
Oracle Cloud Native Environment
Kubernetes Module for Release 1.8

F87564-01
January 2024

Oracle Cloud Native Environment Kubernetes Module for Release 1.8,

F87564-01

Copyright © 2022, 2024, Oracle and/or its affiliates.

Contents

 Preface

Documentation License vi

Conventions vi

Documentation Accessibility vi

Access to Oracle Support for Accessibility vii

Diversity and Inclusion vii

1 Introduction to Kubernetes

Kubernetes Components 1-1

Nodes 1-1

Control Plane Node 1-1

Control Plane Replica Nodes 1-2

Worker Nodes 1-2

Pods 1-3

ReplicaSet, Deployment, StatefulSet Controllers 1-3

Services 1-4

Volumes 1-4

Namespaces 1-5

About CRI-O 1-5

2 Creating a Kubernetes Cluster

Setting the Kubernetes CNI 2-1

Creating a Kubernetes Module 2-2

Creating an HA Cluster with External Load Balancer 2-2

Creating an HA Cluster with Internal Load Balancer 2-4

Creating a Cluster with a Single Control Plane Node 2-5

Validating a Kubernetes Module 2-6

Installing a Kubernetes Module 2-6

Reporting Information about the Kubernetes Module 2-7

iii

3 Setting up the Kubernetes Command-Line Interface (kubectl)

Setting up kubectl on a Control Plane Node 3-1

Setting up kubectl on a Non-Cluster Node 3-2

4 Using Kubernetes

About Runtime Engines 4-1

Getting Information about Nodes 4-1

Running an Application in a Pod 4-2

Scaling a Pod Deployment 4-4

Exposing a Service Object for an Application 4-4

Deleting a Service or Deployment 4-6

Working With Namespaces 4-6

Using Deployment Files 4-7

5 Accessing the Kubernetes Dashboard

Starting the Dashboard 5-1

Connecting to the Dashboard 5-1

Connecting to the Dashboard Remotely 5-2

Connecting to the Dashboard Container 5-2

6 Scaling a Kubernetes Cluster

Scaling Up a Kubernetes Cluster 6-2

Scaling Down a Kubernetes Cluster 6-4

7 Backing up and Restoring a Kubernetes Cluster

Backing up Control Plane Nodes 7-1

Restoring Control Plane Nodes 7-1

8 Setting Access to externalIPs in Kubernetes Services

Enabling Access to CIDR Blocks 8-1

Changing Access to CIDR Blocks 8-2

Disabling Access to externalIPs 8-2

Enabling Access to all externalIPs 8-3

iv

9 Removing a Kubernetes Cluster

v

Preface

This book describes how to use Kubernetes, which is an implementation of the open
source, containerized application management platform from the upstream Kubernetes
release. Oracle provides extra tools, testing, and support to deliver this technology
with confidence. Kubernetes integrates with container products to handle more
complex deployments where clustering might be used to improve the scalability,
performance, and availability of containerized applications. Detail is provided on the
advanced features of Kubernetes and how it can be installed, configured, and used as
a component of Oracle Cloud Native Environment.

This document describes functionality and usage available in the most current release
of the product.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–
Share Alike 4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute
this content or an adaptation of it, you must provide attribution to Oracle and retain the
original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis,
or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands
within a paragraph, URLs, code in
examples, text that appears on the screen,
or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

Preface

vi

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/

For information about the accessibility of the Oracle Help Center, see the Oracle Accessibility
Conformance Report at https://www.oracle.com/corporate/accessibility/templates/
t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Preface

vii

https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

1
Introduction to Kubernetes

Kubernetes is an open source system for automating the deployment, scaling, and
management of containerized applications. Primarily, Kubernetes provides the tools to easily
create a cluster of systems across which containerized applications can be deployed and
scaled as required.

The Kubernetes project is maintained at:

https://kubernetes.io/

Kubernetes is fully tested on Oracle Linux and includes extra tools developed at Oracle to
ease configuration and deployment of a Kubernetes cluster.

Kubernetes Components
You're likely to meet the following common components when you start working with
Kubernetes on Oracle Cloud Native Environment. The descriptions provided are brief, and
largely intended to help provide a glossary of terms and an overview of the architecture of a
typical Kubernetes environment. Upstream documentation can be found at:

https://kubernetes.io/docs/concepts/

Nodes
Kubernetes Node architecture is described in detail at:

https://kubernetes.io/docs/concepts/architecture/nodes/

Control Plane Node
The control plane node is responsible for cluster management and for providing the API that's
used to configure and manage resources within the Kubernetes cluster. Kubernetes control
plane node components can be run within Kubernetes itself, as a set of containers within a
dedicated pod. These components can be replicated to provide highly available (HA) control
plane node functionality.

The following components are required for a control plane node:

• API Server (kube-apiserver): The Kubernetes REST API is exposed by the API Server.
This component processes and validates operations and then updates information in the
Cluster State Store to trigger operations on the worker nodes. The API is also the
gateway to the cluster.

• Cluster State Store (etcd): Configuration data relating to the cluster state is stored in the
Cluster State Store, which can roll out changes to the coordinating components such as
the Controller Manager and the Scheduler. Ensure you have a backup plan in place for
the data stored in this component of the cluster.

1-1

https://kubernetes.io/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/architecture/nodes/

• Cluster Controller Manager (kube-controller-manager): This manager is used
to perform many of the cluster-level functions, and application management,
based on input from the Cluster State Store and the API Server.

• Scheduler (kube-scheduler): The Scheduler handles automatically decides
where containers are run by monitoring availability of resources, quality of service,
and affinity specifications.

The control plane node can be configured as a worker node within the cluster.
Therefore, the control plane node also runs the standard node services: the kubelet
service, the container runtime, and the kube-proxy service. Note that it's possible to
taint a node to prevent workloads from running on an inappropriate node. The kubeadm
utility automatically taints the control plane node so that no other workloads or
containers can run on this node. This helps to ensure that the control plane node is
never placed under any unnecessary load and that backup and restore of the control
plane node for the cluster is simplified.

If the control plane node becomes unavailable for a period, cluster functionality is
suspended, but the worker nodes continue to run container applications without
interruption.

For single node clusters, when the control plane node is offline, the API is unavailable,
so the environment is unable to respond to node failures and no new operations, such
as creating new resources or editing or moving existing resources, can be performed.

A high availability cluster with many control plane nodes ensures that more requests
for control plane node functionality can be handled, and with the help of control plane
replica nodes, uptime is improved.

Control Plane Replica Nodes
Control plane replica nodes are responsible for duplicating the functionality and data
contained on control plane nodes within a Kubernetes cluster configured for high
availability. To benefit from increased uptime and resilience, you can host control plane
replica nodes in different zones, and configure them to load balance for the
Kubernetes cluster.

Replica nodes are designed to mirror the control plane node configuration and the
current cluster state in real time so that if the control plane nodes become unavailable
the Kubernetes cluster can fail over to the replica nodes automatically whenever
they're needed. If a control plane node fails, the API continues to be available, the
cluster can respond automatically to other node failures and you can still perform
regular operations for creating and editing existing resources within the cluster.

Worker Nodes
Worker nodes within the Kubernetes cluster are used to run containerized applications
and handle networking to ensure that traffic between applications across the cluster
and from outside of the cluster can occur. The worker nodes perform any actions
triggered by the Kubernetes API, which runs on the control plane node.

All nodes within a Kubernetes cluster must run the following services:

• Kubelet Service (kubelet): The agent that allows each worker node to
communicate with the API Server running on the control plane node. This agent is
also responsible for setting up pod requirements, such as mounting volumes,
starting containers, and reporting status.

Chapter 1
Kubernetes Components

1-2

• Container Runtime: An environment where containers can be run. In this release, the
container runtimes are either runC or Kata Containers. For more information about the
container runtimes, see Container Runtimes.

• Kube Proxy Service (kube-proxy): A service that programs rules to handle port
forwarding and IP redirects to ensure that network traffic from outside the pod network
can be transparently proxied to the pods in a service.

In all cases, these services are run from systemd as daemons.

Pods
Kubernetes introduces the concept of pods, which are groupings of one or more containers
and their shared storage, and any specific options on how these are to be run together. Pods
are used for tightly coupled applications that would typically run on the same logical host and
which might require access to the same system resources. Typically, containers in a pod
share the same network and memory space and can access shared volumes for storage.
These shared resources allow the containers in a pod to communicate internally in a
seamless way as if they were installed on a single logical host.

You can easily create or destroy pods as a set of containers. This makes it possible to do
rolling updates to an application by controlling the scaling of the deployment. You can scale
up or down easily by creating or removing replica pods. For more information on pods, see
the upstream Kubernetes documentation.

