
Oracle Cloud Native Environment
Application Load Balancers for Release 1.5

F55665-04
July 2023

Oracle Cloud Native Environment Application Load Balancers for Release 1.5,

F55665-04

Copyright © 2022, 2023, Oracle and/or its affiliates.

Contents

 Preface

Conventions iv

Documentation Accessibility iv

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 Introduction to Application Load Balancers

Introduction to the Oracle Cloud Infrastructure Cloud Controller Manager Module 1-1

Introduction to the MetalLB Module 1-2

2 Using the Oracle Cloud Infrastructure Load Balancer

Prerequisites 2-1

Deploying the Oracle Cloud Infrastructure Cloud Controller Manager Module 2-2

Verifying the Oracle Cloud Infrastructure Cloud Controller Manager Module Deployment 2-5

Creating an Application Using an Oracle Cloud Infrastructure Load Balancer 2-5

Removing the Oracle Cloud Infrastructure Cloud Controller Manager Module 2-9

3 Using the MetalLB Load Balancer

Prerequisites 3-1

Deploying the MetalLB Module 3-3

Verifying the MetalLB Module Deployment 3-4

Creating an Application Using MetalLB 3-5

Removing the MetalLB Module 3-7

iii

Preface

Important:

The software described in this documentation is either in Extended Support
or Sustaining Support. See Oracle Open Source Support Policies for more
information.

We recommend that you upgrade the software described by this
documentation as soon as possible.

This document contains information about setting up network load balancers for
Kubernetes applications in Oracle Cloud Native Environment. It describes the modules
provided with Oracle Cloud Native Environment to set up application load balancers.
These load balancers can be used with Kubernetes LoadBalancer services to
externalize applications outside of the Kubernetes cluster.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis,
or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands
within a paragraph, URLs, code in
examples, text that appears on the screen,
or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle
Accessibility Conformance Report at https://www.oracle.com/corporate/accessibility/
templates/t2-11535.html.

Preface

iv

https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Preface

v

https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

1
Introduction to Application Load Balancers

Important:

The software described in this documentation is either in Extended Support or
Sustaining Support. See Oracle Open Source Support Policies for more
information.

We recommend that you upgrade the software described by this documentation as
soon as possible.

Network load balancers provide a method of externally exposing Kubernetes applications. A
Kubernetes LoadBalancer service is used to create a network load balancer that provides
and exposes an external IP address that can be used to connect to an application from
outside the cluster.

More information on Kubernetes services, including the LoadBalancer service, is available in
the upstream documentation at:

https://kubernetes.io/docs/concepts/services-networking/service/

Oracle Cloud Native Environment provides two methods to create a LoadBalancer service:
using the Oracle Cloud Infrastructure load balancer, or using MetalLB.

The Oracle Cloud Infrastructure load balancer provides network load balancers for
Kubernetes applications running on Oracle Cloud Infrastructure.

MetalLB is a network load balancer for Kubernetes applications running on bare metal hosts.
MetalLB allows you to use Kubernetes LoadBalancer services, which traditionally make use
of a cloud provider network load balancer, in a bare metal environment.

Introduction to the Oracle Cloud Infrastructure Cloud Controller
Manager Module

The Oracle Cloud Infrastructure Flexible Network Load Balancing service (Oracle Cloud
Infrastructure load balancer) provides automated traffic distribution from one entry point to
multiple backend servers in a Virtual Cloud Network (VCN). It operates at the connection
level and load balances incoming client connections to healthy backend servers based on
Layer 3/Layer 4 (IP protocol) data.

For more information on the Oracle Cloud Infrastructure load balancer, see the Oracle Cloud
Infrastructure documentation.

The Oracle Cloud Infrastructure Cloud Controller Manager module is used to create and
manage Oracle Cloud Infrastructure load balancers for Kubernetes applications. The Oracle
Cloud Infrastructure Cloud Controller Manager module is deployed by the Helm module into a
Kubernetes cluster.

