Oracle® Fusion Middleware
Understanding Oracle Web Services Manager

12c (12.2.1.3.0)
E98747-01
August 2018

ORACLE"

Oracle Fusion Middleware Understanding Oracle Web Services Manager, 12c (12.2.1.3.0)
E98747-01

Copyright © 2017, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Anupam Das, Showvik Roychowdhuri

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience iX
Documentation Accessibility iX
Related Documents iX
Conventions X

What's New in This Guide

New and Changed Features for 12c (12.2.1.3.0) Xi

New and Changed Features for 12c (12.2.1.2.0) Xi

New and Changed Features for 12c (12.2.1.1.0) Xi
1 Introducing Oracle Web Services Manager

1.1 Overview of Oracle Web Services Manager 1-1

1.2 Overview of Oracle Web Services Manager Features 1-2

1.3 Overview of Oracle Web Service Manager Architecture 1-3

2 Understanding Web Service Security Concepts

2.1 About Web Service Security 2-2
2.2 Understanding Transport-level and Application-level Security 2-3
2.3 Understanding Authentication 2-4
2.3.1 About Digest Authentication 2-5
2.4 Understanding Authorization 2-5
2.5 Overview of Message Protection 2-6
2.5.1 Understanding Message Protection 2-6
2.5.2 About Message Encryption 2-7
2.5.3 About Message Signing (XML Signature) 2-8
2.6 Overview of the Roles of Keys and Certificates in Security and Authentication 2-8
2.6.1 About Private Keys and Certificates 2-9
2.6.2 Understanding How Different Security Policies Use Private Keys and
Certificates 2-11

ORACLE iii

2.6.2.1 Overview of Message Protection Policy Types 2-11

2.6.2.2 Overview of Authentication Token Policy Types 2-13
2.6.3 How OWSM Locates Keystore and Key Passwords for the JKS
Keystore 2-15
2.6.4 About Private Keys and Certificates Configuration for SSL Policies 2-16
2.6.5 About Setting up Private Keys and Certificates for Message Protection
Policies 2-18
2.6.5.1 Understanding Sample Basic Configuration 2-18
2.6.5.2 About Advanced Setup Considerations 2-18
2.7 Understanding How OWSM Uses the Credential Store 2-19
2.8 Understanding Security Policies 2-20
2.9 Overview of Security Tokens 2-21
2.9.1 Understanding Security Tokens 2-21
2.9.2 About the Username Token 2-22
2.9.3 About the X.509 Certificate 2-22
2.9.4 About the Kerberos Token 2-22
2.9.5 About the SAML Token 2-22
2.10 Understanding Secure Attachments 2-24
2.11 Overview of Secure Conversation 2-24
2.11.1 About Secure Conversation 2-24
2.11.2 Overview of WS-SecureConversation Usage 2-25
2.11.2.1 When to Use WS-Secure Conversation 2-25
2.11.2.2 Benefits of WS-SecureConversation 2-26
2.11.2.3 About WS-SecureConversation With WS-ReliableMessaging 2-27
2.11.3 WS-SecureConversation Architecture 2-27
2.11.4 When to Use WS-SecureConversation 2-29
2.11.5 When To Use Re-Authentication 2-30
2.11.6 About Setting the Bootstrap Mode 2-30
2.11.7 Overview of Persistence 2-30
2.11.7.1 About Default Domain-Wide Persistence Implementation 2-31
2.11.7.2 About Client- and Web Service-Specific Persistence
Implementation 2-31
2.12 Overview of the Kerberos Protocol 2-31
2.12.1 Understanding the Kerberos Protocol 2-31
2.12.2 Understanding Credential Delegation in Kerberos 2-32
2.12.3 Understanding Kerberos and SPNEGO 2-33
2.12.4 About Kerberos and WS-SecureConversation Derived Keys 2-34
2.13 Understanding Web Services Addressing 2-34
2.14 Understanding Web Services Trust 2-35
2.15 Understanding Web Services ReliableMessaging 2-36
2.16 Overview of Fine-Grained Authorization Using Oracle Entitlements Server 2-37
2.16.1 References for OES Reading 2-37

ORACLE iv

2.16.2 Overview of OES Integration 2-38
2.16.2.1 OES Integration: The Big Picture 2-38
2.16.2.2 Data Masking 2-39
2.16.2.3 About XACML Obligations 2-41
2.16.2.4 Overview of OES Fine- and Coarse-Grained Authorization 2-41

2.16.3 About OWSM OES Policies 2-44

2.16.4 Overview of Resource Mapping and Naming 2-45
2.16.4.1 Resource Mapping and Naming 2-45
2.16.4.2 Example of OES Policies 2-46

2.16.5 How Attributes Are Processed 2-48

2.16.6 About the Guard Element 2-50

2.17 Overview of Personally Identifiable Information 2-51

2.17.1 Overview of PIl Data 2-51
2.17.1.1 About PIl Data 2-51
2.17.1.2 About the PIlI Security Policy 2-52

2.17.2 Example of How PII Data is Protected 2-53

2.17.3 About PII Policy XPath Expressions 2-54

2.17.4 When to Use the PIl Policy 2-55
2.17.4.1 Single SOA Composite Use Case 2-56
2.17.4.2 Oracle Service Bus Proxy Service to Business Service Use Case

2-57
2.17.4.3 PIl at the JCA Binding Use Case 2-57
2.17.5 Who Should Have Access to the PlII 2-59
2.17.6 About Additional Considerations for Unmarshalling 2-59
2.18 Understanding OAuth 2.0 for REST and SOAP Services and Clients 2-60
2.19 Understanding REST APIs for Managing Credentials and Keystores 2-60
3 Understanding the OWSM Policy Framework
3.1 Overview of OWSM Policy Framework 3-1

3.1.1 About OWSM Policy Framework Components 3-1

3.1.2 Understanding OWSM Agent and Policy Manager Interaction 3-2

3.1.3 About OWSM Agent and Policy Manager Characteristics 3-4

3.1.4 Understanding the OWSM Agent and Policy Manager Request Flow 3-4

3.1.5 About OWSM Configuration Artifacts 3-4

3.2 Understanding Web Service Policies 3-5
3.3 Overview of Building Web Service Policies Using Policy Assertions 3-7
3.3.1 About Building Web Service Policies Using Policy Assertions 3-7
3.3.2 About Defining Multiple Policy Alternatives (OR Groups) 3-9
3.4 Understanding Policy Subjects 3-10
3.5 Overview of Attaching Policies to Policy Subjects 3-12
3.5.1 About Attaching Policies to Policy Subjects 3-13

ORACLE

3.5.2 About Direct Policy Attachment 3-13
3.5.3 Overview of Global Policy Attachments Using Policy Sets 3-13
3.5.3.1 Understanding Global Policy Attachments Using Policy Sets 3-14
3.5.3.2 About Subject Types and Scope of Resources 3-15
3.5.3.3 Understanding Typical Uses for Global Policy Attachments 3-15
3.6 Understanding How Policies are Executed 3-15
3.7 About OWSM Predefined Policies and Assertion Templates 3-17
3.8 About Overriding the Security Policy Configuration 3-18

3.9 About Recommended Naming Conventions for Documents Created in WSM
Repository 3-18

A Web Service Security Standards

A.1 Security Standards A-1
ORACLE Vi

List of Figures

1-1 Security Provided by OWSM Agents

1-2 Components of OWSM Architecture

2-1 OWSM Keystore Configuration for Message Protection

2-2 STS Token Exchange

2-3 Masking Sensitive Data

2-4 Fine-Grained Authorization

2-5 Coarse-Grained Authorization

2-6 PIl Encryption in Oracle Service Bus

2-7 Single SOA Composite Use Case

2-8 JCA Adapter PIl Use Case

3-1 OWSM Policy Framework Leverages OPSS and Oracle WebLogic Server Security
3-2 OWSM Agent and Policy Manager Interaction

3-3 Policy Containing Assertions

3-4 Example Policy With Two Assertions

3-5 Policy Interceptors Acting on Messages Between a Client and Web Service (SOAP)
3-6 Identifying the Different Parts of a Policy Name

ORACLE

1-1

1-4
2-16
2-36
2-40
2-42
2-44
2-53
2-56
2-58

3-2

3-8
3-8
3-16
3-19

Vii

List of Tables

1-1
2-1
2-2
2-3
3-1
3-2
A-1

Components of OWSM Architecture
Determining Resource String

Resource String Example

Attribute Types Supported for OES Policies
Policy Categories

Policy Subjects and Resource Scopes

Web Services Standards and Specification URLs

ORACLE

1-4
2-46
2-46
2-48

35
3-10

A-1

viii

Preface

This section describes the intended audience, how to use this guide, and provides
information about documentation accessibility.

Audience

This guide is intended for:

System and security administrators who administer Web services and manage
security

Application developers who are developing Web services and testing the security
prior to deployment of the Web services

Security architects who create security policies.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: // www. or acl e. cont pl s/t opi ¢/ | ookup?
ct x=accé& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support

through My Oracle Support. For information, visit htt p: // ww. or acl e. coni pl s/t opi ¢/
| ookup?ct x=acc&i d=i nfo or visit htt p: // ww. or acl e. com pl s/t opi ¢/ | ookup?ct x=acc& d=trs
if you are hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Fusion Middleware
Web services documentation set:

ORACLE

Administering Web Services

"Developing and Securing Web Services" in Developing Applications with Oracle
JDeveloper

Developing Extensible Applications for Oracle Web Services Manager

Developing Fusion Web Applications with Oracle Application Development
Framework

Developing JAX-WS Web Services for Oracle WebLogic Server
Developing JAX-RPC Web Services for Oracle WebLogic Server

Developing Oracle Infrastructure Web Services

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

* Interoperability Solutions Guide for Oracle Web Services Manager
» Developing SOA Applications with Oracle SOA Suite

» Developing for Oracle WebCenter Portal

e Securing WebLogic Web Services for Oracle WebLogic Server

» Securing Web Services and Managing Policies with Oracle Web Services
Manager

* Understanding WebLogic Web Services for Oracle WebLogic Server
e Understanding Web Services
* Use Cases for Securing Web Services Using Oracle Web Services Manager

» WebLogic Web Services Reference for Oracle WebLogic Server

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE X

What's New Iin This Guide

The following topics introduce the new and changed features of Oracle Web Services
Manager (OWSM) and other significant changes that are described in this guide, and

provides pointers to additional information.

New and Changed Features for 12¢ (12.2.1.3.0)

This topic contains the New and Changed Features for Release 12¢ (12.2.1.3.0).

Minor updates, such as fixes or corrections, were made to this document.

New and Changed Features for 12¢ (12.2.1.2.0)

This topic contains the New and Changed Features for Release 12¢ (12.2.1.2.0).

Minor updates, such as fixes or corrections, were made to this document.

New and Changed Features for 12¢ (12.2.1.1.0)

This topic contains the New and Changed Features for Release 12¢ (12.2.1.1.0).

Minor updates, such as fixes or corrections, were made to this document.

ORACLE

Xi

Introducing Oracle Web Services Manager

Oracle Web Services Manager (OWSM) provides a policy framework to manage and
secure Web services consistently across your organization. It provides capabilities to
build, enforce, run and monitor Web service policies, such as security, reliable
messaging, MTOM, and addressing policies. OWSM can be used by both developers,
at design time, and system administrators in production environments.

For more information, refer to the following sections:

e Overview of Oracle Web Services Manager
» Overview of Oracle Web Services Manager Features
e Overview of Oracle Web Service Manager Architecture

For definitions of unfamiliar terms found in this and other books, see the Glossary.

1.1 Overview of Oracle Web Services Manager

ORACLE

Oracle Web Services Manager (OWSM) provides business agility to respond to
security threats and security breaches by allowing policy changes to be enforced in
real time without the need to interrupt the running business processes.

As shown in Figure 1-1, OWSM provides the "first mile security” via client agents for
securing Web service clients, and "last mile security” via server agents securing Web
services. If your Web services are accessible only from inside the corporate intranet,
they typically still require authentication and authorization. In addition, auditing is often
required to address regulatory compliance.

Figure 1-1 Security Provided by OWSM Agents

Business End Point
Client Security First Line Of Integration & Security
1 Defense Service]
| | Virtualization ¥
v I 1
nciazs | WS | web
1 1 —>
oracLe | Web Service | OWSM 1 Agent | Service
uuuuuuu i Client Agent i
————————————— I I
1 i ORACLE | OWSM | Fusion
1 1 [Agent | App Svc
1 |
Web Service | OWSM
Client Agent * [*
————————————— ORACLE wsH | ©RAcLE
g 7| Agem | SOASuite, ™ Web oWsH
Gateway Service Bus — it Agent
Mol)i:;_Apps W ‘/ Oows ¥ Intrusion Detection
[‘. Agent |/ = 2QL Injection
e — - DOS
i0O< = Replay Attack
' = Crypto Attack . .
- %ML Bamh Service Secul_lg
Virus Check - D F'rupgga_tlun
Messaqge Throttling ' Authen_tlca!tmn
= Authorization
I . = Message Confidentiality
S & Integrit
Extranet DMZ Intranet 2

= Replay Attack

1-1

Chapter 1
Overview of Oracle Web Services Manager Features

OWSM allows for policy-driven centralized management of Web services with local
enforcement. OWSM provides a policy framework to manage and secure Web
services consistently across your organization.

The benefits of this policy driven approach include:

« Allows security to be declarative and externalized.

e Provides business agility to respond to security threats and security breaches by
allowing policy changes to be enforced in real time without the need to interrupt
the running business processes.

« Avoids the need for developers to understand security specifications and security
implementation details.

OWSM allows you to:

» Centrally define and store declarative policies applied to the multiple Web
services.

» Locally enforce policies through configurable agents.
* Monitor run time security events such as failed authentication or authorization.

You can use OWSM to secure the following categories of Oracle Web services:

* Oracle Infrastructure web services—SOA, Application Development Framework
(ADF and WebCenter), Oracle Service Bus, and Oracle Enterprise Scheduler
services

» Java EE web services—SOAP (JAX-WS) and RESTful (JAX-RS) web services

Companies worldwide are actively deploying service-oriented architectures (SOA)
using Web services, both in intranet and internet environments. While Web services
offer many advantages over traditional alternatives (for example, distributed objects or
custom software), deploying networks of interconnected Web services still presents
key challenges, particularly in terms of security and administration.

1.2 Overview of Oracle Web Services Manager Features

ORACLE

OWSM includes an extensive array of policy and management features. Security
standards supported and specific tasks performed using OWSM is discussed in the
following section.

Following OWSM features are included:

* Policy Management:
— Global and direct policy attachment.
— Policy attachment at design time and post-deployment.
— Ability to attach/detach multiple policies to a Web service or client.
— Auto-select of client policies.
— ldentity propagation across multiple Web services.
— Policy advertisement in WSDL.
* Monitoring/Management:
— Centralized management, auditing and reporting.

— Policy versioning and rollback.

1-2

Chapter 1
Overview of Oracle Web Service Manager Architecture

— Performance management, including metrics for service, port, and operation,
policy dependencies per port, number of security violations, number of
invocations, and more.

— Policy export and import.

— Policy impact analysis.

Security standards supported:

— A broad range of security standards is supported, as described in Table A-1.

— Pre-defined, reusable policies, including security, reliability, addressing,
management and MTOM policies.

— Custom policy extensions.

OWSM supports policy attachment at both design time and post-deployment, which
provides capabilities for both developers and system administrators:

Developers can attach OWSM policies from the Oracle JDeveloper context menu
and property inspector. For more information, see "Developing and Securing Web
Services" in Developing Applications with Oracle JDeveloper.

System administrators can leverage OWSM through the Oracle Enterprise
Manager Fusion Middleware Control and WLST. They can centrally define policies
using the OWSM Policy Manager and enforce OWSM polices locally at run time.

Examples of specific tasks that you can perform using OWSM include the following:

Handle WS-Security (for example, encryption, decryption, signing, signature
validation, and so on).

Define authentication and authorization policies against an LDAP directory.

Generate standard security tokens (such as SAML tokens) to propagate identities
across multiple Web services used in a single transaction.

Segment policies into different namespaces by creating policies within different
folders.

Examine log files.

1.3 Overview of Oracle Web Service Manager Architecture

The Oracle Web Services Manager (OWSM) agent, policy manager, and repository
are the main components in the OWSM architecture.

ORACLE

Figure 1-2 illustrates the interaction among the main OWSM components and the
Oracle Fusion Middleware Control console.

Note:

A subset of OWSM policies are supported for RESTful Web services, as
described in Which OWSM Policies Are Supported for RESTful Web
Services? in Securing Web Services and Managing Policies with Oracle Web
Services Manager. The subset does not include all of the policy interceptor
types shown in Figure 1-2.

1-3

ORACLE

Chapter 1
Overview of Oracle Web Service Manager Architecture

Figure 1-2 Components of OWSM Architecture

OWSM Agent

Policy
Interceptors

Oracle Enterprise Manager
-—-—-1| Fusion Middleware Control OWSM
é!r:i Policy
o S Oracle JDeveloper Manager
L\-.__L_,.a"""
Oracle Enterprise Pack
for Eclipse (OEPE)
WebLogic Scripting Tool R:. "::“h;
(WLST) pasitory

Oracle
Fusion
Middleware
Database

Table 1-1 describes the components of OWSM shown in Figure 1-2, and highlights

their use in the figure.

Table 1-1 Components of OWSM Architecture
|

OWSM Component

Description

Oracle Enterprise Manager Fusion
Middleware Control

Enables administrators to access OWSM's
functionality to manage, secure, and monitor Web
services.

Oracle JDeveloper

Provides a full-featured Java IDE that can be used for
end-to-end development of Web services. Using
visual and declarative tools, developers can build
Oracle SOA, ADF, WebCenter, and WebLogic Java
EE Web services, automatically deploy them to an
instance of Oracle WebLogic Server, and immediately
test the running Web service. Alternatively,
JDeveloper can be used to drive the creation of Web
services from WSDL descriptions. JDeveloper is Ant-
aware. You can use this tool to build and run Ant
scripts for assembling the client and for assembling
and deploying the service. For more information, see
the Oracle JDeveloper online help.

WebLogic Scripting Tool (WLST)

Enables administrators to view and configure Web
services, and manage Web service policies from the
command line.

1-4

ORACLE

Chapter 1
Overview of Oracle Web Service Manager Architecture

Table 1-1 (Cont.) Components of OWSM Architecture
|

OWSM Component

Description

OWSM Policy Manager

Reads/writes the policies, including predefined and
custom policies from the OWSM Repository.

OWSM Agent

Manages the enforcement of policies via the Policy
Interceptor Pipeline.

Policy Interceptors

Enforces policies. For more information, see
"Understanding How Policies are Executed".

OWSM Repository

Stores OWSM metadata, such as policies, policy sets,
assertions templates, and policy usage data. The
OWSM Repository is available as a database (for
production use) or as files in the file system (for
development use in JDeveloper).

Oracle Fusion Middleware Database

Provides database support for the OWSM Repository.

Subsequent chapters of this document describe conceptual information about the
OWSM policy framework and security concepts. This document also includes a
section on the security standards for Oracle Infrastructure Web Services.

The companion documents Securing Web Services and Managing Policies with Oracle
Web Services Manager and Administering Web Services describe how to secure and
administer Web services using OWSM, respectively.

1-5

Understanding Web Service Security
Concepts

ORACLE

Web services security encompasses a number of requirements, such as
authentication, authorization, and message protection.
Web Services Security concepts are described in the following sections:

About Web Service Security

Understanding Transport-level and Application-level Security
Understanding Authentication

Understanding Authorization

Overview of Message Protection

Overview of the Roles of Keys and Certificates in Security and Authentication
Understanding How OWSM Uses the Credential Store

Understanding Security Policies

Overview of Security Tokens

Understanding Secure Attachments

Overview of Secure Conversation

Overview of the Kerberos Protocol

Understanding Web Services Addressing

Understanding Web Services Trust

Understanding Web Services ReliableMessaging

Overview of Fine-Grained Authorization Using Oracle Entitlements Server
Overview of Personally Identifiable Information

Understanding OAuth 2.0 for REST and SOAP Services and Clients
Understanding REST APIs for Managing Credentials and Keystores

Note:

A subset of OWSM authentication and authorization policies are supported
for RESTful web services, as described in OWSM Policies Are Supported for
RESTful Web Services in Securing Web Services and Managing Policies
with Oracle Web Services Manager.

This section primarily describes web services over SOAP.

2-1

Chapter 2
About Web Service Security

2.1 About Web Service Security

ORACLE

Web services with its nature of loosely coupled connections and its use of open
access like HTTP, adds a new set of requirements to the security landscape.

Because of its nature (loosely coupled connections) and its use of open access
(mainly HTTP), SOA implemented by web services adds a new set of requirements to
the security landscape.

Key components of web service security are:

* Authentication—Verifying that the user is who she claims to be. A user's identity
is verified based on the credentials presented by that user, such as:

1. Something one has, for example, credentials issued by a trusted authority
such as a passport (real world) or a smart card (IT world).

2. Something one knows, for example, a shared secret such as a password.
3. Something one is, for example, biometric information.

Using a combination of several types of credentials is referred to as "strong"
authentication, for example using an ATM card (something one has) with a PIN or
password (something one knows). See "Understanding Authentication” for more
information.

* Authorization (or Access Control)—Granting access to specific resources
based on an authenticated user's entitlements. Entitlements are defined by one or
several attributes. An attribute is the property or characteristic of a user, for
example, if "Marc" is the user, "conference speaker" is the attribute. See
"Understanding Authorization" for more information.

» Confidentiality, privacy—Keeping information secret. Accesses a message, for
example a web service request or an email, as well as the identity of the sending
and receiving parties in a confidential manner. Confidentiality and privacy can be
achieved by encrypting the content of a message and obfuscating the sending and
receiving parties' identities. See "Overview of Message Protection"” for more
information.

* Integrity, non repudiation—Making sure that a message remains unaltered
during transit by having the sender digitally sign the message. A digital signature is
used to validate the signature and provides non-repudiation. The timestamp in the
signature prevents anyone from replaying this message after the expiration. For
more information, see "Overview of Message Protection”.

Web services security requirements also involve credential mediation (exchanging
security tokens in a trusted environment), and service capabilities and constraints
(defining what a web service can do, under what circumstances).

In many cases, web services security tools such as OWSM rely on Public Key
Infrastructure (PKI) environments. A PKI uses cryptographic keys (mathematical
functions used to encrypt or decrypt data). Keys can be private or public. In an
asymmetric cipher model, the receiving party's public key is used to encrypt plaintext,
and the receiving party's matching private key is used to decrypt the ciphertext. Also, a
private key is used to create a digital signature by signing the message, and the public
key is used for verifying the signature. Public-key certificates (or certificates, for short)
are used to guarantee the integrity of public keys.

2-2

Chapter 2
Understanding Transport-level and Application-level Security

Web services security requirements are supported by industry standards both at the
transport level (Secure Socket Layer) and at the application level relying on XML
frameworks.

For more information about the specifications and standards supported by web
services, see Web Service Security Standards.

" Note:

Oracle has been instrumental in contributing to emerging standards, in
particular the specifications hosted by the OASIS Web Services Secure
Exchange technical committee.

Oracle Web Services Manager (OWSM) is designed to define and implement web
services security in heterogeneous environments, including authentication,
authorization, message encryption and decryption, signature generation and
validation, and identity propagation across multiple web services used to complete a
single transaction.

The following summarize the web service security requirements:

* Use transport security to protect the communication channel between the web
service consumer and web service provider.

* Use message-level security to ensure confidentiality by digitally encrypting
message parts; integrity using digital signatures; and authentication by requiring
username, X.509, or SAML tokens.

2.2 Understanding Transport-level and Application-level

Security

ORACLE

Security concepts can be divided into transport level and application level security.
Transport-level security secures the communications channel between applications.

An example of a transport-level security protocol is Secure Socket Layer (SSL),
otherwise known as Transport Layer Security (TLS), the Internet Engineering Task
Force (IETF) officially standardized version of SSL. This is the most widely used
transport-level data-communication protocol providing:

e Authentication (the communication is established between two trusted parties).
e Confidentiality (the data exchanged is encrypted).

e Message integrity (the data is checked for possible corruption).

e Secure key exchange between client and server.

