13

Getting Location Information 13

Closing the Input Stream 14

Generating XML Using the XMLStreamWriter Interface: Typical Steps 14

Example of Generating XML Using StAX 14

Getting the XMLStreamWriter Object 16

Adding the XML Declaration to the Output Stream 16

Adding Standard XML Events to the Output Stream 17

Adding Attributes and Namespace Declarations to a Start Element 17

Closing the Output Stream 18

Properties Defined for the XMLInputFactory Interface 18

Properties Defined for the XMLOutputFactory Interface 19

5 Using Advanced XML APIs

Using the WebLogic XPath API 1

Using the DOMXPath Class 1

Example of Using the DOMXPath Class 1

Main Steps When Using the DOMXPath Class 3

Using the StreamXPath Class 4

Example of Using the StreamXPath Class 4

Main Steps When Using the StreamXPath Class 6

6 XML Programming Best Practices

When to Use the DOM, SAX, and StAX APIs 1

Increasing Performance of XML Validation 1

When to Use XML Schemas or DTDs 2

Configuring External Entity Resolution for Maximum Performance 2

Using SAX InputSources 2

Improving Performance of Transformations 2

7 XML Programming Techniques

Transmitting XML Data Between A Jakarta Client and WebLogic Server 1

Handling XML Documents in a JMS Application 2

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iii of v

Accessing External Entities That Do Not Have an HTTP Interface 3

8 XML Application Scoping

Overview of Application Scoping 1

The weblogic-application.xml File 1

xml 3

parser-factory 3

saxparser-factory 3

document-builder-factory 4

transformer-factory 4

schema-factory 4

xpath-factory 4

xml-input-factory 4

xml-output-factory 4

xml-event-factory 4

entity-mapping 4

entity-mapping-name 4

public-id 5

system-id 5

entity-uri 5

when-to-cache 5

cache-timeout-interval 5

Configuring a Parser or Transformer for an Enterprise Application 5

Configuring an External Entity for an Enterprise Application 6

Configuring the External Entity Cache for an Enterprise Application 7

9 Administering WebLogic Server XML

Overview of Administering WebLogic Server XML 1

XML Administration Tasks 1

How the XML Registry Works 1

Parser Selection Within the XML Registry 2

XML Parser and Transformer Configuration Tasks 2

Configuring a Parser or Transformer Other Than the Default 3

Configuring a Parser for a Particular Document Type 3

External Entity Configuration Tasks 3

Configuring External Entity Resolution 3

Configuring the External Entity Cache 4

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iv of v

A XML Reference

XML APIs A-1

Code Examples A-1

Related WebLogic Server Documentation A-1

Tutorials and Online Courses A-1

Other XML Specifications and Information A-2

B Using the WebLogic XML Streaming API (Deprecated)

Overview of the WebLogic XML Streaming API B-1

Javadocs for the WebLogic XML Streaming API B-2

Parsing an XML Document: Typical Steps B-2

Example of Parsing an XML Document B-3

Getting an XML Input Stream B-5

Getting a Buffered XML Input Stream B-5

Filtering the XML Stream B-6

Creating a Custom Filter B-6

Iterating Over the Stream B-7

Determining the Specific XMLEvent Type B-7

Getting the Attributes of an Element B-10

Positioning the Stream B-11

Getting a Substream B-11

Marking and Resetting a Buffered XML Input Stream B-12

Closing the Input Stream B-13

Generating a New XML Document: Typical Steps B-13

Example of Generating an XML Document B-13

Creating an XML Output Stream B-16

Adding Elements to the Output Stream B-16

Adding Attributes to an Element on the Output Stream B-17

Adding an Input Stream to an Output Stream B-17

Printing an Output Stream B-18

Closing the Output Stream B-18

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page v of v

Preface

This document is a resource for software developers who design and develop applications that
include XML processing.

Audience
The topics in this document are relevant during the design and development phases of a
software project. The document also includes topics that are useful in solving application
problems that are discovered during test and pre-production phases of a project.

Although this document does include administration and monitoring information useful to
developers who want to test their applications in a development environment, the document
does not address production-phase administration, monitoring, or performance tuning topics
XML topics. For links to WebLogic Server® documentation and resources for these topics, see
Related Documentation.

It is assumed that the reader is familiar with Web technologies, XML, XSLT, the Java
programming language, and the Servlet and JSP APIs of the Jakarta EE specification. This
document emphasizes the value-added features provided by WebLogic Server XML and key
information about how to use WebLogic Server features and facilities to get an application that
performs XML processing up and running.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Documentation
This document contains XML-specific design and development information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

• Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic
Server components (such as Web applications and EJBs) and applications.

• Developing JAX-WS Web Services for Oracle WebLogic Server is a guide to developing
Web Services that are deployed and run on WebLogic Server.

• Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications.

For related information about XML outside the scope of this document, see links listed in
Learning More About XML and XML Reference.

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of ii

1
Introduction

This chapter provides summary of WebLogic Server XML features and provides variety of code
samples for XML developers.

Samples for the XML Developer
In addition to this document, Oracle provides a variety of code samples for XML developers.
The examples and tutorials illustrate WebLogic Server XML in action, and provide practical
instructions on how to perform key XML development tasks.

Oracle recommends that you run some or all of the XML examples before programming your
own application that processes XML.

XML Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in the
ORACLE_HOME\wlserver\samples\server directory, where ORACLE_HOME represents the
directory in which you installed WebLogic Server. For more information about the WebLogic
Server code examples, see Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

Summary of WebLogic Server XML Features
WebLogic Server consolidates XML technologies applicable to WebLogic Server and XML
applications based on WebLogic Server. The WebLogic Server XML subsystem allows
customers to use standard parsers, the WebLogic FastParser, XSLT transformers, and DTDs
and XML Schemas to process and convert XML files.

The following topics, which describe the features included in the WebLogic Server XML
subsystem, are presented in this section:

XML Document Parsers
WebLogic Server uses, by default, the XML parser that is included in the JDK.

You can also use any other XML parser of your choice by using the WebLogic Remote
Console to configure it in the XML Registry. You can configure a single instance of WebLogic
Server to use one parser for a particular application and use another parser for a different
application.

For information about parsing XML documents, see Parsing XML Documents.

XML Document Transformer
WebLogic Server uses, by default, the XML transformer that is included in the JDK.

You can also use any other XML transformer of your choice by using the WebLogic Remote
Console to configure it in the XML Registry. You can configure a single instance of WebLogic

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

Server to use one transformer for a particular application and use another transformer for a
different application.

For more information about transforming XML documents, see Transforming XML Documents.

Streaming API for XML (StAX) Implementation
WebLogic Server includes an implementation of the Streaming API for XML (StAX).

See Using the Streaming API for XML (StAX).

WebLogic XPath API
The WebLogic XPath API contains all of the classes required to perform XPath matching
against a document represented as a DOM, an XMLInputStream, or an XMLOutputStream.

See Using the WebLogic XPath API.

JAXP Pluggability Layer Implementation
Java API for XML Processing (JAXP) 1.2 is a Java-standard, parser-independent API for XML.
For more information on JAXP, see What Is JAXP?.

Note

WebLogic Server uses the XML Registry, accessed through the WebLogic Remote
Console, to plug in parsers and transformers. This is different from the JAXP 1.2
specification which specifies the use of system properties to plug in parsers and
transformers.

WebLogic Servlet Attributes
WebLogic Server supports the following special Servlet attributes:

• org.xml.sax.HandlerBase

• org.xml.sax.helpers.DefaultHandler

• org.w3c.dom.Document

Calling the setAttribute (for SAX parsing) and getAttribute (for DOM parsing) methods on
a ServletRequest object with the preceding attributes will parse any given XML document.

See Parsing XML Documents in a Servlet.

XML Registry For Configuring Parsers and Transformers
The XML Registry simplifies administration and configuration tasks by separating these tasks
from the XML application. Use the WebLogic Remote Console to configure the parsers and
transformers for an instance of WebLogic Server.

See XML Parser and Transformer Configuration Tasks.

Chapter 1
Summary of WebLogic Server XML Features

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

XML Registry for Configuring External Entity Resolution
WebLogic XML supports external entity resolution through the XML Registry. See External
Entity Configuration Tasks.

Endorsed Standards Override Mechanism for DOM/SAX: Not
Supported

WebLogic Server does not support switching the server's DOM and SAX interfaces using the
endorsed standards override mechanism.

An endorsed standard is a Java API defined through a standards process other than the Java
Community Process (JCP). See Endorsed Standards Override Mechanism at https://
docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/transform/stax/StAXSource.html.

Learning More About XML
To learn more about XML, see the following online courses and tutorials. XML Reference,
provides links to additional information.

• A Technical Introduction to XML, available at http://www.xml.com/pub/a/98/10/
guide0.html

• XML, Java, and the Future of the Web, available at http://www.xml.com/pub/a/w3j/
s3.bosak.html

• Chapter 17 of The XML Bible: XSL Transformations, available at http://
metalab.unc.edu/xml/books/bible/updates/14.html

• XSLT Tutorial by Miloslav Nic, available at http://zvon.org/xxl/XSLTutorial/Output/
index.html

• SAX 2.0: The Simple API for XML, available at http://www.saxproject.org/

• Document Object Model (DOM), available at http://www.w3.org/DOM/

Chapter 1
Endorsed Standards Override Mechanism for DOM/SAX: Not Supported

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/transform/stax/StAXSource.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/transform/stax/StAXSource.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/transform/stax/StAXSource.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/transform/stax/StAXSource.html
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/a/w3j/s3.bosak.html
http://www.xml.com/pub/a/w3j/s3.bosak.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://zvon.org/xxl/XSLTutorial/Output/index.html
http://zvon.org/xxl/XSLTutorial/Output/index.html
http://www.saxproject.org/
http://www.w3.org/DOM/

2
XML Overview

This chapter describes Extensible Markup Language (XML) technology and the WebLogic
Server XML subsystem.
This chapter includes the following sections:

What Is XML?
Extensible Markup Language (XML) is a markup language used to describe the content and
structure of data in a document. It is a simplified version of Standard Generalized Markup
Language (SGML). XML is an industry standard for delivering content on the Internet. Because
it provides a facility to define new tags, XML is also extensible.

Like HTML, XML uses tags to describe content. However, rather than focusing on the
presentation of content, the tags in XML describe the meaning and hierarchical structure of
data. This functionality allows for the sophisticated data types that are required for efficient
data interchange between different programs and systems. Further, because XML enables
separation of content and presentation, the content, or data, is portable across heterogeneous
systems.

The XML syntax uses matching start and end tags (such as <name> and </name>) to mark up
information. Information delimited by tags is called an element. Every XML document has a
single root element, which is the top-level element that contains all the other elements.
Elements that are contained by other elements are often referred to as sub-elements. An
element can optionally have attributes, structured as name-value pairs, that are part of the
element and are used to further define it.

The following sample XML file describes the contents of an address book:

<?xml version="1.0"?>

<address_book>
 <person gender="f">
 <name>Jane Doe</name>
 <address>
 <street>123 Main St.</street>
 <city>San Francisco</city>
 <state>CA</state>
 <zip>94117</zip>
 </address>
 <phone area_code=415>555-1212</phone>
 </person>
 <person gender="m">
 <name>John Smith</name>
 <phone area_code=510>555-1234</phone>
 <email>johnsmith@somewhere.com</email>
 </person>
</address_book>

The root element of the XML file is address_book. The address book currently contains two
entries in the form of person elements: Jane Doe and John Smith. Jane Doe's entry includes
her address and phone number; John Smith's includes his phone and email address. Note that
the structure of the XML document defines the phone element as storing the area code using

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

the area_code attribute rather than a sub-element in the body of the element. Also note that not
all sub-elements are required for the person element.

How Do You Describe an XML Document?
There are two ways to describe an XML document: XML Schemas and DTDs.

XML Schemas define the basic requirements for the structure of a particular XML document. A
Schema describes the elements and attributes that are valid in an XML document, and the
contexts in which they are valid. In other words, a Schema specifies which tags are allowed
within certain other tags, and which tags and attributes are optional. Schemas are themselves
XML files.

The schema specification is a product of the World Wide Web Consortium (W3C). For detailed
information on XML schemas, see http://www.w3.org/TR/xmlschema-0/.

The following example shows a schema that describes the preceding address book sample
XML document:

<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<xsd:complexType name="personType">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="address" type="addressType"/>
 <xsd:element name="phone" type="phoneType"/>
 <xsd:element name="email" type="xsd:string"/>
 <xsd:attribute name="gender" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="addressType">
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:string"/>
</xsd:complexType>

<xsd:simpleType name="phoneType">
 <xsd:restriction base="xsd:string"/>
 <xsd:attribute name="area_code" type="xsd:string"/>
</xsd:simpleType>

</xsd:schema>

You can also describe XML documents using Document Type Definition (DTD) files, a
technology older than XML Schemas. DTDs are not XML files.

The following example shows a DTD that describes the preceding address book sample XML
document:

<!DOCTYPE address_book [
<!ELEMENT person (name, address?, phone?, email?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (street, city, state, zip)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ATTLIST person gender CDATA #REQUIRED>

Chapter 2
How Do You Describe an XML Document?

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

http://www.w3.org/TR/xmlschema-0/

<!ATTLIST phone area_code CDATA #REQUIRED>
]>

An XML document can include a Schema or DTD as part of the document itself, reference an
external Schema or DTD, or not include or reference a Schema or DTD at all. The following
excerpt from an XML document shows how to reference an external DTD called address.dtd:

<?xml version=1.0?>
<!DOCTYPE address_book SYSTEM "address.dtd">
<address_book>
...

XML documents only need to be accompanied by Schema or DTD if they need to be validated
by a parser or if they contain complex types. An XML document is considered valid if 1) it has
an associated Schema or DTD, and 2) it complies with the constraints expressed in the
associated Schema or DTD. If, however, an XML document only needs to be well-formed, then
the document does not have to be accompanied by a Schema or DTD. A document is
considered well-formed if it follows all the rules in the W3C Recommendation for XML 1.0. For
the full XML 1.0 specification, see http://www.w3.org/XML/.

Why Use XML?
An industry typically uses data exchange methods that are meaningful and specific to that
industry. With the advent of e-commerce, businesses conduct an increasing number of
relationships with a variety of industries and, therefore, must develop expert knowledge of the
various protocols used by those industries for electronic communication.

The extensibility of XML makes it a very effective tool for standardizing the format of data
interchange among various industries. For example, when message brokers and workflow
engines must coordinate transactions among multiple industries or departments within an
enterprise, they can use XML to combine data from disparate sources into a format that is
understandable by all parties.

What Are XSL and XSLT?
The Extensible Stylesheet Language (XSL) is a W3C standard for describing presentation
rules that apply to XML documents. XSL includes both a transformation language, (XSLT), and
a formatting language. These two languages function independently of each other. XSLT is an
XML-based language and W3C specification that describes how to transform an XML
document into another XML document, or into HTML, PDF, or some other document format.

An XSLT transformer accepts as input an XML document and an XSLT document. The
template rules contained in an XSLT document include patterns that specify the XML tree to
which the rule applies. The XSLT transformer scans the XML document for patterns that match
the rule, and then it applies the template to the appropriate section of the original XML
document.

What Are DOM and SAX?
DOM and SAX are two standard Java application programming interfaces (APIs) for parsing
XML data. Both are supported by the WebLogic Server default parser. The two APIs differ in
their approach to parsing, with each API having its strengths and weaknesses.

Chapter 2
Why Use XML?

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

http://www.w3.org/XML/

SAX
SAX stands for the Simple API for XML. It is a platform-independent language neutral standard
interface for event-based XML parsing. SAX defines events that can occur as a parser is
reading through an XML document, such as the start or the end of an element. Programmers
provide handlers to deal with different events as the document is parsed.

Programmers that use the SAX API to parse XML documents have full control over what
happens when these events occur and can, as a result, customize the parsing process
extensively. For example, a programmer might decide to stop parsing an XML document as
soon as the parser encounters an error that indicates that the document is invalid, rather than
waiting until the entire document is parsed, thus improving performance.

The WebLogic Server default parser (the parser included in the JDK) supports SAX Version
2.0. Programmers who have created programs that use Version 1.0 of SAX to parse XML
documents should read about the changes between the two versions and update their
programs accordingly. For detailed information about the differences between the two versions,
refer to http://www.saxproject.org/.

DOM
DOM stands for the Document Object Model. It is platform- and language-neutral interface that
allows programs and scripts to access and update the content, structure, and style of XML
documents dynamically. DOM reads an XML document into memory and represents it as a
tree; each node of the tree represents a particular piece of data from the original XML
document. Because the tree structure is a standard programming mechanism for representing
data, traversing and manipulating the tree using Java is relatively easy, fast, and efficient. The
main drawback, however, is that the entire XML document has to be read into memory for
DOM to create the tree, which might decrease the performance of an application as the XML
documents get larger.

The WebLogic Server default parser (the parser included in the JDK) supports DOM Level 2.0
Core. Programmers who have created programs that use Level 1.0 of DOM to parse XML
documents should read about the changes between the two versions and update their
programs accordingly. For detailed information about the differences, refer to http://
www.w3.org/DOM/DOMTR.

What Is the Streaming API for XML (StAX)?
In addition to SAX and DOM, you can also parse and generate an XML document using the
Streaming API for XML (StAX).

StAX is Java Community Process specification that describes a bi-directional API for reading
and writing XML. StAX gives parsing control to the programmer by exposing a simple iterator-
based API and an underlying stream of events; the API includes methods such as next() and
hasNext() that allow the programmer to ask for the next event rather than handle the event in
a callback. This gives the programmer more procedural control over the processing of the XML
document.

Unlike DOM and SAX, StAX is not yet part of the Java API for XML Processing (JAXP).

Chapter 2
What Is the Streaming API for XML (StAX)?

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

http://www.saxproject.org/
http://www.w3.org/DOM/DOMTR
http://www.w3.org/DOM/DOMTR

Note

Previous versions of WebLogic Server included a similar proprietary API called
WebLogic XML Streaming API. This API was a basis for StAX. Although the WebLogic
XML Streaming API is still accessible in this release of WebLogic Server, its
functionality has been deprecated as of release 9.0 of WebLogic Server. Programmers
should use StAX instead.

For detailed information about using StAX, see Using the Streaming API for XML (StAX).

What Is JAXP?
The previous section discusses two APIs, SAX and DOM, that programmers can use to parse
XML data. The Java API for XML Processing (JAXP) provides a means to get to these parsers.
JAXP also defines a pluggability layer that allows programmers to use any compliant parser or
transformer.

WebLogic Server implements JAXP to facilitate XML application development and the work
required to move XML applications built on WebLogic Server to other Web application servers.
JAXP was developed to make XML applications portable; it provides basic support for parsing
and transforming XML documents through a standardized set of Jakarta platform APIs. JAXP
1.2, included in the WebLogic Server distribution, is configured to use the default parser.
Therefore, by default, XML applications built using WebLogic Server use JAXP.

The WebLogic Server distribution contains the interfaces and classes needed for JAXP 1.2.
JAXP 1.2 contains explicit support for SAX Version 2 and DOM Level 2.

JAXP Packages
JAXP contains the following two packages:

• javax.xml.parsers

• javax.xml.transform

The javax.xml.parsers package contains the classes to parse XML data in SAX Version 2.0
and DOM Level 2.0 mode. To parse an XML document in SAX mode, a programmer first
instantiates a new SaxParserFactory object with the newInstance() method. This method
looks up the specific implementation of the parser to load based on a well-defined list of
locations. The programmer then obtains a SaxParser instance from the SaxParserFactory and
executes its parse() method, passing it the XML document to be parsed. Parsing an XML
document in DOM mode is similar, except that the programmer uses the DocumentBuilder and
DocumentBuilderFactory classes instead.

For detailed information on using JAXP to parse XML documents, see Parsing XML
Documents.

The javax.xml.transform package contains classes to transform XML data, such as an XML
document, a DOM tree, or SAX events, into a different format. The transformer classes work
similarly to the parser classes. To transform an XML document, a programmer first instantiates
a TransformerFactory object with the newInstance() method. This method looks up the
specific implementation of the XSLT transformer to load based on a well-defined list of
locations. The programmer then instantiates a new Transformer object based on a specific
XSLT style sheet and executes its transform() method, passing it the XML object to
transform. The XML object might be an XML file, a DOM tree, and so on.

Chapter 2
What Is JAXP?

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

For detailed information on using JAXP to transform XML objects, see Using JAXP to
Transform XML Data.

