
Oracle Linux 10
Configuring the File Access Policy Daemon

G34035-02
June 2025

Oracle Linux 10 Configuring the File Access Policy Daemon,

G34035-02

Copyright © 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 About the File Access Policy Daemon

About the Trust Database 1-1

About Policy Rules 1-2

2 Installing and Running fapolicyd

Changing Runtime Configuration 2-1

Configuring Runtime Statistics Reporting 2-1

Logging Controls 2-2

Performance Controls 2-3

Debugging Interactively in Permissive Mode 2-3

Auditing Denial Events in Permissive Mode 2-4

3 Managing File Trusts

Refreshing the Trust Database 3-1

Adding Files to the Trust File Database 3-1

Updating the Trust File Database 3-2

Checking for Trust Mismatches 3-2

List the Entries in the Trust Database 3-3

Resetting the Trust Database 3-3

4 Managing Policies

Listing Policy Rules 4-1

Creating Policy Rules 4-2

iii

Checking and Loading Policy Rules 4-5

Changing Default Policy Logging 4-6

iv

Preface

Oracle Linux 10: Configuring the File Access Policy Daemon describes how you can install and
configure the File Access Policy Daemon, fapolicyd, on Oracle Linux to improve system
security though policy rules that either allow or block specific applications from running.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,

v

https://docs.oracle.com/en/operating-systems/oracle-linux/10/fapolicyd/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

1
About the File Access Policy Daemon

The File Access Policy Daemon, fapolicyd, is a service that can be used to help protect a
system by limiting which applications have permission to run. The service can be used to
complement other security related services, including SELinux. Unlike SELinux, which isn't
concerned with how files and applications are installed onto the system and whether they're
trusted, fapolicyd implements policy decisions based on whether applications are trusted and
how they were installed onto the system.

Fapolicyd uses the fanotify kernel API to monitor file system events. When a file is accessed,
fapolicyd decides whether the event can continue by checking the file against a trust database
and evaluating a set of policy rules. If the file isn't in the trust database and a policy rule denies
the action, the event is blocked and an EACCESS 'Permission denied' error is returned to the
user.

Fapolicyd automatically adds files that are installed by DNF to the trust database, by using a
DNF plugin. This approach helps to make fapolicyd more efficient when evaluating files that
have been installed legitimately onto the system. Files can be evaluated based on their
SHA-256 hash so that they can't be modified after they're added to the trust database. You can
optionally add files to the trust database for files that aren't installed by DNF. You must reload
the database after files are added manually or when files are installed by using the rpm
command outside of the DNF framework.

A cache is used by Fapolicyd to help improve performance and to reduce the amount of time
spent processing rules and performing database lookups for frequent events.

Fapolicyd rules define logging options that can be used to audit events. The default policy uses
the audit log which can be viewed by using the ausearch command. You can change policy
rules to log to the system log or to both the audit log and the system log to help with
debugging.

For more information about the Fapolicyd see https://github.com/linux-application-whitelisting/
fapolicyd.

About the Trust Database
Fapolicyd uses a trust database to efficiently lookup files that are trusted by the system. If a file
isn't in the trust database, fapolicyd falls back to processing policy rules to decide whether an
event is allowed or not.

The trust database is partitioned into information that fapolicyd gathers about installed RPM
packages and information added manually by using configuration files.

The trust database is automatically populated with information about files that are installed
onto the system, by copying information from the RPM database. When fapolicyd is started or
an update is run, the trust database is updated for all files listed in the RPM database. The
trust database is also updated automatically when new packages are installed or packages are
updated by using DNF. The tracking of package data is handled by the fapolicyd-dnf-plugin,
which notifies the fapolicyd daemon about DNF updates or installations.

1-1

https://github.com/linux-application-whitelisting/fapolicyd
https://github.com/linux-application-whitelisting/fapolicyd

If you install packages directly by using the rpm command, then the fapolicyd RPM database
isn't updated and you might experience system freezes. In this case, it can be useful to refresh
the trust database. See Refreshing the Trust Database for more information.

Administrators can also add files to the trust database manually when files are installed or
added to the system outside of the usual DNF and RPM packaging mechanisms, such as
compiling binaries from source, or when using the Python pip utility, Ruby's gem utility,
Node.js's npm utility, or Perl's CPAN tooling.