SSL provides a secure communication channel, however, when the data is not "in
transit," the data is not protected. This makes the environment vulnerable to attacks in
multi-step transactions. (SSL provides point-to-point security, as opposed to end-to-
end security.)

SSL can be used in three modes:

2-3

Chapter 2
Understanding Authentication

* No authentication: Neither the client nor the server authenticates itself to the other.
No certificates are sent or exchanged. In this case, only confidentiality (encryption/
decryption) is used.

* One-way authentication (or server authentication): Only the server authenticates
itself to the client. The server sends the client a certificate verifying that the server
is authentic. This is typically the approach used for Internet transactions such as
online banking.

* Two-way authentication (or bilateral authentication): Both client and server
authenticate themselves to each other by sending certificates to each other. This
approach is necessary to prevent attacks from occurring between a proxy and a
web service endpoint.

SSL uses a combination of secret-key and public-key cryptography to secure
communications. SSL traffic uses secret keys for encryption and decryption, and the
exchange of public keys is used for mutual authentication of the parties involved in the
communication.

Application-level security complements transport-level security. Application-level
security is based on XML frameworks defining message confidentiality, integrity,
authenticity (also known as message protection); message structure; trust
management and federation. These components of application-level security are
described in greater detail in the following sections, "Overview of Message Protection”,
"Understanding Authentication”, and "Understanding Authorization".

2.3 Understanding Authentication

ORACLE

Authentication is verifying that the user is who they claim to be based on the
credentials.

A user's identity is verified based on the credentials presented by that user, such as:

* Something one has, for example, credentials issued by a trusted authority such as
a digital certificate, standard Security Assertion Markup Language (SAML) token,
or Kerberos token.

* Something one knows, for example, a shared secret such as a password.
* Something one is, for example, biometric information.

Using a combination of several types of credentials is referred to as "strong"
authentication, for example using an ATM card (something one has) with a PIN or
password (something one knows).

SAML is one of the most interesting security tokens because it supports both
authentication and authorization. SAML is an open framework for sharing security
information on the Internet through XML documents. SAML includes three parts:

e SAML Assertion—How you define authentication and authorization information.

e SAML Protocol—How you ask (SAML Request) and get (SAML Response) the
assertions you need.

e SAML Bindings and Profiles—How SAML assertions ride "on" (Bindings) and "in"
(Profiles) industry-standard transport and messaging frameworks.

The full SAML specification is used in browser-based federation cases. However, web
services security systems such as OWSM only use SAML assertions. The protocol

2-4

Chapter 2
Understanding Authorization

and bindings are taken care of by WS-Security and the transport protocol, for example
HTTP.

SAML assertions and references to assertion identifiers are contained in the WS-
Security Header element, which in turn is included in the SOAP Envelope Header
element (described in the WS-Security SAML Token Profile). The SAML security token
is particularly relevant in situations where identity propagation is essential.

2.3.1 About Digest Authentication

OWSM supports digest based authentication in username-token authentication
policies. Digital Authentication is an authentication mechanism in which a web
application authenticates itself to a web service by sending the server a digest, which
is a cryptographic hash of the password, nonce, and timestamp.

When using digest authentication:

1. The client makes an un-authenticated request to the web service, and the server
sends a response with a digest authentication challenge indicating that it supports
digest authentication.

2. The client generates a nonce and sends it to the service along with a timestamp,
digest, and username. The digest is a cyptographic hash of the password, nonce,
and timestamp.

3. The server generates the hash itself from the password (retrieved from the service
store), nonce and timestamp (from the message), and if the generated hash
matches the hash in the request, the request is allowed.

The advantage of digest authentication is it is resistant to replay attacks. The
implementation maintains a cache of used nonces/timestamps for a specified period of
time. All requests with a timestamp older than the specified timestamp are rejected as
well as any requests that use the same timestamp/nonce pair as the most recent
timestamp/nonce pair still in the cache. WebLogic Server stores this cache in a
database.

2.4 Understanding Authorization

ORACLE

Authentication is the first step of determining whether a user should be given access to
a web service. After the user is authenticated, the second step is to verify that the user
is authorized to access the web service.

Authorization (also known as access control) is granting access to specific resources
based on an authenticated user's entitlements. Entitlements are defined by one or
several attributes. An attribute is the property or characteristic of a user, for example, if
"Marc" is the user, "conference speaker" is the attribute.

Authorization enables you to determine what operations authenticated clients can
access.There are three basic approaches to authorization:

* Role-based—Role-based security is based on the notion that a set of identities,
known as principals, can be grouped into roles, and then a policy can be applied to
each of the roles.

* ldentity based—Identity Model enables you to manage claims and policies in order
to authorize clients. With this approach, you can verify claims contained within the
authenticated users' credentials. These claims can be compared with the set of
authorization policies for the Windows Communication Foundation (WCF) service.

2-5

Chapter 2
Overview of Message Protection

Depending on the claims provided by the client, the service can either grant or
deny access to the operation or resources. ldentity Model is useful for fine-grained
authorization and is most beneficial when using issue token authentication.

* Resource based—Individual resources are secured by using Windows access
control lists (ACLS).

2.5 Overview of Message Protection

Message Protection is about the process of encrypting data, maintaining confidentiality
of the messages and message signing.

The following topics describe message protection in detail:

e Understanding Message Protection
e About Message Encryption
* About Message Signing (XML Signature)

2.5.1 Understanding Message Protection

ORACLE

Message protection encompasses two concepts, message confidentiality which
involves keeping the data secret and message integrity by digitally authorizing the
message.

Message confidentiality involves keeping the data secret, as well as the identities of
the sending and receiving parties. Confidentiality is achieved by encrypting the content
of messages and obfuscating the identities of the sending and receiving parties.The
sender uses the recipient's public key to encrypt the message. Only the recipient's
private key can successfully decrypt the message, ensuring that it cannot be read by
third parties while in transit. The web service's base64-encoded public certificate is
published in the WSDL for use by the web service client, as described in "Using the
Service Identity CertificateExtensions" in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

Message integrity is achieved by having an authority digitally sign the message. Digital
signatures are used to authenticate the sender of the SOAP message and to ensure
the integrity of the SOAP message (that is, to ensure that the SOAP message is not
altered while in transit).

When a digital signature is applied to a SOAP message, a unique hash is produced
from the message, and this hash is then encrypted with the sender's private key.
When the message is received, the recipient decrypts the hash using the sender's
public key.

Note:

Generally, the recipient does not need to have the sender's public key in its
keystore to validate the certificate. It is sufficient to have the root certificate in
the keystore to verify the certificate chain. However, if the sender's public key
is not present in the message, as in the case of the Thumbprint and
Seriallssuer mechanisms, the sender's public key must be in the recipient's
keystore.

2-6

Chapter 2
Overview of Message Protection

This serves to authenticate the sender, because only the sender could have encrypted
the hash with the private key. It also serves to ensure that the SOAP message has not
been tampered with while in transit, because the recipient can compare the hash sent
with the message with a hash produced on the recipient's end.

The message-protection assertion templates and predefined policies can be used to
protect request and response messages by doing the following:

e Signing messages

¢ Encrypting messages

e Signing and encrypting messages
¢ Decrypting messages

e Verifying signatures

» Decrypting messages and verifying signatures

2.5.2 About Message Encryption

ORACLE

The XML encryption specification describes a process for encrypting data and
representing the result in XML.

Specifically, XML encryption defines:

* How digital content is encrypted and decrypted.
* How the encryption key information is passed to a recipient.
* How encrypted data is identified to facilitate encryption.

An XML document may be encrypted as a whole or in part.
The following example illustrates credit card data represented in XML.

<Payment I nfo xm ns="http://ww. exanpl e. conf paynent ">
<Credi t Card>
<Nanme>John Sni t h</ Name>
<Credi t Car dNunber >4012 8888 8888 1881</ Credi t Car dNunber >
<Li m t >5000</ Li mi t >
<| ssuer >Exanpl e Bank</|ssuer>
<Expi rat i on>04/ 02</ Expi rat i on>
</ CreditCard>
</ Paynent | nf 0>

The following example illustrates the same XML snippet with the credit card number
encrypted and represented by a cipher value.

<Payment I nfo xm ns="http://ww. exanpl e. conf paynent ">
<Credi t Card>
<Nane>John Sni t h</ Nane>
<Credi t car dNunber >
<EncryptedData xm ns="http://wwm..." Type="http://ww...">
<Ci pher Dat a>
<Ci pher Val ue>A23B4. . . 5C56</ Ci pher Val ue>
</ Gi pher Dat a>
</ Encrypt edDat a>
<Li m t >5000</ Li mi t >
<l ssuer >Exanpl e Bank</|ssuer>
<Expi rati on>04/ 02</ Expi rati on>

2-7

Chapter 2
Overview of the Roles of Keys and Certificates in Security and Authentication

</ CreditCard>
</ Paynent | nf 0>

2.5.3 About Message Signing (XML Signature)

The XML Signature specification describes signature processing rules and syntax.
XML Signature binds the sender's identity (or "signing entity") to an XML document.
The document is signed using the sender's private key; the signature is verified using
the sender's public key.

Signing and signature verification can be done using asymmetric or symmetric keys.
XML Signature also ensures non-repudiation of the signing entity, that is, it provides
proof that messages have not been altered since they were signed.

A signature can apply to a whole document or just part of a document, as shown in the
following example.

<Signature xm ns="http://wwmv. w3. org/ 2000/ 09/ xn dsi g#">
<l-- The signedinfo elenent allows us to sign any portion of a
docunent -->
<Si gnedI nf 0>
<Canoni cal i zati onMet hod Al gorithm="http://ww. .."/>
<Si gnatureMet hod Al gorithme"http://ww..."/>
<Ref erence URI ="#Body" >
<Di gest Method Al gorithme"http: //ww..."/>
<Di gest Val ue>o+j t gl i eRt F6Dr Ub. . . X80OM CnySg</ Di gest Val ue>
</ Ref erence>
</ Si gnedI nf 0>
<I-- Following is the result of running the al gorithmover the
docunent. If changes are nmade to the docunent, the SignatureValue is
changed. The security application verifies the SignatureVal ue,
extracts the X.509 cert and uses it to authenticate the user -->
<Si gnat ur eVal ue>oa+t t bsvSFi . . . Et RD20NC5</ Si gnat ur eVal ue>
<Key! nf 0>
<KeyVal ue>
<I-- Following is the public key that matches the private key
that signs the document -->
<RSAKeyVal ue>
<Mbdul us>5TT/ ool zTi P++Ls6G.QUMBXoFFr Al ZQ. . . </ Modul us>
<Exponent >EQ==</ Exponent >
</ RSAKeyVal ue>
</ KeyVal ue>
<I-- Following is the certificate -->
<X509Dat a>
<X509Certi fi cat e>WDCCAXqgAWM BAgl . . . </ X509Certi fi cat e>
</ X509Dat a>
</ Keyl nf 0>
</ Si gnat ur e>

2.6 Overview of the Roles of Keys and Certificates in
Security and Authentication

Before configuring your web services, you need to determine the type of private keys
and certificates required, and the names for the keys and keystores. Then you can set
up your environment accordingly.

ORACLE 2-8

Chapter 2
Overview of the Roles of Keys and Certificates in Security and Authentication

Before you can use any message protection security policies or message protection
and authentication with SSL security policies, you need to set up your keystores and
truststores. Note that authentication-only security policies do not require keys. For
more information about authentication policies, see Understanding the OWSM Policy
Framework .

The keystore contains the entities private keys and certificates associated with those
private keys. A truststore contains certificates from a Certificate Authority (CA), or
other entities that this entity trusts. The keystore and the truststore can be maintained
together in a common store, for instance with Oracle Web Services Manager (OWSM).

For more information, refer to the following topics:

* About Private Keys and Certificates

* Understanding How Different Security Policies Use Private Keys and Certificates
« How OWSM Locates Keystore and Key Passwords for the JKS Keystore

* About Private Keys and Certificates Configuration for SSL Policies

* About Setting up Private Keys and Certificates for Message Protection Policies

2.6.1 About Private Keys and Certificates

ORACLE

Private keys, digital certificates, and trusted certificate authorities establish and verify
server identity and trust.

SSL uses public key encryption technology for authentication. With public key
encryption, a public key and a private key are generated for a server. Data encrypted
with the public key can only be decrypted using the corresponding private key and
data verified with a public key can only have been signed with the corresponding
private key. The private key is carefully protected so that only the owner can decrypt
messages that were encrypted using the public key.

The public key is embedded in a digital certificate with additional information
describing the owner of the public key, such as name, street address, and e-mail
address. A private key and digital certificate provide identity for the server.

The data embedded in a digital certificate is verified by a certificate authority and
digitally signed with the certificate authority's digital certificate. Well-known certificate
authorities include Verisign and Entrust.net. The trusted certificate authority (CA)
certificate establishes trust for a certificate.

An application participating in an SSL connection is authenticated when the other party
evaluates and accepts the application's digital certificate. Web browsers, servers, and
other SSL-enabled applications generally accept as genuine any digital certificate that
is signed by a trusted certificate authority and is otherwise valid. For example, a digital
certificate can be invalidated because it has expired or the digital certificate of the
certificate authority used to sign it expired. A server certificate can be invalidated if the
host name in the digital certificate of the server does not match the URL specified by
the client.

The different types of trusted certificates that you can use in your environment, along
with the benefits and disadvantages of each, are as follows:

» Self-signed certificates — A self-signed certificate is a certificate that is signed
by the entity creating it.

Benefits:

2-9

ORACLE

Chapter 2
Overview of the Roles of Keys and Certificates in Security and Authentication

— Easy to generate because you can do it yourself, for example, using the
keytool command for the JKS keystore as described in "Generating Private
Keys and Creating the Java Keystore" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

— Can be used in production as long as you use only a new certificate that you
have generated.

Disadvantages:

— Self-signed certificates can quickly become unmanageable if you have many
clients and services that need to communicate with each other. For example, if
you have three clients communicating with two services, you need to generate
a private key and self-signed certificate for both services, and then import the
two certificates into the truststore of all three clients.

Demonstration Certificate Authority (CA) signed certificates— WebLogic
Server includes a set of demonstration private keys, digital certificates, and trusted
certificate authorities that are for development only.

Benefits:

— Easy to use because they are available and configured for use in the default
WebLogic Server installation in a development environment.

Disadvantages:

— Should never be used in a production environment. The private key of the
demo certificate CA is available to all installations of WebLogic Server,
therefore each installation can generate a demo CA signed certificate using
the same key. As a result, you cannot trust these certificates.

Internal CA signed certificates — An internal CA signed certificate is a certificate
that you issue yourself using an internal CA that you can setup for your intranet.
This type of certificate can be used if your services are mostly internal only.

Benefits:

— You have complete control over the certificate issuance process because you
create the certificates yourself.You can control to whom the certificates are
issued, how long the certificates remain valid, and so on. For example, if you
are issuing certificates to your partners, you can issue them only to partners in
good standing.

Disadvantages:

— You need to ensure that all clients have the internal CA root certificate
imported into their truststore.

External CA signed certificates — An external CA signed certificate is a
certificate that has been issued by a reputable CA such as Verisign and
Entrust.net. This type of certificate should be used if your services are external
facing.

Benefits:

— In most cases, clients are already set up to trust these external CAs.
Therefore, those clients do not have to modify their truststore.

Disadvantages:

— You do not have any control over the certificate issuance process.

2-10

Chapter 2
Overview of the Roles of Keys and Certificates in Security and Authentication

2.6.2 Understanding How Different Security Policies Use Private Keys
and Certificates

OWSM security policies that require the use of private keys address two aspects:
message protection and authentication.

* Message protection encompasses two concepts, message confidentiality and
message integrity. Message confidentiality involves keeping the data secret and
is achieved by encrypting the content of messages. Message integrity ensures that
a message remains unaltered during transit by having the sender digitally sign the
message.

* Authentication involves verifying that the user is who they claim to be. A user's
identity is verified based on the credentials presented by that user.

The predefined OWSM policies that are included with your installation support various
options for message protection and authentication. These options are described in the
following sections.

Note:

The naming convention used for OWSM policies identifies the type of options
being used. For example, the policy or acl e/

wss10_user nane_t oken_wi t h_nessage_prot ection_service_policy is a message
protection service policy that uses the wss10 web services standard and
requires a username_token for authentication. For more information about
policy naming conventions, see "About Recommended Naming Conventions
for Documents Created in WSM Repository".

For more information, refer to the following topics:

* Overview of Message Protection Policy Types

* Overview of Authentication Token Policy Types

2.6.2.1 Overview of Message Protection Policy Types

SSL, wss11, and wss10 message protection policies are supported in Oracle Web
Service Manager.

» About SSL Policies
* About wssll Policies

* About wss10 Policies

2.6.2.1.1 About SSL Policies

ORACLE

Policies that include the SSL option, such as oracl e/
wss_sam _or _user name_t oken_over _ssl _servi ce_pol i cy, use one-way SSL for message
protection.

When using policies of this type, you need to do the following:

2-11

Chapter 2
Overview of the Roles of Keys and Certificates in Security and Authentication

On the service side, set up private keys at the SSL termination point as described
in "About Private Keys and Certificates Configuration for SSL Policies".

On the client side, set up the truststore to trust the service keys.

The private key is used to protect the messages for the SSL handshake, at which time
the client and service agree on a shared session key. After the SSL handshake, the
private key is not used, and all traffic between the client and the service are signed
and encrypted using the shared session key.

For information on how to configure SSL, see "Configuring Transport-Level Security
(SSL)" in Securing Web Services and Managing Policies with Oracle Web Services
Manager.

2.6.2.1.2 About wss11 Policies

Policies of this type use WS-Security 1.1 for message protection.

When using wss11 policies, you need to do the following:

On the service side, set up private keys and define as the Encryption Key Alias in
the OWSM Keystore Configuration screen. For details see "Configuring the
OWSM Keystore Using Fusion Middleware Control" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

On the client side, you need to configure the client-side trust by obtaining the
server's certificate in one of the following ways:

— Use the service's public certificate published in the WSDL using the Service
Identity Certificate extension as described in "Using the Service Identity
Certificate Extensions" in Securing Web Services and Managing Policies with
Oracle Web Services Manager. You also need to import either the server
certificate itself, or the root certificate from the CA that issued the server
certificate, into the client truststore. You can choose any alias hame for the
server certificate.

— Import the server certificate into the client keystore using any alias you
choose, and specify that alias using the keyst ore. reci pi ent . al i as property
using a configuration override when you attach the policy. For this method you
need to import the actual server certificate, you cannot import the CA root
certificate.

For each request, the following occurs:

1.

The client creates a symmetric key, encrypts this symmetric key with the service's
public key as configured with Encryption Key Alias, and then encrypts and signs
the whole message with the symmetric key.

When the service receives the message, it decrypts the encrypted key first, and
then decrypts and verifies the whole message.

The web service then uses the same symmetric key to encrypt and sign the
response that it sends back to the client.

2.6.2.1.3 About wss10 Policies

Policies of this type use WS-Security 1.0 for message protection.

When using wss10 policies, you need to do the following:

ORACLE

2-12

Chapter 2
Overview of the Roles of Keys and Certificates in Security and Authentication

» Set up private keys on both the client and service side. On the client side, you
need to set a signature key alias, and on the service side you need both an
encryption key alias and signature key alias. Note that you can normally use the
same key for both.

* Onthe client side, you need to configure the client-side trust by obtaining the
server's certificate in one of the following ways:

— Use the service's public certificate published in the WSDL using the Service
Identity Certificate extension as described in "Using the Service Identity
Certificate Extensions" in Securing Web Services and Managing Policies with
Oracle Web Services Manager. You also need to import either the server
certificate itself, or the root certificate from the CA that issued the server
certificate, into the client truststore. You can choose any alias hame for the
server certificate.

— Import the server certificate into the client keystore using any alias you
choose, and specify that alias using the keyst ore. reci pi ent . al i as property
using a configuration override when you attach the policy. For this method you
need to import the actual server certificate, you cannot import the CA root
certificate.

e Onthe service side, you need to configure the service to trust the client, either by
importing these certificates directly, or importing the CA that issued these
certificates.

Similar to the wss11 option, the client creates a symmetric key, and then encrypts the
symmetric key with the service's public key. The difference, however, is that it only
uses this symmetric key for encrypting the message; it doesn't use it for signing the
message. Instead, the client signs the request message with its own private signature
key as defined by the Signature Key alias, and the service signs the response with its
private signature key.

2.6.2.2 Overview of Authentication Token Policy Types

ORACLE

Supported tokens for authentication are username, Kerberos, X.509 Certificate, SAML
sender vouches, SAML bearer, and SAML HOK tokens from STS.

For information on how to configure authentication, see "Configuring Authentication™ in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

Note:

In the following sections, "signature key alias" means different things in
different contexts:

e In SAML sender vouches policies, the signature key alias means the key
used to sign the SAML assertion. This proves the authenticity of the
SAML assertion, and SAML Login module will then assert the user
specified in the SAML assertion.

* Inwssl10 policies, the signature key alias means the key used to sign the
request and response message to prevent them from being tampered
over the wire.

« In X.509 authentication policies, the signature key alias means the key
used to authenticate a particular end user.

2-13

Chapter 2
Overview of the Roles of Keys and Certificates in Security and Authentication

For more information, refer to the following topics:

About the Username Token

About the Kerberos Token

About the X.509 Certificate Token

About the SAML Sender Vouches Token

About SAML Bearer and SAML HOK Tokens from an STS

2.6.2.2.1 About the Username Token

A username token carries basic authentication information such as a username and
password. When a username token is used with an authentication-only policy, no
private keys are used. When used in a policy that includes authentication and
message protection, the keys required for message protection are required.

2.6.2.2.2 About the Kerberos Token

A Kerberos token is comprised of a binary authentication and session token. When a
kerberos token is used with an authentication-only policy, no private keys are used.
When used in a policy that includes authentication and message protection, the keys
required for message protection are required.

2.6.2.2.3 About the X.509 Certificate Token

Request messages are signed with the end user's signature key. On the client side
you need to configure a signature key alias with the end user's signature key.

2.6.2.2.4 About the SAML Sender Vouches Token

In SAML sender vouches, the client signs the SAML token with its own private
signature key.

Use the SAML sender vouches token with each of the message protection options as
follows:

ORACLE

With SSL: SAML sender vouches requires two-way SSL. Therefore, you need to
set up an SSL client-side private key, and corresponding trust certificate on the
service side. If your SSL terminates before WebLogic Server, such as in the
Oracle HTTP Server or in the Load balancer, you must configure these layers to
propagate the client certificate all the way to WebLogic Server.

With wss11: Normally wss11 does not need a client-side signature key. However,
when you use wss11 with SAML, you must set up a signature key on the client
side, and configure it using the signature key alias. You must also add this client
certificate or its issuer to the service's truststore.

With wss10: There is no additional setup to use SAML. The regular client
signature key that is used for signing the request is also used for signing the
SAML token.

2-14

Chapter 2
Overview of the Roles of Keys and Certificates in Security and Authentication

Note:

Be very cautious when using the SAML signature key. It is a very
powerful key as it enables the client side to impersonate any user.
Consider configuring the server side to limit the number of SAML signers
that is accepts, by setting up a Trusted DN list. For information about
setting up a trusted DN, see "Configuring SAML Trusted Issuers and DN
Lists Using Fusion Middleware Control" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

2.6.2.2.5 About SAML Bearer and SAML HOK Tokens from an STS

For these options, the client does not construct the SAML token. Instead it is STS that
constructs and signs the SAML token.

When using tokens from an STS, you must add the STS's certificate or its issuer to the
service's truststore. Optionally, you can configure the STS in the Trusted DN list.

2.6.3 How OWSM Locates Keystore and Key Passwords for the JKS

Keystore

ORACLE

OWSM expects JKS keystore and key passwords to be in the Credential Store
Framework (CSF).

The working of JKS Keystore and key passwords is shown below:

< Note:

For information about the OPSS Keystore Service, see "Managing Keys and
Certificates with the Keystore Service" in Securing Applications with Oracle
Platform Security Services.