ReplicaSet, Deployment, StatefulSet Controllers
Kubernetes provides various controllers that you can use to define how pods are set up and
deployed within the Kubernetes cluster. These controllers can be used to group pods
together according to their runtime needs and define pod replication and pod start up
ordering.

You can define a set of pods that to be replicated with a ReplicaSet. You define the exact
configuration for each of the pods in the group and which resources they can have access to.
Using ReplicaSets not only caters to the easy scaling and rescheduling of an application, but
also lets you perform rolling or multi track updates to an application. For more information on
ReplicaSets, see the upstream Kubernetes documentation.

You can use a Deployment to manage pods and ReplicaSets. Deployments are useful when
you need to roll out changes to ReplicaSets. By using a Deployment to manage a ReplicaSet,
you can easily rollback to an earlier Deployment revision. A Deployment lets you create a
newer revision of a ReplicaSet and then migrate existing pods from a previous ReplicaSet
into the new revision. The Deployment can then manage the cleanup of older unused
ReplicaSets. For more information on Deployments, see the upstream Kubernetes
documentation.

You can use StatefulSets to create pods that guarantee start up order and unique identifiers,
which are then used to ensure that the pod maintains its identity across the lifecycle of the
StatefulSet. This feature makes it possible to run stateful applications within Kubernetes, as
typical persistent components such as storage and networking are guaranteed. Furthermore,
when you create pods they're always created in the same order and allocated identifiers that
are applied to host names and the internal cluster DNS. Those identifiers ensure stable and
predictable network identities for pods in the environment. For more information on
StatefulSets, see the upstream Kubernetes documentation.

Chapter 1
Kubernetes Components

1-3

https://docs.oracle.com/en/operating-systems/olcne/1.8/runtimes/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

Services
You can use services to expose access to one or more mutually interchangeable pods.
As pods can be replicated for rolling updates and for scalability, clients accessing an
application must be directed to a pod running the correct application. Pods might also
need access to applications outside of Kubernetes. In either case, you can define a
service to make access to these facilities transparent, even if the actual backend
changes.

Typically, services consist of port and IP mappings. How services function in network
space is defined by the service type when it's created.

The default service type is the ClusterIP, and you can use this to expose the service
on the internal IP of the cluster. This option makes the service only reachable from
within the cluster. Therefore, use this option to expose services for applications that
need to access each other from within the cluster.

Often, clients outside of the Kubernetes cluster might need access to services within
the cluster. You can achieve this by creating a NodePort service type. This service type
lets you to take advantage of the Kube Proxy service that runs on every worker node
and reroute traffic to a ClusterIP, which is created automatically along with the
NodePort service. The service is exposed on each node IP at a static port, called the
NodePort. The Kube Proxy routes traffic destined to the NodePort into the cluster to be
serviced by a pod running inside the cluster. This means that if a NodePort service is
running in the cluster, it can be accessed from any node in the cluster, regardless of
where the pod is running.

Building on top of these service types, the LoadBalancer service type makes it
possible for you to expose the service externally by using a cloud provider's load
balancer. An external load balancer can handle redirecting traffic to pods directly in the
cluster from the Kube Proxy. A NodePort service and a ClusterIP service are
automatically created when you set up the LoadBalancer service.

Important:

As you add services for different pods, you must ensure that the network is
configured to allow traffic to flow for each service declaration. If you create a
NodePort or LoadBalancer service, any of the ports exposed must also be
accessible through any firewalls that are in place.

If you're running firewalld on any of the nodes, ensure you add rules to
allow traffic for the external facing ports of the services that you create.

For more information on services, see the upstream Kubernetes documentation.

Volumes
In Kubernetes, a volume is storage that persists across the containers within a pod for
the lifespan of the pod itself. When a container within the pod is restarted, the data in
the Kubernetes volume is preserved. Furthermore, Kubernetes volumes can be shared

Chapter 1
Kubernetes Components

1-4

https://kubernetes.io/docs/concepts/services-networking/service/

across containers within the pod, providing a file store that different containers can access
locally.

Kubernetes provides various volume types that define how the data is stored and how it's
persisted, which are described in detail in the upstream Kubernetes documentation.

Kubernetes volumes typically have a lifetime that matches the lifetime of the pod, and data in
a volume persists for while the pod using that volume exists. Containers can be restarted
within the pod, but the data remains persistent. If the pod is destroyed, the data is usually
destroyed with it.

Sometimes, you might require even more persistence to ensure the lifecycle of the volume is
decoupled from the lifecycle of the pod. Kubernetes introduces the concepts of the
PersistentVolume and the PersistentVolumeClaim. PersistentVolumes are similar to Volumes
except that they exist independently of a pod. They define how to access a storage resource
type, such as NFS, or iSCSI. You can configure a PersistentVolumeClaim to use the
resources available in a PersistentVolume, and the PersistentVolumeClaim specifies the
quota and access modes to be applied to the resource for a consumer. A pod you have
created can then use the PersistentVolumeClaim to gain access to these resources with the
appropriate access modes and size restrictions applied.

For more information about volumes and setting up and using persistent storage with
Kubernetes applications, see Oracle Cloud Infrastructure Cloud Controller Manager Module
and Rook Module.

Namespaces
Kubernetes implements and maintains strong separation of resources by using namespaces.
Namespaces effectively run as virtual clusters backed by the same physical cluster and are
intended for use in environments where Kubernetes resources must be shared across use
cases.

Kubernetes takes advantage of namespaces to separate cluster management and specific
Kubernetes controls from any other user-specific configuration. Therefore, all the pods, and
services specific to the Kubernetes system are found within the kube-system namespace. A
default namespace is also created to run all other deployments for which no namespace
has been set.

For more information on namespaces, see the upstream Kubernetes documentation.

About CRI-O
When you deploy Kubernetes worker nodes, CRI-O is also deployed. CRI-O is an
implementation of the Kubernetes Container Runtime Interface (CRI) to enable using Open
Container Initiative (OCI) compatible runtimes. CRI-O is a lightweight alternative to using
Docker as the runtime for Kubernetes. CRI-O allows Kubernetes to use any OCI-compliant
runtime as the container runtime for pods.

CRI-O delegates containers to run on appropriate nodes, based on the configuration set in
pod files. Privileged pods can be run using the runC runtime engine (runc), and unprivileged
pods can be run using the Kata Containers runtime engine (kata-runtime). Defining whether
containers are trusted or untrusted is set in the Kubernetes pod or deployment file.

For information on how to set the container runtime, see Container Runtimes.

Chapter 1
About CRI-O

1-5

https://kubernetes.io/docs/concepts/storage/volumes/
https://docs.oracle.com/en/operating-systems/olcne/1.8/ociccm/
https://docs.oracle.com/en/operating-systems/olcne/1.8/rook/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://docs.oracle.com/en/operating-systems/olcne/1.8/runtimes/

2
Creating a Kubernetes Cluster

This chapter shows you how to use the Platform CLI (olcnectl) to create a Kubernetes
cluster. This chapter assumes you have installed the Oracle Cloud Native Environment
software packages on the nodes, configured them to be used in a cluster and created an
environment in which to install the Kubernetes module, as discussed in Installation.

The high level steps to create a Kubernetes cluster are:

• Create a Kubernetes module to specify information about the cluster.

• Validate the Kubernetes module to ensure Kubernetes can be installed on the nodes.

• Install the Kubernetes module to install the Kubernetes packages on the nodes and
create the cluster.

The olcnectl command is used to perform these steps. For more information on the syntax
for the olcnectl command, see Platform Command-Line Interface.

Tip:

You can also use a configuration file to create modules. The configuration file is a
YAML file that contains the information about the environments and modules you
want to deploy. Using a configuration file reduces the information you need to
provide with olcnectl commands. For information on creating and using a
configuration file, see Platform Command-Line Interface.

Setting the Kubernetes CNI
You can use the following Kubernetes Container Network Interface (CNI) plugins to manage
pod network traffic:

• Flannel: Flannel is the default CNI when you create a Kubernetes module. You don't
need to set any command options to use Flannel as it's installed by default.

• Calico: Calico is an optional CNI you can use instead of Flannel. You can set Calico as
the CNI when you create the Kubernetes module using the --pod-network calico option
of the olcnectl module create --module kubernetes command. This sets Calico as
the Kubernetes CNI instead of Flannel. A minimum default configuration is used for
Calico with this installation method. You can optionally install Calico as a module. To
install Calico as a module, you set --pod-network none when you create the Kubernetes
module so that no CNI is set up when you deploy Kubernetes. For more information on
Calico, and how to install it as a module, see Calico Module.