The trust database distinguishes between these two types of trust: files that are trusted
because they belong to the RPM database, and files that are trusted because they have been
added manually to the trust database. For example, entries that are trusted from the RPM
database are of the type rpmdb:

rpmdb /usr/bin/dnf-3 2092
0a53d05260ba7ed4573...7ec64816e3ad49a2078c84836aeb7833e

Files that are added manually to the trust database are of the type filedb, for example:

filedb /home/user/demo.bin 140468
e38cd120c925...46c9cd1aa83e44e697f0f3393d98b305

The database also stores the path to the file, the size of the file in bytes and a SHA-256 hash
for the file. The file size and SHA-256 hash can be used to perform further integrity checks on
files to make the system much more restrictive and robust against malicious activity. Although
enabling integrity checking can protect against somebody working around fapolicyd by
changing a file at a particular location, we don't recommend configuring fapolicyd for integrity
checking because it increases the risk of system deadlock. Integrity checks are disabled in
fapolicyd by default. See Checking for Trust Mismatches and List the Entries in the Trust
Database for more information.

Note that processing of trusted files in the trust database is cached and is much quicker than
the processing of individual policy rules. Therefore, if you need fapolicyd to trust particular
applications or files that are made available to the system outside of DNF, it's more efficient to
add them to the trust file database than to define rules for them. Only add policy rules for
individual files if you need custom rules around user or group permissions.

About Policy Rules
Policy rules control how fapolicyd handles files that aren't explicitly listed within the trust
database. Policy rules can also be used to further restrict behavior on the system for files that
are in the trust database. You can use policy rules to make fapolicyd more or less restrictive.
You can define policy rules to create exceptions that allow or deny certain applications for
specified scenarios. For example, you can create rules to explicitly allow an application for a
particular user or group, but to deny the application for all other users.

The fapolicyd package ships with two policy rule sets:

• The known-libs policy
The known-libs policy is the default rule set and is designed to protect the system by only
allowing known applications or libraries to run. The policy is slightly more permissive
because it allows Elf binaries, python programs, and shell scripts to run for trusted
applications and libraries.

• The restrictive policy

Chapter 1
About Policy Rules

1-2

The restrictive policy provides mostly the same rules as the known-libs policy, but includes
several more restrictive rules that prevent the running of any application or library that's not
within the trust database. This policy blocks any possibility of running any executable file
that isn't trusted.

The rules for these policies are shipped in /usr/share/fapolicyd/sample-rules/. The
rules that apply to the known-libs policy are copied into /etc/fapolicyd/rules.d/ when
the package is installed to make them active. The files that apply to each policy are described
in /usr/share/fapolicyd/sample-rules/README-rules.

Fapolicyd processes rules based on their natural sort order, so rule files are named according
to the following prefix convention:

• 10-: Definitions of macros that can be used in other rules.

• 20-: Rules to work around fapolicyd for system critical activity, such as when dracut builds
kernel initramfs files or when DNF needs to run particular tools for updates.

• 30-: Rules that identify access patterns that show how a program might be started. A
default rule checks for programs that are started by the runtime linker (ld.so).

• 40-: Rules for ELF binary files, such as rules to prevent malformed ELF files from running
even if trusted, trust rules for ELF libraries and for trusted ELF binary executable files.

• 50-: Rules that set out which users or groups are trusted to run particular programs or
access particular files.

• 60-: Rules for access to particular applications, where the application isn't in the trust
database.

• 70-: Rules related to different programming languages or scripting languages, such as
Python, Perl, PHP, Ruby, or Lua.

• 80-: Rules for trusted applications that might need advanced access controls.

• 90-: General catch-all allow and deny rules.

Rules are compiled into a single file in /etc/fapolicyd/compiled.rules that fapolicyd
reads at runtime.

Rule structure is described in detail in the fapolicyd.rules(5) manual page.

Chapter 1
About Policy Rules

1-3

2
Installing and Running fapolicyd

Use the dnf command to install fapolicyd from the Oracle Linux 10 AppStream repository.

