
Oracle Linux
DTrace Tutorial

E50705-15
September 2022

Oracle Linux DTrace Tutorial,

E50705-15

Copyright © 2013, 2022, Oracle and/or its affiliates.

Contents

 Preface

Conventions vi

Documentation Accessibility vi

Access to Oracle Support for Accessibility vi

Diversity and Inclusion vi

1 Introducing DTrace

About This Tutorial 1-1

About DTrace 1-2

About DTrace Providers 1-3

Preparing to Install and Configure DTrace 1-5

Using Automatically Loaded DTrace Modules 1-6

Manually Loading DTrace Modules 1-7

Example: Displaying Probes for a Provider 1-7

Exercise: Enabling and Listing DTrace Probes 1-8

Solution to Exercise: Enabling and Listing DTrace Probes 1-8

Running a Simple DTrace Program 1-9

Example: Simple D Program That Uses the BEGIN Probe (hello.d) 1-9

Exercise: Using the END Probe 1-10

Solution to Exercise and Example: Using the END Probe 1-10

2 Tracing Operating System Behavior

Tracing Process Creation 2-1

Example: Monitoring the System as Programs Are Executed (execcalls.d) 2-1

Exercise: Suppressing Verbose Output From DTrace 2-2

Solution to Exercise: Suppressing Verbose Output From DTrace 2-2

Tracing System Calls 2-2

Example: Recording open() System Calls on a System (syscalls.d) 2-2

Exercise: Using the printf() Function to Format Output 2-3

Solution to Exercise: Using the printf() Function to Format Output 2-4

Performing an Action at Specified Intervals 2-4

iii

Example: Using tick.d 2-4

Exercise: Using tick Probes 2-5

Solution to Exercise and Example: Using tick Probes 2-5

Example: Modified Version of tick.d 2-6

Using Predicates to Select Actions 2-6

Example: Using daterun.d 2-7

Example: Listing Available syscall Provider Probes 2-7

Exercise: Using syscall Probes 2-8

Solution to Exercise: Using syscall Probes 2-8

Timing Events on a System 2-8

Example: Monitoring read() System Call Duration (readtrace.d) 2-8

Exercise: Timing System Calls 2-9

Solution to Exercise: Timing System Calls 2-10

Exercise: Timing All System Calls for cp (calltrace.d) 2-10

Solution to Exercise: Timing All System Calls for cp (calltrace.d) 2-10

Tracing Parent and Child Processes 2-11

Example: Using proc Probes to Report Activity on a System (activity.d) 2-11

Exercise: Using a Predicate to Control the Execution of an Action 2-13

Solution to Exercise: Using a Predicate to Control the Execution of an Action 2-13

Example: Recording fork() and exec() Activity for a Specified Program (activity1.d) 2-13

Simple Data Aggregations 2-14

Example: Counting the Number of write() System Calls Invoked by Processes 2-15

Example: Counting the Number of read() and write() System Calls 2-15

Exercise: Counting System Calls Over a Fixed Period 2-15

Solution to Exercise and Example: Counting Write, Read, and Open System Calls
Over 100 Seconds (countcalls.d) 2-15

Example: Counting System Calls Invoked by a Process (countsyscalls.d) 2-16

Exercise: Tracing Processes That Are Run by a User 2-17

Solution to Exercise and Example: Counting Programs Invoked by a Specified User
(countprogs.d) 2-17

Example: Counting the Number of Times a Program Reads From Different Files in 10
Seconds (fdscount.d) 2-18

Exercise: Counting Context Switches on a System 2-19

Solution to Exercise and Example: Counting Context Switches on a System 2-19

Working With More Complex Data Aggregations 2-20

Example: Displaying the Distribution of Read Sizes Resulting From a Command 2-20

Example: Displaying the Distribution of I/O Throughput for Block Devices (diskact.d) 2-21

Exercise: Displaying Read and Write I/O Throughput Separately 2-22

Solution to Exercise: Displaying Read and Write I/O Throughput Separately 2-23

Example: Displaying Cumulative Read and Write Activity Across a File System Device
(fsact) 2-24

Displaying System Call Errors 2-26

iv

Example: Displaying System Call Errors (errno.d) 2-26

Exercise: Displaying More Information About System Call Errors 2-27

Solution to Exercise: Displaying More Information About System Call Errors 2-27

Example: Modified Version of errno.d Displaying Error Names (displayerrno.d) 2-27

3 Tracing User-Space Applications

Preparing for Tracing User-Space Applications 3-1

Example: Changing the Mode of the DTrace Helper Device 3-1

Sample Application 3-2

Description and Format of the makefile File 3-2

Description of the primelib.h Source File 3-2

Description of the primelib.c Source File 3-3

Description of the primain.c Source File 3-3

Compiling the Program and Running the prime Executable 3-4

Adding USDT Probes to an Application 3-5

Exercise: Creating a dprime.d File 3-5

Solution to Exercise: Creating a dprime.d File 3-6

Example: Creating a .h File From a dprime.d File 3-6

Exercise: Directing makefile to Re-Create the dprime.h File 3-8

Solution to Exercise: Directing makefile to Re-Create the dprime.h File 3-8

Example: Testing the Program 3-8

Using USDT Probes 3-9

Example: Using simpleTimeProbe.d to Show the Elapsed Time Between Two Probes 3-10

Example: Using timeTweenprobes.d to Show the Elapsed Time Between Each Probe 3-11

4 Going Further With DTrace

v

Preface

Oracle Linux: DTrace Tutorial provides examples of how you can use the features of
the Dynamic Tracing (DTrace) tool to examine the behavior of the operating system
and user-space programs.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis,
or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands
within a paragraph, URLs, code in
examples, text that appears on the screen,
or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle
Accessibility Conformance Report at https://www.oracle.com/corporate/accessibility/
templates/t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit https://www.oracle.com/corporate/
accessibility/learning-support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our

Preface

vi

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-tutorial/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

products and documentation. We are also mindful of the necessity to maintain compatibility
with our customers' existing technologies and the need to ensure continuity of service as
Oracle's offerings and industry standards evolve. Because of these technical constraints, our
effort to remove insensitive terms is ongoing and will take time and external cooperation.

Preface

vii

1
Introducing DTrace

This chapter introduces the dynamic tracing (DTrace) facility of Oracle Linux. You can use
DTrace to examine the behavior of the operating system and of user-space programs that
have been instrumented with DTrace probes. The Unbreakable Enterprise Kernel (UEK) build
is enabled to run DTrace. UEK is the kernel that is compiled for use on Oracle Linux. You
could run a Linux kernel other than UEK on Oracle Linux, but DTrace would most likely not be
enabled and available, as UEK is the kernel that is included with Oracle Linux.

Note that more recent versions of UEK often have better DTrace functionality than earlier
versions. The largest set of DTrace features and improvements are available on the latest
DTrace-enabled kernels.

This tutorial assumes that you are using UEK on the x86_64 architecture. Note that UEK
releases for any other architectures might not include support for all of the providers that are
discussed in this tutorial.

About This Tutorial
This tutorial includes a variety of DTrace scripts and describes different ways in which you
can use DTrace. Several examples have additional exercises that offer further practice in
using DTrace. Each exercise provides an estimate of the time that you should allow to
complete it. Depending on your level of programming knowledge, you might need more or
less time. You should already have a good understanding of Linux administration and system
programming, and broad experience using a programming language, such as C or C++, and
a scripting language, such as Python. If you are not familiar with terms such as system call,
type, cast, signal, struct, or pointer, you might have difficulty in understanding some of the
examples or completing some of the exercises in this tutorial. However, each exercise
provides a sample solution in case you do get stuck. You are encouraged to experiment with
the examples to develop your skills at creating DTrace scripts.

Caution:

To run the examples and perform the exercises in this tutorial, you need to have
root access to a system. Only the root user or a user with sudo access to run
commands as root can use the dtrace utility. As root, you have total power over
a system and so have total responsibility for that system. Note that although DTrace
is designed so that you can use it safely without needing to worry about corrupting
the operating system or other processes, there are ways to circumvent the built-in
safety measures.

To minimize risk, perform the examples and exercises in this tutorial on a system
other than a production system.

The examples in this tutorial demonstrate the different ways that you can perform dynamic
tracing of your system: by entering a simple D program as an argument to dtrace on the
command line, by using the dtrace command to run a script that contains a D program, or

1-1

by using an executable D script that contains a hashbang (#! or shebang) invocation
of dtrace. When you create your own D programs, you can choose which method
best suits your needs.

About DTrace
DTrace is a comprehensive dynamic tracing facility that was first developed for use on
the Solaris operating system (now known as Oracle Solaris) and subsequently ported
to Oracle Linux. You can use DTrace to explore the operation of your system to better
understand how it works, to track down performance problems across many layers of
software, or to locate the causes of aberrant behavior.

Using DTrace, you can record data at previously instrumented places of interest, which
are referred to as probes, in kernel and user-space programs. A probe is a location to
which DTrace can bind a request to perform a set of actions, such as recording a stack
trace, a timestamp, or the argument to a function. Probes function like programmable
sensors that record information. When a probe is triggered, DTrace gathers data that
you have designated in a D script and reports this data back to you.

Using DTrace's D programming language, you can query the system probes to provide
immediate and concise answers to any number of questions that you might formulate.

A D program describes the actions that occur if one or more specified probes is
triggered. A probe is uniquely specified by the name of the DTrace provider that
publishes the probe, the name of the module, library, or user-space program in which
the probe is located, the name of the function in which the probe is located, and the
name of the probe itself, which usually describes some operation or functionality that
you can trace. Because you do not need to specify probes exactly, this allows DTrace
to perform the same action for a number of different probes. Full and explicit
representation of a single probe in the D language takes the form:

PROVIDER:MODULE:FUNCTION:NAME

When you use the dtrace command to run a D program, you invoke the compiler for
the D language. When DTrace has compiled your D program into a safe, intermediate
form, it sends it to the DTrace module in the operating system kernel for execution.
The DTrace module activates the probes that your program specifies and executes the
associated actions when your probes fire. DTrace handles any runtime errors that
might occur during your D program's execution, including dividing by zero,
dereferencing invalid memory, and so on, and reports them to you.

Chapter 1
About DTrace

1-2

Note:

Modules Primer

There are two kinds of modules that are frequently referenced in most, if not all,
detailed discussions of DTrace on Oracle Linux. To avoid confusion, you must
identify which kind of module is being discussed with any mention of a module. The
context usually gives plenty of clues, if you have knowledge of these kinds of
modules.

The module that is being discussed in the sequence
PROVIDER:MODULE:FUNCTION:NAME refers to a module in the sense that it is a
distinct, orderly component that is used by DTrace to reference and represent areas
of code. You can specify that a DTrace module reference point DTrace to some set
of code or functionality. Output from a dtrace command uses MODULE to convey
that some activity has occurred in such an area of code in the kernel or in a user-
space program. This type of module can simply be referred to as a DTrace module.

A second and very different meaning for the term module is a Linux kernel module.
The Linux kernel is divided into different functional components that are called
modules: these modules might be loaded and unloaded separately from each other.
The output of the lsmod command shows which Linux kernel modules are loaded
on the system. These modules are referred to as Linux kernel modules, or within
the context of discussing only Linux, simply kernel modules.

The following are two additional variations of other module references:

• Some Linux kernel modules that are specific to DTrace must be present to use
DTrace on a Linux system. These particular kernel modules are specifically
referenced as dtrace kernel modules. See the table in About DTrace Providers
for a list of providers that are available from specific dtrace kernel modules.

• DTrace probes must be compiled into any kernel module in order for DTrace to
monitor the activity in the kernel module. However, kernel modules with DTrace
probes are not dtrace kernel modules, rather, they are referred to as DTrace
enabled kernel modules. All kernel modules that can be traced by DTrace
implicitly are DTrace enabled kernel modules and therefore are not typically
referred to explicitly as DTrace enabled kernel modules, but with the shorthand,
kernel modules.

Unless you explicitly permit DTrace to perform potentially destructive actions, you cannot
construct an unsafe program that would cause DTrace to inadvertently damage either the
operating system or any process that is running on your system. These safety features
enable you to use DTrace in a production environment without worrying about crashing or
corrupting your system. If you make a programming mistake, DTrace reports the error and
deactivates your program's probes. You can then correct your program and try again.

For more information about using DTrace, see the Oracle Linux: DTrace Reference Guide.

About DTrace Providers
The following table lists the providers that are included with the Oracle Linux implementation
of DTrace and the kernel modules that include the providers.

