
Oracle Cloud Native Environment
KubeVirt Module for Release 1.8

F87574-01
January 2024

Oracle Cloud Native Environment KubeVirt Module for Release 1.8,

F87574-01

Copyright © 2023, 2024, Oracle and/or its affiliates.

Contents

 Preface

Documentation License iv

Conventions iv

Documentation Accessibility iv

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 Introduction to the KubeVirt Module

2 Installing the KubeVirt Module

Prerequisites 2-1

Deploying the KubeVirt Module 2-2

Verifying the KubeVirt Module Deployment 2-3

3 Using KubeVirt

Creating a Virtual Machine Image 3-1

Creating a KubeVirt Instance 3-2

Creating a KubeVirt Instance with Persistent Storage 3-4

4 Removing the KubeVirt Module

iii

Preface

This document contains information about setting up and using the KubeVirt module in
Oracle Cloud Native Environment. It describes how to prepare a virtual machine image
and use it to create a virtual machine instance using KubeVirt and deploy it into a
Kubernetes cluster.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–
Share Alike 4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute
this content or an adaptation of it, you must provide attribution to Oracle and retain the
original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis,
or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands
within a paragraph, URLs, code in
examples, text that appears on the screen,
or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle
Accessibility Conformance Report at https://www.oracle.com/corporate/accessibility/
templates/t2-11535.html.

Preface

iv

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Preface

v

https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

1
Introduction to the KubeVirt Module

KubeVirt is a virtualization technology that can create and manage virtual machines in a
Kubernetes cluster. The virtual machines are created using Kubernetes custom resource
definitions (CRDs) and can be managed using the kubectl command. A VirtualMachine CRD
can be used to create VirtualMachineInstances, and each instance runs as both a virtual
machine and a pod. You can create CRDs for VirtualMachineInstanceReplicaSets (which are
similar to a ReplicaSet) which can be used to create and manage many
VirtualMachineInstances with the same configuration, defined in a template.

For upstream KubeVirt documentation, see https://kubevirt.io/user-guide/.

For more information about KubeVirt, see https://kubevirt.io/.

The KubeVirt module is used to install KubeVirt. The default namespace for KubeVirt is
kubevirt.

We recommend that you provide persistent storage to KubeVirt virtual machines. Every
meaningful workload in the computing industry requires some sort of data storage. Persistent
storage is essential when working with stateful applications as it's important that you can
retain data beyond the lifecycle of the container or virtual machine. As container images are
read-only, any writes to the file system by the virtual machine aren't persisted between boots
or live migration. For virtual machines to be restarted, live migrated, and to maintain state,
persistent storage is required so that the state can be written somewhere. We recommend
that you use a CephFilesystem to provide this storage. You can install and configure a
CephFilesystem using the Rook module. For information on setting up CephFilesystem with
Rook, see Rook Module.

1-1

https://kubevirt.io/user-guide/
https://kubevirt.io/
https://docs.oracle.com/en/operating-systems/olcne/1.8/rook/

2
Installing the KubeVirt Module

This chapter discusses how to install the KubeVirt module on Oracle Cloud Native
Environment.

Prerequisites
This section contains the prerequisites for installing the KubeVirt module.

Setting up Persistent Storage

We recommend that you set up storage for KubeVirt virtual machines to maintain state over
reboots and live migration. You might want to use a CephFilesystem that's made available
using a StorageClass. CephFilesystem is a ReadWriteMany file system, which is required to
maintain state. The Rook module can be used to set up CephFilesystem storage. For
information on setting up a CephFilesystem and StorageClass using the Rook module, see
Rook Module.

Setting up a Container Registry

KubeVirt pulls containerized virtual machine images from a container registry. The
Kubernetes nodes need to have access to a container registry with the appropriately
configured container images to create virtual machines with KubeVirt.

You can set up a container registry using Podman, Oracle Container Runtime for Docker, or
any other container registry software. For information creating a Podman local container
registry, see Oracle Linux: Podman User's Guide. For information on creating an Oracle
Container Runtime for Docker container registry, see Oracle Linux: Oracle Container Runtime
for Docker User's Guide.