New Feature of JAXP 1.4.4
W3C recommends XML Schema 1.1 (in two parts), XML Schema 1.1 Part 2: Datatypes and
XML (https://www.w3.org/TR/xmlschema11-2/) and Schema 1.1 Part 1: Structures (https://
www.w3.org/TR/xmlschema11-1/).

The following code snippet shows how to set Schema validation when using a SAX parser:

try {
 SAXParserFactory spf = SAXParserFactory.newInstance();
 spf.setNamespaceAware(true);
 spf.setValidating(true);
 SAXParser sp = spf.newSAXParser();
sp.setProperty("http://java.sun.com/xml/jaxp/properties/schemaLanguage",
 "http://www.w3.org/2001/XMLSchema");
sp.setProperty("http://java.sun.com/xml/jaxp/properties/schemaSource",
 "http://www.example.com/Report.xsd");
 DefaultHandler dh = new DefaultHandler();
 sp.parse("http://www.wombats.com/foo.xml", dh);
 } catch(SAXException se) {
 se.printStackTrace();
 }

See https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/module-
summary.html.

Common Uses of XML and XSLT
How you use XML and XSLT depends on your particular business needs.

Using XML and XSLT to Separate Content from Presentation
XML and XSLT are often used in applications that support multiple client types. For example,
suppose you have a Web-based application that supports both browser-based clients and
Wireless Application Protocol (WAP) clients. These clients understand different markup
languages, HTML and Wireless Markup Language (WML), respectively, but your application
must deliver content that is appropriate for both.

To accomplish this goal, you can write your application to first produce an XML document that
represents the data it is sending to the client. Then the application can transform the XML
document that represents the data into HTML or WML, depending on the client's browser type.
Your application can determine the client browser type by examining the User-Agent request
header of an HTTP request. Once the application knows the client browser type, it uses the
appropriate XSLT style sheet to transform the document into the correct markup language. See
the SnoopServlet example included in the examples/servlets directory of your WebLogic
Server distribution for an example of how to access this type of header information.

This method of rendering the same XML document using different markup languages in
respective client types helps concentrate the effort required to support multiple client types into
the development of the appropriate XSLT style sheets. Additionally, it allows your application to
adapt to other clients types easily, if necessary.

For additional information about XSLT, see Other XML Specifications and Information .

Chapter 2
Common Uses of XML and XSLT

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xmlschema11-1/
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/module-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/module-summary.html

XML as a Message Format for Business-to-Business Communication
In a business-to-business (B2B) environment, Company A and Company B want to exchange
information about e-commerce transactions in which both are involved. Company A is a major
e-commerce site. Company B is a small affiliate that sells Company A's products to a niche
group of customers. When Company B sends customers to Company A, Company B is
compensated in two ways: it receives, from Company A, both money and information about
other customers that make the same sort of purchases as those made by the customers
referred by Company B. To exchange information, Company A and Company B must agree on
a data format for information that is machine readable and that operates with systems from
both companies easily. XML is the logical data format to use in this scenario, but selecting this
format is only the first step. The companies must then agree on the format of the XML
messages to be exchanged. Because Company A has a one-to-many relationship with its
affiliates, Company A must define the format of the XML messages that will be exchanged.

To define the format of XML messages, or XML documents, Company A creates two document
type definitions (DTDs): one that describes the information that A will provide about customers
and one that describes the information that A wants to receive about a newly affiliated
company. Company B must also create two DTDs: one to process the XML documents
received from Company A and one to prepare an XML document in a format that can be
processed by Company A.

Chapter 2
Common Uses of XML and XSLT

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

3
Developing XML Applications with WebLogic
Server

This chapter describes how to use the Java programming language and the WebLogic Server
XML subsystem to develop XML applications. It is assumed that you know how to use Jakarta
Servlets and Jakarta Server Pages (JSPs) to write Java applications.
This chapter includes the following sections.

For information about how to write servlet and JSP applications, see Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

Developing XML Applications: Main Steps
Programmers using the WebLogic Server XML subsystem typically perform some or all of the
following programming tasks when developing XML applications:

1. Parse an XML document.

The XML document can originate from a number of sources. For example, a programmer
might develop a servlet to receive an XML document from a client, write an EJB to receive
an XML document from a Servlet or another EJB, and so on. In each instance, the XML
document may have to be parsed so that its data can be manipulated.

See Parsing XML Documents.

2. Generate a new XML document.

After a servlet or EJB has received and parsed an XML document and possibly
manipulated the data in some way, the Servlet or EJB might need to generate a new XML
document to send back to the client or to pass on to another EJB.

See Generating New XML Documents.

3. Transform XML data into another format.

After parsing an XML document or generating a new one, the Servlet or EJB may need to
transform it into another format, such as HTML, WML, or plain text.

See Using JAXP to Transform XML Data.

Parsing XML Documents
This section describes how to parse XML documents using JAXP in both DOM and SAX mode
and how to parse XML documents from a servlet.

Note

For detailed instructions on using the Streaming API for XML (StAX) to parse XML
documents, see Using the Streaming API for XML (StAX).

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 12

You use the WebLogic Remote Console XML Registry to configure the following:

• Per-document-type parsers, which supersede the default parser for the specified document
type.

• External entity resolution, or the process that an XML parser goes through when requested
to find an external file in the course of parsing an XML document

For information on how to use the WebLogic Remote Console for these tasks, see
Administering WebLogic Server XML.

These topics are in the following sections:

Parsing XML Documents Using JAXP in SAX Mode
The following code example shows how to configure a SAX parser factory to create a
validating parser. The example also shows how to register the MyHandler class with the parser.
The MyHandler class can override any method of the DefaultHandler class to provide custom
behavior for SAX parsing events or errors.

import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

...
MyHandler handler = new MyHandler();
// MyHandler extends org.xml.sax.helpers.DefaultHandler.

 //Obtain an instance of SAXParserFactory.
 SAXParserFactory spf = SAXParserFactory.newInstance();
 //Specify a validating parser.
 spf.setValidating(true); // Requires loading the DTD.
 //Obtain an instance of a SAX parser from the factory.
 SAXParser sp = spf.newSAXParser();
 //Parse the documnt.
 sp.parse("http://server/file.xml", handler);
...

Note

If you want to use a parser other than the default parser, you must use the WebLogic
Remote Console to specify the parser in the XML Registry; otherwise the
SaxParserFactory.newInstance method returns the default parser.

Parsing XML Documents Using JAXP in DOM Mode
The following code example shows how to parse an XML document and create an
org.w3c.dom.Document tree from a DocumentBuilder object:

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.Document;

...
//Obtain an instance of DocumentBuilderFactory.
DocumentBuilderFactory dbf =
 DocumentBuilderFactory.newInstance();
//Specify a validating parser.

Chapter 3
Parsing XML Documents

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 12

dbf.setValidating(true); // Requires loading the DTD.
//Obtain an instance of a DocumentBuilder from the factory.
DocumentBuilder db = dbf.newDocumentBuilder();
//Parse the document.
Document doc = db.parse(inputFile);
...

Note

If you want to use a parser other than the default parser, you must use the WebLogic
Remote Console to specify it; otherwise the DocumentBuilderFactory.newInstance
method returns the default parser.

Parsing XML Documents in a Servlet
Support for the setAttribute and getAttribute methods was added to version 2.2 of the
Jakarta Servlet Specification. Attributes are objects associated with a request. The request
object encapsulates all information from the client request. In the HTTP protocol, this
information is transmitted from the client to the server by the HTTP headers and message
body of the request.

With WebLogic Server, you can use the setAttribute and getAttribute methods to parse
XML documents. Use the setAttribute method for SAX mode parsing and the getAttribute
method for DOM mode parsing, as described in Using the org.xml.sax.DefaultHandler Attribute
to Parse a Document and Using the org.w3c.dom.Document Attribute to Parse a Document.

Before you can use the setAttribute and getAttribute methods, however, you must
configure a WebLogic Server servlet filter called weblogic.servlet.XMLParsingHelper
(deployed by default on all WebLogic Server instances) as part of your Web application.
Configure the servlet filter by adding the following elements to the web.xml deployment
descriptor, located in the WEB-INF directory of your Web application:

<filter>
 <filter-name>XMLParsingHelper</filter-name>
 <filter-class>weblogic.servlet.XMLParsingHelper</filter-class>
</filter>

<filter-mapping>
 <filter-name>XMLParsingHelper</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

For more information on servlet filters, see Filters in Developing Web Applications, Servlets,
and JSPs for Oracle WebLogic Server.

Using the org.xml.sax.DefaultHandler Attribute to Parse a Document
The following code example shows how to use the setAttribute method:

import weblogic.servlet.XMLProcessingException;
import org.xml.sax.helpers.DefaultHandler;
...
public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

Chapter 3
Parsing XML Documents

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 12

 try {
 request.setAttribute("org.xml.sax.helpers.DefaultHandler",
 new DefaultHandler());
 } catch(XMLProcessingException xpe) {
 System.out.println("Error in processing XML");
 xpe.printStackTrace();
 return;
 }
...

You can also use the org.xml.sax.HandlerBase attribute to parse an XML document, although
it is deprecated:

request.setAttribute("org.xml.sax.HandlerBase",
 new HandlerBase());

Note

This code example shows a simple way to parse a document using SAX and the
setAttribute method. This method of parsing a document is a WebLogic Server
convenience feature, and it is not supported by other servlet vendors. Therefore, if you
plan to run your application on other servlet platforms, do not use this feature.

Using the org.w3c.dom.Document Attribute to Parse a Document
The following code example shows how to use the getAttribute method.

import org.w3c.dom.Document;
import weblogic.servlet.XMLProcessingException;

...

public void doPost(HttpServletRequest request,
 HttpServletResponse response)
throws ServletException, IOException {

try {
 Document doc = request.getAttribute("org.w3c.dom.Document");
 } catch(XMLProcessingException xpe) {
 System.out.println("Error in processing XML");
 xpe.printStackTrace();
 return;
 }
...

Note

This code example shows a simple way to parse a document using DOM and the
getAttribute method. This method of parsing a document is a WebLogic Server
convenience feature, and it is not supported by other servlet vendors. Therefore, if you
plan to run your application on other servlet platforms, do not use this feature.

Chapter 3
Parsing XML Documents

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 12

Validating and Non-Validating Parsers
As previously discussed, a well-formed document is one that is syntactically correct according
to the rules outlined in the W3C Recommendation for XML 1.0. A valid document is one that
follows the constraints specified by its DTD or schema.

A non-validating parser verifies that a document is well-formed, but does not verify that it is
valid. To turn on validation while parsing a document (assuming you are using a validating
parser), you must:

• Set the SAXParserFactory.setValidating() method to true, as shown in the following
example:

SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setValidating(true);

• Ensure that the XML document you are parsing includes (either in-line or by reference) a
DTD or a schema.

Handling Entity Resolution While Parsing an XML Document
This section provides general information about external entities; how they are identified and
resolved by an XML parser; and the features provided by WebLogic Server to improve the
performance of external entity resolution in your XML applications.

General Information About External Entities
External entities are chunks of text that are not literally part of an XML document, but are
referenced inside the XML document. The actual text might reside anywhere - in another file
on the same computer or even somewhere on the Web. While parsing a document, if the
parser encounters an external entity reference, it fetches the referenced chunk of text, places
the text into the XML document, then continues parsing. An example of an external entity is a
DTD; rather than including the full text of the DTD in the XML document, the XML document
has a reference to the DTD that is stored in a separate file.

There are two ways to identify an external entity: a system identifier and a public identifier.
System identifiers use URIs to reference an external entity based on its location. Public
identifiers use a publicly declared name to refer the information.

The following example shows how a public identifier is used to reference the DTD for the
application.xml file that describes a Jakarta EE application archive (*.ear file):

<!DOCTYPE application PUBLIC "-//Sun Microsystems,
Inc.//DTD J2EE Application 1.2//EN">

The following example shows a reference to an external DTD by a system identifier only:

<!DOCTYPE application SYSTEM "http://java.sun.com/j2ee/dtds/application_1_2.dtd">

Here is a reference that uses both the public and system identifier; note that the keyword
SYSTEM is omitted:

<!DOCTYPE application
PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN"
"http://java.sun.com/j2ee/dtds/application_1_2.dtd">

Chapter 3
Parsing XML Documents

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 12

Using the WebLogic Server Entity Resolution Features
Use the following WebLogic Server features to improve the performance of external entity
resolution in your XML applications:

• Permanently store a copy of an external entity on the computer that hosts the WebLogic
Administration Server.

• Specify that WebLogic Server automatically retrieve and cache an external entity that
resides in an external repository that supports an HTTP interface, such as a URL. You can
specify that WebLogic Server cache the entity either in memory or on disk and specify
when the cached entry becomes stale, at which point WebLogic Server automatically
updates the cached entry.

Using the retrieve-and-cache feature, you do not have to actually copy the external entity
to the local computer. The XML application refers to the actual external entity only at
specified time intervals, rather than each time the document is parsed, thus potentially
greatly improving the performance of your application while also keeping as up to date with
the latest external entity as desired.

You use the XML Registry to create entity resolution entries to identify where the external entry
is located (locally or at a URL) and what the caching options are for entities on the Web. You
identify the external entity entry using a system or public identifier. Then, in your XML
document, when you reference this external entity, WebLogic Server fetches the local copy or
the cached copy (whichever you have configured) when parsing the document.

For detailed information on creating external entity registries with the XML Registry, refer to
External Entity Configuration Tasks.

Using Parsers Other Than the Default
If you use JAXP to parse your XML documents, the WebLogic Server XML Registry (which is
configured through the WebLogic Remote Console) offers the following options:

• Accept the default parser as the server-wide parser.

• Configure another parser of your choice (such as a different version of the Apache Xerces
parser) as the server-wide parser.

• Configure a parser for a particular XML document type, based on its system or public
identifier, or its root element.

Generating New XML Documents
This section describes how to generate XML documents from a DOM document tree and by
using JSP.

Note

For detailed instructions on using the Streaming API for XML (StAX) to generate XML
documents, see Using the Streaming API for XML (StAX).

Chapter 3
Generating New XML Documents

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 12

Generating XML from a DOM Document Tree
You can use the javax.xml.transform.Transformer class to serialize a DOM object into an
XML stream, as shown in the following example segment:

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.Document;

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;

import java.io.*;

...

TransformerFactory trans_factory = TransformerFactory.newInstance();
Transformer xml_out = trans_factory.newTransformer();
Properties props = new Properties();
props.put("method", "xml");
xml_out.setOutputProperties(props);
xml_out.transform(new DOMSource(doc), new StreamResult(System.out));

In the example, the Transformer.transform() method does the work of converting a DOM
object into an XML stream. The transform() method takes as input a
javax.xml.transform.dom.DOMSource object, created from the DOM tree stored in the doc
variable, and converts it into a javax.xml.transform.stream.StreamResult object and writes
the resulting XML document to the standard output.

Generating XML Documents in a JSP
You typically use JSPs to generate HTML, but you can also use a JSP to generate an XML
document.

Using JSPs to generate XML requires that you set the content type of the JSP page as follows:

<%@ page contentType="text/xml"%>
 ... XML document

The following code shows an example of how to use JSP to generate an XML document:

<?xml version="1.0">

<%@ page contentType="text/xml" import="java.text.DateFormat,java.util.Date" %>

<message>
 <text>
 Hello World.
 </text>
 <timestamp>
<%
out.print(DateFormat.getDateInstance().format(new Date()));
%>
 </timestamp>
</message>

Chapter 3
Generating New XML Documents

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 12

Transforming XML Documents
Transformation refers to converting an XML document (the source of the transformation) into
another format, typically a different XML document, HTML, Wireless Markup Language (WML)
(the result of the transformation.) This section describes how to transform XML documents
using JAXP and from within a JSP using JSP tags.

Using JAXP to Transform XML Data
Version 1.2 of JAXP provides pluggable transformation, which means that you can use any
JAXP-compliant transformer engine.

JAXP provides the following interfaces to transform XML data into a variety of formats:

• javax.xml.transform

Contains the generic APIs for transforming documents. This package does not have any
dependencies on SAX or DOM and makes the fewest possible assumptions about the
format of the source and result.

• javax.xml.transform.stream

Implements stream- and URI-specific transformation APIs. In particular, it defines the
StreamSource and StreamResult classes that enable you to specify InputStreams and
URLs as the source of a transformation and OutputStreams and URLs as the results,
respectively.

• javax.xml.transform.dom

Implements DOM-specific transformation APIs. In particular, it defines the DOMSource and
DOMResult classes that enable you to specify a DOM tree as either the source or result, or
both, of a transformation.

• javax.xml.transform.sax

Implements SAX-specific transformation APIs. In particular, it defines the SAXSource and
SAXResult classes that enable you to specify org.xml.sax.ContentHandler events as
either the source or result, or both, of a transformation.

Transformation encompasses many possible combinations of inputs and outputs.

Example of Transforming an XML Document Using JAXP
The following example snippet shows how to use JAXP to transform myXMLdoc.xml into a
different XML document using the mystylesheet.xsl stylesheet:

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

Transformer trans;
TransformerFactory factory = TransformerFactory.newInstance();
String stylesheet = "file://stylesheets/mystylesheet.xsl";
String xml_doc = "file://xml_docs/myXMLdoc.xml";

trans = factory.newTransformer(new StreamSource(stylesheet));
trans.transform(new StreamSource(xml_doc),
 new StreamResult(System.out));

Chapter 3
Transforming XML Documents

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 12

For an example of how to transform a DOM document into an XML stream, see Using JAXP to
Transform XML Data.

Using the JSP Tag to Transform XML Data
WebLogic Server provides a small JSP tag library for convenient access to an XSLT
transformer from within a JSP. You can use this tag to transform XML documents into HTML,
WML, and so on.

Note

This feature is deprecated in WebLogic Server 12.1.2.0 and may be removed in a
future release.

The JSP tag library consists of one main tag, x:xslt, and two subtags you can use within the
x:xslt tag: x:stylesheet and x:xml.

Note

The JSP tag library is provided for convenience only; the tag library is not required to
access XSLT transformers from within a JSP.

XSLT JSP Tag Syntax
The XSLT JSP tag syntax is based on XML. A JSP tag consists of a start tag, an optional body,
and a matching end tag. The start tag includes the element name and optional attributes.

Note

This feature is deprecated in WebLogic Server 12.1.2.0 and may be removed in a
future release.

The following syntax describes how to use the three XSLT JSP tags provided by WebLogic
Server in a JSP. The attributes are optional, as are the subtags x:stylesheet and x:xml. The
tables following the syntax describe the attributes of the x:xslt and x:stylesheet tags; the
x:xml tag does not have any attributes.

<x:xslt [xml="uri of XML file"]
 [media="media type to determine stylesheet"]
 [stylesheet="uri of stylesheet"]
 <x:xml>In-line XML goes here
 </x:xml>
 <x:stylesheet [media="media type to determine stylesheet"]
 [uri="uri of stylesheet"]
 </x:stylesheet>
</x:xslt>

Table 3-1 describes the attributes of the x:xslt tag.

Chapter 3
Transforming XML Documents

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 12

Table 3-1 x:xslt JSP Tag Attributes

x:xslt Tag
Attribute

Required Data Type Description

xml No String Specifies the location of the XML file that you want to transform.
The location is relative to the document root of the Web
application in which the tag is used.

media No String Defines the document output type, such as HTML or WML, that
determines which stylesheet to use when transforming the XML
document.

This attribute can be used in conjunction with the media
attribute of any enclosed x:stylesheet tags within the body of
the x:xslt tag. The value of the media attribute of the x:xslt
tag is compared to the value of the media attribute of any
enclosed x:stylesheet tags. If the values are equal, then the
stylesheet specified by the uri attribute of the x:stylesheet
tag is applied to the XML document.

Note: It is an error to set both the media and stylesheet
attributes within the same x:xslt tag.

styleshee
t

No String Specifies the location of the stylesheet to use to transform the
XML document. The location is relative to the document root of
the Web application in which the tag is used.

Note: It is an error to set both the media and stylesheet
attributes within the same x:xslt tag.

Table 3-2 describes the attributes of the x:stylesheet tag.

Table 3-2 x:stylesheet JSP Tag Attributes

x:stylesheet
Tag Attribute

Required Data Type Description

media No String Defines the document output type, such as HTML or WML,
that determines which stylesheet to use when transforming
the XML document.

Use this attribute in conjunction with the media attribute of
enveloping x:xslt tag. The value of the media attribute of
the x:xslt tag is compared to the value of the media
attribute of the enclosed x:stylesheet tags. If the values
are equal, then the stylesheet specified by the uri attribute
of the x:stylesheet tag is applied to the XML document.

uri No String Specifies the location of the stylesheet to use when the
value of the media attribute matches the value of the media
attribute of the enveloping x:xslt tag. The location is
relative to the document root of the Web application in which
the tag is used.

