The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Oracle® Cloud Native Environment

Container Orchestration for Release 1.3

ORACLE

F50645-02
April 2022

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Oracle Legal Notices

Copyright © 2019, 2022, Oracle and/or its affiliates.

https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr

The software described in this documentation is either no longer supported or is in extended support.

Oracle recommends that you upgrade to a current supported release.

Table of Contents

[(=1 ToT = PO PP PRI \Y
1 INtroduCtion 10 KUDEBIMELESciiiii ettt et e e e e e e e e enaas 1
1.1 Kubernetes COMPONENTScouuuiiiiiti ettt ettt ettt e e e et et e e et e e e e et e e e e et 1
0 00 A\ [o =2 S PP PPTTR SRR 1

Li1.2 POOS ittt 3

1.1.3 ReplicaSet, Deployment, StatefulSet Controllersccoooeiiiiiiiiii e 3

L.14 SEIVICES ..ottt e e et et et et ettt ettt e e e e eee 3

L.1.5 VOIUMES .ottt ettt e et e e e et e et e 4

1.1.6 NBIMESPACES ...vuiieiiiiiieiet et e et et et e ettt r et et et e et et a e r et e e et e r e neea e ens 5

1.2 ADOUL CRI-O ittt et e ettt ettt e e 5

2 Creating @ KUDEIMELES CIUSTETiiiiiiei et e e et e e e e e ae s 7
2.1 Creating a Kubernetes MOAUIEcooiiiiiiiiii e 7
2.1.1 Creating an HA Cluster with External Load BalancCerccccoevvieiiiiiiiiiii e 7

2.1.2 Creating an HA Cluster with Internal Load Balancerccccooooiiiiiiiiiiiniiiiieci, 9

2.1.3 Creating a Cluster with a Single Control Plane Nodecccoooveiiiiiiiiiiiiiceees 10

2.2 Validating a Kubernetes MOAUIEuiiiiiiiiii e 10

2.3 Installing a Kubernetes MOGUIEuiiiiiii e 11

3 Setting up the Kubernetes Command-Line Interface (KUbecCtl) ... 13
3.1 Setting up kubectl on a Control Plane NOGEooiiiiiiiiiiiii e 13

3.2 Setting up kubectl on the Operator NOUEooouiiiiiiiiii e 13

4 USING KUDBINELES ...ttt ettt e et e ettt e ettt e e et b e e e e rn s 15
4.1 About RUNEIME ENQINES ...ttt e e e s 15

4.2 Getting Information about NOUEScoouuiiiiiii e 15

4.3 Running an ApPIICation iN 8 POiiiiiiiii e e 15

4.4 Scaling @ Pod DeplOYMENTcoouuiiiiiiiiieeee et e e e et e e e 17

4.5 Exposing a Service Object for an ApplICAtioNooiiiiiiiiiii e 17

4.6 Deleting @ Service or DEPIOYMENTc.uuuiiiii et 18

4.7 WOrking With NABMESPACEScovuiiiiiiiii ettt e e 18

4.8 UsSIiNg DePIOYMENT FlES . .oouiiiiiii et 18

5 Accessing the Kubernetes DashbOard ..o 21
5.1 Starting the DasShDOAITccouuuiiiiiiii et e e e e e eens 21

5.2 Connecting to the DAsShDOAIMuuiiiiiiiiiiii e e e 21

5.3 Connecting to the Dashboard REMOLEIYccoouiiiiiiiiiiiii e 22

6 Scaling @ KUDEIMELES CIUSTETuiiiiiiii ettt e r e e e e e e enaens 23
6.1 Scaling Up a KUDEIELES CIUSLETcooeiiiiiii e 24

6.2 Scaling Down a KUubernetes CIUSTENuuiiiiiii e 25

7 Backing up and Restoring a Kubernetes CIUSTIETuuiiiiiiiiiiiii e e 27
7.1 Backing up Control PIAane NOGESooiiiiiiiiiii et e e e 27

7.2 Restoring Control Plane NOGESociiiiiiiiiii e 27

8 Setting Access to ext er nal | PS in KUDErNetes SEIVICESc.uuiiiiiiiiiiiiiiiii e 29
8.1 Enabling Access t0 CIDR BIOCKSuiiiiiiiiieiiiiii et 29

8.2 Modifying Access t0 CIDR BIOCKSoiiiiiiiiiiiiiiie e 29

8.3 Disabling ACCeSS t0 Xt eI Nal | PS ...iiiiiiiiii e 30

8.4 Enabling Access 10 all eXt erNal | PS ... 30

9 Using Operators With KUDEIMELEScoouiiiiiiiiii e 33
9.1 Installing the Operator Lifecycle Manager Module ... 33

9.2 Verifying the Operator Lifecycle Manager Module Deploymentcccoiiieiiiiinieiiiiineeeennnnnn, 34

9.3 Listing OpPerator REQISIIIESeiiiiieieii ettt ettt et e e et eeana s 34

9.4 INSTAIIING OPEIALOISvuieiiiti ettt ettt ettt e ettt e et e et e et eebreeeenbreeeentnaeeeees 34

9.5 REMOVING OPEIALOIS ..eeitneiiiii ettt ettt ettt et et a et et e et et e et e b e e e e e e e eaa s 36

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Oracle® Cloud Native Environment

9.6 Uninstalling the Operator Lifecycle Manager Modulecccoiiiiiiiiiiiiicii e,
10 RemMoVvING @ KUDEIMNELES CIUSTENiuuiiiiieii e e e e e e e e e e e e e et e e e e eaa s

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Preface

This book describes how to use Kubernetes, which is an implementation of the open-source, containerized
application management platform from the upstream Kubernetes release. Oracle provides additional

tools, testing and support to deliver this technology with confidence. Kubernetes integrates with container
products to handle more complex deployments where clustering may be used to improve the scalability,
performance and availability of containerized applications. Detail is provided on the advanced features

of Kubernetes and how it can be installed, configured and used as a component of Oracle Cloud Native
Environment.

This document describes functionality and usage available in the most current release of the product.
Document generated on: 2022-04-29 (revision:; 1232)

Audience
This document is intended for administrators who need to use Kubernetes in an Oracle Cloud Native

Environment. It is assumed that readers are familiar with web and virtualization technologies and have a
general understanding of the Oracle Linux operating system.

Related Documents

The documentation for this product is available at:

https://docs.oracle.com/en/operating-systems/olcne/

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle Accessibility
Conformance Report at https://www.oracle.com/corporate/accessibility/templates/t2-11535.html.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

https://docs.oracle.com/en/operating-systems/olcne/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Diversity and Inclusion

https://lwww.oracle.com/corporate/accessibility/learning-support.html#support-tab.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a diverse workforce
that increases thought leadership and innovation. As part of our initiative to build a more inclusive culture
that positively impacts our employees, customers, and partners, we are working to remove insensitive
terms from our products and documentation. We are also mindful of the necessity to maintain compatibility
with our customers' existing technologies and the need to ensure continuity of service as Oracle's offerings
and industry standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Vi

https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 1 Introduction to Kubernetes

Kubernetes is an open-source system for automating the deployment, scaling and management of
containerized applications. Primarily, Kubernetes provides the tools to easily create a cluster of systems
across which containerized applications can be deployed and scaled as required.

The Kubernetes project is maintained at:
https://kubernetes.io/

Kubernetes is fully tested on Oracle Linux 7 and Oracle Linux 8 and includes additional tools developed at
Oracle to ease configuration and deployment of a Kubernetes cluster.

For more information on Kubernetes releases, hardware and software requirements, new and notable
features, and known issues, see Release Notes.

1.1 Kubernetes Components

You are likely to encounter the following common components when you start working with Kubernetes on
Oracle Linux. The descriptions provided are brief, and largely intended to help provide a glossary of terms
and an overview of the architecture of a typical Kubernetes environment. Upstream documentation can be
found at:

https://kubernetes.io/docs/concepts/

1.1.1 Nodes

Kubernetes Node architecture is described in detail at:
https://kubernetes.io/docs/concepts/architecture/nodes/

1.1.1.1 Control Plane Node

The control plane node is responsible for cluster management and for providing the API that is used
to configure and manage resources within the Kubernetes cluster. Kubernetes control plane node
components can be run within Kubernetes itself, as a set of containers within a dedicated pod. These
components can be replicated to provide highly available (HA) control plane node functionality.

The following components are required for a control plane node:

* API Server (kube- api server): The Kubernetes REST API is exposed by the API Server. This
component processes and validates operations and then updates information in the Cluster State Store
to trigger operations on the worker nodes. The APl is also the gateway to the cluster.

» Cluster State Store (et cd): Configuration data relating to the cluster state is stored in the Cluster State
Store, which can roll out changes to the coordinating components like the Controller Manager and the
Scheduler. It is essential to have a backup plan in place for the data stored in this component of your
cluster.

e Cluster Controller Manager (kube- control | er - manager): This manager is used to perform many
of the cluster-level functions, as well as application management, based on input from the Cluster State
Store and the API Server.

https://kubernetes.io/
https://docs.oracle.com/en/operating-systems/olcne/1.3/relnotes/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/architecture/nodes/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Nodes

e Scheduler (kube- schedul er): The Scheduler handles automatically determining where containers
should be run by monitoring availability of resources, quality of service and affinity and anti-affinity
specifications.

The control plane node is also usually configured as a worker node within the cluster. Therefore, the
control plane node also runs the standard node services: the kubelet service, the container runtime and
the kube proxy service. Note that it is possible to taint a node to prevent workloads from running on an
inappropriate node. The kubeadmutility automatically taints the control plane node so that no other
workloads or containers can run on this node. This helps to ensure that the control plane node is never
placed under any unnecessary load and that backup and restore of the control plane node for the cluster is
simplified.

If the control plane node becomes unavailable for a period, cluster functionality is suspended, but the
worker nodes continue to run container applications without interruption.

For single node clusters, when the control plane node is offline, the API is unavailable, so the environment
is unable to respond to node failures and there is no way to perform new operations like creating new
resources or editing or moving existing resources.

A high availability cluster with multiple control plane nodes ensures that more requests for control plane
node functionality can be handled, and with the assistance of control plane replica nodes, uptime is
significantly improved.

1.1.1.2 Control Plane Replica Nodes

Control plane replica nodes are responsible for duplicating the functionality and data contained on control
plane nodes within a Kubernetes cluster configured for high availability. To benefit from increased uptime
and resilience, you can host control plane replica nodes in different zones, and configure them to load
balance for your Kubernetes cluster.

