
Oracle Cloud Native Environment
Service Mesh for Release 1.6

F75588-03
December 2023

Oracle Cloud Native Environment Service Mesh for Release 1.6,

F75588-03

Copyright © 2022, 2023, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion vi

1 Introduction to the Service Mesh

What is a Service Mesh? 1-1

What is Istio? 1-1

About the Istio Module 1-2

Istio Module Components 1-2

2 Setting up a Service Mesh

Creating a Configuration File 2-1

Deploying the Istio Module 2-6

Deploying Multiple Custom Istio Modules 2-7

Verifying the Istio Module Deployment 2-8

Removing the Istio Module 2-8

3 Using a Service Mesh

Enabling Proxy Sidecars 3-1

Setting up a Load Balancer for an Ingress Gateway 3-2

Setting up an Ingress Gateway 3-3

Setting up an Egress Gateway 3-5

Testing Network Resilience 3-6

4 Introduction to Monitoring and Visualization

About Grafana and Prometheus 4-1

iii

Grafana Components 4-2

Data Source 4-2

Query Editor 4-2

Panel 4-3

Dashboard 4-3

User 4-3

5 Visualizing the Service Mesh Using Grafana

Getting the Grafana IP Address and Port Number 5-1

Accessing the Grafana Console 5-2

Creating a Dashboard for Prometheus Metrics 5-2

iv

Preface

This document contains information about the Istio module for Oracle Cloud Native
Environment to set up a service mesh. It describes the differences from the upstream version,
and includes information on installing and using the Istio module.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share
Alike 4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or
an adaptation of it, you must provide attribution to Oracle and retain the original copyright
notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an action,
or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle Accessibility
Conformance Report at https://www.oracle.com/corporate/accessibility/templates/
t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

v

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

vi

1
Introduction to the Service Mesh

This chapter provides introductory information about the Istio module for Oracle Cloud Native
Environment, which is used to set up a service mesh in Oracle Cloud Native Environment.

What is a Service Mesh?
A service mesh is a configurable, low‑latency infrastructure layer that controls the interaction
between a network of microservices. A service mesh makes sure communication among
containerized application infrastructure services is fast, reliable, and secure. The service
mesh provides critical capabilities including service discovery, load balancing, encryption,
observability, traceability, and authentication and authorization.

A service mesh provides the ability to monitor the microservices in the Kubernetes cluster.
Istio can support most of the popular current deployment patterns for deploying
microservices. This is transparent to a developer.

What is Istio?
Istio is a type of service mesh designed to manage the interaction and operation of services
in a microservices architecture. Istio is an open source project that coordinates
communication between services, providing service discovery, load balancing, security,
recovery, telemetry, and policy enforcement capabilities. Istio uses a sidecar service mesh
model. This means that network communication proxy capabilities are implemented in a
separate container for every service or application container that is deployed. Envoy is the
product that implements this proxy capability and these special containers run alongside
every other container. The Istio sidecar service mesh frees developers from having to
program these types of capabilities into application code and makes development and
enhancement of applications in a microservice architecture much more efficient and rapid.

Istio's control plane provides an abstraction layer over the underlying cluster management
platform, Kubernetes.

Istio contains the following components:

• Envoy: Sidecar proxies per microservice to handle ingress/egress traffic between
services in the cluster and from a service to external services. The proxies form a secure
microservice mesh providing a rich set of functions like discovery, rich layer-7 routing,
policy enforcement and telemetry recording/reporting functions.

• Istiod: A component responsible for service discovery, configuration and certificate
management.

For more information on the Istio deployment architecture, see the upstream documentation
at:

https://istio.io/latest/docs/ops/deployment/architecture/

1-1

https://istio.io/latest/docs/ops/deployment/architecture/

About the Istio Module
The Istio module is based on a stable release of the upstream Istio project. Differences
between Oracle versions of the software and upstream releases are limited to Oracle
provided configuration profiles and patches for specific bugs.

For upstream Istio documentation, see https://istio.io/latest/docs/.

For more information about Istio, see https://istio.io/.

Istio Module Components
The upstream Istio installation has a number of configuration profiles you can choose
from. The Istio module components are based on the upstream installation
configuration profiles, and includes components curated for Oracle Cloud Native
Environment. You can see the upstream installation configuration profiles at:

https://istio.io/latest/docs/setup/additional-setup/config-profiles/

The core Istio components installed with their corresponding container name prefix
are:

• Egress gateway (istio-egressgateway)

• Ingress gateway (istio-ingressgateway)

• Istiod (istiod)

Two additional modules are installed as supporting modules for monitoring and
visualization of the Kubernetes cluster. These are:

• Grafana (grafana)

• Prometheus (prometheus-server)

Chapter 1
About the Istio Module

1-2

https://istio.io/latest/docs/
https://istio.io/
https://istio.io/latest/docs/setup/additional-setup/config-profiles/

2
Setting up a Service Mesh

This chapter discusses how to install the Istio module to set up a service mesh, and the
components deployed when you do this.

The Istio module is installed using a mostly empty profile. The default Istio module profile
contains the profile name, the container image hub, and container image tags. If you want to
customize an Istio module installation, you can use a custom Istio profile. This allows you to
set Kubernetes resource settings, enable or disable individual Istio components, and
configure their settings.

