
Oracle Linux 7
Setting Up Networking

F32794-08
October 2022

Oracle Linux 7 Setting Up Networking,

F32794-08

Copyright © 2022, Oracle and/or its affiliates.

Contents

 Preface

Conventions vii

Documentation Accessibility vii

Access to Oracle Support for Accessibility vii

Diversity and Inclusion vii

1 Configuring the System's Network

About Network Interface Names 1-1

About Network Interface Names 1-3

About Network Configuration Files 1-4

About the /etc/hosts File 1-4

About the /etc/nsswitch.conf File 1-5

About the /etc/resolv.conf File 1-5

About the /etc/sysconfig/network File 1-5

Command-Line Network Configuration Interfaces 1-6

Configuring Network Interfaces Using Graphical Interfaces 1-8

About Network Interface Bonding 1-9

Configuring Network Interface Bonding 1-10

About Network Interface Teaming 1-10

Configuring Network Interface Teaming 1-11

Adding Ports to and Removing Ports from a Team 1-12

Changing the Configuration of a Port in a Team 1-12

Removing a Team 1-13

Displaying Information About Teams 1-13

Configuring VLANs with Untagged Data Frames 1-14

Using the ip Command to Create VLAN Devices 1-15

Configuring Network Routing 1-15

2 Configuring Network Addressing

About the Dynamic Host Configuration Protocol 2-1

Configuring a DHCP Server 2-1

iii

Configuring a DHCP Client 2-2

About Network Address Translation 2-3

3 Configuring the Name Service

About DNS and BIND 3-1

About Types of Name Servers 3-2

About DNS Configuration Files 3-2

/etc/named.conf 3-2

About Resource Records in Zone Files 3-5

About Resource Records for Reverse-name Resolution 3-7

Configuring a Name Server 3-8

Administering the Name Service 3-9

Performing DNS Lookups 3-9

4 Configuring Network Time

About the chronyd Daemon 4-1

Configuring the chronyd Service 4-1

About the NTP Daemon 4-4

Configuring the ntpd Service 4-4

About PTP 4-5

Configuring the PTP Service 4-7

Using PTP as a Time Source for NTP 4-9

5 Configuring the Apache HTTP Web Service

About the Apache HTTP Server 5-1

Installing the Apache HTTP Server 5-1

Configuring the Apache HTTP Server 5-1

Testing the Apache HTTP Server 5-4

Configuring Apache Containers 5-4

About Nested Containers 5-5

Configuring Apache Virtual Hosts 5-6

6 Email Service Configuration

About Email Programs 6-1

About Email Protocols 6-1

About SMTP 6-1

About POP and IMAP 6-1

About the Postfix SMTP Server 6-2

iv

About the Sendmail SMTP Server 6-3

About Sendmail Configuration Files 6-3

Forwarding Email 6-4

Configuring a Sendmail Client 6-5

7 Configuring High Availability Features

About Oracle Linux High Availability Services 7-1

Installing Pacemaker and Corosync 7-1

Configuring an Initial Cluster and Service 7-2

Creating the Cluster 7-2

Setting Cluster Parameters 7-3

Creating a Service and Testing Failover 7-3

Fencing Configuration 7-5

IPMI LAN Fencing 7-6

SCSI Fencing 7-6

SBD Fencing 7-7

IF-MIB Fencing 7-8

Configuring Fencing Levels 7-8

8 Configuring Load Balancing

About HAProxy 8-1

Installing and Configuring HAProxy 8-1

About the HAProxy Configuration File 8-2

Configuring Simple Load Balancing Using HAProxy 8-2

Configuring HAProxy for Session Persistence 8-5

About Keepalived 8-6

Installing and Configuring Keepalived 8-7

About the Keepalived Configuration File 8-7

Configuring Simple Virtual IP Address Failover Using Keepalived 8-8

Configuring Load Balancing Using Keepalived in NAT Mode 8-11

Configuring Firewall Rules for Keepalived NAT-Mode Load Balancing 8-15

Configuring Back-End Server Routing for Keepalived NAT-Mode Load Balancing 8-17

Configuring Load Balancing Using Keepalived in DR Mode 8-17

Configuring Firewall Rules for Keepalived DR-Mode Load Balancing 8-20

Configuring the Back-End Servers for Keepalived DR-Mode Load Balancing 8-20