2-1

https://docs.oracle.com/en/operating-systems/olcne/1.8/install/
https://docs.oracle.com/en/operating-systems/olcne/1.8/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.8/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.8/calico/

Important:

To set Calico as the Kubernetes CNI, you must first perform the
prerequisites in Calico Module

• Multus: Multus is an optional CNI that creates a networking bridge to either
Flannel or Calico. Multus can be set up using the Multus module after the
Kubernetes module is installed. For more information on Multus and how to install
the module, see Multus Module.

Creating a Kubernetes Module
The Kubernetes module can be set up to create a:

• Highly available (HA) cluster with an external load balancer.

• HA cluster with an internal load balancer.

• Cluster with a single control plane node (no HA).

To create an HA cluster you need at least three control plane nodes and two worker
nodes.

For information on setting up an external load balancer, or for information on preparing
the control plane nodes to use the internal load balancer installed by the Platform CLI,
see Installation.

Extra ports are required to be open on control plane nodes in an HA cluster. For
information on opening the required ports for an HA cluster, see Installation.

Use the olcne module create command to create a Kubernetes module. If you don't
include all the required options when using this command, you're prompted to provide
them. For the full list of the options available for the Kubernetes module, see Platform
Command-Line Interface.

Creating an HA Cluster with External Load Balancer
This section shows you how to create a Kubernetes module to create an HA cluster
using an external load balancer.

The following example creates an HA cluster using a load balancer available on the
host lb.example.com and listening on port 6443.

olcnectl module create \
--environment-name myenvironment \
--module kubernetes \
--name mycluster \
--container-registry container-registry.oracle.com/olcne \
--load-balancer lb.example.com:6443 \
--control-plane-nodes
control1.example.com:8090,control2.example.com:8090,control3.example.co
m:8090 \
--worker-nodes
worker1.example.com:8090,worker2.example.com:8090,worker3.example.com:8
090,worker4.example.com:8090 \

Chapter 2
Creating a Kubernetes Module

2-2

https://docs.oracle.com/en/operating-systems/olcne/1.8/calico/
https://docs.oracle.com/en/operating-systems/olcne/1.8/multus/
https://docs.oracle.com/en/operating-systems/olcne/1.8/install/
https://docs.oracle.com/en/operating-systems/olcne/1.8/install/
https://docs.oracle.com/en/operating-systems/olcne/1.8/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.8/olcnectl/

--selinux enforcing \
--restrict-service-externalip-ca-cert /etc/olcne/certificates/
restrict_external_ip/ca.cert \
--restrict-service-externalip-tls-cert /etc/olcne/certificates/
restrict_external_ip/node.cert \
--restrict-service-externalip-tls-key /etc/olcne/certificates/
restrict_external_ip/node.key

The --environment-name sets the name of the environment in which to create the
Kubernetes module. This example sets it to myenvironment.

The --module option sets the module type to create. To create a Kubernetes module this
must be set to kubernetes.

The --name option sets the name used to identify the Kubernetes module. This example sets
it to mycluster.

The --container-registry option specifies the container registry from which to pull the
Kubernetes images. This example uses the Oracle Container Registry, but you might also
use an Oracle Container Registry mirror, or a local registry with the Kubernetes images
mirrored from the Oracle Container Registry. For information on using an Oracle Container
Registry mirror, or creating a local registry, see Installation.

However, you can set a new default container registry value during an update or upgrade of
the Kubernetes module.

The --load-balancer option sets the hostname and port of an external load balancer. This
example sets it to lb.example.com:6443.

The --control-plane-nodes option includes a comma separated list of the hostnames or IP
addresses of the control plane nodes to be included in the cluster and the port number on
which the Platform Agent is available. The default port number is 8090.

Note:

You can create a cluster that uses an external load balancer with a single control
plane node. HA and failover features aren't available until you reach at least three
control plane nodes in the cluster. To increase the number of control plane nodes,
scale up the cluster. For information on scaling up the cluster, see Scaling Up a
Kubernetes Cluster.

The --worker-nodes option includes a comma separated list of the hostnames or IP
addresses of the worker nodes to be included in the cluster and the port number on which the
Platform Agent is available. If a worker node is behind a NAT gateway, use the public IP
address for the node. The worker node's interface behind the NAT gateway must have an
public IP address using the /32 subnet mask that's reachable by the Kubernetes cluster.
The /32 subnet restricts the subnet to one IP address, so that all traffic from the Kubernetes
cluster flows through this public IP address (for more information about configuring NAT, see
Installation). The default port number is 8090.

If SELinux is set to enforcing mode (the OS default and the recommended mode) on the
control plane node and worker nodes, you must also include the --selinux enforcing option
when you create the Kubernetes module.

Chapter 2
Creating a Kubernetes Module

2-3

https://docs.oracle.com/en/operating-systems/olcne/1.8/install/
https://docs.oracle.com/en/operating-systems/olcne/1.8/install/

You must also include the location of the certificates for the externalip-validation-
webhook-service Kubernetes service. These certificates must be on the operator
node. The --restrict-service-externalip-ca-cert option sets the location of the
CA certificate. The --restrict-service-externalip-tls-cert sets the location of the
node certificate. The --restrict-service-externalip-tls-key option sets the
location of the node key. For information on setting up these certificates, see
Installation.

You can optionally use the --restrict-service-externalip-cidrs option to set the
external IP addresses that can be accessed by Kubernetes services. For example:

--restrict-service-externalip-cidrs 192.0.2.0/24,198.51.100.0/24
In this example, the IP ranges that are allowed are within the 192.0.2.0/24 and
198.51.100.0/24 CIDR blocks.

The default Kubernetes CNI for pods is Flannel. You can optionally set the CNI to
Calico or to none. Set the pod networking using the --pod-network option. Using --
pod-network calico sets Calico to be the CNI instead of Flannel. Using --pod-
network none sets no CNI, which lets you install the Calico module. For more
information on Calico, see Calico Module.

You can optionally set the network interface to use for the Kubernetes data plane (the
interface used by the pods running on Kubernetes). By default, the interface used by
the the Platform Agent (set with the --control-plane-nodes and --worker-nodes
options) is used for both the Kubernetes control plane node and the data plane. To
specify a separate network interface to use for the data plane, include the --pod-
network-iface option. For example, --pod-network-iface ens1. This results in the
control plane node using the network interface used by the Platform Agent, and the
data plane using a separate network interface, which in this example is ens1.

Note:

You can also use a regex expression with the --pod-network-iface option.
For example:

--pod-network-iface "ens[1-5]|eth5"
If you use regex to set the interface name, the first matching interface
returned by the kernel is used.

Creating an HA Cluster with Internal Load Balancer
This section shows you how to create a Kubernetes module to create an HA cluster
using an internal load balancer, installed by the Platform CLI on the control plane
nodes.

This example creates an HA cluster using the internal load balancer installed by the
Platform CLI.

olcnectl module create \
--environment-name myenvironment \
--module kubernetes \

Chapter 2
Creating a Kubernetes Module

2-4

https://docs.oracle.com/en/operating-systems/olcne/1.8/install/
https://docs.oracle.com/en/operating-systems/olcne/1.8/calico/

--name mycluster \
--container-registry container-registry.oracle.com/olcne \
--virtual-ip 192.0.2.100 \
--control-plane-nodes
control1.example.com:8090,control2.example.com:8090,control3.example.com:8090
 \
--worker-nodes
worker1.example.com:8090,worker2.example.com:8090,worker3.example.com:8090,wo
rker4.example.com:8090 \
--selinux enforcing \
--restrict-service-externalip-ca-cert /etc/olcne/certificates/
restrict_external_ip/ca.cert \
--restrict-service-externalip-tls-cert /etc/olcne/certificates/
restrict_external_ip/node.cert \
--restrict-service-externalip-tls-key /etc/olcne/certificates/
restrict_external_ip/node.key

The --virtual-ip option sets the virtual IP address to be used for the primary control plane
node, for example, 192.0.2.100. This IP address must be available on the network and must
not be assigned to any hosts on the network. This IP address is dynamically assigned to the
control plane node assigned as the primary controller by the load balancer.

If you're using a container registry mirror, you must also set the location of the NGINX image
using the --nginx-image option. This option must be set to the location of the registry mirror
in the format:

registry:port/olcne/nginx:version
For example:

--nginx-image myregistry.example.com:5000/olcne/nginx:1.17.7

All other options used in this example are described in Creating an HA Cluster with External
Load Balancer.

Creating a Cluster with a Single Control Plane Node
This section shows you how to create Kubernetes module to create a cluster with a single
control plane node. No load balancer is used or required with this type of cluster.