To customize these components, you write a YAML configuration file for these settings, and
use it when you deploy an Istio module. You can deploy multiple Istio modules, with different
configurations, all using the same Istio control plane.

You can deploy a single custom Istio module using a configuration file, or you can deploy
multiple Istio modules. If you want to deploy multiple Istio modules, you should have an initial
module set up as the default module, which acts as the Istio control plane. This default
module is considered the parent Istio module. The parent Istio module is installed using the
default profile.

Creating a Configuration File
To install a customized Istio module, you need to write a YAML configuration file to specify the
configuration options. You use the spec section of an IstioOperator resource file to set the
configuration. For information on the options available to use in the configuration file, see the
upstream documentation for the IstioOperator resource, at:

https://istio.io/latest/docs/reference/config/istio.operator.v1alpha1/

Do not include a full IstioOperator file in the configuration file, only use the options available
below the spec section. That is, do not include the following lines in your configuration file:

apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
spec:

The configuration file should include the IstioOperator configuration you want to set, for
example:

profile: myistio
hub: myhub.example
components:
 egressGateways:
 - name: istio-egressgateway
 enabled: true

2-1

https://istio.io/latest/docs/reference/config/istio.operator.v1alpha1/

Or you could provide just the IstioOperator components you want to customize, for
example:

components:
 egressGateways:
 - name: istio-egressgateway
 enabled: true

The YAML configuration file is used with the olcnectl module create command when
you create the Istio module(s).

Example 2-1 Simple configuration file to set up a load balancer for the Istio
ingress gateway

This example Istio configuration file uses the Oracle Cloud Infrastructure Cloud
Controller Manager module to provision an Oracle Cloud Infrastructure load balancer
for the Istio ingress gateway by applying the appropriate annotations to the istio-
ingressgateway service to set this up.

Note:

To try this example, you must have the Oracle Cloud Infrastructure Cloud
Controller Manager module installed.

The YAML configuration file contains:

components:
 ingressGateways:
 - name: istio-ingressgateway
 k8s:
 serviceAnnotations:
 service.beta.kubernetes.io/oci-load-balancer-security-list-
management-mode: "None"
 service.beta.kubernetes.io/oci-load-balancer-internal: "true"
 service.beta.kubernetes.io/oci-load-balancer-shape: "flexible"
 service.beta.kubernetes.io/oci-load-balancer-shape-flex-min:
"10"
 service.beta.kubernetes.io/oci-load-balancer-shape-flex-max:
"10"

For the full list of Oracle Cloud Infrastructure Cloud Controller Manager annotations
you can include, see the upstream documentation at:

https://github.com/oracle/oci-cloud-controller-manager/blob/master/docs/load-
balancer-annotations.md

After you deploy the Istio module using this configuration file, you would see the
following Kubernetes services deployed to the istio-system namespace. On a control
plane node, show the services in the istio-system namespace.

kubectl --namespace istio-system get svc

Chapter 2
Creating a Configuration File

2-2

https://github.com/oracle/oci-cloud-controller-manager/blob/master/docs/load-balancer-annotations.md
https://github.com/oracle/oci-cloud-controller-manager/blob/master/docs/load-balancer-annotations.md

The output should look similar to:

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) ...
grafana ClusterIP 10.97.12.24 <none>
3000/TCP ...
istio-egressgateway ClusterIP 10.106.217.129 <none> 80/
TCP,443/TCP,1544...
istio-ingressgateway LoadBalancer 10.103.9.119 100.102.106.171
15021:30762/TCP,80:...
istiod ClusterIP 10.106.101.205 <none>
15010/TCP,15012/TCP...
prometheus-server ClusterIP 10.107.228.56 <none>
9090/TCP ...

You can see the istio-ingressgateway service is of type LoadBalancer and has an
externalIP associated with it.

Example 2-2 Detailed configuration file to set up a load balancer for the Istio ingress
gateway

This example configuration file creates an Istio module with a profile that creates an Istio
ingress gateway named my-istio-ingressgateway in a namespace named myistio. This
example also uses the Oracle Cloud Infrastructure Cloud Controller Manager module to
provision an Oracle Cloud Infrastructure load balancer for the Istio ingress gateway, and
includes more detail on how to configure the gateway.

Note:

To try this example, you must have the Oracle Cloud Infrastructure Cloud Controller
Manager module installed.