XSLT JSP Tag Usage
The x:xslt tag can be used with or without a body, and its attributes are optional. This section
describes the rules that dictate how the tag behaves depending on whether you specify a body
or one or more attributes.

Chapter 3
Transforming XML Documents

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 12

Note

This feature is deprecated in WebLogic Server 12.1.2.0 and may be removed in a
future release.

If the x:xslt JSP tag is an empty tag (no body), the following statements apply:

• If no attributes are set, the XML document is processed using the servlet path and the
default media stylesheet. You specify the default media stylesheet in your XML file with the
<?xml-stylesheet> processing instruction; the default stylesheet is the one that does not
have a media attribute.

This type of processing allows you to register the JSP page that contains the tag extension
as a file servlet that performs XSLT processing.

• If only the media attribute is set, the XML document is processed using the servlet path
and the specified media type. The value of the media type attribute of the x:xslt tag is
compared to the value of the media attribute of any <?xml-stylesheet> processing
instructions in your XML document; if any match then the corresponding stylesheet is
applied. If none match then the default media stylesheet is used. The media type attribute
is used to define the document output type (for example, XML, HTML, postscript, or WML).
This feature enables you to organize stylesheets by document output type.

• If only the xml attribute is set, the specified XML document is processed using the default
media stylesheet.

• If the media and xml attributes are set, the specified XML document is processed using the
specified media type.

• If the stylesheet attribute is defined, the XML document is processed using the specified
stylesheet.

Note

It is an error to set both the media and stylesheet attributes within the same
x:xslt tag.

An XSLT JSP tag that has a body may contain <x:xml> tags and/or <x:stylesheet> tags. The
following statements apply:

• The <x:xml> tag allows you specify an XML document for inline processing. This tag has
no attributes.

• The <x:stylesheet> tag, when used without any attributes, allows you specify the default
stylesheet inline.

• Use the uri attribute of the <x:stylesheet> tag to specify the location of the default
stylesheet.

• If you want to specify different stylesheets for different media types, you can use multiple
<x:stylesheet> tags with different values for the media attribute. You can specify a
stylesheet for each media type in the body of the tag, or specify the location of the
stylesheet with the uri attribute.

Chapter 3
Transforming XML Documents

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 12

Example of Using the XSLT JSP Tag in a JSP
The following snippet of code from a JSP shows how to use the XSLT JSP tag to transform
XML into HTML or WML, depending on the type of client that is requesting the JSP. If the client
is a browser, the JSP returns HTML; if the client is a wireless device, the JSP returns WML.

Note

This feature is deprecated in WebLogic Server 12.1.2.0 and may be removed in a
future release.

First the JSP uses the getHeader() method of the HttpServletRequest object to determine
the type of client that is requesting the JSP and sets the myMedia variable to wml or html
appropriately. If the JSP set the myMedia variable to html, then it applies the html.xsl
stylesheet to the XML document contained in the content variable. Similarly, if the JSP set the
myMedia variable to wml, then it applies the wml.xsl stylesheet.

<%
 String clientType = request.getHeader("User-Agent");
 // default to WML client
 String myMedia = "wml";

 // if client is an HTML browser

 if (clientType.indexOf("Mozilla") != -1) {
 myMedia = "http"
 }
%>

<x:xslt media="<%=myMedia%>">
 <x:xml><%=content%></x:xml>
 <x:stylesheet media="html" uri="html.xsl"/>
 <x:stylesheet media="wml" uri="wml.xsl"/>
</x:xslt>

Using Transformers Other Than the Default Transformer
The WebLogic Server XML Registry (which you configure using the WebLogic Remote
Console) offers the following options:

• Accept the default transformer as the server-wide transformer.

• Configure a transformer other than the default transformer as the server-wide transformer.
The transformer must be JAXP-compliant.

For instructions on how to use the XML Registry to configure transforming options, see
Configuring a Parser or Transformer Other Than the Default.

Chapter 3
Transforming XML Documents

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 12

4
Using the Streaming API for XML (StAX)

This chapter describes how to use the Streaming API for XML (StAX) to parse and generate
XML documents.
The chapter includes the following sections:

Overview of the Streaming API for XML
The Streaming API for XML (StAX), specified by JSR-173, is distributed as a standalone
technology as a part of the Java SE.

When a program parses an XML document using SAX, the program must create event
listeners that listen to parsing events as they occur; the program must react to events rather
than ask for a specific event. By contrast, when you use StAX, you can methodically step
through an XML document, ask for certain types of events (such as the start of an element),
iterate over the attributes of an element, skip ahead in the document, stop processing at any
time, get sub-elements of a particular element, and filter out elements as desired. Because you
are asking for events rather than reacting to them, using the StAX is often referred to as pull
parsing.

StAX includes two APIs, the cursor API and the event-iterator API, either of which can be used
for reading and writing XML. The following sections describe each API and their particular
strengths.

Description of the Cursor API
The basic function of the cursor API is to allow programmers to parse and generate XML as
easily and efficiently as possible. Of the two APIs in StAX, this is the one that most
programmers would use.

The cursor API iterates over a set of events, such as start elements, comments, and attributes,
although the events may be unrealized. The cursor API has two main interfaces:
XMLStreamReader for parsing XML and XMLStreamWriter for generating XML.

The XMLStreamReader Interface
The cursor API uses the XMLStreamReader interface to move a virtual cursor over an XML
document and allow access to the data and underlying state through method calls such as
hasNext(), next(), getEventType(), and getText(). The XMLStreamReader interface allows
only forward, read-only access to the XML.

Use the XMLInputFactory class to create a new instance of the XMLStreamReader. You can set
a variety of properties when you get a new reader; for details, see Properties Defined for the
XMLInputFactory Interface.

When you use the next() method of the XMLStreamReader interface to parse XML, the reader
gets the next parsing event and returns an integer that identifies the type of event just read.
Parsing events correspond to sections of an XML document, such as the XML declaration,
start and end element tags, character data, white space, comments, and processing
instructions. The XMLStreamConstant interface specifies the event to which the integer returned

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 19

http://www.jcp.org/en/jsr/detail?id=173

by the next() method corresponds. You can also use the getEventType() method of
XMLStreamReader to determine the event type.

The XMLStreamReader interface has numerous methods for getting at the specific data in the
XML document. Some of these methods include:

• getLocalName()—Returns the local name of the current event.

• getPrefix()—Returns the prefix of the current event.

• getAttributeXXX()—Set of methods that return information about the current attribute
event.

• getNamespaceXXX()—Set of methods that return information about the current namespace
event.

• getTextXXX()—Set of methods that return information about the current text event.

• getPIData()—Returns the data section of the current processing instruction event.

Only certain methods are valid for each event type; the StAX processor throws a
java.lang.IllegalStateException if you try to call a method on an invalid event type. For
example, it is an error to try to call the getAttributeXXX() methods on a namespace event.
See the StAX specification, at http://www.jcp.org/en/jsr/detail?id=173, for the complete
list of events and their valid XMLStreamReader methods.

The XMLStreamWriter Interface
The cursor API uses the XMLStreamWriter interface to specify how to generate XML.

Use the XMLOutputFactory class to create a new instance of the XMLStreamWriter. You can
set a property for repairing namespaces and prefixes when you get a new writer; for details,
see Properties Defined for the XMLOutputFactory Interface.

The XMLStreamWriter interface defines a set of writeXXX() methods for writing standard parts
of an XML document, such as:

• writeStartElement()

• writeEndDocument()

• writeAttribute()

• writeNamespace()

• writeCData()

Each part of an XML document, including the attributes and the namespaces, must be
explicitly written using these methods.

Use the flush() method to write any cached data to the output and the close() method to
close the writer and free up any resources.

The XMLStreamWriter, when generating XML, does not check that the generated document is
well-formed; it is the programmer's responsibility to create a well-formed XML document. To
print the special characters &, <, and >, use the writeCharacters() method.

Description of the Event Iterator API
The event iterator API is a layer on top of the cursor API. It is easy to extend and facilitates
pipelining. Pipelining refers to multiple XML-to-XML transformations. By using the event iterator
API, programmers do not have to deserialize and serialize the XML at each stage of the

Chapter 4
Overview of the Streaming API for XML

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 19

http://www.jcp.org/en/jsr/detail?id=173

pipeline; rather, only at each end of the pipeline and use the API methods such as
nextEvent() to communicate at the middle stages. The event iterator API has two main
interfaces: XMLEventReader for parsing XML and XMLEventWriter for generating XML.

Because the cursor API is the most commonly used API in StAX, this section does not
describe in detail how to use the event iterator API, other than showing an example. For details
about using this API, see the StAX specification http://www.jcp.org/en/jsr/detail?id=173.

The following example shows a simple program that uses the XMLEventReader interface of
StAX to parse an XML document. The program takes a single parameter, an XML file, and
uses it to create an XMLEventReader object. The program then uses the reader to iterate over
and print the stream of events.

package examples.event;

import java.io.FileReader;
import javax.xml.stream.*;
import javax.xml.stream.events.*;
import javax.xml.stream.util.*;
import javax.xml.namespace.QName;

/**
 * A simple example to iterate over events
 *
 * @author Copyright (c) 2002 by BEA Systems.
 */

public class Parse {
 private static String filename = null;
 private static void printUsage() {
 System.out.println("usage: java examples.event.Parse <xmlfile>");
 }

 public static void main(String[] args) throws Exception {
 try {
 filename = args[0];
 } catch (ArrayIndexOutOfBoundsException aioobe){
 printUsage();
 System.exit(0);
 }

 XMLInputFactory factory = XMLInputFactory.newInstance();
 XMLEventReader r =
 factory.createXMLEventReader(new FileReader(filename));
 while(r.hasNext()) {
 XMLEvent e = r.nextEvent();
 System.out.println("ID:"+e.hashCode()+"["+e+"]");
 }
 }
}

Main Interfaces and Classes of StAX
Table 4-1 describes the main interfaces and classes of the Streaming API for XML

Chapter 4
Overview of the Streaming API for XML

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 19

http://www.jcp.org/en/jsr/detail?id=173
https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr

Table 4-1 Main Interfaces and Classes of the Streaming API for XML

Interface or Class Used in Cursor or
Event Iterator API?

Description

XMLInputFactory class Both Factory class used to create an XMLStreamReader or
XMLEventReader instance.

XMLOutputFactory class Both Factory class used to create an XMLStreamWriter or
XMLEventWriter instance.

XMLEventFactory class Event Iterator Factory class used to create an XMLEvent instance.

XMLStreamReader interface Cursor Interface used to parse an XML document. Enables you to
peek at the next event, get the next event, and check for more
events.

XMLStreamWriter interface Cursor Interface used to generate an XML document. It provides a set
of writeXXX() methods for generating specific parts of an
XML document, such as start elements, attributes, and so on.

XMLEventReader interface Event Iterator Interface used to parse XML events. It enables you to peek at
the next event, get the next event, and check for more events.

XMLEventWriter interface Event Iterator Interface used to generate XML. It uses the add() method to
add XMLEvents to the output stream.

XMLEvent Event Iterator Base interface for handling events. All specific XML events
extend from XMLEvent, such as StartElement, Attribute,
and so on.

XMLStreamException
exception

Both Base exception for unexpected processing errors, such as lack
of well-formed XML document structure.

Parsing XML With the XMLStreamReader Interface: Typical
Steps

The following procedure describes the typical steps for using the XMLStreamReader interface of
the StAX cursor API to parse an XML document. The procedure uses the example from
Example of Parsing XML Using StAX in its description.

1. Import the javax.xml.stream.* classes.

2. Use the XMLInputFactory.newInstance() method to instantiate an XMLInputFactory, as
shown in the following code excerpt:

XMLInputFactory xmlif = XMLInputFactory.newInstance();

See Properties Defined for the XMLInputFactory Interface for the list of properties you can
set.

3. Use the XMLInputFactory.createXMLStreamReader() method to instantiate an
XMLStreamReader object based on an XML document.

See Getting the XMLStreamReader Object.

4. Parse the XML document, using the hasNext() and next() methods to step through the
XML events, as shown in the following code excerpt:

while(xmlr.hasNext()){
 printEvent(xmlr);
 xmlr.next();

Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 19

In the example, xmlr is the XMLStreamReader instance and the local printEvent() method
(not part of the StAX API) determines the specific event type, as described in the next step.

5. While parsing the XML document, determine the current specific event type and take
appropriate action. Event types include the start and end of an XML document, the start
and end of an XML element, comments, entity references, and so on.

See Determining the Specific XML Event Type.

6. If the current event type is a start element or end element, optionally get its attributes.

See Getting the Attributes of an Element.

7. If the current event type is a start or end element, optionally get its namespaces.

See Getting the Namespaces of an Element.

8. If the current event type includes text data, such as a CDATA or comment, optionally get
the actual data.

See Getting Text Data.

9. Optionally, get location information, such as the line number or column number, of the
current event.

See Getting Location Information.

10. Close the stream.

See Closing the Input Stream.

Example of Parsing XML Using StAX
The following example shows a simple program that uses the XMLStreamReader interface of
StAX to parse an XML document.

The program takes a single parameter, an XML file, and uses it to create an
XMLStreamReader object. The program then uses the reader to iterate over the stream of
events, determining the type of each event, such as the start of an XML element, the list of
attributes of an element, a processing instruction, and so on. The program prints out
information about these events, using internal methods to print out the list of attributes and
namespaces when appropriate.

The code in bold is described in later sections.

package examples.basic;

import java.io.FileReader;
import java.util.Iterator;
import javax.xml.stream.*;
import javax.xml.namespace.QName;

/**
 * This is a simple parsing example that illustrates
 * the XMLStreamReader class.
 *
 * @author Copyright (c) 2003 by BEA Systems.
 */

public class Parse {
 private static String filename = null;
 private static void printUsage() {
 System.out.println("usage: java examples.basic.Parse <xmlfile>");
 }

Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 19

https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr

 public static void main(String[] args) throws Exception {
 try {
 filename = args[0];
 } catch (ArrayIndexOutOfBoundsException aioobe){
 printUsage();
 System.exit(0);
 }

 //
 // Get an input factory
 //
 XMLInputFactory xmlif = XMLInputFactory.newInstance();
 System.out.println("FACTORY: " + xmlif);

 //
 // Instantiate a reader
 //
 XMLStreamReader xmlr = xmlif.createXMLStreamReader(new FileReader(filename));
 System.out.println("READER: " + xmlr + "\n");

 //
 // Parse the XML
 //
 while(xmlr.hasNext()){
 printEvent(xmlr);
 xmlr.next();
 }

 //
 // Close the reader
 //
 xmlr.close();

 }

 private static void printEvent(XMLStreamReader xmlr) {

 System.out.print("EVENT:["+xmlr.getLocation().getLineNumber()+"]["+
 xmlr.getLocation().getColumnNumber()+"] ");

 System.out.print(" [");
 switch (xmlr.getEventType()) {

 case XMLStreamConstants.START_ELEMENT:
 System.out.print("<");
 printName(xmlr);
 printNamespaces(xmlr);
 printAttributes(xmlr);
 System.out.print(">");
 break;
 case XMLStreamConstants.END_ELEMENT:
 System.out.print("</");
 printName(xmlr);
 System.out.print(">");
 break;
 case XMLStreamConstants.SPACE:
 case XMLStreamConstants.CHARACTERS:
 int start = xmlr.getTextStart();
 int length = xmlr.getTextLength();
 System.out.print(new String(xmlr.getTextCharacters(),
 start,
 length));

Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 19

 break;

 case XMLStreamConstants.PROCESSING_INSTRUCTION:
 System.out.print("<?");
 if (xmlr.hasText())
 System.out.print(xmlr.getText());
 System.out.print("?>");
 break;

 case XMLStreamConstants.CDATA:
 System.out.print("<![CDATA[");
 start = xmlr.getTextStart();
 length = xmlr.getTextLength();
 System.out.print(new String(xmlr.getTextCharacters(),
 start,
 length));
 System.out.print("]]>");
 break;

 case XMLStreamConstants.COMMENT:
 System.out.print("<!--");
 if (xmlr.hasText())
 System.out.print(xmlr.getText());
 System.out.print("-->");
 break;

 case XMLStreamConstants.ENTITY_REFERENCE:
 System.out.print(xmlr.getLocalName()+"=");
 if (xmlr.hasText())
 System.out.print("["+xmlr.getText()+"]");
 break;

 case XMLStreamConstants.START_DOCUMENT:
 System.out.print("<?xml");
 System.out.print(" version='"+xmlr.getVersion()+"'");
 System.out.print(" encoding='"+xmlr.getCharacterEncodingScheme()+"'");
 if (xmlr.isStandalone())
 System.out.print(" standalone='yes'");
 else
 System.out.print(" standalone='no'");
 System.out.print("?>");
 break;

 }
 System.out.println("]");
 }

 private static void printName(XMLStreamReader xmlr){
 if(xmlr.hasName()){
 String prefix = xmlr.getPrefix();
 String uri = xmlr.getNamespaceURI();
 String localName = xmlr.getLocalName();
 printName(prefix,uri,localName);
 }
 }

 private static void printName(String prefix,
 String uri,
 String localName) {
 if (uri != null && !("".equals(uri))) System.out.print("['"+uri+"']:");
 if (prefix != null) System.out.print(prefix+":");
 if (localName != null) System.out.print(localName);

Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 19

 }

 private static void printAttributes(XMLStreamReader xmlr){
 for (int i=0; i < xmlr.getAttributeCount(); i++) {
 printAttribute(xmlr,i);
 }
 }

 private static void printAttribute(XMLStreamReader xmlr, int index) {
 String prefix = xmlr.getAttributePrefix(index);
 String namespace = xmlr.getAttributeNamespace(index);
 String localName = xmlr.getAttributeLocalName(index);
 String value = xmlr.getAttributeValue(index);
 System.out.print(" ");
 printName(prefix,namespace,localName);
 System.out.print("='"+value+"'");
 }

 private static void printNamespaces(XMLStreamReader xmlr){
 for (int i=0; i < xmlr.getNamespaceCount(); i++) {
 printNamespace(xmlr,i);
 }
 }

 private static void printNamespace(XMLStreamReader xmlr, int index) {
 String prefix = xmlr.getNamespacePrefix(index);
 String uri = xmlr.getNamespaceURI(index);
 System.out.print(" ");
 if (prefix == null)
 System.out.print("xmlns='"+uri+"'");
 else
 System.out.print("xmlns:"+prefix+"='"+uri+"'");
 }
}

Getting the XMLStreamReader Object
Use the XMLInputFactory.createXMLStreamReader() method to instantiate an
XMLStreamReader object based on an XML document, as shown in the following code excerpt:

XMLStreamReader xmlr = xmlif.createXMLStreamReader(new FileReader(filename));

In the example, xmlif is the XMLInputFactory instance.

The various signatures of the createXMLStreamReader() method allow for the following XML
document formats as parameters:

• java.io.InputStream

• java.io.Reader (shown in the example)

• javax.xml.transform.Source (specified in the JAXP API https://docs.oracle.com/en/
java/javase/17/docs/api/java.xml/javax/xml/transform/Source.html)

Determining the Specific XML Event Type
To determine the specific event type while parsing an XML document, use either the
XMLStreamReader.next() or XMLStreamReader.getEventType() methods. The next() method
reads the next event and returns an integer which identifies the read event type; the
getEventType() method simply returns the integer identifying the current event type. The

Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 19

https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/transform/Source.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/transform/Source.html

XMLStreamConstants superinterface of XMLStreamReader defines the event type constants,
shown in the following list:

• XMLStreamConstants.ATTRIBUTE

• XMLStreamConstants.CDATA

• XMLStreamConstants.CHARACTERS

• XMLStreamConstants.COMMENT

• XMLStreamConstants.DTD

• XMLStreamConstants.END_DOCUMENT

• XMLStreamConstants.END_ELEMENT

• XMLStreamConstants.ENTITY_DECLARATION

• XMLStreamConstants.ENTITY_REFERENCE

• XMLStreamConstants.NAMESPACE

• XMLStreamConstants.NOTATION_DECLARATION

• XMLStreamConstants.PROCESSING_INSTRUCTION

• XMLStreamConstants.SPACE

• XMLStreamConstants.START_DOCUMENT

• XMLStreamConstants.START_ELEMENT

The following example shows how to use the Java case statement to determine the particular
type of event that was returned by the XMLStreamReader.next() method. The example uses
the XMLStreamReader.getEventType() method to determine the integer event type of the
current event returned by the next() method. For simplicity, the example simply prints that an
event has been found; later sections show further processing of the event.

switch (xmlr.getEventType()) {

case XMLStreamConstants.START_ELEMENT:
 System.out.print("Start Element\n");
 break;

case XMLStreamConstants.END_ELEMENT:
 System.out.print("End Element\n");
 break;

case XMLStreamConstants.SPACE:
 System.out.print("Space\n");
 break;

case XMLStreamConstants.CHARACTERS:
 System.out.print("Characters\n");
 break;

case XMLStreamConstants.PROCESSING_INSTRUCTION:
 System.out.print("Processing Instrcutions\n");
 break;

case XMLStreamConstants.CDATA:
 System.out.print("CDATA\n");
 break;

case XMLStreamConstants.COMMENT:

Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 19

 System.out.print("Comment\n");
 break;

case XMLStreamConstants.DTD:
 System.out.print("DTD\n");
 break;

case XMLStreamConstants.ENTITY_REFERENCE:
 System.out.print("Entity Reference\n");
 break;

case XMLStreamConstants.ENTITY_DECLARATION:
 System.out.print("Entity Declaration\n");
 break;

case XMLStreamConstants.START_DOCUMENT:
 System.out.print("Start Document\n");
 break;

case XMLStreamConstants.END_DOCUMENT:
 System.out.print("End Document\n");
 break;

}

Getting the Full Name of an Element
The full name of an element includes its prefix, namespace URI, and local name; use the
getPrefix(), getNamespaceURI(), and getLocalName() methods of the XMLStreamReader
interface, respectively, to get this information once you determine that the current event is a
start or end element.

