
Oracle Cloud Native Environment
Operator Lifecycle Manager Module for
Release 1.9

F93860-01
May 2024

Oracle Cloud Native Environment Operator Lifecycle Manager Module for Release 1.9,

F93860-01

Copyright © 2023, 2024, Oracle and/or its affiliates.

Contents

 Preface

Documentation License iv

Conventions iv

Documentation Accessibility iv

Access to Oracle Support for Accessibility iv

Diversity and Inclusion v

1 Introduction to the Operator Lifecycle Manager Module

2 Installing the Operator Lifecycle Manager Module

Deploying the Operator Lifecycle Manager Module 2-1

Verifying the Operator Lifecycle Manager Module Deployment 2-2

3 Using Operator Lifecycle Manager

Listing Operator Registries 3-1

Installing Operators 3-1

Removing Operators 3-3

4 Removing the Operator Lifecycle Manager Module

iii

Preface

This document contains information about setting up the Operator Lifecycle Manager
module in Oracle Cloud Native Environment. The Operator Lifecycle Manager module
is used to install and manage the lifecycle of Kubernetes operators in a Kubernetes
cluster.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–
Share Alike 4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute
this content or an adaptation of it, you must provide attribution to Oracle and retain the
original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis,
or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands
within a paragraph, URLs, code in
examples, text that appears on the screen,
or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit https://www.oracle.com/corporate/
accessibility/learning-support.html#support-tab.

Preface

iv

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Preface

v

1
Introduction to the Operator Lifecycle
Manager Module

A Kubernetes operator is a design pattern for writing code to automate tasks and extend
Kubernetes. An operator is a set of concepts you can use to define a service for Kubernetes
and helps to automate administrative services in Kubernetes.

The Operator Lifecycle Manager module installs an instance of Operator Lifecycle Manager
into a Kubernetes cluster, which you can use to manage the installation and lifecycle of
operators in a Kubernetes cluster. The Operator Lifecycle Manager is a package manager
that interacts with operator registries. For more information about the Operator Lifecycle
Manager, see the upstream Operator Lifecycle Manager documentation.

OperatorHub is an operator registry that contains upstream Kubernetes operators that you
can use to deploy operators in a cluster. The OperatorHub is at:

https://operatorhub.io/

Operator Lifecycle Manager in many ways performs the same tasks as Helm. A major extra
feature that Operator Lifecycle Manager provides is that it has built-in support to validate
Custom Resource Definitions (CRDs) inside Kubernetes software. Operators with CRDs can
use these to ensure dependencies are met and no interfaces are duplicated. Otherwise,
Operator Lifecycle Manager manages deployments in a similar way to Helm.

1-1

https://olm.operatorframework.io/
https://operatorhub.io/

2
Installing the Operator Lifecycle Manager
Module

This chapter discusses how to install the Operator Lifecycle Manager module in Oracle Cloud
Native Environment.

Deploying the Operator Lifecycle Manager Module
This section contains information on how to install the Operator Lifecycle Manager module.
You must have a Kubernetes module installed before you install Operator Lifecycle Manager.

For the syntax to use to create a Operator Lifecycle Manager module, see the operator-
lifecycle-manager option of the olcnectl module create command in Platform Command-
Line Interface.

To deploy the Operator Lifecycle Manager module:

1. Create and install a Kubernetes module. The name of the Kubernetes module in this
example is mycluster.

2. Create an Operator Lifecycle Manager module and associate it with the Kubernetes
module named mycluster using the --olm-kubernetes-module option. In this example,
the Operator Lifecycle Manager module is named myolm.

olcnectl module create \
--environment-name myenvironment \
--module operator-lifecycle-manager \
--name myolm \
--olm-kubernetes-module mycluster

The --module option sets the module type to create, which is operator-lifecycle-
manager. You define the name of the Operator Lifecycle Manager module using the --
name option, which in this case is myolm.

The --olm-kubernetes-module option sets the name of the Kubernetes module.

If you don't include all the required options when adding the module, you're prompted to
provide them.

3. Use the olcnectl module install command to install the Operator Lifecycle
Manager module. For example:

olcnectl module install \
--environment-name myenvironment \
--name myolm

2-1

https://docs.oracle.com/en/operating-systems/olcne/1.9/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.9/olcnectl/

You can optionally use the --log-level option to set the level of logging displayed
in the command output. By default, error messages are displayed. For example,
you can set the logging level to show all messages when you include:

--log-level debug

The log messages are also saved as an operation log. You can view operation
logs as commands are running, or when they've completed. For more information
using operation logs, see Platform Command-Line Interface.

The Operator Lifecycle Manager module is deployed into the Kubernetes cluster
and the required containers are running in the operator-lifecycle-manager
namespace.

Verifying the Operator Lifecycle Manager Module
Deployment

You can verify the Operator Lifecycle Manager module is deployed using the
olcnectl module instances command on the operator node. For example:

olcnectl module instances \
--environment-name myenvironment

The output looks similar to:

INSTANCE MODULE STATE
myolm operator-lifecycle-manager installed
mycluster kubernetes installed
...

Note the entry for operator-lifecycle-manager in the MODULE column is in the
installed state.

In addition, use the olcnectl module report command to review information
about the module. For example, use the following command to review the Operator
Lifecycle Manager module named myolm in myenvironment:

olcnectl module report \
--environment-name myenvironment \
--name myolm \
--children

For more information on the syntax for the olcnectl module report command,
see Platform Command-Line Interface.