Creating a KubeVirt Configuration File

To perform any advanced configuration for KubeVirt, you can optionally provide a KubeVirt
configuration file. This lets you set up or override any KubeVirt settings such as debug
logging or emulation options, when you deploy the KubeVirt module. The KubeVirt objects
that you can override are listed in the upstream KubeVirt documentation.

Provide a KubeVirt configuration file on the operator node in YAML format. The high level
structure for this file would look similar to:

apiVersion: kubevirt.io/v1
kind: KubeVirt
metadata:
 annotations: {}
 labels: {}
 name: {}
 namespace: {}
spec: {}

2-1

https://docs.oracle.com/en/operating-systems/olcne/1.8/rook/
https://docs.oracle.com/en/operating-systems/oracle-linux/podman/
https://docs.oracle.com/en/operating-systems/oracle-linux/docker/
https://docs.oracle.com/en/operating-systems/oracle-linux/docker/
https://kubevirt.io/api-reference/master/definitions.html#_v1_kubevirt

The Platform API Server uses the information contained in the configuration file when
creating the KubeVirt module. KubeVirt performs all the set up and configuration for
KubeVirt, using the information you provide in this file.

Deploying the KubeVirt Module
You can deploy all the modules required to set up KubeVirt using a single olcnectl
module create command. This method might be useful if you want to deploy the
KubeVirt module at the same time as deploying a Kubernetes cluster.

If you have an existing deployment of the Kubernetes module, you can specify that
instance when deploying the KubeVirt module.

This section guides you through installing each component required to deploy the
KubeVirt module.

For the full list of the Platform CLI command options available when creating modules,
see the olcnectl module create command in Platform Command-Line Interface.

To deploy the KubeVirt module:

1. If you don't already have an environment set up, create one into which the
modules can be deployed. For information on setting up an environment, see
Installation. The name of the environment in this example is myenvironment.

2. If you don't already have a Kubernetes module set up or deployed, set one up. For
information on adding a Kubernetes module to an environment, see Kubernetes
Module. The name of the Kubernetes module in this example is mycluster.

3. Create a KubeVirt module and associate it with the Kubernetes module named
mycluster using the --kubevirt-kubernetes-module option. In this example, the
KubeVirt module is named mykubevirt.

olcnectl module create \
--environment-name myenvironment \
--module kubevirt \
--name mykubevirt \
--kubevirt-kubernetes-module mycluster

The --module option sets the module type to create, which is kubevirt. You define
the name of the KubeVirt module using the --name option, which in this case is
mykubevirt.

The --kubevirt-kubernetes-module option sets the name of the Kubernetes
module.

If you don't include all the required options when adding the module, you're
prompted to provide them.

4. Use the olcnectl module install command to install the KubeVirt module. For
example:

olcnectl module install \
--environment-name myenvironment \
--name mykubevirt

Chapter 2
Deploying the KubeVirt Module

2-2

https://docs.oracle.com/en/operating-systems/olcne/1.8/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.8/install/
https://docs.oracle.com/en/operating-systems/olcne/1.8/kubernetes/
https://docs.oracle.com/en/operating-systems/olcne/1.8/kubernetes/

You can optionally use the --log-level option to set the level of logging displayed in the
command output. By default, error messages are displayed. For example, you can set
the logging level to show all messages when you include:

--log-level debug

The log messages are also saved as an operation log. You can view operation logs as
commands are running, or when they've completed. For more information using operation
logs, see Platform Command-Line Interface.

The KubeVirt module is deployed into the Kubernetes cluster.

5. You might want to optionally install the KubeVirt CLI tools virtctl and virt-viewer.
These tools make managing many operations involving KubeVirt virtual machines easier.
These tools are useful when accessing the virtual machine console and remote desktop.
On a control plane node, install these tools:

sudo dnf install virtctl virt-viewer

Verifying the KubeVirt Module Deployment
You can verify the KubeVirt module is deployed using the olcnectl module instances
command on the operator node. For example:

olcnectl module instances \
--environment-name myenvironment

The output looks similar to:

INSTANCE MODULE STATE
mycluster kubernetes installed
mykubevirt kubevirt installed
myrook rook installed
...

