
Oracle Linux 10
Profiling For Performance Analysis With
Gprofng

G14608-01
July 2025

Oracle Linux 10 Profiling For Performance Analysis With Gprofng,

G14608-01

Copyright © 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 About gprofng and Profiling

2 Installing gprofng

3 Getting Started With gprofng

4 gprofng Command Reference

Collecting Performance Data 4-1

Analyzing Performance Metrics 4-1

Working With gprofng-gui 4-4

5 Storing gprofng Options for Reuse

6 Working With gprofng and Threaded Applications

7 Using the Gprofng GUI

Installing gprofng-gui 7-1

Getting Started With gprofng-gui 7-1

Reviewing Experiments With gprofng-gui 7-2

Comparing Experiments With gprofng-gui 7-3

iii

gprofng-gui Views Reference 7-3

Working With the Callers-Callees View 7-4

Working With the Call Tree View 7-4

Working With the Functions View 7-5

Working With the Timeline View 7-5

8 Known Issues

Incorrect Source and Disassembly Percentages 8-1

Internal gprofng Function Displayed in Function View 8-1

Inactive gprofng-gui Help Menu Items 8-1

Unable to Profile a Running Process by Using gprofng-gui 8-1

iv

Preface

Oracle Linux 10: Profiling For Performance Analysis With Gprofng describes how to install and
use the gprofng tool to find performance bottlenecks in executable programs.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also

v

https://docs.oracle.com/en/operating-systems/oracle-linux/10/gprofng/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

1
About gprofng and Profiling

Gprofng is a next generation application profiling tool that can be used to diagnose
performance bottlenecks in software applications.

The tool can be used to profile programs compiled with toolchains released by Oracle Linux.
These programs can be written using the C, C++, Java and Scala programming languages for
the x86_64 and aarch64 processor architectures. The full extent of the data that can be
collected differs between CPU models and types.

Oracle developed this tool and contributed it back upstream to the binutils project so that it's
now part of the GNU binutils tools suite.

For more information, see https://sourceware.org/binutils/wiki/gprofng and the gprofng(1)
manual page.

1-1

https://sourceware.org/binutils/wiki/gprofng

2
Installing gprofng

Install the binutils-gprofng package on Oracle Linux 10.

Before installing the binutils-gprofng package, enable the ol10_addons repository:

sudo dnf config-manager --enable ol10_addons

sudo dnf update -y

For more information, see Oracle Linux: Managing Software on Oracle Linux.

The binutils-gprofng package provides the gprofng profiling tool and its prerequisites on
Oracle Linux systems.

1. Install the binutils-gprofng package.

Use the dnf command to install the package:

sudo dnf install -y binutils-gprofng

2. Verify that the binutils-gprofng package has installed successfully.

Use the gprofng command to verify its presence:

gprofng --version

The binutils-gprofng package is installed.

2-1

https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/

3
Getting Started With gprofng

Creating an experiment directory, capturing performance data, and inspecting the results.

Install the binutils-gprofng package. For more information, see Installing gprofng.

The gprofng profiling tool can be used to assist development teams seeking to optimize their
code and improve application performance.

1. Set up the experiment directory.

You can run the gprofng command inside any directory because it generates the
necessary directory structure automatically.

Consider creating a separate directory for the performance experiments. That directory can
be stored anywhere, for example in the user home directory or as an unversioned
subdirectory within a code project folder.

2. Collect performance data for a program.

Use the gprofng collect app command to start the application and collect performance
data while it runs:

gprofng collect app /path/to/application -options

3. Review the performance data that has been captured.

Use the gprofng display text command to analyze the performance data. By default,
experiment results are stored in an experiment directory that follows the test.n.er naming
pattern, where n is a numerical identifier for the test and .er is a required suffix.

For example, to review the performance data stored in the test.1.er directory, run the
following command:

gprofng display text -functions test.1.er

An experiment directory has been created, performance data was captured, and the test
directory in which that performance data is stored can be analyzed by using the gprofng
display command.

3-1

4
gprofng Command Reference

This table provides information about the gprofng command.