Configuring Keepalived for Session Persistence and Firewall Marks 8-21

Making HAProxy Highly Available Using Keepalived 8-22

About Keepalived Notification and Tracking Scripts 8-26

v

Making HAProxy Highly Available Using Oracle Clusterware 8-28

9 Configuring the VNC Service

About VNC 9-1

Configuring a VNC Server 9-1

Connecting to VNC Desktop 9-3

vi

Preface

Oracle® Linux 7: Setting Up Networking provides information about configuring networking for
Oracle Linux 7 systems.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an action,
or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle Accessibility
Conformance Report at https://www.oracle.com/corporate/accessibility/templates/
t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry

vii

https://docs.oracle.com/en/operating-systems/oracle-linux/7/network/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

standards evolve. Because of these technical constraints, our effort to remove
insensitive terms is ongoing and will take time and external cooperation.

Preface

viii

1
Configuring the System's Network

This chapter describes how to configure a system's network interfaces and network routing.

About Network Interface Names
Each physical and virtual network device on an Oracle Linux system has an associated
configuration file named ifcfg-interface in the /etc/sysconfig/network-scripts
directory, where interface is the name of the interface. For example:

cd /etc/sysconfig/network-scripts
ls ifcfg-*

ifcfg-em1 ifcfg-em2 ifcfg-lo

In this example, there are two configuration files for motherboard-based Ethernet interfaces,
ifcfg-em1 and ifcfg-em2, and one for the loopback interface, ifcfg-lo. The system reads
the configuration files at boot time to configure the network interfaces.

On your system, you might see other names for network interfaces. See About Network
Interface Names.

The following are sample entries from an ifcfg-em1 file for a network interface that obtains
its IP address using the Dynamic Host Configuration Protocol (DHCP):

DEVICE="em1"
NM_CONTROLLED="yes"
ONBOOT=yes
USERCTL=no
TYPE=Ethernet
BOOTPROTO=dhcp
DEFROUTE=yes
IPV4_FAILURE_FATAL=yes
IPV6INIT=no
NAME="System em1"
UUID=5fb06bd0-0bb0-7ffb-45f1-d6edd65f3e03
HWADDR=08:00:27:16:C3:33
PEERDNS=yes
PEERROUTES=yes

If the interface is configured with a static IP address, the file contains entries such as the
following:

DEVICE="em1"
NM_CONTROLLED="yes"
ONBOOT=yes
USERCTL=no
TYPE=Ethernet
BOOTPROTO=none
DEFROUTE=yes
IPV4_FAILURE_FATAL=yes
IPV6INIT=no
NAME="System em1"

1-1

UUID=5fb06bd0-0bb0-7ffb-45f1-d6edd65f3e03
HWADDR=08:00:27:16:C3:33
IPADDR=192.168.1.101
NETMASK=255.255.255.0
BROADCAST=192.168.1.255
PEERDNS=yes
PEERROUTES=yes

The following configuration parameters are typically used in interface configuration
files:

BOOTPROTO
How the interface obtains its IP address:

bootp
Bootstrap Protocol (BOOTP).

dhcp
Dynamic Host Configuration Protocol (DHCP).

none
Statically configured IP address.

BROADCAST
IPv4 broadcast address.

DEFROUTE
Whether this interface is the default route.

DEVICE
Name of the physical network interface device (or a PPP logical device).

GATEWAY N
IPv4 gateway address for the interface. As an interface can be associated with
several combinations of IP address, network mask prefix length, and gateway
address, these are numbered starting from 0.

HWADDR
Media access control (MAC) address of an Ethernet device.

IPADDR N
IPv4 address of the interface.

IPV4_FAILURE_FATAL
Whether the device is disabled if IPv4 configuration fails.

IPV6_DEFAULTGW
IPv6 gateway address for the interface. For example:
IPV6_DEFAULTGW=2001:0daa::2%em1.

IPV6_FAILURE_FATAL
Whether the device is disabled if IPv6 configuration fails.