Note the entry for kubevirt in the MODULE column is in the installed state.

In addition, use the olcnectl module report command to review information about the
module. For example, use the following command to review the KubeVirt module named
mykubevirt in myenvironment:

olcnectl module report \
--environment-name myenvironment \
--name mykubevirt \
--children

For more information on the syntax for the olcnectl module report command, see
Platform Command-Line Interface.

Chapter 2
Verifying the KubeVirt Module Deployment

2-3

https://docs.oracle.com/en/operating-systems/olcne/1.8/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.8/olcnectl/

On a control plane node, verify the virt-* deployments are running in the kubevirt
namespace:

kubectl get deployments --namespace kubevirt

The output looks similar to:

NAME READY UP-TO-DATE AVAILABLE AGE
virt-api 2/2 2 2 117m
virt-controller 2/2 2 2 116m
virt-operator 2/2 2 2 117m

Chapter 2
Verifying the KubeVirt Module Deployment

2-4

3
Using KubeVirt

This chapter discusses how to use the KubeVirt module to create virtual machines in Oracle
Cloud Native Environment.

Creating a Virtual Machine Image
KubeVirt pulls a containerized image from a container registry to create virtual machine
instances. You need to prepare these images before you can use them with KubeVirt. This
section contains an example of how to create a container image of Oracle Linux that can be
used to create a KubeVirt virtual machine.

This example uses an Oracle Linux cloud image in QCOW format from:

https://yum.oracle.com/oracle-linux-templates.html

For example, on any host that can connect to your local container registry, download the
Oracle Linux 9 QCOW image:

wget https://yum.oracle.com/templates/OracleLinux/OL9/u2/x86_64/OL9U2_x86_64-
kvm-b197.qcow

Create a Dockerfile so you can load the image into your local container registry. For example,
in the same directory as the QCOW image is located, create a file named Dockerfile that
contains:

FROM scratch
ADD --chown=107:107 OL9U2_x86_64-kvm-b197.qcow /disk/

Build a containerized image from the QCOW image. For example:

podman build . -t myregistry.example.com/kubevirt/oraclelinux:ol9.2

You should see output similar to:

STEP 1: FROM scratch
STEP 2: ADD --chown=107:107 OL9U2_x86_64-kvm-b197.qcow /disk/
STEP 3: COMMIT myregistry.example.com/kubevirt/oraclelinux:ol9.2
--> 09b0b23bb66
Successfully tagged myregistry.example.com/kubevirt/oraclelinux:ol9.2
09b0b23bb6673bdfd1481d81dace0b6008c6ab25e1d156c525b9abaaf8d9f30e

The containerized image is stored locally. You must now upload it to your container registry. If
required, log into your container registry:

podman login myregistry.example.com

3-1

https://yum.oracle.com/oracle-linux-templates.html

Push the containerized image to your local registry. For example:

podman push myregistry.example.com/kubevirt/oraclelinux:ol9.2

You should see output similar to:

Getting image source signatures
Copying blob 8a8b1918f588 done
Copying config 09b0b23bb6 done
Writing manifest to image destination
Storing signatures

You now have a containerized image for Oracle Linux that you can use to create a
KubeVirt virtual machine instance. The container image location in this example is:

myregistry.example.com/kubevirt/oraclelinux:ol9.2

Creating a KubeVirt Instance
This section contains a basic test to verify you can use KubeVirt to create a virtual
machine.

This example uses the Oracle Linux 9 container image created in Creating a Virtual
Machine Image.

To create a virtual machine with KubeVirt:

1. Create a VirtualMachine file for your virtual machine. The containerDisk option is
where you set the location of the container image to create the virtual machine.
This should be the location of a container image in either your local container
registry, or a public container registry such as DockerHub. Save the file as
vm.yaml.