Replica nodes are designed to mirror the control plane node configuration and the current cluster state in
real time so that if the control plane nodes become unavailable the Kubernetes cluster can fail over to the
replica nodes automatically whenever they are needed. In the event that a control plane node fails, the
API continues to be available, the cluster can respond automatically to other node failures and you can still
perform regular operations for creating and editing existing resources within the cluster.

1.1.1.3 Worker Nodes

Worker nodes within the Kubernetes cluster are used to run containerized applications and handle
networking to ensure that traffic between applications across the cluster and from outside of the cluster can
be properly facilitated. The worker nodes perform any actions triggered via the Kubernetes API, which runs
on the control plane node.

All nodes within a Kubernetes cluster must run the following services:

» Kubelet Service: The agent that allows each worker node to communicate with the APl Server running
on the control plane node. This agent is also responsible for setting up pod requirements, such as
mounting volumes, starting containers and reporting status.

* Container Runtime: An environment where containers can be run. In this release, the container
runtimes are either runC or Kata Containers. For more information about the container runtimes, see
Container Runtimes.

» Kube Proxy Service: A service that programs rules to handle port forwarding and IP redirects to ensure
that network traffic from outside the pod network can be transparently proxied to the pods in a service.

https://docs.oracle.com/en/operating-systems/olcne/1.3/runtimes/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Pods

In all cases, these services are run from syst end as inter-dependent daemons.
1.1.2 Pods

Kubernetes introduces the concept of "pods", which are groupings of one or more containers and their
shared storage, and any specific options on how these should be run together. Pods are used for tightly
coupled applications that would typically run on the same logical host and which may require access to
the same system resources. Typically, containers in a pod share the same network and memory space
and can access shared volumes for storage. These shared resources allow the containers in a pod to
communicate internally in a seamless way as if they were installed on a single logical host.

You can easily create or destroy pods as a set of containers. This makes it possible to do rolling updates to
an application by controlling the scaling of the deployment. It also allows you to scale up or down easily by
creating or removing replica pods. For more information on pods, see the upstream documentation at:

https://kubernetes.io/docs/concepts/workloads/pods/pod/

1.1.3 ReplicaSet, Deployment, StatefulSet Controllers

Kubernetes provides a variety of controllers that you can use to define how pods are set up and deployed
within the Kubernetes cluster. These controllers can be used to group pods together according to their
runtime needs and define pod replication and pod start up ordering.

You can define a set of pods that should be replicated with a ReplicaSet. This allows you to define the
exact configuration for each of the pods in the group and which resources they should have access to.
Using ReplicaSets not only caters to the easy scaling and rescheduling of an application, but also allows
you to perform rolling or multi track updates to an application. For more information on ReplicaSets, see
the upstream documentation at:

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

You can use a Deployment to manage pods and ReplicaSets. Deployments are useful when you need to
roll out changes to ReplicaSets. By using a Deployment to manage a ReplicaSet, you can easily rollback
to an earlier Deployment revision. A Deployment allows you to create a newer revision of a ReplicaSet
and then migrate existing pods from a previous ReplicaSet into the new revision. The Deployment can
then manage the cleanup of older unused ReplicaSets. For more information on Deployments, see the
upstream documentation at:

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

You can use StatefulSets to create pods that guarantee start up order and unique identifiers, which are
then used to ensure that the pod maintains its identity across the lifecycle of the StatefulSet. This feature
makes it possible to run stateful applications within Kubernetes, as typical persistent components such as
storage and networking are guaranteed. Furthermore, when you create pods they are always created in
the same order and allocated identifiers that are applied to host names and the internal cluster DNS. Those
identifiers ensure there are stable and predictable network identities for pods in the environment. For more
information on StatefulSets, see the upstream documentation at:

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

1.1.4 Services

You can use services to expose access to one or more mutually interchangeable pods. Since pods can be
replicated for rolling updates and for scalability, clients accessing an application must be directed to a pod

https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Volumes

running the correct application. Pods may also need access to applications outside of Kubernetes. In either
case, you can define a service to make access to these facilities transparent, even if the actual backend
changes.

Typically, services consist of port and IP mappings. How services function in network space is defined by
the service type when it is created.

The default service type is the Cl ust er | P, and you can use this to expose the service on the internal IP
of the cluster. This option makes the service only reachable from within the cluster. Therefore, you should
use this option to expose services for applications that need to be able to access each other from within
the cluster.

Frequently, clients outside of the Kubernetes cluster may need access to services within the cluster. You
can achieve this by creating a NodePor t service type. This service type enables you to take advantage

of the Kube Proxy service that runs on every worker node and reroute traffic to a Cl ust er | P, which is
created automatically along with the NodePor t service. The service is exposed on each node IP at a static
port, called the NodePor t . The Kube Proxy routes traffic destined to the NodePor t into the cluster to

be serviced by a pod running inside the cluster. This means that if a NodePor t service is running in the
cluster, it can be accessed via any node in the cluster, regardless of where the pod is running.

Building on top of these service types, the LoadBal ancer service type makes it possible for you to
expose the service externally by using a cloud provider's load balancer. This allows an external load
balancer to handle redirecting traffic to pods directly in the cluster via the Kube Proxy. A NodePor t service
and a Cl ust er | P service are automatically created when you set up the LoadBal ancer service.

Important

A As you add services for different pods, you must ensure that your network is
properly configured to allow traffic to flow for each service declaration. If you create
a NodePort or LoadBal ancer service, any of the ports exposed must also be
accessible through any firewalls that are in place.

If you are running f i r ewal | d on any of your nodes, make sure you add rules to
allow traffic for the external facing ports of the services that you create.

For more information on services, see the upstream documentation at:

https://kubernetes.io/docs/concepts/services-networking/service/

1.1.5 Volumes

In Kubernetes, a volume is storage that persists across the containers within a pod for the lifespan of the
pod itself. When a container within the pod is restarted, the data in the Kubernetes volume is preserved.
Furthermore, Kubernetes volumes can be shared across containers within the pod, providing a file store
that different containers can access locally.

Kubernetes supports a variety of volume types that define how the data is stored and how persistent it is,
which are described in detail in the upstream documentation at:

https://kubernetes.io/docs/concepts/storage/volumes/

Kubernetes volumes typically have a lifetime that matches the lifetime of the pod, and data in a volume
persists for as long as the pod using that volume exists. Containers can be restarted within the pod, but the
data remains persistent. If the pod is destroyed, the data is usually destroyed with it.

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/volumes/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Namespaces

In some cases, you may require even more persistence to ensure the lifecycle of the volume is decoupled
from the lifecycle of the pod. Kubernetes introduces the concepts of the PersistentVolume and the
PersistentVolumeClaim. PersistentVolumes are similar to Volumes except that they exist independently

of a pod. They define how to access a storage resource type, such as NFS or iSCSI. You can configure

a PersistentVolumeClaim to make use of the resources available in a PersistentVolume, and the
PersistentVolumeClaim will specify the quota and access modes that should be applied to the resource for
a consumer. A pod you have created can then make use of the PersistentVolumeClaim to gain access to
these resources with the appropriate access modes and size restrictions applied.

For more information about PersistentVolumes, see the upstream documentation at:

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

1.1.6 Namespaces

Kubernetes implements and maintains strong separation of resources through the use of namespaces.
Namespaces effectively run as virtual clusters backed by the same physical cluster and are intended for
use in environments where Kubernetes resources must be shared across use cases.

Kubernetes takes advantage of namespaces to separate cluster management and specific Kubernetes
controls from any other user-specific configuration. Therefore, all of the pods and services specific to
the Kubernetes system are found within the kube- syst emnamespace. A def aul t namespace is also
created to run all other deployments for which no namespace has been set.

For more information on namespaces, see the upstream documentation at:

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

1.2 About CRI-O

When you deploy Kubernetes worker nodes, CRI-O is also deployed. CRI-O is an implementation of the
Kubernetes Container Runtime Interface (CRI) to enable using Open Container Initiative (OCI) compatible
runtimes. It is a lightweight alternative to using Docker as the runtime for Kubernetes. CRI-O allows
Kubernetes to use any OCIl-compliant runtime as the container runtime for running pods.

CRI-O delegates containers to run on appropriate nodes, based on the configuration set in pod files.
Privileged pods can be run using the runC runtime engine (r unc), and unprivileged pods can be run
using the Kata Containers runtime engine (kat a- r unt i ne). Defining whether containers are trusted or
untrusted is set in the Kubernetes pod or deployment file.

For information on how to set the container runtime, see Container Runtimes.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://docs.oracle.com/en/operating-systems/olcne/1.3/runtimes/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 2 Creating a Kubernetes Cluster

This chapter shows you how to use the Platform CLI (ol cnect |) to create a Kubernetes cluster.
This chapter assumes you have installed the Oracle Cloud Native Environment software packages on
the nodes, configured them to be used in a cluster and created an environment in which to install the
Kubernetes module, as discussed in Getting Started.

The high level steps to create a Kubernetes cluster are:

» Create a Kubernetes module to specify information about the cluster.

 Validate the Kubernetes module to make sure Kubernetes can be installed on the nodes.

« Install the Kubernetes module to install the Kubernetes packages on the nodes and create the cluster.

The ol cnect| command is used to perform these steps. For more information on the syntax for the
ol cnect | command, see Platform Command-Line Interface.

2.1 Creating a Kubernetes Module

The Kubernetes module can be set up to create a:

» Highly available (HA) cluster with an external load balancer

» HA cluster with an internal load balancer

 Cluster with a single control plane node (non-HA cluster)

To create an HA cluster you need at least three control plane nodes and two worker nodes.

For information on setting up an external load balancer, or for information on preparing the control plane
nodes to use the internal load balancer installed by the Platform CLI, see Getting Started.

A number of additional ports are required to be open on control plane nodes in an HA cluster. For
information on opening the required ports for an HA cluster, see Getting Started.

Use the ol cne nodul e creat e command to create a Kubernetes module. If you do not include all
the required options when using this command, you are prompted to provide them. For the full list of the
options available for the Kubernetes module, see Platform Command-Line Interface.

2.1.1 Creating an HA Cluster with External Load Balancer

This section shows you how to create a Kubernetes module to create an HA cluster using an external load
balancer.