This example creates a cluster with a single control plane node.

olcnectl module create \
--environment-name myenvironment \
--module kubernetes --name mycluster \
--container-registry container-registry.oracle.com/olcne \
--control-plane-nodes control1.example.com:8090 \
--worker-nodes worker1.example.com:8090,worker2.example.com:8090 \
--selinux enforcing \
--restrict-service-externalip-ca-cert /etc/olcne/certificates/
restrict_external_ip/ca.cert \
--restrict-service-externalip-tls-cert /etc/olcne/certificates/
restrict_external_ip/node.cert \

Chapter 2
Creating a Kubernetes Module

2-5

--restrict-service-externalip-tls-key /etc/olcne/certificates/
restrict_external_ip/node.key

The --control-plane-nodes option must contain only one node.

All other options used in this example are described in Creating an HA Cluster with
External Load Balancer.

Validating a Kubernetes Module
When you have created a Kubernetes module in an environment, validate the nodes
are configured correctly to install the module.

Use the olcnectl module validate command to validate the nodes are configured
correctly. For example, to validate the Kubernetes module named mycluster in the
myenvironment environment:

olcnectl module validate \
--environment-name myenvironment \
--name mycluster

You can optionally use the --log-level option to set the level of logging displayed in
the command output. By default, error messages are displayed. For example, you can
set the logging level to show all messages when you include:

--log-level debug

The log messages are also saved as an operation log. You can view operation logs as
commands are running, or when they've completed. For more information using
operation logs, see Platform Command-Line Interface.

If any validation errors are returned, the commands required to fix the nodes are
provided in the output. To save the commands as scripts, use the --generate-scripts
option. For example:

olcnectl module validate \
--environment-name myenvironment \
--name mycluster \
--generate-scripts

A script is created for each node in the module, saved to the local directory, and
named hostname:8090.sh. You can copy the script to the appropriate node, and run it
to fix any validation errors.

Installing a Kubernetes Module
When you have created and validated a Kubernetes module, you use it to install
Kubernetes on the nodes and create a cluster.

Use the olcnectl module install command to install Kubernetes on the nodes to
create a cluster.

Chapter 2
Validating a Kubernetes Module

2-6

https://docs.oracle.com/en/operating-systems/olcne/1.8/olcnectl/

As part of installing the Kubernetes module:

• The Kubernetes packages are installed on the nodes. The kubeadm package installs the
packages required to run CRI-O and Kata Containers. CRI-O is needed to delegate
containers to a runtime engine (either runc or kata-runtime). For more information about
container runtimes, see Container Runtimes.

• The crio and kubelet services are enabled and started.

• If you're installing an internal load balancer, the olcne-nginx and keepalived services
are enabled and started on the control plane nodes.

For example, use the following command to use the Kubernetes module named mycluster in
the myenvironment environment to create a cluster:

olcnectl module install \
--environment-name myenvironment \
--name mycluster

You can optionally use the --log-level option to set the level of logging displayed in the
command output. By default, error messages are displayed. For example, you can set the
logging level to show all messages when you include:

--log-level debug

The log messages are also saved as an operation log. You can view operation logs as
commands are running, or when they've completed. For more information using operation
logs, see Platform Command-Line Interface.

The Kubernetes module is used to install Kubernetes on the nodes and the cluster is started
and validated for health.

Important:

Installing Kubernetes might take several minutes to complete.

Reporting Information about the Kubernetes Module
When you have installed a Kubernetes module, you can review information about the
Kubernetes module and its properties.

Use the olcnectl module report command to review information about the module.

For example, use the following command to review the Kubernetes module named mycluster
in myenvironment:

olcnectl module report \
--environment-name myenvironment \
--name mycluster \
--children

Chapter 2
Reporting Information about the Kubernetes Module

2-7

https://docs.oracle.com/en/operating-systems/olcne/1.8/runtimes/
https://docs.oracle.com/en/operating-systems/olcne/1.8/olcnectl/

For more information on the syntax for the olcnectl module report command, see
Platform Command-Line Interface.

Chapter 2
Reporting Information about the Kubernetes Module

2-8

https://docs.oracle.com/en/operating-systems/olcne/1.8/olcnectl/

3
Setting up the Kubernetes Command-Line
Interface (kubectl)

This chapter describes how to set up the Kubernetes CLI (kubectl). The kubectl command
is part of Kubernetes and is used to create and manage the containerized applications you
deploy on the Kubernetes cluster.

The kubectl utility is a command line tool that interfaces with the Kubernetes API server to
run commands against the Kubernetes cluster. The kubectl command is typically run on a
control plane node of the cluster (the recommended option), although you can set up kubectl
access on an external node that's not in the cluster, if required. The kubectl utility effectively
grants full administrative rights to the cluster and all nodes in the cluster.

This chapter discusses setting up the kubectl command to access a Kubernetes cluster from
either a control plane node or an external node (not part of the Kubernetes cluster).

Setting up kubectl on a Control Plane Node
To set up the kubectl command on a control plane node, copy, and paste these commands
to a terminal in the home directory on a control plane node:

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
export KUBECONFIG=$HOME/.kube/config
echo 'export KUBECONFIG=$HOME/.kube/config' >> $HOME/.bashrc

Verify that you can use the kubectl command using any kubectl command such as:

kubectl get deployments --all-namespaces

The output looks similar to:

NAMESPACE NAME READY UP-TO-
DATE AVAILABLE AGE
externalip-validation-system externalip-validation-webhook 1/1
1 1 29m
kube-system coredns 2/2
2 2 30m
kubernetes-dashboard kubernetes-dashboard 1/1
1 1 29m
ocne-modules ocne-module-operator 1/1
1 1 29m

3-1

Setting up kubectl on a Non-Cluster Node
Oracle Cloud Native Environment lets you create many environments from the
operator node. With this in mind, we recommend that you use kubectl on a control
plane node in the Kubernetes cluster. If you use kubectl from outside the cluster, and
you have many environments deployed, you might inadvertently manage an
unexpected Kubernetes cluster. However, if you need to set up kubectl to run from
outside the cluster, you need to configure it.

The following example shows you how to set up a host that's not in the cluster with
kubectl to access to a Kubernetes cluster.

Note:

The following example assumes the OS of the node is Oracle Linux.
However, you can also set up kubectl on macOS and Microsoft Windows
hosts by leveraging the Kubernetes community package. For Microsoft
Windows hosts you also need to install Windows Subsystem for Linux 2
(WLS 2).

To set up kubectl on a host that's not in the cluster:

1. On the operator node, use the olcnectl module property get command to get
the Kubernetes configuration file for the cluster:

olcnectl module property get \
--environment-name myenvironment \
--name mycluster \
--property kubecfg | base64 -d > kubeconfig.yaml

A file named kubeconfig.yaml is created that contains the Kubernetes
configuration information required to access the cluster.

2. Set up the Kubernetes file on the host. Log in to the host and copy the
kubeconfig.yaml from the operator node to a local directory on the host.

Caution:

Follow security best practices when copying a configuration file with
sensitive information between hosts.

a. Create a subdirectory named .kube in the home directory:

mkdir -p $HOME/.kube

Chapter 3
Setting up kubectl on a Non-Cluster Node

3-2

b. Copy the kubeconfig.yaml file to the .kube directory:

cp /path_to_file/kubeconfig.yaml $HOME/.kube/config

c. Export the path to the file for the KUBECONFIG environment variable:

export KUBECONFIG=$HOME/.kube/config

d. To permanently set this environment variable, add it to the .bashrc file:

echo 'export KUBECONFIG=$HOME/.kube/config' >> $HOME/.bashrc

3. Install kubectl on the host.

Set up the node with the required access to Oracle Cloud Native Environment packages
by enabling repositories or channels as required. See Installation for more information.

Install kubectl:

sudo dnf install kubectl

4. Verify you can use the kubectl command:

kubectl get deployments --all-namespaces

The output looks similar to:

NAMESPACE NAME READY UP-
TO-DATE AVAILABLE AGE
externalip-validation-system externalip-validation-webhook 1/1
1 1 29m
kube-system coredns 2/2
2 2 30m
kubernetes-dashboard kubernetes-dashboard 1/1
1 1 29m
ocne-modules ocne-module-operator 1/1
1 1 29m

Chapter 3
Setting up kubectl on a Non-Cluster Node

3-3

https://docs.oracle.com/en/operating-systems/olcne/1.8/install/

4
Using Kubernetes

This chapter describes how to get started using Kubernetes to deploy, maintain, and scale
containerized applications. In this chapter, we describe basic usage of the kubectl command
to get you started creating and managing containers and services within the environment.

The kubectl utility is fully documented in the upstream Kubernetes documentation.

About Runtime Engines
runc is the default runtime engine when you create containers. You can also use the kata-
runtime runtime engine to create Kata containers. For information on Kata containers and
how to create them, see Container Runtimes.

