
Oracle Cloud Native Environment
Oracle Cloud Infrastructure Cloud Controller
Manager Module for Release 1.9

F93852-01
May 2024

Oracle Cloud Native Environment Oracle Cloud Infrastructure Cloud Controller Manager Module for Release
1.9,

F93852-01

Copyright © 2023, 2024, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion vi

1 Introduction to the Oracle Cloud Infrastructure Cloud Controller Manager
Module

2 Installing the Oracle Cloud Infrastructure Cloud Controller Manager
Module

Prerequisites 2-1

Deploying the Module 2-2

Verifying the Module Deployment 2-4

3 Using Oracle Cloud Infrastructure Storage

Creating Block Storage 3-1

Creating File Storage 3-5

Setting up a File System 3-5

Using a File System 3-6

4 Using the Oracle Cloud Infrastructure Load Balancer

Introduction to Oracle Cloud Infrastructure Load Balancers 4-1

Creating an Application Using an Oracle Cloud Infrastructure Load Balancer 4-1

iii

5 Removing the Oracle Cloud Infrastructure Cloud Controller Manager
Module

iv

Preface

This document contains information about setting up and using the Oracle Cloud
Infrastructure Cloud Controller Manager module to provide persistent storage and application
load balancers in Oracle Cloud Native Environment. The Oracle Cloud Infrastructure Cloud
Controller Manager module is used for Oracle Cloud Infrastructure instances.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share
Alike 4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or
an adaptation of it, you must provide attribution to Oracle and retain the original copyright
notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an action,
or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

v

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

vi

1
Introduction to the Oracle Cloud Infrastructure
Cloud Controller Manager Module

The Oracle Cloud Infrastructure Cloud Controller Manager module is used to set up
dynamically provisioned persistent storage using the Oracle Cloud Infrastructure Block
Volume and File System storage services, and for creating load balancers for Kubernetes
applications.

The Oracle Cloud Infrastructure Cloud Controller Manager module uses the Kubernetes
Cloud Controller Manager (oci-cloud-controller-manager) to provision storage and
application load balancers.

The Platform API Server communicates with the Oracle Cloud Infrastructure API to provision
and manage storage and load balancers.

For more information on the Kubernetes Cloud Controller Manager, see the upstream
documentation at:

https://github.com/oracle/oci-cloud-controller-manager

This document shows you how to install and use the Oracle Cloud Infrastructure Cloud
Controller Manager module.

1-1

https://github.com/oracle/oci-cloud-controller-manager

2
Installing the Oracle Cloud Infrastructure
Cloud Controller Manager Module

This chapter discusses how to install the Oracle Cloud Infrastructure Cloud Controller
Manager module on Oracle Cloud Native Environment on Oracle Cloud Infrastructure
instances.

Prerequisites
This section contains the prerequisite information you need to set up the Oracle Cloud
Infrastructure Cloud Controller Manager module.

Gather Oracle Cloud Infrastructure Identifiers

Before you set up the Oracle Cloud Infrastructure Cloud Controller Manager module, you
need to gather information about the Oracle Cloud Infrastructure environment. The most
common information you need is:

• The identifier for the region.

• The OCID for the tenancy.

• The OCID for the compartment.

• The OCID for the user.

• The public key fingerprint for the API signing key pair.

• The private key file for the API signing key pair.

You might need more information related to the Oracle Cloud Infrastructure networking or
other components.

If you're using the Oracle Cloud Infrastructure Cloud Controller Manager module to provide
load balancers for Kubernetes pods, you must also gather:

• The OCID for the Virtual Cloud Network (VCN).

• The OCIDs for two subnets in the VCN for high availability if required.

• The quota to use for the load balancers.

• The shape to use for the load balancers.

For information on finding each of these identifiers or components, see the Oracle Cloud
Infrastructure documentation.