* A JKS keystore file is protected by a keystore password.

* A keystore file consists of zero or more private keys, and zero or more trusted
certificates. Each private key has its own password, (although it is common to set
the key passwords to be the same as the keystore password). OWSM needs to
know both the keystore password and key password.

e The CSF consists of many maps, each with a distinct name. OWSM only uses the
map oracl e.wsm security.

* Inside each map is a mapping from multiple csf-key entries to corresponding
credentials. A csf-key is just a simple name, but there can be many different types
of credentials. The most common type of credential is a password credential which
is primarily comprised of a username and a password.

OWSM refers to the following csf-keys for the JKS keystore inside the
oracl e.wsm security map:

— keystore-csf-key - This key should contain the keystore password. The
username is ignored.

2-15

Chapter 2
Overview of the Roles of Keys and Certificates in Security and Authentication

— enc-csf-key - This key should contain the encryption key alias as the
username, and the corresponding key password.

— sign-csf-key - This key should contain the signature key alias as the
username, and the corresponding key password.

In addition to these csf-keys, you should add a csf-key entry for every new private
key that you want OWSM to use, for example when you want to specify signature
and encryption keys in configuration overrides.

Figure 2-1 illustrates the relationship between the JKS keystore configuration in the
OPSS, the oracl e. wsm securi ty map in the credential store, and the OWSM Java
keystore.

Figure 2-1 OWSM Keystore Configuration for Message Protection

OPSS Keystore Configuration Credential Store Java Keystore
servicelnstance:Keystore | _—»Map: oracle.wsm.security Keystore password:
| » welcome
1 keystore-csi-key -> |+
keystore-csf-map -> / L User: dummy _//’
oracle wsm._security Pwd: welcome1
P
keystore pass.csf key -> = sign-csf-key -> |_» orakey -> en=orcl...
keystore-csi-key |~ [User: orakey -—'—'_'_""_/_J Type: PrivateKeyEntry
= Pwd: welcome 1 | Key password: welcome1

keystore.sig.csf.key-> -
sign-csf-key | ¥ enc-csf-key-=

User: orakey
keystore.enc.csf.key-> —] Pwd: welcome1
enc-csf-key

\

basic.credentials->
User: ApplD
Pwd: AppPWord%

As shown in the figure:

e The keystore. csf. map property points to the OWSM map in the credential store
that contains the CSF aliases. In this case keyst ore. csf. map is defined as the
recommended name oracl e. wsm securi ty, but it can be any value.

e The keystore. pass. csf. key property points to the CSF alias keyst or e- csf - key that
is mapped to the username and password of the JKS keystore. Only the password
is used; username is redundant in the case of the keystore.

e The keystore. si g. csf. key property points to the CSF alias si gn- csf - key that is
mapped to the username and password of the private key that is used for signing
in the JKS keystore.

e The keystore. enc. csf. key property points to the CSF alias enc- csf - key that is
mapped to the username and password of the private key that is used for
decryption in the JKS keystore.

2.6.4 About Private Keys and Certificates Configuration for SSL
Policies

You can configure keys and trust on the client and service side to use SSL policies.

ORACLE 2-16

ORACLE

Chapter 2
Overview of the Roles of Keys and Certificates in Security and Authentication

Service-side configuration: For SSL security policies, you must setup the private
keys at the SSL termination point. These termination points typically consist of one
of the following:

— Java EE container, such as WebLogic Server. For configuration details, see
"Configuring Keystores for SSL" in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

— Oracle HTTP Server, if you have configured it as a Web proxy between the
client and WebLogic Server. For configuration details, see "Configuring SSL
on Oracle HTTP Server" in Securing Web Services and Managing Policies
with Oracle Web Services Manager.

— Load balancer, if you have a load balancer in front of WebLogic Server or
Oracle HTTP Server.

Note:

With SSL you can only have one private key per server, so if there are
multiple web services running on the same server, they all use the same
private key. This SSL private key needs to be generated with the same
DN as the host name, although for testing purposes, you can turn off the
host name verifier on the client side.

Sample basic configuration: Use the demonstration digital certificates, private
keys, and trusted CA certificates that are included with WebLogic Server. These
keys and certificates are provided for development use only and should not be
used in a production environment.

Advanced configuration: In a production environment, use an internal or external
CA.

Client-side configuration: On the client side, you need to import the server
certificates into the client truststore. If the server side is using self-signed
certificates, you need to include them directly. If the server side is using
certificates that are signed using a CA, import the CA root certificate into the client
truststore. Note that each type of web service client has a different client
truststore:

— For Java EE (WebLogic) web services, you need to import the keys into the
WebLogic Server trust store. The demonstration CA certificate is already
present in the WebLogic Server truststore.

— For Oracle Infrastructure web services you need to specify the truststore using
javax.net.ssl* system properties, or specify it in the connection. For details,
see "Configuring SSL for a Web Service Client" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

— For SOA composite applications, you need to specify the truststore using the
javax.net.ssl* property as described in "Configuring SOA Composite
Applications for Two-Way SSL Communication” in Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

— For asynchronous web services, you need to configure the truststore as
described in "Configuring SSL for Asynchronous Web Services" in Developing
Oracle Infrastructure Web Services.

2-17

Chapter 2
Overview of the Roles of Keys and Certificates in Security and Authentication

2.6.5 About Setting up Private Keys and Certificates for Message
Protection Policies

For OWSM message protection security policies, you must setup your private keys in
the OWSM keystore.

There is a single OWSM keystore per domain, and it is shared by all web services and
clients running in the domain. This keystore contains both private keys and trust
certificates. The JDK cacerts file is not used by OWSM.

The following sections describe a basic OWSM keystore configuration and an
advanced configuration.

» Understanding Sample Basic Configuration

* About Advanced Setup Considerations

2.6.5.1 Understanding Sample Basic Configuration

The easiest way to set up the OWSM keystore is to create a single self-signed private
key and use it for the entire domain. When you create the private key and keystore,
you specify a name and a password for the keystore, for example def aul t -

keystore. j ks as the keystore name if you are using a JKS keystore, and Passwor d as
the password for the keystore. You also specify an alias name and password to use
when referring to the private key, for example or akey as the alias name and Passwor d
as the key password. You can use the same key and alias for both the signature key
alias and the encryption key alias, and the same password for both the keystore and
the alias. You do not need to add any trusted certificates, as certificates associated
with private keys are automatically considered as trusted.

Once you have created the keys and keystore, you need to provide the keystore
password, and alias names and passwords to OWSM. You can do so using either
Fusion Middleware Control or WLST.

The procedures in "Generating Private Keys and Creating the Java Keystore" and
"Configuring the OWSM Keystore Using Fusion Middleware Control" in Securing Web
Services and Managing Policies with Oracle Web Services Manager describe how to
setup this basic configuration for a JKS keystore using the names and passwords
specified in this example. In your own environment, you should use names and
passwords that are appropriate for your configuration.

As long as your client and server are on the same domain, this set up is sufficient to
work with most of the policies. That is, you can use any wss10 or wss11 policies with
or without SAML.

If you have multiple related domains that share a common JPS root, you can copy this
keystore file to all the domains. By doing so, all the related domains will share this
single key for all encryption and signing.

2.6.5.2 About Advanced Setup Considerations

The simplest way to set up message protection security is to have a single private key
for all web services in the domain.

ORACLE 2-18

Chapter 2
Understanding How OWSM Uses the Credential Store

For more sensitive web services, you need to configure each web service to use its
own distinct private encryption key. These private keys need to exist in the OWSM
keystore. Ensure that each one uses a different alias name, for example Servi ceA, and
Servi ceB, and that you add the aliases to the credential store. When you attach a
policy to the service, you need to use a configuration override to indicate the specific
alias name that the web service requires, otherwise it will use the default alias that you
configured for the domain.

The procedure in "Adding Keys and User Credentials to the Credential Store" in
Securing Web Services and Managing Policies with Oracle Web Services Manager
describes how to add these sample aliases to the credential store.

You should also use trusted certificates issued by an internal or external CA, instead
of self-signed certificates, because it is much easier to manage the trusted CA
certificates. Be sure, however, to set up the SAML signers Trusted DN list, as
described in "Configuring SAML Trusted Issuers and DN Lists Using Fusion
Middleware Control" in Securing Web Services and Managing Policies with Oracle
Web Services Manager. This is especially important if you import external CA
certificates into the OWSM Keystore, otherwise any user with a certificate will be able
to sign a SAML token and impersonate any user.

2.7 Understanding How OWSM Uses the Credential Store

ORACLE

The Credential Store Framework (CSF) provides a way to store, retrieve, and delete
credentials for a Web Service and other applications.

OWSM uses the CSF to manage the credentials in a secure form by retrieving the
following information:

» Alias names and passwords for keys in the Java keystore

For details about how OWSM uses the credential store to look up alias names and
passwords from the Java keystore, see "How OWSM Locates Keystore and Key
Passwords for the JKS Keystore".

» Usernames and passwords used for authentication

Suppose, for example, that you have a web service that accepts a username
token for authentication. If you create a web service client to talk to this web
service, you need to configure the web service client with a username and
password that can be sent to the web service. You store this username and
password in the credential store (using either Fusion Middleware Control or
WLST) and assign it a csf key.

For example, the oracl e/ wss_user name_t oken_cl i ent _pol i cy policy includes the csf -
key property, with a default value of basi c. credential s. To use the

wss_user nane_t oken_cl i ent _pol i cy, you should create a new password credential in
the CSF using the credential name basi c. credenti al s, and the username and
password with which the client needs to connect. If you have two web service
clients that use this same client policy, these clients can either share the same
password credential, which defaults to basi c. credenti al s, or each one can have its
own credential. In the latter case, you need to create two password credentials in
the CSF, for example Appl. credential s and App2. credenti al s, for Clientl and
Client2 respectively. For Clientl, you set the csf-key configuration override to

Appl. credential s, and for Client2, you set the csf-key property to App2. credenti al s.
For more information, see "Overriding Policy Configuration Properties” in Securing
Web Services and Managing Policies with Oracle Web Services Manager. Note

2-19

Chapter 2
Understanding Security Policies

that in both cases, the username and password must represent valid users in the
OPSS identity store.

An OPSS CSF can store a username and password. A generic credential can store
any credential object.

The OPSS CSF configuration is maintained in the j ps- confi g. xnl file in the domai n-
hone/ confi g/ f mwonfi g directory.

When you configure the OWSM keystore using Fusion Middleware Control, as
described in "Configuring the OWSM Keystore Using Fusion Middleware Control" in
Securing Web Services and Managing Policies with Oracle Web Services Manager,
the aliases and passwords that you specify are securely stored in the credential store.
If, however, you add other aliases to the keystore, or you need to add authentication
credentials for a client, you need to ensure that they are configured and stored in the
credential store.

2.8 Understanding Security Policies

ORACLE

WS-SecurityPolicy is part of the Web Services Secure Exchange (WS-SX) set of
specifications hosted by OASIS (in addition to WS-SecurityPolicy, the WS-SX
technical committee defines two other sets of specifications: WS-Trust and WS-
SecureConversation, described later in this chapter).

WS-SecurityPolicy defines a set of security policy assertions used in the context of the
WS-Policy framework. WS-SecurityPolicy assertions describe how messages are
secured on a communication path. Oracle has contributed to the OASIS WS-SX
technical committee several practical security scenarios (a subset of which is provided
by OWSM 12c¢). Each security scenario describes WS-SecurityPolicy policy
expressions.

WS-SecurityPolicy scenarios describe examples of how to set up WS-SecurityPolicy
policies for several security token types described in the WS-Security specification
(supporting both WS-Security 1.0 and 1.1). The subset of the WS-SecurityPolicy
scenarios supported by OWSM 12c¢ represents the most common customer use
cases. Each scenario has been tested in multiple-vendor WS-Security environments.

To illustrate WS-SecurityPolicy, let's use a scenario supported by OWSM:
UsernameToken with plain text password. As mentioned earlier, Username token is
one of the security tokens specified by WS-Security. This specific scenario uses a
policy that says that a requester must send a password in a Username token to a
recipient who has authority to validate that token. The password is a default
requirement for the WS-Security Username Token Profile 1.1.

This scenario is only recommended when confidentiality of the password is not an
issue, such as a pre-production test scenario with dummy passwords.

<wsp: Pol i cy>
<sp: Suppor tingTokens>
<wsp: Pol i cy>
<sp: User naneToken/ >
</ wsp: Policy>
</ sp: Supporti ngTokens>
</ wsp: Policy>

An example of a message that conforms to the above stated policy is shown below.

2-20

Chapter 2
Overview of Security Tokens

<?xm version="1.0" encodi ng="utf-8" ?>

<soap: Envel ope xm ns:soap="...">
<soap: Header >
<wsse: Security soap: must Understand="1" xnl ns:wsse="...">

<wsse: User nameToken>
<wsse: User name>Sni t h</ wsse: User name>
<wsse: Password Type="http://docs. oasis open.org...>
Passwor d
</ wsse: Passwor d>
<wsse: Nonce Encodi ngType=". .. #Base64Bi nary">gB. .. </ wsse: Nonce>
<wsu: Creat ed>2008- 01- 02T00: 01: 03Z</ wsu: Cr eat ed>
</ wsse: User nameToken>
</ wsse: Security>
</ soap: Header >
<soap: Body>
<Oracl e xm ns=http://xm soap. org/ Oracl e>
<text >EchoString</text>
</ Oracl e>
</ soap: Body>
</ soap: Envel ope>

The example above contains a <Nonce> element and a <Created> timestamp, which,
while optional, are recommended to improve security of requests against replay and
other attacks. A nonce is a randomly generated (unique) number. The timestamp can
be used to define the amount of time the security token is valid.

2.9 Overview of Security Tokens

Web Services Security (WS-Security) specifies SOAP security extensions that provide
confidentiality using XML Encryption and data integrity using XML Signature.

WS-Security also includes profiles that specify how to insert different types of binary
and XML security tokens in WS-Security headers for authentication and authorization
purposes.

e Understanding Security Tokens
* About the Username Token

* About the X.509 Certificate

* About the Kerberos Token

* About the SAML Token

2.9.1 Understanding Security Tokens

ORACLE

Different kinds of Web services security tokens are explained in the following section.
Web services security supports the following security tokens:

* Username—defines how a web service consumer can supply a username as a
credential for authentication). For more information, see About the Username
Token.

* X.509 certificate—a signed data structure designed to send a public key to a
receiving party. For more information, see About the X.509 Certificate.

» Kerberos ticket—a binary authentication and session token. For more information,
see About the Kerberos Token.

2-21

Chapter 2
Overview of Security Tokens

* Security Assertion Markup Language (SAML) assertion—shares security
information over the Internet through XML documents. For more information, see
About the SAML Token.

2.9.2 About the Username Token

The username token carries basic authentication information.

The user name-t oken element propagates username and password information to
authenticate the message.

2.9.3 About the X.509 Certificate

An X.509 digital certificate is a signhed data structure designed to send a public key to
a receiving party. A certificate includes standard fields such as certificate ID, issuer's
Distinguished Name (DN), validity period, owner's DN, owner's public key, and so on.

Certificates are issued by certificate authorities (CA). A CA verifies an entity's identity
and grants a certificate, signing it with the CA's private key. The CA publishes its own
certificate which includes its public key.

Each network entity has a list of the certificates of the CAs it trusts. Before
communicating with another entity, a given entity uses this list to verify that the
signature of the other entity's certificate is from a trusted CA.

2.9.4 About the Kerberos Token

Kerberos token is a cross-platform authentication and single sign-on system. The
Kerberos protocol provides mutual authentication between two entities relying on a
shared secret (symmetric keys).

Kerberos uses the following terminology:

* A Principal is an identity for a user (i.e., a user is assigned a principal), or an
identity for an application offering Kerberos services.

A Realm is a Kerberos server environment; a Kerberos realm can be a domain
name such as EXAMPLE.COM (by convention expressed in uppercase).

Kerberos involves a client, a server, and a trusted party to mediate between them
called the Key Distribution Center (KDC). Each Kerberos realm has at least one KDC.
KDCs come in different packages based on the operating platform used (for example,
on Microsoft Windows, the KDC is a domain service). The Kerberos Token profile of
WS-Security allows business partners to use Kerberos tokens in service-oriented
architectures.

2.9.5 About the SAML Token

ORACLE

The Security Assertion Markup Language (SAML) is an open framework for sharing
security information over the Internet through XML documents.

SAML was designed to address the following:

e Limitations of web browser cookies to a single domain: SAML provides a standard
way to transfer cookies across multiple Internet domains.

2-22

ORACLE

Chapter 2
Overview of Security Tokens

Proprietary web single sign-on (SSO): SAML provides a standard way to
implement SSO within a single domain or across multiple domains. This
functionality is provided by the Oracle Identity Federation product.

Federation: SAML facilitates identity management (e.g., account linking when a
single user is known to multiple web sites under different identities), also
supported by Oracle Identity Federation.

Web Services Security: SAML provides a standard security token (a SAML
assertion) that can be used with standard web services security frameworks (e.qg.,
WS-Security) — This is the use of SAML that is particularly relevant to web
services security, fully supported by OWSM.

Identity propagation: SAML provides a standard way to represent a security token
that can be passed across the multiple steps of a business process or transaction,
from browser to portal to networks of web services, also a feature supported by
OWSM.

The SAML framework includes 4 parts:

Assertions: How you define authentication and authorization information.

Protocols: How you ask (SAML Request) and get (SAML Response) the
assertions you need.

Bindings: How SAML Protocols ride on industry-standard transport (e.g., HTTP)
and messaging frameworks (e.g., SOAP).

Profiles: How SAML Protocols and Bindings combine to support specific use
cases.

In the context of WS-Security, only SAML assertions are used. The protocols and
bindings are provided by the WS-Security framework. SAML is widely adopted by the
industry, both for browser-based federation and federation enabled by web services
flows.

SAML assertions are very popular security tokens within WS-Security because they
are very expressive and can help prevent man-in-the-middle and replay attacks.

Typically, a SAML assertion makes statements about a principal (a user or an
application). All SAML assertions include the following common information:

Issuer ID and issuance timestamp

Assertion ID

Subject

Name

Optional subject confirmation (for example, a public key)
Optional conditions (under which an assertion is valid)

Optional advice (on how an assertion was made)

SAML assertions can include three types of statements:

Authentication statement: issued by an authentication authority upon successful
authentication of a subject. It asserts that Subject S was authenticated by Means
M at Time T.

Attribute statement: issued by an attribute authority, based on policies. It asserts
that Subject S is associated with Attributes A, B, etc. with values a, b, and so on.

2-23

Chapter 2
Understanding Secure Attachments

* Authorization decision statement (deprecated in SAML 2.0, now supported by
XACML): issued by an authorization authority which decides whether to grant the
request by Subject S, for Action A (e.g., read, write, etc.), to Resource R (e.g., a
file, an application, a web service), given Evidence E.

SAML assertions can be embedded (i.e., a SAML assertion can contain another SAML
assertion). SAML assertions can be signed (using XML Signature) and/or encrypted
(using XML Encryption).

2.10 Understanding Secure Attachments

OWSM policies support two mechanisms to secure attachments: Packaging SOAP
messages with attachments (SwA), and Message Transmission Optimization
Mechanism (MTOM).

Packaging SOAP messages with attachments (SwA) has become common for any
data that cannot be placed inside SOAP Envelope. The primary SOAP message can
reference additional entities as attachments or attachments with MIME headers. For
more information, see "Securing SwA Attachments" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Using MTOM, binary content can be sent as a MIME attachment, which reduces the
transmission size on the wire. The binary content is semantically part of the XML
document. Attaching an MTOM policy ensures that the message is converted to a
MIME attachment before it is sent to the web service or client. See "MTOM Attachment
Policies" in Securing Web Services and Managing Policies with Oracle Web Services
Manager for more information.

2.11 Overview of Secure Conversation

OWSM implements the Web Services Trust (WS-Trust 1.3) and Web Services Secure
Conversation (WS-SecureConversation 1.3) specifications, which together provide
secure communication between web services and their clients.

Secure conversation is described in the following topics:

* About Secure Conversation

e Overview of WS-SecureConversation Usage
» WS-SecureConversation Architecture

* When to Use WS-SecureConversation

* When To Use Re-Authentication

» About Setting the Bootstrap Mode

* Overview of Persistence

2.11.1 About Secure Conversation

ORACLE

The Web Services Secure Conversation Language (WS-SecureConversation)
specification defines mechanisms for establishing and sharing security contexts or any
credentials, and deriving keys from established security contexts (or any shared
secret).

2-24

Chapter 2
Overview of Secure Conversation

The Web Services Secure Conversation Language (WS-SecureConversation)
specification (htt p: // docs. oasi s- open. or g/ ws- sx/ ws- secur econver sat i on/ v1. 4/ os/ ws-
secureconver sati on- 1. 4- spec- os. doc) defines extensions that build on Web Services
Security (WS-Security) 1.1 and 1.0 and Web Services Trust Language (WS-Trust) to
provide secure communication across one or more messages.

OWSM includes policies for which WS-SecureConversation is enabled by default, as
described in "Which Policies Support WS-SecureConversation?" in Securing Web
Services and Managing Policies with Oracle Web Services Manager. You may find
that using the preconfigured WS-SecureConversation policies makes your security
tasks easier to view at a glance and manage.

In addition, the OWSM security policies described in "Which Policies Support WS-
SecureConversation?" include a configuration setting that allows you to enable and
configure WS-SecureConversation for that policy.

2.11.2 Overview of WS-SecureConversation Usage

WS-SecureConversation is used in specific scenarios.The benefits of using WS-
SecureConversation is explained in the following section.

The following topics describe WS-SecureConversation and its combination with WS-
ReliableMessaging.

* When to Use WS-Secure Conversation
* Benefits of WS-SecureConversation

* About WS-SecureConversation With WS-ReliableMessaging

2.11.2.1 When to Use WS-Secure Conversation

ORACLE

There are two primary reasons you might want to use WS-SecureConversation:
performance and security.

WS-Security, the standard employed by the OWSM security policies, provides the
basic mechanism for securing messages.

However, without WS-SecureConversation, a client using an OWSM security policy
(for example, oracl e/ wss11_usernane_wi t h_nmessage_pr ot ect i on) that exchanges multiple
messages must repeatedly authenticate itself and perform expensive asymmetric
operations such as key exchanges in each request.

To securely exchange multiple messages, a client and a web service typically require
a security context in which to exchange the messages. WS-SecureConversation
provides just such a context. It adds a "handshake" process, which allows a web
service and its client to authenticate to each other and to establish a shared security
context. The security context is shared by the client and web service for the lifetime of
a communication session. This context contains a shared secret key that can be used
to secure subsequent messages between the client and service, and can improve
performance by avoiding repeated key exchanges in multi-message exchange
scenarios.

Enabling secure conversation means that there is no need to repeatedly exchange the
keys and authenticate each time.

Consider the following sequence:

2-25

http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.doc
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.doc

Chapter 2
Overview of Secure Conversation

When the first request is made by the client, the handshake happens between the
client and the web service.

The client authenticates itself to the service as defined in the bootstrap policy
using the WS-Trust protocol.

The web service returns the secure context token (SCT) containing the binary
secret that is used for subsequent requests to secure messages during the
communication session.

Note:

The authentication mechanism required by the web service does not change,
merely the frequency with which the authentication operation is performed.

2.11.2.2 Benefits of WS-SecureConversation

ORACLE

For more information on the benefits of using WS-SecureConversation, see the
comparison of Wss11, Wss10, or SSL OWSM policies.

WS-SecureConversation provides different benefits depending on whether you are
using Wss11, Wss10, or SSL OWSM policies, as follows:

Wss11 — Wss11 scenarios involve one or two asymmetric cryptographic
operations in the request depending on the policy. When WS-SecureConversation
is in use, the authentication and asymmetric cryptographic operations are done
only once at bootstrap time and the subsequent application requests will use the
SCT to secure the messages. The SCT uses only symmetric cryptographic
operations, which are less expensive.

For example, when a "username with message protection” policy is enabled with
WS-SecureConversation, the bootstrap policy uses the username token for
authentication and Wss11 for message protection. However, subsequent
messages do not involve any authentication and the messages are protected by
the SCT.

