
The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Oracle® Cloud Native Environment

Container Orchestration for Release 1.3

F50645-02
April 2022

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Oracle Legal Notices

Copyright © 2019, 2022, Oracle and/or its affiliates.

https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Table of Contents
Preface .. v
1 Introduction to Kubernetes ... 1

1.1 Kubernetes Components ... 1
1.1.1 Nodes ... 1
1.1.2 Pods ... 3
1.1.3 ReplicaSet, Deployment, StatefulSet Controllers .. 3
1.1.4 Services .. 3
1.1.5 Volumes .. 4
1.1.6 Namespaces ... 5

1.2 About CRI-O .. 5
2 Creating a Kubernetes Cluster ... 7

2.1 Creating a Kubernetes Module .. 7
2.1.1 Creating an HA Cluster with External Load Balancer ... 7
2.1.2 Creating an HA Cluster with Internal Load Balancer .. 9
2.1.3 Creating a Cluster with a Single Control Plane Node ... 10

2.2 Validating a Kubernetes Module .. 10
2.3 Installing a Kubernetes Module ... 11

3 Setting up the Kubernetes Command-Line Interface (kubectl) .. 13
3.1 Setting up kubectl on a Control Plane Node .. 13
3.2 Setting up kubectl on the Operator Node ... 13

4 Using Kubernetes .. 15
4.1 About Runtime Engines .. 15
4.2 Getting Information about Nodes ... 15
4.3 Running an Application in a Pod ... 15
4.4 Scaling a Pod Deployment .. 17
4.5 Exposing a Service Object for an Application ... 17
4.6 Deleting a Service or Deployment ... 18
4.7 Working With Namespaces ... 18
4.8 Using Deployment Files .. 18

5 Accessing the Kubernetes Dashboard .. 21
5.1 Starting the Dashboard ... 21
5.2 Connecting to the Dashboard .. 21
5.3 Connecting to the Dashboard Remotely ... 22

6 Scaling a Kubernetes Cluster ... 23
6.1 Scaling Up a Kubernetes Cluster .. 24
6.2 Scaling Down a Kubernetes Cluster .. 25

7 Backing up and Restoring a Kubernetes Cluster ... 27
7.1 Backing up Control Plane Nodes ... 27
7.2 Restoring Control Plane Nodes ... 27

8 Setting Access to externalIPs in Kubernetes Services .. 29
8.1 Enabling Access to CIDR Blocks ... 29
8.2 Modifying Access to CIDR Blocks ... 29
8.3 Disabling Access to externalIPs ... 30
8.4 Enabling Access to all externalIPs ... 30

9 Using Operators with Kubernetes ... 33
9.1 Installing the Operator Lifecycle Manager Module .. 33
9.2 Verifying the Operator Lifecycle Manager Module Deployment .. 34
9.3 Listing Operator Registries .. 34
9.4 Installing Operators ... 34
9.5 Removing Operators ... 36

iii

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Oracle® Cloud Native Environment

9.6 Uninstalling the Operator Lifecycle Manager Module .. 36
10 Removing a Kubernetes Cluster ... 39

iv

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Preface
This book describes how to use Kubernetes, which is an implementation of the open-source, containerized
application management platform from the upstream Kubernetes release. Oracle provides additional
tools, testing and support to deliver this technology with confidence. Kubernetes integrates with container
products to handle more complex deployments where clustering may be used to improve the scalability,
performance and availability of containerized applications. Detail is provided on the advanced features
of Kubernetes and how it can be installed, configured and used as a component of Oracle Cloud Native
Environment.

This document describes functionality and usage available in the most current release of the product.

Document generated on: 2022-04-29 (revision: 1232)

Audience

This document is intended for administrators who need to use Kubernetes in an Oracle Cloud Native
Environment. It is assumed that readers are familiar with web and virtualization technologies and have a
general understanding of the Oracle Linux operating system.

Related Documents

The documentation for this product is available at:

https://docs.oracle.com/en/operating-systems/olcne/

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle Accessibility
Conformance Report at https://www.oracle.com/corporate/accessibility/templates/t2-11535.html.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

v

https://docs.oracle.com/en/operating-systems/olcne/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Diversity and Inclusion

https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a diverse workforce
that increases thought leadership and innovation. As part of our initiative to build a more inclusive culture
that positively impacts our employees, customers, and partners, we are working to remove insensitive
terms from our products and documentation. We are also mindful of the necessity to maintain compatibility
with our customers' existing technologies and the need to ensure continuity of service as Oracle's offerings
and industry standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

vi

https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 1 Introduction to Kubernetes
Kubernetes is an open-source system for automating the deployment, scaling and management of
containerized applications. Primarily, Kubernetes provides the tools to easily create a cluster of systems
across which containerized applications can be deployed and scaled as required.

The Kubernetes project is maintained at:

https://kubernetes.io/

Kubernetes is fully tested on Oracle Linux 7 and Oracle Linux 8 and includes additional tools developed at
Oracle to ease configuration and deployment of a Kubernetes cluster.

For more information on Kubernetes releases, hardware and software requirements, new and notable
features, and known issues, see Release Notes.

1.1 Kubernetes Components

You are likely to encounter the following common components when you start working with Kubernetes on
Oracle Linux. The descriptions provided are brief, and largely intended to help provide a glossary of terms
and an overview of the architecture of a typical Kubernetes environment. Upstream documentation can be
found at:

https://kubernetes.io/docs/concepts/

1.1.1 Nodes

Kubernetes Node architecture is described in detail at:

https://kubernetes.io/docs/concepts/architecture/nodes/

1.1.1.1 Control Plane Node

The control plane node is responsible for cluster management and for providing the API that is used
to configure and manage resources within the Kubernetes cluster. Kubernetes control plane node
components can be run within Kubernetes itself, as a set of containers within a dedicated pod. These
components can be replicated to provide highly available (HA) control plane node functionality.

The following components are required for a control plane node:

• API Server (kube-apiserver): The Kubernetes REST API is exposed by the API Server. This
component processes and validates operations and then updates information in the Cluster State Store
to trigger operations on the worker nodes. The API is also the gateway to the cluster.

• Cluster State Store (etcd): Configuration data relating to the cluster state is stored in the Cluster State
Store, which can roll out changes to the coordinating components like the Controller Manager and the
Scheduler. It is essential to have a backup plan in place for the data stored in this component of your
cluster.

• Cluster Controller Manager (kube-controller-manager): This manager is used to perform many
of the cluster-level functions, as well as application management, based on input from the Cluster State
Store and the API Server.

1

https://kubernetes.io/
https://docs.oracle.com/en/operating-systems/olcne/1.3/relnotes/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/architecture/nodes/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Nodes

• Scheduler (kube-scheduler): The Scheduler handles automatically determining where containers
should be run by monitoring availability of resources, quality of service and affinity and anti-affinity
specifications.

The control plane node is also usually configured as a worker node within the cluster. Therefore, the
control plane node also runs the standard node services: the kubelet service, the container runtime and
the kube proxy service. Note that it is possible to taint a node to prevent workloads from running on an
inappropriate node. The kubeadm utility automatically taints the control plane node so that no other
workloads or containers can run on this node. This helps to ensure that the control plane node is never
placed under any unnecessary load and that backup and restore of the control plane node for the cluster is
simplified.

If the control plane node becomes unavailable for a period, cluster functionality is suspended, but the
worker nodes continue to run container applications without interruption.

For single node clusters, when the control plane node is offline, the API is unavailable, so the environment
is unable to respond to node failures and there is no way to perform new operations like creating new
resources or editing or moving existing resources.

A high availability cluster with multiple control plane nodes ensures that more requests for control plane
node functionality can be handled, and with the assistance of control plane replica nodes, uptime is
significantly improved.

1.1.1.2 Control Plane Replica Nodes

Control plane replica nodes are responsible for duplicating the functionality and data contained on control
plane nodes within a Kubernetes cluster configured for high availability. To benefit from increased uptime
and resilience, you can host control plane replica nodes in different zones, and configure them to load
balance for your Kubernetes cluster.

Replica nodes are designed to mirror the control plane node configuration and the current cluster state in
real time so that if the control plane nodes become unavailable the Kubernetes cluster can fail over to the
replica nodes automatically whenever they are needed. In the event that a control plane node fails, the
API continues to be available, the cluster can respond automatically to other node failures and you can still
perform regular operations for creating and editing existing resources within the cluster.

1.1.1.3 Worker Nodes

Worker nodes within the Kubernetes cluster are used to run containerized applications and handle
networking to ensure that traffic between applications across the cluster and from outside of the cluster can
be properly facilitated. The worker nodes perform any actions triggered via the Kubernetes API, which runs
on the control plane node.

All nodes within a Kubernetes cluster must run the following services:

• Kubelet Service: The agent that allows each worker node to communicate with the API Server running
on the control plane node. This agent is also responsible for setting up pod requirements, such as
mounting volumes, starting containers and reporting status.

• Container Runtime: An environment where containers can be run. In this release, the container
runtimes are either runC or Kata Containers. For more information about the container runtimes, see
Container Runtimes.

• Kube Proxy Service: A service that programs rules to handle port forwarding and IP redirects to ensure
that network traffic from outside the pod network can be transparently proxied to the pods in a service.

2

https://docs.oracle.com/en/operating-systems/olcne/1.3/runtimes/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Pods

In all cases, these services are run from systemd as inter-dependent daemons.