IPV6ADDR
IPv6 address of the interface in CIDR notation, including the network mask prefix
length. For example: IPV6ADDR="2001:0db8:1e11:115b::1/32"

Chapter 1
About Network Interface Names

1-2

IPV6INIT
Whether to enable IPv6 for the interface.

MASTER
Specifies the name of the primary bonded interface, of which this interface is backup.

NAME
Name of the interface as displayed in the Network Connections GUI.

NETWORK
IPV4 address of the network.

NM_CONTROLLED
Whether the network interface device is controlled by the network management daemon,
NetworkManager.

ONBOOT
Whether the interface is activated at boot time.

PEERDNS
Whether the /etc/resolv.conf file used for DNS resolution contains information obtained
from the DHCP server.

PEERROUTES
Whether the information for the routing table entry that defines the default gateway for the
interface is obtained from the DHCP server.

PREFIX N
Length of the IPv4 network mask prefix for the interface.

SLAVE
Specifies that this interface is a backup of a bonded interface.

TYPE
Interface type.

USERCTL
Whether users other than root can control the state of this interface.

UUID
Universally unique identifier for the network interface device.

About Network Interface Names
Network interface names are based on information derived from the system BIOS or
alternatively from a device's firmware, system path, or MAC address. This feature ensures
that interface names persist across system reboots, hardware reconfiguration, and updates to
device drivers and the kernel.

If you enable the biosdevname boot option (biosdevname=1), the biosdevname plugin to the
udev device manager assigns names to network interfaces as follows:

• Ethernet interfaces on the motherboard are named em N, where N is the number of the
interface starting from 1.

• Network interfaces on a PCI card are named p S p P, where S is the slot number and P is
the port number.

Chapter 1
About Network Interface Names

1-3

• Virtual interfaces are named p S p P _ V, where S is the slot number, P is the port
number, and V is the virtual interface number.

If biosdevname is set to 0 (the default), systemd naming assigns the prefixes, en, wl,
and ww to Ethernet, wireless LAN, and wireless WAN interfaces respectively. The prefix
is followed by a suffix based on the hardware configuration, system bus configuration,
or MAC address of the device:

o N
Onboard device with index number N.

pBsS[fF][dD]
PCI device with bus number B, slot number S, function number F, and device ID D.

pBsS[fF][uP]...[cC][iI]
USB device with bus number B, slot number S, function number F, port number P,
configuration number C, and interface number I.

sS[fF][dD]
Hot-plug device with slot number S, function number F, and device ID D.

x M
Device with MAC address M.

For example, an Ethernet port on the motherboard might be named eno1 or em1,
depending on whether the value of biosdevname is 0 or 1.

The kernel assigns a legacy, unpredictable network interface name (eth N and wlan N)
only if it cannot discover any information about the device that would allow it to
disambiguate the device from other such devices. You can use the net.ifnames=0
boot parameter to reinstate the legacy naming scheme.

Caution:

Using the net.ifnames or biosdevname boot parameters to change the
naming scheme can rendering existing firewall rules invalid. Changing the
naming scheme can also affect other software that refers to network
interface names.

About Network Configuration Files
The following sections describe additional network configuration files that you might
need to configure on a system.

About the /etc/hosts File
The /etc/hosts file associates host names with IP addresses. It allows the system to
look up (resolve) the IP address of a host given its name, or the name given the IP
address. Most networks use DNS (Domain Name Service) to perform address or
name resolution. Even if your network uses DNS, it is usual to include lines in this file
that specify the IPv4 and IPv6 addresses of the loopback device, for example:

Chapter 1
About Network Configuration Files

1-4

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6

The first and second column contains the IP address and host name. Additional columns
contain aliases for the host name.

For more information, see the hosts(5) manual page.

About the /etc/nsswitch.conf File
The /etc/nsswitch.conf file configures how the system uses various databases and name
resolution mechanisms. The first field of entries in this file identifies the name of the
database. The second field defines a list of resolution mechanisms in the order in which the
system attempts to resolve queries on the database.

