
Oracle Cloud Native Environment
Storage for Release 1.5

F53967-03
July 2023

Oracle Cloud Native Environment Storage for Release 1.5,

F53967-03

Copyright © 2022, 2023, Oracle and/or its affiliates.

Contents

 Preface

Conventions iv

Documentation Accessibility iv

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 Introduction to Storage

Persistent Storage Concepts 1-1

Container Storage Interface Plug-ins 1-2

Introduction to the Oracle Cloud Infrastructure Cloud Controller Manager Module 1-2

Introduction to the Gluster Container Storage Interface Module 1-3

2 Using Oracle Cloud Infrastructure Storage

Prerequisites 2-1

Deploying the Oracle Cloud Infrastructure Cloud Controller Manager Module 2-1

Verifying the Oracle Cloud Infrastructure Cloud Controller Manager Deployment 2-4

Creating Oracle Cloud Infrastructure Block Storage 2-5

Removing the Oracle Cloud Infrastructure Cloud Controller Manager Module 2-7

3 Using Gluster Storage

Prerequisites 3-1

Deploying the Gluster Module 3-1

Verifying the Gluster Module Deployment 3-3

Creating a Gluster Volume 3-4

Removing the Gluster Module 3-6

iii

Preface

Important:

The software described in this documentation is either in Extended Support
or Sustaining Support. See Oracle Open Source Support Policies for more
information.

We recommend that you upgrade the software described by this
documentation as soon as possible.

This document contains information about setting up and using persistent storage in
Oracle Cloud Native Environment. It describes the modules provided with Oracle
Cloud Native Environment to set up persistent storage.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis,
or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands
within a paragraph, URLs, code in
examples, text that appears on the screen,
or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle
Accessibility Conformance Report at https://www.oracle.com/corporate/accessibility/
templates/t2-11535.html.

Preface

iv

https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Preface

v

https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

1
Introduction to Storage

Important:

The software described in this documentation is either in Extended Support or
Sustaining Support. See Oracle Open Source Support Policies for more
information.

We recommend that you upgrade the software described by this documentation as
soon as possible.

Every meaningful workload in the computing industry requires some sort of data storage.
Persistent storage is essential when working with stateful applications like databases, as it is
important that you are able to retain data beyond the lifecycle of the container, or even of the
pod itself.

Persistent storage in Kubernetes is handled in the form of PersistentVolume objects and are
bound to pods using a PersistentVolumeClaim. You can host a PersistentVolume locally or on
networked storage devices or services.

A typical Kubernetes environment involves multiple hosts and usually includes some type of
networked storage. Using networked storage helps to ensure resilience and allows you to
take full advantage of a clustered environment. In the case where the node where a pod is
running fails, a new pod can be started on an alternate node and storage access can be
resumed. This is particularly important for database environments where replica setup has
been properly configured.

Persistent Storage Concepts
Persistent storage is provided in Kubernetes using the PersistentVolume subsystem. To
configure persistent storage, you should be familiar with the following terms:

• PersistentVolume

A PersistentVolume defines the type of storage that is being used and the method used
to connect to it. This is the real disk or networked storage service that is used to store
data.

• PersistentVolumeClaim

A PersistentVolumeClaim defines the parameters that a consumer, like a pod, uses to
bind the PersistentVolume. The claim may specify quota and access modes that should
be applied to the resource for a consumer. A pod can use a PersistentVolumeClaim to
gain access to the volume and mount it.

• StorageClass

A StorageClass is an object that specifies a volume plug-in, known as a provisioner, that
allows users to define PersistentVolumeClaims without needing to preconfigure the
storage for a PersistentVolume. This can be used to provide access to similar volume

1-1

https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf

types as a pooled resource that can be dynamically provisioned for the lifecycle of
a PersistentVolumeClaim.

PersistentVolumes can be provisioned either statically or dynamically.

Static PersistentVolumes are manually created and contain the details required to
access real storage and can be consumed directly by any pod that has an associated
PersistentVolumeClaim.

Dynamic PersistentVolumes can be automatically generated if a
PersistentVolumeClaim does not match an existing static PersistentVolume and an
existing StorageClass is requested in the claim. A StorageClass can be defined to host
a pool of storage that can be accessed dynamically. Creating a StorageClass is an
optional step that is only required if you intend to use dynamic provisioning.