The following example creates an HA cluster using your own load balancer, available on the host
I b. exanpl e. comand running on port 6443.

ol cnect| nodul e create \

--envi ronnent - nane myenvi ronnent \

--nmodul e kubernetes \

--name nycluster \

--container-registry contai ner-registry.oracle.confol cne \

- -1 oad- bal ancer | b. exanpl e. com 6443 \

--mast er-nodes control 1. exanpl e. com 8090, contr ol 2. exanpl e. com 8090, contr ol 3. exanpl e. com 8090 \

--wor ker - nodes wor ker 1. exanpl e. com 8090, wor ker 2. exanpl e. com 8090, wor ker 3. exanpl e. com 8090, wor ker 4. exanpl e.

https://docs.oracle.com/en/operating-systems/olcne/1.3/start/
https://docs.oracle.com/en/operating-systems/olcne/1.3/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.3/start/install.html#install-lb
https://docs.oracle.com/en/operating-systems/olcne/1.3/start/prereq.html#ports
https://docs.oracle.com/en/operating-systems/olcne/1.3/olcnectl/commands.html#module-create

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Creating an HA Cluster with External Load Balancer

--selinux enforcing \

--restrict-service-externalip-ca-cert=/etc/olcne/configs/certificates/restrict_external _i p/production/ca.cert
--restrict-service-externalip-tls-cert=/etc/olcne/configs/certificates/restrict_external _i p/production/node.ce
--restrict-service-externalip-tls-key=/etc/olcne/configs/certificates/restrict_external _ip/production/node. key

The - - envi r onnent - nanme sets the name of the environment in which to create the Kubernetes module.
This example sets it to nyenvi r onnment .

The - - nodul e option sets the module type to create. To create a Kubernetes module this must be set to
kuber net es.

The - - nane option sets the name used to identify the Kubernetes module. This example sets it to
mycl uster.

The - - cont ai ner - r egi st ry option specifies the container registry from which to pull the Kubernetes
images. This example uses the Oracle Container Registry, but you may also use an Oracle Container
Registry mirror, or a local registry with the Kubernetes images mirrored from the Oracle Container Registry.
For information on using an Oracle Container Registry mirror, or creating a local registry, see Getting
Started.

However, you can set a new default container registry value during an update or upgrade of the
Kubernetes module.

The - - | oad- bal ancer option sets the hostname and port of an external load balancer. This example
setsitto| b. exanpl e. com 6443.

The - - mast er - nodes option includes a comma separated list of the hostnames or IP addresses of
the control plane nodes to be included in the cluster and the port number on which the Platform Agent is
available. The default port number is 8090.

plane node. However, HA and failover features are not available until you reach
at least three control plane nodes in the cluster. To increase the number of control
plane nodes, scale up the cluster. For information on scaling up the cluster, see

Note
@ You can create a cluster that uses an external load balancer with a single control
Section 6.1, “Scaling Up a Kubernetes Cluster”.

The - - wor ker - nodes option includes a comma separated list of the hostnames or IP addresses of the
worker nodes to be included in the cluster and the port number on which the Platform Agent is available.
If a worker node is behind a NAT gateway, use the public IP address for the node. The worker node's
interface behind the NAT gateway must have an public IP address using the /32 subnet mask that is
reachable by the Kubernetes cluster. The /32 subnet restricts the subnet to one IP address, so that

all traffic from the Kubernetes cluster flows through this public IP address (for more information about
configuring NAT, see Getting Started). The default port number is 8090.

If SELinux is set to enf or ci ng mode (the operating system default and the recommended mode) on the
control plane node and worker nodes, you must also use the - - sel i nux enf or ¢ci ng option when you
create the Kubernetes module.

You must also include the location of the certificates for the ext er nal i p- val i dati on- webhook-
ser vi ce Kubernetes service. These certificates must be located on the operator node. The - -
restrict-service-externalip-ca-cert option sets the location of the CA certificate. The
--restrict-service-externalip-tls-cert setsthe location of the node certificate. The - -

https://docs.oracle.com/en/operating-systems/olcne/1.3/start/prereq.html#registry
https://docs.oracle.com/en/operating-systems/olcne/1.3/start/prereq.html#registry
https://docs.oracle.com/en/operating-systems/olcne/1.3/start/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Creating an HA Cluster with Internal Load Balancer

restrict-service-externalip-tls-key option sets the location of the node key. For information on
setting up these certificates, see Getting Started.

Important

val i dat i on- webhook- ser vi ce Kubernetes service are not required and cannot

A In Release 1.2.0, the options to set the options for the ext er nal i p-
be used. These options are only available and required in Release 1.2.2 or later.

You can optionally use the - -restri ct-servi ce-externalip-cidrs option to set the external IP
addresses that can be accessed by Kubernetes services. For example:

--restrict-service-externalip-cidrs=192.0.2.0/24,198.51.100. 0/ 24

In this example, the IP ranges that are allowed are within the 192. 0. 2. 0/ 24 and 198. 51. 100. 0/ 24
CIDR blocks.

You can optionally set the network interface to use for the Kubernetes data plane (the interface used by
the pods running on Kubernetes). By default, the interface used by the the Platform Agent (set with the - -
nmast er - nodes and - - wor ker - nodes options) is used for both the Kubernetes control plane node and
the data plane. If you want to specify a separate network interface to use for the data plane, include the - -
pod- net wor k- i f ace option. For example, - - pod- net wor k-i f ace ens1. This results in the control
plane node using the network interface used by the Platform Agent, and the data plane using a separate
network interface, which in this example is ens 1.

Note
@ You can also use a regex expression with the - - pod- net wor k- i f ace option. For
example:

- - pod- networ k-i face "ens[1-5]| et h5"

If you use regex to set the interface name, the first matching interface returned by
the kernel is used.

2.1.2 Creating an HA Cluster with Internal Load Balancer

This section shows you how to create a Kubernetes module to create an HA cluster using an internal load
balancer, installed by the Platform CLI on the control plane nodes.

This example creates an HA cluster using the internal load balancer installed by the Platform CLI.

ol cnectl nodul e create \

--envi ronment - name nyenvi ronment \

--nodul e kubernetes \

--name nycl uster \

--container-registry contai ner-registry.oracle.confol cne \

--virtual -ip 192.0.2.100 \

--mast er- nodes control 1. exanpl e. com 8090, contr ol 2. exanpl e. com 8090, contr ol 3. exanpl e. com 8090 \

--wor ker - nodes wor ker 1. exanpl e. com 8090, wor ker 2. exanpl e. com 8090, wor ker 3. exanpl e. com 8090, wor ker 4. exanpl e.
--selinux enforcing \
--restrict-service-externalip-ca-cert=/etc/olcne/configs/certificates/restrict_external _ip/production/ca.c
--restrict-service-externalip-tls-cert=/etc/olcne/configs/certificates/restrict_external _ip/production/ nod
--restrict-service-externalip-tls-key=/etc/olcne/configs/certificates/restrict_external _ip/production/node.

The - - vi rtual - i p option sets the virtual IP address to be used for the primary control plane node, for
example, 192. 0. 2. 100. This IP address should be available on the network and should not be assigned

https://docs.oracle.com/en/operating-systems/olcne/1.3/start/install.html#certs-setup-ext-ips

The software described in this documentation is either no longer supported or is in extended support.

Oracle recommends that you upgrade to a current supported release.
Creating a Cluster with a Single Control Plane Node

to any hosts on the network. This IP address is dynamically assigned to the control plane node assigned
as the primary controller by the load balancer.

If you are using a container registry mirror, you must also set the location of the NGINX image using the - -
ngi nx- i mage option. This option must be set to the location of your registry mirror in the format:

regi stry: port/ol cne/ ngi nx: version

For example:

--ngi nx-i mage nmyregi stry. exanpl e. com 5000/ ol cne/ ngi nx: 1.17.7

All other options used in this example are described in Section 2.1.1, “Creating an HA Cluster with External
Load Balancer”.

2.1.3 Creating a Cluster with a Single Control Plane Node

This section shows you how to create Kubernetes module to create a cluster with a single control plane
node. No load balancer is used or required with this type of cluster.

This example creates a cluster with a single control plane node.

ol cnect| nodul e create \

--envi ronnment - nanme nyenvi ronnment \

--nmodul e kubernetes --nane nycluster \

--container-registry container-registry.oracle.conifolcne \

--mast er-nodes control 1. exanpl e. com 8090 \

--wor ker - nodes wor ker 1. exanpl e. com 8090, wor ker 2. exanpl e. com 8090 \

--selinux enforcing \

--restrict-service-externalip-ca-cert=/etc/olcne/configs/certificates/restrict_external _i p/production/ca.cert
--restrict-service-externalip-tls-cert=/etc/olcne/configs/certificates/restrict_external _i p/producti on/node.ce
--restrict-service-externalip-tls-key=/etc/olcne/configs/certificates/restrict_external _i p/producti on/node. key

The - - mast er - nodes option should contain only one node.

All other options used in this example are described in Section 2.1.1, “Creating an HA Cluster with External
Load Balancer”.

2.2 Validating a Kubernetes Module

When you have created a Kubernetes module in an environment, you should validate the nodes are
configured correctly to install the module.

Use the ol cnect| nodul e val i dat e command to validate the nodes are configured correctly. For
example, to validate the Kubernetes module named nycl ust er in the nyenvi r onnent environment:

ol cnect! nodul e validate \
--envi ronment - name nyenvi ronnment \
--nanme nycl uster

If there are any validation errors, the commands required to fix the nodes are provided in the output. If you
want to save the commands as scripts, use the - - gener at e- scri pt s option. For example:

ol cnect| nodul e validate \

--envi ronnment - nanme nyenvi ronnent \
--nanme nycluster \
--generate-scripts

10

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Installing a Kubernetes Module

A script is created for each node in the module, saved to the local directory, and named
host nane: 8090. sh. You can copy the script to the appropriate node, and run it to fix any validation
errors.

2.3 Installing a Kubernetes Module

When you have created and validated a Kubernetes module, you use it to install Kubernetes on the nodes
and create a cluster.

Use the ol cnect| nodul e i nstal |l command to install Kubernetes on the nodes to create a cluster.
As part of installing the Kubernetes module:

» The Kubernetes packages are installed on the nodes. The kubeadmpackage installs the packages
required to run CRI-O and Kata Containers. CRI-O is needed to delegate containers to a runtime
engine (either r unc or kat a- r unt i ne). For more information about container runtimes, see Container
Runtimes.

 Thecrioandkubel et services are enabled and started.

* If you are installing an internal load balancer, the ol cne- ngi nx and keepal i ved services are enabled
and started on the control plane nodes.

For example, use the following command to use the Kubernetes module named mycl ust er in the
nmyenvi r onment environment to create a cluster:

ol cnect| nodule install \
--envi ronnment - nane nyenvi ronnent \
--name nycl uster

The Kubernetes module is used to install Kubernetes on the nodes and the cluster is started and validated
for health.

Important

A Installing Kubernetes may take several minutes to complete.

11

https://docs.oracle.com/en/operating-systems/olcne/1.3/runtimes/
https://docs.oracle.com/en/operating-systems/olcne/1.3/runtimes/

12

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 3 Setting up the Kubernetes Command-Line Interface
(kubectl)

This chapter describes how to set up the Kubernetes Command-Line Interface (kubect |). The kubect |
command is part of Kubernetes and is used to create and manage the containerized applications you
deploy on the Kubernetes cluster.