Chapter 1
About DTrace Providers

1-3

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/

Provider dtrace Kernel Module Description

dtrace dtrace Provides probes that relate
to DTrace itself, such as
BEGIN, ERROR, and END. You
can use these probes to
initialize DTrace's state
before tracing begins,
process its state after
tracing has completed, and
handle unexpected
execution errors in other
probes.

fbt fbt Supports function boundary
tracing (FBT) probes, which
are at the entry and exits of
kernel functions.

fasttrap fasttrap Supports user-space tracing
of DTrace-enabled
applications.

io sdt Provides probes that relate
to data input and output.
The io provider enables
quick exploration of
behavior observed through
I/O monitoring.

IP sdt Provides probes for the IP
protocol (both IPv4 and
IPv6).

lockstat sdt Provides probes for locking
events including: mutexes,
read-write locks, and
spinlock.

perf sdt Provides probes that
correspond to each perf
tracepoint, including typed
arguments.

proc sdt Provides probes for
monitoring process creation
and termination, LWP
creation and termination,
execution of new programs,
and signal handling.

profile profile Provides probes that are
associated with an
asynchronous interrupt
event that fires at a fixed
and specified time interval,
rather than with any
particular point of
execution. You can use these
probes to sample some
aspect of a system's state.

Chapter 1
About DTrace Providers

1-4

Provider dtrace Kernel Module Description

sched sdt Provides probes related to
CPU scheduling. Because
CPUs are the one resource
that all threads must
consume, the sched
provider is very useful for
understanding systemic
behavior.

syscall systrace Provides probes at the entry
to and return from every
system call. Because system
calls are the primary
interface between user-level
applications and the
operating system kernel,
these probes can offer you
an insight into the
interaction between
applications and the system.

TCP sdt Provides probes in the code
that implements the TCP
protocol, for both IPv4 and
IPv6.

UDP sdt Provides probes in the code
that implements the UDP
protocol, for both IPv4 and
IPv6.

SDT is a multi-provider, in that it implements multiple providers under the same provider.

The fasttrap provider is considered a meta-provider, which means it is a provider
framework. The fasttrap meta-provider is used to facilitate the creation of providers that are
instantiated for user-space processes.

See DTrace Providers in the Oracle Linux: DTrace Reference Guide for more information
about providers and their probes.

Preparing to Install and Configure DTrace

Note:

The DTrace package (dtrace-utils) is available from ULN. To ensure best results,
your system must be registered with ULN and should be installed with or updated to
the latest Oracle Linux release.

To install and configure DTrace, perform the following steps:

1. If your system is not already running the latest UEK version:

a. Update your system to the latest UEK release:

Chapter 1
Preparing to Install and Configure DTrace

1-5

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dtrace-ref-DTraceProviders.html
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/

yum update
b. Reboot the system and select the latest UEK version that is available in the

boot menu. Typically, this is the default kernel.

2. Install the DTrace utilities package:

yum install dtrace-utils

Using Automatically Loaded DTrace Modules

Note:

The following is a quick-start method for using DTrace kernel modules that
are automatically loaded. If you plan to manually load DTrace kernel
modules, see Manually Loading DTrace Modules for instructions.

DTrace automatically loads some dtrace kernel modules when the dtrace command
references the probes that are associated with a dtrace kernel module. You can use
this convenient method to load dtrace modules, rather than manually loading them.

To find out which modules are automatically loaded in this manner, use the following
command:

cat /etc/dtrace-modules
sdt
systrace
profile
fasttrap

Additional modules can be added to this list after it is determined that they are fully
tested.

To determine whether a particular module has been loaded in the Linux kernel, use the
lsmod command. For example, you would run the following command to determine
whether the sdt module is loaded:

lsmod | grep sdt

If the module is not loaded, the command most likely will result in no output. If the
module is loaded, the output is similar to the following:

sdt 20480 0
dtrace 151552 4 sdt,fasttrap,systrace,profile

Chapter 1
Preparing to Install and Configure DTrace

1-6

Manually Loading DTrace Modules

Note:

The following information describes how to manually load DTrace kernel modules. If
you plan to use DTrace kernel modules that are automatically loaded, you can skip
this section of the tutorial. See Using Automatically Loaded DTrace Modules.

To use DTrace providers, their supported kernel modules must be loaded each time the
kernel is booted.

If the dtrace kernel module is not already loaded, when the dtrace command is run, the
dtrace module and all of the modules that are listed in /etc/dtrace-modules are all loaded
automatically. However, if the dtrace kernel module is already loaded, the automatic kernel
module loading mechanism is not triggered.

You can load modules manually by using the modprobe command. For example, to use the
fbt kernel module if it is not in the default list, you would run the following command:

modprobe fbt

The modprobe action also loads the dtrace kernel module as a dependency so that a
subsequent dtrace command does not drive automatic loading of other dtrace modules
until the dtrace kernel module is no longer loaded. The drace kernel module will no longer be
loaded upon another boot of the system or after the manual removal of the dtrace kernel
modules.

The suggested practice is to use the dtrace -l command to trigger automatic module
loading and thereby also confirm basic dtrace functionality. Then, use the modprobe
command to load additional modules that are not in the default list, such as fbt, as needed.

Example: Displaying Probes for a Provider
The following example shows how you would display the probes for a provider, such as proc,
by using the dtrace command.

dtrace -l -P proc
 ID PROVIDER MODULE FUNCTION NAME
 855 proc vmlinux _do_fork lwp-create
 856 proc vmlinux _do_fork create
 883 proc vmlinux do_exit lwp-exit
 884 proc vmlinux do_exit exit
 931 proc vmlinux do_sigtimedwait signal-clear
 932 proc vmlinux __send_signal signal-send
 933 proc vmlinux __send_signal signal-discard
 941 proc vmlinux send_sigqueue signal-send
 944 proc vmlinux get_signal signal-handle
 1044 proc vmlinux schedule_tail start
 1045 proc vmlinux schedule_tail lwp-start
 1866 proc vmlinux do_execveat_common exec-failure
 1868 proc vmlinux do_execveat_common exec
 1870 proc vmlinux do_execveat_common exec-success

Chapter 1
Preparing to Install and Configure DTrace

1-7

The output shows the numeric identifier of the probe, the name of the probe provider,
the name of the probe module, the name of the function that contains the probe, and
the name of the probe itself.

The full name of a probe is PROVIDER:MODULE:FUNCTION:NAME, for example,
proc:vmlinux:_do_fork:create. If no ambiguity exists with other probes for the same
provider, you can usually omit the MODULE and FUNCTION elements when specifying a
probe. For example, you can refer to proc:vmlinux:_do_fork:create as
proc::_do_fork:create or proc:::create. If several probes match your specified
probe in a D program, the associated actions are performed for each probe.

These probes enable you to monitor how the system creates processes, executes
programs, and handles signals.

If you checked previously and the sdt module was not loaded, check again to see if
the dtrace command has loaded the module.

If the following message is displayed after running the dtrace -l -P proc
command (instead of output similar to the output in the previous example), it is an
indication that the module has not loaded:

No probe matches description

If the sdt module does not load automatically on a system with DTrace properly
installed, it is because another DTrace module was manually loaded by using the
modprobe command. Manually loading a DTrace module in this way effectively
prevents any other modules from being automatically loaded by the dtrace command
until the system is rebooted. In this instance, one workaround is to use the modprod
command to manually load the sdt module. When the module has successfully
loaded, you should see a probe listing similar to the output in Example: Displaying
Probes for a Provider when you re-issue the dtrace command.

Exercise: Enabling and Listing DTrace Probes
Try listing the probes of the syscall provider. Notice that both entry and return
probes are provided for each system call.

(Estimated completion time: 3 minutes)

Solution to Exercise: Enabling and Listing DTrace Probes
dtrace -l -P syscall
 ID PROVIDER MODULE FUNCTION NAME
 4 syscall vmlinux read entry
 5 syscall vmlinux read return
 6 syscall vmlinux write entry
 7 syscall vmlinux write return
 8 syscall vmlinux open entry
 9 syscall vmlinux open return
 10 syscall vmlinux close entry
 11 syscall vmlinux close return
...
 646 syscall vmlinux pkey_mprotect entry
 647 syscall vmlinux pkey_mprotect return
 648 syscall vmlinux pkey_alloc entry
 649 syscall vmlinux pkey_alloc return
 650 syscall vmlinux pkey_free entry

Chapter 1
Preparing to Install and Configure DTrace

1-8

 651 syscall vmlinux pkey_free return
 652 syscall vmlinux statx entry
 653 syscall vmlinux statx return
 654 syscall vmlinux waitfd entry
 655 syscall vmlinux waitfd return

Note:

The probe IDs numbers might differ from those on your system, depending on what
other providers are loaded.

Running a Simple DTrace Program
The following example shows how you would use a text editor to create a new file called
hello.d and then type a simple D program.

Example: Simple D Program That Uses the BEGIN Probe (hello.d)
/* hello.d -- A simple D program that uses the BEGIN probe */

BEGIN
{
 /* This is a C-style comment */
 trace("hello, world");
 exit(0);
}

A D program consists of a series of clauses, where each clause describes one or more
probes to enable, and an optional set of actions to perform when the probe fires. The actions
are listed as a series of statements enclosed in braces {} following the probe name. Each
statement ends with a semicolon (;).

In this example, the function trace directs DTrace to record the specified argument, the
string ”hello, world”, when the BEGIN probe fires, and then print it out. The function exit()
tells DTrace to cease tracing and exit the dtrace command.

The full name of the BEGIN probe is dtrace:::BEGIN. dtrace provides three probes:
dtrace:::BEGIN, dtrace:::END, and dtrace:::ERROR. Because these probe names are
unique to the dtrace provider, their names can be shortened to BEGIN, END, and ERROR.

When you have saved your program, you can run it by using the dtrace command with the
-s option, which specifies the name of the file that contains the D program:

dtrace -s hello.d
dtrace: script 'hello.d' matched 1 probe
CPU ID FUNCTION:NAME
 0 1 :BEGIN hello, world

DTrace interprets and runs the script. You will notice that in addition to the string
"hello,world", the default behavior of DTrace is to display information about the CPU on
which the script was running when a probe fired, the ID of the probe, the name of the function
that contains the probe, and the name of the probe itself. The function name is displayed as
blank for BEGIN, as DTrace provides this probe.

Chapter 1
Running a Simple DTrace Program

1-9

You can suppress the probe information in a number of different ways, for example, by
specifying the -q option:

dtrace -q -s hello.d
hello, world

Exercise: Using the END Probe
Copy the hello.d program to the file goodbye.d. Edit this file so that it traces the string
"goodbye, world" and uses the END probe instead of BEGIN. When you run this new
script, you need to type Ctrl-C to cause the probe to fire and exit dtrace.

(Estimated completion time: 5 minutes)

Solution to Exercise and Example: Using the END Probe

The following is an example of a simple D program that demonstrates the use of the
END probe:

/* goodbye.d -- Simple D program that demonstrates the END probe */

END
{
 trace("goodbye, world");
}

dtrace -s goodbye.d
dtrace: script 'goodbye.d' matched 1 probe
^C
CPU ID FUNCTION:NAME
 3 2 :END goodbye, world

dtrace -q -s ./goodbye.d
 ^C
goodbye, world

Chapter 1
Running a Simple DTrace Program

1-10

2
Tracing Operating System Behavior

This chapter provides examples of D programs that you can use to investigate what is
happening in the operating system.

Tracing Process Creation
The proc probes enable you to trace process creation and termination, execution of new
program images, and signal processing on a system. See proc Provider in the Oracle Linux:
DTrace Reference Guide for a description of the proc probes and their arguments.

Example: Monitoring the System as Programs Are Executed (execcalls.d)
The following example shows the D program, execcalls.d, which uses proc probes to
monitor the system as it executes process images:

/* execcalls.d -- Monitor the system as it executes programs */

proc::do_execveat_common:exec
{
 trace(stringof(args[0]));
}

The args[0] argument to the exec probe is set to the path name of the program that is being
executed. You use the stringof() function to convert the type from char * to the D type
string.

Note:

The sdt kernel module, which enables the proc provider probes, is most likely
already loaded on the test system. Or, if not already loaded, the sdt kernel module
will automatically load if you did not manually load a DTrace module since booting
the system. See Manually Loading DTrace Modules for details. In the following
example, the sdt kernel module needs to be manually loaded or it must be able to
automatically load for proper functionality.