The process to provision persistent storage is as follows:

1. Create a PersistentVolume or StorageClass.

2. Create PersistentVolumeClaims.

3. Configure a pod to use the PersistentVolumeClaim.

The process for adding and configuring NFS and iSCSI volumes is described in detail
in the upstream documentation at:

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Container Storage Interface Plug-ins
The Container Storage Interface (CSI) is an Open Container Initiative standard for
controlling storage workloads from container engines. Kubernetes implements this
interface to provide automated control for storage workloads inside Kubernetes
clusters. For a list of the Kubernetes storage provisioners, see the upstream
documentation at:

https://kubernetes.io/docs/concepts/storage/storage-classes/

You can install CSI plug-ins into a Kubernetes cluster in Oracle Cloud Native
Environment. To make it easier to perform the CSI plug-in installation, Oracle provides
a number of storage related modules.

The Oracle Cloud Infrastructure Cloud Controller Manager module for Oracle Cloud
Native Environment can be used to set up the CSI plug-in for Oracle Cloud
Infrastructure.

The Gluster Container Storage Interface module for Oracle Cloud Native Environment
can be used to set up the CSI plug-in for Glusterfs.

More information on these modules is included in this guide.

Introduction to the Oracle Cloud Infrastructure Cloud
Controller Manager Module

Oracle Cloud Infrastructure block volumes provide reliable, high-performance block
storage designed to work with a range of virtual machines and bare metal instances.
With built-in redundancy, block volumes are persistent and durable beyond the lifespan
of a virtual machine and can scale to 1 PB per compute instance.

Chapter 1
Container Storage Interface Plug-ins

1-2

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/storage-classes/

The Oracle Cloud Infrastructure Cloud Controller Manager module is used to set up
dynamically provisioned persistent storage using Oracle Cloud Infrastructure block volumes.
The Oracle Cloud Infrastructure Cloud Controller Manager module is deployed by the Helm
module into a Kubernetes cluster.

The Oracle Cloud Infrastructure Cloud Controller Manager module creates a Kubernetes
StorageClass provisioner to access storage on Oracle Cloud Infrastructure block volumes.
The Kubernetes Cloud Controller Manager (oci-cloud-controller-manager) is a CSI plug-in
for Kubernetes clusters running on Oracle Cloud Infrastructure. The Kubernetes Cloud
Controller Manager is used to dynamically provision Oracle Cloud Infrastructure volumes for
use as Kubernetes PersistentVolumes. The Platform API Server communicates with the
Oracle Cloud Infrastructure API to provision and manage Oracle Cloud Infrastructure
volumes using PersistentVolumeClaims. The Oracle Cloud Infrastructure volumes can be
automatically destroyed when the PersistentVolumeClaims are deleted.

For more information on the Kubernetes Cloud Controller Manager, see the upstream
documentation at:

https://github.com/oracle/oci-cloud-controller-manager

Introduction to the Gluster Container Storage Interface Module
Gluster is a scalable, distributed file system that aggregates disk storage resources from
multiple servers into a single global namespace. Heketi is used to create and manage
volumes in a Gluster cluster.

The Gluster Container Storage Interface module is used to set up dynamically provisioned
persistent storage using Gluster Storage for Oracle Linux. The Gluster Container Storage
Interface module is deployed by the Helm module into a Kubernetes cluster.

Oracle Cloud Native Environment does not deploy Gluster or Heketi. Gluster Storage for
Oracle Linux and the Heketi API must be installed and configured separately, before it can be
added to Oracle Cloud Native Environment.

The Gluster Container Storage Interface module creates a Kubernetes StorageClass
provisioner to access existing storage on Glusterfs. Kubernetes uses the Glusterfs plug-in to
dynamically provision Gluster volumes for use as Kubernetes PersistentVolumes. The
Platform API Server communicates with the Heketi API to provision and manage Gluster
volumes using PersistentVolumeClaims. The Gluster volumes can be automatically destroyed
when the PersistentVolumeClaims are deleted.