1.1.2 Pods

Kubernetes introduces the concept of "pods", which are groupings of one or more containers and their
shared storage, and any specific options on how these should be run together. Pods are used for tightly
coupled applications that would typically run on the same logical host and which may require access to
the same system resources. Typically, containers in a pod share the same network and memory space
and can access shared volumes for storage. These shared resources allow the containers in a pod to
communicate internally in a seamless way as if they were installed on a single logical host.

You can easily create or destroy pods as a set of containers. This makes it possible to do rolling updates to
an application by controlling the scaling of the deployment. It also allows you to scale up or down easily by
creating or removing replica pods. For more information on pods, see the upstream documentation at:

https://kubernetes.io/docs/concepts/workloads/pods/pod/

1.1.3 ReplicaSet, Deployment, StatefulSet Controllers

Kubernetes provides a variety of controllers that you can use to define how pods are set up and deployed
within the Kubernetes cluster. These controllers can be used to group pods together according to their
runtime needs and define pod replication and pod start up ordering.

You can define a set of pods that should be replicated with a ReplicaSet. This allows you to define the
exact configuration for each of the pods in the group and which resources they should have access to.
Using ReplicaSets not only caters to the easy scaling and rescheduling of an application, but also allows
you to perform rolling or multi track updates to an application. For more information on ReplicaSets, see
the upstream documentation at:

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

You can use a Deployment to manage pods and ReplicaSets. Deployments are useful when you need to
roll out changes to ReplicaSets. By using a Deployment to manage a ReplicaSet, you can easily rollback
to an earlier Deployment revision. A Deployment allows you to create a newer revision of a ReplicaSet
and then migrate existing pods from a previous ReplicaSet into the new revision. The Deployment can
then manage the cleanup of older unused ReplicaSets. For more information on Deployments, see the
upstream documentation at:

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

You can use StatefulSets to create pods that guarantee start up order and unique identifiers, which are
then used to ensure that the pod maintains its identity across the lifecycle of the StatefulSet. This feature
makes it possible to run stateful applications within Kubernetes, as typical persistent components such as
storage and networking are guaranteed. Furthermore, when you create pods they are always created in
the same order and allocated identifiers that are applied to host names and the internal cluster DNS. Those
identifiers ensure there are stable and predictable network identities for pods in the environment. For more
information on StatefulSets, see the upstream documentation at:

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

1.1.4 Services

You can use services to expose access to one or more mutually interchangeable pods. Since pods can be
replicated for rolling updates and for scalability, clients accessing an application must be directed to a pod

3

https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Volumes

running the correct application. Pods may also need access to applications outside of Kubernetes. In either
case, you can define a service to make access to these facilities transparent, even if the actual backend
changes.

Typically, services consist of port and IP mappings. How services function in network space is defined by
the service type when it is created.

The default service type is the ClusterIP, and you can use this to expose the service on the internal IP
of the cluster. This option makes the service only reachable from within the cluster. Therefore, you should
use this option to expose services for applications that need to be able to access each other from within
the cluster.

Frequently, clients outside of the Kubernetes cluster may need access to services within the cluster. You
can achieve this by creating a NodePort service type. This service type enables you to take advantage
of the Kube Proxy service that runs on every worker node and reroute traffic to a ClusterIP, which is
created automatically along with the NodePort service. The service is exposed on each node IP at a static
port, called the NodePort. The Kube Proxy routes traffic destined to the NodePort into the cluster to
be serviced by a pod running inside the cluster. This means that if a NodePort service is running in the
cluster, it can be accessed via any node in the cluster, regardless of where the pod is running.

Building on top of these service types, the LoadBalancer service type makes it possible for you to
expose the service externally by using a cloud provider's load balancer. This allows an external load
balancer to handle redirecting traffic to pods directly in the cluster via the Kube Proxy. A NodePort service
and a ClusterIP service are automatically created when you set up the LoadBalancer service.

Important

As you add services for different pods, you must ensure that your network is
properly configured to allow traffic to flow for each service declaration. If you create
a NodePort or LoadBalancer service, any of the ports exposed must also be
accessible through any firewalls that are in place.

If you are running firewalld on any of your nodes, make sure you add rules to
allow traffic for the external facing ports of the services that you create.

For more information on services, see the upstream documentation at:

https://kubernetes.io/docs/concepts/services-networking/service/

1.1.5 Volumes

In Kubernetes, a volume is storage that persists across the containers within a pod for the lifespan of the
pod itself. When a container within the pod is restarted, the data in the Kubernetes volume is preserved.
Furthermore, Kubernetes volumes can be shared across containers within the pod, providing a file store
that different containers can access locally.

Kubernetes supports a variety of volume types that define how the data is stored and how persistent it is,
which are described in detail in the upstream documentation at:

https://kubernetes.io/docs/concepts/storage/volumes/

Kubernetes volumes typically have a lifetime that matches the lifetime of the pod, and data in a volume
persists for as long as the pod using that volume exists. Containers can be restarted within the pod, but the
data remains persistent. If the pod is destroyed, the data is usually destroyed with it.

4

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/volumes/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Namespaces

In some cases, you may require even more persistence to ensure the lifecycle of the volume is decoupled
from the lifecycle of the pod. Kubernetes introduces the concepts of the PersistentVolume and the
PersistentVolumeClaim. PersistentVolumes are similar to Volumes except that they exist independently
of a pod. They define how to access a storage resource type, such as NFS or iSCSI. You can configure
a PersistentVolumeClaim to make use of the resources available in a PersistentVolume, and the
PersistentVolumeClaim will specify the quota and access modes that should be applied to the resource for
a consumer. A pod you have created can then make use of the PersistentVolumeClaim to gain access to
these resources with the appropriate access modes and size restrictions applied.

For more information about PersistentVolumes, see the upstream documentation at:

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

1.1.6 Namespaces

Kubernetes implements and maintains strong separation of resources through the use of namespaces.
Namespaces effectively run as virtual clusters backed by the same physical cluster and are intended for
use in environments where Kubernetes resources must be shared across use cases.

Kubernetes takes advantage of namespaces to separate cluster management and specific Kubernetes
controls from any other user-specific configuration. Therefore, all of the pods and services specific to
the Kubernetes system are found within the kube-system namespace. A default namespace is also
created to run all other deployments for which no namespace has been set.

For more information on namespaces, see the upstream documentation at:

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

1.2 About CRI-O

When you deploy Kubernetes worker nodes, CRI-O is also deployed. CRI-O is an implementation of the
Kubernetes Container Runtime Interface (CRI) to enable using Open Container Initiative (OCI) compatible
runtimes. It is a lightweight alternative to using Docker as the runtime for Kubernetes. CRI-O allows
Kubernetes to use any OCI-compliant runtime as the container runtime for running pods.

CRI-O delegates containers to run on appropriate nodes, based on the configuration set in pod files.
Privileged pods can be run using the runC runtime engine (runc), and unprivileged pods can be run
using the Kata Containers runtime engine (kata-runtime). Defining whether containers are trusted or
untrusted is set in the Kubernetes pod or deployment file.

For information on how to set the container runtime, see Container Runtimes.

5

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://docs.oracle.com/en/operating-systems/olcne/1.3/runtimes/

6

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 2 Creating a Kubernetes Cluster
This chapter shows you how to use the Platform CLI (olcnectl) to create a Kubernetes cluster.
This chapter assumes you have installed the Oracle Cloud Native Environment software packages on
the nodes, configured them to be used in a cluster and created an environment in which to install the
Kubernetes module, as discussed in Getting Started.

The high level steps to create a Kubernetes cluster are:

• Create a Kubernetes module to specify information about the cluster.

• Validate the Kubernetes module to make sure Kubernetes can be installed on the nodes.

• Install the Kubernetes module to install the Kubernetes packages on the nodes and create the cluster.

The olcnectl command is used to perform these steps. For more information on the syntax for the
olcnectl command, see Platform Command-Line Interface.

2.1 Creating a Kubernetes Module
The Kubernetes module can be set up to create a:

• Highly available (HA) cluster with an external load balancer

• HA cluster with an internal load balancer

• Cluster with a single control plane node (non-HA cluster)

To create an HA cluster you need at least three control plane nodes and two worker nodes.

For information on setting up an external load balancer, or for information on preparing the control plane
nodes to use the internal load balancer installed by the Platform CLI, see Getting Started.

A number of additional ports are required to be open on control plane nodes in an HA cluster. For
information on opening the required ports for an HA cluster, see Getting Started.

Use the olcne module create command to create a Kubernetes module. If you do not include all
the required options when using this command, you are prompted to provide them. For the full list of the
options available for the Kubernetes module, see Platform Command-Line Interface.

2.1.1 Creating an HA Cluster with External Load Balancer

This section shows you how to create a Kubernetes module to create an HA cluster using an external load
balancer.