Wss10 — Wss10 scenarios involve four asymmetric cryptographic operations in
the request and response messages. When WS-SecureConversation is in use, the
authentication and asymmetric cryptographic operations are done only once at
bootstrap time and the subsequent application requests use the SCT to secure the
messages. The SCT uses only symmetric cryptographic operations, which are less
expensive.

For example, when a "username with message protection” policy is enabled with
WS-SecureConversation, the bootstrap policy uses the username token for
authentication and Wss10 for message protection. However, subsequent
messages do not involve any authentication and the messages are protected by
the SCT.

SSL — With SSL scenarios, communication happens via SSL throughout the
session. At the bootstrap time, authentication happens. Subsequent requests use
the SCT to sign the timestamp and no authentication token is sent. Signing the
timestamp by SCT proves that the request is sent by the authenticated client.

In these scenarios, SSL is used for message protection; signing the timestamp
with the SCT is used for authentication.

2-26

Chapter 2
Overview of Secure Conversation

For example if WS-SecureConversation is enabled for a "username over SSL"
policy, the bootstrap policy uses the username token for authentication and SSL
for message protection. However, subsequent messages will also use SSL but will
contain a timestamp signed by the SCT instead of the username token.

2.11.2.3 About WS-SecureConversation With WS-ReliableMessaging

A particularly important use of WS-SecureConversation is to provide security for WS-
ReliableMessaging (WS-RM) policies. WS-RM benefits from the use of secure
conversation to prevent sequence attacks.

As explained in the WS-ReliableMessaging specification (htt p: // docs. oasi s-
open. org/ws-rx/wsrm v1l. 2/wsrm htm), because reliable messaging sequences are
expected to exchange a number of messages, it is recommended that a security
context be established by using the WS-Trust and WS-SecureConversation
mechanisms for protecting sequences.

Therefore, you should attach a WS-SecureConversation-enabled security policy with
your WS-RM policy.

2.11.3 WS-SecureConversation Architecture

The WS-SecureConversation specification defines extensions that build on Web
Services Security (WS-Security) and Web Services Trust Language (WS-Trust).

The specification (http: // docs. oasi s- open. or g/ ws- sx/ ws- secur econver sat i on/
v1. 4/ os/ ws-secur econver sati on- 1. 4- spec- 0s. doc) is the best source of information
about the WS-SecureConversation architecture, features, and functions.

At a minimum, you should be familiar with the following concepts:

¢ WS-Trust — As described in Web Services Trust Language (WS-Trust) in
Understanding WebLogic Web Services for Oracle WebLogic Server, the Web
Services Trust Language (WS-Trust) specification defines extensions that build on
Web Services Security (WS-Security) 1.1 and 1.0 to provide a framework for
requesting and issuing security tokens, and to broker trust relationships.

» Security Context — A security context is an abstract concept that refers to an
established authentication state and negotiated key(s) that may have additional
security-related properties.

» Security Context Token — A security context token (SCT) is a representation of
the security context abstract concept, which allows a context to be named by a
URI and used with WS-Security. Once the context and secret have been
established (authenticated), you can then compute derived keys for each key
usage in the secure context.

» Derived Keys — As described in the WS-SecureConversation specification
(http://docs. oasi s-open. or g/ ws- sx/ ws- secur econver sat i on/ v1. 4/ os/ ws-
secureconver sati on- 1. 4- spec- os. doc), "A security context token implies or contains
a shared secret. This secret MAY be used for signing and/or encrypting
messages, but it is recommended that derived keys be used for signing and
encrypting messages associated only with the security context.”

Again as described in the WS-SecureConversation specification, "Once the
context and secret have been established (authenticated), the mechanisms

ORACLE 2-27

http://docs.oasis-open.org/ws-rx/wsrm/v1.2/wsrm.html
http://docs.oasis-open.org/ws-rx/wsrm/v1.2/wsrm.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.doc
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.doc
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.doc
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.doc

ORACLE

Chapter 2
Overview of Secure Conversation

described in Derived Keys can be used to compute derived keys for each key
usage in the secure context."

Derived keys are useful for message protection. Instead of using the same SCT
across multiple requests, a different key derived from the SCT is used in each
request, which improves overall security.

When you enable WS-SecureConversation for a policy, OWSM uses derived keys
by default for WSS10 and WSS11. (For SSL policies, message protection is done
using SSL and a derived key is not necessary.)

Session management — OWSM maintains the client and server secure
conversation session information based on a computed Session ID.

On the Web server side, the Session ID is maintained based on the port used by
the web service.

Client sessions are expressed by the term "reference," which is similar in concept
to a client port/binding that enables message communication, or to a SOA
reference.

In the WS-SecureConversation implementation, each client reference is a
separate WS-SecureConversation session. From the perspective of a web service
client request, this leads to the following outcomes:

— Multiple requests can belong to the same reference.
— All the requests with the same Session ID belong to the same session.

— The state for which the Session ID is valid depends on the re-authentication
setting.

OWSM computes the Session ID at runtime for each message, and associates
one or more requests to a session. OWSM uses user credentials, service
information, and policy and configuration data to compute the Session ID.

The Session ID is especially important when used with Oracle WS-RM policies,
where for security and performance reasons multiple messages in an RM session
are protected by the same secure conversation session.

Inner and outer policies — In the OWSM implementation of WS-
SecureConversation, a secure conversation policy has actually two policies: inner
and outer. The bootstrap (inner) policy is used to obtain the token and establish
the handshake between the client and the web service. The outer policy is used
for application messages when making requests with the token.

The message security settings for the outer policy are obtained from the original
OWSM WS-Security policy, such as such as

wss1ll username_with_message_protection. The message security settings for
the inner policy are then derived from the outer policy.

In most cases, you do not need to be concerned with the details of the inner and
outer policies, as OWSM handles this on your behalf. However, the OWSM WS-
SecureConversation implementation provides an advanced setting that provides
additional control, as described in "About Setting the Bootstrap Mode".

Re-authentication — OWSM includes a re-authenticate control that indicates
whether to create a separate session for each user or to allow users to share the
same session. A user is authenticated only once whether re-authenticate is true or
not.

There is one supported use case in which the user ID might be different for each
application message and therefore needs to be authenticated in each message

2-28

Chapter 2
Overview of Secure Conversation

during the WS-SecureConversation session: ID propagation with SAML sender
vouches.

Re-authentication allows multiple users to share a session. In this case, the
authentication token is sent in each request because multiple users share the
session. However, there is no need to exchange keys and asymmetric operations
(sign, encrypt) are not performed in subsequent requests.

The state for which the Session ID is valid depends on the re-authentication

setting:

— If re-authenticate is false, on the client side the Session ID is maintained for a
single reference for a given user.

On the server side, the Session ID is maintained based on the port used by
the web service.

— If re-authenticate is true, on the client side the Session ID is maintained for a
single reference, which may involve multiple users.

On the server side, the Session ID is maintained based on the port used by
the web service.

2.11.4 When to Use WS-SecureConversation

WS-SecureConversation is used in specific scenarios in OWSM.

ORACLE

You should consider using WS-SecureConversation in the following scenarios:

You are using any OWSM WS-RM policy.

Your web service client is protected with an OWSM security policy (for example,
oracl e/ wss11_usernanme_with_message_protection) and frequently exchanges
multiple messages.

When a web service client or service are secured by OWSM and expect to be involved
in multiple message exchanges, it makes sense to enable WS-SecureConversation.
Enabling WS-SecureConversation provides better performance because the SCT
secures subsequent messages between the client and service and you do not incur
the overhead of repeated authentication and public key crypto operations.

" Note:

For ID propagation use cases, WS-SecureConversation provides a
performance benefit mainly for message protection because the
authentication token is sent in each message during the session at the
expense of performance.

Consider the following scenarios in which multiple message exchanges might happen
and WS-SecureConversation might be useful:

One to One — In this case, a client application invokes a particular web service
multiple times on behalf of a single user.

One to One with re-authenticate=true (identity propagation) — In this case, a client
application invokes a particular web service multiple times. However, a different
identity may need to be passed to the web service in each subsequent request.

2-29

Chapter 2
Overview of Secure Conversation

A single secure conversation session is created for all users.

2.11.5 When To Use Re-Authentication

You can enable the re-authenticate control only in the case of ID propagation with
SAML sender vouches policies.

You should use re-authentication when the user ID might be different for each
application message. In this situation, the user is authenticated in each message.

The bootstrap is done using the client identity and the end user identity is passed in all
application requests to the service. WS-SecureConversation provides a benefit mainly
for message protection, because the authentication token is sent in each message
during the session at the expense of performance.

By default, the re-authenticate control is not set with WS-SecureConversation, and you
can enable it only when WS-SecureConversation is also enabled.

2.11.6 About Setting the Bootstrap Mode

In the OWSM implementation of WS-SecureConversation, a secure conversation
policy has actually two policies: the boostrap (inner) policy, and outer policy.

The bootstrap (inner) policy is used to obtain the token and establish the handshake
between the client and the web service. The outer policy is used for application
messages when making requests with the token.

The message security settings for the outer policy are obtained from the original
OWSM WS-Security policy, such as such as oracl e/

wss1l_usernane_wit h_message_prot ecti on. The message security settings for the inner
policy are then derived from the outer policy.

Therefore in most cases, you do not need to be concerned with the details of the inner
and outer policies, as OWSM handles this on your behalf. However, the OWSM WS-
SecureConversation implementation provides additional control.

The following Bootstrap Message Security options are available:

e Inherit From Application Setting
e Use Independent Setting:

— Algorithm Suite

— Include Timestamp

— Confirm Signature

— Encrypt Signature

2.11.7 Overview of Persistence

ORACLE

Two persistence implementations exist: default domain-wide persistence, and client-
specific/web service-specific persistence.

The section explains the preceding persistence implementation as follows:

* About Default Domain-Wide Persistence Implementation

* About Client- and Web Service-Specific Persistence Implementation

2-30

Chapter 2
Overview of the Kerberos Protocol

2.11.7.1 About Default Domain-Wide Persistence Implementation

OWSM includes a default domain-wide persistence implementation that supports the
Coherence Cluster and in-memory persistence providers.

The Coherence persistence provider is the default when running in WebLogic Server,
for both the web service client and web service. Otherwise, the in-memory persistence
provider is the default.

The level of persistence granularity for session recovery is the session object.

This persistence implementation is enabled by default and does not require any
configuration.

2.11.7.2 About Client- and Web Service-Specific Persistence Implementation

Each client and web service can specify one or more (one per port) persistence
providers, which can be either the Coherence provider or the in-memory provider.

To do this, use one of the mechanisms described in "Configure Persistence”.

2.12 Overview of the Kerberos Protocol

Kerberos is an authentication protocol that enables computers (clients and servers)
communicating over a non-secure network to prove their identity to one another in a
secure manner, with the help of a trusted third party.

The following topics explain Kerberos protocol in detail:

* Understanding the Kerberos Protocol
* Understanding Credential Delegation in Kerberos
* Understanding Kerberos and SPNEGO

* About Kerberos and WS-SecureConversation Derived Keys

2.12.1 Understanding the Kerberos Protocol

ORACLE

In Kerberos, this trusted third party is the Key Distribution Center (KDC), which
contains key information for clients and servers, called principals.

The KDC consists of two components:

e The Authentication Service (AS), which authenticates a principal with the KDC

e The Ticket Granting Service (TGS), which provides authenticated principals with
tickets they can use to request services from other principals in the KDC.

OWSM supports MIT Kerberos and Microsoft Active Directory as the KDC. For
information about using MIT Kerberos, see "Using MIT Kerberos" in Securing Web
Services and Managing Policies with Oracle Web Services Manager. For information
about using Microsoft Active Directory, see "Using Microsoft Active Directory with Key
Distribution Center" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

Here are the high-level steps involved when Kerberos is used for message security
between a client principal and a server principal:

2-31

Chapter 2
Overview of the Kerberos Protocol

AS-REQ (request to Authentication Service): The client begins the authentication
process by sending the user ID to the AS.

AS-REP (reply from Authentication Service): The AS responds with:

* Aclient/TGS session key, encrypted using a hash of the user's password from
the KDC

* A Ticket Granting Ticket (TGT), encrypted using the secret key of the TGS.

TGS-REQ (request to Ticket Granting Service): To begin communicating with
services, the client first sends the following to the TGS:

* The TGT it received from the AS
* The ID of the requested service
* An authenticator, encrypted using the client/TGS session key from the AS

TGS-REP (reply from Ticket Granting Service): The TGS decrypts the TGT using
its secret key, extracts the client/TGS session key from the decrypted TGT, and
then uses this session key to decrypt the authenticator. It then responds with:

* Aclient/server session key, encrypted using the client/ TGS session key
* A Service Ticket (ST), encrypted using the service's secret key

AP-REQ (request to application): After receiving the reply from the TGS, the client
initiates contact with the service by sending it:

e The ST it received from the TGS

* A new authenticator, encrypted using the client/server session key from the
TGS

AP-REP (reply from application): The service decrypts the ST using its secret key,
extracts the client/server session key, and then uses this session key to decrypt
the authenticator. It then extracts the timestamp from the decrypted authenticator,
adds one to it, and sends this value back to the client after encrypting it using the
client/server session key.

The client decrypts the confirmation and checks whether the timestamp is correctly
updated. If so, the client can trust the server and can begin issuing service
requests.

For information on configuring OWSM to support the Kerberos protocol, see
"Configuring the Kerberos Login Module" and "Configuring Kerberos Tokens" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

2.12.2 Understanding Credential Delegation in Kerberos

ORACLE

Kerberos uses the credential delegation mechanism when a service needs to access
another service or server in order to complete a client request. To establish such a
connection, Kerberos requires the first service to be authenticated to the second
service or server using the client's user account and authority level.

A common way to provide credential delegation in Kerberos is through the use of the
FORWARDABLE and FORWARDED flags in Kerberos tickets, a technique called
forwarded TGT. Here are a high-level steps involved in using forwarded TGT:

The user requests the KDC for a TGT with forwardable flag set (Forwardable TGT)
by setting the KDC option named FORWARDABLE in the initial AS-REQ.

2-32

Chapter 2
Overview of the Kerberos Protocol

2. The client requests a FORWARDED ticket by presenting this forwardable TGT to
the TGS. The client also sets the KDC Option named FORWARDED in the
request (TGS_REQ) in addition to providing a set of service addresses for the new
ticket.

3. More such tickets (with the FORWARDED flag set) can be obtained from the KDC
by providing the FORWARDED ticket obtained in Step 2.

Here are more detailed steps that specify the message sequence:

1. The user authenticates to the KDC by sending a KRB_AS REQ message and
requests a forwardable TGT.

2. The KDC returns a forwardable TGT in the KRB_AS_REP message.

3. The user requests a forwarded TGT based on the forwardable TGT from Step 2.
This is done by the KRB_TGS REQ message.

4. The KDC returns a forwarded TGT for the user in the KRB_TGS REP message.

5. 5. The user makes a request for a service ticket to Service 1 using the TGT
returned in Step 2. This is done by the KRB_TGS_REQ message.

6. The ticket granting service (TGS) returns the service ticket in a KRB_TGS REP
message.

7. The user makes a request to Service 1 by sending a KRB_AP_REQ message,
presenting the service ticket, the forwarded TGT, and the session key for the
forwarded TGT.

8. To fulfill the user's request, Service 1 needs to invoke Service 2 to perform some
action on behalf of the user. Service 1 uses the forwarded TGT of the user and
sends that in the KRB_TGS_ REQ message to the KDC, asking for a ticket to
Service 2 in the name of the user.

9. The KDC returns a ticket for Service 2 to Service 1, in a KRB_TGS_REP
message, along with a session key that Service 1 can use. The ticket identifies the
client as the user, and not Service 1.

10. Service 1 makes a request to Service 2 using a KRB_AP_REQ, acting as the user.
11. Service 2 performs the task and responds.
12. Service 1 responds to the user's request with the response it gets from Service 2.

For information on configuring OWSM to use credential delegation, see "Configuring
Credential Delegation" in Securing Web Services and Managing Policies with Oracle
Web Services Manager.

2.12.3 Understanding Kerberos and SPNEGO

ORACLE

SPNEGO (Simple and Protected GSS-API Negotiation Mechanism) is a standard that
enables a client and a service to negotiate a method to use for authentication.
Because SPNEGO uses HTTP headers to perform the negotiation, it is especially
useful in a cross-platform context such as the web, where SOAP and REST endpoints
that use HTTP are common.

When Kerberos is used in SPNEGO negotiation, the Kerberos token is wrapped in the
HTTP header under the auth-scheme Negotiate. The WWW-Authenticate and
Authorization headers are used to communicate the SPNEGO token between the
client and the service, as follows:

2-33

Chapter 2
Understanding Web Services Addressing

1. The client requests access to a protected service on the server without any
Authorization header.

2. Since there is no Authorization header in the request, server responds with the
status code 401 (Unauthorized) and the WWW-Authenticate header set to
Negotiate.

3. The client uses the user credentials to obtain the Kerberos token and then sends it
to the server in the Authorization header of the new request. For example,
Authorization: Negotiate a87421000000492aa874209....

4. The server decodes the token in the Authorization header. If the context is not
complete (as in the case of Mutual Authentication), the server responds with a 401
status code and a WWW-Authenticate header containing the decoded data. For
example, WWW-Authenticate: Negotiate 74900a2a....

5. The client decodes this data and sends new data back to the server. This cycle
continues until the security context is established.

For information on configuring OWSM to use Kerberos with SPNEGO, see
"Configuring Kerberos With SPNEGO Negotiation" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

2.12.4 About Kerberos and WS-SecureConversation Derived Keys

The Web Services Secure Conversation (WS-SecureConversation) specification
includes a feature called derived keys, which enables parties that have already
authenticated to each other to use a common secret to derive additional keys for
various uses, such as signing and encrypting messages.

Moreover, the WS-SecureConversation specification defines two types of derived
keys:

e Explicit derived keys, which use the wsc: Deri vedKeyToken element to contain the
token information. The ds: Keyl nf o element then contains a reference to this
information.

e Implicit derived keys, which include the token information directly in the ds: Keyl nf o
element.

When using Kerberos in a WS-SecureConversation context, you can configure OWSM
to use derived keys by enabling the Use Derived Keys option in the OWSM assertions
for Kerberos.

2.13 Understanding Web Services Addressing

ORACLE

The Web Services Addressing (WS-Addressing) specification provides transport-
neutral mechanisms to address web services and messages.

In particular, the specification(ht t p: / / www. w3. or g/ TR/ ws- addr - cor e/) defines a number
of XML elements used to identify web service endpoints and to secure end-to-end
endpoint identification in messages.

SOAP does not provide a standard way to specify where a message is going or how
responses or faults are returned. WS-Addressing provides an XML framework for
identifying web services endpoints and for securing end-to-end endpoint identification
in messages.

2-34

http://www.w3.org/TR/ws-addr-core/

Chapter 2
Understanding Web Services Trust

A web service endpoint is a resource (such as an application or a processor) to which
web services messages are sent.

The following is an example using WS-Addressing (wsa is the namespace for
WSAddressing):

<S: Envel ope xm ns: S="http:// wwmv. w3. or g/ 2003/ 05/ soap- envel ope"
xm ns:wsa="http://schemas. xn soap. or g/ ws/ 2004/ 08/ addr essi ng" >
<S: Header >
<wsa: Messagel D>htt p: // exanpl e. com xyz- abcd- 123</ wsa: Messagel D>
<wsa: Repl yTo>
<wsa: Addr ess>htt p: // exanpl e. nyQd i ent 1</ wsa: Addr ess>
</ wsa: Repl yTo>

WS-Addressing is transport-independent; that is, the request may be over JMS and
the response over HTTP. WS-Addressing is used with other WS-* specifications, such
as WS-Policy.

2.14 Understanding Web Services Trust

The WS-Trust 1.3 specification defines extensions to WS-Security that provide a
framework for requesting and issuing security tokens, and to broker trust relationships.
WS-Trust extensions provide methods for issuing, renewing, and validating security
tokens.

To secure communication between a web service client and a web service, the two
parties must exchange security credentials. As defined in the WS-Trust specification
(http://docs. oasi s-open. or g/ ws- sx/ws-trust/vl. 3/ws-trust. htnl), these credentials
can be obtained from a SecurityTokenService (STS), which acts as trust broker.

There are multiple scenarios in which you might consider using an STS, including:

e Token Exchange/Conversion — Assume that you need to exchange one kind of
token for another type of token. For example, if the client has a Kerberos token but
the web service requires a SAML token. You can use the STS to exchange the
Kerberos token for a SAML token.

e Federation — Identity federation allows a user to consolidate the many local
identities he has configured among multiple service providers. With a federated
identity, the individual can log in at one service provider site and move to an
affiliated service provider site without having to re-authenticate or re-establish his
identity.

For example, you might use the STS to map a client user name to the user name
expected by the web service.

e Centralized Trust — The STS is trusted by both the web service client and the web
service. You use this trust to provide interoperable security tokens.

Consider the token exchange scenario shown in Figure 2-2. In this scenario, a
customer has a desktop application (for example, a .NET web service) that is talking to
a backend web service that can accept a SAML token.

ORACLE 2-35

http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.html

Chapter 2
Understanding Web Services ReliableMessaging

Figure 2-2 STS Token Exchange

RST/RSTS SOAP messages

STS
S “Application” SOAP message
On Premise
Desktop
[=20 g e
“ﬂi 3 N!;El' EE - T | owsm h Services

m l e

In Figure 2-2 user "joe" logs into his desktop and a Kerberos ticket is created. When
the user opens the desktop application and performs an operation, this results in a
backend web service call and we want to propagate the identity of "joe" to the backend
application. However the token we have is a Kerberos token on the client side and the
backend Web Service only accepts a SAML token. You can use an STS to do a token
conversion or token exchange.

For information on configuring OWSM to support the Kerberos protocol, see
"Configuring WS-Trust" in Securing Web Services and Managing Policies with Oracle
Web Services Manager.

2.15 Understanding Web Services ReliableMessaging

ORACLE

WS-ReliableMessaging makes message exchanges reliable. It ensures that messages
are delivered reliably between distributed applications regardless of software
component, system, or network failures. Ordered delivery is assured and automatic
retransmission of failed messages does not have to be coded by each client
application.

Consider using reliable messaging if your web service is experiencing the following
problems:

* network failures or dropped connections
* messages are lost in transit
* messages are arriving at their destination out of order

WS-ReliableMessaging considers the source and destination of a message to be
independent of the client/server model. That is, the client and the server can each act
simultaneously as both a message source and destination on the communications
path.

For information on WS-ReliableMessaging (WS-RM), see "Using Web Services
Reliable Messaging" in Developing Oracle Infrastructure Web Services.

2-36

Chapter 2
Overview of Fine-Grained Authorization Using Oracle Entitlements Server

2.16 Overview of Fine-Grained Authorization Using Oracle
Entitlements Server

Oracle Entitlements Server (OES) is a fine-grained authorization service you can use
to secure applications and services across the enterprise. It supports centralized
definition of complex application entitlements and the distributed runtime enforcement
of those entitlements. OES allows you to externalize entitlements and thereby remove
security decisions from the application.

OWSM OES integration supports advanced authorization use cases using OES and
provides the following capabilities:

e You can apply OES authorization to your SOAP-based web services. The OES
authorization policy provides a grant or deny for a subject to perform a certain
action on a given resource.

e OES can make grant/deny decisions based on context attributes. The context
attributes could be based on information from the SOAP request message
extracted using XPath statements, or they could be based on HTTP headers.

e Data masking. OWSM OES can mask (with character of your choice) certain
information in the response for the web service request.

This section describes how Oracle Entitlements Server (OES) is integrated with
OWSM, and how you can use OES together with OWSM for fine-grained
authorization.

* References for OES Reading

* Overview of OES Integration

e About OWSM OES Policies

* Overview of Resource Mapping and Naming
* How Attributes Are Processed

* About the Guard Element

See “Configuring Fine-Grained Authorization Using Oracle Entitlements Server" in
Securing Web Services and Managing Policies with Oracle Web Services Manager for
configuration information.