Chapter 1
Introduction to the Gluster Container Storage Interface Module

1-3

https://github.com/oracle/oci-cloud-controller-manager

2
Using Oracle Cloud Infrastructure Storage

Important:

The software described in this documentation is either in Extended Support or
Sustaining Support. See Oracle Open Source Support Policies for more
information.

We recommend that you upgrade the software described by this documentation as
soon as possible.

This chapter discusses how to install and use the Oracle Cloud Infrastructure Cloud
Controller Manager module to set up dynamically provisioned persistent storage for
Kubernetes applications in Oracle Cloud Native Environment on Oracle Cloud Infrastructure
instances.

Prerequisites
Before you set up the Oracle Cloud Infrastructure Cloud Controller Manager module, you
need to gather information about your Oracle Cloud Infrastructure environment. The most
common information you need is:

• The identifier for the region.

• The OCID for the tenancy.

• The OCID for the compartment.

• The OCID for the user.

• The public key fingerprint for the API signing key pair.

• The private key file for the API signing key pair. The private key must be copied to the
primary control plane node. This is the first control plane node listed in the --master-
nodes option when you create the Kubernetes module.

You may need more information related to your Oracle Cloud Infrastructure networking or
other components.

For information on finding each of these identifiers or components, see the Oracle Cloud
Infrastructure documentation.

Deploying the Oracle Cloud Infrastructure Cloud Controller
Manager Module

If you have already installed the Oracle Cloud Infrastructure Cloud Controller Manager
module to make use of Oracle Cloud Infrastructure application load balancers, you do not
need to create another module to provision storage. The Oracle Cloud Infrastructure Cloud

2-1

https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/iaas/Content/
https://docs.oracle.com/iaas/Content/

Controller Manager module is used to provision both Oracle Cloud Infrastructure
storage and load balancers.

You can deploy all the modules required to set up Oracle Cloud Infrastructure storage
for a Kubernetes cluster using a single olcnectl module create command. This
method might be useful if you want to deploy the Oracle Cloud Infrastructure Cloud
Controller Manager module at the same time as deploying a Kubernetes cluster.

If you have an existing deployment of the Kubernetes module, you can specify that
instance when deploying the Oracle Cloud Infrastructure Cloud Controller Manager
module.

This section guides you through installing each component required to deploy the
Oracle Cloud Infrastructure Cloud Controller Manager module.

For the full list of the Platform CLI command options available when creating modules,
see the olcnectl module create command in Platform Command-Line Interface.

To deploy the Oracle Cloud Infrastructure Cloud Controller Manager module:

1. If you do not already have an environment set up, create one into which the
modules can be deployed. For information on setting up an environment, see
Getting Started. The name of the environment in this example is myenvironment.

2. If you do not already have a Kubernetes module set up or deployed, set one up.

For information on adding a Kubernetes module to an environment, see Container
Orchestration. The name of the Kubernetes module in this example is mycluster.

3. If you do not already have a Helm module created and installed, create one. The
Helm module in this example is named myhelm and is associated with the
Kubernetes module named mycluster using the --helm-kubernetes-module
option.

olcnectl module create \
--environment-name myenvironment \
--module helm \
--name myhelm \
--helm-kubernetes-module mycluster

4. If you are deploying a new Helm module, use the olcnectl module validate
command to validate the Helm module can be deployed to the nodes. For
example:

olcnectl module validate \
--environment-name myenvironment \
--name myhelm

5. If you are deploying a new Helm module, use the olcnectl module install
command to install the Helm module. For example:

olcnectl module install \
--environment-name myenvironment \
--name myhelm

The Helm software packages are installed on the control plane nodes, and the
Helm module is deployed into the Kubernetes cluster.

6. Create an Oracle Cloud Infrastructure Cloud Controller Manager module and
associate it with the Helm module named myhelm using the --oci-ccm-helm-
module option. In this example, the Oracle Cloud Infrastructure Cloud Controller
Manager module is named myoci.