The YAML configuration file contains:

components:
 ingressGateways:
 - enabled: true
 k8s:
 hpaSpec:
 maxReplicas: 5
 minReplicas: 2
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: my-istio-ingressgateway
 resources:
 limits:
 cpu: 2000m
 memory: 1024Mi
 requests:
 cpu: 100m
 memory: 128Mi

Chapter 2
Creating a Configuration File

2-3

 serviceAnnotations:
 service.beta.kubernetes.io/oci-load-balancer-security-list-
management-mode: "None"
 service.beta.kubernetes.io/oci-load-balancer-internal: "true"
 service.beta.kubernetes.io/oci-load-balancer-shape: "flexible"
 service.beta.kubernetes.io/oci-load-balancer-shape-flex-min:
"10"
 service.beta.kubernetes.io/oci-load-balancer-shape-flex-max:
"10"
 service:
 ports:
 - name: status-port
 port: 15021
 protocol: TCP
 targetPort: 15021
 - name: http2
 port: 80
 protocol: TCP
 targetPort: 8080
 - name: https
 port: 443
 protocol: TCP
 targetPort: 8443
 - name: tcp-istiod
 port: 15012
 protocol: TCP
 targetPort: 15012
 - name: tls
 port: 15443
 protocol: TCP
 targetPort: 15443
 strategy:
 rollingUpdate:
 maxSurge: 100%
 maxUnavailable: 25%
 name: my-istio-ingressgateway
 namespace: myistio
values:
 gateways:
 istio-ingressgateway:
 autoscaleEnabled: true
 env: {}
 name: istio-ingressgateway
 secretVolumes:
 - mountPath: /etc/istio/ingressgateway-certs
 name: ingressgateway-certs
 secretName: istio-ingressgateway-certs
 - mountPath: /etc/istio/ingressgateway-ca-certs
 name: ingressgateway-ca-certs
 secretName: istio-ingressgateway-ca-certs
 type: LoadBalancer

In this example, the Istio ingress gateway named my-istio-ingressgateway is in a
namespace named myistio. This namespace is not the default Istio namespace of

Chapter 2
Creating a Configuration File

2-4

istio-system. If you are installing the gateway service into a non-default namespace, as
shown in this example, you must first create the namespace. Create the new namespace with
the kubectl create namespace command on a control plane node. For example, on a control
plane node:

kubectl create namespace myistio

After you deploy the Istio module using this configuration file, you would see the following
Kubernetes services deployed to the default istio-system namespace. On a control plane
node, show the services in the istio-system namespace.

kubectl --namespace istio-system get svc

The output should look similar to:

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) ...
grafana ClusterIP 10.103.216.188 <none>
3000/TCP ...
istio-egressgateway ClusterIP 10.111.113.121 <none> 80/
TCP,443/TCP,15443/TC...
istio-ingressgateway LoadBalancer 10.106.116.57 <pending>
15021:30210/TCP,80:3193...
istiod ClusterIP 10.99.54.66 <none> 15010/
TCP,15012/TCP,443...
prometheus-server ClusterIP 10.110.20.110 <none>
9090/TCP ...

The istio-ingressgateway service is of type LoadBalancer and has no externalIP
associated with it (it is in the pending state). This is the default service that is deployed, and
is set up using the default Istio configuration.

To show the ingress gateway service named my-isitio-ingressgateway, get the services
running in the myistio namespace. On a control plane node, show the services in the
myistio namespace.

kubectl --namespace myistio get svc

The output should look similar to:

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) ...
my-istio-ingressgateway LoadBalancer 10.96.174.73 100.102.107.82
15021:30292/TCP,80:3...

You can see the my-istio-ingressgateway service is of type LoadBalancer and has an
externalIP associated with it. This is the service created using the configuration file.

Chapter 2
Creating a Configuration File

2-5

Deploying the Istio Module
You can deploy all the modules required to create a service mesh and a Kubernetes
cluster using a single olcnectl module create command. This method might be
useful if you want to deploy a service mesh at the same time as deploying a
Kubernetes cluster.

If you have an existing deployment of the Kubernetes module, you can specify that
instance when deploying a service mesh.

You can create a custom Istio module using a configuration file. This allows you to set
Kubernetes resource settings, enable or disable individual Istio components, and
configure their settings. For information on creating custom profiles for Istio modules,
see Creating a Configuration File.

If you are installing multiple custom Istio modules using configuration files, see
Deploying Multiple Custom Istio Modules.

For the full list of the options available when creating modules, see the olcnectl
module create command in Platform Command-Line Interface.

Note:

The Istio module installs two other modules, the Prometheus module and the
Grafana module. These two modules install Prometheus and Grafana
respectively to enable monitoring and visualization of the Kubernetes cluster.
You do not need to provide any information for these modules when you
install the Istio module.

To deploy an Istio module:

1. If you do not already have an environment set up, create one into which the
modules can be deployed. For information on setting up an environment, see
Getting Started. The name of the environment in this example is myenvironment.

2. If you do not already have a Kubernetes module set up or deployed, set one up.
For information on adding a Kubernetes module to an environment, see Container
Orchestration. The name of the Kubernetes module in this example is mycluster.

3. Create an Istio module and associate it with the Kubernetes module named
mycluster using the --istio-kubernetes-module option. In this example, the Istio
module is named myistio.

olcnectl module create \
--environment-name myenvironment \
--module istio \
--name myistio \
--istio-kubernetes-module mycluster

The --module option sets the module type to create, which is istio. You define
the name of the Istio module using the --name option, which in this case is
myistio.

Chapter 2
Deploying the Istio Module

2-6

https://docs.oracle.com/en/operating-systems/olcne/1.6/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.6/start/install.html#env-create
https://docs.oracle.com/en/operating-systems/olcne/1.6/orchestration/deploy-kube-intro.html#module-create
https://docs.oracle.com/en/operating-systems/olcne/1.6/orchestration/deploy-kube-intro.html#module-create

As the Istio module requires Kubernetes, you must also provide the option for that
module.