1. Check that the repository is enabled.

Run the following command and ensure that the ol10_appstream repository appears in the
output:

dnf repolist

2. Install the fapolicyd package.

Use dnf to install the fapolicyd package:

sudo dnf install fapolicyd

3. Enable and start the fapolicyd service.

Run the following command to start the fapolicyd service and make it start automatically
when the system reboots:

sudo systemctl enable --now fapolicyd

Changing Runtime Configuration
Runtime configuration options are set in /etc/fapolicyd/fapolicyd.conf. The options
are described in detail in the fapolicyd.conf(6) manual page. For more information, see also
https://github.com/linux-application-whitelisting/fapolicyd/blob/main/README.md.

Configuring Runtime Statistics Reporting
By default, fapolicyd generates a runtime statistics report that provides useful information
about accesses, denials, and cache performance. Use the information in the report to fine-tune
configuration options or diagnose file access issues.

Configuration options that can be set to control this report include:

do_stat_report
Controls whether the statistics report is generated. Change this value from the default of 1 to 0
to disable statistics reporting.

detailed_report
Controls whether fapolicyd adds subject and object information to the usage statistics report,
indicating the number of times particular subject-object events occur. This content can be
useful when debugging but can be disabled to reduce the size of the log. The default value for
this option is set to 1 to indicate that the option is enabled.

2-1

https://github.com/linux-application-whitelisting/fapolicyd/blob/main/README.md

The report is generated at /var/log/fapolicyd-access.log when the fapolicyd service
is stopped. The report content is similar to the following:

Permissive: false
q_size: 640
Inter-thread max queue depth 6
Allowed accesses: 668513
Denied accesses: 0
Trust database max pages: 25600
Trust database pages in use: 7567 (29%)

File access attempts from oldest to newest as of Wed Nov 15 16:46:59 2023

 FILE ATTEMPTS

/var/tmp/dracut.kZVhRg/initramfs/usr/lib/kbd/keymaps/xkb/tr-alt.map.gz 1
/var/tmp/dracut.kZVhRg/initramfs/usr/lib/kbd/unimaps/koi8u.uni 1
/var/tmp/dracut.kZVhRg/initramfs/usr/bin/stgTP4DF 1
...
/usr/bin/mandb (?) 1
/usr/bin/mandb (?) 264

Subject cache size: 1549
Subject slots in use: 1549 (100%)
Subject hits: 666964
Subject misses: 46044
Subject evictions: 44495 (6%)

Logging Controls
Audit logging is mostly handled using fanotify events in the audit log, but you can also
configure the policy to log to the system log. See Changing Default Policy Logging, Debugging
Interactively in Permissive Mode and Auditing Denial Events in Permissive Mode.

When logging to the system log or running fapolicyd in debugging mode, you can control the
content of the log output from access decisions by configuring the syslog_format option. The
format is a comma separated list of the different values to indicate rule information with subject
and object information delineated by use of a colon character. Note that system performance is
affected by the amount of content that you log. The default value is:
rule,dec,perm,auid,pid,exe,:,path,ftype,trust.

Values available for the syslog_format option include:

• rule: The rule number from the compiled policy rules. See Listing Policy Rules.

• dec: The decision that fapolicyd takes for the rule.

• perm: The permission that's applied in the rule.

• Any of the subject options.

• :: The separator to delineate between subject and object options.

• Any of the object options.

For more information about subject and object options, see Creating Policy Rules.

Chapter 2
Changing Runtime Configuration

2-2

Performance Controls
Performance control options can help improve memory usage and processing.

The following options are available to control the size of the caches that are used by fapolicyd
to improve performance:

subj_cache_size
Controls how many entries the subject cache holds. The default value is 1549.

obj_cache_size
Controls how many entries the object cache holds. The default value is 8191.

For both options, aim to keep the allocated memory as small as feasibly possible, while
ensuring that enough memory is allocated to the cache to maximize the ratio of hits to
evictions. This ratio can be calculated from the statistics report.

To avoid cache churn resulting from collisions, consider setting cache size values to prime
numbers.

Debugging Interactively in Permissive Mode
By default, fapolicyd is configured in enforcing mode. To help with debugging, you can
configure permissive mode. In permissive mode, events that fapolicyd might have blocked in
enforcing mode can run, but are audited. You can run fapolicyd in permissive mode
interactively and enable debugging to see more information about these events.