The following example creates an HA cluster using your own load balancer, available on the host
lb.example.com and running on port 6443.

olcnectl module create \
--environment-name myenvironment \
--module kubernetes \
--name mycluster \
--container-registry container-registry.oracle.com/olcne \
--load-balancer lb.example.com:6443 \
--master-nodes control1.example.com:8090,control2.example.com:8090,control3.example.com:8090 \
--worker-nodes worker1.example.com:8090,worker2.example.com:8090,worker3.example.com:8090,worker4.example.com:8090 \

7

https://docs.oracle.com/en/operating-systems/olcne/1.3/start/
https://docs.oracle.com/en/operating-systems/olcne/1.3/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.3/start/install.html#install-lb
https://docs.oracle.com/en/operating-systems/olcne/1.3/start/prereq.html#ports
https://docs.oracle.com/en/operating-systems/olcne/1.3/olcnectl/commands.html#module-create

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Creating an HA Cluster with External Load Balancer

--selinux enforcing \
--restrict-service-externalip-ca-cert=/etc/olcne/configs/certificates/restrict_external_ip/production/ca.cert \
--restrict-service-externalip-tls-cert=/etc/olcne/configs/certificates/restrict_external_ip/production/node.cert \
--restrict-service-externalip-tls-key=/etc/olcne/configs/certificates/restrict_external_ip/production/node.key

The --environment-name sets the name of the environment in which to create the Kubernetes module.
This example sets it to myenvironment.

The --module option sets the module type to create. To create a Kubernetes module this must be set to
kubernetes.

The --name option sets the name used to identify the Kubernetes module. This example sets it to
mycluster.

The --container-registry option specifies the container registry from which to pull the Kubernetes
images. This example uses the Oracle Container Registry, but you may also use an Oracle Container
Registry mirror, or a local registry with the Kubernetes images mirrored from the Oracle Container Registry.
For information on using an Oracle Container Registry mirror, or creating a local registry, see Getting
Started.

However, you can set a new default container registry value during an update or upgrade of the
Kubernetes module.

The --load-balancer option sets the hostname and port of an external load balancer. This example
sets it to lb.example.com:6443.

The --master-nodes option includes a comma separated list of the hostnames or IP addresses of
the control plane nodes to be included in the cluster and the port number on which the Platform Agent is
available. The default port number is 8090.

Note

You can create a cluster that uses an external load balancer with a single control
plane node. However, HA and failover features are not available until you reach
at least three control plane nodes in the cluster. To increase the number of control
plane nodes, scale up the cluster. For information on scaling up the cluster, see
Section 6.1, “Scaling Up a Kubernetes Cluster”.

The --worker-nodes option includes a comma separated list of the hostnames or IP addresses of the
worker nodes to be included in the cluster and the port number on which the Platform Agent is available.
If a worker node is behind a NAT gateway, use the public IP address for the node. The worker node's
interface behind the NAT gateway must have an public IP address using the /32 subnet mask that is
reachable by the Kubernetes cluster. The /32 subnet restricts the subnet to one IP address, so that
all traffic from the Kubernetes cluster flows through this public IP address (for more information about
configuring NAT, see Getting Started). The default port number is 8090.

If SELinux is set to enforcing mode (the operating system default and the recommended mode) on the
control plane node and worker nodes, you must also use the --selinux enforcing option when you
create the Kubernetes module.

You must also include the location of the certificates for the externalip-validation-webhook-
service Kubernetes service. These certificates must be located on the operator node. The --
restrict-service-externalip-ca-cert option sets the location of the CA certificate. The
--restrict-service-externalip-tls-cert sets the location of the node certificate. The --

8

https://docs.oracle.com/en/operating-systems/olcne/1.3/start/prereq.html#registry
https://docs.oracle.com/en/operating-systems/olcne/1.3/start/prereq.html#registry
https://docs.oracle.com/en/operating-systems/olcne/1.3/start/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Creating an HA Cluster with Internal Load Balancer

restrict-service-externalip-tls-key option sets the location of the node key. For information on
setting up these certificates, see Getting Started.

Important

In Release 1.2.0, the options to set the options for the externalip-
validation-webhook-service Kubernetes service are not required and cannot
be used. These options are only available and required in Release 1.2.2 or later.

You can optionally use the --restrict-service-externalip-cidrs option to set the external IP
addresses that can be accessed by Kubernetes services. For example:

--restrict-service-externalip-cidrs=192.0.2.0/24,198.51.100.0/24

In this example, the IP ranges that are allowed are within the 192.0.2.0/24 and 198.51.100.0/24
CIDR blocks.

You can optionally set the network interface to use for the Kubernetes data plane (the interface used by
the pods running on Kubernetes). By default, the interface used by the the Platform Agent (set with the --
master-nodes and --worker-nodes options) is used for both the Kubernetes control plane node and
the data plane. If you want to specify a separate network interface to use for the data plane, include the --
pod-network-iface option. For example, --pod-network-iface ens1. This results in the control
plane node using the network interface used by the Platform Agent, and the data plane using a separate
network interface, which in this example is ens1.

Note

You can also use a regex expression with the --pod-network-iface option. For
example:

--pod-network-iface "ens[1-5]|eth5"

If you use regex to set the interface name, the first matching interface returned by
the kernel is used.

2.1.2 Creating an HA Cluster with Internal Load Balancer

This section shows you how to create a Kubernetes module to create an HA cluster using an internal load
balancer, installed by the Platform CLI on the control plane nodes.

This example creates an HA cluster using the internal load balancer installed by the Platform CLI.

olcnectl module create \
--environment-name myenvironment \
--module kubernetes \
--name mycluster \
--container-registry container-registry.oracle.com/olcne \
--virtual-ip 192.0.2.100 \
--master-nodes control1.example.com:8090,control2.example.com:8090,control3.example.com:8090 \
--worker-nodes worker1.example.com:8090,worker2.example.com:8090,worker3.example.com:8090,worker4.example.com:8090 \
--selinux enforcing \
--restrict-service-externalip-ca-cert=/etc/olcne/configs/certificates/restrict_external_ip/production/ca.cert \
--restrict-service-externalip-tls-cert=/etc/olcne/configs/certificates/restrict_external_ip/production/node.cert \
--restrict-service-externalip-tls-key=/etc/olcne/configs/certificates/restrict_external_ip/production/node.key

The --virtual-ip option sets the virtual IP address to be used for the primary control plane node, for
example, 192.0.2.100. This IP address should be available on the network and should not be assigned

9

https://docs.oracle.com/en/operating-systems/olcne/1.3/start/install.html#certs-setup-ext-ips

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Creating a Cluster with a Single Control Plane Node

to any hosts on the network. This IP address is dynamically assigned to the control plane node assigned
as the primary controller by the load balancer.

If you are using a container registry mirror, you must also set the location of the NGINX image using the --
nginx-image option. This option must be set to the location of your registry mirror in the format:

registry:port/olcne/nginx:version

For example:

--nginx-image myregistry.example.com:5000/olcne/nginx:1.17.7

All other options used in this example are described in Section 2.1.1, “Creating an HA Cluster with External
Load Balancer”.

2.1.3 Creating a Cluster with a Single Control Plane Node

This section shows you how to create Kubernetes module to create a cluster with a single control plane
node. No load balancer is used or required with this type of cluster.

This example creates a cluster with a single control plane node.

olcnectl module create \
--environment-name myenvironment \
--module kubernetes --name mycluster \
--container-registry container-registry.oracle.com/olcne \
--master-nodes control1.example.com:8090 \
--worker-nodes worker1.example.com:8090,worker2.example.com:8090 \
--selinux enforcing \
--restrict-service-externalip-ca-cert=/etc/olcne/configs/certificates/restrict_external_ip/production/ca.cert \
--restrict-service-externalip-tls-cert=/etc/olcne/configs/certificates/restrict_external_ip/production/node.cert \
--restrict-service-externalip-tls-key=/etc/olcne/configs/certificates/restrict_external_ip/production/node.key

The --master-nodes option should contain only one node.

All other options used in this example are described in Section 2.1.1, “Creating an HA Cluster with External
Load Balancer”.

2.2 Validating a Kubernetes Module

When you have created a Kubernetes module in an environment, you should validate the nodes are
configured correctly to install the module.

Use the olcnectl module validate command to validate the nodes are configured correctly. For
example, to validate the Kubernetes module named mycluster in the myenvironment environment:

olcnectl module validate \
--environment-name myenvironment \
--name mycluster

If there are any validation errors, the commands required to fix the nodes are provided in the output. If you
want to save the commands as scripts, use the --generate-scripts option. For example:

olcnectl module validate \
--environment-name myenvironment \
--name mycluster \
--generate-scripts

10

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Installing a Kubernetes Module

A script is created for each node in the module, saved to the local directory, and named
hostname:8090.sh. You can copy the script to the appropriate node, and run it to fix any validation
errors.

2.3 Installing a Kubernetes Module

When you have created and validated a Kubernetes module, you use it to install Kubernetes on the nodes
and create a cluster.

Use the olcnectl module install command to install Kubernetes on the nodes to create a cluster.

As part of installing the Kubernetes module:

• The Kubernetes packages are installed on the nodes. The kubeadm package installs the packages
required to run CRI-O and Kata Containers. CRI-O is needed to delegate containers to a runtime
engine (either runc or kata-runtime). For more information about container runtimes, see Container
Runtimes.

• The crio and kubelet services are enabled and started.

• If you are installing an internal load balancer, the olcne-nginx and keepalived services are enabled
and started on the control plane nodes.

For example, use the following command to use the Kubernetes module named mycluster in the
myenvironment environment to create a cluster:

olcnectl module install \
--environment-name myenvironment \
--name mycluster

The Kubernetes module is used to install Kubernetes on the nodes and the cluster is started and validated
for health.