Setting up the Health Check Endpoint Network Ports

When using a Kubernetes LoadBalancer service with the ServiceInternalTrafficPolicy
set to Cluster (the default), a health check endpoint is expected to be available on TCP port
10256. kube-proxy creates a listener on this port, which sets access to the LoadBalancer
service to verify that kube-proxy is healthy on the nodes. The LoadBalancer service decides

2-1

https://docs.oracle.com/iaas/Content/
https://docs.oracle.com/iaas/Content/

which nodes can have traffic routed to them using this policy. To allow traffic on this
port, you must open TCP port 10256 on all Kubernetes nodes. On each Kubernetes
node, run:

sudo firewall-cmd --zone=public --add-port=10256/tcp
sudo firewall-cmd --zone=public --add-port=10256/tcp --permanent
sudo systemctl restart firewalld.service

For more information on the ServiceInternalTrafficPolicy, see the upstream
Kubernetes documentation.

Ensure traffic is allowed for TCP port 10256 in the network security list.

Deploying the Module
The Oracle Cloud Infrastructure Cloud Controller Manager module is used to provision
both Oracle Cloud Infrastructure storage and application load balancers. This section
guides you through installing each component required to deploy the Oracle Cloud
Infrastructure Cloud Controller Manager module.

For the full list of the Platform CLI command options available when creating modules,
see the olcnectl module create command in Platform Command-Line Interface.

To deploy the Oracle Cloud Infrastructure Cloud Controller Manager module:

1. If you don't already have an environment set up, create one into which the
modules can be deployed. For information on setting up an environment, see
Installation. The name of the environment in this example is myenvironment.

2. If you don't already have a Kubernetes module set up or deployed, set one up.

For information on adding a Kubernetes module to an environment, see
Kubernetes Module. The name of the Kubernetes module in this example is
mycluster.

3. Create an Oracle Cloud Infrastructure Cloud Controller Manager module and
associate it with the Kubernetes module named mycluster using the --oci-ccm-
kubernetes-module option. In this example, the Oracle Cloud Infrastructure Cloud
Controller Manager module is named myoci.

olcnectl module create \
--environment-name myenvironment \
--module oci-ccm \
--name myoci \
--oci-ccm-kubernetes-module mycluster \
--oci-region us-ashburn-1 \
--oci-tenancy ocid1.tenancy.oc1..unique_ID \
--oci-compartment ocid1.compartment.oc1..unique_ID \
--oci-user ocid1.user.oc1..unique_ID \
--oci-fingerprint b5:52:... \
--oci-private-key-file /home/opc/.oci/oci_api_key.pem \
--oci-vcn ocid1.vcn.oc1..unique_ID \
--oci-lb-subnet1 ocid1.subnet.oc1..unique_ID

Chapter 2
Deploying the Module

2-2

https://kubernetes.io/docs/concepts/services-networking/service-traffic-policy/
https://docs.oracle.com/en/operating-systems/olcne/1.9/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.9/install/
https://docs.oracle.com/en/operating-systems/olcne/1.9/kubernetes/

The --module option sets the module type to create, which is oci-ccm. You define the
name of the Oracle Cloud Infrastructure Cloud Controller Manager module using the --
name option, which in this case is myoci.

The --oci-ccm-kubernetes-module option sets the name of the Kubernetes module.

The --oci-region option sets the Oracle Cloud Infrastructure region to use. The region
in this example is us-ashburn-1.

The --oci-tenancy option sets the OCID for the tenancy.

The --oci-compartment option sets the OCID for the compartment.

The --oci-user option sets the OCID for the user.

The --oci-fingerprint option sets the fingerprint for the public key for the Oracle Cloud
Infrastructure API signing key.

The --oci-private-key-file path option sets the location of the private key for the
Oracle Cloud Infrastructure API signing key. This must be on the operator node.

The --oci-vcn option sets the OCID for the VCN on which to create load balancers. You
don't need to include this option if you're not using a load balancer.

The --oci-lb-subnet1 option sets the OCID for the VCN subnet on which to create load
balancers. You don't need to include this option if you aren't using a load balancer.