2.16.1 References for OES Reading

References to many OES concepts and features is described in this section. The focus
of the section is the integration with OWSM, and it does not attempt to provide an in-
depth discussion of the OES concepts.

If you are not already familiar with OES, you should first refer to the Administrator's
Guide for Oracle Entitlements Server and Fine Grained Authorization: Technical
Insights for using Oracle Entitlements Server.

ORACLE 2-37

http://www.oracle.com/technetwork/middleware/oes/oes-product-white-paper-405854.pdf
http://www.oracle.com/technetwork/middleware/oes/oes-product-white-paper-405854.pdf

Chapter 2
Overview of Fine-Grained Authorization Using Oracle Entitlements Server

Note:
OWSM supports version 11.1.2.2.0 or later of OES.

2.16.2 Overview of OES Integration

You can integrate OWSM and OES. The OWSM agent checks the authorization for a
protected web service based on the policies defined in OES and passes OES the
autheticated subject and other attributes.

When you integrate OWSM and OES, you:

e Attach an OWSM authentication policy to your web service.

e Attach the OWSM or acl e/ bi ndi ng_oes_aut hori zati on_pol i cy or oracl e/
conponent _oes_aut hori zati on_pol i cy policy, alone or in combination with the
or acl e/ bi ndi ng_oes_maski ng_pol i cy policy as described in this section.

* Use the OES console to create authorization and data masking policies, typically
with separate policies for Obligations.

" Note:

OWSM does not expose any OES-related configuration; you use the OES
console for this purpose.

For more information, refer to the following topics:
e OES Integration: The Big Picture

e Data Masking

e About XACML Obligations

e Overview of OES Fine- and Coarse-Grained Authorization

2.16.2.1 OES Integration: The Big Picture

ORACLE

The OWSM agent checks the authorization of a soap request for a protected web
service based on the policies defined in OES. To do this, OWSM passes to OES the
authenticated subject, the target resource and requested action, as well as a set of
implicit attributes that are always passed in authorization requests.

In your OES policy you can define additional required values based on context
attributes from the SOAP request, HTTP headers, message context properties or
identity information like the subject, roles, and groups. If you configure OES to require
any extra of these context attributes to make a permit/deny decision, OWSM passes
them as well.

Specifically, there are two ways to contact OES for the authorization decision: a two-
step method and a single-step method. You select which via the use. si ngl e. st ep
attribute in or acl e/ bi ndi ng_oes_aut hori zati on_pol i cy and or acl e/

conponent _oes_aut hori zati on_pol i cy.

2-38

Chapter 2
Overview of Fine-Grained Authorization Using Oracle Entitlements Server

The methods function as follows:

* In the two-step process, you must have previously identified attributes required for
fine-grained authorization in the OES console and you now want OWSM to use
them.

OWSM first calls to OES to find out what attributes are needed, gets the attributes
from the request payload, and then calls OES a second time to perform the actual
authorization using the OES authorization policy. This means that you actually
define two OES policies: one to get the needed attributes, and one for the
authorization itself.

You can also use always-passed implicit attributes, plus OES predefined attributes
such as time, date, and so forth.

This method is used for fine-grained authorization, as described in Overview of
OES Fine- and Coarse-Grained Authorization.

* In the single-step process, OWSM makes only one call to OES to perform the
authorization using the OES authorization policy. The single-step process does not
require any previously-identified attributes. As with the two-step process, you can
also use the always-passed implicit attributes, plus OES predefined attributes such
as time, date, and so forth.

This method can be used for coarse-grained authorization, as described in
Overview of OES Fine- and Coarse-Grained Authorization.

2.16.2.2 Data Masking

ORACLE

OWSM with OES integration can mask (with asterisks) certain information in the
response from the web service, without changing any of the web services code.

Assume you want to ensure that sensitive data is not passed over the wire in response
to a web service client request. You use the OES console together with the or acl e/

bi ndi ng_oes_maski ng_pol i cy policy to replace any sensitive data leaving the web
service such as a social security number or financial information with asterisks, as
shown in Figure 2-3.

2-39

Chapter 2
Overview of Fine-Grained Authorization Using Oracle Entitlements Server

Figure 2-3 Masking Sensitive Data

WSORF:Envelope> T |

<SOAP:Header> |
<User> Bob Doe </User> |
</SOAP:Header> |
<SOAP:Body> |
<getCustomerDetail> :
|

|

|

<customerID> 12345 </customerID>
</getCustomerDetail>
</SOAP: Body>
O — 4
<~

REST

= 3% =
g CustomerService ORACLE Fusion Middleware & Apps
@ SOAP or 3 | - getCustomerDetail

Payload - updateCustomer ORACLE Agent &
Web Services Clients L " gen ¥
____________________________ deleteCustomer... EM SLvCES Policy Manager
<SOAP:Envelope> ” anager
<SOAP:Body> f

<getCustomerDetailResponse>
<customerID> 12345 </customerID>
<name> Sally Smith </name>
<phone> 555-1234567 </phone>

|

|

|

| v

|

|

| ~
<ESN> *kkkkkhtix </SEN> [(A —
<ccNoO> *kkkkhkkkkhkkkkkhkkh* </ccNo> | l ’f] ~
<purchaseHistory> | I f{]

| e __

|

|

|

|

|

ORACLE Entitlements Server

Bob Doe

isAuthorized (user :
/../Customerservice |
|
|

</purchaseHistory> I
| resource
|
|

</getCustomerDetailResponse>

i action
</SOBRP:Body>

custID

getCustomerDetail

12345)

Masking sensitive data is based on who asked for it, and on other context attributes
present in the request.

Consider the following code flow for the web service response shown in Figure 2-3.

Understanding Data Masking Code Flow

1.
2.

ORACLE

The web service client sends a request.

On the inbound request, OWSM enforces the request policy and performs the
appropriate authentication and authorization for user Bob Doe.

If the request is permitted, OWSM passes the payload to the service provider. The
service provider acts on the payload and prepares a response to be sent back to
the caller.

During response processing, OWSM invokes the or acl e/
bi ndi ng_oes_maski ng_pol i cy policy to determine if there is any sensitive data that
needs to be masked.

OWSM passes the caller's information and any of the user-defined attributes
extracted from the response payload.

The data masking rules defined in OES take into consideration the client
information (through transport attributes), the current subject, resource, action and
any response attributes configured on the policy.

For each payload attribute, OES responds with About XACML Obligations that
specify whether the attribute should be passed as-is, or masked.

OWSM honors the About XACML Obligations returned by OES and masks
attributes marked as sensitive by OES.

2-40

Chapter 2
Overview of Fine-Grained Authorization Using Oracle Entitlements Server

2.16.2.3 About XACML Obligations

OES supports the XACML concept of Obligations. As described in "Understanding
the Policy Model" in Oracle Fusion Middleware Administering Oracle Entitlements
Server, when used in a policy, an Obligation may impose an additional requirement for
the policy enforcing component.

You configure the Obligation in the OES console. An Obligation is any attribute name/
value pair (or any other simple name/value pair) that is returned back to the caller
(OWSM). For OWSM OES integration, the Obligation can be an XPath query, HTTP
transport header properties, or message context properties.

Another use of Obligations is data masking. In certain applications, such as data
security use-cases, a simple yes or no answer may not be sufficient and the OES
authorization policy might return an Obligation that specifies what data is to be masked
and with what value, as previously shown in Figure 2-3.

2.16.2.4 Overview of OES Fine- and Coarse-Grained Authorization

There are two ways to do authorization with the OWSM OES policies: fine- and
coarse-grained authorization. The authorization types are defined in the following
topics:

* OES Fine-Grained (Obligations)
* Fine-Grained with SAML

OES Coarse-Grained Authorization

2.16.2.4.1 OES Fine-Grained (Obligations)

You want to determine access to the resource based on the identity of the consumer,
plus specific content from the transport header or the payload specified in Obligations.
This is the common use case.

In this use case, you define attributes in the OES access policy that OWSM will then
extract from the request and pass back to OES during authorization. That is, the OES
access policy is based on a combination of identity attributes or attributes extracted
from the request payload.

For example, you might have an OES access check of "Allow access if the SOAP
Body contains a particular customer 1D and if the authenticated user belongs to group
TrustedPartners."

Figure 2-4 shows the fine-grained authorization use case.

ORACLE 241

http://www.oracle.com/pls/topic/lookup?ctx=idm111220&id=ESADR438
http://www.oracle.com/pls/topic/lookup?ctx=idm111220&id=ESADR438

Chapter 2
Overview of Fine-Grained Authorization Using Oracle Entitlements Server

Figure 2-4 Fine-Grained Authorization

WSORF:Envelope> T |

<SOAP:Header> |
<User> Bob Doe </User> |
</SOAP:Header> |
<SOAP:Body> |
<getCustomerDetail> |
<customerID> 12345 </customerID> |
</getCustomerDetail> |
</SORP: Body> :
O — 4
<~

REST

= 3% =
g CustomerService ORACLE Fusion Middleware & Apps
@ SOAP or 3 | - getCustomerDetail

Payload - updateCustomer ORACLE B
Web Services Clients B - Agent ¢
deleteCust: JWeb Services Policy Manager
———————————————————————————— eleteCustomer...
<80AP:Envelope> i Manager
<SOAP:Body> f
<getCustomerDetailResponse> v

<customerID> 12345 </customerID>
<name> Sally Smith </name>
<phone> 555-1234567 </phone>

|

|

|

|

I ORACLE' Entitlements Server

| ~——
<SSN> 123-456-7890 </SSN> I (A —
<ccNo> 1234-1234-1234-1234 </ccNo> : i ’Ir’] " -
<purchaseHistory> i l{_l_ o

|

|

|

|

|

Bob Doe

isAuthorized (user :
/../Customerservice |
|
|

</purchaseHistory>
</getCustomerDetailResponse>
</SOBRP:Body>

|

| resource
| action

| custID

getCustomerDetail

12345)

Consider the following code flow for the web service response shown in Figure 2-4.

8.
9.

The web service client sends a SOAP request.

The web service is secured with an OWSM authentication policy and an OWSM
OES authorization policy.

OWSM performs authentication and invokes OES for authorization.

OWSM provides the subject, resource, lookup action and all predefined properties
to OES.

OES calls the lookup action configured for the protected resource and responds
with the configured Obligations (if any) to OWSM. Returned obligations can be
returned based on actions; for each action you can define different XPaths, and so
forth.

OWSM evaluates the Obligations and executes the XPath on the SOAP/XML
payload or finds the property values from the transport header or message
context.

OWSM again provides the subject, resource, and action, plus all of the attributes
evaluated in Step 6 to OES.

OES determines access based on the subject, resource, action and attributes.

OES responds with permit or deny.

10. If permit, OWSM passes on the message to the service provider.

11. If deny, OWSM rejects the request with an authentication failure fault.

2.16.2.4.2 Fine-Grained with SAML

ORACLE

2-42

Chapter 2
Overview of Fine-Grained Authorization Using Oracle Entitlements Server

You want to determine access to the resource based on the identity of the consumer
and on the attributes passed in a SAML token. (See "user.attributes" and
"user.roles.include" in Securing Web Services and Managing Policies with Oracle Web
Services Manager for information on passing SAML attributes.

OWSM passes attributes from a SAML assertion. SAML attributes are part of the
implicit attributes that are always extracted (if present) and sent automatically. The
name of the attribute is the name of the attribute inside the SAML assertion and the
value is the list of strings. OES can determine access based on these SAML attributes,
as well as the subject, resource and action.

There are two ways to implement this use case. The first approach is to create an
OES custom attribute retriever, as described in "Creating Custom Attribute Retrievers"
in Oracle Fusion Middleware Developer's Guide for Oracle Entitlements Server. The
second approach is to have OES respond using Obligations with XPaths that point to
the SAML attribute values.

Consider the following code flow for the approach of using an OES custom attribute
retriever:

1. The web service client sends a SAML token with an attribute statement in a SOAP
request.

2. The web service is secured with oracl e/ wss10_sanl _t oken_servi ce_pol i cy and an
OWSM OES authorization policy.

3. OWSM performs authentication and checks the SAML assertion for an
AttributeStatenent. If attributes are present, then OWSM extracts them and
passes them as attributes while invoking OES for the access request.

4. OWSM provides the subject, resource, and action, along with any other pre-
defined attributes.

5. OES determines access based on the SAML attributes, subject, resource and
action. OES uses a custom attribute retriever to get the SAML attributes.

6. OES responds with permit or deny.
7. If permit, OWSM passes on the message to the service provider.

8. If deny, OWSM rejects the request with an access-denied fault.

2.16.2.4.3 OES Coarse-Grained Authorization

ORACLE

You want OES to determine access to the resource based on the identity of the
consumer and the web service operation being called. The OES access check is
based on the identity attributes, which are limited to user name, group, and role. You
can also use the implicit attributes, plus OES predefined attributes such as time, date,
and so forth.

You must set use. single. step to true in the OWSM OES policy to use this mode.

Figure 2-5 shows the coarse-grained authorization use case. In this use case, assume
that you want to secure the service with an authorization policy that determines
whether the consumer is allowed to access the service. You want to determine access
to the resource based on the identity (authenticated subject) of the consumer and the
web service operation being invoked. For example, in Figure 2-5 user Bob Doe might be
authorized to get the customer detail but not to delete the customer record.

2-43

http://www.oracle.com/pls/topic/lookup?ctx=idm111220&id=ESPSJ251

Chapter 2
Overview of Fine-Grained Authorization Using Oracle Entitlements Server

Figure 2-5 Coarse-Grained Authorization

A
9]

| OAP:Envelope>

| <SOAP:Header> |
| <User> Bobk Doe </User> I
| </80AP:Header> i
| <SOAP :Body> |
' [
' |
' |

</SOAP:Body>
</30AP:Envelope>

T X CustomerService ORACLE Fusion Middleware & Apps
@ SOAP Of =3 | - getCustomerDetail
= REST
= &—— Payload = | _pdateCustomer ORACLE Agent i
Web Services Clients J o lefen leara Wen:l’aie;g":es ‘Policy Manager «
== 1
| <SOAP:Envelope>
. l 4
| <SORP:Body> : 1
| —
| </SORP:Body> [v
| </SO0RP:Envelope> I ORACLE Entitlements Server
L |
(A
[[P
1
) P.. g 7.
| isAuthorized (user = Bob Doe
resource = /../CustomerService

| action getCustomerDetail)

Consider the following code flow for the web service response shown in Figure 2-5.

1. The web service client sends a SOAP or XML request.

2. The web service is secured with an OWSM authentication policy and an OWSM
OES policy.

3. OWSM performs authentication and invokes OES for the access request. OWSM
provides the subject, resource and action information to OES.

OES determines access based on the subject, resource and action information.

4

5. OES responds with permit or deny.

6. If permit, OWSM passes on the message to the service provider.
7

If deny, OWSM rejects the request with an access-denied fault.

2.16.3 About OWSM OES Policies

ORACLE

OWSM includes the following OES authorization and masking policies.

See "Predefined Policies" in Securing Web Services and Managing Policies with
Oracle Web Services Manager for specific configuration information for each of the
policies.

e oracl e/ bi ndi ng_oes_aut hori zati on_pol i cy — This policy does user authorization
based on the policy defined in OES. Authorization is based on attributes, the
current authenticated subject, and the web service action invoked by the client.

This policy is used for coarse- or fine-grained authorization on any operation on a
web service, as determined by the use. si ngl e. st ep attribute. (See Overview of
OES Fine- and Coarse-Grained Authorization.)

2-44

Chapter 2
Overview of Fine-Grained Authorization Using Oracle Entitlements Server

You must use an authentication policy with the OWSM OES authorization policy
because the OWSM OES policy requires an authenticated subject.

This policy also uses the guard element (see orawsp:guard) to define resource,
action, and constraint match values. These values allow the assertion execution
only if the result of the guard is true. If the accessed resource name and action
match, only then is the assertion allowed to execute. By default, resource name
and action use the wildcard asterisk "*" and everything is allowed.

This policy can be attached to any SOAP-based endpoint.

e oracl e/ conponent _oes_aut hori zati on_pol i cy — This policy does user authorization
based on the policy defined in OES.

This policy is used for coarse- or fine-grained authorization on any operation on a
SOA component, as determined by the use. si ngl e. st ep attribute. (See Overview of
OES Fine- and Coarse-Grained Authorization.)

You must use an authentication policy with the OWSM OES authorization policy
because the OWSM OES policy requires an authenticated subject. Authorization is
based on attributes, the current authenticated subject, and the web service action
invoked by the client.

This policy also uses the guard element (see orawsp:guard) to define resource,
action, and constraint match values. These values allow the assertion execution
only if the result of the guard is true. If the accessed resource name and action
match, only then is the assertion allowed to execute. By default, resource name
and action use the wildcard asterisk "*" and everything is allowed.

This policy is used for fine-grained authorization on a SOA component.

e oracl e/ bi ndi ng_oes_maski ng_pol i cy — This policy does response masking based
on the policy defined in OES. You can use an authentication policy with the
OWSM OES masking policy. (If there is no subject, the masking decision does not
consider the user when making a decision.) Masking is based on attributes, the
current authenticated subject, and the web service action invoked by the client.

This policy uses the guard element (see orawsp:guard) to define resource, action,
and constraint match values. These values allow the assertion execution only if
the result of the guard is true. If the accessed resource name and action match,
only then is the assertion allowed to execute. By default, resource name and
action use the wildcard asterisk "*" and everything is allowed.

This policy is used for fine-grained masking on any operation of a web service.

2.16.4 Overview of Resource Mapping and Naming

You must map the OES resource name to the OWSM resource name. When making
an authorization call from OWSM, the resource name is passed to OES, and this
name must exactly match the one defined in the OES policy.

The following topics include:

* Resource Mapping and Naming

* Example of OES Policies

2.16.4.1 Resource Mapping and Naming

Table 2-1 shows how to construct the resource string for the OES policy.

ORACLE 2-45

Chapter 2
Overview of Fine-Grained Authorization Using Oracle Entitlements Server

If you follow the naming conventions, you do not have to set the resource name in the
OWSM policy, OWSM derives it.

Note:

This is the default mapping. If you need to change this mapping, use
configuration overrides, as described in "Configuration Properties and
Overrides" in Securing Web Services and Managing Policies with Oracle
Web Services Manager.

Table 2-1 Determining Resource String

|
OES Field Value to Use

Deployed Application Name.

For SOA, the composite name is used as the
application name.

Application

Fixed, based on subject type.

* For SOAP must be W5_SERVI CE.

. For SOA component, must be COVPONENT.

For SOAP and SOA reference, must be of the

form web- servi ce- name/ port/web service

operation.

. For SOA component, must be of the form SCA
conponent name/ web service operation.

Resource Type

Resource Name .

Action By default, one of:

request . | ookup (Obligation policy for

authorization.)

response. | ookup (Obligation policy for
masking.)

mask (Real masking policy.)

aut hori ze (Real authorization policy.)

2.16.4.2 Example of OES Policies

Assume that a SOA composite (soal) has two service bindings (Servl and Serv2).

e Servl hasportil

* Serv2 has port21

e port1l has oper 11, oper12
* port21 has oper21

In OES, the application, resource type, resource name and actions should be defined
as shown in Table 2-2.

Table 2-2 Resource String Example
|

OES Field

Value to Use

Application

ORACLE

soal

2-46

ORACLE

Chapter 2
Overview of Fine-Grained Authorization Using Oracle Entitlements Server

Table 2-2 (Cont.) Resource String Example

OES Field Value to Use
Resource Type WS_SERVI CE
Resource Name Servl/port11/oper11,

Action

Servl/ port11/oper12,
Serv2/ port 21/ oper 21

One of:

request . | ookup (Obligation policy for

authorization.)

response. | ookup (Obligation policy for
masking.)

mask (Real masking policy.)

aut hori ze (Real authorization policy.)

The authorization and masking OES policies based on Table 2-2 are as follows:

Returning Obligations

One policy that returns obligations for any operation:

GRANT (action: request.|ookup; Resource: WS _SERVI CE/ Servl/Port1l, W5 SERVI CH
Serv2/Port21; User: any) Cbligation: XPathll

Multiple policies for returning operation-specific Obligations:

GRANT (action: request.|ookup; Resource: WS _SERVI CE Serv1/Port11/
oper 11; User:any) Obligation: XPathll
GRANT (action: request.|ookup; Resource: WS _SERVI CE Serv1/Port11/
oper 12; User:any) Obligation: XPathl2
GRANT (action: request.|ookup; Resource: WS _SERVI CE Serv2/ Port21/
oper 21; User:any) Obligation: XPath2l

Real authorization

One policy performing same authorization regardless of resource and action:

GRANT/ DENY (action: authorize; Resource: W5 SERVI CE/ Servl/Portl1l, Ws SERVI CH
Serv2/ Port21; User:<actual user>)

Multiple policies for performing operation-specific authorization:

GRANT/ DENY (action: authorize; Resource: W5 SERVI CE/ Servl/Port 11/
oper 11; User: <actual user>)
GRANT/ DENY (action: authorize; Resource: WS SERVI CE/ Servl/Port11/
oper 12; User: <actual user>)

Returning masking Obligations:

GRANT (action: response.|ookup; Resource: WS SERVI CE Servl/Port11/
oper 11; User:any) Obligation: XPathll
GRANT (action: response.|ookup; Resource: WS SERVI CE Servl/Port11/
oper 12; User:any) Obligation: XPathl2
GRANT (action: response.|ookup; Resource: WS SERVI CE Serv2/ Port 21/
oper 21; User:any) Obligation: XPath2l

Real masking:

GRANT/ DENY (action: mask; Resource: WS _SERVI CE Servl/Port 11/ oper11; User: <act ual
user>)

2-47

Chapter 2

Overview of Fine-Grained Authorization Using Oracle Entitlements Server

GRANT/ DENY (action: mask; Resource: W5 _SERVI CE/ Serv2/ Port 21/ oper21; User: <act ual

user>)

2.16.5 How Attributes Are Processed

As the OES administrator, you define attributes in the OES policy as Obligations,
which OWSM then extracts from the payload and sends back to OES.

ORACLE

Specifically, OES allows you to create an Obligation in the OES console and provide
multiple attribute name/value pairs. For example, you can create an Obligation called
Enpl oyee and have multiple attributes such as { Nane=John, Age=21, SSN=123456}.

The attributes can be obtained from an XPath, an HTTP header, a message context,
and constants (name/value). These attributes must follow a specific naming
convention, as described in Table 2-3.

Table 2-3 Attribute Types Supported for OES Policies
|

Attribute Description Required Format
Type
XPath query You provide the attribute name and Use XPat h (case insensitive) as the

value as an XPath query in the
OES console.

OWSM runs this XPath query on
the SOAP message and uses the
value as the attribute value. The
XPath query can result in a single
value or multiple values. In case of
multiple values, a list of strings is
used to pass all values.

If any XPath query fails to evaluate
on the SOAP message, it is ignored
and a warning message is
generated in the logs. OWSM
continues to evaluate next XPath

query.

Obligation name to signify that it is an
XPath.

The Obligation should also return all the
namespaces being used in the XPath
query. All namespaces should be
returned with an attribute name of
NAMESPACE (case insensitive) and the
value should be the comma separated
namespaces.

For example, if you want to use the SAML
issuer name for authorization, use the
following Obligation format:

Nane = XPath, values =

{sam _issuer=.//sam : Assertion/

@ssuer, CC_Nanme=nsl:sayHel | o/ argo,

NAMESPACE=ns1=http://...,wsse=http://
-}

In the authorization phase, OWSM
passes the attribute name sam _i ssuer
and the value is the result of the XPath
query. The default namespace has to be
mapped to a prefix. (The prefix name
must be unique within the application.)

For example:

sanl =urn: oasi s: names: tc: SAM.:
1.0:assertion, nsO=http://
exanpl e. com nyPrefix=http://
def aul t _nanespace

Namespace definitions are separated
using a comma.

2-48

Chapter 2

Overview of Fine-Grained Authorization Using Oracle Entitlements Server

Table 2-3 (Cont.) Attribute Types Supported for OES Policies
|

Attribute Description
Type

Required Format

HTTP Header You provide HTTP header names in To get HTTP Header properties, define an

the OES console.