Important

Installing Kubernetes may take several minutes to complete.

11

https://docs.oracle.com/en/operating-systems/olcne/1.3/runtimes/
https://docs.oracle.com/en/operating-systems/olcne/1.3/runtimes/

12

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 3 Setting up the Kubernetes Command-Line Interface
(kubectl)

This chapter describes how to set up the Kubernetes Command-Line Interface (kubectl). The kubectl
command is part of Kubernetes and is used to create and manage the containerized applications you
deploy on the Kubernetes cluster.

The kubectl utility is a command line tool that interfaces with the Kubernetes API server to run
commands against the Kubernetes cluster. The kubectl command is typically run on the control plane
node of the cluster, although you can also use an operator node. The kubectl utility effectively grants full
administrative rights to the cluster and all of the nodes in the cluster.

This chapter discusses setting up the kubectl command to access a Kubernetes cluster from either a
control plane node or an operator node.

3.1 Setting up kubectl on a Control Plane Node
To set up the kubectl command on a control plane node, copy and paste these commands to a terminal
in your home directory on a control plane node:

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
export KUBECONFIG=$HOME/.kube/config
echo 'export KUBECONFIG=$HOME/.kube/config' >> $HOME/.bashrc

Verify that you can use the kubectl command.

kubectl get pods -n kube-system

NAME READY STATUS RESTARTS AGE
coredns-5bc65d7f4b-qzfcc 1/1 Running 0 23h
coredns-5bc65d7f4b-z64f2 1/1 Running 0 23h
etcd-control1.example.com 1/1 Running 0 23h
kube-apiserver-control1.example.com 1/1 Running 0 23h
kube-controller-control1.example.com 1/1 Running 0 23h
kube-flannel-ds-2sjbx 1/1 Running 0 23h
kube-flannel-ds-njg9r 1/1 Running 0 23h
kube-proxy-m2rt2 1/1 Running 0 23h
kube-proxy-tbkxd 1/1 Running 0 23h
kube-scheduler-control1.example.com 1/1 Running 0 23h
kubernetes-dashboard-7646bf6898-d6x2m 1/1 Running 0 23h

3.2 Setting up kubectl on the Operator Node
Oracle Cloud Native Environment allows you to create multiple environments from the operator node.
With this in mind, it is recommended that you use the kubectl command on a control plane node in
the Kubernetes cluster. If you use the kubectl command from the operator node, and you have multiple
environments deployed, you may inadvertently manage an unexpected Kubernetes cluster. If you do want
to set up the kubectl command to run it the operator node, you need to configure it.

The kubectl command is not set up by default to connect to Kubernetes from the operator node. To set
up the kubectl command on the operator node, create a local copy of the Kubernetes configuration file,
and use that to connect to the cluster.

To use the kubectl command as a regular user, perform the following steps on the operator node.

13

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Setting up kubectl on the Operator Node

To setup kubectl on an operator node:

1. Get the Kubernetes configuration and copy it to a local file on the operator node. Use the olcnectl
module property get command to get the Kubernetes configuration from the kubecfg property of
the kubernetes module. For example:

olcnectl module property get \
--environment-name myenvironment \
--name mycluster \
--property kubecfg | base64 -d > kubeconfig.yaml

2. You can use the kubeconfig.yaml file directly when running kubectl commands using the --
kubeconfig option. For example:

kubectl get pods -n kube-system --kubeconfig kubeconfig.yaml

3. You can also save the Kubernetes configuration so you do not need to use the --kubeconfig option.
Create the .kube subdirectory in your home directory:

mkdir -p $HOME/.kube

4. Copy the Kubernetes kubeconfig.yaml file to the .kube directory:

cp kubeconfig.yaml $HOME/.kube/config

5. Export the path to the file for the KUBECONFIG environment variable:

export KUBECONFIG=$HOME/.kube/config

To permanently set this environment variable, add it to your .bashrc file.

echo 'export KUBECONFIG=$HOME/.kube/config' >> $HOME/.bashrc

6. Verify that you can use the kubectl command.

kubectl get pods -n kube-system

NAME READY STATUS RESTARTS AGE
coredns-5bc65d7f4b-qzfcc 1/1 Running 0 23h
coredns-5bc65d7f4b-z64f2 1/1 Running 0 23h
etcd-control1.example.com 1/1 Running 0 23h
kube-apiserver-control1.example.com 1/1 Running 0 23h
kube-controller-control1.example.com 1/1 Running 0 23h
kube-flannel-ds-2sjbx 1/1 Running 0 23h
kube-flannel-ds-njg9r 1/1 Running 0 23h
kube-proxy-m2rt2 1/1 Running 0 23h
kube-proxy-tbkxd 1/1 Running 0 23h
kube-scheduler-control1.example.com 1/1 Running 0 23h
kubernetes-dashboard-7646bf6898-d6x2m 1/1 Running 0 23h

14

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 4 Using Kubernetes
This chapter describes how to get started using Kubernetes to deploy, maintain and scale your
containerized applications. In this chapter, we describe basic usage of the kubectl command to get you
started creating and managing containers and services within your environment.

The kubectl utility is fully documented in the upstream documentation at:

https://kubernetes.io/docs/reference/kubectl/overview/

4.1 About Runtime Engines
runc is the default runtime engine when you create containers. You can also use the kata-runtime
runtime engine to create Kata containers. For information on Kata containers and how to create them, see
Container Runtimes.

4.2 Getting Information about Nodes
To get a listing of all of the nodes in a cluster and the status of each node, use the kubectl get
command. This command can be used to obtain listings of any kind of resource that Kubernetes supports.
In this case, the nodes resource:

kubectl get nodes

NAME STATUS ROLES AGE VERSION
control.example.com Ready master 1h v1.20.x+x.x.x.el8
worker1.example.com Ready <none> 1h v1.20.x+x.x.x.el8
worker2.example.com Ready <none> 1h v1.20.x+x.x.x.el8

You can get more detailed information about any resource using the kubectl describe command.
If you specify the name of the resource, the output is limited to information about that resource alone;
otherwise, full details of all resources are also printed to screen. For example:

kubectl describe nodes worker1.example.com

Name: worker1.example.com
Roles: <none>
Labels: beta.kubernetes.io/arch=amd64
 beta.kubernetes.io/os=linux
 kubernetes.io/arch=amd64
 kubernetes.io/hostname=worker1.example.com
 kubernetes.io/os=linux
Annotations: flannel.alpha.coreos.com/backend-data: {"VtepMAC":"fe:78:5f:ea:7c:c0"}
 flannel.alpha.coreos.com/backend-type: vxlan
 flannel.alpha.coreos.com/kube-subnet-manager: true
 flannel.alpha.coreos.com/public-ip: 192.0.2.11
 kubeadm.alpha.kubernetes.io/cri-socket: /var/run/crio/crio.sock
 node.alpha.kubernetes.io/ttl: 0
 volumes.kubernetes.io/controller-managed-attach-detach: true
...

4.3 Running an Application in a Pod
To create a pod with a single running container, you can use the kubectl create command. For
example:

kubectl create deployment --image nginx hello-world

15

https://kubernetes.io/docs/reference/kubectl/overview/
https://docs.oracle.com/en/operating-systems/olcne/1.3/runtimes/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Running an Application in a Pod

deployment.apps/hello-world created

Substitute nginx with a container image. Substitute hello-world with a name for your deployment. Your
pods are named by using the deployment name as a prefix.

Tip

Deployment, pod and service names conform to a requirement to match a
DNS-1123 label. These must consist of lower case alphanumeric characters or -,
and must start and end with an alphanumeric character. The regular expression that
is used to validate names is '[a-z0-9]([-a-z0-9]*[a-z0-9])?'. If you use a
name for your deployment that does not validate, an error is returned.

There are many additional optional parameters that can be used when you run a new application within
Kubernetes. For instance, at run time, you can specify how many replica pods should be started, or you
might apply a label to the deployment to make it easier to identify pod components. To see a full list of
options available to you, run kubectl run --help.

To check that your new application deployment has created one or more pods, use the kubectl get
pods command:

kubectl get pods

NAME READY STATUS RESTARTS AGE
hello-world-5f55779987-wd857 1/1 Running 0 1m

Use kubectl describe to show a more detailed view of your pods, including which containers are
running and what image they are based on, as well as which node is currently hosting the pod:

kubectl describe pods

Name: hello-world-5f55779987-wd857
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: worker1.example.com/192.0.2.11
Start Time: Fri, 16 Aug 2019 08:48:33 +0100
Labels: app=hello-world
 pod-template-hash=5f55779987
Annotations: <none>
Status: Running
IP: 10.244.1.3
Controlled By: ReplicaSet/hello-world-5f55779987
Containers:
 nginx:
 Container ID: cri-o://417b4b59f7005eb4b1754a1627e01f957e931c0cf24f1780cd94fa9949be1d31
 Image: nginx
 Image ID: docker-pullable://nginx@sha256:5d32f60db294b5deb55d078cd4feb410ad88e6fe7...
 Port: <none>
 Host Port: <none>
 State: Running
 Started: Mon, 10 Dec 2018 08:25:25 -0800
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-s8wj4 (ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True

16

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Scaling a Pod Deployment

 PodScheduled True
Volumes:
 default-token-s8wj4:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-s8wj4
 Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
 node.kubernetes.io/unreachable:NoExecute for 300s
Events:
....