Getting Information about Nodes
To get a listing of all nodes in a cluster and the status of each node, use the kubectl get
command. This command can be used to obtain listings of any kind of Kubernetes resource.
In this case, the nodes resource:

kubectl get nodes

The output looks similar to:

NAME STATUS ROLES AGE VERSION
control.example.com Ready control-plane 1h version
worker1.example.com Ready <none> 1h version
worker2.example.com Ready <none> 1h version

You can get more detailed information about any resource using the kubectl describe
command. If you specify the name of the resource, the output is limited to information about
that resource alone; otherwise, full details of all resources are also printed to screen. For
example:

kubectl describe nodes worker1.example.com

The output looks similar to:

Name: worker1.example.com
Roles: <none>
Labels: beta.kubernetes.io/arch=amd64
 beta.kubernetes.io/os=linux
 kubernetes.io/arch=amd64
 kubernetes.io/hostname=worker1.example.com
 kubernetes.io/os=linux
Annotations: flannel.alpha.coreos.com/backend-data:

4-1

https://kubernetes.io/docs/reference/kubectl/
https://docs.oracle.com/en/operating-systems/olcne/1.8/runtimes/

{"VtepMAC":"fe:78:5f:ea:7c:c0"}
 flannel.alpha.coreos.com/backend-type: vxlan
 flannel.alpha.coreos.com/kube-subnet-manager: true
 flannel.alpha.coreos.com/public-ip: 192.0.2.11
 kubeadm.alpha.kubernetes.io/cri-socket: /var/run/
crio/crio.sock
 node.alpha.kubernetes.io/ttl: 0
 volumes.kubernetes.io/controller-managed-attach-
detach: true
...

Running an Application in a Pod
To create a pod with a single running container, you can use the kubectl create
command. For example:

kubectl create deployment --image nginx hello-world

Substitute nginx with a container image. Substitute hello-world with a name for the
deployment. The pods are named by using the deployment name as a prefix.

Tip:

Deployment, pod, and service names conform to a requirement to match a
DNS-1123 label. These must consist of lowercase alphanumeric characters
or -, and must start and end with an alphanumeric character. The regular
expression that's used to validate names is '[a-z0-9]([-a-z0-9]*[a-
z0-9])?'. If you use a name for the deployment that doesn't validate, an error
is returned.

Many more optional parameters can be used when you run a new application within
Kubernetes. For example, at run time, you can specify how many replica pods are to
be started, or you might apply a label to the deployment to make it easier to identify
pod components. To see a full list of options available to you, run kubectl run --
help.

To check that a new application deployment has created one or more pods, use the
kubectl get pods command:

kubectl get pods

The output looks similar to:

NAME READY STATUS RESTARTS AGE
hello-world-5f55779987-wd857 1/1 Running 0 1m

Chapter 4
Running an Application in a Pod

4-2

Use kubectl describe to show a more detailed view of pods, including which containers are
running and what image they're based on, including which node is hosting the pod:

kubectl describe pods

The output looks similar to:

Name: hello-world-5f55779987-wd857
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: worker1.example.com/192.0.2.11
Start Time: <date> 08:48:33 +0100
Labels: app=hello-world
 pod-template-hash=5f55779987
Annotations: <none>
Status: Running
IP: 10.244.1.3
Controlled By: ReplicaSet/hello-world-5f55779987
Containers:
 nginx:
 Container ID: cri-o://
417b4b59f7005eb4b1754a1627e01f957e931c0cf24f1780cd94fa9949be1d31
 Image: nginx
 Image ID: docker-pullable://
nginx@sha256:5d32f60db294b5deb55d078cd4feb410ad88e6fe7...
 Port: <none>
 Host Port: <none>
 State: Running
 Started: Mon, 10 Dec 2018 08:25:25 -0800
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-s8wj4
(ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:
 default-token-s8wj4:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-s8wj4
 Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
 node.kubernetes.io/unreachable:NoExecute for 300s
Events:
....

Chapter 4
Running an Application in a Pod

4-3

Scaling a Pod Deployment
To change the number of instances of the same pod that you're running, you can use
the kubectl scale deployment command. For example:

kubectl scale deployment --replicas=3 hello-world

You can check that the number of pod instances has been scaled appropriately:

kubectl get pods

The output looks similar to:

NAME READY STATUS RESTARTS AGE
hello-world-5f55779987-tswmg 1/1 Running 0 18s
hello-world-5f55779987-v8w5h 1/1 Running 0 26m
hello-world-5f55779987-wd857 1/1 Running 0 18s

Exposing a Service Object for an Application
Typically, while many applications only need to communicate internally within a pod, or
even across pods, you might need to expose an application externally so that clients
outside of the Kubernetes cluster can interface with the application. You can do this by
creating a service definition for the deployment.

Note:

The Oracle Cloud Infrastructure Cloud Controller Manager module is used to
create and manage Oracle Cloud Infrastructure load balancers for
Kubernetes applications. The following example assumes you have installed
this module as described in Oracle Cloud Infrastructure Cloud Controller
Manager Module.

To expose a deployment using a service object, you must define the service type to be
used. The following example shows how you might use the kubectl expose
deployment command to expose the application using a LoadBalancer service:

kubectl expose deployment hello-world --port 80 --type=LoadBalancer

Use kubectl get services to list the different services that the cluster is running as
shown in the following example. Note that the EXTERNAL-IP field of the LoadBalancer
service initially shows as <pending> whilst the setup of the service is still in progress:

kubectl get services

Chapter 4
Scaling a Pod Deployment

4-4

https://docs.oracle.com/en/operating-systems/olcne/1.8/ociccm/
https://docs.oracle.com/en/operating-systems/olcne/1.8/ociccm/

The output looks similar to:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hello-world LoadBalancer 10.102.42.160 <pending> 80:31847/TCP 3s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP
5h13m

You can see the load balancer in the Oracle Cloud Infrastructure console. Initially, its state in
the console is shown as Creating.

Wait a few minutes for the setup of the service to complete. Run the kubectl get services
command again, and note that the EXTERNAL-IP field is now populated with the IP address
assigned to the LoadBalancer service:

kubectl get services

The output looks similar to:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hello-world LoadBalancer 10.102.42.160 192.0.2.250 80:31847/TCP 85s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP
5h15m

In the preceding sample output the PORT(s) field contains the following ports:

• Port 80: The port at which the LoadBalancer service can be accessed. In this example,
the service would be accessed at the following URL:

http://192.0.2.250

• Port 31847: The port assigned to the NodePort service. The NodePort service enables
the application to be accessed using URL format worker_node:NodePort, for example:

http://worker1.example.com:31847/

Note:

Kubernetes creates the NodePort service as part of its LoadBalancer setup.

You can verify the services have been set up successfully by running curl commands as
shown in the following examples:

• For the LoadBalancer service:

curl http://192.0.2.250

The output looks similar to:

 <html>
 <head>
 <title>Welcome to this servicer</title>

Chapter 4
Exposing a Service Object for an Application

4-5

 </head>
 <body>
 <h1>Welcome to this service</h1>
 ...
 </body>
 </html>

• For each worker node, verify the NodePort service by running a curl command:

curl http://worker1.example.com:31847/

The output looks similar to:

 <html>
 <head>
 <title>Welcome to this servicer</title>
 ...
 </head>
 <body>
 <h1>Welcome to this service</h1>
 ...
 </body>
 </html>

Deleting a Service or Deployment
Objects can be deleted easily within Kubernetes so that the environment can be
cleaned up. Use the kubectl delete command to remove an object.

To delete a service, specify the services object and the name of the service that you
want to remove. For example:

kubectl delete services hello-world

To delete an entire deployment, and all pod replicas running for that deployment,
specify the deployment object and the name that you used to create the deployment:

kubectl delete deployment hello-world

Working With Namespaces
Namespaces can be used to further separate resource usage and to provide limited
environments for particular use cases. By default, Kubernetes configures a
namespace for Kubernetes system components and a standard namespace to be
used for all other deployments for which no namespace is defined.

To view existing namespaces, use the kubectl get namespaces and kubectl
describe namespaces commands.