Action Command Description

Collect performance data. gprofng collect app Collects performance data
about a running application
and stores it in the experiment
directory.

Review performance results in
a terminal.

gprofng display text Displays performance data
from the specified experiment
directories in ASCII plain-text
format.

Review performance data in a
web browser.

gprofng display html Generates a HTML structure
from the specified experiment
directories.

Review the source and
disassembly code.

gprofng display src Displays the source code
interleaved with instructions.

Archive an experiment
directory.

gprofng archive Copies shared libraries, object
files, and source code to the
experiment directory for later
analysis.

Open a graphical user interface
for collecting and reviewing
performance data.

gprofng display gui If the gprofng-gui package is
installed, starts a graphical
user interface for collecting
performance data and
displaying experiments.

Collecting Performance Data
Use the gprofng collect app command to configure experiments and collect performance
data.

When collecting performance data, it's possible to specify the experiment directory by using the
-O option:

gprofng collect app -O experiment-directory-name.er /path/to/application -
options

Note that .er is a required suffix for any experiment directory name.

For more information about collecting performance data, see Getting Started With gprofng.

Analyzing Performance Metrics
Use the gprofng display text command to review a range of performance data that has
been collected in an experiment.

4-1

To analyze performance data collected for each function, use the -functions option with the
gprofng display text command:

gprofng display text -functions experiment-directory-name.er

Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Incl. Total Name
CPU CPU
 sec. % sec. %
5.554 100.00 5.554 100.00 <Total>
5.274 94.95 5.274 94.95 mxv_core
0.140 2.52 0.270 4.86 init_data
0.090 1.62 0.110 1.98 erand48_r
0.020 0.36 0.020 0.36 __drand48_iterate
0.020 0.36 0.130 2.34 drand48
0.010 0.18 0.010 0.18 _int_malloc
0. 0. 0.280 5.05 __libc_start_main
0. 0. 0.010 0.18 allocate_data
0. 0. 5.274 94.95 collector_root
0. 0. 5.274 94.95 driver_mxv
0. 0. 0.280 5.05 main
0. 0. 0.010 0.18 malloc
0. 0. 5.274 94.95 start_thread

To limit the number of functions displayed, use the -limit option as follows:

gprofng display text -limit 5 -functions experiment-directory-name.er

Print limit set to 5
Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Incl. Total Name
CPU CPU
 sec. % sec. %
5.775 100.00 5.775 100.00 <Total>
5.494 95.15 5.494 95.15 mxv_core
0.126 2.18 0.267 4.63 init_data
0.068 1.17 0.104 1.80 erand48_r
0.038 0.66 0.142 2.45 drand48

To list all the metrics that have been collected in an experiment directory, use the -
metric_list option without any other options:

gprofng display text -metric_list experiment-directory-name.er

Current metrics: e.%totalcpu:i.%totalcpu:name
Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)
Available metrics:
Exclusive Total CPU Time: e.%totalcpu
Inclusive Total CPU Time: i.%totalcpu

Chapter 4
Analyzing Performance Metrics

4-2

 Size: size
 PC Address: address
 Name: name

After you have established which metrics have been collected in an experiment directory,
select the displayed metrics by using the -metrics options, separating each with a : character:

gprofng display text -metrics name:i.%totalcpu:e.%totalcpu -limit 10 -
functions experiment-directory-name.er

Current metrics: name:i.%totalcpu:e.%totalcpu
Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)
Print limit set to 10
Functions sorted by metric: Exclusive Total CPU Time

Name Incl. Total Excl. Total
 CPU CPU
 sec. % sec. %
 <Total> 5.775 100.00 5.775 100.00
 mxv_core 5.494 95.15 5.494 95.15
 init_data 0.267 4.63 0.126 2.18
 erand48_r 0.104 1.80 0.068 1.17
 drand48 0.142 2.45 0.038 0.66
 __drand48_iterate 0.036 0.62 0.036 0.62
 _int_malloc 0.013 0.22 0.008 0.14
 sysmalloc 0.005 0.09 0.003 0.05
 brk 0.002 0.03 0.002 0.03
 __default_morecore 0.002 0.03 0. 0.