1. Stop the fapolicyd service.

Use systemctl to stop the service:

sudo systemctl stop fapolicyd

2. Run fapolicyd in permissive mode with debugging enabled.

Run the following fapolicyd command with the --permissive and --debug options:

sudo fapolicyd --permissive --debug

The output of the command is similar to the following:

datetime [INFO]: Can handle 524288 file descriptors
date time [INFO]: Ruleset identity:
0a028cfb95e93569d565d732890384b69952d7841d10af060e3...
date time [DEBUG]: Loading rule file:
date time [DEBUG]: ## This file is automatically generated from /etc/
fapolicyd/rules.d
date time [DEBUG]: %languages=application/x-bytecode.ocaml,application/x-
bytecode.python...
date time [DEBUG]: allow perm=any uid=0 : dir=/var/tmp/
date time [DEBUG]: allow perm=any uid=0 trust=1 : all
date time [DEBUG]: allow perm=open exe=/usr/bin/rpm : all
date time [DEBUG]: allow perm=open exe=/usr/bin/python3.12 comm=dnf : all
date time [DEBUG]: deny_audit perm=any pattern=ld_so : all
date time [DEBUG]: deny_audit perm=any all : ftype=application/x-bad-elf

Chapter 2
Debugging Interactively in Permissive Mode

2-3

date time [DEBUG]: allow perm=open all : ftype=application/x-sharedlib
trust=1
date time [DEBUG]: deny_audit perm=open all : ftype=application/x-
sharedlib
date time [DEBUG]: allow perm=execute all : trust=1
date time [DEBUG]: allow perm=open all : ftype=%languages trust=1
date time [DEBUG]: deny_audit perm=any all : ftype=%languages
date time [DEBUG]: allow perm=any all : ftype=text/x-shellscript
date time [DEBUG]: deny_audit perm=execute all : all
date time [DEBUG]: allow perm=open all : all
date time [DEBUG]: Loaded 14 rules
date time [DEBUG]: Changed to uid 985
date time [INFO]: Initializing the trust database
date time [INFO]: fapolicyd integrity is 0
date time [DEBUG]: backend rpmdb registered
date time [DEBUG]: backend file registered
date time [INFO]: Loading rpmdb backend
date time [DEBUG]: Loading file backend
date time [INFO]: Checking if the trust database up to date
date time [INFO]: Importing trust data from rpmdb backend
date time [INFO]: Importing trust data from file backend
date time [INFO]: Entries in trust DB: 37080
date time [INFO]: Loaded trust info from all backends(without
duplicates): 37080
date time [INFO]: Trust database checks OK
date time [DEBUG]: added / mount point
date time [DEBUG]: added /dev/shm mount point

When events that would have been denied in enforcing mode run, they're tagged in the
command output with dec=deny_audit.

Tip:

Debug output can be verbose. Use the --debug-deny option instead of the
standard --debug option to only output denial events. You don't need to run in
debug mode to audit denial events, though. See Auditing Denial Events in
Permissive Mode for more information. If you need to get more information about
denial events, you can change rules to log to the system log. See Changing
Default Policy Logging for more information.

3. Exit permissive mode.

When you're finished monitoring the fapolicyd output, stop the running daemon by pressing
Ctrl-C to send a SIGINT to interrupt the process.

Auditing Denial Events in Permissive Mode
To enable permissive mode by default, edit /etc/fapolicyd/fapolicyd.conf and set the
permissive configuration option to 1. You must restart the fapolicyd service for the change to
take effect. All denial events are then sent to the audit log and tracked using fanotify
messages.

You must have at least one rule defined for auditd to start logging fapolicyd events. If you don't
have any rules defined, no events appear in the audit log. You can create any rule for auditing

Chapter 2
Auditing Denial Events in Permissive Mode

2-4

to start working. For example, you can create a rule to audit changes to the configuration
in /etc/fapolicyd as follows:

sudo tee /etc/audit/rules.d/40-fapolicyd.rules > /dev/null <<'EOF'
This policy monitors /etc/fapolicyd/ for changes to configuration
This rule is generated to ensure that events are logged to the audit log
 for fapolicyd tracking
-w /etc/fapolicyd/ -p wa -k fapolicyd_changes
EOF

You must restart the auditd service for this rule to take effect:

sudo service auditd restart

Note:

auditd can't be restarted by using the systemctl command.