The --istio-kubernetes-module option sets the name of the Kubernetes module to use.
The Kubernetes module should already be set up or deployed. If you have an existing
Kubernetes module deployed, you can specify the name of the module using this option.
If no Kubernetes module is deployed with the name you provide, a new module is
deployed which allows you to deploy Kubernetes at the same time as a service mesh.

If you are installing an Istio module using a custom profile, include the --istio-profile
option to specify the location of the YAML configuration file. The Platform API Server
configures the Istio module using the settings in the configuration file.

If you do not include all the required options when adding the modules you are prompted
to provide them.

4. Use the olcnectl module install command to install the Istio module. For
example:

olcnectl module install \
--environment-name myenvironment \
--name myistio

The Istio software packages are installed on the control plane nodes, and the Istio
module is deployed into the Kubernetes cluster.

Deploying Multiple Custom Istio Modules
If you want to deploy multiple Istio modules, you should create an Istio module as the parent
module with a default profile. This creates a single Istio control plane to manage the custom
Istio modules. You can do this by deploying an Istio module without a profile configuration file.
You then deploy any further Istio modules with their respective profile configuration files and
set the parent module using the --istio-parent option.

To deploy multiple Istio modules:

1. Follow the steps in Deploying the Istio Module to set up a default Istio module to act as
the parent module. Do not include a custom profile configuration file when you create the
Istio module.

2. Create a second Istio module with a YAML configuration file. Use the olcnectl module
create command to create the module.

olcnectl module create \
--environment-name myenvironment \
--module istio \
--name mycustomistio \
--istio-kubernetes-module mycluster \
--istio-parent myistio \
--istio-profile mycustomistio.yaml

The --name option sets the name of this second Istio module. In this example it is set to
mycustomistio.

The --istio-parent option sets the name of the parent Istio module. In this example, the
parent Istio module is named myistio, which is also the name of the Istio module used in
the example in Deploying the Istio Module.

Chapter 2
Deploying Multiple Custom Istio Modules

2-7

The --istio-profile option sets the location of the YAML configuration file.

3. Install the Istio module, using the olcnectl module install command. For
example:

olcnectl module install \
--environment-name myenvironment \
--name mycustomistio

4. To add more custom Istio modules to the parent Istio control plane, create more
Istio modules, using different module names, configuration files, and specify the
parent module.

Verifying the Istio Module Deployment
You can verify the Istio module is deployed and the required containers are running in
the istio-system namespace. To verify the containers are deployed, you need to use
the kubectl command. For information on setting up the kubectl command, see
Container Orchestration.

To verify the required containers are running, on a control plan node, list the containers
running in the istio-system namespace. You should see similar results to those
shown here:

kubectl get deployment -n istio-system
NAME READY UP-TO-DATE AVAILABLE AGE
grafana 2/2 2 2 2m44s
istio-egressgateway 2/2 2 2 2m48s
istio-ingressgateway 2/2 2 2 2m48s
istiod 2/2 2 2 3m2s
prometheus-server 2/2 2 2 2m44s

You can also review information about the Istio module and its properties.

On the operator node, use the olcnectl module report command to review
information about the module. For example, use the following command to review the
Istio module named myistio in myenvironment:

olcnectl module report \
--environment-name myenvironment \
--name myistio \
--children

For more information on the syntax for the olcnectl module report command,
see Platform Command-Line Interface.

Removing the Istio Module
You can remove a deployment of a service mesh and leave the Kubernetes cluster in
place. To do this, you remove the Istio module from the environment.

Use the olcnectl module uninstall command to remove the Istio module. For
example, to uninstall the Istio module named myistio in the environment named
myenvironment:

Chapter 2
Verifying the Istio Module Deployment

2-8

https://docs.oracle.com/en/operating-systems/olcne/1.6/orchestration/kubectl-intro.html
https://docs.oracle.com/en/operating-systems/olcne/1.6/olcnectl/

olcnectl module uninstall \
--environment-name myenvironment \
--name myistio

The Istio module and its supporting Prometheus and Grafana modules are removed from the
environment.

You can confirm the Istio, Prometheus and Grafana modules are removed using the
olcnectl module instances command. These three modules are no longer listed as
modules in the environment.

You can also confirm the Istio components are removed using the kubectl command on a
control plane node to query all deployments running in the istio-system namespace. You
should see there are no deployments returned.

kubectl get deployment -n istio-system
No resources found in istio-system namespace.

Chapter 2
Removing the Istio Module

2-9

3
Using a Service Mesh

Istio automatically populates its service registry with all services you create in the service
mesh, so it knows all possible service endpoints. By default, the Envoy proxy sidecars
manage traffic by sending requests to each service instance in turn in a round-robin fashion.
You can configure the management of this traffic to suit your own application requirements
using the Istio traffic management APIs. The APIs are accessed using Kubernetes custom
resource definitions (CRDs), which you set up and deploy using YAML files.