Chapter 2
Deploying the Oracle Cloud Infrastructure Cloud Controller Manager Module

2-2

https://docs.oracle.com/en/operating-systems/olcne/1.5/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.5/start/
https://docs.oracle.com/en/operating-systems/olcne/1.5/orchestration/
https://docs.oracle.com/en/operating-systems/olcne/1.5/orchestration/

olcnectl module create \
--environment-name myenvironment \
--module oci-ccm \
--name myoci \
--oci-ccm-helm-module myhelm \
--oci-region us-ashburn-1 \
--oci-tenancy ocid1.tenancy.oc1..unique_ID \
--oci-compartment ocid1.compartment.oc1..unique_ID \
--oci-user ocid1.user.oc1..unique_ID \
--oci-fingerprint b5:52:... \
--oci-private-key /home/opc/.oci/oci_api_key.pem

The --module option sets the module type to create, which is oci-ccm. You define the
name of the Oracle Cloud Infrastructure Cloud Controller Manager module using the --
name option, which in this case is myoci.

The --oci-ccm-helm-module option sets the name of the Helm module. If there is an
existing Helm module with the same name, the Platform API Server uses that instance of
Helm.

The --oci-region option sets the Oracle Cloud Infrastructure region to use. The region
in this example is us-ashburn-1.

The --oci-tenancy option sets the OCID for your tenancy.

The --oci-compartment option sets the OCID for your compartment.

The --oci-user option sets the OCID for the user.

The --oci-fingerprint option sets the fingerprint for the public key for the Oracle Cloud
Infrastructure API signing key.

The --oci-private-key option sets the location of the private key for the Oracle Cloud
Infrastructure API signing key. The private key must be available on the primary control
plane node.

If you do not include all the required options when adding the modules, you are prompted
to provide them.

7. Use the olcnectl module validate command to validate the Oracle Cloud
Infrastructure Cloud Controller Manager module can be deployed to the nodes. For
example:

olcnectl module validate \
--environment-name myenvironment \
--name myoci

8. Use the olcnectl module install command to install the Oracle Cloud
Infrastructure Cloud Controller Manager module. For example:

olcnectl module install \
--environment-name myenvironment \
--name myoci

The Oracle Cloud Infrastructure Cloud Controller Manager module is deployed into the
Kubernetes cluster.

Chapter 2
Deploying the Oracle Cloud Infrastructure Cloud Controller Manager Module

2-3

Verifying the Oracle Cloud Infrastructure Cloud Controller
Manager Deployment

You can verify the Oracle Cloud Infrastructure Cloud Controller Manager module is
deployed using the olcnectl module instances command on the operator node.
For example:

olcnectl module instances \
--environment-name myenvironment
INSTANCE MODULE STATE
mycluster kubernetes installed
myhelm helm installed
myoci oci-ccm installed
control1.example.com node installed
...

Note the entry for oci-ccm in the MODULE column is in the installed state.

In addition, use the olcnectl module report command to review information
about the module. For example, use the following command to review the Oracle
Cloud Infrastructure Cloud Controller Manager module named myoci in
myenvironment:

olcnectl module report \
--environment-name myenvironment \
--name myoci \
--children

For more information on the syntax for the olcnectl module report command,
see Platform Command-Line Interface.

On a control plane node, you can also verify the oci-bv StorageClass for the Oracle
Cloud Infrastructure provisioner is created using the kubectl get sc command:

kubectl get sc
NAME PROVISIONER RECLAIMPOLICY
VOLUMEBINDINGMODE ...
oci-bv blockvolume.csi.oraclecloud.com Delete
WaitForFirstConsumer ...

You can get more details about the StorageClass using the kubectl describe sc
command. For example:

kubectl describe sc oci-bv
Name: oci-bv
IsDefaultClass: No
Annotations: meta.helm.sh/release-name=myoci,meta.helm.sh/release-
namespace=default
Provisioner: blockvolume.csi.oraclecloud.com
Parameters: <none>
AllowVolumeExpansion: <unset>
MountOptions: <none>
ReclaimPolicy: Delete
VolumeBindingMode: WaitForFirstConsumer
Events: <none>

Chapter 2
Verifying the Oracle Cloud Infrastructure Cloud Controller Manager Deployment

2-4

https://docs.oracle.com/en/operating-systems/olcne/1.5/olcnectl/

Creating Oracle Cloud Infrastructure Block Storage
This section contains a basic test to verify you can create Oracle Cloud Infrastructure block
storage to provide persistent storage to applications running on Kubernetes.