Denial events are logged to the audit log. Review these by using the ausearch command. For
example:

sudo ausearch --start today -m fanotify

Use aureport to create easier to read outputs. For example:

sudo ausearch --start today -m fanotify --raw | aureport --file

Chapter 2
Auditing Denial Events in Permissive Mode

2-5

3
Managing File Trusts

File trusts are stored in the trust database. Trusts can either be generated based on
information in the RPM database or can be manually defined by adding configuration entries in
the file system. The contents of the trust database and how trusts work is discussed in more
detail in About the Trust Database.

Refreshing the Trust Database
Refresh the trust database if files on the system have been added or updated outside of the
DNF framework.

To refresh the fapolicyd trust database manually, run:

sudo fapolicyd-cli --update

Adding Files to the Trust File Database
You can add any files that aren't installed by using DNF to the file database manually.

To add a file to the trust file database, run:

sudo fapolicyd-cli --file add <path_to_file> --trust-file trust_entry

If the file isn't already in a trust database, the command adds the file to the trust file
configuration by creating an entry at /etc/fapolicyd/trust.d/<trust_entry>.

For example, to add /home/user/demo.bin to /etc/fapolicyd/trust.d/demo, run:

sudo fapolicyd-cli --file add /home/user/demo.bin --trust-file demo

Tip:

You can use command line tools such as find to add several entries to the trust file
database at the same time. For example:

find /home/user/bin/ -type f -exec fapolicyd-cli --file add {} --
trust-file trusted_user_bin \;

All entries in the trust file database are stored as plain text files in /etc/fapolicyd/
trust.d/ and can be edited with a text editor, if required. If you need to update file sizes or
hash values, see Updating the Trust File Database.

3-1

Tip:

To remove a file from the trust file database, either edit the text file directly to remove
the entry, or run:

sudo fapolicyd-cli --file delete <path_to_file>

Important:

After you make any changes to the trust file database you must refresh the trust
database before fapolicyd registers those changes. See Refreshing the Trust
Database.

Updating the Trust File Database
If you change the size or hash of any file in the file trust database, you must update the file
trust database.

To update the trust file database for changes to all files in the file trust database, run:

fapolicyd-cli -f update

If you specify the path to a file, only the values for that file are updated in the database.

After you make any changes to the trust file database you must refresh the trust database for
fapolicyd to register those changes. See Refreshing the Trust Database.

Checking for Trust Mismatches
Trust mismatches occur when the file size or SHA-256 hash value for a file on the file system
no longer matches the information stored for the file in the trust database. Changing a file
outside of using DNF can cause a trust mismatch. For example, if a file is installed or updated
by using the rpm command directly or when a user or process has changed the file.

Note:

Although you can configure fapolicyd for file integrity checks based on size or on the
SHA-256 hash, we don't recommend applying this option globally as it increases the
likelihood of a system deadlock.

To check for trust mismatches on a system, run:

sudo fapolicyd-cli --check-trustdb

Chapter 3
Updating the Trust File Database

3-2

The output lists the files where a mismatch occurs and what the mismatch is. For example:

/etc/selinux/targeted/contexts/files/file_contexts miscompares: size sha256
/etc/selinux/targeted/policy/policy.33 miscompares: size sha256
/opt/rh/gcc-toolset-12/root/usr/bin/ld miscompares: size sha256
/usr/lib64/gconv/gconv-modules.cache miscompares: size sha256
...

Note that mismatches are expected because the size or content of some files change from the
values in the RPM database after certain commands or services are run. Nonetheless,
checking for mismatches can help alert you to files that might be in the trust database but
which have changed after they were added to the database.

List the Entries in the Trust Database
You can view all the information in the trust database by dumping the data that the database
contains.

To list the entries in the trust database, run:

sudo fapolicyd-cli -D

The output displays the type of trust, the path to the file that's trusted, the size of the file in
bytes and the SHA-256 hash of the file.

Tip:

You can use command line tools such as grep to limit the data returned in the dump
output. For example:

sudo fapolicyd-cli -D|grep '/usr/bin/dnf-3'

Resetting the Trust Database
You can reset the trust database by stopping the fapolicyd service and deleting the database.
This can help debug issues in fapolicyd.