The kubectl command only displays resources in the default namespace, unless you
set the namespace for a request. Therefore, if you need to view the pods specific to

Chapter 4
Deleting a Service or Deployment

4-6

the Kubernetes system, you would use the --namespace option to set the namespace to
kube-system for the request. For example:

kubectl get pods --namespace kube-system

The output looks similar to:

NAME READY STATUS RESTARTS AGE
coredns-5bc65d7f4b-qzfcc 1/1 Running 0 23h
coredns-5bc65d7f4b-z64f2 1/1 Running 0 23h
etcd-control1.example.com 1/1 Running 0 23h
kube-apiserver-control1.example.com 1/1 Running 0 23h
kube-controller-control1.example.com 1/1 Running 0 23h
kube-flannel-ds-2sjbx 1/1 Running 0 23h
kube-flannel-ds-njg9r 1/1 Running 0 23h
kube-proxy-m2rt2 1/1 Running 0 23h
kube-proxy-tbkxd 1/1 Running 0 23h
kube-scheduler-control1.example.com 1/1 Running 0 23h
kubernetes-dashboard-7646bf6898-d6x2m 1/1 Running 0 23h

Using Deployment Files
To simplify the creation of pods and their related requirements, you can create a deployment
file that define all elements that consist of the deployment. This deployment defines which
images are to be used to generate the containers within the pod, along with any runtime
requirements, and Kubernetes networking, and storage requirements in the form of services
to be configured and volumes that might need to be mounted.

Deployments are described in detail in the upstream Kubernetes documentation.

Chapter 4
Using Deployment Files

4-7

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

5
Accessing the Kubernetes Dashboard

The Kubernetes Dashboard container is created as part of the kubernetes-dashboard
namespace. You can also start the Dashboard using the kubectl-proxy service. The
Dashboard provides an intuitive graphical user interface to a Kubernetes cluster that can be
accessed using a standard web browser.

The Kubernetes Dashboard is described in the upstream Kubernetes documentation.

This chapter shows you how to start and connect to the Kubernetes Dashboard.

Starting the Dashboard
To start the Dashboard, run a proxy service that allows traffic on the node where it's running
to reach the internal pod where the Dashboard application is running. This is achieved by
running the kubectl proxy service:

kubectl proxy

The output looks similar to:

Starting to serve on 127.0.0.1:8001

The Dashboard is available on the node where the proxy is running. To exit the proxy, use
Ctrl+C. When you exit the proxy, it ends the application, and the Dashboard is no longer
available.

You can run this as a systemd service and enable it so that it's always available after OS
reboots:

sudo systemctl enable --now kubectl-proxy.service

This systemd service requires that the /etc/kubernetes/admin.conf is present to run. To
change the port that's used for the proxy service, or you want to add other proxy configuration
parameters, you can configure this by editing the systemd drop-in file at /etc/systemd/
system/kubectl-proxy.service.d/10-kubectl-proxy.conf. You can get more information
about the configuration options available for the kubectl proxy service by running:

kubectl proxy --help

Connecting to the Dashboard
To access the Dashboard, open a web browser on the node where the kubectl proxy
service is running and navigate to:

5-1

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/
https:kubernetes-dashboard:/proxy/

To log in, you must authenticate using a token. For more information on authentication
tokens, see the upstream Kubernetes documentation.

Set up a token for the admin-user using:

kubectl --namespace kubernetes-dashboard create token admin-user

Copy and paste the entire value of the token output into the token field on the log in
page to authenticate.

Connecting to the Dashboard Remotely
If you need to access the Dashboard remotely, you can use SSH tunneling to do port
forwarding from the localhost to the node running the kubectl proxy service. The
easiest option is to use SSH tunneling to forward a port on the local system to the port
configured for the kubectl proxy service on the node that you want to access. This
method retains some security as the HTTP connection is encrypted by virtue of the
SSH tunnel and authentication is handled by the SSH configuration. For example, on
the local system run:

ssh -L 8001:127.0.0.1:8001 192.0.2.10

Substitute 192.0.2.10 with the IP address of the host where the kubectl proxy
service is running. When the SSH connection is established, you can open a browser
on the localhost and navigate to:

http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/
https:kubernetes-dashboard:/proxy/

The Dashboard log in screen is displayed for the remote Kubernetes cluster. Use the
same token information to authenticate as if you were connecting to the Dashboard
locally.

Connecting to the Dashboard Container
You don't need to start the Dashboard using the kubectl-proxy service as it's already
running as a container when you install the Kubernetes module. This is another
method to access the Dashboard. To verify the container is running, enter:

kubectl get pods --namespace kubernetes-dashboard

The output looks similar to:

NAME READY STATUS RESTARTS
AGE
kubernetes-dashboard-785945dc77-c8l72 1/1 Running 0
19m

Chapter 5
Connecting to the Dashboard Remotely

5-2

https://github.com/kubernetes/dashboard/blob/master/docs/user/access-control/README.md

A Kubernetes Dashboard service is also deployed. You can show that service using:

kubectl get svc --namespace kubernetes-dashboard

The output looks similar to:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
kubernetes-dashboard ClusterIP 10.100.29.246 <none> 443/TCP
20m

To access this service, assign an external IP address to the ClusterIP, or patch the service to
assign an IP address using a NodePort. When you have assigned an external IP address,
you can connect to the service using a web browser that has access to that network.

Chapter 5
Connecting to the Dashboard Container

5-3

6
Scaling a Kubernetes Cluster

Scaling a Kubernetes cluster involves updating the cluster by adding nodes to it or removing
nodes from it. When you add nodes to a Kubernetes cluster, you're scaling up the cluster, and
when you remove nodes from the cluster, you're scaling down the cluster.

Reasons for scaling up a cluster might include the need to handle a larger workload,
increased network traffic, or the need to run more applications in the cluster. Reasons for
scaling down a cluster might include temporarily removing a node for maintenance or
troubleshooting.

Before adding a new node, you need to set up the node to meet all the necessary
requirements for it to be part of the Kubernetes cluster. For information on setting up a
Kubernetes node, see Installation. Depending upon the type of nodes you're adding to the
cluster, and the system setup, you might also need to add the new nodes to the load balancer
configured for the cluster.

An environment with a single control plane node (created for example, for testing purposes)
can be scaled up to a highly available (HA) cluster with many control plane nodes, providing it
was created with the --load-balancer or --virtual-ip options.

When you scale a Kubernetes cluster:

1. A back up is taken of the cluster. In case something goes wrong during scaling up or
scaling down, you can revert to the previous state so that you can restore the cluster. For
more information about backing up and restoring a Kubernetes cluster, see Backing up
and Restoring a Kubernetes Cluster.

2. Any nodes that you want to add to the cluster are validated. If the nodes have any
validation issues, such as firewall issues, then the update to the cluster can't proceed,
and the nodes can't be added to the cluster. You're prompted for what to do to resolve the
validation issues so that the nodes can be added to the cluster.

3. The control plane nodes and worker nodes are added to or removed from the cluster.

4. The cluster is checked to ensure all nodes are healthy. After validation of the cluster is
completed, the cluster is scaled and you can access it.

Best Practices for Scaling a Kubernetes Cluster

The following list describes best practices to be followed when scaling a Kubernetes cluster
in a production environment:

Scale Up and Down in Separate Steps
We recommend that you don't scale the cluster up and down in one step: scale up, and then
scale down, in two separate commands.

Scaling Control Plane Nodes
To avoid split-brain scenarios, the number of control plane nodes in a cluster must always be
an odd number equal to or greater than three, for example, 3, 5, or 7. Thus, control nodes
must be scaled up and down two nodes at a time to maintain cluster quorum.

6-1

https://docs.oracle.com/en/operating-systems/olcne/1.8/install/

We recommend that clusters are provisioned with a minimum of five control plane
nodes in case two nodes need to be removed during a maintenance operation.

Scaling Worker Nodes
Replace worker nodes in the cluster one node at a time to let applications running on
the node to migrate to other nodes.
The cluster must always have a minimum of three worker nodes. Thus, we
recommend that clusters are provisioned with a minimum of four worker nodes in
case a node is removed during a maintenance operation.

Tip:

The examples in this chapter show you how to scale up and down by
changing the control plane node and worker nodes at the same time by
providing all the nodes to be included in the cluster using the --control-
plane-nodes and --worker-nodes options. If you only want to scale control
plane nodes, you only need to provide the list of control plane nodes to
include in the cluster using the --control-plane-nodes option (you don't
need to provide the worker node list). Similarly, if you only want to scale
worker nodes, you only need to provide the list of worker nodes using the --
worker-nodes option.

Scaling Up a Kubernetes Cluster
Before you scale up a Kubernetes cluster, you must set up the new nodes so they can
be added to the cluster. Also, depending upon the type of nodes you're adding to the
cluster, and the system setup, you might also need to add the new nodes to the load
balancer configured for the cluster.

Setting up the New Kubernetes Nodes

To prepare a node:

1. Set up the node so it can be added to a Kubernetes cluster. For information on
setting up a Kubernetes node see Installation.

2. If you're using private X.509 certificates for nodes, you need to generate and copy
the certificates to the node. You don't need to do anything if you're using Vault to
provide certificates for nodes. For information using X.509 certificates see
Installation.