The kubect | utility is a command line tool that interfaces with the Kubernetes API server to run
commands against the Kubernetes cluster. The kubect | command is typically run on the control plane
node of the cluster, although you can also use an operator node. The kubect | utility effectively grants full
administrative rights to the cluster and all of the nodes in the cluster.

This chapter discusses setting up the kubect | command to access a Kubernetes cluster from either a
control plane node or an operator node.

3.1 Setting up kubectl on a Control Plane Node

To set up the kubect | command on a control plane node, copy and paste these commands to a terminal
in your home directory on a control plane node:

nkdir -p $HOVE/ . kube

sudo cp -i /etc/kubernetes/adm n.conf $HOVE/ . kube/config
sudo chown $(id -u):$(id -g) $HOWE . kube/ config

export KUBECONFI G=$HOVE/ . kube/ confi g

echo ' export KUBECONFI G=$HOVE/ . kube/ config' >> $HOWE . bashrc

Verify that you can use the kubect | command.

kubect| get pods -n kube-system

NAMVE READY STATUS RESTARTS AGE
cor edns- 5bc65d7f 4b- gzf cc 1/1 Runni ng 0 23h
cor edns- 5bc65d7f 4b- z64f 2 1/1 Runni ng 0 23h
et cd-control 1. exanpl e. com 1/1 Runni ng 0 23h
kube- api server-control 1. exanpl e. com 1/1 Runni ng 0 23h
kube-control | er-control 1. exanpl e. com 1/1 Runni ng 0 23h
kube-f | annel - ds- 2sj bx 1/1 Runni ng 0 23h
kube-f | annel - ds- nj g9r 1/1 Runni ng 0 23h
kube- proxy- n2rt 2 1/1 Runni ng 0 23h
kube- pr oxy-t bkxd 1/1 Runni ng 0 23h
kube- schedul er-control 1. exanpl e. com 1/1 Runni ng 0 23h
kuber net es- dashboar d- 7646bf 6898- d6x2m 1/1 Runni ng 0 23h

3.2 Setting up kubectl on the Operator Node

Oracle Cloud Native Environment allows you to create multiple environments from the operator node.
With this in mind, it is recommended that you use the kubect | command on a control plane node in

the Kubernetes cluster. If you use the kubect | command from the operator node, and you have multiple
environments deployed, you may inadvertently manage an unexpected Kubernetes cluster. If you do want
to set up the kubect | command to run it the operator node, you need to configure it.

The kubect | command is not set up by default to connect to Kubernetes from the operator node. To set
up the kubect | command on the operator node, create a local copy of the Kubernetes configuration file,
and use that to connect to the cluster.

To use the kubect | command as a regular user, perform the following steps on the operator node.

13

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Setting up kubectl on the Operator Node

To setup kubect | on an operator node:

1. Get the Kubernetes configuration and copy it to a local file on the operator node. Use the ol cnect |
nodul e property get command to get the Kubernetes configuration from the kubecf g property of
the kuber net es module. For example:

ol cnectl nodul e property get \
--envi ronment - name nyenvi ronment \

--name mycluster \
--property kubecfg | base64 -d > kubeconfig. yan

2. You can use the kubeconfi g. yan file directly when running kubect | commands using the - -
kubeconf i g option. For example:

kubect| get pods -n kube-system --kubeconfig kubeconfig. yan

3. You can also save the Kubernetes configuration so you do not need to use the - - kubeconf i g option.
Create the . kube subdirectory in your home directory:

nkdir -p $HOVE . kube

4. Copy the Kubernetes kubeconfi g. yam file to the . kube directory:
cp kubeconfig.yam $HOVE/ . kube/config

5. Export the path to the file for the KUBECONFI G environment variable:
export KUBECONFI G=$HOVE/ . kube/ confi g
To permanently set this environment variable, add it to your . bashr c file.

echo ' export KUBECONFI G=$HOVE/ . kube/ config' >> $HOMWE/ . bashrc

6. Verify that you can use the kubect| command.

kubect| get pods -n kube-system

NAVE READY STATUS RESTARTS AGE
cor edns- 5bc65d7f 4b- gzf cc 1/1 Runni ng 0 23h
cor edns- 5bc65d7f 4b- z64f 2 1/1 Runni ng 0 23h
et cd-control 1. exanpl e. com 1/1 Runni ng 0 23h
kube- api server-control 1. exanpl e. com 1/1 Runni ng 0 23h
kube-control | er-control 1. exanpl e. com 1/1 Runni ng 0 23h
kube- f | annel - ds- 2sj bx 1/1 Runni ng 0 23h
kube- f | annel - ds- nj gor 1/1 Runni ng 0 23h
kube- proxy- nPrt 2 1/1 Runni ng 0 23h
kube- pr oxy-t bkxd 1/1 Runni ng 0 23h
kube- schedul er-control 1. exanpl e. com 1/1 Runni ng 0 23h
kuber net es- dashboar d- 7646bf 6898- d6x2m 1/1 Runni ng 0 23h

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 4 Using Kubernetes

This chapter describes how to get started using Kubernetes to deploy, maintain and scale your
containerized applications. In this chapter, we describe basic usage of the kubect | command to get you
started creating and managing containers and services within your environment.

The kubect | utility is fully documented in the upstream documentation at:

https://kubernetes.io/docs/reference/kubectl/overview/

4.1 About Runtime Engines

r unc is the default runtime engine when you create containers. You can also use the kat a- runt i e

runtime engine to create Kata containers. For information on Kata containers and how to create them, see

Container Runtimes.

4.2 Getting Information about Nodes

To get a listing of all of the nodes in a cluster and the status of each node, use the kubect| get
command. This command can be used to obtain listings of any kind of resource that Kubernetes supports.
In this case, the nodes resource:

kubect| get nodes

NAVE

control . exanpl e. com
wor ker 1. exanpl e. com
wor ker 2. exanpl e. com

You can get more detailed information about any resource using the kubect| descri be command.

STATUS ROLES AGE VERSI ON

Ready master 1h v1. 20. x+x. X. x. el 8
Ready <none> 1h v1. 20. x+x. X. x. el 8
Ready <none> 1h v1. 20. x+x. X. x. el 8

If you specify the name of the resource, the output is limited to information about that resource alone;

otherwise, full details

of all resources are also printed to screen. For example:

kubect| describe nodes worker 1. exanpl e. com

Nane:
Rol es
Label s:

Annot at i ons

wor ker 1. exanpl e. com

<none>

bet a. kuber net es. i o/ ar ch=and64

bet a. kuber net es. i o/ os=l i nux

kuber net es. i o/ ar ch=and64

kuber net es. i o/ host nane=wor ker 1. exanpl e. com

kuber net es. i o/ os=l i nux

fl annel . al pha. cor eos. coml backend-data: {"VtepMAC':"fe: 78:5f:ea: 7c:c0"}
fl annel . al pha. cor eos. conl backend-t ype: vxl an

fl annel . al pha. cor eos. conl kube- subnet - nanager: true

fl annel . al pha. cor eos. coml publ i c-ip: 192.0.2.11

kubeadm al pha. kubernetes.i o/ cri-socket: /var/run/criol/crio.sock
node. al pha. kubernetes.io/ttl: O

vol unes. kuber net es. i o/ control | er - nenaged- at t ach-det ach: true

4.3 Running an Application in a Pod

To create a pod with a single running container, you can use the kubect| creat e command. For

example:

kubect| create depl oyment --image ngi nx hel |l o-world

15

https://kubernetes.io/docs/reference/kubectl/overview/
https://docs.oracle.com/en/operating-systems/olcne/1.3/runtimes/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Running an Application in a Pod

depl oynment . apps/ hel | o-wor | d creat ed

Substitute ngi nx with a container image. Substitute hel | o- wor | d with a name for your deployment. Your
pods are named by using the deployment name as a prefix.

DNS-1123 label. These must consist of lower case alphanumeric characters or -,
and must start and end with an alphanumeric character. The regular expression that
is used to validate namesis [a- z0- 9] ([- a- z0- 9] *[a- z0- 9]) ?". If you use a

Tip
@ Deployment, pod and service names conform to a requirement to match a
name for your deployment that does not validate, an error is returned.

There are many additional optional parameters that can be used when you run a new application within
Kubernetes. For instance, at run time, you can specify how many replica pods should be started, or you
might apply a label to the deployment to make it easier to identify pod components. To see a full list of
options available to you, run kubect | run --hel p.

To check that your new application deployment has created one or more pods, use the kubect| get
pods command:

kubect| get pods

NAVE READY STATUS RESTARTS AGE
hel | o- wor | d- 5f 55779987- wd857 1/1 Runni ng 0 im

Use kubect | descri be to show a more detailed view of your pods, including which containers are
running and what image they are based on, as well as which node is currently hosting the pod:

kubect| describe pods

Nane: hel | o- wor | d- 5f 55779987- wd857
Nanespace: def aul t
Priority: 0
Priorityd assNane: <none>
Node: wor ker 1. exanpl e. conm? 192. 0. 2. 11
Start Ti nme: Fri, 16 Aug 2019 08:48: 33 +0100
Label s: app=hel | o-wor| d
pod-t enpl at e- hash=5f 55779987
Annot at i ons: <none>
St at us: Runni ng
| P: 10.244.1.3
Control |l ed By: Repl i caSet / hel | o- wor | d- 5f 55779987
Cont ai ner s:
ngi nx:
Cont ai ner | D cri-o://417b4b59f 7005eb4b1754a1627e01f 957e931cOcf 24f 1780cd94f a9949beld31
| nage: ngi nx
| rage | D docker - pul | abl e: // ngi nx@ha256: 5d32f 60db294b5deb55d078cd4f eb410ad88e6f e7. . .
Port: <none>
Host Port: <none>
St at e: Runni ng
Start ed: Mon, 10 Dec 2018 08: 25: 25 -0800
Ready: True
Restart Count: O
Envi r onnent : <none>
Mount s:

/var/run/ secrets/kubernetes.iolserviceaccount from defaul t-token-s8w 4 (ro)
Condi ti ons:

Type St at us
Initialized True
Ready True

Cont ai nersReady True

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Scaling a Pod Deployment

PodSchedul ed True
Vol unes
def aul t - t oken- s8wj 4
Type: Secret (a vol ume popul ated by a Secret)
Secret Name: def aul t-token-s8w 4
Opti onal : fal se
QS d ass: Best Ef fort
Node- Sel ectors: <none>
Tol erati ons: node. kuber net es. i o/ not - r eady: NoExecut e for 300s

node. kuber net es. i o/ unr eachabl e: NoExecut e for 300s
Event s:

4.4 Scaling a Pod Deployment

To change the number of instances of the same pod that you are running, you can use the kubect |
scal e depl oynent command. For example:

kubect| scal e depl oynent --replicas=3 hello-world
depl oynent . apps/ hel | o-wor| d scal ed

You can check that the number of pod instances has been scaled appropriately:

kubect| get pods

NAVE READY STATUS RESTARTS ACE
hel | o- wor | d- 5f 55779987- t swng 1/1 Runni ng 0 18s
hel | o- wor | d- 5f 55779987- v8wsh 1/1 Runni ng 0 26m
hel | o- wor | d- 5f 55779987- wd857 1/1 Runni ng 0 18s

4.5 Exposing a Service Object for an Application

Typically, while many applications may only need to communicate internally within a pod, or even across
pods, you may need to expose your application externally so that clients outside of the Kubernetes cluster
can interface with the application. You can do this by creating a service definition for the deployment.