Type the dtrace -s execcalls.d command to run the D program in one window. Then
start different programs from another window, while observing the output from dtrace in the
first window. To stop tracing after a few seconds have elapsed, type Ctrl-C in the window
that is running dtrace.

dtrace -s execcalls.d
dtrace: script 'execcalls.d' matched 1 probe
CPU ID FUNCTION:NAME
 1 1185 do_execveat_common:exec /usr/sbin/sshd
 0 1185 do_execveat_common:exec /usr/sbin/unix_chkpwd
 0 1185 do_execveat_common:exec /bin/bash

2-1

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dtrace-ref-DTraceProviders.html#dt_proc_prov
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/

 0 1185 do_execveat_common:exec /usr/bin/id
 0 1185 do_execveat_common:exec /usr/bin/hostname
 0 1185 do_execveat_common:exec /usr/bin/id
 0 1185 do_execveat_common:exec /usr/bin/id
 0 1185 do_execveat_common:exec /usr/bin/grep
 0 1185 do_execveat_common:exec /usr/bin/tty
 0 1185 do_execveat_common:exec /usr/bin/tput
 0 1185 do_execveat_common:exec /usr/bin/grep
 1 1185 do_execveat_common:exec /usr/sbin/unix_chkpwd
 1 1185 do_execveat_common:exec /usr/libexec/grepconf.sh
 1 1185 do_execveat_common:exec /usr/bin/dircolors
 0 1185 do_execveat_common:exec /usr/bin/ls
^C

The activity here shows a login to the same system (from another terminal) while the
script is running.

The probe proc::do_execveat_common:exec fires whenever the system executes a
new program and the associated action uses trace() to display the path name of the
program.

Exercise: Suppressing Verbose Output From DTrace
Run the execcalls.d program again, but this time add the -q option to suppress all
output except output from trace(). Notice how DTrace displays only what you traced
with trace().

(Estimated completion time: less than 5 minutes)

Solution to Exercise: Suppressing Verbose Output From DTrace
dtrace -q -s execcalls.d
/usr/bin/id/usr/bin/tput/usr/bin/dircolors/usr/bin/id/
usr/lib64/qt-3.3/bin/gnome-terminal/usr/local/bin/gnome-terminal
/usr/bin/gnome-terminal/bin/bash/usr/bin/id/bin/grep/bin/basename
/usr/bin/tty/bin/ps

Tracing System Calls
System calls are the interface between user programs and the kernel, which perform
operations on the programs' behalf.

The next example shows the next D program, syscalls.d, which uses syscall probes
to record open() system call activity on a system.

Example: Recording open() System Calls on a System (syscalls.d)
/* syscalls.d -- Record open() system calls on a system */

syscall::open:entry
{
 printf("%-16s %-16s\n",execname,copyinstr(arg0));
}

In this example, the printf() function is used to display the name of the executable
that is calling open() and the path name of the file that it is attempting to open.

Chapter 2
Tracing System Calls

2-2

Note:

Use the copyinstr() function to convert the first argument (arg0) in the open() call
to a string. Whenever a probe accesses a pointer to data in the address space of a
user process, you must use one of the copyin(), copyinstr(), or copyinto()
functions to copy the data from user space to a DTrace buffer in kernel space. In
this example, it is appropriate to use copyinstr(), as the pointer refers to a
character array. If the string is not null-terminated, you also need to specify the
length of the string to copyinstr(), for example, copyinstr(arg1, arg2), for a
system call such as write(). See User Process Tracing in the Oracle Linux:
DTrace Reference Guide.

The sdt kernel module, which enables the proc provider probes, is most likely
already loaded on the test system. Or, if not already loaded, the sdt kernel module
will automatically load if you did not manually load a DTrace module since booting
the system. See Manually Loading DTrace Modules for details.

In the following example, the sdt kernel module needs to be manually loaded or it must be
able to automatically load for proper functionality:

dtrace -q -s syscalls.d
udisks-daemon /dev/sr0
devkit-power-da /sys/devices/LNXSYSTM:00/.../PNP0C0A:00/power_supply/BAT0/present
devkit-power-da /sys/devices/LNXSYSTM:00/.../PNP0C0A:00/power_supply/BAT0/energy_now
devkit-power-da /sys/devices/LNXSYSTM:00/.../PNP0C0A:00/power_supply/BAT0/
voltage_max_design
devkit-power-da /sys/devices/LNXSYSTM:00/.../PNP0C0A:00/power_supply/BAT0/
voltage_min_design
devkit-power-da /sys/devices/LNXSYSTM:00/.../PNP0C0A:00/power_supply/BAT0/status
devkit-power-da /sys/devices/LNXSYSTM:00/.../PNP0C0A:00/power_supply/BAT0/current_now
devkit-power-da /sys/devices/LNXSYSTM:00/.../PNP0C0A:00/power_supply/BAT0/
voltage_now
VBoxService /var/run/utmp
firefox /home/guest/.mozilla/firefox/qeaojiol.default/sessionstore.js
firefox /home/guest/.mozilla/firefox/qeaojiol.default/sessionstore-1.js
firefox /home/guest/.mozilla/firefox/qeaojiol.default/sessionstore-1.js
^C

Exercise: Using the printf() Function to Format Output
Amend the arguments to the printf() function so that dtrace also prints the process ID
and user ID for the process. Use a conversion specifier such as %-4d.

See Output Formatting in the Oracle Linux: DTrace Reference Guide for a description of the
printf() function.

The process ID and user ID are available as the variables pid and uid. Use the BEGIN probe
to create a header for the output.

(Estimated completion time: 10 minutes)

Chapter 2
Tracing System Calls

2-3

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dtrace-ref-UserProcessTracing.html
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dtrace-ref-OutputFormatting.html
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/

Solution to Exercise: Using the printf() Function to Format Output
/* syscalls1.d -- Modified version of syscalls.d that displays more information
*/

BEGIN
{
 printf("%-6s %-4s %-16s %-16s\n","PID","UID","EXECNAME","FILENAME");
}

syscall::open:entry
{
 printf("%-6d %-4d %-16s %-16s\n",pid,uid, execname,copyinstr(arg0));
}

Note how this solution uses similar formatting strings to output the header and the
data.

dtrace -q -s syscalls1.d
PID UID EXECNAME FILENAME
3220 0 udisks-daemon /dev/sr0
2571 0 sendmail /proc/loadavg
3220 0 udisks-daemon /dev/sr0
2231 4 usb /dev/usblp0
2231 4 usb /dev/usb/lp0
2231 4 usb /dev/usb/usblp0
...
^C

Performing an Action at Specified Intervals
The profile provider includes tick probes that you can use to sample some aspect
of a system's state at regular intervals. Note that the profile kernel module must be
loaded to use these probes.

Example: Using tick.d

The following is an example of the tick.d program.

/* tick.d -- Perform an action at regular intervals */

BEGIN
{
 i = 0;
}

profile:::tick-1sec
{
 printf("i = %d\n",++i);
}

END
{
 trace(i);
}

Chapter 2
Performing an Action at Specified Intervals

2-4

In this example, the program declares and initializes the variable i when the D program
starts, increments the variable and prints its value once every second, and displays the final
value of i when the program exits.

When you run this program, it produces output that is similar to the following, until you type
Ctrl-C:

dtrace -s tick.d
dtrace: script 'tick.d' matched 3 probes
CPU ID FUNCTION:NAME
 1 5315 :tick-1sec i = 1

 1 5315 :tick-1sec i = 2

 1 5315 :tick-1sec i = 3

 1 5315 :tick-1sec i = 4

 1 5315 :tick-1sec i = 5

 1 5315 :tick-1sec i = 6

^C
 1 5315 :tick-1sec i = 7

 0 2 :END 7

To suppress all of the output except the output from printf() and trace(), specify the -q
option:

dtrace -q -s tick.d
i = 1
i = 2
i = 3
i = 4
^C
i = 5
5

Exercise: Using tick Probes
List the available profile provider probes. Experiment with using a different tick probe.
Replace the trace() call in END with a printf() call.

See profile Provider in the Oracle Linux: DTrace Reference Guide for a description of the
probes.

(Estimated completion time: 10 minutes)

Solution to Exercise and Example: Using tick Probes
dtrace -l -P profile
 ID PROVIDER MODULE FUNCTION NAME
 5 profile profile-97
 6 profile profile-199
 7 profile profile-499
 8 profile profile-997
 9 profile profile-1999
 10 profile profile-4001

Chapter 2
Performing an Action at Specified Intervals

2-5

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dtrace-ref-DTraceProviders.html#dt_profile_prov
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/

 11 profile profile-4999
 12 profile tick-1
 13 profile tick-10
 14 profile tick-100
 15 profile tick-500
 16 profile tick-1000
 17 profile tick-5000
5315 profile tick-1sec
5316 profile tick-10sec

Example: Modified Version of tick.d
/* tick1.d -- Modified version of tick.d */

BEGIN
{
 i = 0;
}

/* tick-500ms fires every 500 milliseconds */
profile:::tick-500ms
{
 printf("i = %d\n",++i);
}

END
{
 printf("\nFinal value of i = %d\n",i);
}

This example uses the tick-500ms probe, which fires twice per second.

dtrace -s tick1.d
dtrace: script 'tick1.d' matched 3 probes
CPU ID FUNCTION:NAME
 2 642 :tick-500ms i = 1

 2 642 :tick-500ms i = 2

 2 642 :tick-500ms i = 3

 2 642 :tick-500ms i = 4

^C
 2 642 :tick-500ms i = 5

 3 2 :END
Final value of i = 5

Using Predicates to Select Actions
Predicates are logic statements that choose whether DTrace invokes the actions that
are associated with a probe. You can use predicates to focus tracing analysis on
specific contexts under which a probe fires.

Chapter 2
Using Predicates to Select Actions

2-6

Example: Using daterun.d
The following example shows an executable DTrace script, daterun.d, which displays the file
descriptor, output string, and string length specified to the write() system call whenever the
date command is run on the system.

#!/usr/sbin/dtrace -qs

/* daterun.d -- Display arguments to write() when date runs */

syscall::write:entry
/execname == "date"/
{
 printf("%s(%d, %s, %d)\n", probefunc, arg0, copyinstr(arg1), arg2);
}

In the example, the predicate is /execname == "date"/, which specifies that if the probe
syscall::write:entry is triggered, DTrace runs the associated action only if the name of the
executable is date.

Make the script executable by changing its mode:

chmod +x daterun.d

If you run the script from one window, while typing the date command in another window,
output similar to the following is displayed in the first window:

./daterun.d
write(1, Thu Oct 31 11:14:43 GMT 2013
, 29)

Example: Listing Available syscall Provider Probes
The following example shows how you would list available syscall provider probes.

dtrace -l -P syscall | less
 ID PROVIDER MODULE FUNCTION NAME
 18 syscall vmlinux read entry
 19 syscall vmlinux read return
 20 syscall vmlinux write entry
 21 syscall vmlinux write return
 22 syscall vmlinux open entry
 23 syscall vmlinux open return
 24 syscall vmlinux close entry
 25 syscall vmlinux close return
 26 syscall vmlinux newstat entry
 27 syscall vmlinux newstat return
...
 648 syscall vmlinux pkey_alloc entry
 649 syscall vmlinux pkey_alloc return
 650 syscall vmlinux pkey_free entry
 651 syscall vmlinux pkey_free return
 652 syscall vmlinux statx entry
 653 syscall vmlinux statx return
 654 syscall vmlinux waitfd entry
 655 syscall vmlinux waitfd return

Chapter 2
Using Predicates to Select Actions

2-7

Exercise: Using syscall Probes
Experiment by adapting the daterun.d script for another program. Make the new script
produce output when the system is running w.

(Estimated completion time: 10 minutes)

Solution to Exercise: Using syscall Probes
#!/usr/sbin/dtrace -qs

/* wrun.d -- Modified version of daterun.d for the w command */

syscall::write:entry
/execname == "w"/
{
 printf("%s(%d, %s, %d)\n", probefunc, arg0, copyinstr(arg1, arg2), arg2);
}

The program uses the two-argument form of copyinstr(), as the string argument to
write() might not be null-terminated:

chmod +x wrun.d
./wrun.d
write(1, 12:14:55 up 3:21, 3 users, load average: 0.14, 0.15, 0.18
, 62)
write(1, USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
, 69)
write(1, guest tty1 :0 08:55 3:20m 11:23 0.17s pam:
gdm-passwo
, 80)
write(1, guest pts/0 :0.0 08:57 7.00s 0.17s 0.03s w
m: gdm-passwo
, 66)
write(1, guest pts/1 :0.0 12:14 7.00s 0.69s 8.65s gnome-
terminal

, 79)
...
^C

Timing Events on a System
Determining the time that a system takes to perform different activities is a
fundamental technique for analyzing its operation and determining where bottlenecks
might be occurring.

Example: Monitoring read() System Call Duration (readtrace.d)
The following is an example of the D program, readtrace.d.

/* readtrace.d -- Display time spent in read() calls */

syscall::read:entry
{
 self->t = timestamp; /* Initialize a thread-local variable */

Chapter 2
Timing Events on a System

2-8

}

syscall::read:return
/self->t != 0/
{
 printf("%s (pid=%d) spent %d microseconds in read()\n",
 execname, pid, ((timestamp - self->t)/1000)); /* Divide by 1000 for microseconds */

 self->t = 0; /* Reset the variable */
}

In the example, the readtrace.d program displays the command name, process ID, and call
duration in microseconds whenever a process invokes the read() system call. The variable
self->t is thread-local, meaning that it exists only within the scope of execution of a thread
on the system. The program records the value of timestamp in self->t when the process
calls read(), and subtracts this value from the value of timestamp when the call returns. The
units of timestamp are nanoseconds, so you divide by 1000 to obtain a value in
microseconds.