For example, assume the case statement for a start element event in the sample program
looks like the following:

case XMLStreamConstants.START_ELEMENT:

 System.out.print("<");
 printName(xmlr);
 printNamespaces(xmlr);
 printAttributes(xmlr);
 System.out.print(">");
 break;

Note

The printNamespaces() and printAttributes() methods are discussed in other
sections.

The two local printName() methods can use the getXXX() methods as follows:

private static void printName(XMLStreamReader xmlr){
 if(xmlr.hasName()){
 String prefix = xmlr.getPrefix();
 String uri = xmlr.getNamespaceURI();
 String localName = xmlr.getLocalName();
 printName(prefix,uri,localName);
 }

Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 19

}

private static void printName(String prefix,
 String uri,
 String localName) {
 if (uri != null && !("".equals(uri))) System.out.print("['"+uri+"']:");
 if (prefix != null) System.out.print(prefix+":");
 if (localName != null) System.out.print(localName);
}

Getting the Attributes of an Element
Once you determine that the current event is a start element, end element, or attribute, use the
getAttributeXXX() methods of the XMLStreamReader interface to get the list of attributes and
their values.

Note

You can use the getAttributeXXX() methods only on start element, end element, and
attribute events; a java.lang.IllegalStateException is thrown if you try to execute
the methods on any other type of event.

Use the getAttributeCount() method to return the number of attributes of the current element
and use the count in a loop that iterates over the list of attributes. The method does not include
namespaces in the count. Additional getAttributeXXX() methods return the prefix,
namespace URI, local name, and value for a particular attribute.

For example, assume the case statement for a start element event in our sample program
looks like the following:

case XMLStreamConstants.START_ELEMENT:

 System.out.print("<");
 printName(xmlr);
 printNamespaces(xmlr);
 printAttributes(xmlr);
 System.out.print(">");
 break;

Note

The printName() and printNamespaces() methods are discussed in other sections.

The following local printAttributes() method shows one way of iterating through the list of
attributes; because attribute indices are zero-based, the for loop starts at 0:

private static void printAttributes(XMLStreamReader xmlr){

 for (int i=0; i < xmlr.getAttributeCount(); i++) {
 printAttribute(xmlr,i);
 }
}

Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 19

The following local printAttribute() method shows how to print out all the information for a
particular attribute:

private static void printAttribute(XMLStreamReader xmlr, int index) {
 String prefix = xmlr.getAttributePrefix(index);
 String namespace = xmlr.getAttributeNamespace(index);
 String localName = xmlr.getAttributeLocalName(index);
 String value = xmlr.getAttributeValue(index);
 System.out.print(" ");
 printName(prefix,namespace,localName);
 System.out.print("='"+value+"'");
}

The printName() method is described in Getting the Full Name of an Element.

Getting the Namespaces of an Element
Once you determine that the current event is a start element, end element, or namespace, use
the getNamespaceXXX() methods of the XMLStreamReader interface to get the list of
namespaces declared for the event.

Note

You can use the getNamespaceXXX() methods only on start element, end element, and
namespace events; a java.lang.IllegalStateException is thrown if you try to
execute the methods on any other type of event.

Use the getNamespaceCount() method to return the number of namespaces declared for the
current event, and use the count in a loop that iterates over the list. If the current event is an
end element, the count refers to the number of namespaces that are about to go out of scope.
Additional getNamespaceXXX() methods return the prefix and namespace URI for a particular
namespace.

For example, assume the case statement for a start element event in our sample program
looks like the following:

case XMLStreamConstants.START_ELEMENT:

 System.out.print("<");
 printName(xmlr);
 printNamespaces(xmlr);
 printAttributes(xmlr);
 System.out.print(">");
 break;

Note

The printName() and printAttributes() methods are discussed in other sections.

The following local printNamespaces() method shows one way of iterating through the list of
namespaces for the start element; because namespace indices are zero-based, the for loop
starts at 0:

Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 19

private static void printNamespaces(XMLStreamReader xmlr){
 for (int i=0; i < xmlr.getNamespaceCount(); i++) {
 printNamespace(xmlr,i);
 }
}

The following local printNamespace() method shows how to print out all the information for a
particular namespace:

private static void printNamespace(XMLStreamReader xmlr, int index) {
 String prefix = xmlr.getNamespacePrefix(index);
 String uri = xmlr.getNamespaceURI(index);
 System.out.print(" ");
 if (prefix == null)
 System.out.print("xmlns='"+uri+"'");
 else
 System.out.print("xmlns:"+prefix+"='"+uri+"'");
}

The getNamespacePrefix() method returns null for the default namespace declaration.

Getting Text Data
The XMLStreamReader interface includes various getTextXXX() methods for getting text data
from events such as comments and CDATA.

Use the getTextStart() method to get the offset into the text character array where the first
character of the current text event is stored. Use the getTextLength() method to get the
length of the sequence of characters within the text character array. Finally, use the
getTextCharacters() method to return this character array for the current event. The
character array contains text information about only the current event; as soon as you call the
next() method to read the next event on the input stream, the character array is filled with new
information.

The following example shows how to print out text data for the CDATA event:

case XMLStreamConstants.CDATA:
 System.out.print("<![CDATA[");
 start = xmlr.getTextStart();
 length = xmlr.getTextLength();
 System.out.print(new String(xmlr.getTextCharacters(),
 start,
 length));
 System.out.print("]]>");
 break;

If you want to first check that the character event actually has text, use the hasText() method,
as shown in the following example:

case XMLStreamConstants.COMMENT:
 System.out.print("<!--");
 if (xmlr.hasText())
 System.out.print(xmlr.getText());
 System.out.print("-->");
 break;

Getting Location Information
The Location interface of the StAX API provides methods for getting location information
about an event, such as the line number or column number, as well as the public ID and

Chapter 4
Parsing XML With the XMLStreamReader Interface: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 19

system ID of the XML being parsed. Use the getLocation() method of the XMLStreamReader
interface to return a Location object for the current event, as shown in the following example:

System.out.print("EVENT:["+xmlr.getLocation().getLineNumber()+"]["+
 xmlr.getLocation().getColumnNumber()+"] ");

Closing the Input Stream
It is good programming practice to close the XMLStreamReader explicitly when you are finished
with it, to free up resources. To close the reader, use the XMLStreamReader.close() method,
as shown in the following example:

//
// Close the reader
//
xmlr.close();

Generating XML Using the XMLStreamWriter Interface: Typical
Steps

The following procedure describes the typical steps for using the XMLStreamWriter interface of
the StAX cursor API to generate a new XML document.

1. Import the javax.xml.stream.* classes.

2. Use the XMLOutputFactory.newInstance() method to instantiate an XMLOutputFactory,
as shown in the following code excerpt:

XMLOutputFactory xmlof = XMLOutputFactory.newInstance();

See Properties Defined for the XMLOutputFactory Interface for the list of properties you
can set.

3. Use the XMLOutputFactory.createXMLStreamWriter() method to instantiate an
XMLStreamWriter object, passing it the name of the file or object that will contain the XML.

See Getting the XMLStreamWriter Object.

4. Add the XML declaration to the output. See Adding the XML Declaration to the Output
Stream.

5. Add standard XML objects, such as start elements, comments, and characters, to the
output. See Adding Standard XML Events to the Output Stream.

6. Add attributes and namespace declarations to a start element. See Adding Attributes and
Namespace Declarations to a Start Element.

7. Close the output stream. See Closing the Output Stream.

Example of Generating XML Using StAX
The following example shows a simple program that uses the XMLStreamWriter interface of
StAX to generate an XML document.

The program first creates an instance of an XMLStreamWriter, specifying that the output be
written to the file outFile.xml in the current directory. Then, using various writeXXX()
methods, it builds an XML file that looks like the following:

<?xml version='1.0' encoding='utf-8'?>

Chapter 4
Generating XML Using the XMLStreamWriter Interface: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 19

<!--this is a comment-->
<person xmlns:one="http://namespaceOne" gender="f">
 <one:name hair="pigtails" freckles="yes">Pippi Longstocking</one:name>
</person>

The XMLStreamWriter interface does not check for that an XML document is well-formed; it is
the programmer's responsibility to ensure that, for example, each start element has a
corresponding end element, and so on. The example also shows how to use the
writeCharacters("\n") method to add new lines to the output to make the XML more
readable when writing to a text file.

The code in bold is described in later sections.

package examples.basic;

import java.io.FileOutputStream;
import java.util.Iterator;
import javax.xml.stream.*;
import javax.xml.namespace.QName;

/**
 * This is a simple example that illustrates how to use the
 * the XMLStreamWriter class to generate XML.
 *
 * The generated XML file looks like this:
 *
 * <?xml version='1.0' encoding='utf-8'?>
 *
 * <!--this is a comment-->
 * <person xmlns:one="http://namespaceOne" gender="f">
 * <one:name hair="pigtails" freckles="yes">Pippi Longstocking</one:name>
 * </person>
 *
 *
 * @author Copyright (c) 2003 by BEA Systems.
 */

public class Generate {

 public static void main(String args[]) throws Exception {

 //
 // Get an output factory
 //
 XMLOutputFactory xmlof = XMLOutputFactory.newInstance();
 System.out.println("FACTORY: " + xmlof);

 //
 // Instantiate a writer
 //
 XMLStreamWriter xmlw = xmlof.createXMLStreamWriter(new FileOutputStream
("outFile.xml"));
 System.out.println("READER: " + xmlw + "\n");

 //
 // Generate the XML
 //

 // Write the default XML declaration
 xmlw.writeStartDocument();
 xmlw.writeCharacters("\n");
 xmlw.writeCharacters("\n");

Chapter 4
Generating XML Using the XMLStreamWriter Interface: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 19

https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr

 // Write a comment
 xmlw.writeComment("this is a comment");
 xmlw.writeCharacters("\n");

 // Write the root element "person" with a single attribute "gender"
 xmlw.writeStartElement("person");
 xmlw.writeNamespace("one", "http://namespaceOne");
 xmlw.writeAttribute("gender","f");
 xmlw.writeCharacters("\n");

 // Write the "name" element with some content and two attributes
 xmlw.writeCharacters(" ");
 xmlw.writeStartElement("one", "name", "http://namespaceOne");
 xmlw.writeAttribute("hair","pigtails");
 xmlw.writeAttribute("freckles","yes");
 xmlw.writeCharacters("Pippi Longstocking");

 // End the "name" element
 xmlw.writeEndElement();
 xmlw.writeCharacters("\n");

 // End the "person" element
 xmlw.writeEndElement();

 // End the XML document
 xmlw.writeEndDocument();

 // Close the XMLStreamWriter to free up resources
 xmlw.close();

 }

}

Getting the XMLStreamWriter Object
Use the XMLOutputFactory.createXMLStreamWriter() method to instantiate an
XMLStreamWriter object based on an XML document, as shown in the following code excerpt:

XMLStreamWriter xmlw = xmlof.createXMLStreamWriter(new FileOutputStream ("outFile.xml"));

In the example, xmlof is the XMLOutputFactory instance.

The various signatures of the createXMLStreamWriter() method allow for the following XML
document formats as parameters:

• java.io.OutputStream (shown in the example)

• java.io.Writer

• javax.xml.transform.Result (specified in the JAXP API https://docs.oracle.com/en/
java/javase/17/docs/api/java.xml/javax/xml/transform/Result.html)

Adding the XML Declaration to the Output Stream
Use the XMLStreamWriter.writeStartDocument() method to add the XML declaration as the
first line of the XML document, as shown in the following code excerpt:

xmlw.writeStartDocument();

Chapter 4
Generating XML Using the XMLStreamWriter Interface: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 19

https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/transform/Result.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/transform/Result.html

With no arguments, the method writes the default XML declaration:

<?xml version='1.0' encoding='utf-8'?>

If you want to specify a different encoding or XML version, use the following flavors of the
writeStartDocument() method:

• writeStartDocument(java.lang.String version)

• writeStartDocument(java.lang.String encoding, java.lang.String version)

Setting the encoding with the writeStartDocument() method does not set the actual encoding
of the underlying output; it simply specifies what value is written for the encoding attribute of
the XML declaration. To actually set the encoding of the output, you must specify the encoding
parameter when creating the instance of the XMLStreamWriter with the appropriate
XMLOutputFactory.createXMLStreamWriter() method.

Adding Standard XML Events to the Output Stream
Use the XMLStreamWriter.writeXXX() methods to add standard XML events, such as start
elements, end elements, comments, CDATA, entity references, and so on to the output
stream.The XXX refers to the particular event, such as writeStartElement(),
writeEndElement(), writeComment(), writeCData(), and so on. You can create most
elements by passing the name or text data as a String.

The XMLStreamWriter interface does not validate your data, nor does it check that the
document is well-formed; it is the programmer's responsibility to ensure that, for example, each
start element has a corresponding end element, and so on. It is also up to the programmer to
ensure that the start and end element events are correctly nested. To make the output XML
more human-readable when writing to a text file, use the writeCharacters("\n") method to
add new lines in appropriate places.

For example, assume you want to create the following snippet of XML:

<!-- This is a comment -->
<name>Jane Doe</name>

The Java code to add this element to an output stream is as follows:

xmlw.writeComment("This is a comment");
xmlw.writeCharacters("\n");

xmlw.writeStartElement("name");
xmlw.writeCharacters("Jane Doe");
xmlw.writeEndElement();
xmlw.writeCharacters("\n");

Adding Attributes and Namespace Declarations to a Start Element
Use the writeAttribute() method right after a start element event to add attributes to the
element. You can specify a prefix for the attribute, as well as the URI it is bound to, or specify
no prefix at all.

For example, assume you want to create the following snippet of XML:

<person gender="f">

The Java code to produce this XML is as follows:

Chapter 4
Generating XML Using the XMLStreamWriter Interface: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 19

xmlw.writeStartElement("person");
xmlw.writeAttribute("gender","f");
xmlw.writeCharacters("\n");

Use the writeNamespace() method to write a namespace to the output stream. It is up to the
programmer to ensure that the current event allows namespace writing, such as start element;
if the current event does not allow namespace writing, a
javax.xml.stream.XMLStreamException is thrown. Use appropriate flavors of other
writeXXX() methods to specify a prefix for an event and the URI to which it is bound.

For example, the following XML output shows a namespace declaration for the <person>
element, and the one prefix specified for the <one> child element:

<person xmlns:one="http://namespaceOne" gender="f">
 <one:name hair="pigtails" freckles="yes">Pippi Longstocking</one:name>
</person>

The Java code to produce this XML is as follows:

 // Write the root element "person" with a single attribute "gender"
 xmlw.writeStartElement("person");
 xmlw.writeNamespace("one", "http://namespaceOne");
 xmlw.writeAttribute("gender","f");
 xmlw.writeCharacters("\n");

 // Write the "name" element with some content and two attributes
 xmlw.writeCharacters(" ");
 xmlw.writeStartElement("one", "name", "http://namespaceOne");
 xmlw.writeAttribute("hair","pigtails");
 xmlw.writeAttribute("freckles","yes");
 xmlw.writeCharacters("Pippi Longstocking");

 // End the "name" element
 xmlw.writeEndElement();
 xmlw.writeCharacters("\n");

 // End the "person" element
 xmlw.writeEndElement();

Closing the Output Stream
It is good programming practice to explicitly close the XMLStreamWriter when you are finished
with it to free up resources. To close the writer, use the XMLStreamWriter.close() method, as
shown in the following example:

 // Close the XMLStreamWriter to free up resources
 xmlw.close();

Properties Defined for the XMLInputFactory Interface
Table 4-2 lists the standard properties you can set when using the XMLInputFactory to
generate an XMLStreamReader or XMLEventReader object.

All properties in Table 4-2 are preceded with javax.xml.stream, such as
javax.xml.stream.isValidating.

Chapter 4
Properties Defined for the XMLInputFactory Interface

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 19

Table 4-2 Standard XMLInputFactory Properties

Property Description Return Type Default
Value

isValidating Specifies whether implementation-specific DTD
validation is enabled or disabled.

Boolean False

isNamespaceAware Specifies whether namespace processing is
enabled or disabled. Used for XML 1.0 support.

Boolean True

isCoalescing Specifies whether to coalesce adjacent
character data.

Boolean False

isReplacingEntityReferences Specifies whether internal entity references
should be replaced with their replacement text
and reported as characters.

Boolean True

isSupportingExternalEntitie
s

Specifies whether to resolve external parsed
entities.

Boolean False

supportDTD Specifies whether the processor used is one
that supports or does not support DTDs.

Boolean True

reporter Specifies the implementation of
javax.xml.stream.XMLReporter that
should be used. Specifies the implementation
of javax.xml.stream.XMLReporter that
should be used.

XMLReporter Null

resolver Specifies the implementation of
javax.xml.stream.XMLResolver that
should be used.

XMLResolver Null

allocator Specifies the implementation of
javax.xml.stream.util.XMLEventAlloca
tor that should be used.

util.XMLEventAllocator Null

Properties Defined for the XMLOutputFactory Interface
Table 4-3 lists the standard properties you can set when using the XMLOutputFactory to
generate an XMLStreamWriter or XMLEventWriter object.

All properties in Table 4-3 are preceded with javax.xml.stream, such as
javax.xml.stream.isValidating.

Table 4-3 Standard XMLOutputFactory Properties

Property Description Return Type Default
Value

isRepairingNamespaces Specifies that the writer use default namespace
prefix declarations.

There are strict rules about how the StAX processor
repairs namespaces and prefixes when generating
XML. For details, see the StAX specification at
http://www.jcp.org/en/jsr/detail?id=173.

Boolean False

Chapter 4
Properties Defined for the XMLOutputFactory Interface

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 19 of 19

http://www.jcp.org/en/jsr/detail?id=173

5
Using Advanced XML APIs

This chapter describes how to use the WebLogic XPath API.
This chapter includes the following section:

Using the WebLogic XPath API
The WebLogic XPath API contains all of the classes required to perform XPath matching
against a document represented as a DOM, an XMLInputStream, or an XMLOutputStream. Use
the API if you want to identify a subset of XML elements within an XML document that conform
to a given pattern.

For additional API reference information about the WebLogic XPath API, see
weblogic.xml.xpath in the Java API Reference for Oracle WebLogic Server.

Using the DOMXPath Class
This section describes how to use the DOMXPath class of the WebLogic XPath API to perform
XPath matching against an XML document represented as a DOM. The section first provides an
example and then a description of the main steps used in the example.