To set up high availability for a load balancer, provide a second subnet on a different
availability domain using the --oci-lb-subnet2 option. For example:

--oci-lb-subnet2 ocid1.subnet.oc1..unique_ID \

If you don't include all the required options when adding the module, you're prompted to
provide them.

4. Use the olcnectl module install command to install the Oracle Cloud
Infrastructure Cloud Controller Manager module. For example:

olcnectl module install \
--environment-name myenvironment \
--name myoci

You can optionally use the --log-level option to set the level of logging displayed in the
command output. By default, error messages are displayed. For example, you can set
the logging level to show all messages when you include:

--log-level debug

The log messages are also saved as an operation log. You can view operation logs as
commands are running, or when they've completed. For more information using operation
logs, see Platform Command-Line Interface.

The Oracle Cloud Infrastructure Cloud Controller Manager module is deployed into the
Kubernetes cluster.

Chapter 2
Deploying the Module

2-3

https://docs.oracle.com/en/operating-systems/olcne/1.9/olcnectl/

Verifying the Module Deployment
You can verify the Oracle Cloud Infrastructure Cloud Controller Manager module is
deployed using the olcnectl module instances command on the operator node.
For example:

olcnectl module instances \
--environment-name myenvironment
INSTANCE MODULE STATE
mycluster kubernetes installed
myoci oci-ccm installed
...

Note the entry for oci-ccm in the MODULE column is in the installed state.

In addition, use the olcnectl module report command to review information
about the module. For example, use the following command to review the Oracle
Cloud Infrastructure Cloud Controller Manager module named myoci in
myenvironment:

olcnectl module report \
--environment-name myenvironment \
--name myoci \
--children

For more information on the syntax for the olcnectl module report command,
see Platform Command-Line Interface.

If you have included the options to use application load balancers, on a control plane
node, verify the oci-bv StorageClass for the Oracle Cloud Infrastructure provisioner is
created using the kubectl get sc command:

kubectl get sc

The output looks similar to:

NAME PROVISIONER RECLAIMPOLICY
VOLUMEBINDINGMODE ...
oci-bv blockvolume.csi.oraclecloud.com Delete
WaitForFirstConsumer ...

You can get more details about the StorageClass using the kubectl describe sc
command. For example:

kubectl describe sc oci-bv

The output looks similar to:

Name: oci-bv
IsDefaultClass: No

Chapter 2
Verifying the Module Deployment

2-4

https://docs.oracle.com/en/operating-systems/olcne/1.9/olcnectl/

Annotations: meta.helm.sh/release-name=myoci,meta.helm.sh/release-
namespace=default
Provisioner: blockvolume.csi.oraclecloud.com
Parameters: <none>
AllowVolumeExpansion: <unset>
MountOptions: <none>
ReclaimPolicy: Delete
VolumeBindingMode: WaitForFirstConsumer
Events: <none>

Chapter 2
Verifying the Module Deployment

2-5

3
Using Oracle Cloud Infrastructure Storage

The Oracle Cloud Infrastructure Cloud Controller Manager module implements a Container
Storage Interface (CSI) plugin for Kubernetes clusters that provides you with the following
storage services for creating persistent data storage:

Oracle Cloud Infrastructure Block Volume service
The Oracle Cloud Infrastructure Block Volume service provides dynamically provisioned and
managed block storage volumes. The block storage volumes can be created in sizes ranging
from 50 GB to 32 TB.
After you attach a volume to a Kubernetes application, the volume can be used in a similar
way to a regular hard drive. The volume can also be disconnected and attached to another
instance without the loss of data.
Block Volume volumes are automatically replicated to help protect against data loss.
To read about example use cases, and for more information about the Oracle Cloud
Infrastructure Block Volume service, see the Oracle Cloud Infrastructure documentation.