To sort the performance data according to a specific metric, for example name, add the -sort
option:

gprofng display text -metrics name:i.%totalcpu:e.%totalcpu -sort name -limit
10 -functions experiment-directory-name.er

Current metrics: name:i.%totalcpu:e.%totalcpu
Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)
Current Sort Metric: Name (name)
Print limit set to 10
Functions sorted by metric: Name

Name Incl. Total Excl. Total
 CPU CPU
 sec. % sec. %
 <Total> 5.775 100.00 5.775 100.00
 __default_morecore 0.002 0.03 0. 0.
 __drand48_iterate 0.036 0.62 0.036 0.62
 __libc_start_main 0.280 4.85 0. 0.
 _int_malloc 0.013 0.22 0.008 0.14
 allocate_data 0.013 0.22 0. 0.
 brk 0.002 0.03 0.002 0.03
 collector_root 5.494 95.15 0. 0.

Chapter 4
Analyzing Performance Metrics

4-3

 drand48 0.142 2.45 0.038 0.66
 driver_mxv 5.494 95.15 0. 0.

Use the -disasm option and specify the function name to review metrics at an instruction or
assembly level:

gprofng display text -metrics e.totalcpu -disasm function-name experiment-
directory-name.er

For more information, see https://sourceware.org/binutils/wiki/gprofng and the gprofng(1)
manual page.

Working With gprofng-gui
Use the gprofng display gui command to open a GUI front-end for the gprofng command, if
the gprofng-gui package is installed.

To review an experiment containing performance data in a graphical user interface, use the
gprofng display gui command, which is provided by the gprofng-gui package:

gprofng display gui experiment1.er

If more than one experiment is specified, they're aggregated together.

To compare two experiments containing performance data in a graphical user interface, use
the -c option:

gprofng display gui -c experiment1.er experiment2.er

For more information about working with the gprofng-gui tool, see Using the Gprofng GUI.

Chapter 4
Working With gprofng-gui

4-4

https://sourceware.org/binutils/wiki/gprofng

5
Storing gprofng Options for Reuse

Use Scripts to save gprofng display options.

There can be many ways to customize the output of the gprofng display text command, and
the -script option has been provided so that you can supply a text file containing options for
use with other experiment directories. That can be a more straightforward way to reproduce
performance views.

For example, to get a table with the inclusive and exclusive total CPU times with percentages,
limited to the first 10 lines, create a script with the following content:

Command to define the metrics
metrics name:i.%totalcpu:e.%totalcpu
Limit the views to 10 lines
limit 10
Display the function overview
functions

Note that each option has its own line in the script and no leading dash - character.

That script can then be used with the gprofng display text command as follows:

gprofng display text -script script-name experiment-directory-name.er

Command to define the metrics
Current metrics: name:i.%totalcpu:e.%totalcpu
Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)
Limit the views to 10 lines
Print limit set to 10
Display the function overview
Functions sorted by metric: Exclusive Total CPU Time

Name Incl. Total Excl. Total
 CPU CPU
 sec. % sec. %
 <Total> 5.775 100.00 5.775 100.00
 mxv_core 5.494 95.15 5.494 95.15
 init_data 0.267 4.63 0.126 2.18
 erand48_r 0.104 1.80 0.068 1.17
 drand48 0.142 2.45 0.038 0.66
 __drand48_iterate 0.036 0.62 0.036 0.62
 _int_malloc 0.013 0.22 0.008 0.14
 sysmalloc 0.005 0.09 0.003 0.05
 brk 0.002 0.03 0.002 0.03
 __default_morecore 0.002 0.03 0. 0.

5-1

6
Working With gprofng and Threaded Applications

Collect performance data for multithreaded applications.

By default, the performance data for a multithreaded application is aggregated over all threads.
If the data for individual threads, or a set of threads, is needed, then filters can be used to
analyze that information.

