
Oracle Cloud Native Environment
Calico Module for Release 1.7

F84582-04
December 2023

Oracle Cloud Native Environment Calico Module for Release 1.7,

F84582-04

Copyright © 2023, Oracle and/or its affiliates.

Contents

 Preface

Documentation License iv

Conventions iv

Documentation Accessibility iv

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 Introduction to Calico

2 Installing Calico

Prerequisites 2-1

Deploying the Calico CNI 2-3

Deploying the Calico Module 2-3

Verifying the Calico Deployment 2-5

Verifying the Calico Module 2-5

Verifying the Tigera Calico Operator 2-5

3 Using Calico

Kubernetes Network Policy 3-1

Calico Network Policy 3-4

4 Removing the Calico Module

iii

Preface

This document contains information about setting up Calico as the Kubernetes CNI in
Oracle Cloud Native Environment. It describes the Calico module provided with Oracle
Cloud Native Environment to set up Calico, and the native Kubernetes CNI option
when you install the Kubernetes module. It provides examples on how to test that
Calico is installed and working.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–
Share Alike 4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute
this content or an adaptation of it, you must provide attribution to Oracle and retain the
original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis,
or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands
within a paragraph, URLs, code in
examples, text that appears on the screen,
or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle
Accessibility Conformance Report at https://www.oracle.com/corporate/accessibility/
templates/t2-11535.html.

Preface

iv

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Preface

v

https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

1
Introduction to Calico

Calico is an L3/L4 networking solution to secure containers, Kubernetes clusters, and virtual
machines. It offers scalable pod networking using overlay or non-overlay modes, optionally
using Border Gateway Protocol (BGP), and includes advanced IP address management.

The Calico Kubernetes Container Network Interface (CNI) plugin enforces and extends the
Kubernetes Network Policy API to set ingress and egress policies. Rules can be set using
Boolean-like logic to create network policies using any combination of:

• Namespaces.

• Label selectors.

• Network protocols (TCP, UDP, SCTP).

• Network ports.

• Network CIDRs.

For information on the Kubernetes Network Policy API, see the upstream Kubernetes
documentation.

The Tigera Calico operator is deployed into Oracle Cloud Native Environment. You can install
the operator as the native Kubernetes CNI when you install the Kubernetes module. Or you
install the operator using the Calico module. Both installation options are shown in this
document.

The Tigera Calico operator is installed with a default VXLAN configuration (default-allow) to
enable network traffic between pods. This means that if you don't create any network policies,
all pods can communicate with each other.

More information on Calico is available in the upstream Calico documentation.

1-1

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://docs.tigera.io/calico/latest/about

2
Installing Calico

This chapter discusses how to install the Calico module in Oracle Cloud Native Environment.
This chapter also shows you how to install the Kubernetes Calico CNI when you create the
Kubernetes module.

Prerequisites
This section contains the prerequisite information you need to set up the Tigera Calico
operator.

Disabling firewalld Service

Disable the firewalld service on each Kubernetes node:

sudo systemctl stop firewalld.service
sudo systemctl disable firewalld.service

Important:

As disabling the firewalld service removes the network protection provided by this
service, you must implement Calico network policies to secure the Kubernetes
cluster. For information on how to secure the cluster using Calico, see the upstream
Calico documentation.

Updating Proxy Configuration

If you're using a proxy server in the environment, edit the CRI-O proxy configuration file and
add the Kubernetes service IP (the default is 10.96.0.1) to the NO_PROXY variable. For
example, on each Kubernetes node, edit the /etc/systemd/system/crio.service.d/
proxy.conf file:

[Service]
Environment="HTTP_PROXY=http://proxy.example.com:3128"
Environment="HTTPS_PROXY=https://proxy.example.com:3128"
Environment="NO_PROXY=mydomain.example.com,10.96.0.1"

Reload the configuration file and restart the crio service:

sudo systemctl daemon-reload
sudo systemctl restart crio.service

2-1

https://docs.tigera.io/calico/latest/network-policy/hosts

Note:

You don't need to perform this step if you're using the olcnectl provision
command to perform a quick installation. This is set up for you automatically
when using that installation method and you provide any proxy information.