The value is fetched from the
current request HTTP header.

Obligation with the name "HTTPHeader"
(case insensitive). It can have multiple
HTTP header names.

The name of the attribute should be the
name to which you want to assign the
value; the value should be the actual
HTTP header name.

For example:

Nane = HTTPHeader, values =
{ Aut hHeader =Aut hori zat i on}

In the authorization phase, OWSM
retrieves the HTTP header and assigns it
to the name given in the attribute name.

Message You provide message context
Context property names in the OES
Properties console.

The value is fetched from the
current message context.

Define an Obligation with the name
"MessageContext" (case insensitive). It
can have multiple message context
property names.

The name of the attribute should be the
name to which you want to assign a
value; the value should be the actual
message context property name.

For example:

Name = MessageContext, values =

{aut hMet hod=or acl e. wsm i nt er nal . aut he
ntication. method,

endpoi nt =or acl e. j 2ee. ws. runti ne. endpo
int-url}

In the authorization phase, OWSM
retrieves the message context property
and assigns it to the name given in the
attribute name.

For example, the previous example might
resolve to:

aut hMet hod=USERNAME_TOKEN &
endpoi nt=http://l ocal host: 7001/
my Ser vi ce

Constants Constants are user-defined
attributes that OWSM does not
understand and passes "as is."

An Obligation named Enpl oyee is an
example of a constant.

ORACLE

2-49

Chapter 2

Overview of Fine-Grained Authorization Using Oracle Entitlements Server

Table 2-3 (Cont.) Attribute Types Supported for OES Policies

Attribute Description Required Format
Type
Implicit OWSM passes implicit attributes in - None required, they are always passed.

all authorization requests. You do
not perform any configuration to
pass them. The following implicit
attributes are always passed:

servi ceURL — The URL of the
web service.

servi ceNS — The namespace
of the web service.

client| P— The client's IP
address.

processi ngSt age — Whether
this is a request or response.
Possible values are request,
response, and fault.

i sSRequest Over SSL — Boolean.

True if the request is over one-
or two-way SSL.)

aut henti cati onMet hod — The
authentication method.
Possible values are SAML_SV,
KERBEROS, SAML_HCK,
X509_TOKEN_AUTHENTI CATI ON,
SAML_BEARER, and
USERNAME_TOKEN

request Ori gi n — Where the
request came from, internal or
external, as determined from
the VIRTUAL_HOST_TYPE
transport header.

clientSigni ngCert DN—
Either the X509 signing cert or
the client cert in two-way SSL.
operati onNane — The
operation name invoked by the
user.

san | ssuer — The SAML
issuer extracted from the
SAML assertion.

t ype — The type of the request

to OES. Values can be
request.lookup,
response.lookup, authorize or
mask. This attribute is always
sent.

You would typically use these constants
in a Condition in the OES console.

2.16.6 About the Guard Element

The OWSM OES authorization policies uses the or awsp: guar d element. It allows
the assertion to execute only if the result of the guard is true. That is, if the accessed
resource name and action match, only then OES authorization engine is called.

ORACLE

2-50

Chapter 2
Overview of Personally Identifiable Information

By default, resource name and action use the wildcard asterisk "*" and everything is
allowed. However, if you set a specific resource name, action, and constraint, that
requirement must be satisfied before any of the configuration properties and any OES
policies are considered.

The resource naming convention for guard differs from the OES standard naming
convention. The resource name for the guard must be in the form <wWebser vi ce_NS>/
<SERVI CE_NAME>.

2.17 Overview of Personally Identifiable Information

Personally Identifiable Information (PII) refers to Social Security numbers, addresses,
bank account numbers, and other similar information that is typically associated with
one specific user and must generally be protected.

OWSM provides a solution for protecting Pll when outside the control of a security
policy so that Pll is hidden in logs, in messages, in audits, and so forth.

* Overview of PIl Data

* About PIl Policy XPath Expressions
* When to Use the PII Policy

* Who Should Have Access to the PII

e About Additional Considerations for Unmarshalling

2.17.1 Overview of PIl Data

The OWSM WS-Security policies provide a way to selectively encrypt information
through message protection. However, there may be times when this information is
outside of the control of a security policy and not encrypted, such as when it is being
processed inside a SOA composite.

Pll data is described in the following topics:

* About PIl Data
e About the PII Security Policy

2.17.1.1 About PIl Data

ORACLE

Your business practices may require that information, and particularly PIl information,
be encrypted even as it flows within your applications. If this is true for your
environment, PIl information should remain encrypted as the message flows to various
components. For example, in the case of SOA, it means that PIl must be encrypted at
the entry point of a SOA composite and must be decrypted at the reference binding
exit point.

The oracl e/ pii _security_policy policy is provided to encrypt data for this purpose.

See "About Additional Considerations for Unmarshalling” for additional information
when unmarshalling non-string data.

2-51

Chapter 2
Overview of Personally Identifiable Information

Note:

Although the OWSM WS-Security policies provide a way to encrypt
information, this mechanism cannot be used to encrypt Pll data because
your applications might expect and depend on the information having a
specific XML structure. The OWSM policies add C pherData (http://

wawv. 3. or g/ TR/ xml enc- cor e/ #sec- Ci pher Dat a) elements to the XML structure,
which your applications might not expect.

2.17.1.2 About the PII Security Policy

The oracl e/ pii _security_policy contains the following settings and configuration
properties that specify exactly which PIl data you want to protect. You can set these
attributes when you attach a policy, and override them as required.

ORACLE

Note:

Local optimization (see "Using Local Optimization with OWSM Policies (SOA
Composites")) is off by default so that the oracl e/ pii _security_policy policy
is always enforced and decrypts Pll before leaving the SOA composite. Do
not turn local optimization on for the oracl e/ pii _security_policy policy
without understanding the ramifications.

See "About PII Policy XPath Expressions” for a description of how XPaths are used to
specify the Pl data.

encryption-algorithm — The data encryption algorithm, which must be AES/ CBC/
PKCS5Paddi ng.

algorithm — The key derivation algorithm, which must be PBKDF2.

Salt — A non-null and non-empty salt for key derivation. The default value is pii -
security.

Iteration — The iteration count for key derivation. The default is 1000.
Keysize — The size of the key for key derivation. The default is 128.

request.xpaths — A comma-separated list of XPaths for the request. Default value
is blank. For example, // ns2: Shi pToLocat i onl d.

request.namespaces — A comma-separated list of namespaces for the request,
where each namespace has a prefix and URI separated by the equals = sign.
Default value is blank.

response.xpaths —A comma-separated list of XPaths for the response. Default
value is blank. For example, // ns2: Shi pToLocat i onl d.

response.namespaces — A comma-separated list of namespaces, where each
namespace has a prefix and URI separated by the equals = sign. Default value is
blank.

2-52

http://www.w3.org/TR/xmlenc-core/#sec-CipherData
http://www.w3.org/TR/xmlenc-core/#sec-CipherData
http://www.w3.org/TR/xmlenc-core/#sec-CipherData

Chapter 2
Overview of Personally Identifiable Information

o csf.key — The oracl e/ pii _security_policy policy uses the password CSF key
attribute you specify to generate a symmetric key. This key is then used to encrypt
and decrypt the PIl data. Default value is pii - csf - key.

» reference.priority — See "Specifying the Priority of a Policy Attachment".

" Note:

The pii-security assertion must be the only assertion in a policy. You must
not add the pii-security assertion to a policy with any other assertion. If you
do so, the policy is invalid.

2.17.2 Example of How PII Data is Protected

ORACLE

It is important to protect PII with the oracl e/ pii _security_policy policy when outside
the control of a security policy.This is explained by the way of example.

Consider the Oracle Service Bus example shown in Figure 2-6. As shown in
Figure 2-6, the guiding principle for protecting Pll is as follows:

e A PIl policy attached at the service side (proxy service) must encrypt Pl after
receiving request and decrypt Pll before sending out a response.

e A PIl policy attached at the client side (business service) must decrypt PIl before
sending out request and encrypt after receiving a response.

Encrypting Pll data requires both entry and exit points: Pll data is encrypted before
entry and decrypted before exit.

Figure 2-6 PIl Encryption in Oracle Service Bus

Oracle Service Bus

Dracle_ Web WS-Security Oracle- Web
Services Proxy Business Services Web
UELECLEIA o — — — | Service Service — — — — [ERUELEFTI Service

Client Agent

WS-Security [T

The flow of control in Figure 2-6 is as follows:

1. The OWSM web service client signs and encrypts a client request and sends the
request to the proxy service.

2. To virtualize an external web service, you create an OSB proxy service that uses a
pipeline to connect to a business service. Therefore, you attach OWSM service
side policies to the proxy.

The OWSM Agent decrypts the message using the message protection policy.

3. Any PIl information would now potentially be vulnerable. To prevent that, the PII
policy encrypts the Pll in the message.

4. Oracle Service Bus assumes control of the message, and the proxy service
passes the request to the business service.

2-53

Chapter 2
Overview of Personally Identifiable Information

5. The business service accesses the message data, perhaps including the now-
encrypted PIl data, as needed.

6. The OWSM agent again applies the PIl policy and decrypts the Pl fields.

7. A business service is basically all the client configuration needed to call an
external service. Oracle Service Bus supports attaching OWSM client policies to a
business service.

The message protection policy is applied (signed, encrypted) and the message is
sent to the web service.

8. The process is reversed for the response back to the web service client.

2.17.3 About PII Policy XPath Expressions

ORACLE

You use XPath expressions to specify the PIl data to be protected.

More specifically, you use XPath expressions to specify exactly which elements you
want to protect. The XPath must end in an XPath text node.

If the result of the XPath is a text node, the contents of the text node are encrypted.
Empty text nodes (that is, containing all whitespace) are not encrypted or decrypted.

If any XPath returns multiple nodes, all of them are encrypted. If nothing is returned, it
is ignored.

The specified XPaths will be evaluated with the first element child of env: Body set as
the root node.

Assume that you use JDeveloper to view the following SOAP message:

<soap: Envel ope xm ns:soap="http://schemas. xm soap. or g/ soap/ envel ope/ ">
<soap: Body

xm ns:ns1="http://xn ns. exanpl e. conl apps/ prc/ po/ edi t Docunent / pur chaseOr der Ser vi ce/
types/">
<nsl:createPurchaseC der>

<nsl:createOrderEntry

xm ns: ns2="http://xm ns. exanpl e. conf apps/ pr ¢/ po/ edi t Docunent / pur chaseCr der Ser vi ce/ ">
<ns2: Document Styl el d>1</ ns2: Docunent Styl el d>
<ns2: Procur enment Bul d>204</ ns2: Procur ement Bul d>

<ns2: Buyer | d>100010026863783</ ns2: Buyer | d>

<ns2: Requi si ti oni ngBul d>204</ ns2: Requi si ti oni ngBul d>

<ns2: Suppl i er 1 d>559</ ns2: Suppl i er | d>

<ns2: Suppl i er Si t el d>5058</ ns2: Suppl i er Sitel d>

<ns2: Suppl i er Cont act | d>100000011552368</ ns2: Suppl i er Cont act | d>

<ns2: Approval Act i onCode>BYPASS</ ns2: Appr oval Acti onCode>

<ns2: Docunent Descri pti on>DO NOT TOUCH THI S ORDER (V15) </ ns2: Docunment Descri pti on>

<ns2: Pur chaseOr der Ent ryLi ne>

<ns2: Li neTypel d>1</ ns2: Li neTypel d>

<ns2:1tem d>199</ns2: I tem d>

<ns2: Quantity>10</ns2: Quantity>

<ns2: Uni t Of Measur eCode>Ea</ ns2: Uni t Of Measur eCode>

<ns2: Pur chaseOr der Ent r ySchedul e>

<ns2: Shi pToLocat i onl d>207</ ns2: Shi pToLocat i onl d>

<ns2: Shi pToOr gani zat i onl d>207</ ns2: Shi pToOr gani zat i onl d>

<ns2: NeedByDat e>2020- 12- 31</ ns2: NeedByDat e>

<ns2: PurchaseOrderEntryDistribution />

2-54

http://www.w3schools.com/xpath/xpath_syntax.asp

Chapter 2
Overview of Personally Identifiable Information

</ ns2: Pur chaseCr der Ent rySchedul e>
</ ns2: PurchaseOr der Ent ryLi ne>
</nsl:createCrderEntry>

</ nsl:creat ePurchaseO der >

</ soap: Body>

</ soap: Envel ope>

Some XPath examples are as follows:

* //ns2: ShipToLocationld

Use the // notation (descendant-or-self axis) to indicate that you want to search
the whole body for Shi pToLocat i onl ds. These XPaths require a complete document
search and are slower.

* /nsl:createPurchaseOrder/nsl: createO derEntry/ ns2: Buyerld

This XPath clearly specifies that you want to look at the cr eat ePur chaseOr der child
of the body, and then the creat eO der Ent ry child of the cr eat ePur chaseOr der, and
finally the Buyer I d child of createOrderEntry.

The PII policy requires XPath lists for both the request and response messages.

2.17.4 When to Use the PII Policy

ORACLE

You can use the oracl e/ pii _security_policy policy only in single-SOA composite use
cases, and uses cases where Pll is at the JCA binding.

Note:

Global Policy Attachment is not recommended with the oracl e/
pii_security policy policy.

Different usecases are explained in the following topics:

e Single SOA Composite Use Case
» Oracle Service Bus Proxy Service to Business Service Use Case
* PIl at the JCA Binding Use Case

" Note:

Fusion Middleware Control and JDeveloper control produce runtime
validation errors if you attach the pii _security policy policy to a non-
supported subject type.

With WLST, validation errors are generated if you attach the policy to a non-
supported subject type:

The web service configuration is invalid in this context because of the
following error: WM 01832 : PlII Policy oracle/pii_security _policy is not
supported on the Resource, as the PIl policy

is not supported on SubjectType : WS_SERVI CE

2-55

Chapter 2
Overview of Personally Identifiable Information

2.17.4.1 Single SOA Composite Use Case

You can attach the pii _security_policy policy only to a SOA composite and only to
protect PII within that composite. No other SOA use case is supported.

When you attach the pii _security_policy policy to a SOA composite, the PIl is
encrypted when a message enters the SOA composite and decrypted when exiting
from the composite at a SOA reference binding component. Specifically:

e Atthe service side (service binding), the pii _security_policy policy encrypts Pl
after receiving a request and decrypts Pll before sending out a response.

» Atthe client side (reference binding), the pii _security_policy policy decrypts PlII
before sending out a request and encrypts PIl after receiving a response.

< Note:

PIl data requires both entry and exit points: PII data is encrypted before entry
and decrypted before exit.

When you attach the pii _security policy policy at the client side, you must
also attach it at the service side, and vice versa. The encryption/decryption
mechanism requires both pieces to be in place.

As shown in Figure 2-7, the Pll remains encrypted as the message flows to various
components of the composite such as a BPEL, Oracle Mediator, and so forth.

Figure 2-7 Single SOA Composite Use Case

Incoming Message

ORACLE

OoORACLE’
SOA SUITE

Binding Binding

) Qutigoing Message
Interceptor | PlisecureMessage’\’ Composite Pl Secure Message Interceptor

Pll Encrvition Pl Decryption

Understanding important considerations when both Pll and Authorization Policy are
attached

If the pii _security_policy policy and an authorization policy are both attached to a
SOA composite, the authorization policy is executed before the Pll policy. Otherwise,
the pii _security_policy policy might encrypt the field to be used for authorization.

2-56

Chapter 2
Overview of Personally Identifiable Information

However, if the authorization policy is instead attached at the SOA component level,
and authorization requires a field that is encrypted by pii _security_policy,
authorization fails. This is not a supported use case.

2.17.4.2 Oracle Service Bus Proxy Service to Business Service Use Case

See "Hiding Personally Identifiable Information in Messages" in Developing Services
with Oracle Service Bus for information on how to attach oracl e/ pii _security policy to
Oracle Service Bus.

2.17.4.3 Pll at the JCA Binding Use Case

ORACLE

You can attach the PIl policy to JCA adapters for both SOA and Oracle Service Bus.

For OSB, see "Hiding Personally Identifiable Information in Messages" in Developing
Services with Oracle Service Bus for information on how to attach oracl e/
pii_security_policy to Oracle Service Bus.

The remainder of this section describes the SOA use case.

As described in "JCA Adapters", in Developing SOA Applications with Oracle SOA
Suite, JCA adapters enable you to integrate SOA services and references with
technologies such as databases and file systems. JCA adapters integrate with the JCA
binding component of the Oracle Fusion Middleware platform, thereby integrating with
other service engines and binding components.

Consider the JCA adapter PIl use case shown in Figure 2-8.

2-57

Chapter 2
Overview of Personally Identifiable Information

Figure 2-8 JCA Adapter Pll Use Case

Composite
PhYSiC?”CA al / Adapter ICA Binding (Service) X
endpoint Eal b
“native” |
' | Translate native Apply Pl policy '
' | datato DOM —_— (encryption) :
= onMessage i
| ol
i ek Mestpost) f
o SCA Component / Access/xform L
Service Engine (e.g. BPEL) payload i
. - R R ¥, [JF 1 To 1 1 B EREa i
Clear I -
“native” |
data 1| Translate from Apply Pll policy | 1!
" 1 | DOM to native €—— | (decryption) L
execute()
N Ll
'\ Adapter JCA Binding (Reference) ;

The composite includes an inbound service binding component (an inbound adapter),
a service component such as a BPEL process, and an outbound reference binding
component (an outbound adapter).

Note:

PII data requires both entry and exit points: PII data is encrypted before entry
and decrypted before exit.

When you attach the pii _security policy policy at the reference binding
side, you must also attach it at the service binding side, and vice versa. The
encryption/decryption mechanism requires both pieces to be in place.

In this use case, PIl is protected as follows:

» Service binding components provide the outside world with an entry point to the
SOA composite application.

ORACLE 2-58

Chapter 2
Overview of Personally Identifiable Information

At the service side (JCA binding), the pii _security_policy policy encrypts Pl after
receiving a request and decrypts PIl before sending out a response.

e The PIl remains encrypted as the message flows to various components of the
composite such as a BPEL, Oracle Mediator, and so forth.

» Reference binding components enable messages to be sent from the SOA
composite application to external services in the outside world.

At the client side (JCA binding (reference)), the pii_security_policy policy
decrypts PIl before sending out a request and encrypts PII after receiving a
response.

See Oracle SOA Composite Integration with Adapters for additional information on
how JCA adapters integrate with SOA environments.

2.17.5 Who Should Have Access to the PlII

As the administrator, you always have access to the keys used to encrypt the PIl and
you can reconfigure Pl encryption. Therefore, the PII policy does not protect data from
an administrator or any one else with these administrator privileges, and it is not
intended to do so.

However, as the administrator, you need to make sure that the encryption key and PlII
data are not visible in the following scenarios:

e In any kind of logs, including the OWSM message logs, the server diagnostic logs,
SOA message logs, and so forth. Logs are often copied and made available to
non-administrative users.

e In any screens that can be viewed by non-administrative users.

Such a user should not be able to see any PIl information. This user can view
logs, but the logs will have encrypted PII data, and this user will not be able to
view the key information required to decrypt them.

e Toroles such as "Operator”, "Monitor," and so forth. These roles should not be
able to access either the PII encryption keys or the Pll data, and should not be
able to access any log files that contain decrypted PII data.

2.17.6 About Additional Considerations for Unmarshalling

ORACLE

Unmarshalling converts an XML document to create a tree of Java program elements,
or objects, that represents the content and organization of the document that can be
accessed by your Java code. In the content tree, complex types are mapped to value
classes. Attribute declarations or elements with simple types are mapped to properties
or fields within the value class and you can access the values for them using get and
set methods.

Unmarshalling is managed by the JAXB binding framework.

After the PII data is encrypted, the original text in the message is replaced by an
encrypted string. However, if there are non-string data types (integer, date, and so
forth) in the encrypted string, any subsequent unmarshalling may break.

Before you implement the pii _security_policy policy, be aware of the implications for
unmarshalling: if unmarshalling might be involved, then only the string data type works
and others may break.

Unmarshalling can happen in SOA at the following bindings:

2-59

http://docs.oracle.com/javase/6/docs/api/javax/xml/bind/Unmarshaller.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/bind/Unmarshaller.html

Chapter 2
Understanding OAuth 2.0 for REST and SOAP Services and Clients

* EJB Adapters

* Legacy SDO EJB adapter

* ADF Adapter

» Direct bindings

* Rules engine

Unmarshalling can happen at the following SOA components:
* BPEL Entity Variable

* Spring service engine

Unmarshalling can happen in Oracle Service Bus at the following points:
e SOA direct bindings

 EJB transport

2.18 Understanding OAuth 2.0 for REST and SOAP
Services and Clients

Oracle Web Services Manager allows web service clients to interact with the Mobile
and Social OAuth 2.0 server implementation for both SOAP and REST web services,
for "2-legged" authorization.

For more information, see "Using OAuth2 with Oracle Web Services Manager" in
Oracle® Fusion Middleware Securing Web Services and Managing Policies with
Oracle Web Services Manager.

2.19 Understanding REST APIs for Managing Credentials
and Keystores

The credential and keystore management REST API provides endpoints for creating
and configuring credential stores, keystores, and trust stores for your domain or Web
services.

For more information, see Introduction to REST API in REST API for Managing
Credentials and Keystores with Oracle Web Services Manager.

ORACLE 2-60

Understanding the OWSM Policy
Framework

OWSM policy framework manages and secures web services consistently across your
organization.
OWSM policies are described in the following sections:

e Overview of OWSM Policy Framework

e Understanding Web Service Policies

e Overview of Building Web Service Policies Using Policy Assertions
e Understanding Policy Subjects

e Overview of Attaching Policies to Policy Subjects

* Understanding How Policies are Executed

e About OWSM Predefined Policies and Assertion Templates

e About Overriding the Security Policy Configuration

e About Recommended Naming Conventions for Documents Created in WSM
Repository

3.1 Overview of OWSM Policy Framework

Oracle Web Services Manager (OWSM) provides a policy framework to manage and
secure web services consistently across your organization. It provides capabilities to
build, enforce, run and monitor web service policies, such as security, reliable
messaging, MTOM, and addressing policies. OWSM can be used by both developers,
at design time, and system administrators in production environments.

OWSM policy framework includes the following topics:

* About OWSM Policy Framework Components

* Understanding OWSM Agent and Policy Manager Interaction

e About OWSM Agent and Policy Manager Characteristics

* Understanding the OWSM Agent and Policy Manager Request Flow
* About OWSM Configuration Artifacts

3.1.1 About OWSM Policy Framework Components

ORACLE

The OWSM policy framework is built using the WS-Policy standard.

The OWSM Policy Enforcement Point (PEP) leverages Oracle Platform Security
Service (OPSS) and the Oracle WebLogic Server authenticator for authentication and
permission-based authorization, as shown in Figure 3-1.

3-1

Chapter 3
Overview of OWSM Policy Framework

Figure 3-1 OWSM Policy Framework Leverages OPSS and Oracle WebLogic
Server Security

Oracle WSM
Policy Enforcement Point

!

Oracle Platform
Security Services

!

Oracle WebLogic Server
Security Authenticator

The OWSM Policy Manager, Agent, Repository, and Enterprise Manager form the
Policy Framework.

* Policy Manager reads and writes policies including predefined and custom
policies from the OWSM Repository. In Oracle SOA installations it is typically
deployed on the Oracle SOA Service Infrastructure managed servers. You can
deploy the Policy Manager on separate Managed Servers.

* Agent is responsible for policy enforcement, execution and gathering of runtime
statistics. The OWSM Agent is available on all Oracle Fusion Middleware
Managed servers. It is configured on the same server as the application it protects.

The OWSM Agent is made up of a set of jar files, which are a part of underlying
web service stack. It does not have any session state. The Agent maintains an in-
memory policy cache, which is populated at the Agent startup time. It does not use
any JTA or JMS.

The OWSM Agent is made up of the following two pieces:

— Policy Access Point (PAP) communicates with Policy Manager. The Agent
communicates with the Policy Manager through EJB invocations.