To list all the threads for which performance data has been captured, use the -thread_list
and -threads options:

gprofng display text -thread_list -threads experiment-directory-name.er

Exp Sel Total
=== === =====
 1 all 3
Objects sorted by metric: Exclusive Total CPU Time

Excl. Total Name
CPU
 sec. %
5.775 100.00 <Total>
2.773 48.01 Process 1, Thread 3
2.722 47.13 Process 1, Thread 2
0.280 4.85 Process 1, Thread 1

In the example output you can see that the CPU times for three threads were used during that
experiment. The thread number can be used to review information for both a specific thread or
a group of threads.

To review the performance data for a specific thread, use the -thread_select option with a
thread number:

gprofng display text -limit 5 -thread_select 1 -functions experiment-
directory-name.er

Print limit set to 5
Exp Sel Total
=== === =====
 1 1 3
Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Incl. Total Name
CPU CPU
 sec. % sec. %
0.280 100.00 0.280 100.00 <Total>
0.126 44.84 0.267 95.37 init_data
0.068 24.20 0.104 37.01 erand48_r

6-1

0.038 13.52 0.142 50.53 drand48
0.036 12.81 0.036 12.81 __drand48_iterate

Chapter 6

6-2

7
Using the Gprofng GUI

The gprofng-gui package provides an Oracle Java desktop application that can optionally
function as a GUI front-end for the gprofng command.

It also provides a range of views and filters that can be used to customize and display the
performance data that's been collected in experiments, and yield meaningful insights about
where the performance bottlenecks are in an executable software program.

For more information, see http://savannah.gnu.org/projects/gprofng-gui/ and the gp-display-
gui(1) manual page.

Installing gprofng-gui
Install the gprofng-gui package on Oracle Linux 10.

Before installing the gprofng-gui package, follow the steps in Installing gprofng.

Also install an Oracle Java runtime. For more information about installing Oracle Java SE, see
https://docs.oracle.com/en/java/javase/index.html. On Oracle Cloud Infrastructure instances,
follow the steps in Install Oracle Java SE on Oracle Linux.

The gprofng-gui package provides an optional graphical user interface for creating
experiments and reviewing performance data.

1. Install the gprofng-gui package.

Use the dnf command to install the package:

sudo dnf install -y gprofng-gui

2. Verify that the gprofng-gui package has installed successfully.

Use the gprofng command to verify its presence:

gprofng display gui --version

The gprofng-gui package is installed.

Getting Started With gprofng-gui
Create new experiments by using the GUI front-end for gprofng.

Install the gprofng-gui package. For more information, see Installing gprofng-gui.

The gprofng-gui tool provides a GUI front-end for software engineers and testers to use for
collecting performance data for in-development applications.

1. Open a new gprofng-gui window.

7-1

http://savannah.gnu.org/projects/gprofng-gui/
https://docs.oracle.com/en/java/javase/index.html
https://docs.oracle.com/en/learn/ol-java-install/

Use the gprofng command to start the application:

gprofng display gui

2. Click File, then Profile Application.

3. Configure a new experiment in the Profile Application window.

a. Set the application path, command line options, and working directory in the Specify
Application to Profile section.

b. Set the experiment file name and experiment directory in the Specify Experiment
section.

c. Configure the data that gprofng collects during the experiment in the Data to Collect
tab.

4. Start the experiment by clicking Run in the Profile Application window.

Switch to the Output tab to see the live results of the experiment as the performance data
is collected.

5. After the experiment completes, you can open that experiment in the GUI. You can end the
experiment early by clicking Terminate in the Profile Application window.

Performance data that was collected for a binary executable while the experiment was running
has been saved for later review and comparison.

Reviewing Experiments With gprofng-gui
Review previous experiments by using the GUI front-end for gprofng.

Before you begin, create an experiment by using the gprofng command. For more information,
see Getting Started With gprofng.

Or, create an experiment by using the gprofng-gui tool. For more information, see Getting
Started With gprofng-gui.

The gprofng-gui provides a wide range of views and filters that are useful for reviewing
performance data captured in software profiling experiments.

