
Oracle Linux Automation Manager 2
User's Guide for Private Automation Hub

F77481-02
December 2023

Oracle Linux Automation Manager 2 User's Guide for Private Automation Hub,

F77481-02

Copyright © 2022, 2023, Oracle and/or its affiliates.

Contents

 Preface

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 About Private Automation Hub

2 Setting Up Permissions for Groups, and Users

Setting Up Users 2-7

Setting Up Roles 2-9

Setting Up Groups 2-9

3 Working with Namespaces and Collections

Creating NameSpaces 3-1

Uploading Collections 3-2

Approving Uploaded Collections 3-3

Rejecting Uploaded Collections 3-3

Working With Repositories 3-3

Viewing the Local Repositories 3-4

The Purposes of the Different Local Repositories 3-5

Remote Repository Configuration 3-5

Remote Repository Syncing 3-7

API token management 3-7

Accessing Private Automation Hub Collections from Oracle Linux Automation Manager 3-8

Accessing Collections in Private Automation Hub Custom Execution Environments 3-8

Accessing Collections Contained in Private Automation Hub Repositories 3-9

iii

4 Working with Execution Environments

Configure a Remote Container Registry 4-1

Creating an Execution Environment with Remote Registry 4-1

Synchronizing an Execution Environment from a Remote Registry 4-2

View Execution Environment Details 4-2

5 Creating Custom Execution Environments

Configuring a Custom Execution Environment Using Format 1 5-2

Configuring a Custom Execution Environment Using Format 2 5-6

Uploading a Custom Execution Environment 5-9

6 Working with the Command-Line Interface

Installing the Command-Line Interface 6-1

Using the Command-Line Interface 6-1

iv

Preface

Oracle Linux Automation Manager 2: Private Automation Hub User's Guide describes how to
use Oracle Linux Automation Manager Private Automation Hub.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an action,
or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle Accessibility
Conformance Report at https://www.oracle.com/corporate/accessibility/templates/
t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry

v

https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/user-guide-private-hub/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

standards evolve. Because of these technical constraints, our effort to remove
insensitive terms is ongoing and will take time and external cooperation.

Preface

vi

1
About Private Automation Hub

Private Automation Hub is an Oracle Linux Automation Manager feature that lets you
synchronize your custom collections and execution environment images to use with your
Oracle Linux Automation Manager deployments. Private Automation Hub can also
synchronize collections and execution environments from remote container registries that that
you want to host locally.

This guide provides instructions for using Private Automation Hub.

1-1

2
Setting Up Permissions for Groups, and
Users

This chapter describes how Private Automation Hub enables administrators to create roles,
groups, and users where permissions can be allocated at the group level and defined at the
role level. These permissions are based on role-based access controls.

Note:

You can integrate the Private Automation Hub access levels discussed in this
chapter with external identity management services, such as LDAP. Note that LDAP
user account information does not appear in Private Automation Hub until after the
LDAP user account first logs in to Private Automation Hub. See Oracle Linux
Automation Manager 2: Private Automation Hub Installation Guide for more
information about LDAP authentication and mappings for users and groups.

You can assign roles that specify which permissions are available to a group, and hence
available to all the users within that group. You can add from the predefined roles listed in the
following table.

Note:

Additionally, you can create custom roles based one or more of the predefined
permissions.

2-1

https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/install-private-hub/
https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/install-private-hub/

Table 2-1 Role-Based Access Control Role Descriptions

Role Permissions Description

galaxy.collection_admin Add namespace
Change namespace
Delete namespace
Upload to namespace
Modify Ansible repo content
Delete collection
Change collection remote
View collection remote

Members of a group with
this role can do the
following:
• Create, change, and

delete a namespace.
• Upload a collection to a

namespace.
• Use the Approval

feature to certify or
reject content in the
Staging repository and
thus move it to the
Publishing or Rejected
repositories
respectively.

• Delete collections.
• Use the Repository

Management feature to
Configure remote
repositories.

galaxy.collection_curator Modify Ansible repo content
Change collection remote
View collection remote

Members of a group with
this role can do the
following:
• Use the Approval

feature to certify or
reject content in the
Staging repository and
thus move it to the
Publishing or Rejected
repositories
respectively.

• Use the Repository
Management feature to
Configure remote
repositories.

galaxy.collection_namespac
e_owner

Change namespace
Upload to namespace

Members of a group with
this role can do the
following:
• Change a namespace.
• Upload a collection to a

namespace.

galaxy.collection_publisher Add namespace
Change namespace
Upload to namespace

Members of a group with
this role can do the
following:
• Create and change a

namespace.
• Upload a collection to a

namespace.

Chapter 2

2-2

Table 2-1 (Cont.) Role-Based Access Control Role Descriptions

Role Permissions Description

galaxy.content_admin Add namespace
Change namespace
Delete namespace
Upload to namespace
Change collection remote
View collection remote
Create new containers
Change container
namespace permissions
Change containers
Change image tags
Push to existing containers
Delete container repository
Add remote registry
Change remote registry
Delete remote registry

Members of a group with
this role can do the
following:
• Create, change, and

delete a namespace.
• Upload a collection to a

namespace.
• Use the Repository

Management feature to
Configure remote
repositories.

• Manage container
repositories.

• Add, change, or delete
remote registries added
to Private Automation
Hub.

galaxy.execution_environm
ent_admin

Create new containers
Change container
namespace permissions
Change containers
Change image tags
Push to existing containers
Delete container repository
Add remote registry
Change remote registry
Delete remote registry

Members of a group with
this role can do the
following:
• Manage container

repositories.
• Add, change, or delete

remote registries added
to Private Automation
Hub.

galaxy.execution_environm
ent_collaborator

Change containers
Change image tags
Push to existing containers

Members of a group with
this role can do the
following:
• Change existing

execution
environments.

galaxy.execution_environm
ent_namespace_owner

Change container
namespace permissions
Change containers
Change image tags

Members of a group with
this role can do the
following:
• Create and update

execution
environments under
existing container
namespaces.

galaxy.execution_environm
ent_publisher

Create new containers
Change container
namespace permissions
Change containers
Change image tags
Push to existing containers

Members of a group with
this role can do the
following:
• Push, and change

execution
environments.