To expose a deployment using a service object, you must define the service type that should be used. If
you are not using a cloud-based load balancing service, you can set the service type to NodePor t . The
NodePor t service exposes the application running within the cluster on a dedicated port on the public IP
address on all of the nodes within the cluster. Use the kubect | expose depl oynent to create a new
service. For example:

kubect| expose depl oyment hello-world --port 80 --type=LoadBal ancer

servi ce/ hel |l o-wor| d exposed

Use kubect| get servi ces to list the different services that the cluster is running, and to obtain the
port information required to access the service:

kubect| get services

NAMVE TYPE CLUSTER- | P EXTERNAL-| P PORT(S) AGE
hel | o-worl d LoadBal ancer 10. 102. 42. 160 <pendi ng> 80: 31847/ TCP 3s
kuber net es Clusterl P 10.96.0.1 <none> 443/ TCP 5h13m

In this example output, you can see that traffic to port 80 inside the cluster is mapped to the NodePor t
31847. The external IP that can be used to access the service is listed as <pendi ng>, meaning that if you
connect to the external IP address for any of the nodes within the cluster on the port 31847, you are able
access the service.

17

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Deleting a Service or Deployment

For the sake of the example in this guide, you can open a web browser to point at any of the nodes
in the cluster, such as ht t p: / / wor ker 1. exanpl e. com 31847/, and it should display the NGINX
demonstration application.

4.6 Deleting a Service or Deployment

Objects can be deleted easily within Kubernetes so that your environment can be cleaned. Use the
kubect | del et e command to remove an object.

To delete a service, specify the services object and the name of the service that you want to remove. For
example:

kubect| del ete services hello-world

service "hello-worl d" del eted

To delete an entire deployment, and all of the pod replicas running for that deployment, specify the
deployment object and the name that you used to create the deployment:

kubect| del ete depl oyment hel |l o-worl d

depl oynent . ext ensi ons "hel | o-wor| d" del et ed

4.7 Working With Namespaces

Namespaces can be used to further separate resource usage and to provide limited environments for
particular use cases. By default, Kubernetes configures a namespace for Kubernetes system components
and a standard namespace to be used for all other deployments for which no namespace is defined.

To view existing namespaces, use the kubect| get nanespaces and kubect| descri be
nanespaces commands.

The kubect | command only displays resources in the default namespace, unless you set the namespace
specifically for a request. Therefore, if you need to view the pods specific to the Kubernetes system, you
would use the - - nanespace option to set the namespace to kube- syst emfor the request. For example,
in a cluster with a single control plane node:

kubect| get pods --nanmespace=kube-system

NAME READY STATUS RESTARTS AGE
cor edns- 5bc65d7f 4b- gzf cc 1/1 Runni ng 0 23h
cor edns- 5bc65d7f 4b- z64f 2 1/1 Runni ng 0 23h
et cd-control 1. exanpl e. com 1/1 Runni ng 0 23h
kube- api server-control 1. exanpl e. com 1/1 Runni ng 0 23h
kube-control | er-control 1. exanpl e. com 1/1 Runni ng 0 23h
kube-f | annel - ds- 2sj bx 1/1 Runni ng 0 23h
kube-f | annel - ds- nj g9r 1/1 Runni ng 0 23h
kube- proxy- n2rt 2 1/1 Runni ng 0 23h
kube- pr oxy-t bkxd 1/1 Runni ng 0 23h
kube- schedul er-control 1. exanpl e. com 1/1 Runni ng 0 23h
kuber net es- dashboar d- 7646bf 6898- d6x2m 1/1 Runni ng 0 23h

4.8 Using Deployment Files

To simplify the creation of pods and their related requirements, you can create a deployment file that define
all of the elements that comprise the deployment. This deployment defines which images should be used
to generate the containers within the pod, along with any runtime requirements, as well as Kubernetes

18

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Using Deployment Files

networking and storage requirements in the form of services that should be configured and volumes that
may need to be mounted.

Deployments are described in detail at:

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

19

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

20

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 5 Accessing the Kubernetes Dashboard

The Kubernetes Dashboard container is created as part of the kube- syst emnamespace. This provides
an intuitive graphical user interface to a Kubernetes cluster that can be accessed using a standard web
browser.

The Kubernetes Dashboard is described in the upstream Kubernetes documentation at:
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

This chapter shows you how to start and connect to the Kubernetes Dashboard.

5.1 Starting the Dashboard

To start the Dashboard, you can run a proxy service that allows traffic on the node where it is running
to reach the internal pod where the Dashboard application is running. This is achieved by running the
kubect | proxy service:

kubect| proxy

Starting to serve on 127.0.0.1: 8001

The Dashboard is available on the node where the proxy is running for as long as the proxy runs. To exit
the proxy, use Ctr | +C.

You can run this as a syst end service and enable it so that it is always available after subsequent
reboots:

sudo systenttl enabl e --now kubectl - proxy. service

This syst end service requires that the / et ¢/ kuber net es/ admni n. conf is present to run. If you want to
change the port that is used for the proxy service, or you want to add other proxy configuration parameters,
you can configure this by editing the syst end drop-in file at / et ¢/ syst end/ syst enf kubect | -

proxy. service. d/ 10- kubect | - proxy. conf. You can get more information about the configuration
options available for the kubect| pr oxy service by running:

kubect| proxy --help

5.2 Connecting to the Dashboard

To access the Dashboard, open a web browser on the node where the kubect| pr oxy service is running
and navigate to:

http://localhost:8001/api/vl/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/
proxy/

To log in, you must authenticate using a token. For more information on authentication tokens, see the
upstream documentation at:

https://github.com/kubernetes/dashboard/blob/master/docs/user/access-control/ README.md
If you have not set up specific tokens for this purpose, you can use a token allocated to a service account,

such as the nanespace- contr ol | er. Run the following command to obtain the token value for the
nanespace-control |l er:

21

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://github.com/kubernetes/dashboard/blob/master/docs/user/access-control/README.md

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Connecting to the Dashboard Remotely

kubect!| -n kube-system describe $(kubectl -n kube-system\
get secret -n kube-system-o nanme | grep nanespace) | grep token:

t oken: eyJhbCGeci O JSUzI 1N | sl nR5cCl 61 kpXVCI9. eyJpc3M O Jr dWI cnbl dGVzL3N cnZpY2VhY . ..

Copy and paste the entire value of the token into the token field on the log in page to authenticate.

5.3 Connecting to the Dashboard Remotely

If you need to access the Dashboard remotely, you can use SSH tunneling to do port forwarding from your
localhost to the node running the kubect | proxy service. The easiest option is to use SSH tunneling to
forward a port on your local system to the port configured for the kubect | pr oxy service on the node
that you want to access. This method retains some security as the HTTP connection is encrypted by virtue
of the SSH tunnel and authentication is handled by your SSH configuration. For example, on your local
system run:

ssh -L 8001: 127. 0. 0. 1: 8001 192.0. 2. 10

Substitute 192. 0. 2. 10 with the IP address of the host where the kubect | proxy service is running.
When the SSH connection is established, you can open a browser on your localhost and navigate to:

http://localhost:8001/api/vl/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/
proxy/

You should see the Dashboard log in screen for the remote Kubernetes cluster. Use the same token
information to authenticate as if you were connecting to the Dashboard locally.

22

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 6 Scaling a Kubernetes Cluster

A Kubernetes cluster may consist of either a single or multiple control plane node and worker nodes. The
more applications that you run in a cluster, the more resources (nodes) that you need. So, what do you
do if you need additional resources to handle a high amount of workload or traffic, or if you want to deploy
more services to the cluster? You add additional nodes to the cluster. Or, what happens if there are faulty
nodes in your cluster? You remove them.

Scaling a Kubernetes cluster is updating the cluster by adding nodes to it or removing nodes from it. When
you add nodes to a Kubernetes cluster, you are scaling up the cluster, and when you remove nodes from
the cluster, you are scaling down the cluster.

If you want to replace a node in a cluster, first scale up the cluster (add the new node) and then scale down
the cluster (remove the old node).

time. You should scale up, then scale down, in two separate commands. To avoid
split-brain scenarios, scale your Kubernetes cluster control plane nodes in odd
numbers. For example, 3, 5, or 7 control plane nodes ensures the reliability of your

Note
@ Oracle recommends that you should not scale the cluster up and down at the same
cluster.

If you used the - - api server - adverti se-addr ess option when you created a Kubernetes module,
then you cannot scale up from a cluster with a single control plane node to a highly available (HA) cluster
with multiple control plane nodes. However, if you used the - - vi rt ual - i p or the - - | oad- bal ancer
options, then you can scale up, even if you have only a single control plane node cluster.

Important

A The - - api server-adverti se-addr ess option has been deprecated. Use the
- - mast er - nodes option.

When you scale a Kubernetes cluster, the following actions are completed:

1. A back up is taken of the cluster. In case something goes wrong during scaling up or scaling down, you
can revert to the previous state so that you can restore the cluster. For more information about backing
up and restoring a Kubernetes cluster, see Chapter 7, Backing up and Restoring a Kubernetes Cluster.

2. Any nodes that you want to add to the cluster are validated. If the nodes have any validation issues,
such as firewall issues, then the update to the cluster cannot proceed, and the nodes cannot be added
to the cluster. You are prompted for what to do to resolve the validation issues so that the nodes can be
added to the cluster.

3. The control plane node and worker nodes are added to or removed from the cluster.

4. The cluster is checked to make sure all nodes are healthy. After validation of the cluster is completed,
the cluster is scaled and you can access it.