To create a test application to use Oracle Cloud Infrastructure storage:

1. Create a Kubernetes PersistentVolumeClaim file. On a control plane node, create a file
named pvc.yaml. Copy the following into the file.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: myoci-pvc
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: oci-bv
 resources:
 requests:
 storage: 50Gi

Note that the accessModes setting for Oracle Cloud Infrastructure storage must be
ReadWriteOnce. The minimum Oracle Cloud Infrastructure block size is 50Gi.

2. Create the Kubernetes PersistentVolumeClaim.

kubectl apply -f pvc.yaml
persistentvolumeclaim/myoci-pvc created

3. You can see the PersistentVolumeClaim is created using the kubectl get pvc
command:

kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
myoci-pvc Pending oci-bv 15s

The STATUS is Pending and means the claim is waiting for an application to claim it.

You can get more details about the PersistentVolumeClaim using the kubectl
describe pvc command. For example:

kubectl describe pvc myoci-pvc
Name: myoci-pvc
Namespace: default
StorageClass: oci-bv
Status: Pending
Volume:
Labels: <none>
Annotations: <none>
Finalizers: [kubernetes.io/pvc-protection]
Capacity:
Access Modes:
VolumeMode: Filesystem
Used By: <none>
Events:
 Type Reason Age
From ...
 ---- ------ ----

Chapter 2
Creating Oracle Cloud Infrastructure Block Storage

2-5

 Normal WaitForFirstConsumer 2m18s (x26 over 8m29s) persistentvolume-
controller ...

4. Create a Kubernetes application that uses the PersistentVolumeClaim. Create a
file named nginx.yaml and copy the following into the file.

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 run: mynginx
 name: mynginx
spec:
 replicas: 1
 selector:
 matchLabels:
 run: mynginx
 template:
 metadata:
 labels:
 run: mynginx
 spec:
 containers:
 - image: container-registry.oracle.com/olcne/nginx:1.17.7
 name: mynginx
 ports:
 - containerPort: 80
 volumeMounts:
 - name: nginx-pvc
 mountPath: /usr/share/nginx/html
 volumes:
 - name: nginx-pvc
 persistentVolumeClaim:
 claimName: myoci-pvc

5. Start the application:

kubectl apply -f nginx.yaml
deployment.apps/mynginx created

6. You can see the application is running using the kubectl get deployment
command:

kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
mynginx 1/1 1 1 63s

7. You can see the application is using the PersistentVolumeClaim to provide
persistent storage on Oracle Cloud Infrastructure using the kubectl describe
deployment command:

kubectl describe deployment mynginx
...
Pod Template:
 Labels: run=mynginx
 Containers:
 mynginx:
 Image: container-registry.oracle.com/olcne/nginx:1.17.7
 Port: 80/TCP
 Host Port: 0/TCP
 Environment: <none>
 Mounts:
 /usr/share/nginx/html from nginx-pvc (rw)

Chapter 2
Creating Oracle Cloud Infrastructure Block Storage

2-6

 Volumes:
 nginx-pvc:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in
the same namespace)
 ClaimName: myoci-pvc
 ReadOnly: false
...

Note the ClaimName is myoci-pvc, which is the name of the PersistentVolumeClaim
created earlier.

You can see the PersistentVolumeClaim is now bound to this application using the
kubectl get pvc command:

kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
AGE
myoci-pvc Bound csi-84175067-... 50Gi RWO oci-bv 1m

Tip:

If you log in to Oracle Cloud Infrastructure, you can see there is a block volume
created with the name listed in the VOLUME column. The block volume is
attached to the compute instance on which the Kubernetes application is
running.

8. You can delete the test application using:

kubectl delete deployment mynginx
deployment.apps "mynginx" deleted

9. You can delete the PersistentVolumeClaim using:

kubectl delete pvc myoci-pvc
persistentvolumeclaim "myoci-pvc" deleted

The storage is deleted.

Tip:

If you log in to Oracle Cloud Infrastructure, you can see the block volume is
terminated.

Removing the Oracle Cloud Infrastructure Cloud Controller
Manager Module

You can remove a deployment of the Oracle Cloud Infrastructure Cloud Controller Manager
module and leave the Kubernetes cluster in place. To do this, you remove the Oracle Cloud
Infrastructure Cloud Controller Manager module from the environment.