Chapter 2

2-3

Table 2-1 (Cont.) Role-Based Access Control Role Descriptions

Role Permissions Description

galaxy.group_admin Add group
Change group
Delete group

Members of a group with
this role can do the
following:
• View, add, remove and

change groups.

galaxy.task_admin Change task
Delete task
View all tasks

Members of a group with
this role can do the
following:
• View, and cancel any

task.

Chapter 2

2-4

Table 2-1 (Cont.) Role-Based Access Control Role Descriptions

Role Permissions Description

galaxy.user_admin Add a standard user
Change a standard user
Delete a standard user
View a standard user

N

o

t

e

:

O
n
l
y
a
s
u
p
e
r
u
s
e
r
c
a
n
e
d
i
t
s
u
p
e
r
u
s
e
r
a
c
c
o
u
n
t

Members of a group with
this role can do the
following:
• View, add, remove and

change users.

Chapter 2

2-5

Table 2-1 (Cont.) Role-Based Access Control Role Descriptions

Role Permissions Description

s
.
T
h
e
g
a
l
a
x
y
.
u
s
e
r
_
a
d
m
i
n
r
o
l
e
'
s
p
e
r
m
i
s
s
i
o
n
s
a
p
p
l
y
t
o
s
t
a
n
d
a
r

Chapter 2

2-6

Table 2-1 (Cont.) Role-Based Access Control Role Descriptions

Role Permissions Description

d
u
s
e
r
s
o
n
l
y
.

Setting Up Users
Private Automation Hub provides the following user types:

The Default admin Super User
When you install Private Automation Hub, a super user with username admin is created for
you automatically. The admin account enables you to log in and set up your system, for
example by creating users, other super users, groups, and roles as required by your
organization. By default, admin does not belong to any group.

Note:

Super users, sudh as admin, have all system permissions regardless of groups
they belong to.

Super Users
Private Automation Hub enables you to use a super user account to create other super users
in addition to the default admin user.

Users
Private Automation Hub also enables you to create standard users who do not have super-
user privileges.

Chapter 2
Setting Up Users

2-7

Note:

Standard users get most permissions by virtue of their group
memberships.
For example, if you create standard user standard_user_1, the newly
created user will not be able to upload any collections to the namespaces
you have in your Private Automation Hub. To enable standard_user_1 to
upload collections to existing namespaces, you would need to carry out
additional steps similar to the following:

1. Create group Group_Namespace_Uploaders.

2. Assign a built-in role, for example
galaxy.collection_namespace_owner, that has permissions to upload
to a namespace, to group Group_Namespace_Uploaders.

3. Add standard_user_1 to group Group_Namespace_Uploaders.

4. Verify standard_user_1 can log on and upload collections to
namespaces in Private Automation Hub.

For more information on groups and roles see Setting Up Permissions for
Groups, and Users, Setting Up Roles, and Setting Up Groups

To set up a user, do the following:

1. Log into Private Automation Hub.

2. From the User Access section, click Users.

The Users page appears.

3. Click the Create button.

The Create new user page appears.

4. In the Username field, enter a username.

5. In the First name field, enter a first name.

6. In the Last name field, enter a last name.

7. In the Email field, enter an email address.

8. In the Password field, enter a password.

Note:

The password must contain at least 9 characters, and include special
characters , ex <!@$%>. Avoid using common names or expressions.

9. In the Password confirmation field, repeat the password.

10. From the Groups list, select one or more groups.

11. Click the User type button if you want the user to have super-user privileges.

12. Click Save.

Chapter 2
Setting Up Users

2-8

Setting Up Roles
To create custom roles based on permissions associated to the predefined roles, do the
following:

1. Log into Private Automation Hub.

2. From the User Access section, click Roles.

The Roles page appears listing all available predefined and custom roles.

3. Click the Add roles button.

The Create a new role page appears.

4. In the Name field, enter a role name. The name must begin with the word galaxy. and
can contain only letters and numbers.

5. In the Description field, enter a description of the role.

6. In the permissions area, select one or more permissions from one or more of the
predefined permissions.

7. Click Save.
Your newly created role is added to the list on the Roles page.

Setting Up Groups
To create a group, do the following:

1. Log into Private Automation Hub.

2. From the User Access section, click Groups.

The groups page appears.

3. Click the Create button.

The Create a group dialog appears.

4. In the Name field, enter a name for your group.

5. Click Create.
A new page for the group appears.

6. Click the Access tab.

7. Click Add roles.
The Add roles dialog appears.

8. From the Select roles area, select from the list of roles that define the permissions
available to users associated to this group. For more information about the predefined
roles, see Setting Up Permissions for Groups, and Users. For more information about
custom roles, see Setting Up Roles.

9. Click Next.
The Preview page appears.

10. Click Add.
The group page appears.

11. Click the Users tab.

Chapter 2
Setting Up Roles

2-9

A list of users associated to the group appears. As this group is newly created, no
users are listed.

12. Click Add.
The Add selected users to group dialog appears.

13. From the list, select one or more user.

14. Click Add.
The users you have added now appear in the Users tab.

Chapter 2
Setting Up Groups

2-10

3
Working with Namespaces and Collections

The Private Automation Hub uses namespaces to organize collections. Working with
namespaces requires having a user that is a member of a group with permissions to create,
edit and upload collections to namespaces. See Setting Up Permissions for Groups, and
Users for more information about groups and permissions to determine how to configure
Private Automation Hub for your content curators and developers.

Creating NameSpaces
Before you can upload a collection into Private Automation Hub, you must first create a
namespace for the collection. This namespace must match the namespace defined in the
collection you want to upload.

Typically, the namespace for a collection represents the company or group that produced the
namespace. For example, the oracle is the namespace for the Oracle Cloud Infrastructure
OCI collection. The namespace plus collection format is often found in the name of the
collection tar file that you download. However, the tar file naming convention does not always
reflect the namespace defined in the collection. To ensure you have the correct namespace,
you can download a collection, expand it, and find the MANFEST.json where the namespace
is defined.

To create a namespace, do the following:

1. Log into Private Automation Hub.

2. From the Collections section, click Namespaces.

The Namespaces page appears.

3. Click the Create button.

The Create a new namespace form appears.

4. In the Name field, enter the name of the namespace for the collection you want to upload.

5. Click Create.
The Namepace owners tab appears for the namespace you created.

6. If you want to associate a group to the namespace, do the following:

a. Click Select a group.
The Select a group page appears.

b. In the Select a group area, select a group from the list.

c. Click Next.

d. In the Select a role(s) area, select from one or more of the available roles relating to
managing namespaces.

e. Click Next.

f. In the Preview area, review the permissions relating to the roles you selected, then
click Add.