4.4 Scaling a Pod Deployment
To change the number of instances of the same pod that you are running, you can use the kubectl
scale deployment command. For example:

kubectl scale deployment --replicas=3 hello-world

deployment.apps/hello-world scaled

You can check that the number of pod instances has been scaled appropriately:

kubectl get pods

NAME READY STATUS RESTARTS AGE
hello-world-5f55779987-tswmg 1/1 Running 0 18s
hello-world-5f55779987-v8w5h 1/1 Running 0 26m
hello-world-5f55779987-wd857 1/1 Running 0 18s

4.5 Exposing a Service Object for an Application
Typically, while many applications may only need to communicate internally within a pod, or even across
pods, you may need to expose your application externally so that clients outside of the Kubernetes cluster
can interface with the application. You can do this by creating a service definition for the deployment.

To expose a deployment using a service object, you must define the service type that should be used. If
you are not using a cloud-based load balancing service, you can set the service type to NodePort. The
NodePort service exposes the application running within the cluster on a dedicated port on the public IP
address on all of the nodes within the cluster. Use the kubectl expose deployment to create a new
service. For example:

kubectl expose deployment hello-world --port 80 --type=LoadBalancer

service/hello-world exposed

Use kubectl get services to list the different services that the cluster is running, and to obtain the
port information required to access the service:

kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hello-world LoadBalancer 10.102.42.160 <pending> 80:31847/TCP 3s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 5h13m

In this example output, you can see that traffic to port 80 inside the cluster is mapped to the NodePort
31847. The external IP that can be used to access the service is listed as <pending>, meaning that if you
connect to the external IP address for any of the nodes within the cluster on the port 31847, you are able
access the service.

17

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Deleting a Service or Deployment

For the sake of the example in this guide, you can open a web browser to point at any of the nodes
in the cluster, such as http://worker1.example.com:31847/, and it should display the NGINX
demonstration application.

4.6 Deleting a Service or Deployment

Objects can be deleted easily within Kubernetes so that your environment can be cleaned. Use the
kubectl delete command to remove an object.

To delete a service, specify the services object and the name of the service that you want to remove. For
example:

kubectl delete services hello-world

service "hello-world" deleted

To delete an entire deployment, and all of the pod replicas running for that deployment, specify the
deployment object and the name that you used to create the deployment:

kubectl delete deployment hello-world

deployment.extensions "hello-world" deleted

4.7 Working With Namespaces

Namespaces can be used to further separate resource usage and to provide limited environments for
particular use cases. By default, Kubernetes configures a namespace for Kubernetes system components
and a standard namespace to be used for all other deployments for which no namespace is defined.

To view existing namespaces, use the kubectl get namespaces and kubectl describe
namespaces commands.

The kubectl command only displays resources in the default namespace, unless you set the namespace
specifically for a request. Therefore, if you need to view the pods specific to the Kubernetes system, you
would use the --namespace option to set the namespace to kube-system for the request. For example,
in a cluster with a single control plane node:

kubectl get pods --namespace=kube-system

NAME READY STATUS RESTARTS AGE
coredns-5bc65d7f4b-qzfcc 1/1 Running 0 23h
coredns-5bc65d7f4b-z64f2 1/1 Running 0 23h
etcd-control1.example.com 1/1 Running 0 23h
kube-apiserver-control1.example.com 1/1 Running 0 23h
kube-controller-control1.example.com 1/1 Running 0 23h
kube-flannel-ds-2sjbx 1/1 Running 0 23h
kube-flannel-ds-njg9r 1/1 Running 0 23h
kube-proxy-m2rt2 1/1 Running 0 23h
kube-proxy-tbkxd 1/1 Running 0 23h
kube-scheduler-control1.example.com 1/1 Running 0 23h
kubernetes-dashboard-7646bf6898-d6x2m 1/1 Running 0 23h

4.8 Using Deployment Files

To simplify the creation of pods and their related requirements, you can create a deployment file that define
all of the elements that comprise the deployment. This deployment defines which images should be used
to generate the containers within the pod, along with any runtime requirements, as well as Kubernetes

18

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Using Deployment Files

networking and storage requirements in the form of services that should be configured and volumes that
may need to be mounted.

Deployments are described in detail at:

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

19

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

20

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 5 Accessing the Kubernetes Dashboard
The Kubernetes Dashboard container is created as part of the kube-system namespace. This provides
an intuitive graphical user interface to a Kubernetes cluster that can be accessed using a standard web
browser.

The Kubernetes Dashboard is described in the upstream Kubernetes documentation at:

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

This chapter shows you how to start and connect to the Kubernetes Dashboard.

5.1 Starting the Dashboard

To start the Dashboard, you can run a proxy service that allows traffic on the node where it is running
to reach the internal pod where the Dashboard application is running. This is achieved by running the
kubectl proxy service:

kubectl proxy

Starting to serve on 127.0.0.1:8001

The Dashboard is available on the node where the proxy is running for as long as the proxy runs. To exit
the proxy, use Ctrl+C.

You can run this as a systemd service and enable it so that it is always available after subsequent
reboots:

sudo systemctl enable --now kubectl-proxy.service

This systemd service requires that the /etc/kubernetes/admin.conf is present to run. If you want to
change the port that is used for the proxy service, or you want to add other proxy configuration parameters,
you can configure this by editing the systemd drop-in file at /etc/systemd/system/kubectl-
proxy.service.d/10-kubectl-proxy.conf. You can get more information about the configuration
options available for the kubectl proxy service by running:

kubectl proxy --help

5.2 Connecting to the Dashboard

To access the Dashboard, open a web browser on the node where the kubectl proxy service is running
and navigate to:

http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/
proxy/

To log in, you must authenticate using a token. For more information on authentication tokens, see the
upstream documentation at:

https://github.com/kubernetes/dashboard/blob/master/docs/user/access-control/README.md

If you have not set up specific tokens for this purpose, you can use a token allocated to a service account,
such as the namespace-controller. Run the following command to obtain the token value for the
namespace-controller:

21

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://github.com/kubernetes/dashboard/blob/master/docs/user/access-control/README.md

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Connecting to the Dashboard Remotely

kubectl -n kube-system describe $(kubectl -n kube-system \
get secret -n kube-system -o name | grep namespace) | grep token:

token: eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY ...

Copy and paste the entire value of the token into the token field on the log in page to authenticate.

5.3 Connecting to the Dashboard Remotely

If you need to access the Dashboard remotely, you can use SSH tunneling to do port forwarding from your
localhost to the node running the kubectl proxy service. The easiest option is to use SSH tunneling to
forward a port on your local system to the port configured for the kubectl proxy service on the node
that you want to access. This method retains some security as the HTTP connection is encrypted by virtue
of the SSH tunnel and authentication is handled by your SSH configuration. For example, on your local
system run:

ssh -L 8001:127.0.0.1:8001 192.0.2.10

Substitute 192.0.2.10 with the IP address of the host where the kubectl proxy service is running.
When the SSH connection is established, you can open a browser on your localhost and navigate to:

http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/
proxy/

You should see the Dashboard log in screen for the remote Kubernetes cluster. Use the same token
information to authenticate as if you were connecting to the Dashboard locally.

22

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 6 Scaling a Kubernetes Cluster
A Kubernetes cluster may consist of either a single or multiple control plane node and worker nodes. The
more applications that you run in a cluster, the more resources (nodes) that you need. So, what do you
do if you need additional resources to handle a high amount of workload or traffic, or if you want to deploy
more services to the cluster? You add additional nodes to the cluster. Or, what happens if there are faulty
nodes in your cluster? You remove them.

Scaling a Kubernetes cluster is updating the cluster by adding nodes to it or removing nodes from it. When
you add nodes to a Kubernetes cluster, you are scaling up the cluster, and when you remove nodes from
the cluster, you are scaling down the cluster.

If you want to replace a node in a cluster, first scale up the cluster (add the new node) and then scale down
the cluster (remove the old node).

Note

Oracle recommends that you should not scale the cluster up and down at the same
time. You should scale up, then scale down, in two separate commands. To avoid
split-brain scenarios, scale your Kubernetes cluster control plane nodes in odd
numbers. For example, 3, 5, or 7 control plane nodes ensures the reliability of your
cluster.

If you used the --apiserver-advertise-address option when you created a Kubernetes module,
then you cannot scale up from a cluster with a single control plane node to a highly available (HA) cluster
with multiple control plane nodes. However, if you used the --virtual-ip or the --load-balancer
options, then you can scale up, even if you have only a single control plane node cluster.

Important

The --apiserver-advertise-address option has been deprecated. Use the
--master-nodes option.

When you scale a Kubernetes cluster, the following actions are completed:

1. A back up is taken of the cluster. In case something goes wrong during scaling up or scaling down, you
can revert to the previous state so that you can restore the cluster. For more information about backing
up and restoring a Kubernetes cluster, see Chapter 7, Backing up and Restoring a Kubernetes Cluster.

2. Any nodes that you want to add to the cluster are validated. If the nodes have any validation issues,
such as firewall issues, then the update to the cluster cannot proceed, and the nodes cannot be added
to the cluster. You are prompted for what to do to resolve the validation issues so that the nodes can be
added to the cluster.