1-1

https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://kubernetes.io/docs/concepts/services-networking/service/
https://docs.oracle.com/iaas/Content/NetworkLoadBalancer/overview.htm
https://docs.oracle.com/iaas/Content/NetworkLoadBalancer/overview.htm

The Oracle Cloud Infrastructure Cloud Controller Manager module uses the
Kubernetes Cloud Controller Manager (oci-cloud-controller-manager) to provide
and manage Oracle Cloud Infrastructure load balancers. The Kubernetes Cloud
Controller Manager ServiceController is responsible for creating load balancers when
a Kubernetes LoadBalancer service is created.

The Platform API Server communicates with the Oracle Cloud Infrastructure API to
provision and manage Oracle Cloud Infrastructure load balancers.

For more information on the Kubernetes Cloud Controller Manager, see the upstream
documentation at:

https://github.com/oracle/oci-cloud-controller-manager

Introduction to the MetalLB Module
MetalLB is a network load balancer for Kubernetes applications running on bare metal
hosts. MetalLB allows you to use Kubernetes LoadBalancer services, which
traditionally make use of a cloud provider network load balancer, in a bare metal
environment.

MetalLB has two features that enable the network load balancer: address allocation,
and external announcement.

Address allocation provides IP addresses to Kubernetes applications from the pool of
IP addresses you provide in the ConfigMap file.

External announcement makes the network beyond the Kubernetes cluster aware that
the IP is available in the cluster. This is provided using either Address Resolution
Protocol (ARP) and Neighbor Discover Protocol (NDP) in Layer 2 mode, or Border
Gateway Protocol (BGP) in BGP mode.

For more information on MetalLB, see the upstream documentation at:

https://metallb.universe.tf/concepts/

The MetalLB module is used to set up network load balancers for Kubernetes
applications using MetalLB. The MetalLB module is deployed by the Helm module into
a Kubernetes cluster.

Oracle Cloud Native Environment deploys MetalLB onto the control plane nodes using
a ConfigMap file you set up beforehand.

Chapter 1
Introduction to the MetalLB Module

1-2

https://github.com/oracle/oci-cloud-controller-manager
https://metallb.universe.tf/concepts/

2
Using the Oracle Cloud Infrastructure Load
Balancer

Important:

The software described in this documentation is either in Extended Support or
Sustaining Support. See Oracle Open Source Support Policies for more
information.

We recommend that you upgrade the software described by this documentation as
soon as possible.

This chapter discusses how to install and use the Oracle Cloud Infrastructure Cloud
Controller Manager module to set up a load balancer for Kubernetes applications in Oracle
Cloud Native Environment on Oracle Cloud Infrastructure instances.

Prerequisites
This section contains the prerequisite information you need to set up the Oracle Cloud
Infrastructure Cloud Controller Manager module.

Setting up the Health Check Endpoint Network Ports

When using a Kubernetes LoadBalancer service with the ServiceInternalTrafficPolicy
set to Cluster (the default), a health check endpoint is expected to be available on TCP port
10256. kube-proxy creates a listener on this port, which enables access to the LoadBalancer
service to verify that kube-proxy is healthy on the nodes. The LoadBalancer service
determines which nodes can have traffic routed to them using this policy. To allow traffic on
this port, you must open TCP port 10256 on all Kubernetes nodes. On each Kubernetes
node, run:

sudo firewall-cmd --zone=public --add-port=10256/tcp
sudo firewall-cmd --zone=public --add-port=10256/tcp --permanent
sudo systemctl restart firewalld.service

For more information on the ServiceInternalTrafficPolicy, see the upstream
documentation at:

https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/

Make sure traffic is allowed for TCP port 10256 in the network security list.

Gather Oracle Cloud Infrastructure Identifiers

Gather information about your Oracle Cloud Infrastructure environment. The most common
information you need is:

2-1

https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/

• The identifier for the region.

• The OCID for the tenancy.

• The OCID for the compartment.

• The OCID for the user.

• The public key fingerprint for the API signing key pair.

• The private key file for the API signing key pair. The private key must be copied to
the primary control plane node. This is the first control plane node listed in the --
master-nodes option when you create the Kubernetes module.