Oracle Cloud Infrastructure File Storage service
The Oracle Cloud Infrastructure File Storage service provides a scalable and durable
enterprise-grade network file system. The File Storage service uses the Network File System
version 3.0 (NFSv3) protocol. The service uses the Network Lock Manager (NLM) protocol
for file locking functionality.
The File Storage service transparently manages storage provisioning as data storage needs
increase from the order of bytes to exabytes.
Large compute clusters of thousands of instances can use the File Storage service for high-
performance shared storage.
Oracle Cloud Infrastructure File Storage uses 5-way replicated storage, in different fault
domains, to provide redundancy for resilient data protection.
To read about example use cases, and for more information about the Oracle Cloud
Infrastructure File Storage service, see the Oracle Cloud Infrastructure documentation

The following sections provide examples to illustrate how to use each of the storage services
to set up persistent storage for Kubernetes applications in Oracle Cloud Native Environment
on Oracle Cloud Infrastructure instances.

Creating Block Storage
This section contains a basic test to verify you can create Oracle Cloud Infrastructure block
storage to provide persistent storage to applications running on Kubernetes.

To create a test application to use Oracle Cloud Infrastructure block storage:

1. Create a Kubernetes PersistentVolumeClaim file. On a control plane node, create a file
named pvc.yaml. Copy the following into the file.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: myoci-pvc
spec:

3-1

https://docs.oracle.com/iaas/Content/Block/Concepts/overview.htm
https://docs.oracle.com/iaas/Content/File/Concepts/filestorageoverview.htm

 accessModes:
 - ReadWriteOnce
 storageClassName: oci-bv
 resources:
 requests:
 storage: 50Gi

Note that the accessModes setting for Oracle Cloud Infrastructure storage must be
ReadWriteOnce. The minimum Oracle Cloud Infrastructure block size is 50Gi.

2. Create the Kubernetes PersistentVolumeClaim.

kubectl apply -f pvc.yaml

3. You can see the PersistentVolumeClaim is created using the kubectl get pvc
command:

kubectl get pvc

The output looks similar to:

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
myoci-pvc Pending oci-
bv 15s

The STATUS is Pending and means the claim is waiting for an application to claim it.

You can get more details about the PersistentVolumeClaim using the kubectl
describe pvc command. For example:

kubectl describe pvc myoci-pvc

The output looks similar to:

Name: myoci-pvc
Namespace: default
StorageClass: oci-bv
Status: Pending
Volume:
Labels: <none>
Annotations: <none>
Finalizers: [kubernetes.io/pvc-protection]
Capacity:
Access Modes:
VolumeMode: Filesystem
Used By: <none>
Events:
 Type Reason Age
From ...
 ---- ------ ----

Chapter 3
Creating Block Storage

3-2

 Normal WaitForFirstConsumer 2m18s (x26 over 8m29s) persistentvolume-
controller ...

4. Create a Kubernetes application that uses the PersistentVolumeClaim. Create a file
named nginx.yaml and copy the following into the file.

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 run: mynginx
 name: mynginx
spec:
 replicas: 1
 selector:
 matchLabels:
 run: mynginx
 template:
 metadata:
 labels:
 run: mynginx
 spec:
 containers:
 - image: container-registry.oracle.com/olcne/nginx:1.17.7
 name: mynginx
 ports:
 - containerPort: 80
 volumeMounts:
 - name: nginx-pvc
 mountPath: /usr/share/nginx/html
 volumes:
 - name: nginx-pvc
 persistentVolumeClaim:
 claimName: myoci-pvc

5. Start the application:

kubectl apply -f nginx.yaml

6. You can see the application is running using the kubectl get deployment command:

kubectl get deployment

The output looks similar to:

NAME READY UP-TO-DATE AVAILABLE AGE
mynginx 1/1 1 1 63s

7. You can see the application is using the PersistentVolumeClaim to provide persistent
storage on Oracle Cloud Infrastructure using the kubectl describe deployment
command:

kubectl describe deployment mynginx

Chapter 3
Creating Block Storage

3-3

The output looks similar to:

...
Pod Template:
 Labels: run=mynginx
 Containers:
 mynginx:
 Image: container-registry.oracle.com/olcne/nginx:1.17.7
 Port: 80/TCP
 Host Port: 0/TCP
 Environment: <none>
 Mounts:
 /usr/share/nginx/html from nginx-pvc (rw)
 Volumes:
 nginx-pvc:
 Type: PersistentVolumeClaim (a reference to a
PersistentVolumeClaim in the same namespace)
 ClaimName: myoci-pvc
 ReadOnly: false
...