3. The control plane node and worker nodes are added to or removed from the cluster.

4. The cluster is checked to make sure all nodes are healthy. After validation of the cluster is completed,
the cluster is scaled and you can access it.

Tip

The examples in this chapter show you how to scale up and down by changing the
control plane node and worker nodes at the same time by providing all the nodes
to be included in the cluster using the --master-nodes and --worker-nodes

23

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Scaling Up a Kubernetes Cluster

options. If you only want to scale control plane nodes, you only need to provide
the list of control plane nodes to include in the cluster using the --master-nodes
option (you do not need to provide all worker nodes). Similarly, if you only want to
scale worker nodes, you only need to provide the list of worker nodes using the --
worker-nodes option.

6.1 Scaling Up a Kubernetes Cluster
Before you scale up a Kubernetes cluster, set up the new nodes so they can be added to the cluster.

To prepare a node:

1. Set up the node so it can be added to a Kubernetes cluster. For information on setting up a Kubernetes
node see Getting Started.

2. If you are using private X.509 certificates for nodes, you need to copy the certificates to the node. You
do not need to do anything if you are using Vault to provide certificates for nodes. For information using
X.509 certificates see Getting Started.

3. Start the Platform Agent service. For information on starting the Platform Agent, see Getting Started.

After completing these actions, use the instructions in this procedure to add nodes to a Kubernetes cluster.

To scale up a Kubernetes cluster:

1. From a control plane node of the Kubernetes cluster, use the kubectl get nodes command to see
the control plane node and worker nodes of the cluster.

kubectl get nodes

NAME STATUS ROLE AGE VERSION
control1.example.com Ready master 26h v1.20.x+x.x.x.el8
control2.example.com Ready master 26h v1.20.x+x.x.x.el8
control3.example.com Ready master 26h v1.20.x+x.x.x.el8
worker1.example.com Ready <none> 26h v1.20.x+x.x.x.el8
worker2.example.com Ready <none> 26h v1.20.x+x.x.x.el8
worker3.example.com Ready <none> 26h v1.20.x+x.x.x.el8

In this example, there are three control plane nodes in the Kubernetes cluster:

• control1.example.com

• control2.example.com

• control3.example.com

There are also three worker nodes in the cluster:

• worker1.example.com

• worker2.example.com

• worker3.example.com

2. Use the olcnectl module update command to scale up a Kubernetes cluster.

In this example, the Kubernetes cluster is scaled up so that it has four control plane nodes and five
worker nodes. This example adds a new control plane node (control.example.com) and two new

24

https://docs.oracle.com/en/operating-systems/olcne/1.3/start/install.html#install-node
https://docs.oracle.com/en/operating-systems/olcne/1.3/start/install.html#certs-setup
https://docs.oracle.com/en/operating-systems/olcne/1.3/start/install.html#services

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Scaling Down a Kubernetes Cluster

workers nodes (worker4.example.com and worker5.example.com) to the Kubernetes module
named mycluster. From the operator node run:

olcnectl module update \
--environment-name myenvironment \
--name mycluster \
--master-nodes control1.example.com:8090,control2.example.com:8090,control3.example.com:8090,\
control4.example.com:8090 \
--worker-nodes worker1.example.com:8090,worker2.example.com:8090,worker3.example.com:8090,\
worker4.example.com:8090,worker5.example.com:8090

Make sure that if you are scaling up from a single control plane node to a highly available cluster, you
have specified a load balancer for the cluster. If you do not specify a load balancer, then you cannot
scale up your control plane nodes. That is, you cannot move from a single control plane node to a
highly available cluster without a load balancer.

You can optionally include the --generate-scripts option. This option generates scripts you can
run for each node in the event of any validation failures encountered during scaling. A script is created
for each node in the module, saved to the local directory, and named hostname:8090.sh.

You can also optionally included the --force option to suppress the prompt displayed to confirm you
want to continue with scaling the cluster.

3. On a control plane node of the Kubernetes cluster, use the kubectl get nodes command to verify
the cluster is scaled up to include the new control plane node and worker nodes.

kubectl get nodes

NAME STATUS ROLE AGE VERSION
control1.example.com Ready master 26h v1.20.x+x.x.x.el8
control2.example.com Ready master 26h v1.20.x+x.x.x.el8
control3.example.com Ready master 26h v1.20.x+x.x.x.el8
control4.example.com Ready master 2m38s v1.20.x+x.x.x.el8
worker1.example.com Ready <none> 26h v1.20.x+x.x.x.el8
worker2.example.com Ready <none> 26h v1.20.x+x.x.x.el8
worker3.example.com Ready <none> 26h v1.20.x+x.x.x.el8
worker4.example.com Ready <none> 2m38s v1.20.x+x.x.x.el8
worker5.example.com Ready <none> 2m38s v1.20.x+x.x.x.el8

6.2 Scaling Down a Kubernetes Cluster

This procedure shows you how to remove nodes from a Kubernetes cluster.

Warning

Be careful if you are scaling down the control plane nodes of your cluster. If you
have two control plane nodes and you scale down to have only one control plane
node, then you would have only a single point of failure.

To scale down a Kubernetes cluster:

1. From a control plane node of the Kubernetes cluster, use the kubectl get nodes command to see
the control plane node and worker nodes of the cluster.

kubectl get nodes

NAME STATUS ROLE AGE VERSION
control1.example.com Ready master 26h v1.20.x+x.x.x.el8

25

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Scaling Down a Kubernetes Cluster

control2.example.com Ready master 26h v1.20.x+x.x.x.el8
control3.example.com Ready master 26h v1.20.x+x.x.x.el8
control4.example.com Ready master 2m38s v1.20.x+x.x.x.el8
worker1.example.com Ready <none> 26h v1.20.x+x.x.x.el8
worker2.example.com Ready <none> 26h v1.20.x+x.x.x.el8
worker3.example.com Ready <none> 26h v1.20.x+x.x.x.el8
worker4.example.com Ready <none> 2m38s v1.20.x+x.x.x.el8
worker5.example.com Ready <none> 2m38s v1.20.x+x.x.x.el8

In this example, there are four control plane nodes in the Kubernetes cluster:

• control1.example.com

• control2.example.com

• control3.example.com

• control4.example.com

There are also five worker nodes in the cluster:

• worker1.example.com

• worker2.example.com

• worker3.example.com

• worker4.example.com

• worker5.example.com

2. Use the olcnectl module update command to scale down a Kubernetes cluster.

In this example, the Kubernetes cluster is scaled down so that it has three control plane nodes and
three worker nodes. This example removes a control plane node (control4.example.com) and two
workers nodes (worker4.example.com and worker5.example.com) from the Kubernetes module
named mycluster. As the nodes are no longer listed in the --master-nodes or --worker-nodes
options, they are removed from the cluster. From the operator node run:

olcnectl module update \
--environment-name myenvironment \
--name mycluster \
--master-nodes control1.example.com:8090,control2.example.com:8090,control3.example.com:8090 \
--worker-nodes worker1.example.com:8090,worker2.example.com:8090,worker3.example.com:8090

3. On a control plane node of the Kubernetes cluster, use the kubectl get nodes command to verify
the cluster is scaled down to remove the control plane node and worker nodes.

kubectl get nodes

NAME STATUS ROLE AGE VERSION
control1.example.com Ready master 26h v1.20.x+x.x.x.el8
control2.example.com Ready master 26h v1.20.x+x.x.x.el8
control3.example.com Ready master 26h v1.20.x+x.x.x.el8
worker1.example.com Ready <none> 26h v1.20.x+x.x.x.el8
worker2.example.com Ready <none> 26h v1.20.x+x.x.x.el8
worker3.example.com Ready <none> 26h v1.20.x+x.x.x.el8

26

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 7 Backing up and Restoring a Kubernetes Cluster
This chapter discusses how to back up and restore a Kubernetes cluster in Oracle Cloud Native
Environment.

7.1 Backing up Control Plane Nodes
Adopting a back up strategy to protect your Kubernetes cluster against control plane node failures is
important, particularly for clusters with only one control plane node. High availability clusters with multiple
control plane nodes also need a fallback plan if the resilience provided by the replication and failover
functionality has been exceeded.

You do not need to bring down the cluster to perform a back up as part of your disaster recovery plan. On
the operator node, use the olcnectl module backup command to back up the key containers and
manifests for all the control plane nodes in your cluster.

Important

Only the key containers required for the Kubernetes control plane node are backed
up. No application containers are backed up.

For example:

olcnectl module backup \
--environment-name myenvironment \
--name mycluster

The back up files are stored in the /var/olcne/backups directory on the operator node. The files are
saved to a timestamped folder that follows the pattern:

/var/olcne/backups/environment-name/kubernetes/module-name/timestamp

You can interact with the directory and the files it contains just like any other, for example:

sudo ls /var/olcne/backups/myenvironment/kubernetes/mycluster/20191007040013

control1.example.com.tar control2.example.com.tar control3.example.com.tar etcd.tar

7.2 Restoring Control Plane Nodes
These restore steps are intended for use when a Kubernetes cluster needs to be reconstructed as part of
a planned disaster recovery scenario. Unless there is a total cluster failure you do not need to manually
recover individual control plane nodes in a high availability cluster that is able to self-heal with replication
and failover.

In order to restore a control plane node, you must have a pre-existing Oracle Cloud Native Environment,
and have deployed the Kubernetes module. You cannot restore to a non-existent environment.