Use the olcnectl module uninstall command to remove the Oracle Cloud
Infrastructure Cloud Controller Manager module. For example, to uninstall the Oracle Cloud

Chapter 2
Removing the Oracle Cloud Infrastructure Cloud Controller Manager Module

2-7

Infrastructure Cloud Controller Manager module named myoci in the environment
named myenvironment:

olcnectl module uninstall \
--environment-name myenvironment \
--name myoci

The Oracle Cloud Infrastructure Cloud Controller Manager module is removed from
the environment.

Chapter 2
Removing the Oracle Cloud Infrastructure Cloud Controller Manager Module

2-8

3
Using Gluster Storage

Important:

The software described in this documentation is either in Extended Support or
Sustaining Support. See Oracle Open Source Support Policies for more
information.

We recommend that you upgrade the software described by this documentation as
soon as possible.

This chapter discusses how to install and use the Gluster Container Storage Interface module
to set up dynamically provisioned persistent storage for Kubernetes applications using
Gluster Storage for Oracle Linux and Heketi in Oracle Cloud Native Environment.

Prerequisites
You need to have a Gluster Storage for Oracle Linux cluster set up and ready to use. You
must also install Heketi in the Gluster cluster. The Platform API Server communicates with
the Heketi API to provision and manage Gluster volumes.

You do not need to create any Gluster volumes as these are dynamically provisioned as
required.

The basic requirements for setting up Gluster are:

• Install Gluster on each node in the Gluster cluster.

• Set up the cluster to access volumes using the Gluster native client (FUSE) method.

• Install Heketi and create the Gluster cluster.

• Make sure you can connect to the Heketi API from the operator node.

For information on installing and setting up Gluster Storage for Oracle Linux and Heketi, see
Oracle® Linux: Gluster Storage for Oracle Linux User's Guide.

Deploying the Gluster Module
You can deploy all the modules required to set up Gluster storage for a Kubernetes cluster
using a single olcnectl module create command. This method might be useful if you
want to deploy the Gluster Container Storage Interface module at the same time as deploying
a Kubernetes cluster.

If you have an existing deployment of the Kubernetes module, you can specify that instance
when deploying the Gluster Container Storage Interface module.

This section guides you through installing each component required to deploy the Gluster
Container Storage Interface module.

3-1

https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/gluster-storage/

For the full list of the Platform CLI command options available when creating modules,
see the olcnectl module create command in Platform Command-Line Interface.

To deploy the Gluster Container Storage Interface module:

1. If you do not already have an environment set up, create one into which the
modules can be deployed. For information on setting up an environment, see
Getting Started. The name of the environment in this example is myenvironment.

2. If you do not already have a Kubernetes module set up or deployed, set one up.
For information on adding a Kubernetes module to an environment, see Container
Orchestration. The name of the Kubernetes module in this example is mycluster.

3. If you do not already have a Helm module created and installed, create one. The
Helm module in this example is named myhelm and is associated with the
Kubernetes module named mycluster using the --helm-kubernetes-module
option.

olcnectl module create \
--environment-name myenvironment \
--module helm \
--name myhelm \
--helm-kubernetes-module mycluster

4. If you are deploying a new Helm module, use the olcnectl module validate
command to validate the Helm module can be deployed to the nodes. For
example:

olcnectl module validate \
--environment-name myenvironment \
--name myhelm

5. If you are deploying a new Helm module, use the olcnectl module install
command to install the Helm module. For example:

olcnectl module install \
--environment-name myenvironment \
--name myhelm

The Helm software packages are installed on the control plane nodes, and the
Helm module is deployed into the Kubernetes cluster.

6. Create a Gluster Container Storage Interface module and associate it with the
Helm module named myhelm using the --gluster-helm-module option. In this
example, the Gluster Container Storage Interface module is named mygluster.

olcnectl module create \
--environment-name myenvironment \
--module gluster \
--name mygluster \
--gluster-helm-module myhelm \
--gluster-server-url https:\\mygluster.example.com:8080

The --module option sets the module type to create, which is gluster. You define
the name of the Gluster Container Storage Interface module using the --name
option, which in this case is mygluster.