Note the ClaimName is myoci-pvc, which is the name of the PersistentVolumeClaim
created earlier.

You can see the PersistentVolumeClaim is now bound to this application using the
kubectl get pvc command:

kubectl get pvc

The output looks similar to:

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
myoci-pvc Bound csi-84175067-... 50Gi RWO oci-
bv 1m

Tip:

If you sign in to Oracle Cloud Infrastructure, you can see a block volume
created with the name listed in the VOLUME column. The block volume is
attached to the compute instance on which the Kubernetes application is
running.

8. You can delete the test application using:

kubectl delete deployment mynginx

9. You can delete the PersistentVolumeClaim using:

kubectl delete pvc myoci-pvc

The storage is deleted.

Chapter 3
Creating Block Storage

3-4

Tip:

If you sign in to Oracle Cloud Infrastructure, you can see the block volume is
terminated.

Creating File Storage
This section contains a basic example to verify you can use an Oracle Cloud Infrastructure
File Storage file system to provide persistent file storage to applications running on
Kubernetes. The example involves:

1. Creating a File Storage file system in Oracle Cloud Infrastructure.

2. Using YAML files to create a PersistentVolume and a PersistentVolumeClaim for the File
Storage file system.

3. Using a YAML file to create a pod with a mount to the volume to write a test file in the File
Storage file system.

Setting up a File System
Create a File Storage file system in a Virtual Cloud Network (VCN) in Oracle Cloud
Infrastructure.

Tip:

For a step-by-step guide on provisioning a File System in Oracle Cloud
Infrastructure, see the Oracle Luna Lab Provision Persistent Volumes Using File
Storage Service on Oracle Cloud Native Environment.

To create a file system:

1. Configure a VCN for the File Storage file system. The precise configuration of the VCN
varies. For example scenarios, see the Oracle Cloud Infrastructure documentation.

2. Create a File Storage file system. For more information, see the Oracle Cloud
Infrastructure documentation.

3. Create a File Storage mount target to enable network access to the file system. For more
information, see the Oracle Cloud Infrastructure documentation.

4. In Oracle Cloud Infrastructure, find and make a note of the following file system
attributes. These are needed when you create YAML files or mount the file system in this
example:

• The OCID of the file system.

• The export path of the file system. This example assumes you're setting the export
path to /my-fss-export.

• The mount commands. These commands are provided on the Mount Commands
page of the File System. You use these commands later in the example when
mounting the exported file system.

• The IP address of the mount target.

Chapter 3
Creating File Storage

3-5

https://luna.oracle.com/lab/5d95fdca-c690-4ebf-8ac0-315ac095ac59/steps
https://luna.oracle.com/lab/5d95fdca-c690-4ebf-8ac0-315ac095ac59/steps
https://docs.oracle.com/iaas/Content/File/Tasks/securitylistsfilestorage.htm
https://docs.oracle.com/iaas/Content/File/Tasks/creatingfilesystems.htm
https://docs.oracle.com/iaas/Content/File/Tasks/creatingfilesystems.htm
https://docs.oracle.com/iaas/Content/File/Tasks/create-mount-target.htm

Using a File System
To create a test application to use an Oracle Cloud Infrastructure File Storage file
system:

1. Create a PersistentVolume file. On a control plane node, create a file called fss-
pv.yaml with the following contents:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: fss-pv
spec:
 capacity:
 storage: 50Gi
 volumeMode: Filesystem
 accessModes:
 - ReadWriteMany
 persistentVolumeReclaimPolicy: Retain
 csi:
 driver: fss.csi.oraclecloud.com
 volumeHandle:
<filesystem_OCID>:<mount_target_IP>:<mount_target_export_path>

The accessModes for the file system must be ReadWriteMany.