• The OCID for the Virtual Cloud Network (VCN).

• The OCIDs for two subnets in the VCN for high availability if required.

• The quota to use for the load balancers.

• The shape to use for the load balancers.

For information on finding each of these identifiers or components, see the Oracle
Cloud Infrastructure documentation.

Deploying the Oracle Cloud Infrastructure Cloud Controller
Manager Module

If you have already installed the Oracle Cloud Infrastructure Cloud Controller Manager
module to make use of Oracle Cloud Infrastructure storage, you do not need to create
another module to provision application load balancers. The Oracle Cloud
Infrastructure Cloud Controller Manager module is used to provision both Oracle Cloud
Infrastructure storage and load balancers.

You can deploy all the modules required to set up a Oracle Cloud Infrastructure load
balancer for a Kubernetes cluster using a single olcnectl module create
command. This method might be useful if you want to deploy the Oracle Cloud
Infrastructure Cloud Controller Manager module at the same time as deploying a
Kubernetes cluster.

If you have an existing deployment of the Kubernetes module, you can specify that
instance when deploying the Oracle Cloud Infrastructure Cloud Controller Manager
module.

This section guides you through installing each component required to deploy the
Oracle Cloud Infrastructure Cloud Controller Manager module .

For the full list of the Platform CLI command options available when creating modules,
see the olcnectl module create command in Platform Command-Line Interface.

To deploy the Oracle Cloud Infrastructure Cloud Controller Manager module:

1. If you do not already have an environment set up, create one into which the
modules can be deployed. For information on setting up an environment, see
Getting Started. The name of the environment in this example is myenvironment.

2. If you do not already have a Kubernetes module set up or deployed, set one up.

For information on adding a Kubernetes module to an environment, see Container
Orchestration. The name of the Kubernetes module in this example is mycluster.

Chapter 2
Deploying the Oracle Cloud Infrastructure Cloud Controller Manager Module

2-2

https://docs.oracle.com/iaas/Content/
https://docs.oracle.com/iaas/Content/
https://docs.oracle.com/en/operating-systems/olcne/1.5/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.5/start/
https://docs.oracle.com/en/operating-systems/olcne/1.5/orchestration/
https://docs.oracle.com/en/operating-systems/olcne/1.5/orchestration/

3. If you do not already have a Helm module created and installed, create one. The Helm
module in this example is named myhelm and is associated with the Kubernetes module
named mycluster using the --helm-kubernetes-module option.

olcnectl module create \
--environment-name myenvironment \
--module helm \
--name myhelm \
--helm-kubernetes-module mycluster

4. If you are deploying a new Helm module, use the olcnectl module validate
command to validate the Helm module can be deployed to the nodes. For example:

olcnectl module validate \
--environment-name myenvironment \
--name myhelm

5. If you are deploying a new Helm module, use the olcnectl module install
command to install the Helm module. For example:

olcnectl module install \
--environment-name myenvironment \
--name myhelm

The Helm software packages are installed on the control plane nodes, and the Helm
module is deployed into the Kubernetes cluster.

6. Create an Oracle Cloud Infrastructure Cloud Controller Manager module and associate it
with the Helm module named myhelm using the --oci-ccm-helm-module option. In this
example, the Oracle Cloud Infrastructure Cloud Controller Manager module is named
myoci.

olcnectl module create \
--environment-name myenvironment \
--module oci-ccm \
--name myoci \
--oci-ccm-helm-module myhelm \
--oci-region us-ashburn-1 \
--oci-tenancy ocid1.tenancy.oc1..unique_ID \
--oci-compartment ocid1.compartment.oc1..unique_ID \
--oci-user ocid1.user.oc1..unique_ID \
--oci-fingerprint b5:52:... \
--oci-private-key /home/opc/.oci/oci_api_key.pem \
--oci-vcn ocid1.vcn.oc1..unique_ID \
--oci-lb-subnet1 ocid1.subnet.oc1..unique_ID

The --module option sets the module type to create, which is oci-ccm. You define the
name of the Oracle Cloud Infrastructure Cloud Controller Manager module using the --
name option, which in this case is myoci.