To verify the Operator Lifecycle Manager containers are deployed, use the kubectl
command on a control plane node to list the deployments running in the operator-
lifecycle-manager namespace.

kubectl get deployments --namespace operator-lifecycle-manager

Chapter 2
Verifying the Operator Lifecycle Manager Module Deployment

2-2

https://docs.oracle.com/en/operating-systems/olcne/1.9/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.9/olcnectl/

The output looks similar to:

NAME READY UP-TO-DATE AVAILABLE AGE
catalog-operator 1/1 1 1 2m36s
olm-operator 1/1 1 1 2m36s
packageserver 2/2 2 2 2m30s

Chapter 2
Verifying the Operator Lifecycle Manager Module Deployment

2-3

3
Using Operator Lifecycle Manager

This section contains basic tests to verify you can use Operator Lifecycle Manager.

Listing Operator Registries
You can show the available operator registries using the kubectl command on a control
plane node:

kubectl get catalogsource --namespace operator-lifecycle-manager

The output looks similar to:

NAME DISPLAY TYPE PUBLISHER AGE
operatorhubio-catalog Community Operators grpc OperatorHub.io 3m35s

The OperatorHub registry is shown in the output. This is the default operator registry.

Installing Operators
To see all the operators that can be installed, use the kubectl command on a control plane
node:

kubectl get packagemanifest

A list of the operators available on OperatorHub is displayed. These are all available to be
installed by the Operator Lifecycle Manager. The following example shows you how to create
an operator which is pulled from the OperatorHub.

To create an operator:

1. In a web browser, go to the OperatorHub and find the name of the operator you want to
install. The OperatorHub is at:

https://operatorhub.io/

This example uses the cert-manager operator at:

https://operatorhub.io/operator/cert-manager

Click Install.

A dialog is displayed that shows the kubectl create command to deploy the operator.
For example:

kubectl create -f https://operatorhub.io/install/cert-manager.yaml

Copy the URL in this command that contains the operator manifest YAML file.

3-1

https://operatorhub.io/
https://operatorhub.io/operator/cert-manager

2. On a control plane node, download the cert-manager operator manifest YAML file
from the OperatorHub:

curl --remote-name https://operatorhub.io/install/cert-manager.yaml

3. Edit this manifest YAML file as needed.

Important:

If an operator includes the following line in the Subscription section:

sourceNamespace: olm
Change this to:

sourceNamespace: operator-lifecycle-manager
Operator Lifecycle Manager runs in the operator-lifecycle-manager
namespace, which is different to the upstream namespace.

Edit the file to change sourceNamespace to operator-lifecycle-manager.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: my-cert-manager
 namespace: operators
spec:
 channel: stable
 name: cert-manager
 source: operatorhubio-catalog
 sourceNamespace: operator-lifecycle-manager

4. Use the kubectl apply command to deploy the cert-manager operator.

kubectl apply -f cert-manager.yaml

The output looks similar to:

subscription.operators.coreos.com/my-cert-manager created

The operator is deployed into the namespace set in the operator manifest file,
which in this example is operators.

5. You can see the operator's ClusterServiceVersion information using:

kubectl get csv --namespace operators

The output looks similar to:

NAME DISPLAY VERSION
REPLACES PHASE

Chapter 3
Installing Operators

3-2

cert-manager.v1.12.2 cert-manager 1.12.2 cert-manager.v1.11.4
Succeeded

6. You can see the operator deployments using:

kubectl get deployments --namespace operators

The output looks similar to:

NAME READY UP-TO-DATE AVAILABLE AGE
cert-manager 1/1 1 1 6m
cert-manager-cainjector 1/1 1 1 6m
cert-manager-webhook 1/1 1 1 6m

Removing Operators
To remove an operator and uninstall it, you need to remove the Subscription and
ClusterServiceVersion resources.

The example in this document doesn't include a Subscription resource, but if the operator
you want to delete includes one, delete it using:

kubectl delete subscription subscription-name --namespace namespace

You also need to delete the Kubernetes ClusterServiceVersion resource using:

kubectl delete csv csv-name --namespace namespace

To delete the ClusterServiceVersion for the cert-manager operator, on a control plane
node, run:

kubectl delete csv --namespace operators cert-manager.v1.12.2

The output looks similar to:

clusterserviceversion.operators.coreos.com "cert-manager.v1.12.2" deleted

Chapter 3
Removing Operators

3-3

4
Removing the Operator Lifecycle Manager
Module

You can remove the Operator Lifecycle Manager module and leave the Kubernetes cluster in
place. To do this, you remove the Operator Lifecycle Manager module from the environment.

Use the olcnectl module uninstall command to remove the Operator Lifecycle Manager
module. For example, to uninstall the Operator Lifecycle Manager module named myolm in
the environment named myenvironment:

olcnectl module uninstall \
--environment-name myenvironment \
--name myolm

The Operator Lifecycle Manager module is removed from the environment.

4-1

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Introduction to the Operator Lifecycle Manager Module
	2 Installing the Operator Lifecycle Manager Module
	Deploying the Operator Lifecycle Manager Module
	Verifying the Operator Lifecycle Manager Module Deployment

	3 Using Operator Lifecycle Manager
	Listing Operator Registries
	Installing Operators
	Removing Operators

	4 Removing the Operator Lifecycle Manager Module