Kubernetes Module

To install the Calico module, the Kubernetes module must be created and installed
with no CNI set. When you create the Kubernetes module, set the --pod-network
none option as part of the olcnectl module create command. For example:

olcnectl module create \
--environment-name myenvironment \
--module kubernetes \
--name mycluster \
--pod-network none \
...

Important:

To deploy the Tigera Calico operator as the native Kubernetes CNI, this isn't
required. You instead set this option to --pod-network calico.

Creating a Calico Configuration File

You can optionally install the Calico module with a configuration file. A Calico
configuration file is used to configure any specific modifications of the Tigera Calico
operator. This YAML file contains the spec part of an operator.tigera.io/v1/
Installation. This file must be available on the operator node.

Note:

You can't use a Calico configuration file if you deploy the Tigera Calico
operator as a native Kubernetes CNI when you create the Kubernetes
module with the --pod-network calico option.

For information on the Calico configuration file, see the upstream Calico
documentation.

An example Calico configuration file is:

installation:
 cni:
 type: Calico
 calicoNetwork:
 bgp: Disabled

Chapter 2
Prerequisites

2-2

https://docs.tigera.io/calico/next/getting-started/kubernetes/self-managed-onprem/config-options
https://docs.tigera.io/calico/next/getting-started/kubernetes/self-managed-onprem/config-options

 ipPools:
 - cidr: 198.51.100.0/24
 encapsulation: VXLAN
 registry: container-registry.oracle.com
 imagePath: olcne

Deploying the Calico CNI
The easiest way to install Calico is to set the Kubernetes CNI to Calico when you create the
Kubernetes module. This installs the Tigera Calico operator into the Kubernetes cluster with
the default configuration. You don't need to install the Calico module with this method.

Before you set Calico as the Kubernetes CNI, perform the prerequisites to disable the
firewalld service and update any proxy configuration for CRI-O, as discussed in
Prerequisites.

To set Calico as the Kubernetes CNI, create a Kubernetes module using the --pod-network
calico option of the olcnectl module create --module kubernetes command. This option
sets Calico as the Kubernetes CNI for pods in the Kubernetes cluster. The name of the
Kubernetes module in this example is mycluster.

olcnectl module create \
--environment-name myenvironment \
--module kubernetes \
--name mycluster \
--pod-network calico \
...

For more information on creating a Kubernetes module, see Kubernetes Module.

Deploying the Calico Module
The Calico module lets you use a configuration file to configure the Tigera Calico operator. If
you don't use a configuration file, the installation is the same as when you use the native
Calico CNI installation option when you create the Kubernetes module. The benefit of using
the Calico module is that you can use a configuration file. If you don't want to change the
operator configuration, you might want to install Calico using the Calico CNI method as less
steps are required.

To use this method, you must create the Kubernetes module using the --pod-network none
option. This option sets no Kubernetes CNI for pods in the cluster. You then install the Calico
module to set the CNI.

For the syntax to use to create a Calico module, see the calico option of the olcnectl
module create command in Platform Command-Line Interface.

To deploy the Calico module:

1. Create and install a Kubernetes module using the --pod-network none option of the
olcnectl module create --module kubernetes command. This option sets no

Chapter 2
Deploying the Calico CNI

2-3

https://docs.oracle.com/en/operating-systems/olcne/1.7/kubernetes/
https://docs.oracle.com/en/operating-systems/olcne/1.7/olcnectl/

Kubernetes CNI for pods in the cluster. The name of the Kubernetes module in this
example is mycluster. For example:

olcnectl module create \
--environment-name myenvironment \
--module kubernetes \
--name mycluster \
--pod-network none \
...

Important:

When you install the Kubernetes module with the --pod-network none
option, all kube-system pods are marked as pending until you install the
Calico module. When the Calico module is installed, these kube-system
pods are marked as running.

2. Create a Calico module and associate it with the Kubernetes module named
mycluster using the --calico-kubernetes-module option. In this example, the
Calico module is named mycalico.

olcnectl module create \
--environment-name myenvironment \
--module calico \
--name mycalico \
--calico-kubernetes-module mycluster

The --module option sets the module type to create, which is calico. You define
the name of the Calico module using the --name option, which in this case is
mycalico.

The --calico-kubernetes-module option sets the name of the Kubernetes
module.