Example of Using the DOMXPath Class
The sample Java program at the end of this section uses the following XML document in its
matching:

<?xml version='1.0' encoding='us-ascii'?>

<!-- "Purchaseorder". -->

<purchaseorder
 department="Sales"
 date="01-11-2001"
 raisedby="Pikachu"
 >
 <item
 ID="101">
 <title>Laptop</title>
 <quantity>5</quantity>
 <make>Dell</make>
 </item>
 <item
 ID="102">
 <title>Desktop</title>
 <quantity>15</quantity>
 <make>Dell</make>
 </item>
 <item
 ID="103">
 <title>Office Software</title>
 <quantity>10</quantity>
 <make>Microsoft</make>

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

 </item>
</purchaseorder>

The Java code example is as follows:

package examples.xml.xpath;

import java.io.IOException;
import java.util.Iterator;
import java.util.Set;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import org.w3c.dom.Document;
import org.w3c.dom.Node;
import org.xml.sax.SAXException;
import weblogic.xml.xpath.DOMXPath;
import weblogic.xml.xpath.XPathException;
/**
 * This class provides a simple example of how to use the DOMXPath
 * API.
 *
 * @author Copyright (c) 2002 by BEA Systems, Inc.
 */

public abstract class DOMXPathExample {

 public static void main(String[] ignored)

 throws XPathException, ParserConfigurationException,

 SAXException, IOException

 {

 // create a dom representation of the document

 String file = "purchaseorder.xml";

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 factory.setNamespaceAware(true); // doesn't matter for this example

 DocumentBuilder builder = factory.newDocumentBuilder();

 Document doc = builder.parse(file);

 // create some instances of DOMXPath to evaluate against the

 // document.

 DOMXPath totalItems = // count number of items

 new DOMXPath("count(purchaseorder/item)");

 DOMXPath atLeast10 = // titles of items with quantity >= 10

 new DOMXPath("purchaseorder/item[quantity >= 10]/title");

 // evaluate them against the document

 double count = totalItems.evaluateAsNumber(doc);

Chapter 5
Using the WebLogic XPath API

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr

 Set nodeset = atLeast10.evaluateAsNodeset(doc);

 // output results

 System.out.println(file+" contains "+count+" total items.");

 System.out.println("The following items have quantity >= 10:");

 if (nodeset != null) {

 Iterator i = nodeset.iterator();

 while(i.hasNext()) {

 Node node = (Node)i.next();

 System.out.println(" "+node.getNodeName()+

 ": "+node.getFirstChild().getNodeValue());

 }

 }

 // note that at this point we are free to continue using evaluate

 // atLeast10 and totalItems against other documents

 }

}

Main Steps When Using the DOMXPath Class
The following procedure describes the main steps to use the DOMXPath class to perform XPath
matching against an XML document represented as a DOM:

1. Create an org.w3c.dom.Document object from an XML document, as shown in the
following code excerpt:

String file = "purchaseorder.xml";
DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.parse(file);

2. Create a DOMXPath object to represent the XPath expression you want to evaluate against
the DOM.

The following example shows an XPath expression that counts the items in a purchase
order:

 DOMXPath totalItems =
 new DOMXPath("count(purchaseorder/item)");

The following example shows an XPath expression that returns the titles of items whose
quantity is greater or equal to 10:

 DOMXPath atLeast10 =
 new DOMXPath("purchaseorder/item[quantity >= 10]/title");

Chapter 5
Using the WebLogic XPath API

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

3. Evaluate the XPath expression using one of the DOMXPath.evaluateAsXXX() methods,
where XXX refers to the data type of the returned data, such as Boolean, Nodeset, Number,
or String.

The following example shows how to use the evaluateAsNumber() method to evaluate the
totalItems XPath expression:

double count = totalItems.evaluateAsNumber(doc);
System.out.println(file+" contains "+count+" total items.");

The following example shows how to use the evaluateAsNodeset() method to return a Set
of org.w3c.dom.Nodes which you can iterate through in the standard way:

 Set nodeset = atLeast10.evaluateAsNodeset(doc);

System.out.println("The following items have quantity >= 10:");
 if (nodeset != null) {
 Iterator i = nodeset.iterator();
 while(i.hasNext()) {
 Node node = (Node)i.next();
 System.out.println(" "+node.getNodeName()+
 ": "+node.getFirstChild().getNodeValue());
 }
 }

For additional API reference information about the WebLogic XPath API, see
weblogic.xml.xpath in the Java API Reference for Oracle WebLogic Server.

Using the StreamXPath Class
The example in this section shows how to use the StreamXPath class of the WebLogic XPath
API to perform XPath matching against an XMLInputStream. The section first provides an
example and then a description of the main steps used in the example. Although the example
shows how to match only against an XMLInputStream, you can use similar code to match
against an XMLOutputStream.

Example of Using the StreamXPath Class
The sample Java program at the end of this section uses the following XML document in its
matching:

<?xml version='1.0' encoding='us-ascii'?>

<!-- "Stock Quotes". -->

<stock_quotes>
 <stock_quote symbol='BEAS'>
 <when>
 <date>01/27/2001</date>
 <time>3:40PM</time>
 </when>
 <price type="ask" value="65.1875"/>
 <price type="open" value="64.00"/>
 <price type="dayhigh" value="66.6875"/>
 <price type="daylow" value="64.75"/>
 <change>+2.1875</change>
 <volume>7050200</volume>
 </stock_quote>
 <stock_quote symbol='MSFT'>
 <when>

Chapter 5
Using the WebLogic XPath API

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

 <date>01/27/2001</date>
 <time>3:40PM</time>
 </when>
 <price type="ask" value="55.6875"/>
 <price type="open" value="50.25"/>
 <price type="dayhigh" value="56"/>
 <price type="daylow" value="52.9375"/>
 <change>+5.25</change>
 <volume>64282200</volume>
 </stock_quote>
</stock_quotes>

The Java code for the example is as follows:

package examples.xml.xpath;

import java.io.File;
import weblogic.xml.stream.Attribute;
import weblogic.xml.stream.StartElement;
import weblogic.xml.stream.XMLEvent;
import weblogic.xml.stream.XMLInputStream;
import weblogic.xml.stream.XMLInputStreamFactory;
import weblogic.xml.stream.XMLStreamException;
import weblogic.xml.xpath.StreamXPath;
import weblogic.xml.xpath.XPathException;
import weblogic.xml.xpath.XPathStreamFactory;
import weblogic.xml.xpath.XPathStreamObserver;

/**
 * This class provides a simple example of how to use the StreamXPath
 * API.
 *
 * @author Copyright (c) 2002 by BEA Systems, Inc.
 */

public abstract class StreamXPathExample {
 public static void main(String[] ignored)
 throws XPathException, XMLStreamException
 {
 // Create instances of StreamXPath for two xpaths we want to match
 // against this tream.

 StreamXPath symbols =
 new StreamXPath("stock_quotes/stock_quote");
 StreamXPath openingPrices =
 new StreamXPath("stock_quotes/stock_quote/price[@type='open']");

 // Create an XPathStreamFactory.

 XPathStreamFactory factory = new XPathStreamFactory();

 // Create and install two XPathStreamObservers. In this case, we
 // just use to anonymous classes to print a message when a
 // callback is received. Note that a given observer can observe
 // more than one xpath, and a given xpath can be observed by
 // mutliple observers.

 factory.install(symbols, new XPathStreamObserver () {
 public void observe(XMLEvent event) {
 System.out.println("Matched a quote: "+event);
 }

Chapter 5
Using the WebLogic XPath API

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr

 public void observeAttribute(StartElement e, Attribute a) {} //ignore

 public void observeNamespace(StartElement e, Attribute a) {} //ignore

 });

 // Note that we get matches for both a start and an end elements,
 // even in the case of <price/> which is an empty element - this
 // is the behavior of the underlying streaming parser.
 factory.install(openingPrices, new XPathStreamObserver () {
 public void observe(XMLEvent event) {
 System.out.println("Matched an opening price: "+event);
 }
 public void observeAttribute(StartElement e, Attribute a) {} //ignore
 public void observeNamespace(StartElement e, Attribute a) {} //ignore
 });
 // get an XMLInputStream on the document
 String file = "stocks.xml";
 XMLInputStream sourceStream = XMLInputStreamFactory.newInstance().
 newInputStream(new File(file));
 // use the factory to create an XMLInputStream that will do xpath
 // matching against the source stream
 XMLInputStream matchingStream = factory.createStream(sourceStream);
 // now iterate through the stream
 System.out.println("Matching against xml stream from "+file);
 while(matchingStream.hasNext()) {
 // we don't do anything with the events in our example - the
 // XPathStreamObserver instances that we installed in the
 // factory will get callbacks for appropriate events
 XMLEvent event = matchingStream.next();
 }
 }
}

Main Steps When Using the StreamXPath Class
The following procedure describes the main steps to use the StreamXPath class to perform
XPath matching against an XML document represented as an XMLInputStream:

1. Create a StreamXPath object to represent the XPath expression you want to evaluate
against the XMLInputStream.

StreamXPath symbols =
 new StreamXPath("stock_quotes/stock_quote");

The following example shows an XPath expression that matches stock quotes using their
opening price:

StreamXPath openingPrices = new StreamXPath("stock_quotes/stock_quote/
price[@type='open']");

2. Create an XPathStreamFactory. Use this factory class to specify the set of StreamXPath
objects that you want to evaluate against an XMLInputStream and to create observers
(using the XPathStreamObserver interface) used to register a callback whenever an XPath
match occurs. The following example shows how to create the XPathStreamFactory:

XPathStreamFactory factory = new XPathStreamFactory();

3. Create and install the observers using the XPathStreamFactory.install() method,
specifying the XPath expression with the first StreamXPath parameter, and an observer
with the second XPathStreamObserver parameter. The following example shows how to
use an anonymous class to implement the XPathStreamObserver interface. The

Chapter 5
Using the WebLogic XPath API

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

implementation of the observe() method simply prints a message when a callback is
received. In the example, the observeAttribute() and observeNamespace() methods do
nothing.

factory.install(symbols, new XPathStreamObserver () {
 public void observe(XMLEvent event) {
 System.out.println("Matched a quote: "+event);
 }
 public void observeAttribute(StartElement e, Attribute a) {}
 public void observeNamespace(StartElement e, Attribute a) {}
 }
);

4. Create an XMLInputStream from an XML document:

String file = "stocks.xml";

XMLInputStream sourceStream =
 XMLInputStreamFactory.newInstance().newInputStream(new File(file));

5. Use the createStream() method of the XPathStreamFactory to create a new
XMLInputStream that will perform XPath matching against the original XMLInputStream:

 XMLInputStream matchingStream =
 factory.createStream(sourceStream);

6. Iterate over the new XMLInputStream. During the iteration, if an XPath match occurs, the
registered observer is notified:

while(matchingStream.hasNext()) {
 XMLEvent event = matchingStream.next();
}

For additional API reference information about the WebLogic XPath API, see
weblogic.xml.xpath in the Java API Reference for Oracle WebLogic Server.

Chapter 5
Using the WebLogic XPath API

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

6
XML Programming Best Practices

This chapter describes the best programming practices to use when creating Java applications
that process XML data.
This chapter includes the following sections:

When to Use the DOM, SAX, and StAX APIs
You can parse an XML document with the DOM, SAX, or StAX APIs. This section describes
the pros and cons of each API.

The DOM API is good for small documents, or those that contain under a thousand elements.
Because DOM constructs a tree of your XML data, it is ideal for editing the structure of your
XML document by adding or deleting elements.

The DOM API parses the entire XML document and converts it into a DOM tree before you can
begin processing it. This cost might be beneficial if you know that you need to access the
entire document. If you occasionally need to access only part of the XML document, the cost
could decrease the performance of your application with no added benefit. In this case the
SAX or StAX API is preferable.

The SAX API is the most lightweight of the APIs. It is ideal for parsing shallow documents
(documents that do not contain much nesting of elements) with unique element names. SAX
uses a callback structure; this means that programmers handle parsing events as the API is
reading an XML document, which is a relatively efficient and quick way to parse.

However, the callback nature of SAX also means that it is not the best API to use if you want to
modify the structure of your XML data. Additionally, programming your application to handle
callbacks is not always straight-forward and intuitive.

The StAX API is based on SAX, so all the reasons for using SAX also apply to the StAX API. In
addition, the StAX API is more intuitive to use than SAX, because programmers ask for events
rather than react to them as they happen. The StAX API is also best if you plan to pass the
entire XML document as a parameter; it is easier to pass an input stream than it is to pass SAX
events. Finally, the StAX API was designed to be used when binding XML data to Java objects.

Increasing Performance of XML Validation
If the performance of your XML application decreases due to a parser validation issue, and you
need to validate your XML documents, you might improve the performance of your application
by writing your own customized code that validates the data as it is being received or parsed,
rather than using the setValidating() method of the DocumentBuilderFactory or
SaxParserFactory.

When you turn on validation while parsing an XML document with SAX or DOM, the parser
might do more validation of the document than you really need, thus decreasing the overall
performance of the application. Instead, consider choosing certain points during the parsing of
the document when you want to check that the XML document is valid, and add your own Java
code at those points.

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

For example, assume you are writing an application that uses the WebLogic XML Streaming
API to processes an XML purchase order. Because you know that the first element of the
document should be <purchase_order>, you can quickly verify that the document appears to
be valid by pulling the first element off the stream and checking its name. This check does not
ensure that the entire XML document is valid, of course, but you can continue checking for
known elements as you pull elements from the stream. These quick checks are much faster
than using the standard setValidating() methods.

When to Use XML Schemas or DTDs
There are two ways to describe the structure of an XML document: DTDs and XML Schemas.

The current trend is to use Schemas to describe XML documents. Schemas are much more
expressive than DTDs because the set of available data types to describe XML elements is
much richer and you can describe more specifically what is valid in an XML document. In
addition, you can only use Schemas, and not DTDs, in SOAP messages. Because SOAP is
the main messaging protocol used in Web services, consider using Schemas to describe any
XML documents that might be used as either input or output parameters to Web services.

Still, DTDs have a few advantages. DTDs are more widely supported than Schemas, although
that is changing rapidly. Because DTDs are less expressive than Schemas, they are easier to
write and manage.

However, Oracle recommends that you use Schemas to describe your XML documents.

Configuring External Entity Resolution for Maximum Performance
Oracle highly recommends you store external entities locally whenever possible rather than
always retrieving the entity over the network. Storage improves the performance of your
applications because it is much faster to look up an entity on the same machine as WebLogic
Server than it is to look it up over a network connection.

For detailed information on configuring external entity resolution for WebLogic Server, see
External Entity Configuration Tasks.

Using SAX InputSources
When you use the SAX API to parse an XML document, you first create an InputSource object
from the XML document and then pass the InputSource object to the parse() method. You
can create the InputSource object from either a java.io.InputStream or java.io.Reader
object based on your XML data.

Oracle recommends that you create an InputSource from a java.io.InputStream object
whenever possible. When passed an InputStream object, the SAX parser auto-detects the
character encoding of the XML data and automatically instantiates an InputStreamReader
object for you, using the correct character encoding. In other words, the parser does all the
character encoding work for you, which is more likely to be error-free at runtime than if you
decide to specify the character encoding yourself.

Improving Performance of Transformations
XSLT is a language for transforming an XML document into a different format, such as another
XML document, HTML, WML, and so on. To use XSLT, you create a stylesheet that defines
how each element in the input XML document should be transformed in the output document.

Chapter 6
When to Use XML Schemas or DTDs

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

Although XSLT is a powerful language, creating stylesheets for complex transformations can
be very complicated. In addition, the actual transformation requires a lot of resources and
might decrease the performance of your application.

Therefore, if your transformations are complex, consider writing your own transformation code
in your application rather than using XSLT stylesheets. Also consider using the DOM API. First
parse the XML document, manipulate the resulting DOM tree as needed, then write out the
new document, using custom Java code to transform it into its final format.

Chapter 6
Improving Performance of Transformations

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

7
XML Programming Techniques

This chapter describes specific XML programming techniques for developing a Jakarta EE
application with WebLogic Server that processes XML data.
This chapter includes the following sections:

Transmitting XML Data Between A Jakarta Client and WebLogic
Server

In a typical Jakarta EE application, a client application sends XML data to a servlet or a JSP
that processes the XML data. The servlet or JSP then either sends the data on to another
Jakarta EE component, such as a JMS destination or an EJB, or sends the processed XML
data back to the client in the form of another XML document.

To send XML data from a Jakarta client to a WebLogic Server-hosted servlet or JSP which
then returns the data to the client, use the java.net.URLConnection class. This class
represents the communication link between an application and an URL, which in this case is
the URL that invokes the servlet or JSP. Instances of the URLConnection class send the XML
document using the HTTP POST method.

The following Jakarta client program from the WebLogic XML examples shows how to transmit
XML data between the program and a JSP:

import java.net.*;
import java.io.*;
import java.util.*;
public class Client {
 public static void main(String[] args) throws Exception {
 if (args.length < 2) {
 System.out.println("Usage: java examples.xml.Client URL Filename");
 }
 else {
 try {
 URL url = new URL(args[0]);
 String document = args[1];
 FileReader fr = new FileReader(document);
 char[] buffer = new char[1024*10];
 int bytes_read = 0;
 if ((bytes_read = fr.read(buffer)) != -1)
 {
 URLConnection urlc = url.openConnection();
 urlc.setRequestProperty("Content-Type","text/xml");
 urlc.setDoOutput(true);
 urlc.setDoInput(true);
 PrintWriter pw = new PrintWriter(urlc.getOutputStream());
 // send xml to jsp
 pw.write(buffer, 0, bytes_read);
 pw.close();
 BufferedReader in = new BufferedReader(new
InputStreamReader(urlc.getInputStream()));
 String inputLine;
 while ((inputLine = in.readLine()) != null)
 System.out.println(inputLine);

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

 in.close();
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
}

The example shows how to open a URL connection to the JSP by using a URL from the
argument list; obtain the output stream from the connection; and print the XML document
provided in the argument list to the output stream, thus sending the XML data to the JSP. The
example then shows how to use the getInputStream() method of the URLConnection class to
read the XML data that the JSAP returns to the client application.

The following code segments from a sample JSP show how the JSP receives XML data from
the client application, parses the XML document, and sends XML data back:

BufferedReader br = new BufferedReader(request.getReader());
DocumentBuilderFactory fact = DocumentBuilderFactory.newInstance();
DocumentBuilder db = fact.newDocumentBuilder();
Document doc = db.parse(new InputSource(br));
...
PrintWriter responseWriter = response.getWriter();
responseWriter.println("<?xml version='1.0'?>");

...

For detailed information on programming WebLogic servlets and JSPs, see Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

Handling XML Documents in a JMS Application
WebLogic Server provides the following extensions to some Jakarta Message (JMS) classes to
handle XML documents in a JMS application:

• weblogic.jms.extensions.WLSession, which extends the JMS class
jakarta.jms.Session

• weblogic.jms.extensions.WLQueueSession, which extends the JMS class
jakarta.jms.QueueSession

• weblogic.jms.extensions.WLTopicSession, which extends the JMS class
jakarta.jms.TopicSession

• weblogic.jms.extensions.XMLMessage, which extends the JMS class
jakarta.jms.TextMessage

If you use the XMLMessage class to send and receive XML documents in a JMS application,
rather than the more generic TextMessage class, you can use XML-specific message selectors
to filter unwanted messages. In particular, you can use the method JMS_BEA_SELECT to specify
an XPath query to search for an XML fragment in the XML document. Based on the results of
the query, a message consumer might decide not to receive the message, thus possibly
reducing network traffic and improving performance of the JMS application.

To use the XMLMessage class to contain XML messages in a JMS application, you must create
either a WLQueueSession or WLTopicSession object, depending on whether you want to use
JMS queues or topics, rather than the generic QueueSession or TopicSession objects, after

Chapter 7
Handling XML Documents in a JMS Application

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

you have created a JMS Connection. Then use the createXMLMessage() method of the
WLSession interface to create an XMLMessage object.

For detailed information on using XMLMessage objects in your JMS application, see Developing
JMS Applications for Oracle WebLogic Server.

Accessing External Entities That Do Not Have an HTTP Interface
WebLogic Server can retrieve and cache external entities that reside in external repositories,
as long as they have an HTTP interface, such as a URL, that returns the entity. See External
Entity Configuration Tasks for detailed information on using the XML Registry to configure
external entities.

If you want to access an external entity that is stored in a repository that does not have an
HTTP interface, you must create an interface. For example, assume you store the DTDs for
your XML documents in a database table, with columns for the system id, public id, and text of
the DTD. To access the DTD as an external entity from a WebLogic XML application, you could
create a servlet that uses JDBC to access the DTDs in the database.

Because you invoke servlets with URLs, you now have an HTTP interface to the external
entity. When you create the entity registry entry in the XML Registry, you specify the URL that
invokes the servlet as the location of the external entity. When WebLogic Server is parsing an
XML document that contains a reference to this external entity, it invokes the servlet, passing it
the public and system id, which the servlet can internally use to query the database.