3. Start the Platform Agent service. For information on starting the Platform Agent,
see Installation.

Adding New Nodes to the Load Balancer

If you're using an external load balancer for the Kubernetes cluster (set with the --
load-balancer option when you created the Kubernetes module), add any new control
plane nodes to it. If you're using an Oracle Cloud Infrastructure load balancer, add any
new control plane nodes to the appropriate backend set and set the port for the control
plane nodes to 6443. If you're using the load balancer deployed by the Platform CLI
(set with the --virtual-ip option when you created the Kubernetes module), you

Chapter 6
Scaling Up a Kubernetes Cluster

6-2

https://docs.oracle.com/en/operating-systems/olcne/1.8/install/
https://docs.oracle.com/en/operating-systems/olcne/1.8/install/
https://docs.oracle.com/en/operating-systems/olcne/1.8/install/

don't need to add the control plane nodes to it. This is done automatically when you scale the
nodes into the cluster.

If you have the Istio module installed and set up with a load balancer for the Istio ingress
gateway, and you're adding new worker nodes, add the new worker nodes to the Istio egress
load balancer. If you're using an Oracle Cloud Infrastructure load balancer, add any new
worker nodes to the appropriate backend set.

Adding New Nodes to the Kubernetes Cluster

After completing the preparatory steps in the preceding sections, use the instructions in this
procedure to add nodes to a Kubernetes cluster.

To scale up a Kubernetes cluster:

1. From a control plane node of the Kubernetes cluster, use the kubectl get nodes
command to see the control plane nodes and worker nodes of the cluster.

kubectl get nodes

The output looks similar to:

NAME STATUS ROLE AGE VERSION
control1.example.com Ready control-plane 26h version
control2.example.com Ready control-plane 26h version
control3.example.com Ready control-plane 26h version
worker1.example.com Ready <none> 26h version
worker2.example.com Ready <none> 26h version
worker3.example.com Ready <none> 26h version

In this example, three control plane nodes are in the Kubernetes cluster:

• control1.example.com
• control2.example.com
• control3.example.com
Three worker nodes are also in the cluster:

• worker1.example.com
• worker2.example.com
• worker3.example.com

2. Use the olcnectl module update command to scale up a Kubernetes cluster.

In this example, the Kubernetes cluster is scaled up so that it has the recommended
minimum of five control plane nodes and four worker nodes. This example adds two new
control plane nodes (control4.example.com and control5.example.com) and one new
worker node (worker4.example.com) to the Kubernetes module named mycluster. From
the operator node run:

olcnectl module update \
--environment-name myenvironment \
--name mycluster \
--control-plane-nodes
control1.example.com:8090,control2.example.com:8090,control3.example.com:8

Chapter 6
Scaling Up a Kubernetes Cluster

6-3

090,\
control4.example.com:8090,control5.example.com:8090 \
--worker-nodes
worker1.example.com:8090,worker2.example.com:8090,worker3.example.co
m:8090,\
worker4.example.com:8090

You can optionally include the --generate-scripts option. This option generates
scripts you can run for each node in the event of any validation failures during
scaling. A script is created for each node in the module, saved to the local
directory, and named hostname:8090.sh.

You can also optionally included the --force option to suppress the prompt
displayed to confirm you want to continue with scaling the cluster.

You can optionally use the --log-level option to set the level of logging displayed
in the command output. By default, error messages are displayed. For example,
you can set the logging level to show all messages when you include:

--log-level debug

The log messages are also saved as an operation log. You can view operation
logs as commands are running, or when they've completed. For more information
using operation logs, see Platform Command-Line Interface.

3. On a control plane node of the Kubernetes cluster, use the kubectl get nodes
command to verify the cluster has been scaled up to include the new control plane
node and worker nodes.

kubectl get nodes

The output looks similar to:

NAME STATUS ROLE AGE VERSION
control1.example.com Ready control-plane 26h version
control2.example.com Ready control-plane 26h version
control3.example.com Ready control-plane 26h version
control4.example.com Ready control-plane 2m38s version
control5.example.com Ready control-plane 2m38s version
worker1.example.com Ready <none> 26h version
worker2.example.com Ready <none> 26h version
worker3.example.com Ready <none> 26h version
worker4.example.com Ready <none> 2m38s version

Scaling Down a Kubernetes Cluster
This procedure shows you how to remove nodes from a Kubernetes cluster.

Chapter 6
Scaling Down a Kubernetes Cluster

6-4

https://docs.oracle.com/en/operating-systems/olcne/1.8/olcnectl/

NOT_SUPPORTED:

Be careful if you're scaling down the control plane nodes of the cluster. If you have
two control plane nodes and you scale down to have only one control plane node,
then you would have only a single point of failure.

To scale down a Kubernetes cluster:

1. From a control plane node of the Kubernetes cluster, use the kubectl get nodes
command to see the control plane nodes and worker nodes of the cluster.

kubectl get nodes

The output looks similar to:

NAME STATUS ROLE AGE VERSION
control1.example.com Ready control-plane 26h version
control2.example.com Ready control-plane 26h version
control3.example.com Ready control-plane 26h version
control4.example.com Ready control-plane 2m38s version
control5.example.com Ready control-plane 2m38s version
worker1.example.com Ready <none> 26h version
worker2.example.com Ready <none> 26h version
worker3.example.com Ready <none> 26h version
worker4.example.com Ready <none> 2m38s version

In this example, five control plane nodes are in the Kubernetes cluster:

• control1.example.com
• control2.example.com
• control3.example.com
• control4.example.com
• control5.example.com
Four worker nodes are also in the cluster:

• worker1.example.com
• worker2.example.com
• worker3.example.com
• worker4.example.com

2. Use the olcnectl module update command to scale down a Kubernetes cluster.

In this example, the Kubernetes cluster is scaled down so that it has three control plane
nodes and three worker nodes. This example removes two control plane nodes
(control4.example.com and control5.example.com) and one worker node

Chapter 6
Scaling Down a Kubernetes Cluster

6-5

(worker4.example.com) from the Kubernetes module named mycluster. From the
operator node run:

olcnectl module update \
--environment-name myenvironment \
--name mycluster \
--control-plane-nodes
control1.example.com:8090,control2.example.com:8090,control3.example
.com:8090 \
--worker-nodes
worker1.example.com:8090,worker2.example.com:8090,worker3.example.co
m:8090

3. On a control plane node of the Kubernetes cluster, use the kubectl get nodes
command to verify the cluster has been scaled down to remove the control plane
nodes and worker node.

kubectl get nodes

The output looks similar to:

NAME STATUS ROLE AGE VERSION
control1.example.com Ready control-plane 26h version
control2.example.com Ready control-plane 26h version
control3.example.com Ready control-plane 26h version
worker1.example.com Ready <none> 26h version
worker2.example.com Ready <none> 26h version
worker3.example.com Ready <none> 26h version

4. The removed nodes can be added back into the cluster in a scale-up operation
after any necessary maintenance has been completed. However, if the nodes are
to be replaced by new ones, then you might need to remove the old nodes from
the load balancer. For information on load balancers, see Adding New Nodes to
the Load Balancer.

Chapter 6
Scaling Down a Kubernetes Cluster

6-6

7
Backing up and Restoring a Kubernetes
Cluster

This chapter discusses how to back up and restore a Kubernetes cluster in Oracle Cloud
Native Environment.

Backing up Control Plane Nodes
Adopting a back up strategy to protect a Kubernetes cluster against control plane node
failures is important, especially for clusters with only one control plane node. High availability
clusters with many control plane nodes also need a fallback plan if the resilience provided by
the replication and failover functionality has been exceeded.

You don't need to bring down the cluster to perform a back up as part of a disaster recovery
plan. On the operator node, use the olcnectl module backup command to back up the key
containers and manifests for all the control plane nodes in the cluster.

Important:

Only the key containers required for the Kubernetes control plane node are backed
up. No application containers are backed up.

For example:

olcnectl module backup \
--environment-name myenvironment \
--name mycluster

The back up files are stored in the /var/olcne/backups directory on the operator node. The
files are saved to a timestamped folder that follows the pattern:

/var/olcne/backups/environment-name/kubernetes/module-name/timestamp

Restoring Control Plane Nodes
These restore steps are intended for use when a Kubernetes cluster must be reconstructed
as part of a planned disaster recovery scenario. Unless a total cluster failure occurs, you
don't need to manually recover individual control plane nodes in a high availability cluster as it
can self-heal with replication and failover.

To restore a control plane node, you must have an existing Oracle Cloud Native Environment,
and have deployed the Kubernetes module. You can't restore to an environment that doesn't
exist.