An optional --calico-installation-config sets the location for a Calico
configuration file. This file must be available on the operator node under the
provided path. For information on creating this configuration file, see Prerequisites.

If you don't include all the required options when adding the module, you're
prompted to provide them.

3. Use the olcnectl module install command to install the Calico module. For
example:

olcnectl module install \
--environment-name myenvironment \
--name mycalico

The Calico module is deployed into the Kubernetes cluster.

Chapter 2
Deploying the Calico Module

2-4

Verifying the Calico Deployment
This section contains information on how to verify the installation of Calico, with both the
Kubernetes CNI installation option, or using the Calico module.

Verifying the Calico Module
If you installed Calico using the Calico module, you can verify the module is deployed using
the olcnectl module instances command on the operator node. For example:

olcnectl module instances \
--environment-name myenvironment

The output looks similar to:

INSTANCE MODULE STATE
mycalico calico installed
mycluster kubernetes installed
control1.example.com node installed
...

Note the entry for calico in the MODULE column is in the installed state.

In addition, use the olcnectl module report command to review information about the
module. For example, use the following command to review the Calico module named
mycalico in myenvironment:

olcnectl module report \
--environment-name myenvironment \
--name mycalico \
--children

For more information on the syntax for the olcnectl module report command, see Platform
Command-Line Interface.

Verifying the Tigera Calico Operator
The Tigera Calico operator is deployed when you use the Kubernetes Calico CNI installation
option and with the Calico module installation method. This section shows you some areas
you can check to verify the Calico installation and learn about the configuration.

Tigera Calico Operator Status

You can get information about the Tigera Calico operator status using the kubectl get
tigerastatus command:

kubectl get tigerastatus

Chapter 2
Verifying the Calico Deployment

2-5

https://docs.oracle.com/en/operating-systems/olcne/1.7/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.7/olcnectl/

The output shows the status of the operator components, and looks similar to:

NAME AVAILABLE PROGRESSING DEGRADED SINCE
apiserver True False False 8m24s
calico True False False 8m39s

IP Pools

You can get information about the default IP Pools that are set up using the kubectl
get ippools command:

kubectl get ippools

The output looks similar to:

NAME CREATED AT
default-ipv4-ippool ...

To get more information about the IP Pool, use:

kubectl describe ippools default-ipv4-ippool

The output looks similar to:

Name: default-ipv4-ippool
Namespace:
Labels: <none>
Annotations: <none>
API Version: projectcalico.org/v3
Kind: IPPool
Metadata:
 Creation Timestamp: ...
 Resource Version: 1112
 UID: fd04d1d2-b5c9-4feb-9385-2b423c4dd67f
Spec:
 Allowed Uses:
 Workload
 Tunnel
 Block Size: 26
 Cidr: 10.244.0.0/16
 Ipip Mode: Never
 Nat Outgoing: true
 Node Selector: all()
 Vxlan Mode: Always
Events: <none>

Network Policies

To get information on the network policies that are set up, use:

kubectl get networkpolicies --all-namespaces

Chapter 2
Verifying the Calico Deployment

2-6

The output looks similar to:

NAMESPACE NAME POD-SELECTOR AGE
calico-apiserver allow-apiserver apiserver=true 66m

To get more information about the network policies, use:

kubectl describe networkpolicies --all-namespaces

The output looks similar to:

Name: allow-apiserver
Namespace: calico-apiserver
Created on: <date> 05:27:30 +0000 GMT
Labels: <none>
Annotations: <none>
Spec:
 PodSelector: apiserver=true
 Allowing ingress traffic:
 To Port: 5443/TCP
 From: <any> (traffic not restricted by source)
 Not affecting egress traffic
 Policy Types: Ingress

Installation Configuration

You can see the installation configuration for the Tigera Calico operator using:

kubectl get installation -o yaml

The output looks similar to:

apiVersion: v1
items:
- apiVersion: operator.tigera.io/v1
 kind: Installation
...
 spec:
 calicoNetwork:
 bgp: Disabled
 hostPorts: Enabled
 ipPools:
 - blockSize: 26
 cidr: 10.244.0.0/16
 disableBGPExport: false
 encapsulation: VXLAN
 natOutgoing: Enabled
 nodeSelector: all()
 linuxDataplane: Iptables
 multiInterfaceMode: None
 nodeAddressAutodetectionV4:
 firstFound: true
 cni:

Chapter 2
Verifying the Calico Deployment

2-7

 ipam:
 type: Calico
 type: Calico
 controlPlaneReplicas: 2
 flexVolumePath: /usr/libexec/kubernetes/kubelet-plugins/volume/
exec/
 imagePath: olcne
 kubeletVolumePluginPath: /var/lib/kubelet
 nodeUpdateStrategy:
 rollingUpdate:
 maxUnavailable: 1
 type: RollingUpdate
 nonPrivileged: Disabled
 registry: container-registry.oracle.com/
 variant: Calico
...

Chapter 2
Verifying the Calico Deployment

2-8

3
Using Calico

This section provides examples of using the Kubernetes and Calico network policies to define
network policies for traffic in an NGINX web server application. The Kubernetes network
policy example uses the network policy available in the Kubernetes Network Policy API. The
Calico network policy example uses extensions available in the Calico policy, and provides
more options for setting network policies.

Kubernetes Network Policy
This section shows a basic example of using the Kubernetes network policy. More examples
of the Kubernetes network policy are available in the upstream Calico documentation.

The example defines a NetworkPolicy to disable all network traffic between pods in a
namespace. NetworkPolicy resources are created to define rules to specify allowed network
traffic between the application pods. If a NetworkPolicy in a namespace selects a pod, that
pod rejects any connections that aren't allowed by the NetworkPolicy.

To create a test application to use a Kubernetes network policy:

1. Create a Kubernetes namespace for the test application:

kubectl create namespace myapp

2. Create an NGINX pod with label of app: nginx. This is created in the myapp namespace.
On a control plane node, create a file named nginx.yaml and copy the following into the
file.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 namespace: myapp
 labels:
 app: nginx
spec:
 containers:
 - name: nginx
 image: container-registry.oracle.com/olcne/nginx:1.17.7
 ports:
 - containerPort: 80

3. Start the NGINX pod:

kubectl apply -f nginx.yaml

3-1

https://docs.tigera.io/calico/latest/network-policy/get-started/kubernetes-policy/

4. Create an Oracle Linux 9 pod with label of app: nginx. This is created in the
myapp namespace. Create a file named ol9.yaml and copy the following into the
file:

apiVersion: v1
kind: Pod
metadata:
 name: ol9
 namespace: myapp
 labels:
 app: nginx
spec:
 containers:
 - name: ol9
 command: ["/bin/sh", "-c", "trap : TERM INT; sleep infinity &
wait"]
 image: container-registry.oracle.com/os/oraclelinux:9-slim

5. Start the pod using the kubectl command:

kubectl apply -f ol9.yaml

6. You can see the nginx-app and ol9 pods are running using the kubectl get pods
command:

kubectl get pods --namespace myapp -o wide

The output looks similar to:

NAME READY STATUS RESTARTS AGE IP
NODE ...
nginx 1/1 Running 0 38s 10.244.140.68
worker1.example.com ...
ol9 1/1 Running 0 22h 10.244.80.196
worker2.example.com ...

7. Mount the Oracle Linux 9 pod, ol9, and run curl to connect to the NGINX server
pod, nginx, using the IP address assigned to the pod.

kubectl exec -it ol9 --namespace myapp -- curl 10.244.140.68

The output looks similar to:

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }

Chapter 3
Kubernetes Network Policy

3-2

</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed
and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

8. Create a NetworkPolicy to deny all traffic to all pods in the myapp namespace. Create a
file named deny-all.yaml and copy the following into the file.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: default-deny
 namespace: myapp
spec:
 podSelector:
 matchLabels: {}

9. Create the NetworkPolicy using the kubectl command:

kubectl apply -f deny-all.yaml

Tip:

You can get a list of all NetworkPolicies in the myapp namespace using:

kubectl get networkpolicies --namespace myapp

In addition, adding the -o yaml option lists details about the NetworkPolicies.

10. Mount the Oracle Linux 9 pod, ol9, again and run curl to connect to the NGINX server
pod.

kubectl exec -it ol9 --namespace myapp -- curl 10.244.140.68

This time no results are returned as the traffic between pods on that namespace isn't
allowed. You can enter Ctrl+C to exit the command.