Tip

; The examples in this chapter show you how to scale up and down by changing the
control plane node and worker nodes at the same time by providing all the nodes
to be included in the cluster using the - - nast er - nodes and - - wor ker - nodes

23

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Scaling Up a Kubernetes Cluster

options. If you only want to scale control plane nodes, you only need to provide
the list of control plane nodes to include in the cluster using the - - mast er - nodes
option (you do not need to provide all worker nodes). Similarly, if you only want to
scale worker nodes, you only need to provide the list of worker nodes using the - -
wor ker - nodes option.

6.1 Scaling Up a Kubernetes Cluster

Before you scale up a Kubernetes cluster, set up the new nodes so they can be added to the cluster.

To prepare a node:

1. Set up the node so it can be added to a Kubernetes cluster. For information on setting up a Kubernetes
node see Getting Started.

2. If you are using private X.509 certificates for nodes, you need to copy the certificates to the node. You
do not need to do anything if you are using Vault to provide certificates for nodes. For information using
X.509 certificates see Getting Started.

3. Start the Platform Agent service. For information on starting the Platform Agent, see Getting Started.

After completing these actions, use the instructions in this procedure to add nodes to a Kubernetes cluster.

To scale up a Kubernetes cluster:

1. From a control plane node of the Kubernetes cluster, use the kubect| get nodes command to see
the control plane node and worker nodes of the cluster.

kubect| get nodes

NAVE STATUS ROLE AGE VERSI ON

control 1. exanpl e. com Ready mast er 26h v1.20. x+x. x. x. el 8
control 2. exanpl e. com Ready mast er 26h v1.20. x+x. x. x. el 8
control 3. exanpl e. com Ready mast er 26h v1.20. x+x. x. x. el 8
wor ker 1. exanpl e. com Ready <none> 26h v1.20. x+x. x. x. el 8
wor ker 2. exanpl e. com Ready <none> 26h v1.20. x+x. x. x. el 8
wor ker 3. exanpl e. com Ready <none> 26h v1.20. x+x. x. x. el 8

In this example, there are three control plane nodes in the Kubernetes cluster:
e control 1. exanpl e. com
e control 2. exanpl e. com
e control 3. exanpl e. com
There are also three worker nodes in the cluster:
 wor ker 1. exanpl e. com
e wor ker 2. exanpl e. com
« wor ker 3. exanpl e. com
2. Usethe ol cnect!l nodul e updat e command to scale up a Kubernetes cluster.

In this example, the Kubernetes cluster is scaled up so that it has four control plane nodes and five
worker nodes. This example adds a new control plane node (cont r ol . exanpl e. con) and two new

24

https://docs.oracle.com/en/operating-systems/olcne/1.3/start/install.html#install-node
https://docs.oracle.com/en/operating-systems/olcne/1.3/start/install.html#certs-setup
https://docs.oracle.com/en/operating-systems/olcne/1.3/start/install.html#services

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Scaling Down a Kubernetes Cluster

workers nodes (wor ker 4. exanpl e. comand wor ker 5. exanpl e. con) to the Kubernetes module
named nycl ust er . From the operator node run:

ol cnect| nodul e update \

--envi ronnent - nane myenvi ronnent \

--name mycluster \

--nmast er- nodes control 1. exanpl e. com 8090, contr ol 2. exanpl e. com 8090, contr ol 3. exanpl e. com 8090, \
control 4. exanpl e. com 8090 \

- -wor ker - nodes wor ker 1. exanpl e. com 8090, wor ker 2. exanpl e. com 8090, wor ker 3. exanpl e. com 8090, \
wor ker 4. exanpl e. com 8090, wor ker 5. exanpl e. com 8090

Make sure that if you are scaling up from a single control plane node to a highly available cluster, you
have specified a load balancer for the cluster. If you do not specify a load balancer, then you cannot
scale up your control plane nodes. That is, you cannot move from a single control plane node to a
highly available cluster without a load balancer.

You can optionally include the - - gener at e- scri pt s option. This option generates scripts you can
run for each node in the event of any validation failures encountered during scaling. A script is created
for each node in the module, saved to the local directory, and named host nane: 8090. sh.

You can also optionally included the - - f or ce option to suppress the prompt displayed to confirm you
want to continue with scaling the cluster.

3. On a control plane node of the Kubernetes cluster, use the kubect| get nodes command to verify
the cluster is scaled up to include the new control plane node and worker nodes.

kubect| get nodes

NAVE STATUS ROLE AGE VERSI| ON

control 1. exanpl e. com Ready mast er 26h v1l. 20. x+x. X. x. el 8
control 2. exanpl e. com Ready mast er 26h v1l. 20. x+x. X. x. el 8
control 3. exanpl e. com Ready mast er 26h v1l. 20. x+x. X. x. el 8
control 4. exanpl e. com Ready mast er 2m38s v1l. 20. x+x. X. x. el 8
wor ker 1. exanpl e. com Ready <none> 26h v1l. 20. x+x. X. x. el 8
wor ker 2. exanpl e. com Ready <none> 26h v1l. 20. x+x. X. x. el 8
wor ker 3. exanpl e. com Ready <none> 26h v1l. 20. x+x. X. x. el 8
wor ker 4. exanpl e. com Ready <none> 2m38s v1l. 20. x+x. X. x. el 8
wor ker 5. exanpl e. com Ready <none> 2m38s v1l. 20. x+x. X. x. el 8

6.2 Scaling Down a Kubernetes Cluster

This procedure shows you how to remove nodes from a Kubernetes cluster.

have two control plane nodes and you scale down to have only one control plane

Warning
O Be careful if you are scaling down the control plane nodes of your cluster. If you
node, then you would have only a single point of failure.

To scale down a Kubernetes cluster:

1. From a control plane node of the Kubernetes cluster, use the kubect| get nodes command to see
the control plane node and worker nodes of the cluster.

kubect| get nodes

NAMVE STATUS ROLE AGE VERS| ON
control 1. exanpl e.com Ready mast er 26h v1l. 20. x+x. X. x. el 8

25

The software described in this documentation is either no longer supported or is in extended support.

Oracle recommends that you upgrade to a current supported release.
Scaling Down a Kubernetes Cluster

control 2. exanpl e.com Ready mast er 26h v1l. 20. x+x. X. x. el 8
control 3. exanpl e.com Ready mast er 26h v1l. 20. x+x. X. x. el 8
control 4. exanpl e.com Ready mast er 2m38s v1l. 20. x+x. X. x. el 8
wor ker 1. exanpl e. com Ready <none> 26h vl. 20. x+x. X. x. el 8
wor ker 2. exanpl e. com Ready <none> 26h v1l. 20. x+x. X. x. el 8
wor ker 3. exanpl e. com Ready <none> 26h v1l. 20. x+x. X. x. el 8
wor ker 4. exanpl e. com Ready <none> 2m88s v1l. 20. x+x. X. x. el 8
wor ker 5. exanpl e. com Ready <none> 2m38s v1l. 20. x+x. X. x. el 8

In this example, there are four control plane nodes in the Kubernetes cluster:

control 1. exanpl e. com

e control 2. exanpl e. com

control 3. exanpl e. com

e control 4. exanpl e. com

There are also five worker nodes in the cluster:

e wor ker 1. exanpl e. com

e wor ker 2. exanpl e. com

« wor ker 3. exanpl e. com

e wor ker 4. exanpl e. com

e wor ker 5. exanpl e. com

Use the ol cnect| nodul e updat e command to scale down a Kubernetes cluster.

In this example, the Kubernetes cluster is scaled down so that it has three control plane nodes and
three worker nodes. This example removes a control plane node (cont r ol 4. exanpl e. con) and two
workers nodes (wor ker 4. exanpl e. comand wor ker 5. exanpl e. con) from the Kubernetes module
named nycl ust er . As the nodes are no longer listed in the - - nast er - nodes or - - wor ker - nodes
options, they are removed from the cluster. From the operator node run:

ol cnect| nodul e update \

--envi ronnment - nanme nyenvi ronment \

--nanme nycluster \

--mast er-nodes control 1. exanpl e. com 8090, cont r ol 2. exanpl e. com 8090, cont r ol 3. exanpl e. com 8090 \
- -wor ker - nodes wor ker 1. exanpl e. com 8090, wor ker 2. exanpl e. com 8090, wor ker 3. exanpl e. com 8090

On a control plane node of the Kubernetes cluster, use the kubect| get nodes command to verify
the cluster is scaled down to remove the control plane node and worker nodes.

kubect| get nodes

NAVE STATUS ROLE AGE VERSI ON

control 1. exanpl e.com Ready mast er 26h v1l. 20. x+x. X. x. el 8
control 2. exanpl e.com Ready mast er 26h v1l. 20. x+x. X. x. el 8
control 3. exanpl e.com Ready mast er 26h v1l. 20. x+x. X. x. el 8
wor ker 1. exanpl e. com Ready <none> 26h v1.20. x+x. x. x. el 8
wor ker 2. exanpl e. com Ready <none> 26h v1.20. x+x. x. x. el 8
wor ker 3. exanpl e. com Ready <none> 26h v1l. 20. x+x. X. x. el 8

26

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 7 Backing up and Restoring a Kubernetes Cluster

This chapter discusses how to back up and restore a Kubernetes cluster in Oracle Cloud Native
Environment.

7.1 Backing up Control Plane Nodes

Adopting a back up strategy to protect your Kubernetes cluster against control plane node failures is
important, particularly for clusters with only one control plane node. High availability clusters with multiple
control plane nodes also need a fallback plan if the resilience provided by the replication and failover
functionality has been exceeded.

You do not need to bring down the cluster to perform a back up as part of your disaster recovery plan. On
the operator node, use the ol cnect| nodul e backup command to back up the key containers and
manifests for all the control plane nodes in your cluster.

Important

A Only the key containers required for the Kubernetes control plane node are backed
up. No application containers are backed up.

For example:
ol cnect| nodul e backup \

--envi ronnent - nane myenvi ronnent \
--name nycl uster

The back up files are stored in the / var / ol cne/ backups directory on the operator node. The files are
saved to a timestamped folder that follows the pattern:

/var/ ol cne/ backups/ envi r onnment - nanme/ kuber net es/ nodul e- nane/ ti nest anp
You can interact with the directory and the files it contains just like any other, for example:

sudo |'s /var/ ol cne/ backups/ nyenvi r onnent / kuber net es/ mycl ust er/ 20191007040013

control 1. exanpl e.com tar control 2. exanpl e.comtar control 3. exanpl e.comtar etcd.tar

7.2 Restoring Control Plane Nodes

These restore steps are intended for use when a Kubernetes cluster needs to be reconstructed as part of
a planned disaster recovery scenario. Unless there is a total cluster failure you do not need to manually
recover individual control plane nodes in a high availability cluster that is able to self-heal with replication
and failover.