First, stop the fapolicyd service:

sudo systemctl stop fapolicyd

Then delete the database:

sudo fapolicyd-cli --delete-db

The trust database is removed entirely and then created and updated when you next start the
fapolicyd service.

Chapter 3
List the Entries in the Trust Database

3-3

Caution:

Never remove the /var/lib/fapolicyd/ directory directly as this might prevent
fapolicyd from functioning correctly and cause system lockout.

Chapter 3
Resetting the Trust Database

3-4

4
Managing Policies

The following tasks show how to manage the policy rules that fapolicyd uses.

For more information about policy rules and how they work, see About Policy Rules.

Listing Policy Rules
This task shows you how to list the policy rules that fapolicyd is using.

To list the active fapolicyd policy rules, run the following command:

sudo fapolicyd-cli -l

The output of this command is similar to the following:

-> %languages=application/x-bytecode.ocaml,application/x-
bytecode.python,application/java-archive...
1. allow perm=any uid=0 : dir=/var/tmp/
2. allow perm=any uid=0 trust=1 : all
3. allow perm=open exe=/usr/bin/rpm : all
4. allow perm=open exe=/usr/bin/python3.9 comm=dnf : all
5. deny_audit perm=any pattern=ld_so : all
6. deny_audit perm=any all : ftype=application/x-bad-elf
7. allow perm=open all : ftype=application/x-sharedlib trust=1
8. deny_audit perm=open all : ftype=application/x-sharedlib
9. allow perm=execute all : trust=1
10. allow perm=open all : ftype=%languages trust=1
11. deny_audit perm=any all : ftype=%languages
12. allow perm=any all : ftype=text/x-shellscript
13. deny_audit perm=execute all : all
14. allow perm=open all : all

Note that the rules are numbered. When fapolicyd runs in debug mode, the output displays the
rule number that's enforced for an event. You can use this information to decide whether you
need to insert a new policy rule to change the existing policy and to decide where that rule
might need to be in the policy hierarchy. See Debugging Interactively in Permissive Mode for
information on debugging.

You can compare this list to the compiled rules to check whether you need to reload the rules
into fapolicyd.

sudo cat /etc/fapolicyd/compiled.rules

See Checking and Loading Policy Rules.

4-1

Creating Policy Rules
You might need to create custom policy rules if the default policy is too restrictive and is
preventing applications from running. You can also create custom policy rules to further restrict
access to applications and files. Rules can be added to the /etc/fapolicyd/rules.d
directory following the conventions described in About Policy Rules and in the
fapolicyd.rules(5) manual page.

Rules have the following general format:

decision perm subject : object

decision
Whether to allow or deny an event and whether to log that action. Values can be allow, deny,
allow_audit, deny_audit, allow_syslog, deny_syslog, allow_log, or deny_log.

perm
The type of permission applied to the file, such as whether to trigger when the object is
opened, run, or for any activity on the object. Values can be open, execute, or any. If no
permission is specified, the default value is open.

subject
The actor performing the action on the object that the permission and decision applies to. This
value can be set to all for every actor, but can also be limited to a particular UID or GID or
another executable file. Values can be all, auid, uid, gid, sessionid, pid,ppid, trust, comm,
exe, dir, device, or pattern. See the fapolicyd.rules(5) manual page for more detail.

object
The files or applications that the decision applies to. This value can be specified in various
ways, such as by providing the path to a particular file, the MIME type of the file or for file
matches in the trust database. Values can be all, path, dir, device, ftype, trust, or
sha256hash. See the fapolicyd.rules(5) manual page for more detail.

You can specify several subject and object directives for a single rule. For example, you can
match the file path, MIME type, and file size as the object for a rule.

Rules can also be created to generate macros, or sets, that consist of a key and a set of
values in the form of integers or strings in a comma-separated list. Set rules are prefixed with
the percentage (%) symbol, and the set can be referenced when creating a rule by specifying
the key prefixed with the percentage (%) symbol. The format of a set rule is as follows:

%key=value1,value2

You can see an example of a set rule in /etc/fapolicyd/rules.d/10-
languages.rules.

The following example rules can be used to help guide you when creating custom rules for an
environment.

Example 4-1 Create a rule to let a group of trusted users to run files matching the
defined languages in their home directories

1. Create a system group and add trusted users to that group, or select an existing group of
trusted users. In this example, we use the adm group for system administrators.