The following example hosts definition from /etc/nsswitch.conf indicates that the system
first attempts to resolve host names and IP addresses by querying files (that is, /etc/
hosts) and, if that fails, next by querying a DNS server, and last of all, by querying NIS+ (NIS
version 3) :

hosts: files dns nisplus

For more information, see the nsswitch.conf(5) manual page.

About the /etc/resolv.conf File
The /etc/resolv.conf file defines how the system uses DNS to resolve host names and IP
addresses. This file usually contains a line specifying the search domains and up to three
lines that specify the IP addresses of DNS server. The following entries from /etc/
resolv.conf configure two search domains and three DNS servers:

search us.mydomain.com mydomain.com
nameserver 192.168.154.3
nameserver 192.168.154.4
nameserver 10.216.106.3

If your system obtains its IP address from a DHCP server, it is usual for the system to
configure the contents of this file with information also obtained using DHCP.

For more information, see the resolv.conf(5) manual page.

About the /etc/sysconfig/network File
The /etc/sysconfig/network file specifies additional information that is valid to all network
interfaces on the system. The following entries from /etc/sysconfig/network define that
IPv4 networking is enabled, IPv6 networking is not enabled, the host name of the system,
and the IP address of the default network gateway:

NETWORKING=yes
NETWORKING_IPV6=no
HOSTNAME=host20.mydomain.com
GATEWAY=192.168.1.1

Chapter 1
About Network Configuration Files

1-5

Note:

In previous releases of Oracle Linux, the host name of the system was
defined in /etc/sysconfig/network. The host name is now defined in /etc/
hostname and can be changed by using the hostnamectl command. The
host name must be a fully qualified domain name (FQDN), for example,
host20.mydomain.com, instead of a simple short name.

Additionally, system-wide default localization settings such as the default
language, keyboard, and console font were defined in /etc/sysconfig/i18n.
These settings are now defined in /etc/locale.conf and /etc/
vconsole.conf.

For more information, see the hostname(5), hostnamectl(1),
locale.conf(5), and vconsole.conf(5) manual pages.

Command-Line Network Configuration Interfaces
If the NetworkManager service is running, you can use the nmcli command to display
the state of the system's physical network interfaces, for example:

sudo nmcli device status

DEVICE TYPE STATE
em1 ethernet connected
em2 ethernet connected
lo loopback unmanaged

You can use the ip command to display the status of an interface, for debugging, or
for system tuning. For example, to display the status of all active interfaces:

sudo ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: em1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
qlen 1000
 link/ether 08:00:27:16:c3:33 brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global em1
 inet6 fe80::a00:27ff:fe16:c333/64 scope link
 valid_lft forever preferred_lft forever

For each network interface, the output shows the current IP address, and the status of
the interface. To display the status of a single interface such as em1, specify its name
as shown here:

sudo ip addr show dev em1

2: em1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
qlen 1000
 link/ether 08:00:27:16:c3:33 brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global em1

Chapter 1
Command-Line Network Configuration Interfaces

1-6

 inet6 fe80::a00:27ff:fe16:c333/64 scope link
 valid_lft forever preferred_lft forever

You can also use ip to set properties and activate a network interface. The following
example sets the IP address of the em2 interface and activates it:

sudo ip addr add 10.1.1.1/24 dev em2
sudo ip link set em2 up

Note:

You might be used to using the ifconfig command to perform these operations.
However, ifconfig is considered obsolete and will eventually be replaced
altogether by the ip command.

Any settings that you configure for network interfaces using ip do not persist across system
reboots. To make the changes permanent, set the properties in the /etc/sysconfig/
network-scripts/ifcfg-interface file.

Any changes that you make to an interface file in /etc/sysconfig/network-scripts do not
take effect until you restart the network service or bring the interface down and back up
again. For example, to restart the network service:

sudo systemctl restart network

To restart an individual interface, you can use the ifup or ifdown commands, which invoke
the script in /etc/sysconfig/network-scripts that corresponds to the interface type, for
example:

sudo ifdown em1
sudo ifup em1

Connection successfully activated
(D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/5)

Alternatively, you can use the ip command to stop and start network activity on an interface
without completely tearing down and rebuilding its configuration:

sudo ip link set em1 down
sudo ip link set em1 up

The ethtool utility is useful for diagnosing potentially mismatched settings that affect
performance, and allows you to query and set the low-level properties of a network device.
Any changes that you make using ethtool do not persist across a reboot. To make the
changes permanent, modify the settings in the device's ifcfg-interface file in /etc/
sysconfig/network-scripts.