In order to restore a control plane node, you must have a pre-existing Oracle Cloud Native Environment,
and have deployed the Kubernetes module. You cannot restore to a non-existent environment.

To restore a control plane node:

1. Make sure the Platform Agent is running correctly on the control plane nodes before proceeding:

systenct| status ol cne-agent.service

2. On the operator node, use the ol cnect| nodul e rest or e command to restore the key containers
and manifests for the control plane nodes in your cluster. For example:

27

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Restoring Control Plane Nodes

ol cnectl nodule restore \
--envi ronment - name nyenvi ronment \
--name mycl uster

The files from the latest timestamped folder from / var / ol cne/ backups/ envi r onnment - nane/
kuber net es/ nodul e- nane/ are used to restore the cluster to its previous state.

You may be prompted by the Platform CLI to perform additional set up steps on your control plane
nodes to fulfil the prerequisite requirements. If that happens, follow the instructions and run the
ol cnect!| nodul e restore command again.

3. You can verify the restore operation was successful using the kubect | command on a control plane
node. For example:

kubect| get nodes

NAME STATUS ROLES AGE VERSI ON
control 1. exanpl e. com Ready nast er In7s v1.20. x+x. x. x. el 8
wor ker 1. exanpl e. com Ready <none> 8nb3s v1.20. x+x. x. x. el 8

kubect| get pods -n kube-system

NAME READY STATUS RESTARTS AGE
cor edns- 5bc65d7f 4b- gzf cc 1/1 Runni ng 0 9m
cor edns- 5bc65d7f 4b- z64f 2 1/1 Runni ng 0 9m
et cd-control 1. exanpl e. com 1/1 Runni ng 0 9m
kube- api server-control 1. exanpl e. com 1/1 Runni ng 0 9m
kube-control | er-control 1. exanpl e. com 1/1 Runni ng 0 9m
kube-f | annel - ds- 2sj bx 1/1 Runni ng 0 9m
kube- f | annel - ds- nj gor 1/1 Runni ng 0 9m
kube- proxy- n2rt 2 1/1 Runni ng 0 9m
kube- pr oxy-t bkxd 1/1 Runni ng 0 9m
kube- schedul er - control 1. exanpl e. com 1/1 Runni ng 0 9m
kuber net es- dashboar d- 7646bf 6898- d6x2m 1/1 Runni ng 0 9m

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 8 Setting Access to ext er nal | Ps in Kubernetes
Services

This chapter discusses setting access to ext er nal | Ps in Kubernetes services. For more information on
ext er nal | Ps, see the upstream documentation at:

https://kubernetes.io/docs/concepts/services-networking/service/#external-ips

When you deploy Kubernetes, a service is deployed to the cluster that controls access to ext er nal | Ps in
Kubernetes services. The service is named ext er nal i p-val i dati on- webhook-ser vi ce and runs in
the ext ernal i p-val i dati on- syst emnamespace.

After Kubernetes is deployed, you can see the service is running using:
kubect| get services --nanespace externalip-validation-system

NAVE TYPE CLUSTER- | P EXTERNAL- | P PORT(S) AGE
ext ernal i p-val i dati on-webhook- servi ce Clusterl P 10.100. 79. 236 <none> 443/ TCP 15m

This Kubernetes service requires X.509 certificates be set up prior to deploying Kubernetes. You can
use certificates generated by Vault, your own certificates, or generate certificates using the gen- cert s-
hel per. sh script. For information on setting up these certificates, see Getting Started.

When you deploy Kubernetes, you need to provide the location of these certificates in the ol cnect |
nodul e cr eat e command. Examples of creating a Kubernetes module and setting the certificate
locations are shown in Section 2.1, “Creating a Kubernetes Module”.

8.1 Enabling Access to CIDR Blocks

You can optionally set the external IP addresses that can be accessed by Kubernetes services when you
create the module. You use the - -restrict-servi ce-external i p-cidrs option of the ol cnect |
nodul e creat e command to set this. In this example, the IP ranges that are allowed are within the
192. 0. 2.0/ 24 and 198. 51. 100. 0/ 24 CIDR blocks.

ol cnect| nodul e create \

--envi ronnment - nanme nyenvi ronnent \
--nmodul e kubernetes \

--nanme nycluster \

--restrict-service-externalip-ca-cert=/etc/olcne/configs/certificates/restrict_external _i p/production/ca.c
--restrict-service-externalip-tls-cert=/etc/olcne/configs/certificates/restrict_external _i p/producti on/ nod
--restrict-service-externalip-tls-key=/etc/olcne/configs/certificates/restrict_external _i p/production/node.
--restrict-service-externalip-cidrs=192.0.2.0/24,198.51.100. 0/ 24

8.2 Modifying Access to CIDR Blocks

If you have a Kubernetes module that has CIDR blocks configured to be allowed, you can modify this
configuration using the - -restri ct - servi ce- ext ernal i p- ci dr s option of the ol cnect| nodul e
updat e command. This allows you to change the CIDRS that are configured. For example, to set the
CIDR block that can be accessed to 192. 0. 2. 0/ 24 for an existing Kubernetes module:

ol cnect| nodul e update \

--envi ronnment - nanme nyenvi ronnent \

--nanme nycluster \
--restrict-service-externalip-cidrs=192.0.2.0/24

29

https://kubernetes.io/docs/concepts/services-networking/service/#external-ips
https://docs.oracle.com/en/operating-systems/olcne/1.3/start/install.html#certs-setup-ext-ips

The software described in this documentation is either no longer supported or is in extended support.

Oracle recommends that you upgrade to a current supported release.
Disabling Access to ext er nal | Ps

To remove access to any CIDR blocks, which means no access to ext er nal | Ps is allowed, set - -
restrict-service-externalip-cidrs option to null, for example:

ol cnect! nodul e update \

--envi ronnment - nanme nyenvi ronnent \
--nanme nycluster \
--restrict-service-externalip-cidrs=""

8.3 Disabling Access to ext ernal | Ps

If you want to restrict Kubernetes services from accessing any ext er nal | Ps, do not you set any

CIDR blocks that are allowed when you create the Kubernetes module. That is, do not use the - -
restrict-service-externalip-cidrs option of the ol cnect| nodul e creat e command. The
ext ernal i p-val i dati on-webhook- ser vi ce Kubernetes service is deployed, but does not allow
access to any ext er nal | Ps. For example:

ol cnect| nodul e create \

--envi ronnment - nanme nyenvi ronnent \
--nmodul e kubernetes \

--nanme nycluster \

--restrict-service-externalip-ca-cert=/etc/olcne/configs/certificates/restrict_external _ip/production/ca.cert
--restrict-service-externalip-tls-cert=/etc/olcne/configs/certificates/restrict_external _i p/production/node.ce
--restrict-service-externalip-tls-key=/etc/olcne/configs/certificates/restrict_external _i p/production/node. key

If you have an existing Kubernetes module and you want to remove access to all CIDR blocks that may
have been configured, update the module and setthe - -restri ct-servi ce-external i p-cidrs
option to null as shown in Section 8.2, “Modifying Access to CIDR Blocks”.

8.4 Enabling Access to all ext ernal | Ps

If you want all Kubernetes services to be able to access all ext er nal | Ps, you can disable this feature
using the --restrict-service-external i p=fal se option of the ol cnect| nodul e create
command. Disabling this feature means that all Kubernetes services have access to all ext ernal | Ps in
the cluster.

If you disable this feature, the ext er nal i p- val i dat i on- webhook- ser vi ce Kubernetes service is not
deployed to the cluster, which means no validation of external IP addresses is performed for Kubernetes
services, and access is allowed for all CIDR blocks. For example, when you create a Kubernetes module,
include the - -restrict-servi ce-externalip=fal se option:

ol cnect! nodul e create \

--envi ronnment - nanme nyenvi ronnent \
--nmodul e kubernetes \

--nanme nycluster \

--restrict-service-externalip=fal se

You can disable this feature in a Kubernetes cluster by using the - -restrict - servi ce-

ext ernal i p=f al se option of the ol cnect| nodul e updat e command. Modifying a Kubernetes
module in this way removes the ext er nal i p- val i dati on- webhook- ser vi ce Kubernetes service
from the cluster, so validation is not performed. For example:

ol cnect! nodul e update \

--envi ronnment - nanme nyenvi ronnent \
--nanme nycluster \
--restrict-service-externalip=fal se

30

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Enabling Access to all ext er nal | Ps

Conversely, if you enable this feature in a Kubernetes cluster by using the - -restri ct - servi ce-
ext ernal i p=true option of the ol cnect| nobdul e updat e command, the ext er nal i p-

val i dat i on-webhook- ser vi ce Kubernetes service is deployed to the cluster, so validation is then
performed. For example:

ol cnectl nodul e update \

--envi ronnent - nane myenvi ronnent \
--name nycl uster \
--restrict-service-externalip=true

31

32

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 9 Using Operators with Kubernetes

This chapter discusses how to install and use the Operator Lifecycle Manager module for Oracle Cloud
Native Environment to install and manage operators in a Kubernetes cluster.

A Kubernetes operator is a design pattern that allows you to write code to automate tasks and extend
Kubernetes. It is a set of concepts you can use to define a service for Kubernetes and helps to automate
administrative services in Kubernetes.

The Operator Lifecycle Manager module installs an instance Operator Lifecycle Manager into a Kubernetes
cluster, which you can use to manage the installation and lifecycle management of operators in a
Kubernetes cluster. The Operator Lifecycle Manager is essentially a package manager that interacts

with operator registries. For more information about the Operator Lifecycle Manager, see the upstream
documentation at:

https://olm.operatorframework.io/

OperatorHub is an operator registry that contains upstream Kubernetes operators that you can use to
deploy operators in your cluster. The OperatorHub is at:

https://operatorhub.io/

Operator Lifecycle Manager in many ways performs the same tasks as Helm. A major additional feature
that Operator Lifecycle Manager provides is that it has built-in support to validate Custom Resource
Definitions (CRDs) inside Kubernetes software. Operators with CRDs can use these to make sure
dependencies are met and no interfaces are duplicated. Otherwise, Operator Lifecycle Manager manages
deployments in a similar way to Helm.

9.1 Installing the Operator Lifecycle Manager Module

The Operator Lifecycle Manager is installed into a Kubernetes cluster as an Oracle Cloud Native
Environment module.