The --oci-ccm-helm-module option sets the name of the Helm module. If there is an
existing Helm module with the same name, the Platform API Server uses that instance of
Helm.

Chapter 2
Deploying the Oracle Cloud Infrastructure Cloud Controller Manager Module

2-3

The --oci-region option sets the Oracle Cloud Infrastructure region to use. The
region in this example is us-ashburn-1.

The --oci-tenancy option sets the OCID for your tenancy.

The --oci-compartment option sets the OCID for your compartment.

The --oci-user option sets the OCID for the user.

The --oci-fingerprint option sets the fingerprint for the public key for the Oracle
Cloud Infrastructure API signing key.

The --oci-private-key option sets the location of the private key for the Oracle
Cloud Infrastructure API signing key. The private key must be available on the
primary control plane node.

The --oci-vcn option sets the OCID for the VCN on which to create load
balancers.

The --oci-lb-subnet1 option sets the OCID for the VCN subnet on which to
create load balancers.

If you want to set up high availability for the load balancer, you should provide a
second subnet on a different availability domain using the --oci-lb-subnet2
option. For example:

--oci-lb-subnet2 ocid1.subnet.oc1..unique_ID \

Tip:

If you have an existing Oracle Cloud Infrastructure Cloud Controller
Manager module used for Oracle Cloud Infrastructure storage, you can
update it to include this networking information using the olcnectl
module update command. This configures the module to provision load
balancers. For example:

olcnectl module update \
--environment-name myenvironment \
--name myoci \
--oci-vcn ocid1.vcn.oc1..unique_ID \
--oci-lb-subnet1 ocid1.subnet.oc1..unique_ID \
--oci-lb-subnet2 ocid1.subnet.oc1..unique_ID

If you do not include all the required options when adding the modules, you are
prompted to provide them.

7. Use the olcnectl module validate command to validate the Oracle Cloud
Infrastructure Cloud Controller Manager module can be deployed to the nodes.
For example:

olcnectl module validate \
--environment-name myenvironment \
--name myoci

Chapter 2
Deploying the Oracle Cloud Infrastructure Cloud Controller Manager Module

2-4

8. Use the olcnectl module install command to install the Oracle Cloud
Infrastructure Cloud Controller Manager module. For example:

olcnectl module install \
--environment-name myenvironment \
--name myoci

The Oracle Cloud Infrastructure Cloud Controller Manager module is deployed into the
Kubernetes cluster.

Verifying the Oracle Cloud Infrastructure Cloud Controller
Manager Module Deployment

You can verify the Oracle Cloud Infrastructure Cloud Controller Manager module is deployed
using the olcnectl module instances command on the operator node. For example:

olcnectl module instances \
--environment-name myenvironment
INSTANCE MODULE STATE
mycluster kubernetes installed
myhelm helm installed
myoci oci-ccm installed
control1.example.com node installed
...

Note the entry for oci-ccm in the MODULE column is in the installed state.

In addition, use the olcnectl module report command to review information about the
module. For example, use the following command to review the Oracle Cloud Infrastructure
Cloud Controller Manager module named myoci in myenvironment:

olcnectl module report \
--environment-name myenvironment \
--name myoci \
--children

For more information on the syntax for the olcnectl module report command, see
Platform Command-Line Interface.

Creating an Application Using an Oracle Cloud Infrastructure
Load Balancer

This section contains a basic test to verify you can create a Kubernetes application that uses
an Oracle Cloud Infrastructure load balancer to provide external IP addresses.

To create a test application to use an Oracle Cloud Infrastructure load balancer:

1. Create a Kubernetes application that uses a LoadBalancer service. The deployment in
this example creates an NGINX application with a replica count of 2, and an associated
LoadBalancer service.