The following is output from running this program:

dtrace -q -s readtrace.d
NetworkManager (pid=878) spent 10 microseconds in read()
NetworkManager (pid=878) spent 9 microseconds in read()
NetworkManager (pid=878) spent 2 microseconds in read()
in:imjournal (pid=815) spent 63 microseconds in read()
gdbus (pid=878) spent 7 microseconds in read()
gdbus (pid=878) spent 66 microseconds in read()
gdbus (pid=878) spent 63 microseconds in read()
irqbalance (pid=816) spent 56 microseconds in read()
irqbalance (pid=816) spent 113 microseconds in read()
irqbalance (pid=816) spent 104 microseconds in read()
irqbalance (pid=816) spent 91 microseconds in read()
irqbalance (pid=816) spent 61 microseconds in read()
irqbalance (pid=816) spent 63 microseconds in read()
irqbalance (pid=816) spent 61 microseconds in read()
irqbalance (pid=816) spent 61 microseconds in read()
irqbalance (pid=816) spent 61 microseconds in read()
irqbalance (pid=816) spent 61 microseconds in read()
irqbalance (pid=816) spent 61 microseconds in read()
irqbalance (pid=816) spent 61 microseconds in read()
sshd (pid=10230) spent 8 microseconds in read()
in:imjournal (pid=815) spent 6 microseconds in read()
sshd (pid=10230) spent 7 microseconds in read()
in:imjournal (pid=815) spent 5 microseconds in read()
sshd (pid=10230) spent 7 microseconds in read()
in:imjournal (pid=815) spent 6 microseconds in read()
sshd (pid=10230) spent 7 microseconds in read()
in:imjournal (pid=815) spent 5 microseconds in read()
^C

Exercise: Timing System Calls
Add a predicate to the entry probe in readtrace.d so that dtrace displays results for a disk
space usage report that is selected by the name of its executable (df).

(Estimated completion time: 10 minutes)

Chapter 2
Timing Events on a System

2-9

Solution to Exercise: Timing System Calls
The following example shows a modified version of the readtrace.d program that
includes a predicate.

/* readtrace1.d -- Modified version of readtrace.d that includes a predicate */

syscall::read:entry
/execname == "df"/
{
 self->t = timestamp;
}

syscall::read:return
/self->t != 0/
{
 printf("%s (pid=%d) spent %d microseconds in read()\n",
 execname, pid, ((timestamp - self->t)/1000));

 self->t = 0; /* Reset the variable */
}

The predicate /execname == "df"/ tests whether the df program is running when the
probe fires.

dtrace -q -s readtrace1.d
df (pid=1666) spent 6 microseconds in read()
df (pid=1666) spent 8 microseconds in read()
df (pid=1666) spent 1 microseconds in read()
df (pid=1666) spent 50 microseconds in read()
df (pid=1666) spent 38 microseconds in read()
df (pid=1666) spent 10 microseconds in read()
df (pid=1666) spent 1 microseconds in read()
^C

Exercise: Timing All System Calls for cp (calltrace.d)
Using the probefunc variable and the syscall:::entry and syscall:::return
probes, create a D program, calltrace.d, which times all system calls for the
executable cp.

(Estimated completion time: 10 minutes)

Solution to Exercise: Timing All System Calls for cp (calltrace.d)
/* calltrace.d -- Time all system calls for cp */

syscall:::entry
/execname == "cp"/
{
 self->t = timestamp; /* Initialize a thread-local variable */
}

syscall:::return
/self->t != 0/
{
 printf("%s (pid=%d) spent %d microseconds in %s()\n",

Chapter 2
Timing Events on a System

2-10

 execname, pid, ((timestamp - self->t)/1000), probefunc);

 self->t = 0; /* Reset the variable */
}

Dropping the function name read from the probe specifications matches all instances of
entry and return probes for syscall. The following is a check for system calls resulting from
running the cp executable:

dtrace -q -s calltrace.d
cp (pid=2801) spent 4 microseconds in brk()
cp (pid=2801) spent 5 microseconds in mmap()
cp (pid=2801) spent 15 microseconds in access()
cp (pid=2801) spent 7 microseconds in open()
cp (pid=2801) spent 2 microseconds in newfstat()
cp (pid=2801) spent 3 microseconds in mmap()
cp (pid=2801) spent 1 microseconds in close()
cp (pid=2801) spent 8 microseconds in open()
cp (pid=2801) spent 3 microseconds in read()
cp (pid=2801) spent 1 microseconds in newfstat()
cp (pid=2801) spent 4 microseconds in mmap()
cp (pid=2801) spent 12 microseconds in mprotect()
 ...
cp (pid=2801) spent 183 microseconds in open()
cp (pid=2801) spent 1 microseconds in newfstat()
cp (pid=2801) spent 1 microseconds in fadvise64()
cp (pid=2801) spent 17251 microseconds in read()
cp (pid=2801) spent 80 microseconds in write()
cp (pid=2801) spent 58 microseconds in read()
cp (pid=2801) spent 57 microseconds in close()
cp (pid=2801) spent 85 microseconds in close()
cp (pid=2801) spent 57 microseconds in lseek()
cp (pid=2801) spent 56 microseconds in close()
cp (pid=2801) spent 56 microseconds in close()
cp (pid=2801) spent 56 microseconds in close()
^C

Tracing Parent and Child Processes
When a process forks, it creates a child process that is effectively a copy of its parent
process, but with a different process ID. For information about other differences, see the
fork(2) manual page. The child process can either run independently from its parent
process to perform some separate task. Or, a child process can execute a new program
image that replaces the child's program image while retaining the same process ID.

Example: Using proc Probes to Report Activity on a System (activity.d)
The D program activity.d in the following example uses proc probes to report fork() and
exec() activity on a system.

#pragma D option quiet

/* activity.d -- Record fork() and exec() activity */

proc::_do_fork:create
{
 /* Extract PID of child process from the psinfo_t pointed to by args[0] */
 childpid = args[0]->pr_pid;

Chapter 2
Tracing Parent and Child Processes

2-11

 time[childpid] = timestamp;
 p_pid[childpid] = pid; /* Current process ID (parent PID of new child) */
 p_name[childpid] = execname; /* Parent command name */
 p_exec[childpid] = ""; /* Child has not yet been exec'ed */
}

proc::do_execveat_common:exec
/p_pid[pid] != 0/
{
 p_exec[pid] = args[0]; /* Child process path name */
}

proc::do_exit:exit
/p_pid[pid] != 0 && p_exec[pid] != ""/
{
 printf("%s (%d) executed %s (%d) for %d microseconds\n",
 p_name[pid], p_pid[pid], p_exec[pid], pid, (timestamp - time[pid])/1000);
}

proc::do_exit:exit
/p_pid[pid] != 0 && p_exec[pid] == ""/
{
 printf("%s (%d) forked itself (as %d) for %d microseconds\n",
 p_name[pid], p_pid[pid], pid, (timestamp - time[pid])/1000);
}

In the example, the statement #pragma D option quiet has the same effect as
specifying the -q option on the command line.

The process ID of the child process (childpid), following a fork(), is determined by
examining the pr_pid member of the psinfo_t data structure that is pointed to by the
args[0] probe argument. For more information about the arguments to proc probes,
see proc Provider in the Oracle Linux: DTrace Reference Guide.

The program uses the value of the child process ID to initialize globally unique
associative array entries, such as p_pid[childpid].

Note:

An associative array is similar to a normal array, in that it associates keys
with values, but the keys can be of any type; they need not be integers.

When you run the program, you should see output similar to the following as you use
the ssh command to access the same system from another terminal window. You
might want to try running different programs from this new terminal window to generate
additional output:

dtrace -s activity.d
sshd (3966) forked itself (as 3967) for 3667020 microseconds
bash (3971) forked itself (as 3972) for 1718 microseconds
bash (3973) executed /usr/bin/hostname (3974) for 1169 microseconds
grepconf.sh (3975) forked itself (as 3976) for 1333 microseconds
bash (3977) forked itself (as 3978) for 967 microseconds
bash (3977) executed /usr/bin/tput (3979) for 1355 microseconds
bash (3980) executed /usr/bin/dircolors (3981) for 1212 microseconds

Chapter 2
Tracing Parent and Child Processes

2-12

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dtrace-ref-DTraceProviders.html#dt_proc_prov
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/

sshd (3966) executed /usr/sbin/unix_chkpwd (3968) for 31444 microseconds
sshd (3966) executed /usr/sbin/unix_chkpwd (3969) for 1653 microseconds
bash (3970) forked itself (as 3971) for 2411 microseconds
bash (3970) forked itself (as 3973) for 1830 microseconds
bash (3970) executed /usr/libexec/grepconf.sh (3975) for 3696 microseconds
bash (3970) forked itself (as 3977) for 3273 microseconds
bash (3970) forked itself (as 3980) for 1928 microseconds
bash (3970) executed /usr/bin/grep (3982) for 1570 microseconds
^C

Exercise: Using a Predicate to Control the Execution of an Action
Modify activity.d so that dtrace displays results for parent processes that are selected by
their executable name, for example, bash, or by a program name that you specify as an
argument to the dtrace command.

(Estimated completion time: 10 minutes)

Solution to Exercise: Using a Predicate to Control the Execution of an
Action

The only change that is required to specify the name of an executable is to add a predicate to
the proc::_do_fork:create probe, for example:

/execname == "bash"/

A more generic version of the program sets the predicate check value from a passed-in
command-line argument instead, for example:

/execname == $1/

Example: Recording fork() and exec() Activity for a Specified Program
(activity1.d)

The following example uses a predicate that is passed in from the command line.

#pragma D option quiet

/* activity1.d -- Record fork() and exec() activity for a specified program */

proc::_do_fork:create
/execname == $1/
{
 /* Extract PID of child process from the psinfo_t pointed to by args[0] */
 childpid = args[0]->pr_pid;

 time[childpid] = timestamp;
 p_pid[childpid] = pid; /* Current process ID (parent PID of new child) */
 p_name[childpid] = execname; /* Parent command name */
 p_exec[childpid] = ""; /* Child has not yet been exec'ed */
}

proc::do_execveat_common:exec
/p_pid[pid] != 0/
{

Chapter 2
Tracing Parent and Child Processes

2-13

 p_exec[pid] = args[0]; /* Child process path name */
}

proc::do_exit:exit
/p_pid[pid] != 0 && p_exec[pid] != ""/
{
 printf("%s (%d) executed %s (%d) for %d microseconds\n",
 p_name[pid], p_pid[pid], p_exec[pid], pid, (timestamp - time[pid])/1000);
}

proc::do_exit:exit
/p_pid[pid] != 0 && p_exec[pid] == ""/
{
 printf("%s (%d) forked itself (as %d) for %d microseconds\n",
 p_name[pid], p_pid[pid], pid, (timestamp - time[pid])/1000);
}

As shown in the following example, you can now specify the name of the program to
be traced as an argument to the dtrace command. Note that you need to escape the
argument to protect the double quotes from the shell:

dtrace -s activity.d '"bash"'
bash (10367) executed /bin/ps (10368) for 10926 microseconds
bash (10360) executed /usr/bin/tty (10361) for 3046 microseconds
bash (10359) forked itself (as 10363) for 32005 microseconds
bash (10366) executed /bin/basename (10369) for 1285 microseconds
bash (10359) forked itself (as 10370) for 12373 microseconds
bash (10360) executed /usr/bin/tput (10362) for 34409 microseconds
bash (10363) executed /usr/bin/dircolors (10364) for 29527 microseconds
bash (10359) executed /bin/grep (10365) for 21024 microseconds
bash (10366) forked itself (as 10367) for 11749 microseconds
bash (10359) forked itself (as 10360) for 41918 microseconds
bash (10359) forked itself (as 10366) for 14197 microseconds
bash (10370) executed /usr/bin/id (10371) for 11729 microseconds
^C

Simple Data Aggregations
DTrace provides several functions for aggregating the data that individual probes
gather. These functions include avg(), count(), max(), min(), stddev(), and sum(),
which return the mean, number, maximum value, minimum value, standard deviation,
and summation of the data being gathered, respectively. See Aggregations in the
Oracle Linux: DTrace Reference Guide for descriptions of aggregation functions.