Chapter 4
Creating Policy Rules

4-2

2. Create a policy rule file at /etc/fapolicyd/rules.d/50-adm-home-trust.rules
and add the following content:

allow perm=any gid=adm : ftype=%languages dir=/home
deny_log perm=any all : ftype=%languages dir=/home

Two rules are defined:

• Grant all users in the group adm all permissions on any files, in the /home directory, of
the type described in the languages set in /etc/fapolicyd/rules.d/10-
languages.rules.

• Deny all users any permissions on any files, in the /home directory, of the type
described in the languages macro. The deny_log rule causes the event to be added to
both the audit log and to the system log.

3. Compile and load the new rules.

sudo fagenrules --load

See Checking and Loading Policy Rules for more information.

4. Verify that the rule is in effect.

a. As a user in the adm group, create a test executable file in $HOME/
test_fapolicyd.py with the following content:

#/usr/bin/python3
print("Test succeeded")

b. Set the file mode to executable:

chmod +x $HOME/test_fapolicyd.py

c. Run the file:

$HOME/test_fapolicyd.py

The following output is displayed:

Test succeeded

d. As a user that isn't in the adm group, repeat the same steps. When you run the test
script, the following output is displayed:

bash: ./test_fapolicyd.py: Operation not permitted

If you have auditing configured, you can check for entries in the audit log as follows:

sudo ausearch --start today -m fanotify

Chapter 4
Creating Policy Rules

4-3

Output similar to the following is displayed:

...
time->date time
type=PROCTITLE msg=audit(1704456339.181:406): proctitle="bash"
type=PATH msg=audit(1704456339.181:406): item=0 name="./
test_fapolicyd.py" inode=68153551
 dev=fc:00 mode=0100755 ouid=0 ogid=0 rdev=00:00
obj=unconfined_u:object_r:user_home_t:s0
 nametype=NORMAL cap_fp=0 cap_fi=0 cap_fe=0 cap_fver=0 cap_frootid=0
type=CWD msg=audit(1704456339.181:406): cwd="/home/guest"
type=SYSCALL msg=audit(1704456339.181:406): arch=c000003e syscall=257
success=no exit=-1
 a0=ffffff9c a1=555d4b74e050 a2=0 a3=0 items=1 ppid=46725 pid=46765
auid=1000 uid=1001
 gid=1001 euid=1001 suid=1001 fsuid=1001 egid=1001 sgid=1001
fsgid=1001 tty=pts0 ses=3
 comm="bash" exe="/usr/bin/bash"
 subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null)
type=FANOTIFY msg=audit(1704456339.181:406): resp=2

Example 4-2 Create a rule to let users to run a trusted application

Note that creating rules to let particular applications run is less efficient than adding the
application to the trust database. See Adding Files to the Trust File Database for more
information. Only add rules for specific files if you need to provide more explicit controls over
file accesses. In this example, a rule is created controlling the ability to run a particular binary
application that can only be run by using the trusted bash shell binary.

1. Create a policy rule file at /etc/fapolicyd/rules.d/80-trustapp.rules and add
the following content:

allow_log perm=execute exe=/usr/bin/bash trust=1 : path=/opt/external/
app.bin ftype=application/x-executable trust=0

The rule states that if the trusted bash shell tries to run the untrusted application at the
path /opt/external/app.bin, where that file is of MIME type application/x-
executable, the action is allowed. Note that the decision is set to allow_log so that the
action is logged to help verify that the rule is working. After you have verified the rule, you
can change the decision to allow.

Tip:

To check the mime type of a file when writing rules, run the following command:

fapolicyd-cli --ftype /path-to-file

Note that by specifying the MIME type for the file and the way in which the file can be
loaded, the rule is reasonably restrictive. You can optionally create a more restrictive rule
based on the SHA-256 hash of the file, which would prevent the rule from applying if the
file is changed:

Chapter 4
Creating Policy Rules

4-4

• Obtain the SHA-256 hash for the file.

sha256sum /opt/external/app.bin|awk '{print $1}'

• Use the SHA-256 hash to rewrite the rule as follows:

allow perm=execute exe=/usr/bin/bash trust=1 : sha256hash=hash

Set the value of sha256hash to the value that you obtained from running the previous
command.