The Istio API traffic management features available are:

• Virtual services: Configure request routing to services within the service mesh. Each
virtual service can contain a series of routing rules, that are evaluated in order.

• Destination rules: Configures the destination of routing rules within a virtual service.
Destination rules are evaluated and actioned after the virtual service routing rules. For
example, routing traffic to a particular version of a service.

• Gateways: Configure inbound and outbound traffic for services in the mesh. Gateways
are configured as standalone Envoy proxies, running at the edge of the mesh. An ingress
and an egress gateway are deployed automatically when you install the Istio module.

• Service entries: Configure services outside the service mesh in the Istio service registry.
Allows you to manage the traffic to services as if they are in the service mesh. Services in
the mesh are automatically added to the service registry, and service entries allow you to
bring in outside services.

• Sidecars: Configure sidecar proxies to set the ports, protocols and services to which a
microservice can connect.

These Istio traffic management APIs are well documented in the upstream documentation at:

https://istio.io/latest/docs/concepts/traffic-management/

Enabling Proxy Sidecars
Istio enables network communication between services to be abstracted from the services
themselves and to instead be handled by proxies. Istio uses a sidecar design, which means
that communication proxies run in their own containers alongside every service container.

To enable the use of a service mesh in your Kubernetes applications, you need to enable
automatic proxy sidecar injection. This injects proxy sidecar containers into pods you create.

To put automatic sidecar injection into effect, the namespace to be used by an application
must be labeled with istio-injection=enabled. For example, to enable automatic sidecar
injection for the default namespace:

kubectl label namespace default istio-injection=enabled
namespace/default labeled

kubectl get namespace -L istio-injection
NAME STATUS AGE ISTIO-INJECTION
default Active 29h enabled
externalip-validation-system Active 29h

3-1

https://istio.io/latest/docs/concepts/traffic-management/

istio-system Active 29h
kube-node-lease Active 29h
kube-public Active 29h
kube-system Active 29h
kubernetes-dashboard Active 29h

Any applications deployed into the default namespace have automatic sidecar
injection enabled and the sidecar runs alongside the pod. For example, create a
simple NGINX deployment:

kubectl create deployment --image nginx hello-world
deployment.apps/hello-world created

Show the details of the pod to see that an istio-proxy container is also deployed with
the application:

kubectl get pods
NAME READY STATUS RESTARTS AGE
hello-world-5fcdb6bc85-wph7h 2/2 Running 0 7m40s

kubectl describe pods hello-world-5fcdb6bc85-wph7h
...
 Normal Started 13s kubelet, worker1.example.com Started container nginx
 Normal Started 12s kubelet, worker1.example.com Started container istio-
proxy

Setting up a Load Balancer for an Ingress Gateway
If you are deploying the Istio module, you may also want to set up a load balancer to
handle the Istio ingress gateway traffic. The information in this section shows you how
to set up a load balancer to manage access to services from outside the cluster using
the Istio ingress gateway.

The load balancer port mapping in this section sets ports for HTTP and HTTPS. That
is, the load balancer listens for HTTP traffic on port 80 and redirects it to the Istio
ingress gateway NodePort number for http2. You query the port number to set for
http2 by entering the following on a control plane node:

kubectl describe svc istio-ingressgateway -n istio-system |grep http2
Port: http2 80/TCP
NodePort: http2 32681/TCP

In this example, the NodePort is 32681. So the load balancer must be configured to
listen for HTTP traffic on port 80 and redirect it to the istio-ingressgateway service
on port 32681.

For HTTPS traffic, the load balancer listens on port 443 and redirects it to the Istio
ingress gateway NodePort number for https. To find the port numbers to set for https,
enter:

kubectl describe svc istio-ingressgateway -n istio-system |grep https
Port: https 443/TCP
NodePort: https 31941/TCP

In this example, the NodePort is 31941. So the load balancer must be configured to
listen for HTTPS traffic on port 443 and redirect it to the istio-ingressgateway
service on port 31941.

Chapter 3
Setting up a Load Balancer for an Ingress Gateway

3-2

The load balancer should be set up with the following configuration for HTTP traffic:

• The listener listening on TCP port 80.

• The distribution set to round robin.

• The target set to the TCP port for http2 on the worker nodes. In this example it is 32681.

• The health check set to TCP.

For HTTPS traffic:

• The listener listening on TCP port 443.

• The distribution set to round robin.

• The target set to the TCP port for https on the worker nodes. In this example it is 31941.

• The health check set to TCP.

For more information on setting up your own load balancer, see Oracle® Linux 8: Setting Up
Load Balancing, or Oracle® Linux 7: Administrator's Guide.

If you are deploying to Oracle Cloud Infrastructure, you can either set up a new load balancer
or, if you have one, use the load balancer you set up for the Kubernetes module.

To set up a load balancer on Oracle Cloud Infrastructure for HTTP traffic:

1. Add a backend set to the load balancer using weighted round robin.

2. Add the worker nodes to the backend set. Set the port for the worker nodes to the TCP
port for http2. In this example it is 32681.