The --gluster-helm-module option sets the name of the Helm module. If there is
an existing Helm module with the same name, the Platform API Server uses that
instance of Helm.

Chapter 3
Deploying the Gluster Module

3-2

https://docs.oracle.com/en/operating-systems/olcne/1.5/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.5/start/
https://docs.oracle.com/en/operating-systems/olcne/1.5/orchestration/
https://docs.oracle.com/en/operating-systems/olcne/1.5/orchestration/

The --gluster-server-url option sets the location of the Heketi API server, which in
this example is https:\\mygluster.example.com:8080. You do not need to include this
option if Heketi is on the operator node and using HTTP, as the default for this option is
http://127.0.0.1:8080.

Tip:

Make sure you can reach the Heketi API from the operator node using curl,
for example:

curl -w "\n" https:\\mygluster.example.com:8080/hello

Or if Heketi is on the operator node using HTTP:

curl -w "\n" http:\\127.0.0.1:8080/hello

You should see returned:

Hello from Heketi.

If you do not include all the required options when adding the modules, you are prompted
to provide them.

There are some optional command options that you may need to include if you are not
using the default values, such as --gluster-server-user and --gluster-secret-key.

7. Use the olcnectl module validate command to validate the Gluster Container
Storage Interface module can be deployed to the nodes. For example:

olcnectl module validate \
--environment-name myenvironment \
--name mygluster

8. Use the olcnectl module install command to install the Gluster Container
Storage Interface module. For example:

olcnectl module install \
--environment-name myenvironment \
--name mygluster

The Gluster Container Storage Interface module is deployed into the Kubernetes cluster.

Verifying the Gluster Module Deployment
You can verify the Gluster Container Storage Interface module is deployed using the
olcnectl module instances command on the operator node. For example:

olcnectl module instances \
--environment-name myenvironment
INSTANCE MODULE STATE
mycluster kubernetes installed
myhelm helm installed
mygluster gluster installed
control1.example.com node installed
...

Note the entry for gluster in the MODULE column is in the installed state.

Chapter 3
Verifying the Gluster Module Deployment

3-3

In addition, use the olcnectl module report command to review information
about the module. For example, use the following command to review the Gluster
Container Storage Interface module named mygluster in myenvironment:

olcnectl module report \
--environment-name myenvironment \
--name mygluster \
--children

For more information on the syntax for the olcnectl module report command,
see Platform Command-Line Interface.

On a control plane node, you can also verify the StorageClass for the Glusterfs
provisioner is created using the kubectl get sc command:

kubectl get sc
NAME PROVISIONER RECLAIMPOLICY
VOLUMEBINDINGMODE ...
hyperconverged (default) kubernetes.io/glusterfs Delete
Immediate ...

In this case, the StorageClass is named hyperconverged, which is the default name.

You can get more details about the StorageClass using the kubectl describe sc
command. For example:

kubectl describe sc hyperconverged
Name: hyperconverged
IsDefaultClass: Yes
Annotations: meta.helm.sh/release-name=mygluster,meta.helm.sh/release-
namespace=defau...
Provisioner: kubernetes.io/glusterfs
Parameters:
restauthenabled=true,resturl=http://...:8080,restuser=admin,secretName=a...
AllowVolumeExpansion: <unset>
MountOptions: <none>
ReclaimPolicy: Delete
VolumeBindingMode: Immediate
Events: <none>

Creating a Gluster Volume
This section contains a basic test to verify you can create a Gluster volume to provide
persistent storage to applications running on Kubernetes.

To create a test application to use Glusterfs:

1. Create a Kubernetes PersistentVolumeClaim file. On a control plane node, create
a file named pvc.yaml. Copy the following into the file.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mygluster-pvc
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi

Chapter 3
Creating a Gluster Volume

3-4

https://docs.oracle.com/en/operating-systems/olcne/1.5/olcnectl/

2. Create the Kubernetes PersistentVolumeClaim.

kubectl apply -f pvc.yaml
persistentvolumeclaim/mygluster-pvc created

3. You can see the PersistentVolumeClaim is created using the kubectl get pvc
command:

kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
AGE
mygluster-pvc Bound pvc-59f70... 1Gi RWX hyperconverged
18s