To restore a control plane node:

7-1

1. Ensure the Platform Agent is running correctly on the control plane nodes before
proceeding:

systemctl status olcne-agent.service

2. On the operator node, use the olcnectl module restore command to restore the
key containers and manifests for the control plane nodes in the cluster. For
example:

olcnectl module restore \
--environment-name myenvironment \
--name mycluster

The files from the latest timestamped folder from /var/olcne/backups/
environment-name/kubernetes/module-name/ are used to restore the cluster to its
previous state.

You might be prompted by the Platform CLI to perform extra set up steps on the
control plane nodes to fulfill the prerequisite requirements. Follow any instructions
and run the olcnectl module restore command again.

3. You can verify the restore operation was successful using the kubectl command
on a control plane node. For example, to list the nodes, use:

kubectl get nodes

And to list the pods running in the kube-system namespace, use:

kubectl get pods --namespace kube-system

Chapter 7
Restoring Control Plane Nodes

7-2

8
Setting Access to externalIPs in Kubernetes
Services

This chapter discusses setting access to externalIPs in Kubernetes services. For more
information on externalIPs, see the upstream Kubernetes documentation.

When you deploy Kubernetes, a service is deployed to the cluster that controls access to
externalIPs in Kubernetes services. The service is named externalip-validation-
webhook-service and runs in the externalip-validation-system namespace.

After Kubernetes is deployed, you can see the service is running using:

kubectl get services --namespace externalip-validation-system

The output looks similar to:

NAME TYPE CLUSTER-IP EXTERNAL-
IP PORT(S) AGE
externalip-validation-webhook-service ClusterIP 10.100.79.236
<none> 443/TCP 15m

This Kubernetes service requires X.509 certificates be set up before deploying Kubernetes.
You can use certificates generated by Vault, CA Certificates, or generate certificates using
the gen-certs-helper.sh script. For information on setting up these certificates, see
Installation.

When you deploy Kubernetes, you need to provide the location of these certificates in the
olcnectl module create command. Examples of creating a Kubernetes module and setting
the certificate locations are shown in Creating a Kubernetes Module.

Enabling Access to CIDR Blocks
You can optionally set the external IP addresses that can be accessed by Kubernetes
services when you create the module. You use the --restrict-service-externalip-cidrs
option of the olcnectl module create command to set this. In this example, the IP ranges
that are allowed are within the 192.0.2.0/24 and 198.51.100.0/24 CIDR blocks.

olcnectl module create \
--environment-name myenvironment \
--module kubernetes \
--name mycluster \
...
--restrict-service-externalip-ca-cert /etc/olcne/certificates/
restrict_external_ip/ca.cert \
--restrict-service-externalip-tls-cert /etc/olcne/certificates/
restrict_external_ip/node.cert \
--restrict-service-externalip-tls-key /etc/olcne/certificates/

8-1

https://kubernetes.io/docs/concepts/services-networking/service/#external-ips
https://docs.oracle.com/en/operating-systems/olcne/1.8/install/

restrict_external_ip/node.key \
--restrict-service-externalip-cidrs 192.0.2.0/24,198.51.100.0/24

Changing Access to CIDR Blocks
If you have a Kubernetes module that has CIDR blocks configured to be allowed, you
can change this configuration using the --restrict-service-externalip-cidrs
option of the olcnectl module update command. This lets you change the CIDRS
that are configured. For example, to set the CIDR block that can be accessed to
192.0.2.0/24 for an existing Kubernetes module:

olcnectl module update \
--environment-name myenvironment \
--name mycluster \
--restrict-service-externalip-cidrs 192.0.2.0/24

To remove access to any CIDR blocks, which means no access to externalIPs is
allowed, set --restrict-service-externalip-cidrs option to null, for example:

olcnectl module update \
--environment-name myenvironment \
--name mycluster \
--restrict-service-externalip-cidrs ""

Disabling Access to externalIPs
To restrict Kubernetes services from accessing any externalIPs, don't you set any
CIDR blocks that are allowed when you create the Kubernetes module. So, don't use
the --restrict-service-externalip-cidrs option of the olcnectl module create
command. The externalip-validation-webhook-service Kubernetes service is
deployed, but doesn't allow access to any externalIPs. For example:

olcnectl module create \
--environment-name myenvironment \
--module kubernetes \
--name mycluster \
...
--restrict-service-externalip-ca-cert /etc/olcne/certificates/
restrict_external_ip/ca.cert \
--restrict-service-externalip-tls-cert /etc/olcne/certificates/
restrict_external_ip/node.cert \
--restrict-service-externalip-tls-key /etc/olcne/certificates/
restrict_external_ip/node.key

If you have an existing Kubernetes module and you want to remove access to all
configured CIDR blocks, you update the module and set the --restrict-service-
externalip-cidrs option to null as shown in Changing Access to CIDR Blocks.

Chapter 8
Changing Access to CIDR Blocks

8-2

Enabling Access to all externalIPs
If you want all Kubernetes services to access all externalIPs, you can disable this feature
using the --restrict-service-externalip false option of the olcnectl module create
command. Disabling this feature means that all Kubernetes services have access to all
externalIPs in the cluster.

If you disable this feature, the externalip-validation-webhook-service Kubernetes service
isn't deployed to the cluster, which means no validation of external IP addresses is performed
for Kubernetes services, and access is allowed for all CIDR blocks. For example, when you
create a Kubernetes module, include the --restrict-service-externalip false option:

olcnectl module create \
--environment-name myenvironment \
--module kubernetes \
--name mycluster \
...
--restrict-service-externalip false

You can disable this feature in a Kubernetes cluster by using the --restrict-service-
externalip false option of the olcnectl module update command. Changing a
Kubernetes module in this way removes the externalip-validation-webhook-service
Kubernetes service from the cluster, so validation isn't performed. For example:

olcnectl module update \
--environment-name myenvironment \
--name mycluster \
--restrict-service-externalip false

Conversely, if you enable this feature in a Kubernetes cluster by using the --restrict-
service-externalip true option of the olcnectl module update command, the
externalip-validation-webhook-service Kubernetes service is deployed to the cluster, so
validation is then performed. For example:

olcnectl module update \
--environment-name myenvironment \
--name mycluster \
--restrict-service-externalip true

Chapter 8
Enabling Access to all externalIPs

8-3

9
Removing a Kubernetes Cluster

To remove a Kubernetes cluster, use the olcnectl module uninstall command. For
example, to uninstall the Kubernetes module named mycluster:

olcnectl module uninstall \
--environment-name myenvironment \
--name mycluster

On each node, the Kubernetes containers are stopped and deleted, the Kubernetes cluster is
removed, and the kubelet service is stopped.

Uninstalling a module also removes the module configuration from the Platform API Server. If
you uninstall a module and want to reinstall it, you need to create the module again using the
olcnectl module create command.

Tip:

If you reinstall a Kubernetes module on hosts that were used in a previous
Kubernetes cluster, run the sudo kubeadm reset -f command on each node
before you redeploy the module.

9-1

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Introduction to Kubernetes
	Kubernetes Components
	Nodes
	Control Plane Node
	Control Plane Replica Nodes
	Worker Nodes

	Pods
	ReplicaSet, Deployment, StatefulSet Controllers
	Services
	Volumes
	Namespaces

	About CRI-O

	2 Creating a Kubernetes Cluster
	Setting the Kubernetes CNI
	Creating a Kubernetes Module
	Creating an HA Cluster with External Load Balancer
	Creating an HA Cluster with Internal Load Balancer
	Creating a Cluster with a Single Control Plane Node

	Validating a Kubernetes Module
	Installing a Kubernetes Module
	Reporting Information about the Kubernetes Module

	3 Setting up the Kubernetes Command-Line Interface (kubectl)
	Setting up kubectl on a Control Plane Node
	Setting up kubectl on a Non-Cluster Node

	4 Using Kubernetes
	About Runtime Engines
	Getting Information about Nodes
	Running an Application in a Pod
	Scaling a Pod Deployment
	Exposing a Service Object for an Application
	Deleting a Service or Deployment
	Working With Namespaces
	Using Deployment Files

	5 Accessing the Kubernetes Dashboard
	Starting the Dashboard
	Connecting to the Dashboard
	Connecting to the Dashboard Remotely
	Connecting to the Dashboard Container

	6 Scaling a Kubernetes Cluster
	Scaling Up a Kubernetes Cluster
	Scaling Down a Kubernetes Cluster

	7 Backing up and Restoring a Kubernetes Cluster
	Backing up Control Plane Nodes
	Restoring Control Plane Nodes

	8 Setting Access to externalIPs in Kubernetes Services
	Enabling Access to CIDR Blocks
	Changing Access to CIDR Blocks
	Disabling Access to externalIPs
	Enabling Access to all externalIPs

	9 Removing a Kubernetes Cluster