Chapter 2
Verifying the Oracle Cloud Infrastructure Cloud Controller Manager Module Deployment

2-5

https://docs.oracle.com/en/operating-systems/olcne/1.5/olcnectl/

On a control plane node, create a file named nginx-oci-lb.yaml and copy the
following into the file.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 2
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: container-registry.oracle.com/olcne/nginx:1.17.7
 ports:
 - containerPort: 80

kind: Service
apiVersion: v1
metadata:
 name: nginx-service
 annotations:
 service.beta.kubernetes.io/oci-load-balancer-security-list-
management-mode: "None"
 service.beta.kubernetes.io/oci-load-balancer-internal: "true"
 service.beta.kubernetes.io/oci-load-balancer-shape: "flexible"
 service.beta.kubernetes.io/oci-load-balancer-shape-flex-min:
"10"
 service.beta.kubernetes.io/oci-load-balancer-shape-flex-max:
"10"
spec:
 selector:
 app: nginx
 type: LoadBalancer
 ports:
 - name: http
 port: 80
 targetPort: 80

The annotations section contains the information required to provision an Oracle
Cloud Infrastructure load balancer. This is where you set the load balancer shape.

Chapter 2
Creating an Application Using an Oracle Cloud Infrastructure Load Balancer

2-6

For example, to use a 10Mbps shape instead of the flexible shape as shown in the
example above, you might use:

 annotations:
 service.beta.kubernetes.io/oci-load-balancer-security-list-management-
mode: "None"
 service.beta.kubernetes.io/oci-load-balancer-internal: "true"
 service.beta.kubernetes.io/oci-load-balancer-shape: "10Mbps"

In some Oracle Cloud Infrastructure tenancies, you may also need to include the oci-
load-balancer-subnet1 annotation to identify the network subnet, for example:

 service.beta.kubernetes.io/oci-load-balancer-subnet1:
"ocid1.subnet.oc1..unique_ID"

For the full list of annotations you can include, see the upstream documentation at:

https://github.com/oracle/oci-cloud-controller-manager/blob/master/docs/load-balancer-
annotations.md

2. Start the NGINX deployment and LoadBalancer service:

kubectl apply -f nginx-oci-lb.yaml
deployment.apps/nginx-deployment created
service/nginx-service created

3. You can see the nginx-deployment application is running using the kubectl get
deployment command:

kubectl get deployments.apps
NAME READY UP-TO-DATE AVAILABLE AGE
nginx-deployment 2/2 2 2 31s

4. You can see the nginx-deployment service is running using the kubectl get svc
command:

kubectl get svc nginx-service
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
nginx-service LoadBalancer 10.99.107.243 203.0.113.10
80:31288/TCP 10m

Oracle Cloud Infrastructure may take a few minutes to assign an IP address. Until this
completes, the EXTERNAL-IP column shows the pending state for the nginx-service.
When the IP address is assigned, this field changes to show the IP address.

Tip:

You can see the load balancer is created in the Oracle Cloud Infrastructure UI
under Networking > Load Balancers.

Chapter 2
Creating an Application Using an Oracle Cloud Infrastructure Load Balancer

2-7

https://github.com/oracle/oci-cloud-controller-manager/blob/master/docs/load-balancer-annotations.md
https://github.com/oracle/oci-cloud-controller-manager/blob/master/docs/load-balancer-annotations.md

You can see the EXTERNAL-IP for the nginx-service LoadBalancer has an IP
address of 203.0.113.10. This IP address is provided by Oracle Cloud
Infrastructure and is the external IP address that you can use to connect to the
application.

5. Use curl to connect to the NGINX application's IP address and add the port for
the application (203.0.113.10:80 in this example) to show the NGINX default
page.

curl 203.0.113.10:80
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully
installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

6. You can delete the nginx-service LoadBalancer service using:

kubectl delete svc nginx-service
service "nginx-service" deleted

Tip:

You can see the load balancer is removed in the Oracle Cloud
Infrastructure UI under Networking > Load Balancers.

7. You can delete the nginx-deployment application using:

kubectl delete deployments.apps nginx-deployment
deployment.apps "nginx-deployment" deleted

Chapter 2
Creating an Application Using an Oracle Cloud Infrastructure Load Balancer

2-8

Removing the Oracle Cloud Infrastructure Cloud Controller
Manager Module

You can remove a deployment of the Oracle Cloud Infrastructure Cloud Controller Manager
module and leave the Kubernetes cluster in place. To do this, you remove the Oracle Cloud
Infrastructure Cloud Controller Manager module from the environment.