Chapter 7
Accessing External Entities That Do Not Have an HTTP Interface

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

8
XML Application Scoping

This chapter describes application scoping and how to configure parsers, transformers,
external entities, and the external entity cache for a particular application.
This chapter includes the following sections:

Overview of Application Scoping
Application scoping refers to configuring resources for a particular enterprise application rather
than for an entire WebLogic Server configuration. In the case of XML, these resources include
parser, transformer, external entity, xpath, schema, xmlInput, xmlOutput, xmlEntity and external
entity cache configuration. The main advantage of application scoping is that it isolates the
resources for a given application to the application itself. Using application scoping, you can
configure different parsers for different applications, store the DTDs for an application within
the EAR file or exploded enterprise directory, and so on.

Another advantage of using application scoping is that by associating the resources with the
EAR file, you can run this EAR file on another instance of WebLogic Server without having to
configure the resources for that server.

To configure XML resources for a particular application, you add information to the weblogic-
application.xml deployment descriptor file located in the META-INF directory of the EAR file or
exploded enterprise application directory.

Note

You use the WebLogic Remote Console to configure parser, transformer, and external
entity resources for a WebLogic Server instance, as described in Administering
WebLogic Server XML.

The weblogic-application.xml File
The weblogic-application.xml file is the WebLogic Server-specific deployment descriptor for
an enterprise application. It contains configuration information about the XML, JDBC, and EJB
resources used by an enterprise application. The standard Jakarta EE deployment descriptor
is called application.xml.

The following sample weblogic-application.xml file shows how to configure XML resources
for an enterprise application; the body of the various elements are shown in bold:

<weblogic-application>
 ...
 <xml>
 <parser-factory>
 <saxparser-factory>
 com.sun.org.apache.xerces.internal.jaxp.SAXParserFactoryImpl
 </saxparser-factory>
 <document-builder-factory>
 com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderFactoryImpl

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

 </document-builder-factory>
 <transformer-factory>
 com.sun.org.apache.xalan.internal.xsltc.trax.TransformerFactoryImpl
 </transformer-factory>
 <xpath-factory>
 com.sun.org.apache.xpath.internal.jaxp.XPathFactoryImpl
 </xpath-factory
 <schema-factory>
 com.sun.org.apache.xerces.internal.jaxp.validation.XMLSchemaFactory
 </schema-factory>
 <xml-input-factory>
 com.ctc.wstx.stax.WstxInputFactory
 </xml-input-factory>
 <xml-output-factory>
 com.ctc.wstx.stax.WstxOutputFactory
 </xml-output-factory>
 <xml-event-factory>
 com.ctc.wstx.stax.WstxEventFactory
 </xml-event-factory>
 </parser-factory>
 <entity-mapping>
 <entity-mapping-name>My Mapping</entity-mapping-name>
 <public-id>-//BEA Systems, Inc.//DTD for cars//EN</public-id>
 <system-id>http://www.bea.com/dtds/car.dtd</system-id>
 <entity-uri>dtds/car.dtd</entity-uri>
 </entity-mapping>
 </xml>
</weblogic-application>

The main element for configuring XML resources is <xml>. Figure 8-1 describes the sub-
elements of the <xml> element; the sections following this figure describe each element.

Chapter 8
The weblogic-application.xml File

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

Figure 8-1 Sub-Elements of the <xml> Element in weblogic-application.xml

.xml

parser-factory

entity-mapping

entity-mapping-name

public-id

entity-url

when-to-cache

cache-timeout-interval

system-id

saxparser-factory

document-builder-factory

transformer-factory

weblogic-application

Basic Key

Optional

One or more

Zero or more

xml
The main element for configuring XML resources, such as parsers, transformers, external
entities, and the external entity cache for an enterprise application.

parser-factory
The parent element for specifying a particular parser or transformer for an enterprise
application.

saxparser-factory
Element that specifies the factory class to be used for SAX style parsing in this application. If
this element is not specified, the default SAX parser factory specified for the WebLogic Server
instance is used.

Chapter 8
The weblogic-application.xml File

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

document-builder-factory
Element that specifies the factory class to be used for DOM style parsing in this application. If
this element is not specified, the default DOM parser factory specified for the WebLogic Server
instance is used.

transformer-factory
Element that specifies the factory class to be used when transforming documents using the
javax.xml.transform packages in this application. If this element is not specified, the default
XSLT transformer factory specified for the WebLogic Server instance is used.

schema-factory
Element that enables applications deployed to WebLogic Server to configure and obtain a
Schema object used to validate XML documents using schema. If this element is not specified,
the default schema factory specified for the WebLogic Server instance is used.

xpath-factory
Element that enables applications deployed to WebLogic Server to configure and obtain a
XPath object used to search XML elements. If this element is not specified, the default XPath
factory specified for the WebLogic Server instance is used.

xml-input-factory
Element that enables applications deployed to WebLogic Server to configure and obtain a
XMLEventReader/XMLStreamReader object used to read XML streams. If this element is not
specified, the default XML input factory specified for the WebLogic Server instance is used.

xml-output-factory
Element that enables applications deployed to WebLogic Server to configure and obtain a
XMLEventWriter/XMLStreamWriter object used to write XML streams. If this element is not
specified, the default XML output factory specified for the WebLogic Server instance is used.

xml-event-factory
Element that enables applications deployed to WebLogic Server to configure and obtain a
XMLEvent object used to parse or build XML streams. If this element is not specified, the
XMLEvent factory specified for the WebLogic Server instance is used.

entity-mapping
The parent element for mapping an entity declaration in an XML file to a local copy of the
entity, such as a DTD or Schema.

entity-mapping-name
Element that specifies the name of the entity mapping declaration.

Chapter 8
The weblogic-application.xml File

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

public-id
Element that specifies the public ID of the entity, such as:

 -//BEA Systems, Inc.//DTD for cars//EN.

system-id
Element that specifies the system ID of the entity, such as:

http://www.bea.com/dtds/car.dtd

entity-uri
Element that specifies the URI of the entity. The path is relative to the main directory of the
EAR archive or the exploded directory.

For example, dtds/car.dtd indicates that there is a directory called dtds in the main EAR
archive (parallel to the META-INF directory) and it contains a file called car.dtd.

when-to-cache
Element that specifies when you should cache the external entity. Valid values are:

• cache-on-reference—WebLogic Server caches the external entity referenced by a URL
the first time the entity is referenced in an XML document.

• cache-at-initialization—WebLogic Server caches the entity when the server starts.

• cache-never—WebLogic Server never caches the external entity.

The default value is cache-on-reference.

cache-timeout-interval
Element that specifies the number of seconds after which the cached external entity becomes
stale, or out-of-date. WebLogic Server re-retrieves the external entity from the specified URL or
pathname relative to the main directory of the EAR archive or exploded directory if the cached
copy has been in the cache for longer than this interval.

The default value for this field is 120 seconds.

Configuring a Parser or Transformer for an Enterprise Application
You can specify that an XML application use a parser or transformer different from the default
parser or transformer configured for WebLogic Server by updating the weblogic-
application.xml file of the EAR file or exploded directory that contains the XML application.

To configure a parser or transformer, other than the default, for an enterprise application, follow
these steps:

Chapter 8
Configuring a Parser or Transformer for an Enterprise Application

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

Note

The following factory types follow the same process detailed below: XPathFactory,
SchemaFactory, XMLInputFactory, XMLOutputFactory and XMLEventFactory.

1. Use the <parser-factory> sub-element of the <xml> element to configure factory classes
for both SAX and DOM style parsing and for XSLT transformations for the enterprise
application, as shown in the following example:

 <parser-factory>
 <saxparser-factory>
 com.sun.org.apache.xerces.internal.jaxp.SAXParserFactoryImpl
 </saxparser-factory>
 <document-builder-factory>
 com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderFactoryImpl
 </document-builder-factory>
 <transformer-factory>
 com.sun.org.apache.xalan.internal.xsltc.trax.TransformerFactoryImpl
 </transformer-factory>
 </parser-factory>

The application corresponding to this weblogic-application.xml file uses the
com.sun.org.apache.xerces.internal.jaxp.SAXParserFactoryImpl factory class for
SAX style parsing, the
com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderFactoryImpl factory class
for DOM style parsing, and the
com.sun.org.apache.xalan.internal.xsltc.trax.TransformerFactoryImpl class for
XSLT transformations.

2. If you want the parser or transformer classes to be local to the EAR archive, put the JAR
file that contains the classes anywhere you want in the EAR file, then update the Class-
Path variable in the META-INF/MANIFEST.MF file.

For example, if you put the parser or transformer classes in a JAR file called myparser.jar
in the directory lib/xml, update the MANIFEST.MF file as shown:

Manifest-Version: 1.0
Created-By: 1.3.1_01 (Sun Microsystems Inc.)
Class-Path: lib/xml/myparser.jar

3. If you want to store the parser or transformer classes in a location other than the EAR
archive, be sure that you update the WebLogic Server CLASSPATH variable to include the
full pathname of the JAR file that contains the classes.

Configuring an External Entity for an Enterprise Application
You can store a local copy of an external entity, such as a DTD, in the EAR archive or
exploded directory rather than always retrieving it from the Web.

To configure an external entity for an enterprise application:

1. Create the directory lib/xml/registry under the main directory of the EAR archive.

2. Copy the external entity, such as a DTD, to the directory.

3. Update the weblogic-application.xml file, using the <entity-mapping> sub-element of
the <xml> element to map the name of the entity to entity declarations in any XML files
processed by the application, as shown in the following example:

Chapter 8
Configuring an External Entity for an Enterprise Application

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

<entity-mapping>
 <entity-mapping-name>My Mapping</entity-mapping-name>
 <public-id>-//BEA Systems, Inc.//DTD for cars//EN</public-id>
 <system-id>http://www.bea.com/dtds/car.dtd</system-id>
 <entity-uri>dtds/car.dtd</entity-uri>
</entity-mapping>

In the example, a local copy of a DTD called car.dtd is stored in the lib/xml/registry/
dtds directory under the main directory of the EAR archive or exploded directory. The
public ID of the entity is -//BEA Systems, Inc.//DTD for cars//EN and the system id is
http://www.bea.com/dtds/car.dtd. Whenever the application is parsing an XML file and
it encounters an entity declaration using either one of the IDs, it will substitute the car.dtd
file.

Note

Specify an <entity-mapping> element for each entity declaration for which you
want to map a local copy of the entity.

Configuring the External Entity Cache for an Enterprise
Application

You can specify that WebLogic Server cache external entities that are referenced with a URL
or a pathname relative to the main directory of the EAR archive, either at server-startup or
when the entity is first referenced.

Caching the external entity saves the remote access time and provides a local backup in the
event that the Administration Server cannot be accessed while an XML document is being
parsed, due to the network or the Administration server being down.

You can configure the expiration date of a cached entity, at which point WebLogic Server re-
retrieves the entity from the URL or directory of the EAR and re-caches it.

Use the <when-to-cache> and <cache-timeout-interval> subelements of the <entity-
mapping> element to configure external entity caching for an enterprise application, as shown
in the following example:

<entity-mapping>
 <entity-mapping-name>My Mapping</entity-mapping-name>
 <public-id>-//BEA Systems, Inc.//DTD for cars//EN</public-id>
 <system-id>http://www.bea.com/dtds/car.dtd</system-id>
 <entity-uri>dtds/car.dtd</entity-uri>
 <when-to-cache>cache-at-initialization</when-to-cache>
 <cache-timeout-interval>300</cache-timeout-interval>
</entity-mapping>

In the example, the car.dtd is stored in the lib/xml/registry/dtds directory under the main
directory of the EAR archive or exploded directory. WebLogic Server caches a copy of the DTD
in its memory when it first starts up, and then refreshes the cached copy if it is stored for longer
than 300 seconds.

Chapter 8
Configuring the External Entity Cache for an Enterprise Application

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

9
Administering WebLogic Server XML

This chapter describes administering XML in WebLogic Server using the XML Registry, which
is accessed through the WebLogic Remote Console.
This chapter includes the following sections:

Overview of Administering WebLogic Server XML
You access the XML Registry through the WebLogic Remote Console and use it to configure
WebLogic Server for XML applications. To access the WebLogic Remote Console, see Get
Started in the Oracle WebLogic Remote Console Online Help.

XML Administration Tasks
You create, configure, and use the XML Registry using the WebLogic Remote Console. Using
the WebLogic Remote Console XML Registry has several benefits:

• Configuration of XML Registry changes take effect automatically at run time, provided you
use JAXP in your XML applications.

• When you make changes to the XML Registry, it is not necessary to change your XML
application code.

• Entity resolution is done locally. You can use the XML Registry either to define a local copy
of an entity or to specify that WebLogic Server cache an entity from the Web for a specified
duration and use the cached copy rather than the one out on the Web.

You can use the XML Registry to specify:

• An alternative server-wide XML parser instead of the default parser.

• An XML parser per document type.

• An alternative server-wide transformer instead of the default transformer.

• External entities that are to be resolved by using local copies of the entities. Once you
specify these entities, the Administration Server stores local copies of them in the file
system and automatically distributes them to the server's parser at parse time. This feature
eliminates the need to construct and set SAX EntityResolvers.

• External entities to be cached by WebLogic Server after retrieval from the Web. You
specify how long these external entities should be cached before WebLogic Server re-
retrieves them and when WebLogic should first retrieve the entities, either at application
run time or when WebLogic Server starts.

These capabilities are for use on the server side only.

How the XML Registry Works
You can create as many XML Registries as you like; however, you can associate only one XML
Registry with a particular instance of WebLogic Server.

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 4

If an instance of WebLogic Server does not have an XML Registry associated with it, then the
default parser and transformer are used when parsing or transforming documents. The default
parser and transformer are those included in the JDK.

Once you associate an XML Registry with an instance of WebLogic Server, all XML
configuration options are available for XML applications that use that server.

You can make the following types of entries for a given XML registry:

• Configure parsers and transformers.

• Configure external entity resolution.

Note

The XML Registry is case sensitive. For example, if you are configuring a parser
for an XML document type whose root element is <CAR>, you must enter CAR in the
Root Element Tag field and not car or Car.

Parser Selection Within the XML Registry
The XML Registry is automatically consulted whenever you use JAXP to parse or transform
your XML applications. WebLogic Server follows an ordered lookup when determining which
parser class to load:

1. Use the parser defined for a particular document type.

2. Use the alternative server-wide parser defined in the XML Registry associated with the
WebLogic Server instance.

3. Use the default parser (the parser included in the JDK).

The process is also true for transformers, except for the first step, because you cannot define a
transformer for a particular document type.

Additionally, when WebLogic Server starts, a SAX entity resolver is automatically set so that it
can resolve entities that are declared in the registry. As a result, users are not required to
modify their XML application code to control the parsers used, or to set the location of local
copies of external entities. The parser being used and the location of the external entity is
controlled by the XML Registry.

Note

If you elect to use an API provided by a parser instead of JAXP, the XML Registry has
no effect on the processing of XML documents. For this reason, it is highly
recommended that you always use JAXP in your XML applications.

XML Parser and Transformer Configuration Tasks
By default, WebLogic Server is configured to use the default parser and transformer to parse
and transform XML documents. The default parser and transformer are those included in the
JDK. As long as you use the default, you do not have to perform any configuration tasks for
your XML applications. If you want to use a parser or transformer other than the default, you
must use the XML Registry to configure them.

Chapter 9
XML Parser and Transformer Configuration Tasks

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 4

Configuring a Parser or Transformer Other Than the Default
First, you have to create an XML registry that defines SAX and DOM parsers and transformers.
Then, you associate (or plug-in) the new XML Registry with an instance of WebLogic Server so
that the server starts to use the new parsers and transformer.

Note

You can plug-in only those parsers and transformers that are compatible with the
default WebLogic Server parser transformer. The default parser and transformer are
those that are included in the JDK.

Follow the steps outlined in Create an XML Registry in the Oracle WebLogic Remote Console
Online Help.

Configuring a Parser for a Particular Document Type
When you configure a parser for a particular document type, you can use the document's
system id, public id, or root element to identify the document type.

Note

WebLogic Server searches only the first 1000 bytes of an XML document when
attempting to identify its document type. If it does not find a DOCTYPE identifier in
those first 1000 bytes, it stops searching the document and uses the parser configured
for the WebLogic Server instance to parse the document.

To configure a parser for a particular document type, see Step 4 under Create an XML Registry
in the Oracle WebLogic Remote Console Online Help.

External Entity Configuration Tasks
Use the XML Registry to configure external entity resolution and to configure and monitor the
external entity cache.

Configuring External Entity Resolution
You can configure external entity resolution with WebLogic Server in the following two ways:

• Physically copy the entity files to a directory accessible by WebLogic Administration Server
and specify that the Administration Server use the local copy whenever the external entity
is referenced in an XML document.

• Specify that a Managed Server cache external entities that are referenced with a URL or a
pathname relative to the Administration Server, either at server startup or when the entity is
first referenced.

Caching the external entity in a Managed Server saves the remote access time and
provides a local backup in the event that the Administration Server cannot be accessed

Chapter 9
External Entity Configuration Tasks

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 4

while an XML document is being parsed, due to the network or the Administration Server
being down.

You can configure the expiration date for a cached entity, at which point WebLogic Server
re-retrieves the entity from the URL or Administration Server and re-caches it.

Configuring the External Entity Cache
You can configure the following properties of the external entity cache:

• Size, in KB, of the cache memory. The default value for this property is 500 KB.

• Size, in MB, of the persistent disk cache. The default value for this property is 5 MB.

• Number of seconds after which external entities in the cache become stale after they have
been cached by WebLogic Server. This is the default value for the entire server - you can
override this value for specific external entities when you configure the entity. The default
value for this property is 120 seconds (2 minutes).

To configure the external entity cache, see Create an XML Entity Cache in the Oracle
WebLogic Remote Console Online Help.

Chapter 9
External Entity Configuration Tasks

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 4

A
XML Reference

This appendix provides links to additional information about the XML specifications, application
programming interfaces (APIs), and tools supported by WebLogic Server.
This appendix includes the following sections:

XML APIs
• SAX 2.0 API, at http://www.saxproject.org/

• DOM (Document Object Model) Level 2 Specification, at http://www.w3.org/TR/DOM-
Level-2/

• JAXP API specification, at https://docs.oracle.com/en/java/javase/17/docs/api/
java.xml/module-summary.html

Code Examples
XML code examples and supporting documentation are optionally included in the WebLogic
Server ORACLE_HOME\wlserver\samples\server directory, where ORACLE_HOME represents the
directory in which you installed WebLogic Server. For more information about the WebLogic
Server code examples, see Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

Related WebLogic Server Documentation
• Developing JAX-WS Web Services for Oracle WebLogic Server

• Developing Jakarta Enterprise Beans Using Deployment Descriptors

• Developing JMS Applications for Oracle WebLogic Server

• Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

Tutorials and Online Courses
• A Technical Introduction to XML, available at http://www.xml.com/pub/a/98/10/

guide0.html

• XML Authoring Tutorial, available at http://www.xml.com/pub/a/archive

• Tutorials for using the Java 2 platform and XML technology available at http://
developerlife.com

• XML, Java, and the Future of the Web, available at http://www.xml.com/pub/a/w3j/
s3.bosak.html

• Chapter 17 of the XML Bible: XSL Transformations, available at http://
metalab.unc.edu/xml/books/bible/updates/14.html

• XSL Tutorial by Miloslav Nic, available at http://zvon.org/xxl/XSLTutorial/Output/
index.html

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-1 of A-2

http://www.saxproject.org/
http://www.w3.org/TR/DOM-Level-2/
http://www.w3.org/TR/DOM-Level-2/
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/module-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/module-summary.html
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/a/98/10/guide0.html
https://www.xml.com/pub/a/archive
http://developerlife.com
http://developerlife.com
http://www.xml.com/pub/a/w3j/s3.bosak.html
http://www.xml.com/pub/a/w3j/s3.bosak.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://zvon.org/xxl/XSLTutorial/Output/index.html
http://zvon.org/xxl/XSLTutorial/Output/index.html

• XML Schema Part 0: Primer, available at https://www.w3.org/TR/xmlschema-0/

Other XML Specifications and Information
• XML 1.0 specification, available at http://www.w3.org/TR/REC-xml/

• XMLSchema Part 1: Structures, available at http://www.w3.org/TR/xmlschema-1/

• XML Schema Part 2: Datatypes, available at http://www.w3.org/TR/xmlschema-2

• Namespaces in XML, available at http://www.w3.org/TR/REC-xml-names/

• Extensible Stylesheet Language (XSL) 1.0 Specification, available at http://
www.w3.org/TR/xsl/

• JSR-000031 XML Data Binding Specification, available at http://jcp.org/en/jsr/
detail?id=031

• XML Path Language (XPath) Version 1.0 Specification, available at http://
www.w3.org/TR/xpath

• XML Linking Language (XLink) Specification, available at http://www.w3.org/TR/xlink

• XML Pointer Language (XPointer) Specification, available at http://www.w3.org/TR/WD-
xptr

• W3C (World Wide Web Consortium) home page at http://www.w3c.org

• XML.com home page at http://www.xml.com

• XML.org, The XML Industry Portal, available at http://www.xml.org/

Appendix A
Other XML Specifications and Information

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-2 of A-2

https://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/xsl/
http://jcp.org/en/jsr/detail?id=031
http://jcp.org/en/jsr/detail?id=031
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xlink
http://www.w3.org/TR/WD-xptr
http://www.w3.org/TR/WD-xptr
http://www.w3c.org
http://www.xml.com
http://www.xml.org/

B
Using the WebLogic XML Streaming API
(Deprecated)

This appendix describes how to use the WebLogic XML Streaming API to parse and generate
XML documents.