7. Click the CLI configuration tab.

3-1

A URL for the namespace you have created appears that you can use with the
Private Automation Hub CLI to upload new collections to the namespace.

8. Click the Collections tab.
The Upload Collections button appears that you can use to upload a manually
downloaded collection tar file. For more information, see Uploading Collections.

Uploading Collections
Private Automation Hub enables you to upload collections archived in tar.gz files.

Depending upon the olpah_require_content_approval setting of your Private
Automation Hub instance, an uploaded collection might require approval before it is
moved to the published content repository. The possible settings for
olpah_require_content_approval are as follows:

• olpah_require_content_approval = False
This is the default. No approval is required. Collections are uploaded directly to the
published repository and appear under their respective Namespaces in Private
Automation Hub.

• olpah_require_content_approval = True
Under this setting, uploaded collections are initially uploaded to the staging
repository and appear in the Approval dashboard where a user with the
appropriate permissions can approve or reject them. Upon approval, collections
are moved to the published repository and appear under their respective
Namespaces. Conversely, rejected collections are moved to the rejected
repository,

For more information on setting the value of olpah_require_content_approval, see
Oracle Linux Automation Manager 2: Private Automation Hub Installation Guide.

To upload a collection, do the following:

1. Log into Private Automation Hub.

2. From the Collections section, click Namespaces.

The Namespaces page appears.

3. Locate the namespace whose name matches the namespace of the collection you
intend to upload.

Click View Collections.

A page displaying published collections for the namespace appears.

4. Click Upload collection.

The New collection form appears.

5. Click inside the Select file box and browse to the tar.gz file with the collection
you intend to upload.

6. Select the file and click Upload.

The My imports page appears displaying the import log so you can follow the
progress of the import. The log will display the success or failure of the operation.

7. You can click Task Management from the main navigation menu to see the status
of the tasks relating to your collection upload.

Chapter 3
Uploading Collections

3-2

https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/install-private-hub/

Approving Uploaded Collections
If the olpah_require_content_approval setting of your Private Automation Hub instance is
set to True, you will need to review the uploaded collections listed in the Approval dashboard
and decide whether to approve or reject them.

To approve an uploaded collection in the Approval dashboard, do the following:

1. Log into Private Automation Hub.

2. From the Collections section, click Approval.

The Approval dashboard page appears and displays a list of collections in a table.

3. Review the collections with a Needs review status in their status column.

4. For each collection you wish to approve, click the Approve button.

The approved collections are moved from the staging to the published repository where
users can download and use them.

5. Verify the collections you have approved now appear in the Collections page.

6. You can click Task Management from the main navigation menu to see the status of the
move_content operation that has moved the collection from the staging to the published
repository.

Rejecting Uploaded Collections
If the olpah_require_content_approval setting of your Private Automation Hub instance is
set to True, you will need to review the uploaded collections listed in the Approval dashboard
and decide whether to approve or reject them.

To reject an uploaded collection in the Approval dashboard, do the following:

1. Log into Private Automation Hub.

2. From the Collections section, click Approval.

The Approval dashboard page appears and displays a list of collections in a table.

3. Review the collections with a Needs review status in their status column.

4. For each collection you wish to reject, do the following:

a. Click the Actions button at the end of the row in which the collection is listed.

A menu appears.

b. Click the Reject option on the menu.

The rejected collections are moved from the staging to the rejected repository.

5. You can click Task Management from the main navigation menu to see the status of the
move_content operation that has moved the collection from the staging to the rejected
repository.

Working With Repositories
This chapter describes how Private Automation Hub enables you to view and manage your
local and remote collection repositories.

Chapter 3
Approving Uploaded Collections

3-3

Viewing the Local Repositories
To view the local repositories in your system, do the following:

1. Log into Private Automation Hub.

2. From the Collections section, click Repository Management.

The Repo Management page appears. Select the Local tab if it is not already
selected.

A table listing your local repositories appears.

The table listing the local repositories includes the following columns:

Repository name
The name of the repository.
For more information on the local repositories and their roles see The Purposes of the
Different Local Repositories.

Collection count
The number of collections in the repository.

Last updated
The time elapsed since the repository was last updated.

Distribution URL
The URL to use when uploading and downloading collections to and from a repository
from an environment from outside of the Private Automation Hub GUI.
The Distribution URL has a format similar to the following:
https://private_automation_hub/api/galaxy/content/repository_name/.

Note:

Configuring Oracle Linux Automation Manager Projects to Download
Collections from a Repository Distribution URL
To configure a project in Oracle Linux Automation Manager to download a
collection from a repository do the following:

1. Log in to Oracle Linux Automation Manager.

2. Create a Private Automation Hub credential.

3. Set the credential’s Galaxy Server URL field to the repository’s
Distribution URL.

4. Set the credential’s API token field to the value of the API Token of your
Private Automation Hub account.

5. Add the credential to the organization the project is associated with.

For more information see Oracle Linux Automation Manager 2: User's Guide
and API token management

Chapter 3
Working With Repositories

3-4

https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/user-guide/

CLI configuration
The CLI configuration column contains a sample configuration template to help you configure
an ansible.cfg file on a host from which you need to run ansible-galaxy commands
against a repository.
The contents of the CLI configuration column for repository repository_name will look similar
to the following:

[galaxy]
server_list = published_repo
[galaxy_server.published_repo]
url= https://private_automation_hub/api/galaxy/content/repository_name/
token=<put your token here>

The token in the preceding example refers to the API token you generate for your Private
Automation Hub account, as described in API token management.

The Purposes of the Different Local Repositories
The following list describes the purposes of the different local repositories:

staging
The staging repository contains uploaded collections that are awaiting review before being
approved or rejected.

Note:

If olpah_require_content_approval is set to False in your configuration,
collections go straight to the published repository without any need for approval.
See Uploading Collections for more information about the approval process.

published
Once a collection is approved, it is moved to the published repository and is available for
download.

rejected
Collections that have been reviewed and rejected are moved to the rejected repository.

community
The local community repository contains collections downloaded from a remote repository
as configured by a remote repo connection (also named community) on the remote tab of
the Repo Management page. By default, the remote community repo connection directs to
https://galaxy.ansible.com/api/. For more information see Remote Repository Configuration

Remote Repository Configuration
Private Automation Hub enables you to sync collections from a remote repository down to
your local community repository by configuring a remote repo connection (also called
community).