For more information, see the ethtool(8), ifup(8), ip(8), and nmcli(1) manual pages.

Chapter 1
Command-Line Network Configuration Interfaces

1-7

Configuring Network Interfaces Using Graphical Interfaces

Note:

The NetworkManager service and the nmcli command are included in the
NetworkManager package. The Network Connections editor is included in the
nm-connection-editor package.

The NetworkManager service dynamically detects and configures network connections.
You can click on the network icon in the GNOME notification area to obtain information
about the status of the network interfaces and to manage network connections:

• To enable or disable a network interface from the pull-down menu, use the On/Off
toggle.

• To display the Settings window, select Network Settings from the drop-down
menu.

Figure 1-2 shows the Network Settings editor.

Figure 1-1 Network Settings Editor

To edit an existing interface, select it from the list and click the gear icon. You can add
a profile to any interface to provide alternate configurations that you can use at any
point in time. You can equally use this window to configure a network proxy or add an
enable a Virtual Private Network (VPN) connection.

Chapter 1
Configuring Network Interfaces Using Graphical Interfaces

1-8

To perform more complex configuration and to add additional connection types, use the
Network Connections editor. This tool allows you to configure wired, wireless, mobile
broadband, VPN, Digital Subscriber Link (DSL), and virtual (bond, bridge, team, and VLAN)
interfaces. You can open this window by using the nm-connection-editor command.
Figure 1-2 shows the Network Connections editor.

Figure 1-2 Network Connections Editor

To create a new network interface, click the + icon, select the type of interface (hardware,
virtual, or VPN) and click Create. To edit an existing interface, select it from the list and click
the gear icon. To remove a selected interface, click the - icon.

You can also use the nmcli command to manage network connections through
NetworkManager. For more information, see the nmcli(1) manual page.

About Network Interface Bonding
Network interface bonding combines multiple network connections into a single logical
interface. A bonded network interface can increase data throughput by load balancing or can
provide redundancy by allowing failover from one component device to another. By default, a
bonded interface appears like a normal network device to the kernel, but it sends out network
packets over the available secondary devices by using a simple round-robin scheduler. You
can configure bonding module parameters in the bonded interface's configuration file to alter
the behavior of load-balancing and device failover.

Chapter 1
About Network Interface Bonding

1-9

Basic load-balancing modes (balance-rr and balance-xor) work with any switch that
supports EtherChannel or trunking. Advanced load-balancing modes (balance-tlb
and balance-alb) do not impose requirements on the switching hardware, but do
require that the device driver for each component interfaces implement certain specific
features such as support for ethtool or the ability to modify the hardware address
while the device is active. For more information see /usr/share/doc/iputils-*/
README.bonding.

Configuring Network Interface Bonding
The bonding driver that is provided with the Oracle Linux kernel allows you to
aggregate multiple network interfaces, such as em1 and em2, into a single logical
interface such as bond0. You can use the Network Settings editor to create the bond
and then add network interfaces to this bond. Alternatively, you can use the nmcli
command to create and configure the bond.

To create and configure a bonded interface from the command line:

1. Create the bond:

sudo nmcli con add type bond con-name bond0 ifname bond0 mode balance-rr

This example sets the name of the bond to bond0 and its mode to balance-rr. For
more information about the available options for load balancing or ARP link
monitoring, see /usr/share/doc/iputils-*/README.bonding and the nmcli(1)
manual page.

2. Add each interface to the bond:

sudo nmcli con add type bond-slave ifname em1 master bond0
sudo nmcli con add type bond-slave ifname em2 master bond0

These commands add the em1 and em2 interfaces to bond0.

3. Restart the NetworkManager service:

sudo systemctl restart NetworkManager

After restarting the service, the bonded interface is available for use.

About Network Interface Teaming

Note:

Network interface teaming requires Unbreakable Enterprise Kernel Release
3 (UEK R3) Quarterly Update 7 or later.