Chapter 3
Kubernetes Network Policy

3-3

11. Create a NetworkPolicy to allow ingress traffic on port 80 for pods in the myapp
namespace. This lets pods connect to the NGINX server. Create a file named
ingress.yaml and copy the following into the file:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: myapp-ingress
 namespace: myapp
spec:
 podSelector:
 matchLabels:
 app: nginx
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: nginx
 ports:
 - port: 80

12. Create the NetworkPolicy using the kubectl command:

kubectl apply -f ingress.yaml

13. Mount the Oracle Linux 9 pod, ol9, again and run curl to connect to the NGINX
server pod.

kubectl exec -it ol9 --namespace myapp -- curl 10.244.140.68

The NGINX page is now returned as ingress is allowed to the pods.

14. You can delete the resources created in this Calico test using:

kubectl delete pod --namespace myapp nginx
kubectl delete pod --namespace myapp ol9
kubectl delete networkpolicies --namespace myapp myapp-ingress
kubectl delete networkpolicies --namespace myapp default-deny
kubectl delete namespace myapp

Calico Network Policy
This section shows a basic example of using the Calico policy extensions for the
Kubernetes Network Policy API. More examples of the Calico policy are available in
the upstream documentation.

The example defines a GlobalNetworkPolicy to disable all network traffic, except for
Kubernetes system and Calico pods. NetworkPolicy resources are created to define
rules to specify allowed network traffic between the application pods. Any other pod
traffic isn't allowed.

To create a test application to use a Calico network policy:

Chapter 3
Calico Network Policy

3-4

https://docs.tigera.io/calico/latest/network-policy/get-started/calico-policy/

1. Create a Kubernetes namespace for the test application:

kubectl create namespace myapp

2. Create an NGINX pod with label of app: nginx. This is created in the myapp namespace.
On a control plane node, create a file named nginx.yaml and copy the following into the
file.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 namespace: myapp
 labels:
 app: nginx
spec:
 containers:
 - name: nginx
 image: container-registry.oracle.com/olcne/nginx:1.17.7
 ports:
 - containerPort: 80

3. Start the NGINX pod:

kubectl apply -f nginx.yaml

4. Create an Oracle Linux 9 pod with label of app: nginx. This is created in the myapp
namespace. Create a file named ol9.yaml and copy the following into the file:

apiVersion: v1
kind: Pod
metadata:
 name: ol9
 namespace: myapp
 labels:
 app: nginx
spec:
 containers:
 - name: ol9
 command: ["/bin/sh", "-c", "trap : TERM INT; sleep infinity & wait"]
 image: container-registry.oracle.com/os/oraclelinux:9-slim

5. Start the pod using the kubectl command:

kubectl apply -f ol9.yaml

6. You can see the nginx-app and ol9 pods are running using the kubectl get pods
command:

kubectl get pods --namespace myapp -o wide

Chapter 3
Calico Network Policy

3-5

The output looks similar to:

NAME READY STATUS RESTARTS AGE IP
NODE ...
nginx 1/1 Running 0 38s 10.244.140.68
worker1.example.com ...
ol9 1/1 Running 0 22h 10.244.80.196
worker2.example.com ...

7. Mount the Oracle Linux 9 pod, ol9, and run curl to connect to the NGINX server
pod, nginx, using the IP address assigned to the pod.

kubectl exec -it ol9 --namespace myapp -- curl 10.244.140.68

The output looks similar to:

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully
installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

8. Create a GlobalNetworkPolicy to deny all traffic to all pods in the namespaces that
aren't in the kube-system, calico-system or calico-apiserver namespaces.
Create a file named deny-all.yaml and copy the following into the file.

apiVersion: projectcalico.org/v3
kind: GlobalNetworkPolicy
metadata:
 name: default-deny
spec:
 selector: projectcalico.org/namespace not in {'kube-system',
'calico-system', 'calico-apiserver'}

Chapter 3
Calico Network Policy

3-6

 types:
 - Ingress
 - Egress

9. Create the GlobalNetworkPolicy using the kubectl command:

kubectl apply -f deny-all.yaml

Tip:

You can get a list of all Calico GlobalNetworkPolicies in the myapp namespace
using:

kubectl get globalnetworkpolicies.crd.projectcalico.org --
namespace myapp

In addition, adding the -o yaml option lists details about the
GlobalNetworkPolicies.