Note

The WebLogic XML Streaming API has been deprecated as of release 9.0 of
WebLogic Server. You should instead use the Streaming API for XML (StAX), a
standard specification from the Java Community Process. For details, see Using the
Streaming API for XML (StAX).

This appendix includes the following sections:

Overview of the WebLogic XML Streaming API
The WebLogic XML Streaming API provides an easy and intuitive way to parse and generate
XML documents. It is similar to the SAX API, but enables a procedural, stream-based handling
of XML documents rather than requiring you to write SAX event handlers, which can get
complicated when you work with complex XML documents. In other words, the streaming API
gives you more control over parsing than the SAX API.

When a program parses an XML document using SAX, the program must create event
listeners that listen to parsing events as they occur; the program must react to events rather
than ask for a specific event. By contrast, when you use the streaming API, you can
methodically step through an XML document, ask for certain types of events (such as the start
of an element), iterate over the attributes of an element, skip ahead in the document, stop
processing at any time, get sub-elements of a particular element, and filter out elements as
desired. Because you are asking for events rather than reacting to them, using the streaming
API is often referred to as pull parsing.

You can parse many types of XML documents with the streaming API, such as XML files on
the operating system, DOM trees, and sets of SAX events. You convert these XML documents
into a stream of events, or an XMLInputStream, and then step through the stream, pulling
events such as the start of an element, the end of the document, and so on, off the stack as
needed.

The WebLogic Streaming API uses the WebLogic FastParser as its default parser.

For a complete example of parsing an XML document using the streaming API, see the
ORACLE_HOME\wlserver\samples\server directory, where ORACLE_HOME represents the
directory in which you installed WebLogic Server. For more information about the WebLogic
Server code examples, see Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

Table B-1 describes the main interfaces and classes of the WebLogic Streaming API.

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-1 of B-18

Table B-1 Interfaces and Classes of the XML Streaming API

Interface or Class Description

XMLInputStreamFactory Factory used to create XMLInputStream objects for parsing XML
documents.

XMLInputStream Interface used to contain the input stream of events.

BufferedXMLInputStream Extension of the XMLInputStream interface to allow marking and
resetting of the stream.

XMLOutputStreamFactory Factory used to create XMLOutputStream objects for generating
XML documents.

XMLOutputStream Interface used write events.

ElementFactory Utility to create instances of the interfaces used in this API.

XMLEvent Base interface for all types of events in an XML document, such as
the start of an element, the end of an element, and so on.

StartElement Most important of the XMLEvent sub-interfaces. Used to get
information about a start element in an XML document.

AttributeIterator Object used to iterate over the set of attributes of an element.

Attribute Object that describes a particular attribute of an element.

Javadocs for the WebLogic XML Streaming API
The following Javadocs provide reference material for the WebLogic XML Streaming API
features described in this chapter as well as additional features not explicitly documented:

• weblogic.xml.stream

• weblogic.xml.stream.util

Parsing an XML Document: Typical Steps
The following procedure describes the typical steps for using the WebLogic XML Streaming
API to parse and manipulate an XML document.

The first two steps are required. The next steps you take depend on how you want to process
the XML file.

1. Import the weblogic.xml.stream.* classes.

2. Get an XML stream of events from an XML file, a DOM tree, or a set of SAX events. You
can also filter the XML stream to get only certain types of events, names of specific
elements, and so on. See Getting an XML Input Stream.

3. Iterate over the stream, returning generic XMLEvent types. See Iterating Over the Stream.

4. For each generic XMLEvent type, determine the specific event type. Event types include the
start of an XML document, the end of an element, an entity reference, and so on. See
Determining the Specific XMLEvent Type.

5. Get the attributes of an element. See Getting the Attributes of an Element.

6. Position the stream by skipping over event, skipping to a particular event, and so on. See
Positioning the Stream.

7. Get the children of an element. See Getting a Substream.

Appendix B
Javadocs for the WebLogic XML Streaming API

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-2 of B-18

8. Close the stream. See Closing the Input Stream.

Example of Parsing an XML Document
The following program shows an example of using the XML Streaming API to parse an XML
document.

The program takes a single parameter, an XML file, that it converts into an XML input stream. It
then iterates over the stream, determining the type of each event, such as the start of an XML
element, the end of the XML document, and so on. The program prints out information for
three types of events: start elements, end elements, and the character data that forms the
body of an element. The program does nothing when it encounters the other types of events,
such as comments or start of the XML document.

Note

The code in bold font is described in detail in the sections following the example.

package examples.xml.stream;
import weblogic.xml.stream.Attribute;
import weblogic.xml.stream.AttributeIterator;
import weblogic.xml.stream.ChangePrefixMapping;
import weblogic.xml.stream.CharacterData;
import weblogic.xml.stream.Comment;
import weblogic.xml.stream.XMLEvent;
import weblogic.xml.stream.EndDocument;
import weblogic.xml.stream.EndElement;
import weblogic.xml.stream.EntityReference;
import weblogic.xml.stream.ProcessingInstruction;
import weblogic.xml.stream.Space;
import weblogic.xml.stream.StartDocument;
import weblogic.xml.stream.StartPrefixMapping;
import weblogic.xml.stream.StartElement;
import weblogic.xml.stream.EndPrefixMapping;
import weblogic.xml.stream.XMLInputStream;
import weblogic.xml.stream.XMLInputStreamFactory;
import weblogic.xml.stream.XMLName;
import weblogic.xml.stream.XMLStreamException;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
public class ComplexParse {
 /**
 * Helper method to get a handle on a stream.
 * Takes in a name and returns a stream. This
 * method usese the InputStreamFactory to create an
 * instance of an XMLInputStream
 * @param name The file to parse
 * @return XMLInputStream the stream to parse
 */
 public XMLInputStream getStream(String name)
 throws XMLStreamException, FileNotFoundException
 {
 XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
 XMLInputStream stream = factory.newInputStream(new FileInputStream(name));
 return stream;
 }
 /**
 * Determines the type of event, such as the start

Appendix B
Parsing an XML Document: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-3 of B-18

 * of an element, end of a document, and so on. If the
 * event is of type START_ELEMENT, END_ELEMENT, or
 * CHARACTER_DATA, the method prints out appropriate info;
 * otherwise, it does nothing.
 * @param event The XML event that has been parsed
 */
 public void parse(XMLEvent event)
 throws XMLStreamException
 {
 switch(event.getType()) {
 case XMLEvent.START_ELEMENT:
 StartElement startElement = (StartElement) event;
 System.out.print("<" + startElement.getName().getQualifiedName());
 AttributeIterator attributes = startElement.getAttributesAndNamespaces();
 while(attributes.hasNext()){
 Attribute attribute = attributes.next();
 System.out.print(" " + attribute.getName().getQualifiedName() +
 "='" + attribute.getValue() + "'");
 }
 System.out.print(">");
 break;
 case XMLEvent.END_ELEMENT:
 System.out.print("</" + event.getName().getQualifiedName() +">");
 break;
 case XMLEvent.SPACE:
 case XMLEvent.CHARACTER_DATA:
 CharacterData characterData = (CharacterData) event;
 System.out.print(characterData.getContent());
 break;
 case XMLEvent.COMMENT:
 // Print comment
 break;
 case XMLEvent.PROCESSING_INSTRUCTION:
 // Print ProcessingInstruction
 break;
 case XMLEvent.START_DOCUMENT:
 // Print StartDocument
 break;
 case XMLEvent.END_DOCUMENT:
 // Print EndDocument
 break;
 case XMLEvent.START_PREFIX_MAPPING:
 // Print StartPrefixMapping
 break;
 case XMLEvent.END_PREFIX_MAPPING:
 // Print EndPrefixMapping
 break;
 case XMLEvent.CHANGE_PREFIX_MAPPING:
 // Print ChangePrefixMapping
 break;
 case XMLEvent.ENTITY_REFERENCE:
 // Print EntityReference
 break;
 case XMLEvent.NULL_ELEMENT:
 throw new XMLStreamException("Attempt to write a null event.");
 default:
 throw new XMLStreamException("Attempt to write unknown event
 ["+event.getType()+"]");
 }
 }
 /**
 * Helper method to iterate over a stream

Appendix B
Parsing an XML Document: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-4 of B-18

 * @param name The file to parse
 */
 public void parse(XMLInputStream stream)
 throws XMLStreamException
 {
 while(stream.hasNext()) {
 XMLEvent event = stream.next();
 parse(event);
 }
 stream.close();
 }
 /** Main method. Takes a single argument: an XML file
 * that will be converted into an XML input stream.
 */
 public static void main(String args[])
 throws Exception
 {
 ComplexParse complexParse= new ComplexParse();
 complexParse.parse(complexParse.getStream(args[0]));
 }
}

Getting an XML Input Stream
You can use the XML Streaming API to convert a variety of objects, such as XML files, DOM
trees, or SAX events, into a stream of events.

The following example shows how to create a stream of events from an XML file:

XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
XMLInputStream stream = factory.newInputStream(new FileInputStream(name));

First you create a new instance of the XMLInputStreamFactory, then use the factory to create
a new XMLInputStream from the XML file referred to in the name variable.

The following example shows how to create a stream from a DOM tree:

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
dbf.setValidating(false);
dbf.setNamespaceAware(true);
DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse(new java.io.File(file));
XMLInputStream stream = XMLInputStreamFactory.newInstance().newInputStream(doc);

Getting a Buffered XML Input Stream
After you finish iterating over an XMLInputStream object, you cannot access the stream again.
If, however, you need to process the stream again, such as send it to another application or
iterate over it again in some other way, use a BufferedXMLInputStream object rather than a
plain XMlInputStream object.

Use the newBufferedInputStream() method of the XMLInputStreamFactory class to create a
buffered XML input stream, as shown in the following example:

XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
BufferedXMLInputStream bufstream =
 factory.newBufferedInputStream(factory.newInputStream(new
 FileInputStream(name)));

Appendix B
Parsing an XML Document: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-5 of B-18

You can use the mark() and reset() methods of the BufferedXMLInputStream object to mark
a particular spot in the stream, continue processing the stream, then reset the stream back to
the marked spot. See Marking and Resetting a Buffered XML Input Stream.

Filtering the XML Stream
Filtering an XML stream refers to creating a stream that contains only specified types of
events. For example, you can create a stream that contains only start elements, end elements,
and the character data that make up the body of an XML element. Another example is filtering
an XML stream so that only elements with a specified name appear in the stream.

To filter an XML stream, you specify a filter class as the second parameter to the
XMLInputStreamFactory.newInputStream() method. You specify the events that you want in
the XML stream as parameters to the filter class. The following example shows how to use the
TypeFilter class to specify that you want only start and end XML elements and character data
in the resulting XML stream:

import weblogic.xml.stream.util.TypeFilter;
XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
XMLInputStream stream = factory.newInputStream(new FileInputStream(name),
 new TypeFilter(XMLEvent.START_ELEMENT |
 XMLEvent.END_ELEMENT |
 XMLEvent.CHARACTER_DATA));

Table B-2 describes the filters provided by the WebLogic XML Streaming API. They are part of
the weblogic.xml.stream.util package.

Table B-2 Filters Provided by WebLogic XML Streaming API

Name of Filter Description Sample Usage

TypeFilter Filter an XML stream based on
specified event types, such as
XMLEvent.START_ELEMENT,
XMLEvent.END_ELEMENT, and so on.
See Determining the Specific
XMLEvent Type for a full list of event
types.

TypeFilter takes an integer bitmask as
input; you OR the values to create this
bitmask, as shown in the sample.

new TypeFilter (XMLEvent.START_ELEMENT |
 XMLEvent.END_ELEMENT |
 XMLEvent.CHARACTER_DATA)

NameFilter Filter an XML stream based on the
name of an element in the XML
document.

new NameFilter ("Book")

NameSpaceFilter Filter an XML stream based on the
specified namespace URI.

new NameSpaceFilter ("http://namespace.org")

NamespaceTypeFilter Filter an XML stream based on
specified event types and namespace
URI. This filter combines the
functionality of TypeFilter and
NameSpaceFilter.

new NamespaceFilter ("http://namespace.org",
XMLEvent.START_ELEMENT)

The example returns a stream where all start elements
have the specified namespace.

Creating a Custom Filter
You can also create your own filter if the ones included in the API do not meet your needs.

Appendix B
Parsing an XML Document: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-6 of B-18

1. Create a class that implements the ElementFilter interface and contains a method called
accept(XMLEvent). This method tells the XMLInputStreamFactory.newInputStream()
method whether to add a particular event to the stream or not, as shown in the following
example:

package my.filters;

import weblogic.xml.stream.XMLName;
import weblogic.xml.stream.ElementFilter;
import weblogic.xml.stream.events.NullEvent;

public class SuperDooperFilter implements ElementFilter {

 protected String name;

 public SuperDooperFilter(String name)
 {
 this.name = name;
 }

 public boolean accept(XMLEvent e) {
 if (name.equals(e.getName().getLocalName()))
 return true;
 return false;
 }
}

2. In your XML application, be sure to import the new filter class:

import my.filters.SuperDooperFilter

3. Specify the filter as the second parameter to the newInputStream() method, passing to the
filter class the types of events you want to appear in the XML stream in whatever format
required by your filter class:

XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
XMLInputStream stream = factory.newInputStream(new FileInputStream(name),
 new SuperDooperFilter(param));

Iterating Over the Stream
Once you have a stream of events, the next step is to methodically step through it using the
XMLInputStream.next() and XMLInputStream.hasNext() methods, as shown in the following
example:

while(stream.hasNext()) {
 XMLEvent event = stream.next();
 System.out.print(event);
}

Determining the Specific XMLEvent Type
The XMLInputStream.next() method returns an object of type XMLEvent. XMLEvent has
subinterfaces that further classify what this event might be, such as the start of the XML
document, the end of an element, an entity reference, and so on. The XMLEvent interface also
contains corresponding fields, or constants, as well as a set of methods that you can use to
identify the actual event. Figure B-1 shows the hierarchy of the XMLEvent interface and its
subinterfaces.

Appendix B
Parsing an XML Document: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-7 of B-18

Figure B-1 Hierarchy of the XMLEvent Interface and Its SubInterfaces

XMLEvent

StartElement

EndElement

StartDocument

EndDocument

CharacterData

EntityReference

Comment

Space

ProcessingInstruction

StartPrefixMapping

ChangePrefixMapping

EndPrefixMapping

Table B-3 lists the subclasses and fields of the XMLEvent class that you can use to identify a
particular event while parsing the XML stream

Table B-3 Subclasses and Fields of the XMLEvent Class

XMLEvent Subclass Field of the XMLEvent Class
used to Identify Subclass

Method used to Identify
Subclass

Description of the Subclass
Event

ChangePrefixMapping CHANGE_PREFIX_MAPPING isChangePrefixMapping Signals that a prefix mapping
has changed from an old
namespace to a new
namespace.

CharacterData CHARACTER_DATA isCharacterData Signals that the returned
XMLEvent object contains the
character data from the body of
the element.

Comment COMMENT isComment Signals that the returned
XMLEvent object contains an
XML comment.

EndDocument END_DOCUMENT isEndDocument Signals the end of the XML
document.

EndElement END_ELEMENT isEndElement Signals the end of an element in
the XML document.

EndPrefixMapping END_PREFIX_MAPPING isEndPrefixMapping Signals that a prefix mapping
has gone out of scope.

EntityReference ENTITY_REFERENCE isEntityReference Signals that the returned
XMLEvent object contains an
entity reference.

ProcessingInstructi
on

PROCESSING_INSTRUCTION isProcessingInstruction Signals that the returned
XMLEvent object contains a
processing instruction.

Appendix B
Parsing an XML Document: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-8 of B-18

Table B-3 (Cont.) Subclasses and Fields of the XMLEvent Class

XMLEvent Subclass Field of the XMLEvent Class
used to Identify Subclass

Method used to Identify
Subclass

Description of the Subclass
Event

Space SPACE isSpace Signals that the returned
XMLEvent object contains
whitespace.

StartDocument START_DOCUMENT isStartDocument Signals the start of an XML
document.

StartElement START_ELEMENT isStartElement Signals the start of a element in
the XML document.

StartPrefixMapping START_PREFIX_MAPPING isStartPrefixMapping Signals that a prefix mapping
has started its scope.

The following example shows how to use the Java case statement to determine the particular
type of event that was returned by the XMLInputStream.next() method. For simplicity, the
example simply prints that an event has been found; later sections show further processing of
the event.

 switch(event.getType()) {
 case XMLEvent.START_ELEMENT:
 // Start of an element
 System.out.println ("Start Element\n");
 break;

 case XMLEvent.END_ELEMENT:
 // End of an element
 System.out.println ("End Element\n");
 break;

 case XMLEvent.PROCESSING_INSTRUCTION:
 // Processing Instruction
 System.out.println ("Processing instruction\n");
 break;

 case XMLEvent.SPACE:
 // Whitespace
 System.out.println ("White space\n");
 break;

 case XMLEvent.CHARACTER_DATA:
 // Character data
 System.out.println ("Character data\n");
 break;

 case XMLEvent.COMMENT:
 // Comment
 System.out.println ("Comment\n");
 break;

 case XMLEvent.START_DOCUMENT:
 // Start of the XML document
 System.out.println ("Start Document\n");
 break;

 case XMLEvent.END_DOCUMENT:
 // End of the XML Document
 System.out.println ("End Document\n");

Appendix B
Parsing an XML Document: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-9 of B-18

 break;

 case XMLEvent.START_PREFIX_MAPPING:
 // The start of a prefix mapping scope
 System.out.println ("Start prefix mapping\n");
 break;

 case XMLEvent.END_PREFIX_MAPPING:
 // The end of a prefix mapping scope
 System.out.println ("End prefix mapping\n");
 break;

 case XMLEvent.CHANGE_PREFIX_MAPPING:
 // Prefix mapping has changed namespaces
 System.out.println ("Change prefix mapping\n");
 break;

 case XMLEvent.ENTITY_REFERENCE:
 // An entity reference
 System.out.println ("Entity reference\n");
 break;
 default:

 throw new XMLStreamException("Attempt to parse unknown event
 [" + event.getType() + "]");
 }

Getting the Attributes of an Element
To get the attributes of an element in an XML document, you must first cast the XMLEvent
object that was returned by the XMLInputStream.next() method to a StartElement object.

Because you do not know how many attributes an element might have, you must first create an
AttributeIterator object to contain the entire list of attributes, and then iterate over the list
until there are no more attributes. The following example describes how to do this as part of
the START_ELEMENT case of the switch statement shown in Iterating Over the Stream:

case XMLEvent.START_ELEMENT:

 StartElement startElement = (StartElement) event;
 System.out.print("<" + startElement.getName().getQualifiedName());
 AttributeIterator attributes = startElement.getAttributesAndNamespaces();
 while(attributes.hasNext()){
 Attribute attribute = attributes.next();
 System.out.print(" " + attribute.getName().getQualifiedName() +
 "='" + attribute.getValue() + "'");
 }
 System.out.print(">");
 break;

The example first creates a StartElement object by casting the returned XMLEvent to
StartElement. It then creates an AttributeIterator object using the method
StartElement.getAttributesAndNamespaces(), and iterates over the attributes using the
AttributeIterator.hasNext() method. For each Attribute, it uses the
Attributes.getName().getQualifiedName() and Attribute.getValue() methods to return
the name and value of the attribute.

You can also use the getNamespace() and getAttributes() methods to return just the
namespaces or attributes on their own.

Appendix B
Parsing an XML Document: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-10 of B-18

Positioning the Stream
Table B-4 describes the methods of the XMLInputStream interface that you can use to skip
ahead to specific locations in the stream.