To restore a control plane node:

1. Make sure the Platform Agent is running correctly on the control plane nodes before proceeding:

systemctl status olcne-agent.service

2. On the operator node, use the olcnectl module restore command to restore the key containers
and manifests for the control plane nodes in your cluster. For example:

27

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Restoring Control Plane Nodes

olcnectl module restore \
--environment-name myenvironment \
--name mycluster

The files from the latest timestamped folder from /var/olcne/backups/environment-name/
kubernetes/module-name/ are used to restore the cluster to its previous state.

You may be prompted by the Platform CLI to perform additional set up steps on your control plane
nodes to fulfil the prerequisite requirements. If that happens, follow the instructions and run the
olcnectl module restore command again.

3. You can verify the restore operation was successful using the kubectl command on a control plane
node. For example:

kubectl get nodes

NAME STATUS ROLES AGE VERSION
control1.example.com Ready master 9m27s v1.20.x+x.x.x.el8
worker1.example.com Ready <none> 8m53s v1.20.x+x.x.x.el8

kubectl get pods -n kube-system

NAME READY STATUS RESTARTS AGE
coredns-5bc65d7f4b-qzfcc 1/1 Running 0 9m
coredns-5bc65d7f4b-z64f2 1/1 Running 0 9m
etcd-control1.example.com 1/1 Running 0 9m
kube-apiserver-control1.example.com 1/1 Running 0 9m
kube-controller-control1.example.com 1/1 Running 0 9m
kube-flannel-ds-2sjbx 1/1 Running 0 9m
kube-flannel-ds-njg9r 1/1 Running 0 9m
kube-proxy-m2rt2 1/1 Running 0 9m
kube-proxy-tbkxd 1/1 Running 0 9m
kube-scheduler-control1.example.com 1/1 Running 0 9m
kubernetes-dashboard-7646bf6898-d6x2m 1/1 Running 0 9m

28

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 8 Setting Access to externalIPs in Kubernetes
Services

This chapter discusses setting access to externalIPs in Kubernetes services. For more information on
externalIPs, see the upstream documentation at:

https://kubernetes.io/docs/concepts/services-networking/service/#external-ips

When you deploy Kubernetes, a service is deployed to the cluster that controls access to externalIPs in
Kubernetes services. The service is named externalip-validation-webhook-service and runs in
the externalip-validation-system namespace.

After Kubernetes is deployed, you can see the service is running using:

kubectl get services --namespace externalip-validation-system

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
externalip-validation-webhook-service ClusterIP 10.100.79.236 <none> 443/TCP 15m

This Kubernetes service requires X.509 certificates be set up prior to deploying Kubernetes. You can
use certificates generated by Vault, your own certificates, or generate certificates using the gen-certs-
helper.sh script. For information on setting up these certificates, see Getting Started.

When you deploy Kubernetes, you need to provide the location of these certificates in the olcnectl
module create command. Examples of creating a Kubernetes module and setting the certificate
locations are shown in Section 2.1, “Creating a Kubernetes Module”.

8.1 Enabling Access to CIDR Blocks

You can optionally set the external IP addresses that can be accessed by Kubernetes services when you
create the module. You use the --restrict-service-externalip-cidrs option of the olcnectl
module create command to set this. In this example, the IP ranges that are allowed are within the
192.0.2.0/24 and 198.51.100.0/24 CIDR blocks.

olcnectl module create \
--environment-name myenvironment \
--module kubernetes \
--name mycluster \
...
--restrict-service-externalip-ca-cert=/etc/olcne/configs/certificates/restrict_external_ip/production/ca.cert \
--restrict-service-externalip-tls-cert=/etc/olcne/configs/certificates/restrict_external_ip/production/node.cert \
--restrict-service-externalip-tls-key=/etc/olcne/configs/certificates/restrict_external_ip/production/node.key \
--restrict-service-externalip-cidrs=192.0.2.0/24,198.51.100.0/24

8.2 Modifying Access to CIDR Blocks

If you have a Kubernetes module that has CIDR blocks configured to be allowed, you can modify this
configuration using the --restrict-service-externalip-cidrs option of the olcnectl module
update command. This allows you to change the CIDRS that are configured. For example, to set the
CIDR block that can be accessed to 192.0.2.0/24 for an existing Kubernetes module:

olcnectl module update \
--environment-name myenvironment \
--name mycluster \
--restrict-service-externalip-cidrs=192.0.2.0/24

29

https://kubernetes.io/docs/concepts/services-networking/service/#external-ips
https://docs.oracle.com/en/operating-systems/olcne/1.3/start/install.html#certs-setup-ext-ips

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Disabling Access to externalIPs

To remove access to any CIDR blocks, which means no access to externalIPs is allowed, set --
restrict-service-externalip-cidrs option to null, for example:

olcnectl module update \
--environment-name myenvironment \
--name mycluster \
--restrict-service-externalip-cidrs=""

8.3 Disabling Access to externalIPs

If you want to restrict Kubernetes services from accessing any externalIPs, do not you set any
CIDR blocks that are allowed when you create the Kubernetes module. That is, do not use the --
restrict-service-externalip-cidrs option of the olcnectl module create command. The
externalip-validation-webhook-service Kubernetes service is deployed, but does not allow
access to any externalIPs. For example:

olcnectl module create \
--environment-name myenvironment \
--module kubernetes \
--name mycluster \
...
--restrict-service-externalip-ca-cert=/etc/olcne/configs/certificates/restrict_external_ip/production/ca.cert \
--restrict-service-externalip-tls-cert=/etc/olcne/configs/certificates/restrict_external_ip/production/node.cert \
--restrict-service-externalip-tls-key=/etc/olcne/configs/certificates/restrict_external_ip/production/node.key

If you have an existing Kubernetes module and you want to remove access to all CIDR blocks that may
have been configured, update the module and set the --restrict-service-externalip-cidrs
option to null as shown in Section 8.2, “Modifying Access to CIDR Blocks”.

8.4 Enabling Access to all externalIPs

If you want all Kubernetes services to be able to access all externalIPs, you can disable this feature
using the --restrict-service-externalip=false option of the olcnectl module create
command. Disabling this feature means that all Kubernetes services have access to all externalIPs in
the cluster.

If you disable this feature, the externalip-validation-webhook-service Kubernetes service is not
deployed to the cluster, which means no validation of external IP addresses is performed for Kubernetes
services, and access is allowed for all CIDR blocks. For example, when you create a Kubernetes module,
include the --restrict-service-externalip=false option:

olcnectl module create \
--environment-name myenvironment \
--module kubernetes \
--name mycluster \
...
--restrict-service-externalip=false

You can disable this feature in a Kubernetes cluster by using the --restrict-service-
externalip=false option of the olcnectl module update command. Modifying a Kubernetes
module in this way removes the externalip-validation-webhook-service Kubernetes service
from the cluster, so validation is not performed. For example:

olcnectl module update \
--environment-name myenvironment \
--name mycluster \
--restrict-service-externalip=false

30

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Enabling Access to all externalIPs

Conversely, if you enable this feature in a Kubernetes cluster by using the --restrict-service-
externalip=true option of the olcnectl module update command, the externalip-
validation-webhook-service Kubernetes service is deployed to the cluster, so validation is then
performed. For example:

olcnectl module update \
--environment-name myenvironment \
--name mycluster \
--restrict-service-externalip=true

31

32

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 9 Using Operators with Kubernetes
This chapter discusses how to install and use the Operator Lifecycle Manager module for Oracle Cloud
Native Environment to install and manage operators in a Kubernetes cluster.

A Kubernetes operator is a design pattern that allows you to write code to automate tasks and extend
Kubernetes. It is a set of concepts you can use to define a service for Kubernetes and helps to automate
administrative services in Kubernetes.

The Operator Lifecycle Manager module installs an instance Operator Lifecycle Manager into a Kubernetes
cluster, which you can use to manage the installation and lifecycle management of operators in a
Kubernetes cluster. The Operator Lifecycle Manager is essentially a package manager that interacts
with operator registries. For more information about the Operator Lifecycle Manager, see the upstream
documentation at:

https://olm.operatorframework.io/

OperatorHub is an operator registry that contains upstream Kubernetes operators that you can use to
deploy operators in your cluster. The OperatorHub is at:

https://operatorhub.io/

Operator Lifecycle Manager in many ways performs the same tasks as Helm. A major additional feature
that Operator Lifecycle Manager provides is that it has built-in support to validate Custom Resource
Definitions (CRDs) inside Kubernetes software. Operators with CRDs can use these to make sure
dependencies are met and no interfaces are duplicated. Otherwise, Operator Lifecycle Manager manages
deployments in a similar way to Helm.

9.1 Installing the Operator Lifecycle Manager Module
The Operator Lifecycle Manager is installed into a Kubernetes cluster as an Oracle Cloud Native
Environment module.