Network interface teaming is similar to network interface bonding and provides a way
of implementing link aggregation that is relatively maintenance-free, as well as being
simpler to modify, expand, and debug as compared with bonding.

A lightweight kernel driver implements teaming and the teamd daemon implements
load-balancing and failover schemes termed runners. The following standard runners
are defined:

Chapter 1
About Network Interface Teaming

1-10

activebackup
Monitors the link for changes and selects the active port that is used to send packets.

broadcast
Sends packets on all member ports.

lacp
Provides load balancing by implementing the Link Aggregation Control Protocol 802.3ad on
the member ports.

loadbalance
In passive mode, uses the BPF hash function to select the port that is used to send packets.
In active mode, uses a balancing algorithm to distribute outgoing packets over the available
ports.

random
Selects a port at random to send each outgoing packet.

Note:

UEK R3 does not currently support this runner mode.

roundrobin
Transmits packets over the available ports in a round-robin fashion.

For specialized applications, you can create customized runners that teamd can interpret. The
teamdctl command allows you to control the operation of teamd.

For more information, see the teamd.conf(5) manual page.

Configuring Network Interface Teaming
You can configure a teamed interface by creating JSON-format definitions that specify the
properties of the team and each of its component interfaces. The teamd daemon then
interprets these definitions. You can use the JSON-format definitions to create a team
interface by starting the teamd daemon manually, by editing interface definition files in /etc/
sysconfig/network-scripts, by using the nmcli command, or by using the Network
Configuration editor (nm-connection-editor). This section describes the first of these
methods.

To create a teamed interface by starting teamd manually:

1. Create a JSON-format definition file for the team and its component ports. For sample
configurations, see the files under /usr/share/doc/teamd-*/example_configs/.

The following example, which is based on the contents of the file
activebackup_ethtool_1.conf, defines an active-backup configuration where em4 is
configured as the primary port and em3 as the backup port and these ports are monitored
by ethtool.

{
 "device": "team0",
 "runner": {"name": "activebackup"},
 "link_watch": {"name": "ethtool"},
 "ports": {

Chapter 1
About Network Interface Teaming

1-11

 "em3": {
 "prio": -10,
 "sticky": true
 },
 "em4": {
 "prio": 100
 }
 }
}

2. Use the ip command to bring down the component ports:

sudo ip link set em3 down
sudo ip link set em4 down

Active interfaces cannot be added to a team.

3. Start an instance of the teamd daemon and have it create the teamed interface by
reading the configuration file (in this example, /root/team_config/team0.conf):

sudo teamd -g -f /root/team_config/team0.conf -d

Using team device "team0".
Using PID file "/var/run/teamd/team0.pid"
Using config file "/root/team_config/team0.conf"

The -g option displays debugging messages and can be omitted.

4. Use the ip command to set the IP address and network mask prefix length of the
teamed interface:

sudo ip addr add 10.0.0.5/24 dev team0
For more information, see the teamd(8) manual page.

Adding Ports to and Removing Ports from a Team
To add a port to a team, use the teamdctl command, for example:

sudo teamdctl team0 port add em5

To remove a port from a team:

sudo teamdctl team0 port remove em5

For more information, see the teamdctl(8) manual page.

Changing the Configuration of a Port in a Team
You can use the teamdctl command to update the configuration of a constituent port
of a team, for example:

sudo teamdctl team0 port config update em3 '{"prio": -10, "sticky": false}'

Enclose the JSON-format definition in single quotes and do not split it over multiple
lines.

For more information, see the teamdctl(8) manual page.

Chapter 1
About Network Interface Teaming

1-12

Removing a Team
To remove a team, use the following command to kill the teamd daemon:

teamd -t team0 -k

For more information, see the teamd(8) manual page.