Use the olcnectl module uninstall command to remove the Oracle Cloud
Infrastructure Cloud Controller Manager module. For example, to uninstall the Oracle Cloud
Infrastructure Cloud Controller Manager module named myoci in the environment named
myenvironment:

olcnectl module uninstall \
--environment-name myenvironment \
--name myoci

The Oracle Cloud Infrastructure Cloud Controller Manager module is removed from the
environment.

Chapter 2
Removing the Oracle Cloud Infrastructure Cloud Controller Manager Module

2-9

3
Using the MetalLB Load Balancer

Important:

The software described in this documentation is either in Extended Support or
Sustaining Support. See Oracle Open Source Support Policies for more
information.

We recommend that you upgrade the software described by this documentation as
soon as possible.

This chapter discusses how to install and use the MetalLB module to set up a network load
balancer for Kubernetes applications using MetalLB in Oracle Cloud Native Environment on
bare metal hosts.

Prerequisites
This section contains the prerequisite information you need to set up the MetalLB module.

Setting up the Health Check Endpoint Network Ports

When using a Kubernetes LoadBalancer service with the ServiceInternalTrafficPolicy
set to Cluster (the default), a health check endpoint is expected to be available on TCP port
10256. kube-proxy creates a listener on this port, which enables access to the LoadBalancer
service to verify that kube-proxy is healthy on the nodes. The LoadBalancer service
determines which nodes can have traffic routed to them using this policy. To allow traffic on
this port, you must open TCP port 10256 on all Kubernetes nodes. On each Kubernetes
node, run:

sudo firewall-cmd --zone=public --add-port=10256/tcp
sudo firewall-cmd --zone=public --add-port=10256/tcp --permanent
sudo systemctl restart firewalld.service

For more information on the ServiceInternalTrafficPolicy, see the upstream
documentation at:

https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/

Make sure traffic is allowed for TCP port 10256 in the network security list.

Setting up the Network Ports

You must open the following ports on Kubernetes worker nodes. On each worker node, run:

sudo firewall-cmd --zone=public --add-port=7946/tcp --permanent
sudo firewall-cmd --zone=public --add-port=7946/udp --permanent
sudo systemctl restart firewalld.service

3-1

https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/

Creating a MetalLB Configuration File

You must provide a MetalLB configuration file on the operator node. The configuration
file contains the required information to configure MetalLB. This file is where you list
configuration information such as the IP address ranges to use when provisioning load
balancer IPs to Kubernetes applications, and the protocol to use.

The configuration file is a snippet, or cut down version, of the upstream MetalLB
ConfigMap file. The snippet file should only contain the options available to be set
under the config section shown in the upstream ConfigMap files, that is, any
combination of address-pools, peers, bgp-communities, bfd-profiles, and so on.
For example:

peers:
- peer-address: 10.0.0.1
 peer-asn: 64501
 my-asn: 64500
address-pools:
- name: default
 protocol: bgp
 addresses:
 - 192.168.10.0/24

The Platform API Server uses the information contained in the configuration file when
creating the MetalLB module.

Important:

Oracle Cloud Native Environment installs MetalLB Release 0.12.1. This
release uses a ConfigMap to configure the MetalLB cluster. MetalLB Release
0.13 onwards uses a CustomResource to perform this configuration. You
should use the upstream examples for MetalLB Release 0.12.1 to create a
snippet of a ConfigMap to configure the version of MetalLB installed with
Oracle Cloud Native Environment.

For information on the options available to use in the configuration file, see the
upstream documentation for the MetalLB ConfigMap file, at:

https://github.com/metallb/metallb/blob/v0.12.1/website/content/configuration/
_index.md

Important:

Do not include a full ConfigMap file in the configuration file, only the options
available under the config section.