2. Compile and load the new rule.

sudo fagenrules --load

See Checking and Loading Policy Rules for more information.

3. Verify that the rule is in effect.

When you try to run /opt/external/app.bin as a standard user from the Bash shell, it
runs correctly. Because the decision in the rule is allow_log, you can view the fapolicyd
log to see the rule in action. For example, run:

sudo journalctl -S today -u fapolicyd|tail

The output displays that the rule is being enforced, for example:

datetime ro-ansible-ol8 fapolicyd[45792]: rule=13 dec=allow_log
 perm=execute auid=1000 pid=50439 exe=/usr/bin/bash : path=/opt/app.bin
 ftype=application/x-executable trust=0

Checking and Loading Policy Rules
If rules have been added or changed, you must check for consistency with the compiled rule
set that fapolicyd uses and load them into fapolicyd.

1. Check for inconsistencies between the rules in /etc/fapolicyd/rules.d and the
compiled rules in /etc/fapolicyd/compiled.rules.

sudo fagenrules --check

If the rules in /etc/fapolicyd/rules.d have been updated and need to be recompiled
and loaded, the output appears as follows:

/sbin/fagenrules: Rules have changed and should be updated

2. To compile the rules in /etc/fapolicyd/rules.d and load them into fapolicyd, run:

sudo fagenrules --load

You don't need to restart fapolicyd for the changes to take effect.

Chapter 4
Checking and Loading Policy Rules

4-5

3. List the rules to verify that the changes have been loaded correctly into fapolicyd.

sudo fapolicyd-cli -l

Changing Default Policy Logging
The default policy rules shipped with fapolicyd are configured to only log to the audit log for
denials. This configuration is appropriate for production systems but the information stored in
these logs might be limited for debugging purposes. If you need to track which rules are being
used to make the final decision on an event, you can either run fapolicyd in debugging mode,
or you could change rules to output information to the system log. For more information on
running fapolicyd in debugging mode, see Debugging Interactively in Permissive Mode.

Policy rule decisions identify whether to log information and how that information must be
logged. By default, for denial decisions, the rules that are included in the fapolicyd package
use the deny_audit decision type. You can change all deny_audit decision type to deny_log to
log information to both the audit log and to the system log.

To enhance logging:

1. Update rule definitions.

Update all rules in /etc/fapolicyd/rules.d to replace deny_audit with deny_log:

sudo bash -c 'for i in /etc/fapolicyd/rules.d/*; do sed -i "s/deny_audit/
deny_log/g" $i; done'

You can also enable logging for any allow rules, but doing so can result in verbose output
and have a significant impact on performance.

2. Check that the rules are updated.

Run the following command to verify that the rules have been updated successfully:

sudo fagenrules --check

3. Load the new rules.

Run the following command to load the new rules into fapolicyd:

sudo fagenrules --load

4. Review the rules.

Check that the changes are loaded correctly into fapolicyd:

sudo fapolicyd-cli -l | grep 'deny_log'

When an event is denied by fapolicyd and the decision is set to deny_log, an entry appears in
the system log, similar to the following:

fapolicyd[1478]: rule=13 dec=deny_log perm=execute auid=1000 pid=5361
exe=/usr/bin/bash :
 path=/home/user/demo.bin ftype=application/x-executable trust=0

Chapter 4
Changing Default Policy Logging

4-6

Note that the output includes the rule number for the rule that fapolicyd used to make the final
decision to deny the event.

To view system log entries for fapolicyd, run:

sudo journalctl -S today -u fapolicyd

Chapter 4
Changing Default Policy Logging

4-7

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About the File Access Policy Daemon
	About the Trust Database
	About Policy Rules

	2 Installing and Running fapolicyd
	Changing Runtime Configuration
	Configuring Runtime Statistics Reporting
	Logging Controls
	Performance Controls

	Debugging Interactively in Permissive Mode
	Auditing Denial Events in Permissive Mode

	3 Managing File Trusts
	Refreshing the Trust Database
	Adding Files to the Trust File Database
	Updating the Trust File Database
	Checking for Trust Mismatches
	List the Entries in the Trust Database
	Resetting the Trust Database

	4 Managing Policies
	Listing Policy Rules
	Creating Policy Rules
	Checking and Loading Policy Rules
	Changing Default Policy Logging