1. Open a new gprofng-gui window.

Use the gprofng command to start the application:

gprofng display gui

2. Click File, then Open Experiment.

For experiments that were created recently, you might also see them listed under Open
Recent Experiment in the File menu.

3. If you already know the experiment directories ahead of time, you can optionally open an
experiment in a single step.

Use the gprofng command to start the application with the experiment provided as an
option:

gprofng display gui experiment1.er

If more than one experiment is specified, they're aggregated together.

Chapter 7
Reviewing Experiments With gprofng-gui

7-2

An experiment has now been opened for review purposes in the main window for the gprofng-
gui tool.

Comparing Experiments With gprofng-gui
Compare experiments by using the GUI front-end for gprofng.

Before you begin, create at least two experiments by using the gprofng command. For more
information, see Getting Started With gprofng.

Or, create at least two experiments by using the gprofng-gui tool. For more information, see
Getting Started With gprofng-gui.

The gprofng-gui provides a wide range of views and filters that are useful for comparing
performance data captured across several software profiling experiments.

1. Open a new gprofng-gui window.

Use the gprofng command to start the application:

gprofng display gui

2. Click File, then Compare Experiments.

3. In the Compare Experiments window, specify two experiments, then click OK.

You can add more than two experiments by clicking More. You can also switch the
comparison order by clicking Reverse.

4. If you already know the experiment directories ahead of time, you can optionally start
comparing experiments in a single step.

Use the gprofng command to start the application, with the relevant experiments listed
after specifying the -c option:

gprofng display gui -c experiment1.er experiment2.er

Two or more experiments have now been opened for comparison purposes in the main window
for the gprofng-gui tool.

gprofng-gui Views Reference
This table lists the views that are displayed by default in the Views menu when at least one
experiment is open in the gprofng-gui main window.

View Purpose

Callers-Callees Displays calling relationships between
functions run during the experiment, along
with performance metrics.

Call Tree Displays a tree node graph for calling
relationships between functions run during the
experiment.

Disassembly Displays instructions for a selected function
run during the experiment, along with
performance metrics.

Chapter 7
Comparing Experiments With gprofng-gui

7-3

View Purpose

Experiments Lists the experiments that are displayed in the
main window, along with any notes or
comments that have been added to them.

Flame Graph Displays a customizable graph for the call tree
with call stacks on one axis and functions on
the other. The width of the functions visually
indicates the amount of CPU time used.

Functions Lists the functions run during the experiment,
along with CPU performance metrics. Click the
function name to see more detailed
information in a separate viewing pane.

Processes Lists processes that were created during the
experiment, along with performance metrics.
Use filters for diagnostic purposes.

Source/Disassembly Displays source code for a selected function,
with performance metrics for each line.

Threads List threads that were created during the
experiment, along with performance metrics.
Use filters for diagnostic purposes.

Timeline Displays color-coded performance behavior
throughout the duration of the experiment,
based on the performance data that was
collected.

Working With the Callers-Callees View
Use the Callers-Callees view provided by gprofng-gui to diagnose performance bottlenecks
in a software program at a function call level.

The Callers-Callees view displays calling relationships between functions that were run while
performance data was being collected, along with performance metrics.

The view is split into three horizontal panel. The middle panel displays the selected function.
Other functions that make calls to the selected function are displayed in the upper panel, and
any functions that are called by the selected function are displayed in the panel underneath.

A separate viewing pane displays extra information when a function is selected.

Working With the Call Tree View
Use the Call Tree view provided by gprofng-gui to diagnose performance bottlenecks in a
software program at a function call level.

The Call Tree view displays a tree graph that reflects calling relationships between functions
that were run while performance data was being collected, along with performance metrics.

Each function call is allocated a tree node that can be expanded and collapsed to display a list
of related function calls, and those in turn are also allocated tree nodes that can be expanded
and collapsed as needed. Selecting any function updates the Selection Details window with
further details about that function and performance metrics.

To review the chain of function calls that has the most significant performance bottleneck, right-
click any node, and then select Expand Hottest Branch.