DTrace indexes the results of an aggregation by using a tuple expression that similar
to what is used for an associative array:

@name[list_of_keys] = aggregating_function(args);

The name of the aggregation is prefixed with an @ character. The keys describe the
data that the aggregating function is collecting. If you do not specify a name for the
aggregation, DTrace uses @ as an anonymous aggregation name, which is usually
sufficient for simple D programs.

Chapter 2
Simple Data Aggregations

2-14

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dtrace-ref-Aggregations.html
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/

Example: Counting the Number of write() System Calls Invoked by
Processes

In the following example, the command counts the number of write() system calls that are
invoked by processes, until you type Ctrl-C.

dtrace -n 'syscall::write:entry { @["write() calls"] = count(); }'
dtrace: description 'syscall:::' matched 1 probe
^C

 write() calls 9

Note:

Rather than create a separate D script for this simple example, the probe and the
action is specified on the dtrace command line.

DTrace prints the result of the aggregation automatically. Alternatively, you can use
the printa() function to format the result of the aggregation.

Example: Counting the Number of read() and write() System Calls
The following example counts the number of both read() and write() system calls.

dtrace -n 'syscall::write:entry,syscall::read:entry
{ @[strjoin(probefunc,"() calls")] = count(); }'
dtrace: description 'syscall::write:entry,syscall::read:entry' matched 2 probes
^C

 write() calls 150
 read() calls 1555

Exercise: Counting System Calls Over a Fixed Period
Write a D program named countcalls.d that uses a tick probe and exit() to stop collecting
data after 100 seconds and display the number of open(), read() and write() calls.

(Estimated completion time: 15 minutes)

Solution to Exercise and Example: Counting Write, Read, and Open
System Calls Over 100 Seconds (countcalls.d)

/* countcalls.d -- Count write, read, and open system calls over 100 seconds */

profile:::tick-100sec
{
 exit(0);
}

syscall::write:entry, syscall::read:entry, syscall::open:entry
{

Chapter 2
Simple Data Aggregations

2-15

 @[strjoin(probefunc,"() calls")] = count();
}

The action that is associated with the tick-100s probe means that dtrace exits after
100 seconds and prints the results of the aggregation.

dtrace -s countcalls.d
dtrace: script 'countcalls.d' matched 4 probes
CPU ID FUNCTION:NAME
 3 643 :tick-100sec

 write() calls 1062
 open() calls 1672
 read() calls 29672

Example: Counting System Calls Invoked by a Process
(countsyscalls.d)

The D program countsyscalls.d shown in the following example counts the number
of times a process that is specified by its process ID invokes different system calls.

#!/usr/sbin/dtrace -qs

/* countsyscalls.d -- Count system calls invoked by a process */

syscall:::entry
/pid == $1/
{
 @num[probefunc] = count();
}

After making the syscalls.d file executable, you can run it from the command line,
specifying a process ID as its argument.

The following example shows how you would monitor the use of the emacs program
that was previously invoked. After the script is invoked, within emacs a couple files are
opened, modified, and then saved before exiting the D script.

Make the script executable:

chmod +x countsyscalls.d

From another command line, type:

emacs foobar.txt

Now, start the script and use the opened emacs window:

./countsyscalls.d $(pgrep -u root emacs)
 ^C

 chmod 1
 exit_group 1
 futex 1
 getpgrp 1
 lseek 1
 lsetxattr 1
 rename 1
 fsync 2

Chapter 2
Simple Data Aggregations

2-16

 lgetxattr 2
 alarm 3
 rt_sigaction 3
 unlink 3
 mmap 4
 munmap 4
 symlink 4
 fcntl 6
 newfstat 6
 getgid 7
 getuid 7
 geteuid 8
 openat 8
 access 9
 getegid 14
 open 14
 getdents 15
 close 17
 readlink 19
 newlstat 33
 newstat 155
 read 216
 timer_settime 231
 write 314
 pselect6 376
 rt_sigreturn 393
 ioctl 995
 rt_sigprocmask 1261
 clock_gettime 3495

In the preceding example, the pgrep command is used to determine the process ID of the
emacs program that the root user is running.

Exercise: Tracing Processes That Are Run by a User
Create a program countprogs.d that counts and displays the number of times a user
(specified by their user name) runs different programs. You can use the id -u user
command to obtain the ID that corresponds to a user name.

(Estimated completion time: 10 minutes)

Solution to Exercise and Example: Counting Programs Invoked by a
Specified User (countprogs.d)

#!/usr/sbin/dtrace -qs

/* countprogs.d -- Count programs invoked by a specified user */

proc::do_execveat_common:exec
/uid == $1/
{
 @num[execname] = count();
}

The predicate /uid == $1/ compares the effective UID for each program that is run against
the argument specified on the command line. You can use the id -u user command to
find out the ID of the guest user account, for example:

Chapter 2
Simple Data Aggregations

2-17

chmod +x countprogs.d
./countprogs.d $(id -u guest)
^C

less 1
lesspipe.sh 1
sh 1
bash 9

You can use the same command for the root user, which is typically user 0. For testing
purposes, you might want to have the user account under a test login by using another
window and then run some nominal programs.

Example: Counting the Number of Times a Program Reads From
Different Files in 10 Seconds (fdscount.d)

The following D program counts the number of times a program reads from different
files, within ten seconds, and displays just the top five results.

emacs fdscount.d
dtrace -C -D ENAME='"emacs"' -qs fdscount.d

 /usr/share/terminfo/x/xterm 2
 /dev/urandom 3
 /usr/share/emacs/24.3/lisp/calendar/time-date.elc 5
 /dev/tty 8
 /usr/share/emacs/24.3/lisp/term/xterm.elc 8

Use the fds[] built-in array to determine which file corresponds to the file descriptor
argument arg0 to read(). The fi_pathname member of the fileinfo_t structure that
is indexed in fds[] by arg0 contains the full pathname of the file.

See fileinfo_t in the Oracle Linux: DTrace Reference Guide for more information about
the members of the fileinfo_t structure.

The trunc() function in the END action instructs DTrace to display just the top five
results from the aggregation.

DTrace has access to the profile:::tick-10s probe, the fds[] built-in array, and the
syscall::read:entry probe. You specify a C preprocessor directive to dtrace that
sets the value of the ENAME variable, such as to emacs. Although, you could choose
any executable. Note that you must use additional single quotes to escape the string
quotes, for example:

dtrace -C -D ENAME='"emacs"' -qs fdscount.d

/usr/share/terminfo/x/xterm 2
/dev/tty 3
/dev/urandom 3
/usr/share/emacs/24.3/lisp/calendar/time-date.elc 5
/usr/share/emacs/24.3/lisp/term/xterm.elc 8

If the executable under test shows a /proc/ pid/maps entry in the output, it refers to a
file in the procfs file system that contains information about the process's mapped
memory regions and permissions. Seeing pipe: inode and socket: inode entries
would refer to inodes in the pipefs and socketfs file systems.

Chapter 2
Simple Data Aggregations

2-18

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dtrace-ref-DTraceProviders.html#dt_io_prov
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/

Exercise: Counting Context Switches on a System
Create an executable D program named cswpercpu.d that displays a timestamp and prints
the number of context switches per CPU and the total for all CPUs once per second, together
with the CPU number or "total".

• Using the BEGIN probe, print a header for the display with columns labelled Timestamp,
CPU, and Ncsw.

• Using the sched:::on-cpu probe to detect the end of a context switch, use lltostr() to
convert the CPU number for the context in which the probe fired to a string, and use
count() to increment the aggregation variable @n once with the key value set to the CPU
number string and once with the key value set to "total".

See sched Provider in the Oracle Linux: DTrace Reference Guide for a description of the
sched:::on-cpu probe.

• Using the profile:::tick-1sec probe, use printf() to print the data and time, use
printa() to print the key (the CPU number string or "total") and the aggregation value.
The date and time are available as the value of walltimestamp variable, which you can
print using the %Y conversion format

• Use clear() to reset the aggregation variable @n.

(Estimated completion time: 40 minutes)

Solution to Exercise and Example: Counting Context Switches on a
System

The following example shows the executable D program cswpercpu.d. The program displays
a timestamp and prints the number of context switches, per-CPU, and the total for all CPUs,
once per second, together with the CPU number or "total":

#!/usr/sbin/dtrace -qs

/* cswpercpu.d -- Print number of context switches per CPU once per second */

#pragma D option quiet

dtrace:::BEGIN
{
 /* Print the header */
 printf("%-25s %5s %15s", "Timestamp", "CPU", "Ncsw");
}

sched:::on-cpu
{
 /* Convert the cpu number to a string */
 cpustr = lltostr(cpu);
 /* Increment the counters */
 @n[cpustr] = count();
 @n["total"] = count();
}

profile:::tick-1sec
{
 /* Print the date and time before the first result */

Chapter 2
Simple Data Aggregations

2-19

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dtrace-ref-DTraceProviders.html#dt_sched_prov
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/

 printf("\n%-25Y ", walltimestamp);

 /* Print the aggregated counts for each CPU and the total for all CPUs */
 printa("%5s %@15d\n ", @n);

 /* Reset the aggregation */
 clear(@n);
}

chmod +x cswpercpu.d
./cswpercpu.d
Timestamp CPU Ncsw
2013 Nov 6 20:47:26 1 148
 0 155
 3 200
 2 272
 total 775

2013 Nov 6 20:47:27 1 348
 0 364
 3 364
 2 417
 total 1493

2013 Nov 6 20:47:28 3 47
 1 100
 0 121
 2 178
 total 446
 ^C

You might want to experiment with aggregating the total time that is spent context
switching and the average time per context switch. For example, you can experiment
by initializing a thread-local variable to the value of timestamp in the action to a
sched:::off-cpu probe, and subtracting this value from the value of timestamp in the
action to sched:::on-cpu. Use the sum() and avg() aggregation functions,
respectively.

Working With More Complex Data Aggregations
Use the lquantize() and quantize() functions to display linear and power-of-two
frequency distributions of data. See Aggregations in the Oracle Linux: DTrace
Reference Guide for a description of aggregation functions.

Example: Displaying the Distribution of Read Sizes Resulting From a
Command

As shown in the following example, you can display the distribution of the sizes
specified to arg2 of read() calls that were invoked by all instances of find that are
running. After running the script, start a search with find in another window, such as
find . or find /..

dtrace -n 'syscall::read:entry /execname=="find"/
{@dist["find"]=quantize(arg2);}'
dtrace: description 'syscall::read:entry ' matched 1 probe
^C

Chapter 2
Working With More Complex Data Aggregations

2-20

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dtrace-ref-Aggregations.html
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/

 find
 value ------------- Distribution ------------- count
 256 | 0
 512 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 6
 1024 | 0
 2048 | 0
 4096 |@@@@@@@@@@ 2
 8192 | 0

If the program is as simple as the program in the previous example, it is often convenient to
run it from the command line.

Example: Displaying the Distribution of I/O Throughput for Block Devices
(diskact.d)

In the following example, the diskact.d script uses io provider probes that are enabled by
the sdt kernel module to display the distribution of I/O throughput for the block devices on the
system.

#pragma D option quiet

/* diskact.d -- Display the distribution of I/O throughput for block devices */

io:::start
{
 start[args[0]->b_edev, args[0]->b_blkno] = timestamp;
}

io:::done
/start[args[0]->b_edev, args[0]->b_blkno]/
{
 /*
 You want to get an idea of our throughput to this device in KB/sec
 but you have values that are measured in bytes and nanoseconds.
 You want to calculate the following:

 bytes / 1024

 nanoseconds / 1000000000

 As DTrace uses integer arithmetic and the denominator is usually
 between 0 and 1 for most I/O, the calculation as shown will lose
 precision. So, restate the fraction as:

 bytes 1000000000 bytes * 976562
 ----------- * ------------- = --------------
 nanoseconds 1024 nanoseconds

 This is easy to calculate using integer arithmetic.
 */
 this->elapsed = timestamp - start[args[0]->b_edev, args[0]->b_blkno];
 @[args[1]->dev_statname, args[1]->dev_pathname] =
 quantize((args[0]->b_bcount * 976562) / this->elapsed);
 start[args[0]->b_edev, args[0]->b_blkno] = 0;
}

END
{

Chapter 2
Working With More Complex Data Aggregations

2-21

 printa(" %s (%s)\n%@d\n", @);
}

The #pragma D option quiet statement is used to suppress unwanted output and the
printa() function is used to display the results of the aggregation.

See io Provider in the Oracle Linux: DTrace Reference Guide for a description of the
arguments to the io:::start and io:::done probes.

See Output Formatting in the Oracle Linux: DTrace Reference Guide for a description
of the printa() function.