The storage option is a Kubernetes requirement and must be included. The File
Storage service ignores this value and creates a new file system with a default
size, regardless of the value you specify for storage.

The volumeHandle consists of a colon separated list of File Storage file system
attributes, noted in an earlier step. For example:

ocid1.filesystem.oc1.iad.aaaa...:10.0.0.200:/my-fss-export
2. Create the PersistentVolume.

kubectl apply -f fss-pv.yaml

3. Get a list of the PersistentVolumes.

kubectl get pv

The output looks similar to:

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE
fss-pv 50Gi RWX Retain
Available 47s

Chapter 3
Creating File Storage

3-6

4. Create a PersistentVolumeClaim file. Create a file called fss-pvc.yaml. Copy the
following into the file:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: fss-pvc
spec:
 accessModes:
 - ReadWriteMany
 storageClassName: ""
 resources:
 requests:
 storage: 5Gi
 volumeName: fss-pv

The accessModes for the file system must be ReadWriteMany.

The storage option is a Kubernetes requirement and must be included. The File Storage
service ignores this value and creates a new file system with a default size, regardless of
the value you specify for storage.

The volumeName is set to the name attribute in the PersistentVolume file fss-pv.yaml.

5. Create the PersistentVolumeClaim.

kubectl apply -f fss-pvc.yaml

6. Get a list of PersistentVolumeClaims.

kubectl get pvc

The output looks similar to:

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
fss-pvc Bound fss-pv 50Gi RWX 33s

7. Create a pod manifest file. Create a file called fss-pod.yaml. Copy the following into the
file:

apiVersion: v1
kind: Pod
metadata:
 name: app
spec:
 containers:
 - name: app
 image: container-registry.oracle.com/os/oraclelinux:9-slim
 command: ["/bin/sh"]
 args: ["-c", "while true; do echo $(date -u) >> /data/out.txt; sleep
5; done"]
 volumeMounts:
 - name: persistent-storage
 mountPath: /data

Chapter 3
Creating File Storage

3-7

 volumes:
 - name: persistent-storage
 persistentVolumeClaim:
 claimName: fss-pvc

The image option specifies the registry location to an Oracle Linux container
image.

The mountPath option specifies the directory mounted to the persistent storage.

The command option specifies a command to write to file out.txt in the /data
directory.

8. Create the pod.

kubectl apply -f fss-pod.yaml

9. Get a list of the pods.

kubectl get pods

The output looks similar to:

NAME READY STATUS RESTARTS AGE
app 1/1 Running 0 21s

10. Open a shell to the container within the pod:

kubectl exec -i -t app --container app -- /bin/bash

11. From the container's shell, confirm the container is writing to the /data/out.txt
file by using the tail command:

tail -f /data/out.txt

The date and time output of the date -u command is listed to the terminal and
written to the /data/out.txt file on the container. Exit the tail program by using
CTRL+C.

12. Exit the container shell using the exit command:

exit

13. Verify that the /data directory within the container is mounted to the file system
export path. This step uses the mount commands noted when you created the file
system.

a. On the control plane node, install the NFS client.

sudo dnf install nfs-utils

Chapter 3
Creating File Storage

3-8

b. Create and mount a local directory to the file system's export path.

sudo mkdir -p /mnt/my-fss-export
sudo mount 10.0.0.200:/my-fss-export /mnt/my-fss-export

Replace 10.0.0.200 with the IP address of the mount target.

c. Confirm the output.txt file the container is writing to is in the file system's export
path. You can use the tail command for this:

sudo tail -f /mnt/my-fss-export/out.txt

The date and time being written to the file by the pod is listed. Exit the tail program
by using CTRL+C.