To install the Operator Lifecycle Manager module:

1. If you do not already have the Helm module installed in the cluster, you must install it. On the operator
node, use the ol cnect| nodul e creat e command to create the Helm module. Specify the name of
the Kubernetes module with the - - hel m kuber net es- nodul e option.

ol cnect| nodul e create \

--envi ronnment - nanme nyenvi ronment \
--nodul e hel m\

--nanme nyhel m\

- - hel m kuber net es- nodul e nycl ust er

Use the ol cnect| nodul e install command to install the Helm module:

ol cnect| nodule install \
--envi ronnment - nanme nyenvi ronment \
--nanme nyhel m

2. Usetheol cnectl nodul e creat e command to create the Operator Lifecycle Manager module.
Specify the name of the Helm module with the - - ol m hel m nodul e option.

ol cnectl nodule create \
--envi ronment - name nyenvi ronment \
--nmodul e operator-1ifecycl e-manager \

33

https://olm.operatorframework.io/
https://operatorhub.io/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Verifying the Operator Lifecycle Manager Module Deployment

--name myol m\
--ol m hel m modul e myhel m

3. Usetheol cnect!l nodul e install command to install the Operator Lifecycle Manager module:

ol cnectl module install \
--envi ronment - name nyenvi ronment \
--name myolm

The Operator Lifecycle Manager module is deployed and the required containers are running in the
operator-1|ifecycl e-manager namespace.

9.2 Verifying the Operator Lifecycle Manager Module Deployment

You can verify the Operator Lifecycle Manager module is deployed and the required deployments are
running inthe operat or -1 i f ecycl e- manager namespace. To verify the containers are deployed, use
the kubect | command on a control plane node.

To verify the required containers are running, list the deployments running in the operat or-1i fecycl e-
manager namespace. You should see similar results to those shown here:

kubect| get deploy -n operator-Iifecycle-nmanager

NAMVE READY UP-TO DATE AVAILABLE ACE

cat al og- oper at or 1/1 1 1 2nB6s
ol m oper at or 1/1 1 1 2nB6s
packageser ver 2/ 2 2 2 2nB80s

9.3 Listing Operator Registries

You can show the available operator registries using the kubect | command on a control plane node:
kubect| get catal ogsource -n operator-lifecycle-nmanager

NAMVE DI SPLAY TYPE PUBLI SHER AGE
oper at or hubi o- cat al og Communi ty Operators grpc Qper at or Hub. i o 3nmB5s

The OperatorHub registry is shown in the output. This is the default operator registry.

The OperatorHub provides examples of the text to use for your operator manifest files. On each operator's
page on OperatorHub, there are example YAML files to create operator manifest files.

9.4 Installing Operators

To see all the operators that can be installed, use the kubect | command on a control plane node:

kubect| get packagemani f est

NAMVE CATALOG AGE

vaul t Conmuni ty Operators 3nm22s
submari ner Conmuni ty Operators 3nm22s
credst ash- oper at or Conmuni ty Operators 3n22s
eunoni a Conmuni ty Operators 3nm22s
i bm bl ock- csi - operat or-conmunity Conmuni ty Operators 3n22s

A list of the upstream operators available on OperatorHub are displayed. These are all available to be
installed by the Operator Lifecycle Manager.

When you have decided on the operator name and catalog, you need to create the Kubernetes resources
that tell Operator Lifecycle Manager how to install the operator. Two resources must be created: an

34

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Installing Operators

Oper at or Group and a Subscri pti on. If a new namespace is being created, you can create the
Nanmespace in the same operator manifest file.

You can download starter operator manifest files for operators from the OperatorHub.

This example shows you how to create an et cd operator which is pulled from the OperatorHub.

To create an operator:

1. In aweb browser, go to the OperatorHub and find the name of the operator you want to install. The
OperatorHub is at:

https://operatorhub.io/

This example uses the et cd operator at:
https://operatorhub.io/operator/etcd
Click Install.

A dialog is displayed that shows the kubect | creat e command to deploy the operator. For example:

kubect| create -f https://operatorhub.io/install/etcd.yam
Copy the URL in this command that contains the operator manifest YAML file.

2. On a control plane node, download the et cd operator manifest YAML file from the OperatorHub:

curl --renote-nane https://operatorhub.io/install/etcd.yan

3. You can edit this manifest YAML file to suit your needs. At the time of writing, this file contained the
information required to create a Nanespace, Qper at or G oup and Subscri pti on for the et cd
operator:

api Version: vi
ki nd: Namespace
met adat a

name: ny-etcd

api Versi on: operators.coreos.con vl
ki nd: Oper at or Gr oup
net adat a
nane: oper atorgroup
namespace: ny-etcd
spec:
tar get Nanespaces
- ny-etcd

api Ver si on: operators. coreos. conf vlal phal
ki nd: Subscription
net adat a

name: ny-etcd

nanespace: ny-etcd

spec:
channel : singl enanespace- al pha
nane: etcd

sour ce: operat or hubi o- cat al og
sour ceNanespace: ol m

Edit this file to change the sour ceNanmespace from ol mto oper at or-1i fecycl e- manager in the
Subscri pti on section so that it works properly with Operator Lifecycle Manager. Operator Lifecycle

35

https://operatorhub.io/
https://operatorhub.io/operator/etcd

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Removing Operators

Manager runs in the operat or - | i f ecycl e- manager namespace, which is different to the upstream
namespace.

api Versi on: operators. coreos. con vlal phal
ki nd: Subscri ption
net adat a
nane: ny-etcd
nanespace: ny-etcd
spec:
channel : singl enanespace- al pha
name: etcd
sour ce: operat or hubi o- cat al og
sour ceNanespace: operator-|ifecycl e- manager

4. Use the kubect| apply command to deploy the et cd operator.

kubect| apply -f etcd. yani

nanmespace/ my-etcd created

oper at or gr oup. oper at or s. cor eos. coni oper at or gr oup creat ed
subscri ption. operators. coreos. conf my-etcd created

The operator is deployed into the namespace set in the operator manifest file, which in this example is
ny- et cd.

5. You can see the operator's Cl ust er Ser vi ceVer si on information using:

kubect| get csv -n ny-etcd
NAVE DI SPLAY VERSI ON REPLACES PHASE
et cdoperator.v0.9.4 etcd 0.9.4 et cdoperator.v0.9.2 Succeeded

6. You can see the operator pods are running using:

kubect| get pods -n ny-etcd
NAVE READY STATUS RESTARTS AGE
et cd- oper at or - 75f b7df 8b5- 42k7b 3/3 Runni ng 0 5mi5s

9.5 Removing Operators

To remove an operator and uninstall it, delete the Kubernetes resources. For example, on a control plane
node, use the kubect| del et e command to delete the operator:

kubect| delete -f etcd. yani

namespace "ny-etcd" del eted

oper at or gr oup. oper at or s. cor eos. com "oper at or gr oup” del et ed
subscri ption. operators. coreos.com "ny-etcd" del eted

9.6 Uninstalling the Operator Lifecycle Manager Module

To uninstall the Operator Lifecycle Manager module, uninstall the module using the ol cnect| nodul e
uni nst al I command. For example:

ol cnectl nodul e uninstall \

--envi ronnent - nane myenvi ronnent \
--name nyol m

You can also uninstall the Helm module if you no longer require it.

ol cnect! nodul e uninstall \
--envi ronnment - name nyenvi ronnment \

36

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.
Uninstalling the Operator Lifecycle Manager Module

--nanme nmyhel m

37

38

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 10 Removing a Kubernetes Cluster

If you want to remove a Kubernetes cluster, use the ol cnect| nodul e uni nstal |l command. For
example, to uninstall the Kubernetes module named nmycl ust er:

ol cnect! nodul e uninstall \
--envi ronment - name nyenvi ronment \
--name nycl uster

On each node, the Kubernetes containers are stopped and deleted, the Kubernetes cluster is removed,
and the kubel et service is stopped.

Uninstalling a module also removes the module configuration from the Platform API Server. If you uninstall
a module and want to reinstall it, you need to create the module again using the ol cnect| nodul e
cr eat e command.

Tip

; If you reinstall a Kubernetes module on hosts that were previously used in
a Kubernetes cluster, you may need to run the sudo kubeadm reset -f
command on each node before you redeploy the module.

39

40

	Oracle® Cloud Native Environment
	Table of Contents
	Preface
	Chapter 1 Introduction to Kubernetes
	1.1 Kubernetes Components
	1.1.1 Nodes
	1.1.1.1 Control Plane Node
	1.1.1.2 Control Plane Replica Nodes
	1.1.1.3 Worker Nodes

	1.1.2 Pods
	1.1.3 ReplicaSet, Deployment, StatefulSet Controllers
	1.1.4 Services
	1.1.5 Volumes
	1.1.6 Namespaces

	1.2 About CRI-O

	Chapter 2 Creating a Kubernetes Cluster
	2.1 Creating a Kubernetes Module
	2.1.1 Creating an HA Cluster with External Load Balancer
	2.1.2 Creating an HA Cluster with Internal Load Balancer
	2.1.3 Creating a Cluster with a Single Control Plane Node

	2.2 Validating a Kubernetes Module
	2.3 Installing a Kubernetes Module

	Chapter 3 Setting up the Kubernetes Command-Line Interface (kubectl)
	3.1 Setting up kubectl on a Control Plane Node
	3.2 Setting up kubectl on the Operator Node

	Chapter 4 Using Kubernetes
	4.1 About Runtime Engines
	4.2 Getting Information about Nodes
	4.3 Running an Application in a Pod
	4.4 Scaling a Pod Deployment
	4.5 Exposing a Service Object for an Application
	4.6 Deleting a Service or Deployment
	4.7 Working With Namespaces
	4.8 Using Deployment Files

	Chapter 5 Accessing the Kubernetes Dashboard
	5.1 Starting the Dashboard
	5.2 Connecting to the Dashboard
	5.3 Connecting to the Dashboard Remotely

	Chapter 6 Scaling a Kubernetes Cluster
	6.1 Scaling Up a Kubernetes Cluster
	6.2 Scaling Down a Kubernetes Cluster

	Chapter 7 Backing up and Restoring a Kubernetes Cluster
	7.1 Backing up Control Plane Nodes
	7.2 Restoring Control Plane Nodes

	Chapter 8 Setting Access to externalIPs in Kubernetes Services
	8.1 Enabling Access to CIDR Blocks
	8.2 Modifying Access to CIDR Blocks
	8.3 Disabling Access to externalIPs
	8.4 Enabling Access to all externalIPs

	Chapter 9 Using Operators with Kubernetes
	9.1 Installing the Operator Lifecycle Manager Module
	9.2 Verifying the Operator Lifecycle Manager Module Deployment
	9.3 Listing Operator Registries
	9.4 Installing Operators
	9.5 Removing Operators
	9.6 Uninstalling the Operator Lifecycle Manager Module

	Chapter 10 Removing a Kubernetes Cluster