After running the program for approximately a minute, type Ctrl-C to display the
results:

dtrace -s diskact.d
 ^C

xvda2 (<unknown>)

 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@ 3
 1 | 0

xvdc (<unknown>)

 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@ 3
 1 | 0

xvdc1 (<unknown>)

 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@ 3
 1 | 0

 dm-0 (<unknown>)

 value ------------- Distribution ------------- count
 256 | 0
 512 |@@ 1
 1024 |@@ 1
 2048 |@@@@@@ 3
 4096 |@@@@@@@@@@ 5
 8192 |@@@@@@@@@@@@@@@@@ 9
 16384 |@@@@ 2
 32768 | 0

Exercise: Displaying Read and Write I/O Throughput Separately
Create a version of diskact.d that aggregates the results separately for reading from,
and writing to, block devices. Use a tick probe to collect data for 10 seconds.

• In the actions for io:::start and io:::done, assign the value of args[0]-
>b_flags & B_READ ? "READ" : "WRITE" to the variable iodir.

Chapter 2
Working With More Complex Data Aggregations

2-22

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dtrace-ref-DTraceProviders.html#dt_io_prov
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dtrace-ref-OutputFormatting.html
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/

• In the actions for io:::start and io:::done, add iodir as a key to the start[]
associative array.

• In the action for io:::done, add iodir as a key to the anonymous aggregation variable
@[].

• Modify the format string for printa() to display the value of the iodir key.

(Estimated completion time: 20 minutes)

Solution to Exercise: Displaying Read and Write I/O Throughput Separately

The following example shows a modified version of the diskact.d script, which displays
separate results for read and write I/O:

#pragma D option quiet

/* rwdiskact.d -- Modified version of diskact.d that displays
 separate results for read and write I/O */

profile:::tick-10sec
{
 exit(0);
}

io:::start
{
 iodir = args[0]->b_flags & B_READ ? "READ" : "WRITE";
 start[args[0]->b_edev, args[0]->b_blkno, iodir] = timestamp;
}

io:::done
{
 iodir = args[0]->b_flags & B_READ ? "READ" : "WRITE";
 this->elapsed = timestamp - start[args[0]->b_edev,args[0]->b_blkno,iodir];
 @[args[1]->dev_statname, args[1]->dev_pathname, iodir] =
 quantize((args[0]->b_bcount * 976562) / this->elapsed);
 start[args[0]->b_edev, args[0]->b_blkno,iodir] = 0;}

END
{
 printa(" %s (%s) %s \n%@d\n", @);
}

In the example, adding the iodir variable to the tuple in the aggregation variable enables
DTrace to display separate aggregations for read and write I/O operations.

dtrace -s rwdiskact.d

^C
 xvda2 (<unknown>) WRITE

 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@ 1
 1 | 0

 xvdc (<unknown>) WRITE

Chapter 2
Working With More Complex Data Aggregations

2-23

 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@ 1
 1 | 0

 xvdc1 (<unknown>) WRITE

 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@ 1
 1 | 0

 nfs (<nfs>) READ

 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@ 5
 1 | 0

 dm-0 (<unknown>) WRITE

 value ------------- Distribution ------------- count
 4096 | 0
 8192 |@@ 1
 16384 | 0

Example: Displaying Cumulative Read and Write Activity Across a File
System Device (fsact)

The following example is a bash shell script that uses an embedded D program to
display cumulative read and write block counts for a local file system according to their
location on the file system's underlying block device. The lquantize() aggregation
function is used to display the results linearly as tenths of the total number of blocks on
the device.

#!/bin/bash

fsact -- Display cumulative read and write activity across a file system device
#
Usage: fsact [<filesystem>]

Could load the required DTrace modules, if they were not autoloaded.
grep profile /proc/modules > /dev/null 2>&1 || modprobe profile
grep sdt /proc/modules > /dev/null 2>&1 || modprobe sdt

If no file system is specified, assume /
[$# -eq 1] && FSNAME=$1 || FSNAME="/"
[! -e $FSNAME] && echo "$FSNAME not found" && exit 1

Determine the mountpoint, major and minor numbers, and file system size
MNTPNT=$(df $FSNAME | gawk '{ getline; print $1; exit }')
MAJOR=$(printf "%d\n" 0x$(stat -Lc "%t" $MNTPNT))
MINOR=$(printf "%d\n" 0x$(stat -Lc "%T" $MNTPNT))
FSSIZE=$(stat -fc "%b" $FSNAME)

Run the embedded D program
dtrace -qs /dev/stdin << EOF
io:::done

Chapter 2
Working With More Complex Data Aggregations

2-24

/args[1]->dev_major == $MAJOR && args[1]->dev_minor == $MINOR/
{
 iodir = args[0]->b_flags & B_READ ? "READ" : "WRITE";
 /* Normalize the block number as an integer in the range 0 to 10 */
 blkno = (args[0]->b_blkno)*10/$FSSIZE;
 /* Aggregate blkno linearly over the range 0 to 10 in steps of 1 */
 @a[iodir] = lquantize(blkno,0,10,1)
}

tick-10s
{
 printf("%Y\n",walltimestamp);
 /* Display the results of the aggregation */
 printa("%s\n%@d\n",@a);
 /* To reset the aggregation every tick, uncomment the following line */
 /* clear(@a); */
}
EOF

You embed the D program in a shell script so that you can set up the parameters that are
needed, which are the major and minor numbers of the underlying device and the total size of
the file system in file system blocks. You then access these parameters directly in the D code.

Note:

An alternate way of passing values into the D program is to use C preprocessor
directives, for example:

dtrace -C -D MAJ=$MAJOR -D MIN=$MINOR -D FSZ=$FSSIZE -qs /dev/stdin << EOF

You can then refer to the variables in the D program by their macro names instead
of their shell names:

/args[1]->dev_major == MAJ && args[1]->dev_minor == MIN/

blkno = (args[0]->b_blkno)*10/FSZ;

The following example shows output from running the fsact command after making the
script executable, then running cp -R on a directory and rm -rf on the copied directory:

chmod +x fsact
./fsact
2018 Feb 16 16:59:46
READ

 value ------------- Distribution ------------- count
 < 0 | 0
 0 |@@@@@@@ 8
 1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@ 32
 2 | 0
 3 | 0
 4 | 0
 5 | 0
 6 | 0
 7 | 0
 8 | 0
 9 | 0

Chapter 2
Working With More Complex Data Aggregations

2-25

 >= 10 |@@@@@@@ 8

WRITE

 value ------------- Distribution ------------- count
 9 | 0
 >= 10 |@@
42 0

^C

Displaying System Call Errors
The following information pertains to using the D program errno.d to display system
call errors.

Example: Displaying System Call Errors (errno.d)
The following is an example of the D program, errno.d. In this example, the program
displays the value of errno and the file name if an error occurs when using the open()
system call to open a file.

#!/usr/sbin/dtrace -qs

/* errno.d -- Display errno and the file name for failed open() calls */

syscall::open:entry
{
 self->filename = copyinstr(arg0);
}

syscall::open:return
/arg0 < 0/
{
 printf("errno = %-2d file = %s\n", errno, self->filename);
}

If an error occurs in the open() system call, the return probe sets the arg0 argument
to -1 and the value of the built-in errno variable indicates the nature of the error. A
predicate is used to test the value of arg0. Alternatively, you could test whether the
value of errno is greater than zero.

When you have saved this script to a file and made the file executable, you can then
run it to display information about any failures of the open() system call that occur on
the system. After you have started the script, in a separate terminal window, you can
run commands that result in an error, such as running the ls command to list a file
that does not exist. Or, as in the following example, from another terminal the cat
command has been issued on a directory, which results in an error:

./errno.d

errno = 2 file = /usr/share/locale/en_US.UTF-8/LC_MESSAGES/libc.mo
errno = 2 file = /usr/share/locale/en_US.utf8/LC_MESSAGES/libc.mo
errno = 2 file = /usr/share/locale/en_US/LC_MESSAGES/libc.mo
errno = 2 file = /usr/share/locale/en.UTF-8/LC_MESSAGES/libc.mo
errno = 2 file = /usr/share/locale/en.utf8/LC_MESSAGES/libc.mo

Chapter 2
Displaying System Call Errors

2-26

errno = 2 file = /usr/share/locale/en/LC_MESSAGES/libc.mo
^C

Exercise: Displaying More Information About System Call Errors
Adapt errno.d to display the name of the error instead of its number for any failed system
call.

• The numeric values of errors such as EACCES and EEXIST are defined in /usr/include/
asm-generic/errno-base.h and /usr/include/asm-generic/errno.h. DTrace defines
inline names (which are effectively constants) for the numeric error values in /usr/
lib64/dtrace/ kernel-version /errno.d. Use an associative array named error[] to
store the mapping between the inline names and the error names that are defined
in /usr/include/asm-generic/errno-base.h.

• Use printf() to display the user ID, the process ID, the program name, the error name,
and the name of the system call.

• Use the BEGIN probe to print column headings.

• Use the value of errno rather than arg0 to test whether an error from the range of
mapped names has occurred in a system call.

(Estimated completion time: 30 minutes)

Solution to Exercise: Displaying More Information About System Call
Errors

The following is an example that shows a modified version of errno.d, which displays error
names.

Example: Modified Version of errno.d Displaying Error Names (displayerrno.d)
#!/usr/sbin/dtrace -qs

/* displayerrno.d -- Modified version of errno.d that displays error names */

BEGIN
{
 printf("%-4s %-6s %-10s %-10s %s\n", "UID", "PID", "Prog", "Error", "Func");

 /* Assign error names to the associative array error[] */
 error[EPERM] = "EPERM"; /* Operation not permitted */
 error[ENOENT] = "ENOENT"; /* No such file or directory */
 error[ESRCH] = "ESRCH"; /* No such process */
 error[EINTR] = "EINTR"; /* Interrupted system call */
 error[EIO] = "EIO"; /* I/O error */
 error[ENXIO] = "ENXIO"; /* No such device or address */
 error[E2BIG] = "E2BIG"; /* Argument list too long */
 error[ENOEXEC] = "ENOEXEC"; /* Exec format error */
 error[EBADF] = "EBADF"; /* Bad file number */
 error[ECHILD] = "ECHILD"; /* No child processes */
 error[EAGAIN] = "EAGAIN"; /* Try again or operation would block */
 error[ENOMEM] = "ENOMEM"; /* Out of memory */
 error[EACCES] = "EACCES"; /* Permission denied */
 error[EFAULT] = "EFAULT"; /* Bad address */
 error[ENOTBLK] = "ENOTBLK"; /* Block device required */

Chapter 2
Displaying System Call Errors

2-27

 error[EBUSY] = "EBUSY"; /* Device or resource busy */
 error[EEXIST] = "EEXIST"; /* File exists */
 error[EXDEV] = "EXDEV"; /* Cross-device link */
 error[ENODEV] = "ENODEV"; /* No such device */
 error[ENOTDIR] = "ENOTDIR"; /* Not a directory */
 error[EISDIR] = "EISDIR"; /* Is a directory */
 error[EINVAL] = "EINVAL"; /* Invalid argument */
 error[ENFILE] = "ENFILE"; /* File table overflow */
 error[EMFILE] = "EMFILE"; /* Too many open files */
 error[ENOTTY] = "ENOTTY"; /* Not a typewriter */
 error[ETXTBSY] = "ETXTBSY"; /* Text file busy */
 error[EFBIG] = "EFBIG"; /* File too large */
 error[ENOSPC] = "ENOSPC"; /* No space left on device */
 error[ESPIPE] = "ESPIPE"; /* Illegal seek */
 error[EROFS] = "EROFS"; /* Read-only file system */
 error[EMLINK] = "EMLINK"; /* Too many links */
 error[EPIPE] = "EPIPE"; /* Broken pipe */
 error[EDOM] = "EDOM"; /* Math argument out of domain of func */
 error[ERANGE] = "ERANGE"; /* Math result not representable */
}

/* Specify any syscall return probe and test that the value of errno is in range
*/

syscall:::return
/errno > 0 && errno <= ERANGE/
{
 printf("%-4d %-6d %-10s %-10s %s()\n", uid, pid, execname, error[errno],
probefunc);
}

chmod +x displayerrno.d
./displayerrno.d
UID PID Prog Error Func
500 3575 test EACCES open()
500 3575 test EINTR clock_gettime()
^C

You could modify this program so that it displays verbose information about the nature
of the error, in addition to the name of the error.

Chapter 2
Displaying System Call Errors

2-28

3
Tracing User-Space Applications

This chapter provides information about how to trace a user-space application and includes
examples of D programs that you can use to investigate what is happening in an example
user-space program.

Preparing for Tracing User-Space Applications
The DTrace helper device (/dev/dtrace/helper) enables a user-space application that
contains DTrace probes to send probe provider information to DTrace.

To trace user-space processes that are run by users other than root, you must change the
mode of the DTrace helper device to allow the user to record tracing information, as shown in
the following examples.