Chapter 7
gprofng-gui Views Reference

7-4

Working With the Functions View
Use the Functions view provided by gprofng-gui to diagnose performance bottlenecks in a
software program at function level.

The Functions view displays a listing of all the functions that were run while performance data
was being collected during an experiment.

By default, functions are listed next to their CPU time usage data. Clicking on any function
name displays further details in a separate viewing pane.

Double-clicking on a function name opens that function in a new Source view, which fills a
separate viewing pane with a list of code lines annotated with performance metrics.

Functions can also be reviewed in the Source/Disassembly view to see a larger split pane
view in the main window between source code and performance data annotations.
Computationally expensive lines are highlighted with a different background color.

Working With the Timeline View
Use the Timeline view provided by gprofng-gui to diagnose performance bottlenecks in a
software program that are triggered at a particular stage of execution or build up over time.

The Timeline view displays a color-coded timeline map of performance data that was collected
while the experiment was running.

The Time axis displays the timeline, and on the other axis a series of bars represents each
thread that was spawned during the experiment. The call stacks of the application are plotted
as vertical bars. Each function or method that's called during the experiment is assigned a
different color, and those colors are used in the vertical bars to represent those calls on the
timeline.

The OS has its own unique bar at the top of the map area, and its background color indicates
whether the application was still running in userspace or not.

Clicking anywhere within those bars highlights a particular point in the timeline, and further
details are then displayed in a separate viewing pane.

The scale of the timeline can be changed by clicking on the Zoom in and Zoom out icons, or
by highlighting a specific region in the Time axis with the mouse cursor and then pressing the
Enter key.

Clicking the provided navigation arrows moves the timeline between threads and events within
the timeline, and also updates any related viewing panes.

The Timeline view can also be customized to display other performance metrics over time,
such as CPU usage and processes instead of threads. Use the Group Data by pull-down
menu to select the performance metric to display.

Click the Function Colors button to change the colors that are assigned for any or all the
functions that were called during the experiment. If all the functions are set to the same color
except one, then it can make tracking the performance of that one specific function through the
timeline more straightforward.

The Timeline view can also filter performance data so that only the most relevant threads or
functions are displayed. Those filter options are provided in the Tools menu, or you can use
the Filter icon within the Timeline view to apply a default selection of filters.

Chapter 7
gprofng-gui Views Reference

7-5

8
Known Issues

The following sections describe known issues in the latest gprofng release. For more
information, see https://sourceware.org/binutils/wiki/gprofng#Known_Limitations.

Incorrect Source and Disassembly Percentages
The source and disassembly listings display all percentages as zero.

Internal gprofng Function Displayed in Function View
The collector_root function might be displayed in function view. That's an internal gprofng
function that doesn't consume extra hardware resources.

Inactive gprofng-gui Help Menu Items
Various items aren't clickable in the gprofng-gui help menu. They relate to features that
haven't been implemented in the graphical user interface.

Unable to Profile a Running Process by Using gprofng-gui
The "Profile a Running Process" feature hasn't been implemented in the graphical user
interface, so it's not a clickable option.

For more information about how to create experiments for running programs, see gprofng
Command Reference.

8-1

https://sourceware.org/binutils/wiki/gprofng#Known_Limitations

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About gprofng and Profiling
	2 Installing gprofng
	3 Getting Started With gprofng
	4 gprofng Command Reference
	Collecting Performance Data
	Analyzing Performance Metrics
	Working With gprofng-gui

	5 Storing gprofng Options for Reuse
	6 Working With gprofng and Threaded Applications
	7 Using the Gprofng GUI
	Installing gprofng-gui
	Getting Started With gprofng-gui
	Reviewing Experiments With gprofng-gui
	Comparing Experiments With gprofng-gui
	gprofng-gui Views Reference
	Working With the Callers-Callees View
	Working With the Call Tree View
	Working With the Functions View
	Working With the Timeline View

	8 Known Issues
	Incorrect Source and Disassembly Percentages
	Internal gprofng Function Displayed in Function View
	Inactive gprofng-gui Help Menu Items
	Unable to Profile a Running Process by Using gprofng-gui