You can get more details about the PersistentVolumeClaim using the kubectl
describe pvc command. For example:

kubectl describe pvc mygluster-pvc
Name: mygluster-pvc
Namespace: default
StorageClass: hyperconverged
Status: Bound
Volume: pvc-59f7047b-9287-4163-9cff-c669cfbd4970
Labels: <none>
Annotations: pv.kubernetes.io/bind-completed: yes
 pv.kubernetes.io/bound-by-controller: yes
 volume.beta.kubernetes.io/storage-provisioner: kubernetes.io/
glusterfs
Finalizers: [kubernetes.io/pvc-protection]
Capacity: 1Gi
Access Modes: RWX
VolumeMode: Filesystem
Used By: <none>
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ProvisioningSucceeded 73s persistentvolume-controller Successfully
provi...

4. Create a Kubernetes application that uses the PersistentVolumeClaim. Create a file
named nginx.yaml and copy the following into the file.

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 run: mynginx
 name: mynginx
spec:
 replicas: 1
 selector:
 matchLabels:
 run: mynginx
 template:
 metadata:
 labels:
 run: mynginx
 spec:
 containers:
 - image: container-registry.oracle.com/olcne/nginx:1.17.7
 name: mynginx
 ports:

Chapter 3
Creating a Gluster Volume

3-5

 - containerPort: 80
 volumeMounts:
 - name: nginx-pvc
 mountPath: /usr/share/nginx/html
 volumes:
 - name: nginx-pvc
 persistentVolumeClaim:
 claimName: mygluster-pvc

5. Start the application:

kubectl apply -f nginx.yaml
deployment.apps/mynginx created

6. You can see the application is running using the kubectl get deployment
command:

kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
mynginx 1/1 1 1 16s

7. You can see the application is using the PersistentVolumeClaim to provide
persistent storage on Glusterfs using the kubectl describe deployment
command:

kubectl describe deployment mynginx
...
Pod Template:
 Labels: run=mynginx
 Containers:
 mynginx:
 Image: container-registry.oracle.com/olcne/nginx:1.17.7
 Port: 80/TCP
 Host Port: 0/TCP
 Environment: <none>
 Mounts:
 /usr/share/nginx/html from nginx-pvc (rw)
 Volumes:
 nginx-pvc:
 Type: PersistentVolumeClaim (a reference to a
PersistentVolumeClaim in the ...
 ClaimName: mygluster-pvc
 ReadOnly: false

8. You can delete the test application using:

kubectl delete deployment mynginx
deployment.apps "mynginx" deleted

9. You can delete the PersistentVolumeClaim using:

kubectl delete pvc mygluster-pvc
persistentvolumeclaim "mygluster-pvc" deleted

Removing the Gluster Module
You can remove a deployment of the Gluster Container Storage Interface module and
leave the Kubernetes cluster in place. To do this, you remove the Gluster Container
Storage Interface module from the environment.

Chapter 3
Removing the Gluster Module

3-6

Use the olcnectl module uninstall command to remove the Gluster Container
Storage Interface module. For example, to uninstall the Gluster Container Storage Interface
module named mygluster in the environment named myenvironment:

olcnectl module uninstall \
--environment-name myenvironment \
--name mygluster

The Gluster Container Storage Interface module is removed from the environment.

Chapter 3
Removing the Gluster Module

3-7

	Contents
	Preface
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Introduction to Storage
	Persistent Storage Concepts
	Container Storage Interface Plug-ins
	Introduction to the Oracle Cloud Infrastructure Cloud Controller Manager Module
	Introduction to the Gluster Container Storage Interface Module

	2 Using Oracle Cloud Infrastructure Storage
	Prerequisites
	Deploying the Oracle Cloud Infrastructure Cloud Controller Manager Module
	Verifying the Oracle Cloud Infrastructure Cloud Controller Manager Deployment
	Creating Oracle Cloud Infrastructure Block Storage
	Removing the Oracle Cloud Infrastructure Cloud Controller Manager Module

	3 Using Gluster Storage
	Prerequisites
	Deploying the Gluster Module
	Verifying the Gluster Module Deployment
	Creating a Gluster Volume
	Removing the Gluster Module