Example: Changing the Mode of the DTrace Helper Device
The following example shows how you would enable the tracing of user-space applications
by users other than the root user.

chmod 666 /dev/dtrace/helper

Alternatively, if the acl package is installed on your system, you would use an ACL rule to
limit access to a specific user, for example:

setfacl -m u:guest:rw /dev/dtrace/helper

Note:

For DTrace to reference the probe points, you must change the mode on the device
before the user begins running the program.

You can also create a udev rules file such as /etc/udev/rules.d/10-dtrace.rules to
change the permissions on the device file each time the system boots.

The following example shows how you would change the mode of the device file by adding
the following line to the udev rules file:

kernel=="dtrace/helper", MODE="0666"

The following example shows how you would change the ACL settings for the device file by
adding a line similar to the following to the udev rules file:

kernel=="dtrace/helper", RUN="/usr/bin/setfacl -m u:guest:rw /dev/dtrace/helper"

To apply the udev rule without needing to restart the system, you would run the start_udev
command.

3-1

Sample Application
This section provides a sample application to be used in subsequent exercises and
examples in this chapter. The example, which illustrates a simple program, favors
brevity and probing opportunity rather than completeness or efficiency.

Note:

The following simple program is provided for example purposes only and is
not intended to efficiently solve a practical problem nor exhibit preferred
coding methods.

The sample program finds the lowest factor of a number, which you input. The
program is comprised of the following four files: makefile, primelib.h, primelib.c,
and primain.c , which are stored in the same working directory.

Description and Format of the makefile File
The following example shows the contents of the makefile file.

Note:

A makefile must use tabs for indentation so that the make command can
function properly. Also, be sure that tabs are retained if the file is copied and
then used.

default: prime

compile the library primelib first
primelib.o: primelib.c
 gcc -c primelib.c

compile the main program
primain.o: primain.c
 gcc -c primain.c

link and create executable file "prime"
prime: primelib.o primain.o
 gcc primain.o primelib.o -o prime -lm

clean:
 -rm -f *.o
 -rm -f prime

Description of the primelib.h Source File
The following example shows the contents of the primelib.h file.

Chapter 3
Sample Application

3-2

int findMaxCheck(int inValue);
int seekFactorA(int input, int maxtry);
int seekFactorB(int input);

Description of the primelib.c Source File
The following example shows the contents of the primelib.c file.

#include <stdio.h>
#include <math.h>

/*
 * utility functions which are called from the main source code
 */

// Find and return our highest value to check -- which is the square root
int findMaxCheck(int inValue) {
 float sqRoot;
 sqRoot = sqrt(inValue);
 printf("Square root of %d is %lf\n", inValue, sqRoot);
 return floor(sqRoot);
 return inValue/2;
}

int debugFlag = 0;

// Search for a factor to the input value, proving prime on return of zero
int seekFactorA(int input, int maxtry) {
 int divisor, factor = 0;
 for(divisor=2; divisor<=maxtry; ++divisor) {
 if(0 == input%divisor) {
 factor = divisor;
 break;
 }
 else if (debugFlag != 0)
 printf("modulo %d yields: %d\n", divisor, input%divisor);
 }
 return factor;
}

// Search for a factor to the input value, proving prime on return of zero
// This is a different method than "A", using one argument
int seekFactorB(int input) {
 int divisor, factor = 0;
 if(0 == input%2) return 2;
 for(divisor=3; divisor<=input/2; divisor+=2) {
 if(0 == input%divisor) {
 factor = divisor;
 break;
 }
 }
 return factor;
}

Description of the primain.c Source File
The following example shows the contents of the primain.c file.

#include <stdio.h>
#include "primelib.h"

Chapter 3
Sample Application

3-3

/*
 * Nominal C program churning to provide a code base we might want to
 * instrument with D
*/

// Search for a divisor -- thereby proving composite value of the input.
int main() {
 int targVal, divisor, factorA=0, factorB=0;

 printf("Enter a positive target integer to test for prime status: ");
 scanf("%d", &targVal);

 // Check that the user input is valid
 if(targVal < 2) {
 printf("Invalid input value -- exiting now\n");
 return -2;
 }

 // Search for a divisor using method and function A
 int lastCheck;
 lastCheck = findMaxCheck(targVal);
 printf("%d highest value to check as divisor\n", lastCheck);
 factorA = seekFactorA(targVal, lastCheck);

 // Search for a divisor using method and function B
 factorB = seekFactorB(targVal);

 // Warn if the methods give different results
 if (factorA != factorB)
 printf("%d does not equal %d! How can this be?\n", factorA, factorB);

 // Print results
 if(!factorA)
 printf("%d is a prime number\n", targVal);
 else
 printf("%d is not prime because there is a factor %d\n",
 targVal, factorA);
 return 0;
}

Compiling the Program and Running the prime Executable
With the four files previously described located in the same working directory, compile
the program by using the make command as follows:

make
gcc -c primelib.c
gcc -c primain.c
gcc primain.o primelib.o -o prime -lm

Running the make command creates an executable named prime, which can be run to
find the lowest prime value of the input, as shown in the following two examples:

./prime
Enter a positive target integer to test for prime status: 5099
Square root of 5099 is 71.407280
71 highest value to check as divisor
5099 is a prime number

Chapter 3
Sample Application

3-4

./prime
Enter a positive target integer to test for prime status: 95099
Square root of 95099 is 308.381256
308 highest value to check as divisor
95099 is not prime because there is a factor 61

After compiling the program and running the prime executable, you can practice adding
USDT probes to an application, as described in Adding USDT Probes to an Application.

Adding USDT Probes to an Application
In this section, we practice adding USDT probes to an application. For background
information and other details, see Adding Probes to an Application in the Oracle Linux:
DTrace Reference Guide.

To get started, you will need to create a .d file, as described in Defining Providers and Probes
in the Oracle Linux: DTrace Reference Guide.

Note:

This .d file is not a script that is run in the same way that is shown in previous
examples in this tutorial, but is rather the .d source file that you use when compiling
and linking your application. To avoid any confusion, use a different naming
convention for this file than you use for scripts.

After creating the .d file, you then need to create the required probe points to use in the
following examples. This information is added to the primain.c source file. The probe points
that are used in this practice are those listed in the following table. These probes represent a
sequence of operations and are used after the user entry is completed and checked.

Table 3-1 Probe Points to Use After User Entry Completed and Checked

Description Probe

User entry complete and checked userentry(int)

Return and input to seekFactorA() factorreturnA(int, int)
Return and input to seekFactorB() factorreturnB(int, int)
Immediately prior to the program exiting final()

Exercise: Creating a dprime.d File
To reflect the previously described probe points and data, create a file named dprime.d and
store the file in the same working directory as the other source files.

Chapter 3
Adding USDT Probes to an Application

3-5

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dtrace-ref-StaticallyDefinedTracingofUserApplications.html#dt_addpa_sdt
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dtrace-ref-StaticallyDefinedTracingofUserApplications.html#dt_defpp_sdt
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/

Note:

Typically, you would provide additional information in the .d file, such as
stability attributes, per the details that were previously referenced in the
Oracle Linux: DTrace Reference Guide. For the sake of brevity, expedience,
and simplicity, those details are not included in this introductory example.

(Estimated completion time: less than 5 minutes)

Solution to Exercise: Creating a dprime.d File
provider primeget
{
 probe query__userentry(int);
 probe query__maxcheckval(int, int);
 probe query__factorreturnA(int, int);
 probe query__factorreturnB(int, int);
 probe query__final();
};

Example: Creating a .h File From a dprime.d File
The next step is to create a .h file from the dprime.d file, as shown here:

dtrace -h -s dprime.d

The dprime.h file that is created contains a reference to each of the probe points that
are defined in the dprime.d file.

Next, in the application source file, primain.c, we add a reference to the #include
"dprime.h" file and add the appropriate probe macros at the proper locations.

In the resulting primain.c file, the probe macros (shown in bold font for example
purposes only) are easy to recognize, as they appear in uppercase letters:

#include <stdio.h>
#include "primelib.h"
#include "dprime.h"

/*
 * Nominal C program churning to provide a code base we might want to
 * instrument with D
*/

// Search for a divisor -- thereby proving composite value of the input.
int main() {
 int targVal, divisor, factorA=0, factorB=0;

 printf("Enter a positive target integer to test for prime status: ");
 scanf("%d", &targVal);

 // Check that the user input is valid
 if(targVal < 2) {
 printf("Invalid input value -- exiting now\n");
 return -2;
 }

Chapter 3
Adding USDT Probes to an Application

3-6

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/

 if (PRIMEGET_QUERY_USERENTRY_ENABLED())
 PRIMEGET_QUERY_USERENTRY(targVal);

 // Search for a divisor using method and function A
 int lastCheck;
 lastCheck = findMaxCheck(targVal);
 printf("%d highest value to check as divisor\n", lastCheck);
 if (PRIMEGET_QUERY_MAXCHECKVAL_ENABLED())
 PRIMEGET_QUERY_MAXCHECKVAL(lastCheck, targVal);

 factorA = seekFactorA(targVal, lastCheck);
 if (PRIMEGET_QUERY_FACTORRETURNA_ENABLED())
 PRIMEGET_QUERY_FACTORRETURNA(factorA, targVal);

 // Search for a divisor using method and function B
 factorB = seekFactorB(targVal);
 if (PRIMEGET_QUERY_FACTORRETURNB_ENABLED())
 PRIMEGET_QUERY_FACTORRETURNB(factorB, targVal);

 // Warn if the methods give different results
 if (factorA != factorB)
 printf("%d does not equal %d! How can this be?\n", factorA, factorB);

 // Print results
 if(!factorA)
 printf("%d is a prime number\n", targVal);
 else
 printf("%d is not prime because there is a factor %d\n",
 targVal, factorA);
 if (PRIMEGET_QUERY_FINAL_ENABLED())
 PRIMEGET_QUERY_FINAL();

 return 0;
}

Note:

Any * _ENABLED() probe will translate into a truth value if the associated probe is
enabled (some consumer is using it), and a false value if the associated probe is
not enabled.

Before continuing, ensure that the probes are enabled and appear as the macros listed in the
dprime.h file. See Testing if a Probe Is Enabled in the Oracle Linux: DTrace Reference
Guide.

Note:

Make sure to include any desired values in the macros, if they exist, so that the
probe can also identify those values.

Next, you will need to modify the makefile file. For step-by-step instructions, See Building
Applications With Probes in the Oracle Linux: DTrace Reference Guide.

Chapter 3
Adding USDT Probes to an Application

3-7

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dtrace-ref-StaticallyDefinedTracingofUserApplications.html#dt_isenabled_sdt
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dtrace-ref-StaticallyDefinedTracingofUserApplications.html#dt_bap_sdt
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/dtrace-ref-StaticallyDefinedTracingofUserApplications.html#dt_bap_sdt
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/

Exercise: Directing makefile to Re-Create the dprime.h File
Add a target that instructs dtrace to re-create the dprime.h file in the event that
changes are subsequently made to the dprime.d file. This step ensures that you do
not have to manually run the dtrace -h -s dprime.d command if any changes
are made.

This exercise also has you direct dtrace to create a prime.o file.

(Estimated completion time: 10 minutes)

Solution to Exercise: Directing makefile to Re-Create the dprime.h File

default: prime

re-create new dprime.h if dprime.d file has been changed
dprime.h: dprime.d
 dtrace -h -s dprime.d

compile the library primelib first
primelib.o: primelib.c
 gcc -c primelib.c

compile the main program
primain.o: primain.c dprime.h
 gcc -c primain.c

have dtrace post-process the object files
prime.o: dprime.d primelib.o primain.o
 dtrace -G -s dprime.d primelib.o primain.o -o prime.o

link and create executable file "prime"
prime: prime.o
 gcc -Wl,--export-dynamic,--strip-all -o prime prime.o primelib.o primain.o
dprime.h -lm

clean:
 -rm -f *.o
 -rm -f prime
 -rm -f dprime.h

Example: Testing the Program
After creating a fresh build, test that the executable is still working as expected:

make clean
rm -f *.o
rm -f prime
rm -f dprime.h

make
gcc -c primelib.c
dtrace -h -s dprime.d

Chapter 3
Adding USDT Probes to an Application

3-8

gcc -c primain.c
dtrace -G -s dprime.d primelib.o primain.o -o prime.o
gcc -Wl,--export-dynamic,--strip-all -o prime prime.o primelib.o primain.o dprime.h -lm

./prime
Enter a positive target integer to test for prime status: 6799
Square root of 6799 is 82.456047
82 highest value to check as divisor
6799 is not prime because there is a factor 13

Using USDT Probes
This section provides some practice in the nominal use of the USDT probes that were
created in Adding USDT Probes to an Application.