To Configure the remote repo connection, do the following:

1. Log onto Private Automation Hub.

Chapter 3
Working With Repositories

3-5

https://galaxy.ansible.com/api/

2. From the Collections section, click Repository Management.

The Repo Management page appears. Select the Remote tab if it is not already
selected.

3. A table displaying the community remote repo connection is displayed.

The table’s Last synced column tells you the last time the collection was synced,
and the sync status column tells you current completion status of the most recent
sync operation.

4. Click the Actions button at the end of the row.

A menu appears.

5. Click Edit on the menu.

A modal form appears.

6. The modal form displays a number of fields, including the ones described in the list
below:

• URL:

Enter the address of the remote repository you wish to download connections
from. By default, the URL is https://galaxy.ansible.com/api/.

• YAML requirements:

Click Browse… and upload a requirements.yml file that identifies the
collections to synchronize from the remote repository. The following provides
an example of what a requirements.yml file might contain:

collections:
 - name: amazon.aws
 source: https://galaxy.ansible.com
 version: 1.2.1
 - name: junipernetworks.junos
 source: https://galaxy.ansible.com
 - name: f5networks.f5_modules
 source: https://galaxy.ansible.com
 - name: oracle.oci
 source: https://galaxy.ansible.com

7. Username:

Enter the username, if required, to be used for authentication when syncing from
the remote repository.

8. Password:

Enter the Password, if required, to be used for authentication when syncing from
the remote repository.

9. Show advanced options:

Click Show advanced options if you need to configure proxy server settings or
carry out any further authentication configuration for a connection to your chosen
remote repository.

10. Click Save

Chapter 3
Working With Repositories

3-6

https://galaxy.ansible.com/api/

Remote Repository Syncing
To sync the collections from the remote repository, as configured in your remote community
repo connection, to your local community repository, do the following:

1. Log into Private Automation Hub.

2. From the Collections section, click Repository Management.

The Repo Management page appears. Select the Remote tab if it is not already selected.

3. A table displaying the community remote repo connection is displayed.

The table’s Last synced column tells you the last time the collection was synced, and the
sync status column tells you current completion status of the most recent sync
operation.

4. Click the Sync button.

The Sync status column will change to read Running.

5. The sync status changes to Completed once the operation has completed..

Note:

To monitor the progress of the sync operation, you can navigate to the Task
Management page, locate the sync operation in the task list and click on the
Task name: the page displayed will show progress of each step as it
completes.

API token management
You can generate an API token for your Private Automation Hub account to enable you to
authenticate your connection to the API from outside of the application GUI, for example in
one of the following scenarios:

• You might need to run command-line ansible-galaxy commands to upload and
download collections to and from repositories in Private Automation Hub. In such
scenarios you would typically add your API token to your ansible.cfg file.

• You might need to set up an Oracle Linux Authentication Manager instance to download
collections from a local repository in your Private Automation Hub. In such a scenario you
would add your API token to a credential resource in Oracle Linux Authentication
Manager.

Providing your user account has the necessary privileges in Private Automation Hub, your
account’s API token will provide you the access needed in the preceding example scenarios.

To generate an API token for your account, do the following:

Chapter 3
API token management

3-7

WARNING:

Loading a new token will delete your previous token, and any configurations
using the previous token will therefore have to be updated with the new
token value.

1. Log into Private Automation Hub.

2. From the Collections section, click API token management.

The API token management page appears.

3. Click Load token to generate and load a new token to be used for authenticating
to Private Automation Hub.

4. The token is generated and displayed.

WARNING:

• Store the API token securely. It protects your content.

• The token is displayed once only. The token will never be displayed
again.

5. Update any configurations that used your previous account's API token with the
new token value.

Accessing Private Automation Hub Collections from Oracle
Linux Automation Manager

You can set up Oracle Linux Automation Manager to access ansible collections from
the following Private Automation Hub resources:

• Custom Execution Environments

See for Creating Custom Execution Environments more information about creating
custom execution environments that contain ansible collections.

• Collection Repositories

See Working With Repositories for more information on working with collection
repositories.

The following sections give an overview of how you set up SCM projects in Oracle
Linux Automation Manager to access the resources in the preceding list.

Accessing Collections in Private Automation Hub Custom Execution
Environments

To access collections in an execution environment in Private Automation Hub, you
need to create a resource by the same name in Oracle Linux Automation Manager and
set its properties as follows:

Chapter 3
Accessing Private Automation Hub Collections from Oracle Linux Automation Manager

3-8

• Name:

Choose a name for you execution environment in Oracle Linux Automation Manager, for
example, My_Access_To_Private_Auto_Hub_EE.

• Image:

The full container image location, including the container registry, image name, and
version tag, for example:

https://private_automation_hub/my_custom_exe_environment:latest

• Organization:

Select the organization whose projects need to have access to the custom execution
environment referenced in the Image property.

• Registry credential:

This is a Container Registry type of credential and contains the Private Automation Hub
API token that has the necessary access to the custom execution environment you wish
to access. This token allows the Oracle Linux Automation Manager credential to
authenticate itself to Private Automation Hub.

For more information on creating execution environments and projects in Oracle Linux
Automation Manager, see Oracle Linux Automation Manager 2: User's Guide

Accessing Collections Contained in Private Automation Hub Repositories
Oracle Linux Automation Manager provides the Ansible Galaxy/Automation Hub API
Token credential type to set up SCM projects with access to specific repositories in Private
Automation Hub. The Ansible Galaxy/Automation Hub API Token credential has the following
fields to enable this access to be set up:

• Galaxy Server URL:

This is the URL to the Private Automation Hub repository you wish the SCM project to
access its collections from. The URL will be of the following format:

https://private_automation_hub/api/galaxy/content/published/

• API Token:

This is the Private Automation Hub API token that has necessary access to the repository
in question. This token allows the Oracle Linux Automation Manager credential to
authenticate itself to Private Automation Hub.

You can add one or more such credentials to an organization resource in your Oracle Linux
Automation Manager instance. Any projects added to an organization with such credentials
will access collections from the locations that the credentials point to.