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: ol9-no-pvc
spec:
 running: true
 template:
 spec:
 networks:
 - name: foo
 pod: {}
 domain:
 resources:
 requests:
 memory: 1024M
 firmware:
 bootloader:
 efi:
 secureBoot: false
 features:
 smm:

Chapter 3
Creating a KubeVirt Instance

3-2

 enabled: true
 devices:
 interfaces:
 - name: foo
 masquerade: {}
 ports:
 - port: 80
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 volumes:
 - name: containerdisk
 containerDisk:
 image: myregistry.example.com/kubevirt/oraclelinux:ol9.2

2. Create the VirtualMachine:

kubectl apply -f vm.yaml
virtualmachine.kubevirt.io/ol9-no-pvc created

3. You can see the VirtualMachine is created using the kubectl get vm command:

kubectl get vm
NAME AGE STATUS READY
ol9-no-pvc 28s Running True

You can see information on the VirtualMachineInstance using the kubectl get vmi
command:

kubectl get vmi
NAME AGE PHASE IP
NODENAME READY
ol9-no-pvc 48s Running 10.244.3.19
worker1.example.com True

You can get detailed information about the VirtualMachineInstance using the kubectl
describe vmi command:

kubectl describe vmi ol9-no-pvc
Name: ol9-no-pvc
Namespace: default
Labels: kubevirt.io/nodeName=worker1.example.com
Annotations: kubevirt.io/latest-observed-api-version: v1
 kubevirt.io/storage-observed-api-version: v1alpha3
API Version: kubevirt.io/v1
Kind: VirtualMachineInstance
...
 Volumes:
 Container Disk:
 Image: myregistry.example.com/kubevirt/
oraclelinux:ol9.2
 Image Pull Policy: IfNotPresent

Chapter 3
Creating a KubeVirt Instance

3-3

 Name: containerdisk
...
 Virtual Machine Revision Name: revision-start-
vm-032efda3-040f-4dc0-941d-382daa5f926b-1
 Volume Status:
 Name: containerdisk
 Target: sda
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 94s virtualmachine-controller
Created virtual machine pod virt-launcher-ol9-no-pvc-sz6hb
 Normal Created 89s virt-handler
VirtualMachineInstance defined.
 Normal Started 89s virt-handler
VirtualMachineInstance started.

You can see the pod that is running that maps to the VirtualMachineInstance
using:

kubectl get pod
NAME READY STATUS RESTARTS AGE
virt-launcher-ol9-no-pvc-.... 2/2 Running 0 1h

4. You can delete the VirtualMachine using:

kubectl delete vm ol9-no-pvc
virtualmachine.kubevirt.io "ol9-no-pvc" deleted

Creating a KubeVirt Instance with Persistent Storage
This section contains a basic test to verify you can use KubeVirt to create a virtual
machine using persistent storage. This type of virtual machine can be live migrated
and the state is maintained.

This example uses the Oracle Linux 9 container image created in Creating a Virtual
Machine Image.

This example also uses a CephFilesystem that is available via a StorageClass named
rook-cephfs. CephFilesystem is a ReadWriteMany filesystem and is useful to allow
writing to the virtual machine filesystem to enable state to be maintained and persist
over reboots and live migration. Information on setting up a CephFilesystem using the
Rook module is available in Rook Module.

To create a virtual machine that uses persistent storage with KubeVirt:

1. Create a Kubernetes PersistentVolumeClaim file for your StorageClass. In this
example, this is a CephFilesystem StorageClass named rook-cephfs. On a
control plane node, create a file named pvc-vm.yaml. Copy the following into the
file.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

Chapter 3
Creating a KubeVirt Instance with Persistent Storage

3-4

https://docs.oracle.com/en/operating-systems/olcne/1.8/rook/

 name: ol9-migratable
spec:
 storageClassName: rook-cephfs
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 30Gi

2. Create the Kubernetes PersistentVolumeClaim.

kubectl apply -f pvc-vm.yaml
persistentvolumeclaim/ol9-migratable created

3. Create a VirtualMachine file for your virtual machine. This example uses the
PersistentVolumeClaim to enable writing to the virtual machine to maintain state. The
containerDisk option is where you set the location of the container image to create the
virtual machine. This should be the location of a container image in either your local
container registry, or a public container registry such as DockerHub. Save the file as
vm.yaml.