14. Delete the pod. If you don't see the command prompt after the pod is deleted you can
use the CTRL+C key combination to get it back:

kubectl delete pod app

15. Delete the PersistentVolumeClaim:

kubectl delete pvc fss-pvc

16. Confirm that the status of the PersistentVolume is Released:

kubectl get pv

The output looks similar to:

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE
fss-pv 50Gi RWX Retain Released default/
fss-pvc 57m

17. Delete the PersistentVolume:

kubectl delete pv fss-pv

18. Confirm the file is still present:

ls -l /mnt/my-fss-export/out.txt

19. Remove the mount:

sudo umount /mnt/my-fss-export

20. Confirm the out.txt file is no longer available and the mount is removed:

ls -l /mnt/my-fss-export

Chapter 3
Creating File Storage

3-9

21. Confirm the /mnt/my-fss-export is no longer mounted:

mount | grep my-fss-export

Chapter 3
Creating File Storage

3-10

4
Using the Oracle Cloud Infrastructure Load
Balancer

This chapter discusses how to use the Oracle Cloud Infrastructure Cloud Controller Manager
module to set up a load balancer for Kubernetes applications in Oracle Cloud Native
Environment on Oracle Cloud Infrastructure instances.

Introduction to Oracle Cloud Infrastructure Load Balancers
The Oracle Cloud Infrastructure Flexible Network Load Balancing service (Oracle Cloud
Infrastructure load balancer) provides automated traffic distribution from one entry point to
many backend servers in a Virtual Cloud Network (VCN). It operates at the connection level
and load balances incoming client connections to healthy backend servers based on Layer 3/
Layer 4 (IP protocol) data.

For more information on the Oracle Cloud Infrastructure load balancer, see the Oracle Cloud
Infrastructure documentation.

The Kubernetes Cloud Controller Manager ServiceController is responsible for creating load
balancers when a Kubernetes LoadBalancer service is created. The Platform API Server
communicates with the Oracle Cloud Infrastructure API to provision and manage Oracle
Cloud Infrastructure load balancers.

Creating an Application Using an Oracle Cloud Infrastructure
Load Balancer

This section contains a basic test to verify you can create a Kubernetes application that uses
an Oracle Cloud Infrastructure load balancer to provide external IP addresses.

To create a test application to use an Oracle Cloud Infrastructure load balancer:

1. Create a Kubernetes application that uses a LoadBalancer service. The deployment in
this example creates an NGINX application with a replica count of 2, and an associated
LoadBalancer service.

On a control plane node, create a file named nginx-oci-lb.yaml and copy the following
into the file.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 2

4-1

https://docs.oracle.com/iaas/Content/NetworkLoadBalancer/overview.htm
https://docs.oracle.com/iaas/Content/NetworkLoadBalancer/overview.htm

 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: container-registry.oracle.com/olcne/nginx:1.17.7
 ports:
 - containerPort: 80

kind: Service
apiVersion: v1
metadata:
 name: nginx-service
 annotations:
 service.beta.kubernetes.io/oci-load-balancer-security-list-
management-mode: "None"
 service.beta.kubernetes.io/oci-load-balancer-internal: "true"
 service.beta.kubernetes.io/oci-load-balancer-shape: "flexible"
 service.beta.kubernetes.io/oci-load-balancer-shape-flex-min:
"10"
 service.beta.kubernetes.io/oci-load-balancer-shape-flex-max:
"10"
spec:
 selector:
 app: nginx
 type: LoadBalancer
 ports:
 - name: http
 port: 80
 targetPort: 80

The annotations section contains the information required to provision an Oracle
Cloud Infrastructure load balancer. This is where you set the load balancer shape.
For example, to use a 10Mbps shape instead of the flexible shape, you might use:

 annotations:
 service.beta.kubernetes.io/oci-load-balancer-security-list-
management-mode: "None"
 service.beta.kubernetes.io/oci-load-balancer-internal: "true"
 service.beta.kubernetes.io/oci-load-balancer-shape: "10Mbps"

In some Oracle Cloud Infrastructure tenancies, you might also need to include the
oci-load-balancer-subnet1 annotation to identify the network subnet, for
example:

 service.beta.kubernetes.io/oci-load-balancer-subnet1:
"ocid1.subnet.oc1..unique_ID"

Chapter 4
Creating an Application Using an Oracle Cloud Infrastructure Load Balancer

4-2

For the full list of annotations you can include, see the upstream documentation.