Chapter 3
Accessing Private Automation Hub Collections from Oracle Linux Automation Manager

3-9

https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/user-guide/

Note:

The order in which you add credentials to an organization is important:

The order in which you add the credentials to an organization determines the
order in which repositories are searched when collections are to be
downloaded for a project assigned to that organization.

For more information on Setting up credentials, organizations and projects,
see Oracle Linux Automation Manager 2: User's Guide

Chapter 3
Accessing Private Automation Hub Collections from Oracle Linux Automation Manager

3-10

https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/user-guide/

4
Working with Execution Environments

The Private Automation Hub can host execution environments which are containers that you
can use with Oracle Linux Automation Manager control and execution plane nodes. Working
with execution environment containers requires having a user that is a member of a group
with permissions to manage execution environments. See Setting Up Permissions for
Groups, and Users for more information about groups and permissions to determine how to
configure Private Automation Hub for your content curators and developers.

Configure a Remote Container Registry
To configure a connection to a remote container registry, such as the Oracle Container
Registry, do the following:

1. Log into Private Automation Hub.

2. From the Execution Environments section, click Remote Registries.

The Remote Registries page appears.

3. Click Add remote registry.
The Add remote registry dialogue appears.

4. In the Name field, enter a name. For example, Oracle Conatiner Registry.

5. In the URL field, enter a base URL for the remote container registry. For example,
https://container-registry.oracle.com/.

6. In the Username field, enter a user name.

7. In the Password field, enter a password.

8. Click Show advanced options.

9. In the Proxy URL field, enter a proxy URL if required by your network.

10. In the Proxy username field, enter a user name.

11. In the Proxy Password field, enter a password.

12. If required, enable TLS validation.

13. In the Client key field, enter a PEM encoded private key for TLS authentication.

14. In the Client certificate field, enter a PEM encoded client certificate for TLS
authentication.

15. From the Download concurrency list, select the total number of simultaneous
connections, if required.

16. From the Rate Limit field, enter a limit for the total download rate in requests per second.

17. Click Save.

Creating an Execution Environment with Remote Registry
To create an execution environment created with a remote container registry, do the following:

4-1

1. Log into Private Automation Hub.

2. From the Execution Environments section, click Execution Environments.

The Execution Environments page appears.

3. Click Add execution environments.
The Add execution environment appears.

4. In the Name field, enter an execution environment name to represent the
container image. Container names can only contain alphanumeric characters, ".",
"_", "-" and a up to one "/". For example, olamprivatehub-ee.

5. In the Upstream name field, the namespace/name format for containers that use
a namespace. Use the library/name format with containers that use a library. For
example, oracle_linux_automation_manager/olam-ee.

6. From the Registry list, select a remote registry that you have configured. For more
information, see Configure a Remote Container Registry.

7. In the add tag(s) to include, enter the name of the tag you want to include from the
remote registry. For example, latest.

8. Click Add.
The added tag appears in the Currently included tags list.

9. In the add tag(s) to exclude, enter the name of the tag you want to exclude from
the remote registry. For example, dev.

10. Click Add.
The added tag appears in the Currently excluded tags list.

11. Click Save.
The new execution environment appears in the Execution Environment page.

Synchronizing an Execution Environment from a Remote
Registry

To synchronize an execution environment from a remote registry, do the following:

1. Log into Private Automation Hub.

2. From the Execution Environments section, click Execution Environments.

The Execution Environments page appears.

3. Click the menu button on the container you want to synchronize.

4. Click Sync from registry.
An info alert dialogue box appears stating Sync started for execution
environment "<container_name>". See the task management detail page
for the status of this task. If a new version of the container exists, the new
version is uploaded and the Last Modified field changes to the present time.

View Execution Environment Details
To view execution environment details, do the following:

1. Log into Private Automation Hub.

2. From the Execution Environments section, click Execution Environments.

Chapter 4
Synchronizing an Execution Environment from a Remote Registry

4-2

The Execution Environments page appears.

3. Click the container repository name.
The Detail tab appears with the command to pull the image using Podman.

4. Click the Activity tab.
A list of changes and the dates when the changes occurred appear.

5. Click the Images tab.
Information about different versions of the image appears. You can add or edit tags or
delete the image.

6. Click the Owners tab.

7. If you want associate the execution environment to a new group, click Select a group.
The Select a group dialog appears.

8. From the list, select a group.

9. Click Next.

10. From the list, select one or more roles.
The preview area appears.

11. Click Add.

Chapter 4
View Execution Environment Details

4-3

5
Creating Custom Execution Environments

The builder utility allows you to customize and create execution environments that you can
upload to Private Automation Hub where Oracle Linux Automation Manager can access them
and use them to run playbooks. Being able to use customized container images as execution
environments to run playbooks allows you to ensure you have all the packages and
dependencies you need on the container image necessary to run playbooks in a consistent
and dependable way.

Note:

While the Builder utility enables you to create custom execution environments, in
the case of an issue with the custom execution environment, Oracle support may
ask you to revert to the Oracle provided OLAM-EE default image to troubleshoot the
problem.

Execution environments that you customize with the Builder utility contains:

• The base OLAM-EE container image accessible from the Oracle Container Registry.

• A special builder image required for images created with the Builder utility.

• One or more ansible collections.

• Python or system dependencies (for example, modules, plugins in collections, custom
scripts, bash commands), or a combination of both.

You can use the Builder utility to create execution environments with format version 1 or
version 2.

The default olam-ee available on the Oracle Container Registry uses the latest version of the
Oracle Linux 8 container image. When building custom execution environments, we always
use the latest version available of ansible-core and its python dependencies for the Oracle
Linux 8 release provided. For example, ansible-core 2.14 has Python 3.11 as a dependency.

In some cases, you may need to specify different versions of Python to run jobs on different
execution environments running in Oracle Linux Automation Manager. A few examples where
this occurs are the following:

• The builder utility builds the execution environment using Python 3.9. If you build a
custom execution environment that uses Pypi packages and modules, then specify the
following variable on job templates so the custom execution environment that runs the job
uses Python 3.9:

"ansible_python_interpreter: /usr/bin/python3.9"

5-1

• The OCI ansible collection with the OCI SDK was built using Python 3.8. If you
build a custom execution environment that uses the OCI SDK, then specify the
following variable on job templates so the custom execution environment that runs
the job uses Python 3.8:

"ansible_python_interpreter: /usr/bin/python3.8"

For more information about setting variables on job templates, see the Oracle Linux
Automation Manager 2: User's Guide.