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: ol9
spec:
 running: true
 template:
 spec:
 evictionStrategy: LiveMigrate
 terminationGracePeriodSeconds: 30
 networks:
 - name: foo
 pod: {}
 domain:
 resources:
 requests:
 memory: 1024M
 firmware:
 bootloader:
 efi:
 secureBoot: false
 features:
 smm:
 enabled: true
 devices:
 interfaces:
 - name: foo
 masquerade: {}
 ports:
 - port: 80
 disks:
 - name: containerdisk
 disk:
 bus: virtio

Chapter 3
Creating a KubeVirt Instance with Persistent Storage

3-5

 - name: installdisk
 disk:
 bus: virtio
 volumes:
 - name: containerdisk
 containerDisk:
 image: myregistry.example.com/kubevirt/oraclelinux:ol9.2
 - name: installdisk
 persistentVolumeClaim:
 claimName: ol9-migratable

4. Create the VirtualMachine:

kubectl apply -f vm.yaml
virtualmachine.kubevirt.io/ol9 created

5. You can see the VirtualMachine is created using the kubectl get vm command:

kubectl get vm
NAME AGE STATUS READY
ol9 41m Running True

You can see information on the VirtualMachineInstance using the kubectl get
vmi command:

kubectl get vmi
NAME AGE PHASE IP
NODENAME READY
ol9 42m Running 10.244.3.29
worker1.example.com True

You can get detailed information about the VirtualMachineInstance using the
kubectl describe vmi command:

kubectl describe vmi ol9
Name: ol9
Namespace: default
Labels: kubevirt.io/nodeName=worker1.example.com
Annotations: kubevirt.io/latest-observed-api-version: v1
 kubevirt.io/storage-observed-api-version: v1alpha3
API Version: kubevirt.io/v1
Kind: VirtualMachineInstance
...
 Volumes:
 Container Disk:
 Image: myregistry.example.com/kubevirt/
oraclelinux:ol9.2
 Image Pull Policy: IfNotPresent
 Name: containerdisk
 Name: installdisk
 Persistent Volume Claim:
 Claim Name: ol9-migratable
...

Chapter 3
Creating a KubeVirt Instance with Persistent Storage

3-6

 Virtual Machine Revision Name: revision-start-vm-05252d81-
e403-4e7b-9834-b9e03850ac7c-1
 Volume Status:
 Name: containerdisk
 Target: sda
 Name: installdisk
 Persistent Volume Claim Info:
 Access Modes:
 ReadWriteMany
 Capacity:
 Storage: 30Gi
 Filesystem Overhead: 0.055
 Requests:
 Storage: 30Gi
 Volume Mode: Filesystem
 Target: vda
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 42m disruptionbudget-controller Created
PodDisruptionBudget kubevirt-disruption-budget-rgh5f
 Normal SuccessfulCreate 42m virtualmachine-controller Created
virtual machine pod virt-launcher-ol9-6qvsh
 Normal Created 42m virt-handler
VirtualMachineInstance defined.
 Normal Started 42m virt-handler
VirtualMachineInstance started.

You can see the pod that is running that maps to the VirtualMachineInstance using:

kubectl get pod
NAME READY STATUS RESTARTS AGE
virt-launcher-ol9-.... 2/2 Running 0 1h

6. You can delete the VirtualMachine using:

kubectl delete vm ol9
virtualmachine.kubevirt.io "ol9" deleted

Chapter 3
Creating a KubeVirt Instance with Persistent Storage

3-7

4
Removing the KubeVirt Module

You can remove a deployment of the KubeVirt module and leave the Kubernetes cluster in
place. To do this, you remove the KubeVirt module from the environment.

Use the olcnectl module uninstall command to remove the KubeVirt module. For
example, to uninstall the KubeVirt module named mykubevirt in the environment named
myenvironment:

olcnectl module uninstall \
--environment-name myenvironment \
--name mykubevirt

The KubeVirt module is removed from the environment.

4-1

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Introduction to the KubeVirt Module
	2 Installing the KubeVirt Module
	Prerequisites
	Deploying the KubeVirt Module
	Verifying the KubeVirt Module Deployment

	3 Using KubeVirt
	Creating a Virtual Machine Image
	Creating a KubeVirt Instance
	Creating a KubeVirt Instance with Persistent Storage

	4 Removing the KubeVirt Module