10. Mount the Oracle Linux 9 pod, ol9, again and run curl to connect to the NGINX server
pod.

kubectl exec -it ol9 --namespace myapp -- curl 10.244.140.68

This time no results are returned as the traffic between pods on that namespace isn't
allowed. You can enter Ctrl+C to exit the command.

11. Create a NetworkPolicy to allow ingress traffic on port 80 for pods in the myapp
namespace. This lets pods connect to the NGINX server. Create a file named
ingress.yaml and copy the following into the file:

apiVersion: projectcalico.org/v3
kind: NetworkPolicy
metadata:
 name: allow-nginx-ingress
 namespace: myapp
spec:
 selector: app == 'nginx'
 types:
 - Ingress
 ingress:
 - action: Allow
 protocol: TCP
 source:
 selector: app == 'nginx'
 destination:
 ports:
 - 80

Chapter 3
Calico Network Policy

3-7

12. Create the NetworkPolicy using the kubectl command:

kubectl apply -f ingress.yaml

Tip:

You can get a list of all Calico NetworkPolicies in the myapp namespace
using:

kubectl get networkpolicies.crd.projectcalico.org --
namespace myapp

In addition, adding the -o yaml option lists details about the
NetworkPolicies.

13. Mount the Oracle Linux 9 pod, ol9, again and run curl to connect to the NGINX
server pod.

kubectl exec -it ol9 --namespace myapp -- curl 10.244.140.68

No results are returned as egress traffic between pods on that namespace isn't
allowed. You can enter Ctrl+C to exit the command.

14. Create a NetworkPolicy to allow egress traffic for pods in the myapp namespace.
Create a file named egress.yaml and copy the following into the file:

apiVersion: projectcalico.org/v3
kind: NetworkPolicy
metadata:
 name: allow-nginx-egress
 namespace: myapp
spec:
 selector: app == 'nginx'
 types:
 - Egress
 egress:
 - action: Allow

15. Create the NetworkPolicy using the kubectl command:

kubectl apply -f egress.yaml

16. Mount the Oracle Linux 9 pod, ol9, again and run curl to connect to the NGINX
server pod.

kubectl exec -it ol9 --namespace myapp -- curl 10.244.140.68

The NGINX page is now returned as both ingress and egress is allowed for the
pods.

Chapter 3
Calico Network Policy

3-8

17. You can delete the resources created in this Calico test using:

kubectl delete pod --namespace myapp nginx
kubectl delete pod --namespace myapp ol9
kubectl delete networkpolicies.crd.projectcalico.org --namespace myapp
default.allow-nginx-egress
kubectl delete networkpolicies.crd.projectcalico.org --namespace myapp
default.allow-nginx-ingress
kubectl delete globalnetworkpolicies.crd.projectcalico.org --namespace
myapp default.default-deny
kubectl delete namespace myapp

Chapter 3
Calico Network Policy

3-9

4
Removing the Calico Module

You can remove a deployment of the Calico module and leave the Kubernetes cluster in
place. To do this, you remove the Calico module from the environment.

Important:

If you remove the Calico module, no Kubernetes CNI is set for the pods in the
cluster.

Use the olcnectl module uninstall command to remove the Calico module. For example,
to uninstall the Calico module named mycalico in the environment named myenvironment:

olcnectl module uninstall \
--environment-name myenvironment \
--name mycalico

The Calico module is removed from the environment.

As the networking policies to secure the cluster are removed when you uninstall the Calico
module, it's highly recommended you enable the firewalld service on each Kubernetes
node to protect the cluster. To enable the firewalld service, on each Kubernetes node, run:

sudo systemctl start firewalld.service
sudo systemctl enable firewalld.service

4-1

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Introduction to Calico
	2 Installing Calico
	Prerequisites
	Deploying the Calico CNI
	Deploying the Calico Module
	Verifying the Calico Deployment
	Verifying the Calico Module
	Verifying the Tigera Calico Operator

	3 Using Calico
	Kubernetes Network Policy
	Calico Network Policy

	4 Removing the Calico Module