The following example configuration file uses a MetalLB Layer 2 configuration and
provides the IP address range from 192.168.1.240 to 192.168.1.250 to MetalLB to

Chapter 3
Prerequisites

3-2

https://github.com/metallb/metallb/blob/v0.12.1/website/content/configuration/_index.md
https://github.com/metallb/metallb/blob/v0.12.1/website/content/configuration/_index.md

create load balancer IPs for Kubernetes applications. This example file is named metallb-
config.yaml and contains:

address-pools:
- name: default
 protocol: layer2
 addresses:
 - 192.168.1.240-192.168.1.250

Deploying the MetalLB Module
You can deploy all the modules required to set up MetalLB for a Kubernetes cluster using a
single olcnectl module create command. This method might be useful if you want to
deploy the MetalLB module at the same time as deploying a Kubernetes cluster.

If you have an existing deployment of the Kubernetes module, you can specify that instance
when deploying the MetalLB module.

This section guides you through installing each component required to deploy the MetalLB
module.

For the full list of the Platform CLI command options available when creating modules, see
the olcnectl module create command in Platform Command-Line Interface.

To deploy the MetalLB module:

1. If you do not already have an environment set up, create one into which the modules can
be deployed. For information on setting up an environment, see Getting Started. The
name of the environment in this example is myenvironment.

2. If you do not already have a Kubernetes module set up or deployed, set one up. For
information on adding a Kubernetes module to an environment, see Container
Orchestration. The name of the Kubernetes module in this example is mycluster.

3. If you do not already have a Helm module created and installed, create one. The Helm
module in this example is named myhelm and is associated with the Kubernetes module
named mycluster using the --helm-kubernetes-module option.

olcnectl module create \
--environment-name myenvironment \
--module helm \
--name myhelm \
--helm-kubernetes-module mycluster

4. If you are deploying a new Helm module, use the olcnectl module validate
command to validate the Helm module can be deployed to the nodes. For example:

olcnectl module validate \
--environment-name myenvironment \
--name myhelm

5. If you are deploying a new Helm module, use the olcnectl module install
command to install the Helm module. For example:

olcnectl module install \
--environment-name myenvironment \
--name myhelm

Chapter 3
Deploying the MetalLB Module

3-3

https://docs.oracle.com/en/operating-systems/olcne/1.5/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.5/start/
https://docs.oracle.com/en/operating-systems/olcne/1.5/orchestration/
https://docs.oracle.com/en/operating-systems/olcne/1.5/orchestration/

The Helm software packages are installed on the control plane nodes, and the
Helm module is deployed into the Kubernetes cluster.

6. Create a MetalLB module and associate it with the Helm module named myhelm
using the --metallb-helm-module option. In this example, the MetalLB module is
named mymetallb.

olcnectl module create \
--environment-name myenvironment \
--module metallb \
--name mymetallb \
--metallb-helm-module myhelm \
--metallb-config /home/opc/metallb-config.yaml

The --module option sets the module type to create, which is metallb. You define
the name of the MetalLB module using the --name option, which in this case is
mymetallb.

The --metallb-helm-module option sets the name of the Helm module. If there is
an existing Helm module with the same name, the Platform API Server uses that
instance of Helm.

The --metallb-config option sets the location for the MetalLB configuration file.
This file must be available on the operator node under the provided path. For
information on creating this configuration file, see Creating a MetalLB
Configuration File.

If you do not include all the required options when adding the modules, you are
prompted to provide them.

7. Use the olcnectl module validate command to validate the MetalLB
module can be deployed to the nodes. For example:

olcnectl module validate \
--environment-name myenvironment \
--name mymetallb

8. Use the olcnectl module install command to install the MetalLB module.
For example:

olcnectl module install \
--environment-name myenvironment \
--name mymetallb

The MetalLB module is deployed into the Kubernetes cluster.

Verifying the MetalLB Module Deployment
You can verify the MetalLB module is deployed using the olcnectl module
instances command on the operator node. For example:

olcnectl module instances \
--environment-name myenvironment
INSTANCE MODULE STATE
mymetallb metallb installed
mycluster kubernetes installed
myhelm helm installed
control1.example.com node installed
...