To install the Operator Lifecycle Manager module:

1. If you do not already have the Helm module installed in the cluster, you must install it. On the operator
node, use the olcnectl module create command to create the Helm module. Specify the name of
the Kubernetes module with the --helm-kubernetes-module option.

olcnectl module create \
--environment-name myenvironment \
--module helm \
--name myhelm \
--helm-kubernetes-module mycluster

Use the olcnectl module install command to install the Helm module:

olcnectl module install \
--environment-name myenvironment \
--name myhelm

2. Use the olcnectl module create command to create the Operator Lifecycle Manager module.
Specify the name of the Helm module with the --olm-helm-module option.

olcnectl module create \
--environment-name myenvironment \
--module operator-lifecycle-manager \

33

https://olm.operatorframework.io/
https://operatorhub.io/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Verifying the Operator Lifecycle Manager Module Deployment

--name myolm \
--olm-helm-module myhelm

3. Use the olcnectl module install command to install the Operator Lifecycle Manager module:

olcnectl module install \
--environment-name myenvironment \
--name myolm

The Operator Lifecycle Manager module is deployed and the required containers are running in the
operator-lifecycle-manager namespace.

9.2 Verifying the Operator Lifecycle Manager Module Deployment
You can verify the Operator Lifecycle Manager module is deployed and the required deployments are
running in the operator-lifecycle-manager namespace. To verify the containers are deployed, use
the kubectl command on a control plane node.

To verify the required containers are running, list the deployments running in the operator-lifecycle-
manager namespace. You should see similar results to those shown here:

kubectl get deploy -n operator-lifecycle-manager
NAME READY UP-TO-DATE AVAILABLE AGE
catalog-operator 1/1 1 1 2m36s
olm-operator 1/1 1 1 2m36s
packageserver 2/2 2 2 2m30s

9.3 Listing Operator Registries
You can show the available operator registries using the kubectl command on a control plane node:

kubectl get catalogsource -n operator-lifecycle-manager
NAME DISPLAY TYPE PUBLISHER AGE
operatorhubio-catalog Community Operators grpc OperatorHub.io 3m35s

The OperatorHub registry is shown in the output. This is the default operator registry.

The OperatorHub provides examples of the text to use for your operator manifest files. On each operator's
page on OperatorHub, there are example YAML files to create operator manifest files.

9.4 Installing Operators
To see all the operators that can be installed, use the kubectl command on a control plane node:

kubectl get packagemanifest
NAME CATALOG AGE
vault Community Operators 3m22s
submariner Community Operators 3m22s
credstash-operator Community Operators 3m22s
eunomia Community Operators 3m22s
ibm-block-csi-operator-community Community Operators 3m22s
...

A list of the upstream operators available on OperatorHub are displayed. These are all available to be
installed by the Operator Lifecycle Manager.

When you have decided on the operator name and catalog, you need to create the Kubernetes resources
that tell Operator Lifecycle Manager how to install the operator. Two resources must be created: an

34

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Installing Operators

OperatorGroup and a Subscription. If a new namespace is being created, you can create the
Namespace in the same operator manifest file.

You can download starter operator manifest files for operators from the OperatorHub.

This example shows you how to create an etcd operator which is pulled from the OperatorHub.

To create an operator:

1. In a web browser, go to the OperatorHub and find the name of the operator you want to install. The
OperatorHub is at:

https://operatorhub.io/

This example uses the etcd operator at:

https://operatorhub.io/operator/etcd

Click Install.

A dialog is displayed that shows the kubectl create command to deploy the operator. For example:

kubectl create -f https://operatorhub.io/install/etcd.yaml

Copy the URL in this command that contains the operator manifest YAML file.

2. On a control plane node, download the etcd operator manifest YAML file from the OperatorHub:

curl --remote-name https://operatorhub.io/install/etcd.yaml

3. You can edit this manifest YAML file to suit your needs. At the time of writing, this file contained the
information required to create a Namespace, OperatorGroup and Subscription for the etcd
operator:

apiVersion: v1
kind: Namespace
metadata:
 name: my-etcd

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: operatorgroup
 namespace: my-etcd
spec:
 targetNamespaces:
 - my-etcd

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: my-etcd
 namespace: my-etcd
spec:
 channel: singlenamespace-alpha
 name: etcd
 source: operatorhubio-catalog
 sourceNamespace: olm

Edit this file to change the sourceNamespace from olm to operator-lifecycle-manager in the
Subscription section so that it works properly with Operator Lifecycle Manager. Operator Lifecycle

35

https://operatorhub.io/
https://operatorhub.io/operator/etcd

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Removing Operators

Manager runs in the operator-lifecycle-manager namespace, which is different to the upstream
namespace.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: my-etcd
 namespace: my-etcd
spec:
 channel: singlenamespace-alpha
 name: etcd
 source: operatorhubio-catalog
 sourceNamespace: operator-lifecycle-manager

4. Use the kubectl apply command to deploy the etcd operator.

kubectl apply -f etcd.yaml
namespace/my-etcd created
operatorgroup.operators.coreos.com/operatorgroup created
subscription.operators.coreos.com/my-etcd created

The operator is deployed into the namespace set in the operator manifest file, which in this example is
my-etcd.

5. You can see the operator's ClusterServiceVersion information using:

kubectl get csv -n my-etcd
NAME DISPLAY VERSION REPLACES PHASE
etcdoperator.v0.9.4 etcd 0.9.4 etcdoperator.v0.9.2 Succeeded

6. You can see the operator pods are running using:

kubectl get pods -n my-etcd
NAME READY STATUS RESTARTS AGE
etcd-operator-75fb7df8b5-42k7b 3/3 Running 0 5m45s

9.5 Removing Operators

To remove an operator and uninstall it, delete the Kubernetes resources. For example, on a control plane
node, use the kubectl delete command to delete the operator:

kubectl delete -f etcd.yaml
namespace "my-etcd" deleted
operatorgroup.operators.coreos.com "operatorgroup" deleted
subscription.operators.coreos.com "my-etcd" deleted

9.6 Uninstalling the Operator Lifecycle Manager Module

To uninstall the Operator Lifecycle Manager module, uninstall the module using the olcnectl module
uninstall command. For example:

olcnectl module uninstall \
--environment-name myenvironment \
--name myolm

You can also uninstall the Helm module if you no longer require it.

olcnectl module uninstall \
--environment-name myenvironment \

36

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Uninstalling the Operator Lifecycle Manager Module

--name myhelm

37

38

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 10 Removing a Kubernetes Cluster
If you want to remove a Kubernetes cluster, use the olcnectl module uninstall command. For
example, to uninstall the Kubernetes module named mycluster:

olcnectl module uninstall \
--environment-name myenvironment \
--name mycluster

On each node, the Kubernetes containers are stopped and deleted, the Kubernetes cluster is removed,
and the kubelet service is stopped.

Uninstalling a module also removes the module configuration from the Platform API Server. If you uninstall
a module and want to reinstall it, you need to create the module again using the olcnectl module
create command.

Tip

If you reinstall a Kubernetes module on hosts that were previously used in
a Kubernetes cluster, you may need to run the sudo kubeadm reset -f
command on each node before you redeploy the module.

39

40

	Oracle® Cloud Native Environment
	Table of Contents
	Preface
	Chapter 1 Introduction to Kubernetes
	1.1 Kubernetes Components
	1.1.1 Nodes
	1.1.1.1 Control Plane Node
	1.1.1.2 Control Plane Replica Nodes
	1.1.1.3 Worker Nodes

	1.1.2 Pods
	1.1.3 ReplicaSet, Deployment, StatefulSet Controllers
	1.1.4 Services
	1.1.5 Volumes
	1.1.6 Namespaces

	1.2 About CRI-O

	Chapter 2 Creating a Kubernetes Cluster
	2.1 Creating a Kubernetes Module
	2.1.1 Creating an HA Cluster with External Load Balancer
	2.1.2 Creating an HA Cluster with Internal Load Balancer
	2.1.3 Creating a Cluster with a Single Control Plane Node

	2.2 Validating a Kubernetes Module
	2.3 Installing a Kubernetes Module

	Chapter 3 Setting up the Kubernetes Command-Line Interface (kubectl)
	3.1 Setting up kubectl on a Control Plane Node
	3.2 Setting up kubectl on the Operator Node

	Chapter 4 Using Kubernetes
	4.1 About Runtime Engines
	4.2 Getting Information about Nodes
	4.3 Running an Application in a Pod
	4.4 Scaling a Pod Deployment
	4.5 Exposing a Service Object for an Application
	4.6 Deleting a Service or Deployment
	4.7 Working With Namespaces
	4.8 Using Deployment Files

	Chapter 5 Accessing the Kubernetes Dashboard
	5.1 Starting the Dashboard
	5.2 Connecting to the Dashboard
	5.3 Connecting to the Dashboard Remotely

	Chapter 6 Scaling a Kubernetes Cluster
	6.1 Scaling Up a Kubernetes Cluster
	6.2 Scaling Down a Kubernetes Cluster

	Chapter 7 Backing up and Restoring a Kubernetes Cluster
	7.1 Backing up Control Plane Nodes
	7.2 Restoring Control Plane Nodes

	Chapter 8 Setting Access to externalIPs in Kubernetes Services
	8.1 Enabling Access to CIDR Blocks
	8.2 Modifying Access to CIDR Blocks
	8.3 Disabling Access to externalIPs
	8.4 Enabling Access to all externalIPs

	Chapter 9 Using Operators with Kubernetes
	9.1 Installing the Operator Lifecycle Manager Module
	9.2 Verifying the Operator Lifecycle Manager Module Deployment
	9.3 Listing Operator Registries
	9.4 Installing Operators
	9.5 Removing Operators
	9.6 Uninstalling the Operator Lifecycle Manager Module

	Chapter 10 Removing a Kubernetes Cluster