Initially, the probes are not visible because the application is not running with the probes, as
shown in the following output:

dtrace -l -P 'prime*'
 ID PROVIDER MODULE FUNCTION NAME
dtrace: failed to match prime*:::: No probe matches description

Start the application, but do not enter any value until you have listed the probes:

./prime
Enter a positive target integer to test for prime status:

From another command line, issue a probe listing:

dtrace -l -P 'prime*'
 ID PROVIDER MODULE FUNCTION NAME
 2475 primeget26556 prime main query-
factorreturnA
 2476 primeget26556 prime main query-
factorreturnB
 2477 primeget26556 prime main query-final
 2478 primeget26556 prime main query-
maxcheckval
 2479 primeget26556 prime main query-userentry

Note:

The provider name is a combination of the defined provider primeget, from the
dprime.d file, and the PID of the running application prime. The output of the
following command displays the PID of prime:

ps aux | grep prime
root 26556 0.0 0.0 7404 1692 pts/0 S+ 21:50 0:00 ./prime

If you want to be able to run USDT scripts for users other than root, the helper device must
have the proper permissions. Alternatively, you can run the program with the probes in it as
the root user. See Example: Changing the Mode of the DTrace Helper Device for more
information about changing the mode of the DTrace helper device.

Chapter 3
Using USDT Probes

3-9

One method for getting these permissions is to run the following command to change
the configuration so that users other than the root user can send probe provider
information to DTrace:

setfacl -m u:guest:rw /dev/dtrace/helper

Start the application again, but do not enter any values until the probes are listed:

./prime
Enter a positive target integer to test for prime status:

From another command line, issue a probe listing:

dtrace -l -P 'prime*'
 ID PROVIDER MODULE FUNCTION NAME
 2456 primeget2069 prime main query-
factorreturnA
 2457 primeget2069 prime main query-
factorreturnB
 2458 primeget2069 prime main query-final
 2459 primeget2069 prime main query-
maxcheckval
 2460 primeget2069 prime main query-userentry

Example: Using simpleTimeProbe.d to Show the Elapsed Time
Between Two Probes

The following example shows how you would create a simple script that measures the
time elapsed between the first probe and the second probe (query-userentry to
query-maxcheckval).

/* simpleTimeProbe.d */

/* Show how much time elapses between two probes */

primeget*:::query-userentry
{
 self->t = timestamp; /* Initialize a thread-local variable with the time */
}

primeget*:::query-maxcheckval
/self->t != 0/
{
 timeNow = timestamp;
 /* Divide by 1000 for microseconds */
 printf("%s (pid=%d) spent %d microseconds between userentry & maxcheckval\n",
 execname, pid, ((timeNow - self->t)/1000));

 self->t = 0; /* Reset the variable */
}

Start the execution of the target application:

./prime
Enter a positive target integer to test for prime status:

Then, run the DTrace script from another window:

dtrace -q -s simpleTimeProbe.d

Chapter 3
Using USDT Probes

3-10

As the application is running, the output of the script is also running in parallel:

./prime
Enter a positive target integer to test for prime status: 7921
Square root of 7921 is 89.000000
89 highest value to check as divisor
7921 is not prime because there is a factor 89
./prime
Enter a positive target integer to test for prime status: 995099
Square root of 995099 is 997.546509
997 highest value to check as divisor
995099 is not prime because there is a factor 7
./prime
Enter a positive target integer to test for prime status: 7921
Square root of 7921 is 89.000000
89 highest value to check as divisor
7921 is not prime because there is a factor 89

On the command line where the script is being run, you should see output similar to the
following:

dtrace -q -s simpleTimeProbe.d
prime (pid=2328) spent 45 microseconds between userentry & maxcheckval
prime (pid=2330) spent 41 microseconds between userentry & maxcheckval
prime (pid=2331) spent 89 microseconds between userentry & maxcheckval
^C

Example: Using timeTweenprobes.d to Show the Elapsed Time Between
Each Probe

You can broaden the script to monitor all of the following probes in the application:

• query-userentry
• query-maxcheckval
• query-factorreturnA
• query-factorreturnB
• query-final
/* timeTweenProbes.d */

/* show how much time elapses between each probe */

BEGIN
{
 iterationCount = 0;
}

primeget*:::query-userentry
{
 printf("%s (pid=%d) running\n", execname, pid);
 self->t = timestamp; /* Initialize a thread-local variable with time */
}

primeget*:::query-maxcheckval
/self->t != 0/

Chapter 3
Using USDT Probes

3-11

{
 timeNow = timestamp;
 printf(" maxcheckval spent %d microseconds since userentry\n",
 ((timeNow - self->t)/1000)); /* Divide by 1000 for microseconds */
 self->t = timeNow; /* set the time to recent sample */
}

primeget*:::query-factorreturnA
/self->t != 0/
{
 timeNow = timestamp;
 printf(" factorreturnA spent %d microseconds since maxcheckval\n",
 ((timeNow - self->t)/1000)); /* Divide by 1000 for microseconds */
 self->t = timeNow; /* set the time to recent sample */
}

primeget*:::query-factorreturnB
/self->t != 0/
{
 timeNow = timestamp;
 printf(" factorreturnB spent %d microseconds since factorreturnA\n",
 ((timeNow - self->t)/1000)); /* Divide by 1000 for microseconds */
 self->t = timeNow; /* set the time to recent sample */
}

primeget*:::query-final
/self->t != 0/
{
 printf(" prime spent %d microseconds from factorreturnB until ending\n",
 ((timestamp - self->t)/1000));
 self->t = 0; /* Reset the variable */
 iterationCount++;
}

END
{
 trace(iterationCount);
}

Again, start the execution of the target application first, then run the script from another
window:

./prime
Enter a positive target integer to test for prime status: 995099
Square root of 995099 is 997.546509
997 highest value to check as divisor
995099 is not prime because there is a factor 7
./prime
Enter a positive target integer to test for prime status: 7921
Square root of 7921 is 89.000000
89 highest value to check as divisor
7921 is not prime because there is a factor 89
./prime
Enter a positive target integer to test for prime status: 95099
Square root of 95099 is 308.381256
308 highest value to check as divisor
95099 is not prime because there is a factor 61
./prime
Enter a positive target integer to test for prime status: 95099
Square root of 95099 is 308.381256
308 highest value to check as divisor

Chapter 3
Using USDT Probes

3-12

95099 is not prime because there is a factor 61
./prime
Enter a positive target integer to test for prime status: 5099
Square root of 5099 is 71.407280
71 highest value to check as divisor
5099 is a prime number

The corresponding output from the script is similar to the following:

dtrace -q -s ./timeTweenProbes.d
prime (pid=2437) running
 maxcheckval spent 96 microseconds since userentry
 factorreturnA spent 9 microseconds since maxcheckval
 factorreturnB spent 6 microseconds since factorreturnA
 prime spent 9 microseconds from factorreturnB until ending
prime (pid=2439) running
 maxcheckval spent 45 microseconds since userentry
 factorreturnA spent 10 microseconds since maxcheckval
 factorreturnB spent 7 microseconds since factorreturnA
 prime spent 9 microseconds from factorreturnB until ending
prime (pid=2440) running
 maxcheckval spent 43 microseconds since userentry
 factorreturnA spent 11 microseconds since maxcheckval
 factorreturnB spent 8 microseconds since factorreturnA
 prime spent 10 microseconds from factorreturnB until ending
prime (pid=2441) running
 maxcheckval spent 53 microseconds since userentry
 factorreturnA spent 10 microseconds since maxcheckval
 factorreturnB spent 7 microseconds since factorreturnA
 prime spent 10 microseconds from factorreturnB until ending
prime (pid=2442) running
 maxcheckval spent 40 microseconds since userentry
 factorreturnA spent 9 microseconds since maxcheckval
 factorreturnB spent 48 microseconds since factorreturnA
 prime spent 10 microseconds from factorreturnB until ending

^C
5

As is observed in the previous example, there is now a set of DTrace features that can be
used with the probes that were created.

Chapter 3
Using USDT Probes

3-13

4
Going Further With DTrace

For more information about using DTrace on Oracle Linux, see Oracle Linux: DTrace
Reference Guide .

The latest DTrace development work and source code for Linux is available at https://
github.com/oracle/dtrace-utils/.

You may also reference the information at https://www.oracle.com/linux/downloads/linux-
dtrace.html.

4-1

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://github.com/oracle/dtrace-utils/
https://github.com/oracle/dtrace-utils/
https://www.oracle.com/linux/downloads/linux-dtrace.html
https://www.oracle.com/linux/downloads/linux-dtrace.html

	Contents
	Preface
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Introducing DTrace
	About This Tutorial
	About DTrace
	About DTrace Providers
	Preparing to Install and Configure DTrace
	Using Automatically Loaded DTrace Modules
	Manually Loading DTrace Modules
	Example: Displaying Probes for a Provider
	Exercise: Enabling and Listing DTrace Probes
	Solution to Exercise: Enabling and Listing DTrace Probes

	Running a Simple DTrace Program
	Example: Simple D Program That Uses the BEGIN Probe (hello.d)
	Exercise: Using the END Probe
	Solution to Exercise and Example: Using the END Probe

	2 Tracing Operating System Behavior
	Tracing Process Creation
	Example: Monitoring the System as Programs Are Executed (execcalls.d)
	Exercise: Suppressing Verbose Output From DTrace
	Solution to Exercise: Suppressing Verbose Output From DTrace

	Tracing System Calls
	Example: Recording open() System Calls on a System (syscalls.d)
	Exercise: Using the printf() Function to Format Output
	Solution to Exercise: Using the printf() Function to Format Output

	Performing an Action at Specified Intervals
	Example: Using tick.d
	Exercise: Using tick Probes
	Solution to Exercise and Example: Using tick Probes
	Example: Modified Version of tick.d

	Using Predicates to Select Actions
	Example: Using daterun.d
	Example: Listing Available syscall Provider Probes
	Exercise: Using syscall Probes
	Solution to Exercise: Using syscall Probes

	Timing Events on a System
	Example: Monitoring read() System Call Duration (readtrace.d)
	Exercise: Timing System Calls
	Solution to Exercise: Timing System Calls
	Exercise: Timing All System Calls for cp (calltrace.d)
	Solution to Exercise: Timing All System Calls for cp (calltrace.d)

	Tracing Parent and Child Processes
	Example: Using proc Probes to Report Activity on a System (activity.d)
	Exercise: Using a Predicate to Control the Execution of an Action
	Solution to Exercise: Using a Predicate to Control the Execution of an Action
	Example: Recording fork() and exec() Activity for a Specified Program (activity1.d)

	Simple Data Aggregations
	Example: Counting the Number of write() System Calls Invoked by Processes
	Example: Counting the Number of read() and write() System Calls
	Exercise: Counting System Calls Over a Fixed Period
	Solution to Exercise and Example: Counting Write, Read, and Open System Calls Over 100 Seconds (countcalls.d)
	Example: Counting System Calls Invoked by a Process (countsyscalls.d)
	Exercise: Tracing Processes That Are Run by a User
	Solution to Exercise and Example: Counting Programs Invoked by a Specified User (countprogs.d)
	Example: Counting the Number of Times a Program Reads From Different Files in 10 Seconds (fdscount.d)
	Exercise: Counting Context Switches on a System
	Solution to Exercise and Example: Counting Context Switches on a System

	Working With More Complex Data Aggregations
	Example: Displaying the Distribution of Read Sizes Resulting From a Command
	Example: Displaying the Distribution of I/O Throughput for Block Devices (diskact.d)
	Exercise: Displaying Read and Write I/O Throughput Separately
	Solution to Exercise: Displaying Read and Write I/O Throughput Separately
	Example: Displaying Cumulative Read and Write Activity Across a File System Device (fsact)

	Displaying System Call Errors
	Example: Displaying System Call Errors (errno.d)
	Exercise: Displaying More Information About System Call Errors
	Solution to Exercise: Displaying More Information About System Call Errors
	Example: Modified Version of errno.d Displaying Error Names (displayerrno.d)

	3 Tracing User-Space Applications
	Preparing for Tracing User-Space Applications
	Example: Changing the Mode of the DTrace Helper Device

	Sample Application
	Description and Format of the makefile File
	Description of the primelib.h Source File
	Description of the primelib.c Source File
	Description of the primain.c Source File
	Compiling the Program and Running the prime Executable

	Adding USDT Probes to an Application
	Exercise: Creating a dprime.d File
	Solution to Exercise: Creating a dprime.d File
	Example: Creating a .h File From a dprime.d File
	Exercise: Directing makefile to Re-Create the dprime.h File
	Solution to Exercise: Directing makefile to Re-Create the dprime.h File
	Example: Testing the Program

	Using USDT Probes
	Example: Using simpleTimeProbe.d to Show the Elapsed Time Between Two Probes
	Example: Using timeTweenprobes.d to Show the Elapsed Time Between Each Probe

	4 Going Further With DTrace