2. Start the NGINX deployment and LoadBalancer service:

kubectl apply -f nginx-oci-lb.yaml

3. You can see the nginx-deployment application is running using the kubectl get
deployment command:

kubectl get deployments.apps

The output looks similar to:

NAME READY UP-TO-DATE AVAILABLE AGE
nginx-deployment 2/2 2 2 31s

4. You can see the nginx-deployment service is running using the kubectl get svc
command:

kubectl get svc nginx-service

The output looks similar to:

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
nginx-service LoadBalancer 10.99.107.243 203.0.113.10
80:31288/TCP 10m

Oracle Cloud Infrastructure might take a few minutes to assign an IP address. Until this
completes, the EXTERNAL-IP column shows the pending state for the nginx-service.
When the IP address is assigned, this field changes to show the IP address.

Tip:

You can see the load balancer is created in Oracle Cloud Infrastructure under
Networking > Load Balancers.

You can see the EXTERNAL-IP for the nginx-service LoadBalancer has an IP address
of 203.0.113.10. This IP address is provided by Oracle Cloud Infrastructure and is the
external IP address that you can use to connect to the application.

5. Use curl to connect to the NGINX application's IP address and add the port for the
application (203.0.113.10:80 in this example) to show the NGINX default page.

curl 203.0.113.10:80

The output looks similar to:

<!DOCTYPE html>
<html>

Chapter 4
Creating an Application Using an Oracle Cloud Infrastructure Load Balancer

4-3

https://github.com/oracle/oci-cloud-controller-manager/blob/master/docs/load-balancer-annotations.md

<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully
installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

6. You can delete the nginx-service LoadBalancer service using:

kubectl delete svc nginx-service

Tip:

You can see the load balancer is removed in Oracle Cloud Infrastructure
under Networking > Load Balancers.

7. You can delete the nginx-deployment application using:

kubectl delete deployments.apps nginx-deployment

Chapter 4
Creating an Application Using an Oracle Cloud Infrastructure Load Balancer

4-4

5
Removing the Oracle Cloud Infrastructure
Cloud Controller Manager Module

You can remove a deployment of the Oracle Cloud Infrastructure Cloud Controller Manager
module and leave the Kubernetes cluster in place. To do this, you remove the Oracle Cloud
Infrastructure Cloud Controller Manager module from the environment.

Use the olcnectl module uninstall command to remove the Oracle Cloud
Infrastructure Cloud Controller Manager module. For example, to uninstall the Oracle Cloud
Infrastructure Cloud Controller Manager module named myoci in the environment named
myenvironment:

olcnectl module uninstall \
--environment-name myenvironment \
--name myoci

The Oracle Cloud Infrastructure Cloud Controller Manager module is removed from the
environment.

5-1

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Introduction to the Oracle Cloud Infrastructure Cloud Controller Manager Module
	2 Installing the Oracle Cloud Infrastructure Cloud Controller Manager Module
	Prerequisites
	Deploying the Module
	Verifying the Module Deployment

	3 Using Oracle Cloud Infrastructure Storage
	Creating Block Storage
	Creating File Storage
	Setting up a File System
	Using a File System

	4 Using the Oracle Cloud Infrastructure Load Balancer
	Introduction to Oracle Cloud Infrastructure Load Balancers
	Creating an Application Using an Oracle Cloud Infrastructure Load Balancer

	5 Removing the Oracle Cloud Infrastructure Cloud Controller Manager Module