3. Create a listener for the backend set using TCP port 80.

To set up a load balancer on Oracle Cloud Infrastructure for HTTPS traffic:

1. Add a backend set to the load balancer using weighted round robin.

2. Add the worker nodes to the backend set. Set the port for the worker nodes to the TCP
port for https. In this example it is 31941.

3. Create a listener for the backend set using TCP port 443.

For more information on setting up a load balancer in Oracle Cloud Infrastructure, see the
Oracle Cloud Infrastructure documentation.

Setting up an Ingress Gateway
An Istio ingress gateway allows you to define entry points into the service mesh through
which all incoming traffic flows. A ingress gateway allows you to manage access to services
from outside the cluster. You can monitor and set route rules for the traffic entering the
cluster.

This section contains a simple example to configure the automatically created ingress
gateway to an NGINX web server application. The example assumes you have a load
balancer available at lb.example.com and is connecting to the istio-ingressgateway
service on TCP port 32681. The load balancer listener is set to listen on HTTP port 80, which is
the port for the NGINX web server application used in the virtual service in this example.

To set up an ingress gateway:

1. Create the deployment file to create the NGINX web server application. Create a file
named my-nginx.yml, containing:

Chapter 3
Setting up an Ingress Gateway

3-3

https://docs.oracle.com/en/operating-systems/oracle-linux/8/balancing/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/balancing/
https://docs.oracle.com/en/operating-systems/oracle-linux/7/admin/
https://docs.cloud.oracle.com/iaas/Content/Balance/Concepts/balanceoverview.htm

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: my-webserver
 name: my-nginx
 namespace: my-namespace
spec:
 replicas: 3
 selector:
 matchLabels:
 app: my-webserver
 template:
 metadata:
 labels:
 app: my-webserver
 spec:
 containers:
 - image: nginx
 name: my-nginx
 ports:
 - containerPort: 80

2. Create a service for the deployment. Create a file named my-nginx-service.yml
containing:

apiVersion: v1
kind: Service
metadata:
 name: my-http-ingress-service
 namespace: my-namespace
spec:
 ports:
 - name: http
 port: 80
 protocol: TCP
 targetPort: 80
 selector:
 app: my-webserver
 type: ClusterIP

3. Create an ingress gateway for the service. Create a file named my-nginx-
gateway.yml containing:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: my-nginx-gateway
 namespace: my-namespace
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "mynginx.example.com"

4. Create a virtual service for the ingress gateway. Create a file named my-nginx-
virtualservice.yml containing:

Chapter 3
Setting up an Ingress Gateway

3-4

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: my-nginx-virtualservice
 namespace: my-namespace
spec:
 hosts:
 - "mynginx.example.com"
 gateways:
 - my-nginx-gateway
 http:
 - match:
 - uri:
 prefix: /
 route:
 - destination:
 port:
 number: 80
 host: my-http-ingress-service

5. Set up a namespace for the application named my-namespace and enable automatic
proxy sidecar injection.

kubectl create namespace my-namespace
kubectl label namespaces my-namespace istio-injection=enabled

6. Run the deployment, service, ingress gateway and virtual service:

kubectl apply -f my-nginx.yml
kubectl apply -f my-nginx-service.yml
kubectl apply -f my-nginx-gateway.yml
kubectl apply -f my-nginx-virtualservice.yml

7. You can see the ingress gateway is running using:

kubectl get gateways.networking.istio.io -n my-namespace
NAME AGE
my-nginx-gateway 33s

8. You can see the virtual service is running using:

kubectl get virtualservices.networking.istio.io -n my-namespace
NAME GATEWAYS HOSTS AGE
my-nginx-virtualservice [my-nginx-gateway] [mynginx.example.com] 107s

9. To confirm the ingress gateway is serving the application to the load balancer, use:

curl -I -HHost:mynginx.example.com lb.example.com:80/
HTTP/1.1 200 OK
Date: Fri, 06 Mar 2020 00:39:16 GMT
Content-Type: text/html
Content-Length: 612
Connection: keep-alive
last-modified: Tue, 03 Mar 2020 14:32:47 GMT
etag: "5e5e6a8f-264"
accept-ranges: bytes
x-envoy-upstream-service-time: 15

Setting up an Egress Gateway
The Istio egress gateway allows you to set up access to external HTTP and HTTPS services
from applications inside the service mesh. External services are called using the sidecar
container.

Chapter 3
Setting up an Egress Gateway

3-5

The Istio egress gateway is deployed automatically. You do not need to manually
deploy it. You can confirm the Istio egress gateway service is running using:

kubectl get svc istio-egressgateway -n istio-system
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
istio-egressgateway ClusterIP 10.111.233.121 <none> 80/TCP,443/
TCP,15443/TCP 9m26s

The upstream documentation provides an example to show you how to set up use an
Istio egress gateway.

https://istio.io/latest/docs/tasks/traffic-management/egress/egress-gateway/

Testing Network Resilience
Istio network resilience and testing features allow you to set up and test failure
recovery and to inject faults to test resilience. You set up these features dynamically at
runtime to improve the reliability of your applications in the service mesh. The network
resilience and testing features available in this release are:

• Timeouts: The amount of time that a sidecar proxy should wait for replies from a
service. You can set up a virtual service to configure specific timeouts for a
service. The default timeout for HTTP requests is 15 seconds.