— Policy Interceptor is generated when a web service is deployed and
activated, or when a policy is attached to a web service using Enterprise
Manager. If new web services are protected using OWSM, an additional
instance of the interceptor is generated for each new web service. Interceptor
is responsible for policy enforcement.

 OWSM Repository Policies are stored in the OWSM Repository. It is typically
backed by an Oracle database. For high availability purposes, Oracle
recommends using an Oracle RAC database as the back end for OWSM
Repository.

* Enterprise Manager is used to configure OWSM. It also displays different web
services metrics gathered by OWSM.

3.1.2 Understanding OWSM Agent and Policy Manager Interaction

The OWSM Agent expects the OWSM Policy Manager to be deployed on at least one
node of the domain.

ORACLE 3-2

ORACLE

Chapter 3
Overview of OWSM Policy Framework

A high-level view of the interaction between the OWSM Agent and the OWSM Policy
Manager is shown in Figure 3-2.

Figure 3-2 OWSM Agent and Policy Manager Interaction

Web Service Client

v

WebLogic Sarver
Web Application
Browser =
|
4 WebLogic Server ¢

EM Control (UI) Oracle WSM

=P Folicy Manager

The Policy Manager is a stateless application which does not perform any caching.
There is no special application level startup sequence performed when the Managed
Server where the Policy Manager is deployed starts up. The Policy Manager
communicates with the OWSM Repository to retrieve policies. The OWSM Repository
can be stored in a database to provide MDS high availability.

The OWSM agent has an auto-discovery feature to locate and connect to an OWSM
Policy Manager. See "Configuring OWSM Policy Access Using Fusion Middleware
Control" in Securing Web Services and Managing Policies with Oracle Web Services
Manager for additional information.

When the Agent connects to the Policy Manager, it downloads and caches the latest
revision of policies. Once the Agent is up and running, it periodically attempts a cache
refresh at a configurable interval. The default time is every 10 minutes.

For high availability scenarios, if an OWSM application is targeted to multiple nodes, it
should be targeted to a cluster rather than to individual Managed Servers.

If a Managed Server has web services deployed that are protected by OWSM, and the
OWSM Agent is not able to communicate with any of the Policy Managers at startup
time, web service invocation fails.

3-3

Chapter 3
Overview of OWSM Policy Framework

3.1.3 About OWSM Agent and Policy Manager Characteristics

The OWSM Agent is a set of JAR files available on every Oracle Fusion Middleware
Managed server in a web services stack.

The Policy Manager is contained in the wsm pm ear file. None of the services provided
by OWSM are singletons, therefore, it can run in full active-active mode. OWSM
services can be validated by http://host: port/wsm pm val i dat or . This validator
displays OWSM policies, assertion templates, and the contribution details such as
build label and creation timestamp.

The OWSM Agent and Oracle Enterprise Manager interact with the Policy Manager
using the EJB interfaces. The EJBs used in OWSM are stateless and can be deployed
in a clustered environment. Therefore, there is no requirement to enable state
replication in the cluster.

The OWSM Agent and Policy Manager need not be co-located. However, the Agent
expects the Policy Manager to be deployed on at least one node of the domain. The
OWSM Agent has capabilities to auto-discover Policy Managers deployed in the
domain.

External Dependencies
The OWSM Policy Manager depends on the following components:

OWSM Repository for storing the policies
« OWSM Agent depends only on OWSM Policy Manager.

Both components must be available for OWSM to start and run properly.

3.1.4 Understanding the OWSM Agent and Policy Manager Request

Flow

When a protected web service is accessed by a client application, the OWSM Agent
gueries the policy cache and enforces the applicable policies. Based on the policies,
the request is authenticated, encrypted, decrypted, authorized or logged. It does not
connect to the Policy Manager for any of these operations.

Runtime availability of the Policy Manager does not affect the functioning of the
OWSM Agent, unless there is a configuration change, such as new web services,
which are protected by OWSM, being deployed, or new policies attached to existing
web services. If there is such a configuration change, then the OWSM Agent must
connect to the Policy Manager to get the applicable policies. If it cannot connect after
initial startup, it continues to operate based on the cached policies.

3.1.5 About OWSM Configuration Artifacts

ORACLE

The OWSM domain configuration settings are available from Oracle Enterprise
Manager Fusion Middleware Control and are specific to each OWSM Agent
installation.

As described in "Managing OWSM Domain Configuration" in Securing Web Services
and Managing Policies with Oracle Web Services Manager, among other settings you
can specify:

3-4

Chapter 3
Understanding Web Service Policies

» Policy Manager URL (if configured)
* Cache Refresh Interval
» Clock skew, to allow for differences in system clock of the client and servers

Other configuration options at the container level, such as data sources for OWSM
Repository location, and application targeting, are maintained as part of Oracle
WebLogic Server Domain configuration, and are synchronized across a cluster of
Oracle WebLogic Servers by Oracle WebLogic Server core infrastructure.

3.2 Understanding Web Service Policies

A web service provider may define conditions (or policies) under which a service is to
be provided. The WS-Policy framework enables you to specify policy information that
can be processed by web service applications, such as OWSM.

A policy is expressed as one or more policy assertions representing a web service's
capabilities or requirements. For example, a policy assertion may stipulate that a
request to a web service be encrypted. Likewise, a policy assertion can define the
maximum message size that a web service can accept.

WS-Policy expressions are associated with various web services components using
the WS-PolicyAttachment specification. WS-Policy information can be embedded in a
WSDL file, thus making it easy to expose web service policies through a UDDI
registry.

Policies can be attached directly to endpoints or globally to a range of endpoints of the
same type, regardless of the deployment state using policy sets.

Oracle Fusion Middleware 12c¢ supports the categories of policies defined in Table 3-1.
The policies are part of the OWSM enterprise policy framework which allows policies
to be centrally created and managed.

Table 3-1 Policy Categories

Policy Category

Description Applies to SOAP, REST,
or Both

Addressing

WS-Addressing policies that verify that SOAP SOAP
messages include WS-Addressing headers in

conformance with the WS-Addressing specification.
Transport-level data is included in the XML message

rather than relying on the network-level transport to

convey this information. For more information on the
WS-Addressing, see "Understanding Web Services
Addressing".

ORACLE

3-5

Chapter 3
Understanding Web Service Policies

Table 3-1 (Cont.) Policy Categories

Policy Category Description Applies to SOAP, REST,
or Both
Atomic Transactions WebLogic web services enable interoperability with SOAP

other external transaction processing systems, such as
WebSphere, Microsoft .NET, and so on, through the
support of the following specifications:

e WS-AtomicTransaction Version (WS-AT) 1.0, 1.1,
and 1.2: http://docs. oasi s- open. or g/ ws-t x/
wst x- wsat - 1. 2- spec- cs- 01/ wst x- wsat - 1. 2- spec-
cs-01. htm

« WS-Coordination Version 1.0, 1.1, and 1.2:
http://docs. oasi s-open. or g/ ws- t X/ wst x-
wscoor - 1. 2- spec- ¢s- 01/ wst x- wscoor - 1. 2- spec-
cs-01. htn

For more information about atomic transactions, see

"Using Web Services Atomic Transactions" in

Developing Oracle Infrastructure Web Services.

Configuration Configuration policies that enable you to configure web SOAP
service features, such as Fast Infoset, schema
validation, persistence, and so on.

Management Management policies that log request, response, and SOAP

fault messages to a message log. Management policies
may include custom policies.

Message Transmission
Optimization Mechanism
(MTOM) Attachments

Binary content, such as an image in JPEG format, can SOAP
be passed between the client and the web service. In

order to be passed, the binary content is typically

inserted into an XML document as an

xsd: base64Bi nary string. Transmitting the binary

content in this format greatly increase the size of the

message sent over the wire and is expensive in terms

of the required processing space and time.

Using MTOM, binary content can be sent as a MIME
attachment, which reduces the transmission size on the
wire. The binary content is semantically part of the XML
document. Attaching an MTOM policy ensures that the
message is converted to a MIME attachment before it is
sent to the web service or client.

Reliable Messaging

Reliable messaging policies that implement the WS- SOAP
ReliableMessaging standard describes a wire-level

protocol that allows guaranteed delivery of SOAP

messages, and can maintain the order of sequence in

which a set of messages are delivered.

The technology can be used to ensure that messages
are delivered in the correct order. If a message is
delivered out of order, the receiving system can be
configured to guarantee that the messages will be
processed in the correct order. The system can also be
configured to deliver messages at least once, not more
than once, or exactly once. If a message is lost, the
sending system re-transmits the message until the
receiving system acknowledges it receipt. For more
information on WS-ReliableMessaging, see
"Understanding Web Services ReliableMessaging".

ORACLE

3-6

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html

Chapter 3

Overview of Building Web Service Policies Using Policy Assertions

Table 3-1 (Cont.) Policy Categories

Policy Category

Description

Applies to SOAP, REST,
or Both

Security

Security policies that implement the WS-Security 1.0
and 1.1 standards. They enforce message protection
(message integrity and message confidentiality), and
authentication and authorization of web service
requesters and providers. The following token profiles
are supported: username token, X.509 certificate,
Kerberos ticket, and Security Assertion Markup
Language (SAML) assertion. For more information
about web service security tokens, see "Understanding
Security Policies" and "Overview of Security Tokens".

Both

A subset of security policies
are supported for RESTful
web services, as described
in "Which OWSM Palicies
Are Supported for RESTful
Web Services?" in Securing
Web Services and
Managing Policies with
Oracle Web Services
Manager.

SOAP Over JMS Transport

Using SOAP over JMS transport, web services and
clients communicate using JMS destinations instead of
HTTP connections, offering the following benefits:

* Reliability

e Scalability

* Quality of service

For more information about using SOAP over JMS
transport, see "Using SOAP Over JMS Transport" in
Developing JAX-WS Web Services for Oracle
WebLogic Server.

SOAP

3.3 Overview of Building Web Service Policies Using Policy

Assertions

A web service policy is comprised of one or more policy assertions. A policy assertion
is the smallest unit of a policy that performs a specific action for the request and
response operations. Assertions, like policies, belong to one of the following
categories: Atomic Transactions, Configuration, Management, MTOM Attachments,
Reliable Messaging, Security, SOAP Over JMS Transport, and WS-Addressing.

For more information, refer to the following topics:

» About Building Web Service Policies Using Policy Assertions

e About Defining Multiple Policy Alternatives (OR Groups)

3.3.1 About Building Web Service Policies Using Policy Assertions

Policy assertions are chained together in a pipeline. The assertions in a policy are
executed on the request message and the response message, and the same set of
assertions are executed on both types of messages.

The assertions are executed in the order in which they appear in the pipeline.

ORACLE

3-7

ORACLE

Chapter 3
Overview of Building Web Service Policies Using Policy Assertions

Note:

See About Defining Multiple Policy Alternatives (OR Groups) to define
multiple alternatives for policy enforcement with an OR group.

Figure 3-3 illustrates a typical execution flow. For the request message, Assertion 1 is
executed first, followed by Assertion 2, and Assertion n. Although the same assertions
may be executed on the response message (if a response is returned at all), the
actions performed on the response message differ from the request message, and the
assertions are executed on the response message in reverse order. For the response
message in Figure 3-3, Assertion n is executed first, followed by Assertion 2, then
Assertion 1.

Figure 3-3 Policy Containing Assertions

Policy

REQUEST m—
Response 4

lv

Assertion 1 _."' Assertion 2 _.“. Assertion n -

For example, in Figure 3-4, the policy contains two assertions:

1. wssll-username-with-certificates—Built using the
wss1l username_t oken_with_nessage protection_service_tenpl ate, authenticates the
user based on credentials in the WS-Security UsernameToken SOAP header.

2. binding-authorization—Built using the bi ndi ng_aut hori zati on_t enpl at e, provides
simple role-based authorization for the request based on the authenticated subject
at the SOAP binding level.

Figure 3-4 Example Policy With Two Assertions

REUEST m— 'ﬁ—}
9 wss 11-username-with-certificates | hinding-authorization
Response | i—'

—
—

When the request message is sent to the web service, the assertions are executed in
the order shown. When the response message is returned to the client, the same
assertions are executed, but this time in reverse order. The behavior of the assertion
for the request message differs from the behavior for the response message. And, in
some instances, it is possible that nothing happens on the response. For example, in
the example above, the authorization assertion is only executed as part of the request.

3-8

Chapter 3
Overview of Building Web Service Policies Using Policy Assertions

3.3.2 About Defining Multiple Policy Alternatives (OR Groups)

ORACLE

To define multiple alternatives for policy enforcement, you can define a set of
assertions, called an OR group, within a service policy.

At run time, based on the assertions defined in the OR group on the service side, a
client has the flexibility to choose which one of the assertions to enforce.

For example, if a service-side policy defines an OR group that consists of the following
assertions:

e wssll-saml-with-certificates
e wssll-username-with-certificates

At run-time, the client can choose to enforce either the wss11-saml-with certificates
assertion OR wssl11-username-with-certificates assertion.

There is no limit to the number of assertions that can be included in an OR group.
Each assertion must be valid for the policy and should support the policy
requirements. For example, you should not include a log assertion in an OR group that
otherwise contains security assertions and that is designed to enforce security. In this
case, the log assertion would pass in the event the security assertions failed, resulting
in no security.

When defining the OR group, carefully consider the order in which the assertions are
added and the settings that are configured. For example, consider the following
scenario:

* Onthe client side, you have attached the
wss1ll username_token_with_message_protection_client_policy policy with
I ncl ude Ti mestanp enabled.

* On the service side, you have attached a custom OR group policy with two
wss1l username_t oken_with_nessage protection_service_tenpl ate assertions
defined, the first with I ncl ude Ti mest anp disabled and the second with | ncl ude
Ti mest anp enabled.

In this scenario, the first assertion will get executed and the response will be sent with
no timestamp. As a result, processing on the client side will fail because it is expecting
a timestamp. This type of situation can occur whenever a client policy assertion
expects a greater number of security requirements than the executed service policy
assertion.

The following predefined service policies contain OR groups:

e oracle/wss_sam _or_usernane_t oken_over_ssl _service_pol i cy—For more
information, see "oracle/wss_saml_or_username_token_over_ssl_service_policy"
in Securing Web Services and Managing Policies with Oracle Web Services
Manager.

e oracle/wss_sam _or_usernane_token_servi ce_pol i cy—For more information, see
"oracle/wss_saml_or_username_token_service_policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

e oracle/wssll sam _or_username_token_with_nmessage_protection_service_policy—
For more information, see "oracle/
wssll saml_or_username_token_ with_message_protection_service_policy" in

3-9

Chapter 3
Understanding Policy Subjects

Securing Web Services and Managing Policies with Oracle Web Services
Manager.

e oracle/nulti_token_rest_service poli cy—For more information, see "oracle/
multi_token_rest_service_policy" in Securing Web Services and Managing Policies
with Oracle Web Services Manager.

e oracle/multi_token_over_ssl rest_service_pol i cy—For more information, see
"oracle/multi_token_over_ssl_rest_service_policy" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

3.4 Understanding Policy Subjects

A policy subject is the target resource to which policies are attached. There are
different policies for different types of resources (for example, a web service or client).

As defined in the Web Services Policy 1.5 Framework specification, at http://
wwmv, w3. or g/ TR/ ws- pol i cy/, a policy subject is an entity (for example, an endpoint,
message, resource, or operation) with which a policy can be associated.

Table 3-2 lists the policy subjects to which you can attach OWSM policies. In addition,
the table lists equivalent name that is used to identify the policy subject type using
WLST, and the valid resource scope for each policy subject type. Resource scopes
are applicable when you are creating policy sets, as described in "Overview of Global
Policy Attachments Using Policy Sets". For details about how to specify resource
scopes in WLST, see "Defining the Resource Scope" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Table 3-2 Policy Subjects and Resource Scopes

Policy Subject WLST Name Valid Resource Scope (Policy Sets)
ADF RESTful Web Service Connection rest-connection Reserved for future use.

Reserved for future Domain

use. e Application

e Application Module or Connection
* Resource Path

ADF SOAP Web Service Connection ws-connection . Domain Name

* Application Name

* Application Module Name or
Connection Name

. Reference or Web Service Client
Name
e Port Name

ESS SOAP JOB Callback job-callback » Domain Name

e Application Name
* ESS Job Name

ESS SOAP JOB Invoker job-invoke ¢ Domain Name

e Application Name
e ESS Job Name

OSB JCA Business Service business-jca-service e Domain Name

* Application Name
. Resource Path

ORACLE

3-10

http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/ws-policy/

Table 3-2 (Cont.) Policy Subjects and Resource Scopes

Chapter 3
Understanding Policy Subjects

Policy Subject

WLST Name

Valid Resource Scope (Policy Sets)

OSB JCA Proxy Service

proxy-jca-service

* Domain Name
e Application Name
¢ Resource Path

OSB RESTful Business Service

biz-rest-service

. Domain Name
e Application Name
* Resource Path

OSB RESTful Proxy Service

proxy-rest-reference

. Domain Name
e Application Name
* Resource Path

OSB SOAP Business Service

biz-service

. Domain Name
e Application Name
* Resource Path

OSB SOAP Proxy Service

proxy-service

. Domain Name
e Application Name
. Resource Path

RESTful Client

rest-client

« Domain Name
e Application Name

e Application Module Name or
Connection Name

. Resource Path

RESTful Resource

rest-resource

. Domain Name

e Application Name

e Application Module Name or
Connection Name

. RESTful Application, Service, or
Web Service Endpoint Name

. Resource Path

SOA Component

SOA JCA Reference

sca-jca-reference

e« Domain Name

* Application Name

* SOA Partition Name

¢ SOA Composite Name

. RESTful Application, Service, or
Web Service Endpoint Name

SOA JCA Service

sca-jca-service

« Domain Name

e Application Name

* SOA Partition Name

¢ SOA Composite Name

. Reference or Web Service Client
Name

SOA RESTful Reference

sca-rest-reference

e Domain Name

e Application Name

¢ SOA Partition Name

« SOA Composite Name

« Reference or Web Service Client
Name

ORACLE

3-11

Chapter 3
Overview of Attaching Policies to Policy Subjects

Table 3-2 (Cont.) Policy Subjects and Resource Scopes

__|]
Policy Subject WLST Name Valid Resource Scope (Policy Sets)

SOA RESTful Service sca-rest-service « Domain Name
e Application Name
* SOA Partition Name
¢ SOA Composite Name

* RESTful Application, Service, or
Web Service Endpoint Name

SOA SOAP Reference sca-reference - Domain Name
e Application Name
¢ SOA Partition Name
¢ SOA Composite Name
» Reference or Web Service Client
Name
e Port Name
¢ Callback Interface Name

SOA SOAP Service sca-service . Domain Name
* Application Name
* SOA Partition Name
¢ SOA Composite Name

. RESTful Application, Service, or
Web Service Endpoint Name

. Port Name

SOAP Asynchronous Callback Client ws-callback e Application Name

e Application Module Name or
Connection Name

e Callback Interface Name

SOAP Web Service ws-service e Application Name
e Application Module Name or
Connection Name
. RESTful Application, Service, or
Web Service Endpoint Name
. Port Name

SOAP Web Service Client ws-client e Application Name

e Application Module Name or
Connection Name

¢ Reference or Web Service Client
Name

* Port Name

e Java EE Web Service Client EJB
Name

3.5 Overview of Attaching Policies to Policy Subjects

Different types of policies and process of attaching different policies to an application
is explained in the following sections.

» About Attaching Policies to Policy Subjects
* About Direct Policy Attachment

ORACLE 3-12

Chapter 3
Overview of Attaching Policies to Policy Subjects

* Overview of Global Policy Attachments Using Policy Sets

3.5.1 About Attaching Policies to Policy Subjects

OWSM places a limit on the number of policies that may be attached to a subject
based on the categories of the assertions that they contain. To support the attachment
of policies both directly and externally (globally), OWSM determines the effective set of
policies for a subject by taking into account the category of assertions within each
policy, the priority of policy attachments, run-time constraints, and the status (enabled/
disabled) of any policy attachments.

There are two points in the life cycle of an application in which you can attach policies:
at design time and post deployment.

e At design time, you can attach OWSM policies to applications programmatically.
You typically do this using your favorite IDE, such as Oracle JDeveloper. Oracle
JDeveloper automates ADF and SOA client policy attachment. For more
information, see "Developing and Securing Web Services" in Developing
Applications with Oracle JDeveloper

e Post-deployment, you can attach OWSM policies to Oracle Infrastructure web
Services, RESTful web services, and Java EE web services using Oracle
Enterprise Manager Fusion Middleware Control or WLST. This provides the most
power and flexibility because it moves web service security to the control of the
security administrator. Polices can be attached directly to an endpoint, or globally
to a range of endpoints using policy sets.

For more information about effective policy calculation for an endpoint, see "How the
Effective Set of Policies is Calculated" in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

Regardless of whether you attach a policy at design time or post-deployment, the
client-side policy must be the equivalent of the one associated with the web service. If
the two policy files are different, and there is a conflict in the assertions contained in
the files, then the invocation of the web service operation returns an error.

For more information about attaching policies, see "Attaching Policies" in Securing
Web Services and Managing Policies with Oracle Web Services Manager.

3.5.2 About Direct Policy Attachment

After the application is deployed, you can attach OWSM policies directly to policy
subjects, such as SOAP web service and client endpoints and RESTful resources and
clients.

For a complete list of policy subjects to which you can attach policies, see
"Understanding Policy Subjects". For details about how to attach policies directly, see
"Attaching Policies Directly Using Fusion Middleware Control" and "Attaching Policies
to Web Services and Clients Using WLST".

3.5.3 Overview of Global Policy Attachments Using Policy Sets

A policy set, which can contain multiple policy references, is an abstract representation
that provides a means to attach policies globally to a range of endpoints of the same
type, regardless of the deployment state.

ORACLE 3-13

Chapter 3
Overview of Attaching Policies to Policy Subjects

You can create and manage policy sets using both Fusion Middleware Control and the
WebLogic Scripting Tool (WLST).

* Understanding Global Policy Attachments Using Policy Sets
» About Subject Types and Scope of Resources

» Understanding Typical Uses for Global Policy Attachments

3.5.3.1 Understanding Global Policy Attachments Using Policy Sets

ORACLE

Global policy attachments (using policy sets) are supported for SOAP and RESTful-
based Oracle Infrastructure and Java EE web services and clients. However, non-
security policies are ignored when the effective policy set for Java EE endpoints is
calculated. Global policy attachments are not supported for standalone Java EE
clients.

Attaching policies globally using policy sets allows an administrator to ensure that all
subjects are secured in situations where the developer, assembler, or deployer did not
explicitly specify the policies to be attached. For example, if the developer did not
specify policies in annotations or include policy references in deployment descriptors,
then the deployer must attach them or chance a potential security risk. By attaching
policies globally to a set of subjects by type, the administrator can ensure that all
subjects are secured by default independent of, and even prior to, deployment. The
administrator can, for example, define a policy set that attaches a security policy to all
web service endpoints in a domain. In this case, any new services added to the
domain automatically inherit the security configuration defined in the policy set. For
more information, see "Determining the Secure Status of an Endpoint" in Securing
Web Services and Managing Policies with Oracle Web Services Manager.

Policies attached globally using policy sets also provide the following:

* The ability to specify configuration overrides on a referenced policy that apply to all
endpoints to which the policy set is scoped. For information about configuring
overrides, see "Overriding Configuration Properties for Globally Attached Policies"
in Securing Web Services and Managing Policies with Oracle Web Services
Manager.

* The ability to specify a run-time constraint that determines the context in which the
policy set is relevant. For example, you can specify that a service use message
protection when communicating with external clients only since the message may
be transmitted over insecure public networks. However, when communicating with
internal clients on a trusted network, message protection may not be required. For
more information, see "Specifying Run-time Constraints in Policy Sets" Securing
Web Services and Managing Policies with Oracle Web Services Manager.

You can disable a globally attached policy for a specific endpoint or range of endpoints
using predefined policies that do not enforce any behavior that are included with your
Fusion Middleware installation. When you attach one of these policies to a specific
endpoint, or at a lower scope, you disable the behavior of the policy that was attached
globally at the higher scope. For more information, see "Disabling a Globally Attached
Policy" in Securing Web Services and Managing Policies with Oracle Web Services
Manager.