Table B-4 Methods Used to Position the Input Stream

Method of
XMLInputStream

Description

skip() Positions the input stream to the next stream event.

Note: The next event might not necessarily be an actual element in the
XML file; for example, it could be a comment or white space.

skip(int) Positions the input stream to the next event of this type.

Examples of event types are XMLEvent.START_ELEMENT and
XMLEvent.END_DOCUMENT. Refer to Table B-3 for the full list of event
types.

skip(XMLName) Positions the input stream to the next event of this name.

skip(XMLName, int) Positions the input stream to the next event of this name and type.

skipElement() Skips to the next element (does not skip to the sub-elements of the current
element).

peek() Checks the next event without actually reading it from the stream.

The following example shows how you can modify the basic code for iterating over an input
stream to skip over the character data in the body of an XML element:

 while(stream.hasNext()) {
 XMLEvent peek = stream.peek();
 if (peek.getType() == XMLEvent.CHARACTER_DATA) {
 stream.skip();
 continue;
 }
 XMLEvent event = stream.next();
 parse(event);
 }

The example shows how to use the XMLInputStream.peek() method to determine the next
event on the stream. If the type of event is XMLEvent.CHARACTER_DATA, then skip the event and
go to the next one.

Getting a Substream
Use the XMLInputStream.getSubStream() method to get a copy of the next element, including
all its subelements. The getSubstream() method returns an XMLInputStream object. Your
position in the parent stream (or the stream from which you called getSubStream()) does not
move. In the parent stream, if you want to skip the element you just got with getSubStream(),
use the skipElement() method.

The getSubStream() method keeps a count of the START_ELEMENT and END_ELEMENT events it
encounters, and as soon as the number is equal (or in other words, as soon as it finds the
complete next element) it stops and returns the resulting substream as an XMLInputStream
object.

Appendix B
Parsing an XML Document: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-11 of B-18

For example, assume that you are using the XML Streaming API to parse the following XML
document, but you are only interested in the substream delineated by the <content> and </
content> tags:

<book>
 <title>The History of the World</title>
 <author>Juliet Shackell</author>
 <publisher>CrazyDays Publishing</publisher>
 <content>
 <chapter title='Just a Speck of Dust'>
 <synopsis>The world as a speck of dust</synopsis>
 <para>Once the world was just a speck of dust...</para>
 </chapter>
 <chapter title='Life Appears'>
 <synopsis>Move over dust, here comes life.</synopsis>
 <para>Happily, the dust got a companion: life...</para>
 </chapter>
 </content>
</book>

The following code fragment shows how you can skip to the <content> start element tag, get
the substream, and parse it using a separate ComplexParse object:

 if (stream.skip(ElementFactory.createXMLName("content")))
 {
 ComplexParse complexParse = new ComplexParse();
 complexParse.parse(stream.getSubStream());
 }

When you call this method on the previous XML document, you get the following output:

<content>
 <chapter title='Just a Speck of Dust'>
 <synopsis>The world as a speck of dust</synopsis>
 <para>Once the world was just a speck of dust...</para>
 </chapter>
 <chapter title='Life Appears'>
 <synopsis>Move over dust, here comes life.</synopsis>
 <para>Happily, the dust got a companion: life...</para>
 </chapter>
</content>

Marking and Resetting a Buffered XML Input Stream
If you are using a BufferedXMLInputStream object, you can use the mark() and reset()
methods to mark the stream at a particular spot, process the stream, and then subsequently
reset the stream back to the marked spot. These methods are useful if you want to further
manipulate the stream after initially iterating over it.

Note

If you read a buffered stream without marking it, you cannot access what you've just
read. In other words, just because the stream is buffered, it does not automatically
mean you can reread it. You must mark it first.

The following example shows a typical use of the BufferedXMLInputStream object:

Appendix B
Parsing an XML Document: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-12 of B-18

 XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
 BufferedXMLInputStream bufstream =
 factory.newBufferedInputStream(factory.newInputStream(new
 FileInputStream(name)));

 // mark the start of the stream
 bufstream.mark();

 // process it locally
 bufferedParse.parse(bufstream);

 // reset the stream to the mark
 bufstream.reset();

 // send stream off to another application
 ComplexParse complexParse = new ComplexParse();
 complexParse.parse(bufstream);

Closing the Input Stream
It is good programming practice to explicitly close the XML input stream when you are finished
with it. To close an input stream, use the XMLInputStream.close() method, as shown in the
following example:

// close the input stream
input.close();

Generating a New XML Document: Typical Steps
The following procedure describes the typical steps for using the WebLogic XML Streaming
API to generate a new XML document.

The first two steps are required. The next steps you take depend on how you want to generate
the XML file.

1. Import the weblogic.xml.stream.* classes.

2. Create an XML output stream to which to write the XML document. See Creating an XML
Output Stream.

3. Add events to the XML output stream. See Adding Elements to the Output Stream.

4. Add attributes to the XML output stream. See Adding Attributes to an Element on the
Output Stream.

5. Add an input stream to the output stream. See Adding an Input Stream to an Output
Stream.

6. Print the output stream. See Printing an Output Stream.

7. Close the output stream. See Closing the Output Stream.

Example of Generating an XML Document
The following program shows an example of using the XML Streaming API to generate an XML
document.

The program first creates an output stream based on a PrintWriter object, then adds
elements to the output stream to create a simple XML purchase order, described in the
comments of the program. The program also shows how to add an input stream based on a
separate XML file to the output stream.

Appendix B
Generating a New XML Document: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-13 of B-18

Note

The topics following the example describe it in more detail.

package examples.xml.stream;

import weblogic.xml.stream.XMLInputStream;
import weblogic.xml.stream.XMLOutputStream;
import weblogic.xml.stream.XMLInputStreamFactory;
import weblogic.xml.stream.XMLName;
import weblogic.xml.stream.XMLEvent;
import weblogic.xml.stream.StartElement;
import weblogic.xml.stream.EndElement;
import weblogic.xml.stream.Attribute;
import weblogic.xml.stream.ElementFactory;
import weblogic.xml.stream.XMLStreamException;
import weblogic.xml.stream.XMLOutputStreamFactory;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.PrintWriter;

/**
 * Program that prints out a very simple purchase order that looks
 * like the following:
 *
 * <purchase_order>
 * <name>Juliet Shackell</name>
 * <item id="1234" quantity="2">Fabulous Chair</item>
 * <!-- this is a comment-->
 * <another_file>
 * This comes from another file called "another_file.xml"
 * </another_file>
 * </purchase_order>
 *
 * In the preceding XML file, the <another_file> element is actually another
 * XML file that is passed as an argument to the program, converted into an
 * XMLInputStream, then added to the output stream.
 */
public class PrintPurchaseOrder {

 /**
 * Helper method to get a handle on a stream.
 * Takes in a name and returns a stream. This
 * method uses the InputStreamFactory to create an
 * instance of an XMLInputStream
 * @param name The file to parse
 * @return XMLInputStream the stream to parse
 */
 public XMLInputStream getInputStream(String name)
 throws XMLStreamException, FileNotFoundException
 {
 XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
 XMLInputStream stream = factory.newInputStream(new FileInputStream(name));
 return stream;
 }
 public static void main(String args[])
 throws Exception

Appendix B
Generating a New XML Document: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-14 of B-18

 {
 PrintPurchaseOrder printer = new PrintPurchaseOrder();
 //
 // Create an output stream.
 //
 XMLOutputStreamFactory factory = XMLOutputStreamFactory.newInstance();
 XMLOutputStream output = factory.newOutputStream(new
 PrintWriter(System.out,true));
 // add the <purchase_order> root element
 output.add(ElementFactory.createStartElement("purchase_order"));
 output.add(ElementFactory.createCharacterData("\n"));

 // add the <name> element
 output.add(ElementFactory.createStartElement("name"));
 output.add(ElementFactory.createCharacterData("Juliet Shackell"));
 output.add(ElementFactory.createEndElement("name"));
 output.add(ElementFactory.createCharacterData("\n"));

 // add the <item> element along with the id and quantity attributes
 output.add(ElementFactory.createStartElement("item"));
 output.add(ElementFactory.createAttribute("id","1234"));
 output.add(ElementFactory.createAttribute("quantity","2"));
 output.add(ElementFactory.createCharacterData("Fabulous Chair"));
 output.add(ElementFactory.createEndElement("item"));
 output.add(ElementFactory.createCharacterData("\n"));

 // add a comment
 output.add("<!-- this is a comment-->");
 output.add(ElementFactory.createCharacterData("\n"));

 // create an input stream from each XML file argument then add it to the output
 for (int i=0; i < args.length; i++)
 //
 // Get an input stream and add it to the output stream
 //
 output.add(printer.getInputStream(args[i]));

 // Finally, end the root "purchase_order" element
 output.add(ElementFactory.createEndElement("purchase_order"));
 output.add(ElementFactory.createCharacterData("\n"));

 //
 // Print the results to the screen
 //
 output.flush();

 // Close the output streams
 output.close();
 }
}

The preceding program produces the following output:

<purchase_order>
 <name>Juliet Shackell</name>
 <item id="1234" quantity="2">Fabulous Chair</item>
 <!-- this is a comment-->
 <another_file>
 This is from another file.
 </another_file>
</purchase_order>

Appendix B
Generating a New XML Document: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-15 of B-18

Creating an XML Output Stream
One of the first steps in generating an XML document using the Weblogic XML Streaming API
is to create an output stream which holds the document as it is being built. Creating an XML
output stream is similar to creating an input stream: you first create an instance of the
XMLOutputStreamFactory and then create an output stream with the
XMLOutputStreamFactory.newOutputStream() method, as shown in the following example:

 XMLOutputStreamFactory factory = XMLOutputStreamFactory.newInstance();
 XMLOutputStream output = factory.newOutputStream(new
 PrintWriter(System.out,true));

The following example shows how to create an XMLOutputStream based on a DOM tree:

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setValidating(false);
 dbf.setNamespaceAware(true);
 Document doc = dbf.newDocumentBuilder().newDocument();
 XMLOutputStream out =
 XMLOutputStreamFactory.newInstance().newOutputStream(doc);

You can use the XMLOutputStreamFactory.newOutputStream() method to create an output
stream based on the following four Java objects, depending on what the final form of the XML
document will be (such as a file on the operating system, a DOM tree, and so on):

• java.io.OutputStream

• java.io.Writer

• org.xml.sax.ContentHandler

• org.w3c.dom.Document

Adding Elements to the Output Stream
Use the XMLOutputStream.add(XMLEvent) method to add elements to the output stream. Use
the ElementFactory to create the particular element.

The ElementFactory interface includes methods to create each type of element; the general
format is ElementFactory.createXXX() where XXX refers to the particular element, such as
createStartElement(), createCharacterData(), and so on. You can create most elements by
passing the name as a String or as an XMLName.

Tip

The XMLOutputStream does not validate your XML.

Note

Each time you create a start element, you must explicitly also create an end element
at some point. The same rule applies to creating a start document.

For example, assume you want to create the following snippet of XML:

Appendix B
Generating a New XML Document: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-16 of B-18

<name>Juliet Shackell</name>

The Java code to add this element to an output stream is as follows:

 output.add(ElementFactory.createStartElement("name"));
 output.add(ElementFactory.createCharacterData("Juliet Shackell"));
 output.add(ElementFactory.createEndElement("name"));
 output.add(ElementFactory.createCharacterData("\n"));

The final createCharacterData() method adds a newline character to the output stream. This
is optional, but useful if you want to create human-readable XML.

Adding Attributes to an Element on the Output Stream
Use the XMLOutputStream.add(Attribute) to add attributes to an element you have just
created. Use the ElementFactory.createAttribute() method to create a particular attribute.

For example, assume you want to create the following snippet of XML:

<item id="1234" quantity="2">Fabulous Chair</item>

The Java code to add this element to an output stream is as follows:

 output.add(ElementFactory.createStartElement("item"));
 output.add(ElementFactory.createAttribute("id","1234"));
 output.add(ElementFactory.createAttribute("quantity","2"));
 output.add(ElementFactory.createCharacterData("Fabulous Chair"));
 output.add(ElementFactory.createEndElement("item"));
 output.add(ElementFactory.createCharacterData("\n"));

Note

Be sure you add attributes to an element after you create the start element but before
you create the corresponding end element. Otherwise, although your code will compile
successfully, you will get a runtime error when you try to run the program. For
example, the following code returns an error because the attributes are added to the
<item> element after the element has been explicitly ended:

output.add(ElementFactory.createStartElement("item"));
output.add(ElementFactory.createEndElement("item"));
output.add(ElementFactory.createAttribute("id","1234"));
output.add(ElementFactory.createAttribute("quantity","2"));
output.add(ElementFactory.createCharacterData("Fabulous Chair"));
output.add(ElementFactory.createCharacterData("\n"));

Adding an Input Stream to an Output Stream
When creating an XML output stream, you might want to add an existing XML document, such
as an XML file or a DOM tree, to the output stream. To do this, you must first convert the XML
document to an XML input stream, then use XMLOutputStream.add(XMLInputStream) method
to add the input stream to the output stream.

The following example first shows a method called getInputStream() that creates an XML input
stream from an XML file and then how to use the method to add the created input stream to an
output stream:

Appendix B
Generating a New XML Document: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-17 of B-18

 /**
 * Helper method to get a handle on a stream.
 * Takes in a name and returns a stream. This
 * method uses the InputStreamFactory to create an
 * instance of an XMLInputStream
 * @param name The file to parse
 * @return XMLInputStream the stream to parse
 */

 public XMLInputStream getInputStream(String name)
 throws XMLStreamException, FileNotFoundException
 {
 XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
 XMLInputStream stream = factory.newInputStream(new FileInputStream(name));
 return stream;
 }

....

 // create an input stream from each XML file argument then add it to the output
 for (int i=0; i < args.length; i++)
 //
 // Get an input stream and add it to the output stream
 //
 output.add(printer.getInputStream(args[i]));

Printing an Output Stream
Use the XMLOutputStream.flush() method to print out the XML output stream to whatever
object you created it from. For example, if you created an XML output stream from a
PrintWriter object, then the flush() method prints the stream to the standard output.

Note

If you are writing to an XMLOutputStream based on a DOM tree, you must execute the
flush() method before you can manipulate the DOM.

The following example shows how to print an output stream:

 //
 // Print the results to the screen
 //
 output.flush();

Closing the Output Stream
It is good programming practice to explicitly close the XML output stream when you are
finished with it. To close an output stream, use the XMLOutputStream.close() method, as
shown in the following example:

// close the output stream
output.close();

Appendix B
Generating a New XML Document: Typical Steps

Developing XML Applications for Oracle WebLogic Server
G31686-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-18 of B-18

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Introduction
	Samples for the XML Developer
	XML Examples in the WebLogic Server Distribution

	Summary of WebLogic Server XML Features
	XML Document Parsers
	XML Document Transformer
	Streaming API for XML (StAX) Implementation
	WebLogic XPath API
	JAXP Pluggability Layer Implementation
	WebLogic Servlet Attributes
	XML Registry For Configuring Parsers and Transformers
	XML Registry for Configuring External Entity Resolution

	Endorsed Standards Override Mechanism for DOM/SAX: Not Supported
	Learning More About XML

	2 XML Overview
	What Is XML?
	How Do You Describe an XML Document?
	Why Use XML?
	What Are XSL and XSLT?
	What Are DOM and SAX?
	SAX
	DOM

	What Is the Streaming API for XML (StAX)?
	What Is JAXP?
	JAXP Packages
	New Feature of JAXP 1.4.4

	Common Uses of XML and XSLT
	Using XML and XSLT to Separate Content from Presentation
	XML as a Message Format for Business-to-Business Communication

	3 Developing XML Applications with WebLogic Server
	Developing XML Applications: Main Steps
	Parsing XML Documents
	Parsing XML Documents Using JAXP in SAX Mode
	Parsing XML Documents Using JAXP in DOM Mode
	Parsing XML Documents in a Servlet
	Using the org.xml.sax.DefaultHandler Attribute to Parse a Document
	Using the org.w3c.dom.Document Attribute to Parse a Document
	Validating and Non-Validating Parsers
	Handling Entity Resolution While Parsing an XML Document
	General Information About External Entities
	Using the WebLogic Server Entity Resolution Features
	Using Parsers Other Than the Default

	Generating New XML Documents
	Generating XML from a DOM Document Tree
	Generating XML Documents in a JSP

	Transforming XML Documents
	Using JAXP to Transform XML Data
	Example of Transforming an XML Document Using JAXP
	Using the JSP Tag to Transform XML Data
	XSLT JSP Tag Syntax
	XSLT JSP Tag Usage
	Example of Using the XSLT JSP Tag in a JSP
	Using Transformers Other Than the Default Transformer

	4 Using the Streaming API for XML (StAX)
	Overview of the Streaming API for XML
	Description of the Cursor API
	The XMLStreamReader Interface
	The XMLStreamWriter Interface
	Description of the Event Iterator API
	Main Interfaces and Classes of StAX

	Parsing XML With the XMLStreamReader Interface: Typical Steps
	Example of Parsing XML Using StAX
	Getting the XMLStreamReader Object
	Determining the Specific XML Event Type
	Getting the Full Name of an Element
	Getting the Attributes of an Element
	Getting the Namespaces of an Element
	Getting Text Data
	Getting Location Information
	Closing the Input Stream

	Generating XML Using the XMLStreamWriter Interface: Typical Steps
	Example of Generating XML Using StAX
	Getting the XMLStreamWriter Object
	Adding the XML Declaration to the Output Stream
	Adding Standard XML Events to the Output Stream
	Adding Attributes and Namespace Declarations to a Start Element
	Closing the Output Stream

	Properties Defined for the XMLInputFactory Interface
	Properties Defined for the XMLOutputFactory Interface

	5 Using Advanced XML APIs
	Using the WebLogic XPath API
	Using the DOMXPath Class
	Example of Using the DOMXPath Class
	Main Steps When Using the DOMXPath Class
	Using the StreamXPath Class
	Example of Using the StreamXPath Class
	Main Steps When Using the StreamXPath Class

	6 XML Programming Best Practices
	When to Use the DOM, SAX, and StAX APIs
	Increasing Performance of XML Validation
	When to Use XML Schemas or DTDs
	Configuring External Entity Resolution for Maximum Performance
	Using SAX InputSources
	Improving Performance of Transformations

	7 XML Programming Techniques
	Transmitting XML Data Between A Jakarta Client and WebLogic Server
	Handling XML Documents in a JMS Application
	Accessing External Entities That Do Not Have an HTTP Interface

	8 XML Application Scoping
	Overview of Application Scoping
	The weblogic-application.xml File
	xml
	parser-factory
	saxparser-factory
	document-builder-factory
	transformer-factory
	schema-factory
	xpath-factory
	xml-input-factory
	xml-output-factory
	xml-event-factory
	entity-mapping
	entity-mapping-name
	public-id
	system-id
	entity-uri
	when-to-cache
	cache-timeout-interval

	Configuring a Parser or Transformer for an Enterprise Application
	Configuring an External Entity for an Enterprise Application
	Configuring the External Entity Cache for an Enterprise Application

	9 Administering WebLogic Server XML
	Overview of Administering WebLogic Server XML
	XML Administration Tasks
	How the XML Registry Works
	Parser Selection Within the XML Registry

	XML Parser and Transformer Configuration Tasks
	Configuring a Parser or Transformer Other Than the Default
	Configuring a Parser for a Particular Document Type

	External Entity Configuration Tasks
	Configuring External Entity Resolution
	Configuring the External Entity Cache

	A XML Reference
	XML APIs
	Code Examples
	Related WebLogic Server Documentation
	Tutorials and Online Courses
	Other XML Specifications and Information

	B Using the WebLogic XML Streaming API (Deprecated)
	Overview of the WebLogic XML Streaming API
	Javadocs for the WebLogic XML Streaming API
	Parsing an XML Document: Typical Steps
	Example of Parsing an XML Document
	Getting an XML Input Stream
	Getting a Buffered XML Input Stream
	Filtering the XML Stream
	Creating a Custom Filter
	Iterating Over the Stream
	Determining the Specific XMLEvent Type
	Getting the Attributes of an Element
	Positioning the Stream
	Getting a Substream
	Marking and Resetting a Buffered XML Input Stream
	Closing the Input Stream

	Generating a New XML Document: Typical Steps
	Example of Generating an XML Document
	Creating an XML Output Stream
	Adding Elements to the Output Stream
	Adding Attributes to an Element on the Output Stream
	Adding an Input Stream to an Output Stream
	Printing an Output Stream
	Closing the Output Stream