Configuring a Custom Execution Environment Using Format
1

To configure a custom execution environment using format 1, do the following:

1. On the host where you have installed the Builder utility, create a working directory
for Builder utility. For example,

mkdir ~/builder-utility
cd ~/builder-utility

2. Create the following files:

touch ansible.cfg execution-environment.yml requirements.yml
requirements.txt bindep.txt

3. In the execution-environment.yml file, add the following parameters:

version: 1
build_arg_defaults:
 EE_BASE_IMAGE: 'container-registry.oracle.com/
oracle_linux_automation_manager/olam-ee:latest'
 EE_BUILDER_IMAGE: 'container-registry.oracle.com/
oracle_linux_automation_manager/olam-builder:latest'
 ANSIBLE_GALAXY_CLI_COLLECTION_OPTS: "--ignore-certs"
ansible_config: 'ansible.cfg'
dependencies:
 galaxy: requirements.yml
 python: requirements.txt
 system: bindep.txt
additional_build_steps:
 prepend: |
 RUN whoami
 RUN cat /etc/os-release
 append:
 - RUN echo This is a post-install command!
 - RUN ls -la /etc

In the previous example,

• EE_BASE_IMAGE: This parameter requires the base olam-ee, which you can
obtain from container-registry.oracle.com/

Chapter 5
Configuring a Custom Execution Environment Using Format 1

5-2

https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/user-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/user-guide/

oracle_linux_automation_manager/olam-ee. Alternatively, you can also obtain a
copy of this image from Private Automation Hub if you have configured Private
Automation Hub for this purpose.

• EE_BUILDER_IMAGE: This parameter requires the olam-builder image, which you
can obtain from container-registry.oracle.com/
oracle_linux_automation_manager/olam-builder. The builder container image
contains build libraries necessary to create customer execution environments.
Alternatively, you can also obtain a copy of this image from Private Automation Hub if
you have configured Private Automation Hub for this purpose.

• ANSIBLE_GALAXY_CLI_COLLECTION_OPTS: Use the "--ignore-certs" option.
This parameter allows you to obtain an image from a repository without using self
signed certificates.

• ansible_config: You can specify the ansible.cfg file to pass a token and other
settings for a private account to a Private Automation Hub server. Otherwise, the
Builder utility uses ansible.galaxy to download Ansible collections. Listing the config
file path as a string includes it as a build argument in the initial phase of the build.

• dependencies: This section is a dictionary value that defines the Ansible Galaxy,
Python, and system dependencies that must be installed into the final container.

Note:

Any dependencies listed in this section that are outside of the Oracle Linux
or Oracle Linux Automation Manager scope of coverage are outside of the
scope of coverage for support.

Valid keys for this section are as follows:

– galaxy: This parameter is the path to a file that defines the collection
dependencies. The Builder utility installs these with the ansible-galaxy
collection install -r requirements.yml command. The supplied value may
be a relative path from the directory of the execution environment definition’s
folder, or an absolute path.
The format for specifying a collection in the requirements.yml file can be as
follows:

collections:
 - name: <namespace>.<collection_name>

In the previous example, <namespace> is the namespace of the collection (for
example, oracle) and <collection_name> is the name of the collection to be
installed (for example, oci). You can repeat this combination for each collection
you want to use.

You can also indicate a specific version, source type, and source location as
follows:

collections:
- name <namespace>.<collection_name>
 version: <version_number or "<range_identifyer><version_number>"

Chapter 5
Configuring a Custom Execution Environment Using Format 1

5-3

 type: <source_type>

In the previous example, <version_number> can be any collection version
number. When specified with one or more <range_identifyer>, then the
version number is always the most recent version of the collection
possible within the range specified. For example, the following indicates
that the version should be greater than or equal to 4.0.0, but less than
5.0.0:

collections:
- name: oracle.oci
 version: ">=4.0.0,<5.0.0"
 type: galaxy

You can use the following range identifiers:

* *
The most recent version. This is the default.

* !=
Not equal to the version specified.

* ==
Exactly the version specified.

* >=
Greater than or equal to the version specified.

* >
Greater than the version specified.

* <=
Less than or equal to the version specified.

* <
Less than the version specified.

– python: This string value is the path to a file containing the Python
dependencies to be installed with the pip install -r requirements.txt
command. The supplied value may be a relative path from the directory of
the execution environment definition’s folder, or an absolute path.
The format for specifying a python dependency in the requirements.yml
file can be as follows:

<someproject>
<someproject><version_specifier><version_number>
<someproject><version_specifier><version_number>,<version_spe
cifier><version_number>

In the previous example, <someproject> is the name of the project. You
can specify the project name alone, which find the latest version of that
project, or you can specify a project with one or more <version_identifier>

Chapter 5
Configuring a Custom Execution Environment Using Format 1

5-4

and <verion_number> combinations to return a specific version of the project you
want to install. For example:

requests>=2.4.2
xmltodict
azure-cli-core==2.11.1

For more information about available version specifiers, see https://
peps.python.org/pep-0440/#version-specifiers.

– system: This string value is points to a bindep.txt requirements file. This will be
processed by bindep and then passed to dnf, other platforms are not yet
supported. For example:

gcc
libcurl-devel
libxml2-devel
python39-devel
openssl-devel

For more information about writing a system requirements file and optionally
specifying version constraints, see https://docs.opendev.org/opendev/bindep/
latest/readme.html#writing-requirements-files.

• additional_build_steps: Additional commands may be specified in the
additional_build_steps section, either for before the main build steps (prepend) or
after (append). The syntax needs to be one of the following:

– a multi-line string (example shown in the prepend section above)

– a list (as shown via append)

4. Save the file.

5. Complete the ansible.cfg and any dependency files as required.

6. Run the following command from your working directory:

ansible-builder build -t <repository:tag>

In the previous example, <repository:tag> is the repository and tag of the custom
execution environment. For example, host1/'custom_ee:latest.