Chapter 3
Verifying the MetalLB Module Deployment

3-4

Note the entry for metallb in the MODULE column is in the installed state.

In addition, use the olcnectl module report command to review information about the
module. For example, use the following command to review the MetalLB module named
mymetallb in myenvironment:

olcnectl module report \
--environment-name myenvironment \
--name mymetallb \
--children

For more information on the syntax for the olcnectl module report command, see
Platform Command-Line Interface.

Creating an Application Using MetalLB
This section contains a basic test to verify you can create a Kubernetes application that uses
MetalLB to provide external IP addresses.

To create a test application to use MetalLB:

1. Create a Kubernetes application that uses a LoadBalancer service. The deployment in
this example creates an NGINX application with a replica count of 2, and an associated
LoadBalancer service.

On a control plane node, create a file named nginx-metallb.yaml and copy the following
into the file.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 2
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: container-registry.oracle.com/olcne/nginx:1.17.7
 ports:
 - containerPort: 80

kind: Service
apiVersion: v1
metadata:
 name: nginx-service
spec:
 selector:
 app: nginx
 type: LoadBalancer
 ports:

Chapter 3
Creating an Application Using MetalLB

3-5

https://docs.oracle.com/en/operating-systems/olcne/1.5/olcnectl/

 - name: http
 port: 80
 targetPort: 80

2. Start the NGINX deployment and LoadBalancer service:

kubectl apply -f nginx-metallb.yaml
deployment.apps/nginx-deployment created
service/nginx-service created

3. You can see the nginx-deployment application is running using the kubectl get
deployment command:

kubectl get deployments.apps
NAME READY UP-TO-DATE AVAILABLE AGE
nginx-deployment 2/2 2 2 31s

4. You can see the nginx-deployment service is running using the kubectl get
svc command:

kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP
25h
nginx-service LoadBalancer 10.99.253.99 192.168.1.240 80:31875/TCP
70s

You can see the EXTERNAL-IP for the nginx-service LoadBalancer has an IP
address of 192.168.1.240. This IP address is provided by MetalLB and is the
external IP address that you can use to connect to the application.

5. Use curl to connect to the NGINX application's IP address and add the port for
the application (192.168.1.240:80 in this example) to show the NGINX default
page.

curl 192.168.1.240:80
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully
installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

Chapter 3
Creating an Application Using MetalLB

3-6

<p>Thank you for using nginx.</p>
</body>
</html>

6. You can delete the nginx-service LoadBalancer service using:

kubectl delete svc nginx-service
service "nginx-service" deleted

7. You can delete the nginx-deployment application using:

kubectl delete deployments.apps nginx-deployment
deployment.apps "nginx-deployment" deleted

Removing the MetalLB Module
You can remove a deployment of the MetalLB module and leave the Kubernetes cluster in
place. To do this, you remove the MetalLB module from the environment.

Use the olcnectl module uninstall command to remove the MetalLB module. For
example, to uninstall the MetalLB module named mymetallb in the environment named
myenvironment:

olcnectl module uninstall \
--environment-name myenvironment \
--name mymetallb

The MetalLB module is removed from the environment.

Chapter 3
Removing the MetalLB Module

3-7

	Contents
	Preface
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Introduction to Application Load Balancers
	Introduction to the Oracle Cloud Infrastructure Cloud Controller Manager Module
	Introduction to the MetalLB Module

	2 Using the Oracle Cloud Infrastructure Load Balancer
	Prerequisites
	Deploying the Oracle Cloud Infrastructure Cloud Controller Manager Module
	Verifying the Oracle Cloud Infrastructure Cloud Controller Manager Module Deployment
	Creating an Application Using an Oracle Cloud Infrastructure Load Balancer
	Removing the Oracle Cloud Infrastructure Cloud Controller Manager Module

	3 Using the MetalLB Load Balancer
	Prerequisites
	Deploying the MetalLB Module
	Verifying the MetalLB Module Deployment
	Creating an Application Using MetalLB
	Removing the MetalLB Module