• Retries: The number of retries allowed by the sidecar proxy to connect to a
service after an initial connection failure. You can set up a virtual service to enable
and configure the number of retries for a service. By default, no retries are
allowed.

• Fault injection: Set up fault injection mechanisms to test failure recovery of
applications. You can set up a virtual service to set up and inject faults into a
service. You can set delays to mimic network latency or an overloaded upstream
service. You can also set aborts to mimic crashes in an upstream service.

Chapter 3
Testing Network Resilience

3-6

https://istio.io/latest/docs/tasks/traffic-management/egress/egress-gateway/

4
Introduction to Monitoring and Visualization

This chapter provides information about the service mesh visualization and monitoring
components installed when you deploy the Istio module. The components are:

• Prometheus: Prometheus is the time-series database that monitors and gathers metrics
about the Kubernetes cluster.

• Grafana: Grafana can be used to monitor and visualize the time-series data stored in
Prometheus. Grafana enables you to visually query and monitor the network traffic and
services in your Kubernetes cluster. Grafana includes browser-based dashboards to
visualize the cluster metrics gathered from Prometheus.

Note:

Prometheus and Grafana are automatically configured to provide standard
metrics and dashboards for the Istio module. Persisting custom or manual
configuration of these components is not possible.

About Grafana and Prometheus
Grafana is an open-source platform for monitoring the performance of your Kubernetes
cluster. It contains dashboards that allow you to visualize the real-time metrics of the cluster
which are stored in the Prometheus time-series database.

Time-series data is a sequence of values ordered by time. It measures how these values
change over time. Examples of time-series data include self-driving cars collecting
information about their local environments continually, homes monitoring themselves to
regulate temperature or identify intruders, or a police department tracking its vehicles for
efficiency purposes.

Grafana defines a data source to integrate with Prometheus. A data source is Grafana's link
to this type of database. By using a data source for Prometheus in Grafana, Grafana can
retrieve, analyze, monitor, and visualize the metrics that are stored in a Prometheus time-
series database.

The following architectural diagram illustrates how Grafana uses the data source to integrate
with Prometheus. As a result, Grafana can monitor and visualize the metrics that are stored
in the database.

4-1

Figure 4-1 Architectural Diagram for Integrating a Time-Series Database
(Prometheus) with Grafana

Grafana is based on a stable release of the upstream Grafana project. Differences
between Oracle versions of the software and upstream releases are limited to Oracle
specific fixes and patches for specific bugs.

For upstream Grafana documentation, see the upstream documentation at:

https://grafana.com/docs/

For more information about Grafana, see the upstream documentation at:

https://grafana.com

Grafana Components
This section contains information about the components in Grafana that are used to
monitor and visualize the metrics that are stored in a Prometheus database.

Data Source
The data source is Grafana's link to Prometheus. Grafana contains out-of-the-box
support to connect to Prometheus that you can use to monitor and visualize the
metrics in your Oracle Cloud Native Environment. Grafana refers to a connection to
this type of database as a data source.

Query Editor
Grafana has a query editor that exposes the capabilities of your data source and
allows you to query the metrics that it contains. Grafana provides a custom query
editor for each data source, including the data source used to integrate Grafana with
Prometheus. You can use the query editor to structure queries that allow you to
visualize the metrics that are stored in the Prometheus database.

Chapter 4
Grafana Components

4-2

https://grafana.com/docs/
https://grafana.com

Panel
The panel is the main element in Grafana used to visualize metrics from Prometheus. Each
type of panel has its own query editor that allows you to fine-tune the data that you want to
visualize.

There are several panel types, including Graph, Singlestat, Table, Text, and Dashboard List.
In this book, you use the Graph panel. This is the main panel type in Grafana and it provides
a rich set of graphing options.

For more information about the other panel types, see the upstream documentation at:

https://grafana.com/docs/grafana/latest/panels-visualizations/

Dashboard
A dashboard is a grouping of panels prearranged into rows. A row is the divider between
panels.

User
A user has an account in Grafana. A user is granted permissions in Grafana based on the
following roles:

• Admin: An admin has superuser permissions in Grafana, and can do everything,
including adding and editing data sources, generating queries for the data sources, and
creating and modifying dashboards.

• Editor: An editor has limited permissions in Grafana. Although an editor can create and
modify dashboards, they cannot create or edit data sources, or generate queries for the
data sources.

• Viewer: A viewer has read-only access to the components in Grafana. For example, a
viewer can view data sources and dashboards, but cannot modify them.

For more information about the Admin, Editor, and Viewer roles, see the upstream
documentation at:

https://grafana.com/docs/grafana/latest/administration/roles-and-permissions/

Chapter 4
Grafana Components

4-3

https://grafana.com/docs/grafana/latest/panels-visualizations/
https://grafana.com/docs/grafana/latest/administration/roles-and-permissions/

5
Visualizing the Service Mesh Using Grafana

When Grafana is deployed, a data source is configured for a Prometheus time-series
database. A data source is Grafana's link to the database. Because this data source is
configured, Grafana can retrieve and analyze the metrics of a Kubernetes cluster that are
gathered and stored in the Prometheus database.