Note:

For more information as the builder utility processes, use the -v 3 option at the
end of the command provides the most information while 1 is the least. For
example,

ansible-builder build -v 3

Chapter 5
Configuring a Custom Execution Environment Using Format 1

5-5

https://peps.python.org/pep-0440/#version-specifiers
https://peps.python.org/pep-0440/#version-specifiers
https://docs.opendev.org/opendev/bindep/latest/readme.html#writing-requirements-files
https://docs.opendev.org/opendev/bindep/latest/readme.html#writing-requirements-files

7. Verify that the images have been created. Run the following Podman command:

podman images

Configuring a Custom Execution Environment Using Format
2

To configure a custom execution environment using format 2, do the following:

1. On the host where you have installed the Builder utility, create a working directory
for Builder utility. For example,

mkdir ~/builder-utility
cd ~/builder-utility

2. Create the following files:

touch ansible.cfg execution-environment.yml requirements.yml
requirements.txt bindep.txt

3. In the execution-environment.yml file, add the following parameters:

version: 2

build_arg_defaults:
 ANSIBLE_GALAXY_CLI_COLLECTION_OPTS: "--ignore-certs"

ansible_config: 'ansible.cfg'

dependencies:
 galaxy: requirements.yml
 python: requirements.txt
 system: bindep.txt

images:
 base_image:
 name: container-registry.oracle.com/
oracle_linux_automation_manager/olam-ee:latest
 builder_image:
 name: container-registry.oracle.com/
oracle_linux_automation_manager/olam-builder:latest

In the previous example,

• ANSIBLE_GALAXY_CLI_COLLECTION_OPTS: Use the "--ignore-certs"
option.This parameter allows you to obtain an image from a repository without
using self signed certificates.

• ansible_config: You can specify the ansible.cfg file to pass a token and
other settings for a Private Automation Hub server. Listing the config file path
as a string includes it as a build argument in the initial phase of the build.

Chapter 5
Configuring a Custom Execution Environment Using Format 2

5-6

• dependencies: This section is a dictionary value that is defines the Ansible Galaxy,
Python, and system dependencies that must be installed into the final container. Valid
keys for this section are as follows:

– galaxy: This parameter is the path to a file that defines the collection
dependencies. The Builder utility installs these with the ansible-galaxy
collection install -r requirements.yml command. The supplied value may
be a relative path from the directory of the execution environment definition’s
folder, or an absolute path.
The format for specifying a collection in the requirements.yml file can be as
follows:

collections:
- name <namespace>.<collection_name>

In the previous example, <namespace> is the namespace of the collection (for
example, oracle) and <collection_name> is the name of the collection to be
installed (for example, oci). You can repeat this combination for each collection
you want to use.

You can also indicate a specific version, source type, and source location as
follows:

collections:
 - <namespace>.<collection_name>
 version: <version_number or
"<range_identifyer><version_number>"
 type: <source_type>

In the previous example, <version_number> can be any collection version
number. When specified with one or more <range_identifyer>, then the version
number is always the most recent version of the collection possible within the
range specified. For example, the following indicates that the version should be
greater than or equal to 4.0.0, but less than 5.0.0:

collections:
- name: oracle.oci
 version: ">=4.0.0,<5.0.0"
 type: galaxy

You can use the following range identifiers:

* *
The most recent version. This is the default.

* !=
Not equal to the version specified.

* ==
Exactly the version specified.

* >=

Chapter 5
Configuring a Custom Execution Environment Using Format 2

5-7

Greater than or equal to the version specified.

* >
Greater than the version specified.

* <=
Less than or equal to the version specified.

* <
Less than the version specified.

– python: This string value is the path to a file containing the Python
dependencies to be installed with the pip install -r ... command. The
supplied value may be a relative path from the directory of the execution
environment definition’s folder, or an absolute path.
The format for specifying a python dependency in the requirements.yml
file can be as follows:

<someproject>
<someproject><version_specifier><version_number>
<someproject><version_specifier><version_number>,<version_spe
cifier><version_number>

In the previous example, <someproject> is the name of the project. You
can specify the project name alone, which find the latest version of that
project, or you can specify a project with one or more <version_identifier>
and <verion_number> combinations to return a specific version of the
project you want to install. For example:

requests>=2.4.2
xmltodict
azure-cli-core==2.11.1

For more information about available version specifiers, see https://
peps.python.org/pep-0440/#version-specifiers.

– system: This string value is points to a bindep requirements file. This will
be processed by bindep and then passed to dnf, other platforms are not
yet supported. For example:

gcc
libcurl-devel
libxml2-devel
python39-devel
openssl-devel

For more information about writing a system requirements file and
optionally specifying version constraints, see https://docs.opendev.org/
opendev/bindep/latest/readme.html#writing-requirements-files.

• additional_build_steps: Additional commands may be specified in the
additional_build_steps section, either for before the main build steps (prepend)
or after (append). The syntax needs to be one of the following:

– a multi-line string (example shown in the prepend section above)

– a list (as shown via append)

Chapter 5
Configuring a Custom Execution Environment Using Format 2

5-8

https://peps.python.org/pep-0440/#version-specifiers
https://peps.python.org/pep-0440/#version-specifiers
https://docs.opendev.org/opendev/bindep/latest/readme.html#writing-requirements-files
https://docs.opendev.org/opendev/bindep/latest/readme.html#writing-requirements-files

• images: You can use the images key to define base and builder images. With the
version 2 format, an execution environment definition may specify a base and builder
container image whose signature must be validated before builder will build the
resulting image, based on the value of the --container-policy CLI option. Key options
are as follows:

– base_image: This parameter requires the base olam-ee, which you can obtain
from container-registry.oracle.com/oracle_linux_automation_manager/
olam-ee. Alternatively, you can also obtain a copy of this image from Private
Automation Hub if you have configured Private Automation Hub for this purpose.

– builder_image: This parameter requires the olam-builder image, which you can
obtain from container-registry.oracle.com/
oracle_linux_automation_manager/olam-builder. The builder container image
contains build libraries necessary to create customer execution environments.
Alternatively, you can also obtain a copy of this image from Private Automation
Hub if you have configured Private Automation Hub for this purpose.

4. Save the file.

5. Complete the ansible.cfg and any dependency files as required.

6. Run the following command from your working directory:

ansible-builder build -t <repository:tag>

In the previous example, <repository:tag> is the repository and tag of the custom
execution environment. For example, host1/'custom_ee:latest.