Policy set definitions are stored as separate XML documents in the OWSM Repository
under the / pol i cyset s/ gl obal directory.

3-14

Chapter 3
Understanding How Policies are Executed

3.5.3.2 About Subject Types and Scope of Resources

Table 3-2 lists the policy subjects to which you can attach OWSM policies and the
valid resource scopes. For more information, see "Defining the Type and Scope of
Resources for Globally Attached Policies" in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

Note:

When creating policy sets, the SOAP Web Service and SOAP Web Service
Client subject types refer both to Oracle Infrastructure web services and
clients and to Java EE web services and clients.

3.5.3.3 Understanding Typical Uses for Global Policy Attachments

Typical scenarios in which attaching policies globally can be useful include:

All subjects of a given type need to be protected with the same set of policies,
each using their default configuration. For example, all services in a domain need
to be protected with authentication (using SAML or Username token) and WSS11
message protection. You can create a policy set to attach the appropriate policy to
all services in the domain.

A subset of subjects need to be protected with the same set of policies, but these
policies are different from the domain-wide default. For example, all services need
to be protected with authentication (using SAML or Username token), but the
General Ledger application also needs stronger WSS11 message protection. You
create one policy set that attaches an authentication policy to all services, and a
second policy set that attaches the stronger message protection policy to the
General Ledger application.

A single subject needs to be protected by a policy in a category that is not already
covered by the current set of global policy attachments and both policies need to
be applied. For example, a highly-sensitive financials-based service endpoint
requires permission for a client to access it in addition to the authentication and
message protection required. In this case, directly attach the authorization policy
to the financials-based service endpoint. The direct attachment is combined with
the policies attached globally and both policies will be enforced.

An application has been deployed with design-time policy attachments and needs
to convert to using global policy attachments. The ni grat eAtt achnents WLST
command can be used to migrate the attachments. For more information, see
"Migrating Direct Policy Attachments to Global Policy Attachments" in Securing
Web Services and Managing Policies with Oracle Web Services Manager.

3.6 Understanding How Policies are Executed

When a request is made from a service consumer (also known as a client) to a service
provider (also known as a web service), the request is intercepted by one or more
policy interceptors. These interceptors execute policies that are attached to the client
and to the web service. There are several types of interceptors that together form a
policy interceptor chain. Each interceptor executes policies of the same type. The

ORACLE

3-15

ORACLE

Chapter 3
Understanding How Policies are Executed

security interceptor intercepts and executes security policies, the MTOM interceptor
intercepts and executes MTOM policies, and so on.

Policies attached to a client or web service are executed in a specific order via the
Policy Interceptor Pipeline, as shown in Figure 3-5.

" Note:

A subset of OWSM policies are supported for RESTful web services, as
described in Which OWSM Policies Are Supported for RESTful Web
Services? in Securing Web Services and Managing Policies with Oracle Web
Services Manager. REST uses only the security policy interceptor type
shown in Figure 3-5.

Figure 3-5 Policy Interceptors Acting on Messages Between a Client and Web
Service (SOAP)

Policy Interceptor Pipeline

Request

Client Management| Context Atomic Reliable Addressing Security MTOM

Transaction | Messaging
Response

" ﬂﬂwo;kL

Policy interceptor Pipeline

. . Reliable Atomic
Fast Infoset MTOM Security Addressing MEX Massaging | Transacticn Context |Management |

Request |
>

Web
Service

Response

As shown in the previous figure, when a client or a web service initiates a message
over SOAP, whether it be a request message in the case of a client, or a response
message in the case of a web service, the policies are intercepted in the following
order: Management, Context (for SOAP request and response message handling),
Atomic Transaction, Reliable Messaging, Addressing, Security, and MTOM. When a
client or a web service receives a message over SOAP, that is, a request message in
the case of the web service or a response message in the case of a client, the policies
are executed in the reverse order and include additional interceptors: Fast Infoset,
MTOM, Security, Addressing, MEX, Reliable Messaging, Atomic Transactions,
Context, and Management.

A message may have one or more policies attached. Not every message will contain
each type of policy. A message may contain a security policy and an MTOM policy. In
this instance, the security interceptor executes the security policy, and the MTOM
interceptor executes the MTOM policy. In this example, the other interceptors are not
involved in processing the message.

The following describes how the policy interceptors act on messages between the
client and the web service over SOAP. (Refer to Figure 3-5.)

1. The client sends a request message to a web service.

2. The policy interceptors intercept and execute the policies attached to the client.
After the client policies are successfully executed, the request message is sent to
the web service.

3-16

Chapter 3
About OWSM Predefined Policies and Assertion Templates

3. The request message is intercepted by policy interceptors which then execute any
service policies that are attached to the web service.

4. After the service policies are successfully executed, the request message is
passed to the web service. The web service executes the request message and
returns a response message.

5. The response message is intercepted by the policy interceptors which execute the
service policies attached to the web service. After the service policies are
successfully executed, the response message is sent to the client.

6. The response message is intercepted by the policy interceptors which execute any
client policies attached to the client.

7. After the client policies are successfully executed, the response message is
passed to the client.

3.7 About OWSM Predefined Policies and Assertion
Templates

ORACLE

There is a set of predefined policies and assertion templates that are automatically
available when you install Oracle Fusion Middleware. The predefined policies are
based on common best practice policy patterns used in customer deployments.

" Note:

The installed predefined policies and assertion templates are read only.

You can immediately begin attaching these predefined policies to your web services or
clients. You can configure the predefined policies or create a new policy by making a
copy of one of the predefined policies.

Predefined policies are constructed using assertions based on predefined assertion
templates. You can create new assertion templates, as required.

For more information about the predefined policies and assertion templates, see:

* "Predefined Policies" in Securing Web Services and Managing Policies with
Oracle Web Services Manager

* "Predefined Assertion Templates" in Securing Web Services and Managing
Policies with Oracle Web Services Manager

Note:

WS-SecurityPolicy defines scenarios that describe examples of how to set
up WS-SecurityPolicy policies for several security token types described in
the WS-Security specification (supporting both WS-Security 1.0 and 1.1).
The OWSM predefined policies support a subset of the WS-SecurityPolicy
scenarios that represents the most common customer use cases.

3-17

Chapter 3
About Overriding the Security Policy Configuration

3.8 About Overriding the Security Policy Configuration

Multiple web services or clients may use the same policy. Each may have different
policy configuration requirements such as username and password.

OWSM policy configuration override enables you to update the configuration on a per
service or client basis without creating new policies for each. In this way, you can
create policies that define default configuration values and customize those values
based on your run-time requirements.

For example, you might specify the username and password when configuring a client
policy, as the information may vary from client to client.

For more information about overriding security policy configuration, see "Overriding
Policy Configuration Properties" in Securing Web Services and Managing Policies with
Oracle Web Services Manager.

You can define whether a configuration property can be overridden when creating
custom assertions, as described in "Creating Custom Assertions" in Developing
Extensible Applications for Oracle Web Services Manager.

3.9 About Recommended Naming Conventions for
Documents Created in WSM Repository

ORACLE

Oracle recommends that you encode as much information as possible into the name
of the policy, policy set, or assertion template so that you can tell, at a glance, what the
document does.

The valid characters for directory, policy, and assertion template names are:
* Uppercase and lowercase letters

* Numerals

e Currency symbol ($)

e Underscore ()

* Hyphen (-)
* Spaces
Note:

The first character in the name cannot be a hyphen or space.

For example, one of the predefined security policies that is delivered with Oracle
Fusion Middleware 12c¢ is named or acl e/

wss10_usernane_t oken_wi t h_nessage_protection_service_pol i cy. Figure 3-6 identifies
the different parts of this predefined policy name.

3-18

Chapter 3
About Recommended Naming Conventions for Documents Created in WSM Repository

Figure 3-6 Identifying the Different Parts of a Policy Name

oracle/wss10_username_token_with_message_protection_service_policy
| |

Path Authentication Policy
Location Token Type
Web
Services M
Standard pr;iﬁi?;,

The following convention is used to name the predefined policies. The parts of the

policy name are separated with an underscore character ().

» Path Location — All policies are identified by the directory in which the policy is
located. All predefined OWSM policies are in the oracl e directory. Oracle
recommends that you keep any policies that you create in a directory that is
separate from the or acl e directory in which the predefined policies are located.

* Web services Standard — If the policy uses a WS-Security standard, it is identified
with wss10 (WS-Security 1.0) or wss11 (WS-Security 1.1). Or it could just be set to
indicate that it is independent of WS-Security 1.0 or 1.1.

* Authentication token — If the policy authenticates users, then the type of token is
specified. The predefined options include:

— http_token — HTTP token

— kerberos_token — Kerberos token

— saml_token — SAML token

— username_token — Username and password token
— x509 token — X.509 certificate token

— jwt_token — JWTT token

— oauth2_token — Oauth token

You can also define custom authentication tokens.

» Transport security — If the policy requires that the message be sent over a secure
transport layer, then the token name is followed by over_ssl, for example,
wss_http_token_over_ssl _client_tenplate.

e Message protection — If the policy also provides message confidentiality and
message integrity, then this is indicated using the phrase
with_message_protection as in Figure 3-6.

e Policy Type — Indicates the type of policy or assertion template— client or service.
Use the term policy to indicate that it is a policy, or template to indicate that it is an
assertion template. For example, there are predefined policy and template
assertions that are distinguished, as follows:
wss10_nmessage_protection_service_policy
wss10_message_protection_service_tenplate

Whatever conventions you adopt, Oracle recommends you take some time to consider

how to name your policies. This will make it easier for you to keep track of your

policies as your enterprise grows and you create new policies.
ORACLE 3-19

Chapter 3
About Recommended Naming Conventions for Documents Created in WSM Repository

It is recommended that you keep any policies you create in a directory that is separate
from the oracle directory where the predefined policies are located. You can organize

your policies at the root level, in a directory other than oracle, or in subdirectories. For
example, all of the following are valid:

* wssl1l0_nessage_protection_service_policy
e oracl e/ hg/wss10_nessage_protection_service_policy

* hg/wss10_nessage_protection_service_policy

" Note:

Use of the prefix "oracl e_" in the policy name (for example,
oracl e_wss_http_t oken_service_policy) is not recommended as a best

practice.

ORACLE 3-20

Web Service Security Standards

This appendix summarizes the security standards for Oracle Infrastructure Web
Services.

For a complete list of standards supported for Oracle Infrastructure Web services, see
"Supported Standards" in Developing Oracle Infrastructure Web Services.

Security Standards is explained in detail in the following topic:

e Security Standards

A.1 Security Standards

Security standards are implemented in nhon-XML frameworks at the transport level,
and in XML frameworks at the application level.

Table A-1 lists the standards that are key to providing secure and manageable SOA
environments at both the transport and application levels.

For a complete list and descriptions of standards for WebLogic Web services, see
"Features and Standards Supported by WebLogic Web Services" in Understanding
WebLogic Web Services for Oracle WebLogic Server.

Table A-1 Web Services Standards and Specification URLs
]

Standard Description and Specification URL

Web Services Oracle considers interoperability of Web services platforms to be more important than
Interoperability providing support for all possible edge cases of the Web services specifications. Oracle
Organization—Basic complies with the following specification from the Web Services Interoperability
Security Profile Organization and considers it to be the baseline for Web services interoperability.

For more information, see:

» Basic Security Profile 1.0 Specification: htt p: / / www. ws-i . or g/ Profil es/
Basi cSecurityProfile-1.0.htm

Transport Layer Security Secure Sockets Layer (SSL), also known as Transport Layer Security (TLS), is the
—SSL most widely used transport-layer data-communication protocol.

For more information, see:

e "Understanding Transport-level and Application-level Security"
e SSL30:http://tools.ietf.org/htnm/rfc6101

XML Encryption The XML encryption specification describes a process for encrypting data and
(Confidentiality) representing the result in XML.

For more information, see:

* "About Message Encryption"

e XML Encryption Syntax and Processing Specification: http://www.w3.org/TR/
xmlenc-core/

ORACLE A-1

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://tools.ietf.org/html/rfc6101
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-core/

Appendix A
Security Standards

Table A-1 (Cont.) Web Services Standards and Specification URLs
]

Standard

Description and Specification URL

XML Signature (Integrity,

The XML Signature specification describes signature processing rules and syntax. XML

Authenticity) Signature binds the sender's identity (or "signing entity") to an XML document. The
document is signed using the sender's private key; the signature is verified using the
sender's public key.

For more information, see:
e "About Message Signing (XML Signature)”
XML Signature WG Specification: htt ps: // www. w3. or g/ Si gnat ur e/
WS-Security Web Services Security (WS-Security) specifies SOAP security extensions that provide

confidentiality using XML Encryption and data integrity using XML Signature. WS-
Security also includes profiles that specify how to insert different types of binary and
XML security tokens in WS-Security headers for authentication and authorization
purposes.

For more information, see:

* "Understanding Security Policies"
* OASIS Web Services Security (WSS) TC Specification: htt p: / / ww. oasi s-
open. or g/ commi ttees/tc_hone. php?wg_abbr ev=wss

Username Token

The username token carries basic authentication information. The user name-t oken
element propagates username and password information to authenticate the message.

For more information, see:
e "About the Username Token"
* Web Services Security UsernameToken Profile 1.0 Specification: http://

docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss- user nane- t oken-
profile-1.0.pdf

X.509 Certificate

An X.509 digital certificate is a signed data structure designed to send a public key to a
receiving party. A certificate includes standard fields such as certificate ID, issuer's
Distinguished Name (DN), validity period, owner's DN, owner's public key, and so on.
For more information, see:

e "About the X.509 Certificate"

* Web Services Security X.509 Certificate Token Profile Specification: htt ps: //
docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss- x509- t oken-
profile-1.0. pdf

Kerberos Token

Kerberos token is a cross-platform authentication and single sign-on system. The
Kerberos protocol provides mutual authentication between two entities relying on a
shared secret (symmetric keys).
For more information, see:
* "About the Kerberos Token"
* Web Services SecurityKerberos Token Profile 1.1 Specification: http: //
WM. 0asi s- open. or g/ conmi tt ees/ downl oad. php/ 16788/ wss-v1. 1- spec- os-
Ker ber osTokenProf i | e. pdf

SAML Token

The Security Assertion Markup Language (SAML) is an open framework for sharing
security information over the Internet through XML documents.

For more information, see:

* "About the SAML Token"

* Web Services Security SAML Token Profile Specification: htt p: //docs. oasi s-
open. or g/ wss/ oasi s-wss- sani -t oken-profile-1.0. pdf

ORACLE

A-2

http://www.w3.org/Signature/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

Appendix A
Security Standards

Table A-1 (Cont.) Web Services Standards and Specification URLs
]

Standard

Description and Specification URL

WS-Policy

A Web service provider may define conditions (or policies) under which a service is to
be provided. The WS-Policy framework enables one to specify policy information that
can be processed by web services applications, such as Oracle WSM.
For more information, see:
e "Understanding Web Service Policies”
* Web Services Policy 1.2 - Framework (WS-Policy) Specification: http://

www. W3. or g/ Subni ssi on/ WS- Pol i cy/

WS-SecurityPolicy

WS-SecurityPolicy defines a set of security policy assertions used in the context of the
WS-Policy framework. WS-SecurityPolicy assertions describe how messages are
secured on a communication path.

For more information, see:
e "Understanding Security Policies"

* WS-SecurityPolicy 1.2 Specification: htt p: // docs. oasi s- open. or g/ ws- Sx/ ws-
securitypolicy/ 200702/ ws-securitypolicy-1.2-spec-o0s.htni

Web Services
Addressing (WS-
Addressing)

SOAP does not provide a standard way to specify where a message is going or how
responses or faults are returned. WS-Addressing provides an XML framework for
identifying web services endpoints and for securing end-to-end endpoint identification in
messages.

For more information, see:

* "Understanding Web Services Addressing"

* Web Services Addressing 1.0 - Core Specification: htt p: // www. w3. or g/ TR/ ws-
addr-core/

WS-Trust

Defines extensions to WS-Security that provide a framework for requesting and issuing
security tokens, and to broker trust relationships. WS-Trust extensions provide methods
for issuing, renewing, and validating security tokens.
For more information, see:
* "Understanding Web Services Trust"
* WS-Trust 1.3 Specification: htt p: // docs. oasi s- open. or g/ ws- sx/ ws-trust/

vl 3/ws-trust.htm

WS-ReliableMessaging

WS-ReliableMessaging (WS-RM) defines a framework for identifying and managing the
reliable delivery of messages between Web services endpoints.
For more information, see:
* "Using Web Services Reliable Messaging" in Oracle Fusion Middleware
Developer's Guide for Oracle Infrastructure Web Services
* Web Services Reliable Messaging Specification: htt p: // docs. oasi s-
open. or g/ ws-rx/ wsrnf 200702/ wsr m 1. 1- spec- 0s-01-el. htm

WS-SecureConversation

The Web Services Secure Conversation Language (WS-SecureConversation) is built
on top of the WS-Security and WS-Policy models to provide secure communication
between services. This specification defines mechanisms for establishing and sharing
security contexts, and deriving keys from security contexts, to enable a secure
conversation

For more information, see:

» WS-SecureConversation 1.4 Specification: htt p: // docs. oasi s- open. or g/ ws-
sx/ ws- secur econver sation/vl. 4/ ws- secur econver sation. ht m

ORACLE

A-3

http://www.w3.org/Submission/WS-Policy/
http://www.w3.org/Submission/WS-Policy/
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-core/
http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.html
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01-e1.html
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01-e1.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/ws-secureconversation.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/ws-secureconversation.html

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.2.1.3.0)
	New and Changed Features for 12c (12.2.1.2.0)
	New and Changed Features for 12c (12.2.1.1.0)

	1 Introducing Oracle Web Services Manager
	1.1 Overview of Oracle Web Services Manager
	1.2 Overview of Oracle Web Services Manager Features
	1.3 Overview of Oracle Web Service Manager Architecture

	2 Understanding Web Service Security Concepts
	2.1 About Web Service Security
	2.2 Understanding Transport-level and Application-level Security
	2.3 Understanding Authentication
	2.3.1 About Digest Authentication

	2.4 Understanding Authorization
	2.5 Overview of Message Protection
	2.5.1 Understanding Message Protection
	2.5.2 About Message Encryption
	2.5.3 About Message Signing (XML Signature)

	2.6 Overview of the Roles of Keys and Certificates in Security and Authentication
	2.6.1 About Private Keys and Certificates
	2.6.2 Understanding How Different Security Policies Use Private Keys and Certificates
	2.6.2.1 Overview of Message Protection Policy Types
	2.6.2.1.1 About SSL Policies
	2.6.2.1.2 About wss11 Policies
	2.6.2.1.3 About wss10 Policies

	2.6.2.2 Overview of Authentication Token Policy Types
	2.6.2.2.1 About the Username Token
	2.6.2.2.2 About the Kerberos Token
	2.6.2.2.3 About the X.509 Certificate Token
	2.6.2.2.4 About the SAML Sender Vouches Token
	2.6.2.2.5 About SAML Bearer and SAML HOK Tokens from an STS

	2.6.3 How OWSM Locates Keystore and Key Passwords for the JKS Keystore
	2.6.4 About Private Keys and Certificates Configuration for SSL Policies
	2.6.5 About Setting up Private Keys and Certificates for Message Protection Policies
	2.6.5.1 Understanding Sample Basic Configuration
	2.6.5.2 About Advanced Setup Considerations

	2.7 Understanding How OWSM Uses the Credential Store
	2.8 Understanding Security Policies
	2.9 Overview of Security Tokens
	2.9.1 Understanding Security Tokens
	2.9.2 About the Username Token
	2.9.3 About the X.509 Certificate
	2.9.4 About the Kerberos Token
	2.9.5 About the SAML Token

	2.10 Understanding Secure Attachments
	2.11 Overview of Secure Conversation
	2.11.1 About Secure Conversation
	2.11.2 Overview of WS-SecureConversation Usage
	2.11.2.1 When to Use WS-Secure Conversation
	2.11.2.2 Benefits of WS-SecureConversation
	2.11.2.3 About WS-SecureConversation With WS-ReliableMessaging

	2.11.3 WS-SecureConversation Architecture
	2.11.4 When to Use WS-SecureConversation
	2.11.5 When To Use Re-Authentication
	2.11.6 About Setting the Bootstrap Mode
	2.11.7 Overview of Persistence
	2.11.7.1 About Default Domain-Wide Persistence Implementation
	2.11.7.2 About Client- and Web Service-Specific Persistence Implementation

	2.12 Overview of the Kerberos Protocol
	2.12.1 Understanding the Kerberos Protocol
	2.12.2 Understanding Credential Delegation in Kerberos
	2.12.3 Understanding Kerberos and SPNEGO
	2.12.4 About Kerberos and WS-SecureConversation Derived Keys

	2.13 Understanding Web Services Addressing
	2.14 Understanding Web Services Trust
	2.15 Understanding Web Services ReliableMessaging
	2.16 Overview of Fine-Grained Authorization Using Oracle Entitlements Server
	2.16.1 References for OES Reading
	2.16.2 Overview of OES Integration
	2.16.2.1 OES Integration: The Big Picture
	2.16.2.2 Data Masking
	2.16.2.3 About XACML Obligations
	2.16.2.4 Overview of OES Fine- and Coarse-Grained Authorization
	2.16.2.4.1 OES Fine-Grained (Obligations)
	2.16.2.4.2 Fine-Grained with SAML
	2.16.2.4.3 OES Coarse-Grained Authorization

	2.16.3 About OWSM OES Policies
	2.16.4 Overview of Resource Mapping and Naming
	2.16.4.1 Resource Mapping and Naming
	2.16.4.2 Example of OES Policies

	2.16.5 How Attributes Are Processed
	2.16.6 About the Guard Element

	2.17 Overview of Personally Identifiable Information
	2.17.1 Overview of PII Data
	2.17.1.1 About PII Data
	2.17.1.2 About the PII Security Policy

	2.17.2 Example of How PII Data is Protected
	2.17.3 About PII Policy XPath Expressions
	2.17.4 When to Use the PII Policy
	2.17.4.1 Single SOA Composite Use Case
	2.17.4.2 Oracle Service Bus Proxy Service to Business Service Use Case
	2.17.4.3 PII at the JCA Binding Use Case

	2.17.5 Who Should Have Access to the PII
	2.17.6 About Additional Considerations for Unmarshalling

	2.18 Understanding OAuth 2.0 for REST and SOAP Services and Clients
	2.19 Understanding REST APIs for Managing Credentials and Keystores

	3 Understanding the OWSM Policy Framework
	3.1 Overview of OWSM Policy Framework
	3.1.1 About OWSM Policy Framework Components
	3.1.2 Understanding OWSM Agent and Policy Manager Interaction
	3.1.3 About OWSM Agent and Policy Manager Characteristics
	3.1.4 Understanding the OWSM Agent and Policy Manager Request Flow
	3.1.5 About OWSM Configuration Artifacts

	3.2 Understanding Web Service Policies
	3.3 Overview of Building Web Service Policies Using Policy Assertions
	3.3.1 About Building Web Service Policies Using Policy Assertions
	3.3.2 About Defining Multiple Policy Alternatives (OR Groups)

	3.4 Understanding Policy Subjects
	3.5 Overview of Attaching Policies to Policy Subjects
	3.5.1 About Attaching Policies to Policy Subjects
	3.5.2 About Direct Policy Attachment
	3.5.3 Overview of Global Policy Attachments Using Policy Sets
	3.5.3.1 Understanding Global Policy Attachments Using Policy Sets
	3.5.3.2 About Subject Types and Scope of Resources
	3.5.3.3 Understanding Typical Uses for Global Policy Attachments

	3.6 Understanding How Policies are Executed
	3.7 About OWSM Predefined Policies and Assertion Templates
	3.8 About Overriding the Security Policy Configuration
	3.9 About Recommended Naming Conventions for Documents Created in WSM Repository

	A Web Service Security Standards
	A.1 Security Standards