In this chapter, you learn how to:

• Get the IP address of the node on which Grafana is deployed and the port number that is
reserved for Grafana. You need this information to access the Grafana console.

• Access the Grafana console.

• Create a dashboard in Grafana to monitor and visualize the metrics that are retrieved and
analyzed from Prometheus through the data source.

• Formulate a query for the dashboard to fine-tune how the metrics for Prometheus appear
in Grafana.

Getting the Grafana IP Address and Port Number
In this section, you get the IP address of the node on which Grafana is deployed and the port
number for Grafana.

1. At the prompt of the machine where you installed the Istio module, enter the following
command:

kubectl -n istio-system get svc grafana

There is no NodePort set up for the port on which the Grafana service is running. In this
example, the port that is reserved for Grafana is 9090.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
grafana ClusterIP 10.104.245.12 <none> 9090/TCP 6d1h

A NodePort is an open port on every node of your Kubernetes cluster. By opening a
NodePort for Grafana, Kubernetes transparently routes incoming traffic on the NodePort
to the Grafana service. The NodePort is assigned from a pool of cluster-configured
NodePort ranges (typically 30000–32767).

2. Enter the following command to set up a NodePort for the Grafana service:

kubectl patch svc grafana -n istio-system -p '{"spec":{"type":"NodePort"}}'
3. Verify that you see the service/grafana patched status message.

You can now connect to Grafana via the NodePort.

4. Enter the following command again:

kubectl -n istio-system get svc grafana

This time, you can see that a NodePort is set up for the Grafana container. You can use
this NodePort to connect to the service.

5-1

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
grafana ClusterIP 10.104.245.12 <none> 9090/30921 6d1h

In this example, the NodePort is 30921, which maps to the service port of 9090.

5. Enter the following command to get the IP address of either a control plane node
or the IP address of the worker node on which the Grafana container is running:

ip addr
Make a note of the IP address and NodePort that you obtained in this procedure
because you need these values to access the Grafana console.

Accessing the Grafana Console
As part of deploying Grafana, a user account is created, and the Admin role is
assigned to the account. This account has superuser permissions in Grafana and can
create dashboards and generate queries for the dashboards.

In this section, you access the Grafana console.

1. Open a web browser.

2. In the Address field, enter http://[IP_address]:[NodePort]
You obtained the IP address and NodePort in Getting the Grafana IP Address and
Port Number.

After you provide the Grafana URL, you are taken to the Home Dashboard page. This
page provides a work flow to help you configure Grafana, including creating a
dashboard in Grafana and generating a query for the dashboard.

Creating a Dashboard for Prometheus Metrics
In Grafana, a dashboard is how you monitor and visualize the metrics that are
retrieved from the Prometheus data source. The dashboard is a grouping of one or
more panels, prearranged into rows.

In this section, you create a dashboard and select the Graph panel for it. The Graph
panel is the main panel in Grafana, and has a rich set of graphing options.

As part of creating your dashboard, you use the query editor feature to formulate a
query for the dashboard. A query is used to fine-tune how the metrics for Prometheus
appear in Grafana. For this procedure, you specify the
prometheus_engine_query_duration_seconds query, which allows Grafana to graph
the metrics that Prometheus collects about itself.

1. In the Home Dashboard page, click the Create your first dashboard icon.

2. In the New dashboard page, click the Choose Visualization icon.

3. In the Visualization field, enter Graph.

4. Click the Queries icon. This icon appears to the left of the Visualization field and
looks like a database.

5. In the Query field, select the Prometheus data source that was added as part of
deploying Grafana.

6. In the query editor field, which appears to the right of the Metrics drop-down
menu, enter the prometheus_engine_query_duration_seconds query, and then

Chapter 5
Accessing the Grafana Console

5-2

click the Disable/enable query button. This button appears to the right of the query that
you entered and looks like an eye.

7. Verify that data associated with the metric appears, and then click Save dashboard.

8. In the Save As dialog box, give the dashboard a new name, select a folder location for
the dashboard, and then click Save.

9. Verify that you see the Dashboard saved status message and a graph that displays
information about the metric that you entered.

Chapter 5
Creating a Dashboard for Prometheus Metrics

5-3

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Introduction to the Service Mesh
	What is a Service Mesh?
	What is Istio?
	About the Istio Module
	Istio Module Components

	2 Setting up a Service Mesh
	Creating a Configuration File
	Deploying the Istio Module
	Deploying Multiple Custom Istio Modules
	Verifying the Istio Module Deployment
	Removing the Istio Module

	3 Using a Service Mesh
	Enabling Proxy Sidecars
	Setting up a Load Balancer for an Ingress Gateway
	Setting up an Ingress Gateway
	Setting up an Egress Gateway
	Testing Network Resilience

	4 Introduction to Monitoring and Visualization
	About Grafana and Prometheus
	Grafana Components
	Data Source
	Query Editor
	Panel
	Dashboard
	User

	5 Visualizing the Service Mesh Using Grafana
	Getting the Grafana IP Address and Port Number
	Accessing the Grafana Console
	Creating a Dashboard for Prometheus Metrics