Note:

For more information as the builder utility processes, use the -v 3 option at the
end of the command provides the most information while 1 is the least. For
example,

ansible-builder build -v 3

7. Verify that the images have been created. Run the following Podman command:

podman images

Uploading a Custom Execution Environment
To upload a custom execution environment, do the following:

1. From the host where you created the custom execution environment, use Podman to log
into the Private Automation Hub instance you want to upload your custom execution
environment to. For example,

podman login <ip address or hostname> -u admin -p <password> --tls-
verify=false

Chapter 5
Uploading a Custom Execution Environment

5-9

In the previous example, <ip address or hostname> is the IP address or host
name of the Private Automation Hub instance and <password> is the password for
the admin user on the Private Automation Hub instance.

2. Identify which custom image you want to upload. For example,

podman images

3. Push the image to your Private Automation Hub. For example,

podman push <podman_image_id or repository:tag> <ip address or
hostname/image_name:tag> --tls-verify=false

In the previous example, <podman_image_id or repository:tag> is the image ID or
the repository and tag of the custom execution environment you want to push and
<ip address or hostname/image_name:tag> is the IP address or host name
followed by the image name and the tag of the Private Automation Hub instance.
For example, the following uses a podman repository name and tag followed by
the hostname, image name, and tag to use on the private automation hub
instance:

podman push localhost/custom-image:2.1.3
private_automation_hub_host/custom-image:2.1.3 --tls-verify=false

The following uses a podman image id followed by the hostname, image name,
and tag to use on the private automation hub instance:

podman push 330928308c01 private_automation_hub_host/custom-
image:2.1.3 --tls-verify=false

4. Verify that the execution environment now exists on your Private Automation Hub
instance. For more information about this task, see View Execution Environment
Details.

Chapter 5
Uploading a Custom Execution Environment

5-10

6
Working with the Command-Line Interface

You can use the command-line interface to manage collections and ansible roles.

Installing the Command-Line Interface
The Command-Line interface is installed on the Private Automation Hub deployment host
when you install the Private Automation Hub installer. For more information about installing
Private Automation Hub, see Oracle Linux Automation Manager 2: Private Automation Hub
Installation Guide. You can also install the CLI alone on a separate system rather than use
the CLI on the deployment host.

To install a the CLI alone on a separate system, do the following:

1. Use the dnf config-manager tool to enable the yum repositories and do one of the
following:

• If you are using ol8_UEK6, use the following command:

sudo dnf config-manager --enable ol8_UEKR6 ol8_appstream

• If you are using ol8_UEK7, use the following command:

sudo dnf config-manager --enable ol8_UEKR7 ol8_appstream

2. Ensure that no version of ansible is present on the system. If any are, uninstall them. For
example, the following shows that there are no versions of ansible installed:

rpm -q ansible
package ansible is not installed

3. Install the CLI:

sudo dnf install ansible-core

Using the Command-Line Interface
You interact with the CLI by entering commands with a series of options. The CLI command
with the --help flag returns the following syntax information:

ansible-galaxy --help
usage: ansible-galaxy [-h] [--version] [-v] TYPE ...

Perform various Role and Collection related operations.

positional arguments:
 TYPE
 collection Manage an Ansible Galaxy collection.

6-1

https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/install-private-hub/
https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/install-private-hub/

 role Manage an Ansible Galaxy role.

options:
 --version show program's version number, config file location,
configured module search path, module location, executable location
and exit
 -h, --help show this help message and exit
 -v, --verbose Causes Ansible to print more debug messages. Adding
multiple -v will increase the verbosity, the builtin plugins currently
evaluate up to -vvvvvv. A
 reasonable level to start is -vvv, connection
debugging might require -vvvv.

The positional arguments section lists the available resources to manage using the
CLI. You can obtain additional information about these resources by adding the
resource name before the --help flag. For example, the following shows actions
available for the collection resource:

ansible-galaxy collection --help
usage: ansible-galaxy collection [-h] COLLECTION_ACTION ...

positional arguments:
 COLLECTION_ACTION
 download Download collections and their dependencies as a
tarball
 for an offline install.
 init Initialize new collection with the base structure
of a
 collection.
 build Build an Ansible collection artifact that can be
 published to Ansible Galaxy.
 publish Publish a collection artifact to Ansible Galaxy.
 install Install collection(s) from file(s), URL(s) or
Ansible
 Galaxy
 list Show the name and version of each collection
installed in
 the collections_path.
 verify Compare checksums with the collection(s) found on
the
 server and the installed copy. This does not
verify
 dependencies.

options:
 -h, --help show this help message and exit

The following shows actions available for the role resource:

ansible-galaxy role --help
usage: ansible-galaxy role [-h] ROLE_ACTION ...

positional arguments:
 ROLE_ACTION

Chapter 6
Using the Command-Line Interface

6-2

 init Initialize new role with the base structure of a role.
 remove Delete roles from roles_path.
 delete Removes the role from Galaxy. It does not remove or alter the
actual GitHub repository.
 list Show the name and version of each role installed in the
roles_path.
 search Search the Galaxy database by tags, platforms, author and
multiple keywords.
 import Import a role into a galaxy server
 setup Manage the integration between Galaxy and the given source.
 info View more details about a specific role.
 install Install role(s) from file(s), URL(s) or Ansible Galaxy

options:
 -h, --help show this help message and exit

In a similar way, you can use the --help flag to obtain additional information about the
available actions.

Chapter 6
Using the Command-Line Interface

6-3

	Contents
	Preface
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About Private Automation Hub
	2 Setting Up Permissions for Groups, and Users
	Setting Up Users
	Setting Up Roles
	Setting Up Groups

	3 Working with Namespaces and Collections
	Creating NameSpaces
	Uploading Collections
	Approving Uploaded Collections
	Rejecting Uploaded Collections
	Working With Repositories
	Viewing the Local Repositories
	The Purposes of the Different Local Repositories
	Remote Repository Configuration
	Remote Repository Syncing

	API token management
	Accessing Private Automation Hub Collections from Oracle Linux Automation Manager
	Accessing Collections in Private Automation Hub Custom Execution Environments
	Accessing Collections Contained in Private Automation Hub Repositories

	4 Working with Execution Environments
	Configure a Remote Container Registry
	Creating an Execution Environment with Remote Registry
	Synchronizing an Execution Environment from a Remote Registry
	View Execution Environment Details

	5 Creating Custom Execution Environments
	Configuring a Custom Execution Environment Using Format 1
	Configuring a Custom Execution Environment Using Format 2
	Uploading a Custom Execution Environment

	6 Working with the Command-Line Interface
	Installing the Command-Line Interface
	Using the Command-Line Interface