Displaying Information About Teams
To display the network state of the teamed interface, use the ip command:

sudo ip addr show dev team0

7: team0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
 link/ether 08:00:27:15:7a:f1 brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.5/24 scope global team0
 valid_lft forever preferred_lft forever
 inet6 fe80::a00:27ff:fe15:7af1/64 scope link
 valid_lft forever preferred_lft forever

You can use the teamnl command to display information about the component ports of the
team:

sudo teamnl team0 ports

 5: em4: up 1000Mbit FD
 4: em3: up 1000Mbit FD

To display the current state of the team, use the teamdctl command, for example:

sudo teamdctl team0 state

setup:
 runner: activebackup
ports:
 em3
 link watches:
 link summary: down
 instance[link_watch_0]:
 name: ethtool
 link: down
 em4
 link watches:
 link summary: up
 instance[link_watch_0]:
 name: ethtool
 link: up
runner:
 active port: em4

You can also use teamdctl to display the JSON configuration of the team and each of its
constituent ports:

sudo teamdctl team0 config dump

{
 "device": "team0",

Chapter 1
About Network Interface Teaming

1-13

 "link_watch": {
 "name": "ethtool"
 },
 "mcast_rejoin": {
 "count": 1
 },
 "notify_peers": {
 "count": 1
 },
 "ports": {
 "em3": {
 "prio": -10,
 "sticky": true
 },
 "em4": {
 "prio": 100
 }
 },
 "runner": {
 "name": "activebackup"
 }
}

For more information, see the teamdctl(8) and teamnl(8) manual pages.

Configuring VLANs with Untagged Data Frames
A virtual local area network (VLAN) consists of a group of machines that can
communicate as if they were attached to the same physical network. A VLAN allows
you to group systems regardless of their actual physical location on a LAN. In a VLAN
that uses untagged data frames, you create the broadcast domain by assigning the
ports of network switches to the same permanent VLAN ID or PVID (other than 1,
which is the default VLAN). All ports that you assign with this PVID are in a single
broadcast domain. Broadcasts between devices in the same VLAN are not visible to
other ports with a different VLAN, even if they exist on the same switch.

You can use the Network Settings editor or the nmcli command to create a VLAN
device for an Ethernet interface.

To create a VLAN device from the command line, enter:

sudo nmcli con add type vlan con-name bond0-pvid10 ifname bond0-pvid10 dev bond0
id 10

This example sets up the VLAN device bond0-pvid10 with a PVID of 10 for the bonded
interface bond0. In addition to the regular interface, bond0, which uses the physical
LAN, you now have a VLAN device, bond0-pvid10, which can use untagged frames to
access the virtual LAN.

Note:

You do not need to create virtual interfaces for the component interfaces of a
bonded interface. However, you must set the PVID on each switch port to
which they connect.

Chapter 1
Configuring VLANs with Untagged Data Frames

1-14

You can also use the command to set up a VLAN device for a non-bonded interface, for
example:

sudo nmcli con add type vlan con-name em1-pvid5 ifname em1-pvid5 dev em1 id 5

To obtain information about the configured VLAN interfaces, view the files in the /proc/net/
vlan directory.

Using the ip Command to Create VLAN Devices
The ip command provides an alternate method of creating VLAN devices. However, such
devices do not persist across system reboots.

To create a VLAN interface em1.5 for em1 with a PVID of 5:

sudo ip link add link em1 name em1.5 type vlan id 5

For more information, see the ip(8) manual page.

Configuring Network Routing
A system uses its routing table to determine which network interface to use when sending
packets to remote systems. If a system has only a single interface, it is sufficient to configure
the IP address of a gateway system on the local network that routes packets to other
networks.

To create a default route for IPv4 network packets, include an entry for GATEWAY in
the /etc/sysconfig/network file. For example, the following entry configures the IP address
of the gateway system:

GATEWAY=192.0.2.1

If your system has more than one network interface, you can specify which interface should
be used:

GATEWAY=192.0.2.1
GATEWAYDEV=em1

A single statement is usually sufficient to define the gateway for IPv6 packets, for example:

IPV6_DEFAULTGW="2001:db8:1e10:115b::2%em1"

Any changes that you make to /etc/sysconfig/network do not take effect until you restart
the network service:

sudo systemctl restart network

To display the routing table, use the ip route show command, for example:

sudo ip route show

10.0.2.0/24 dev em1 proto kernel scope link src 10.0.2.15
default via 10.0.2.2 dev em1 proto static

This example shows that packets destined for the local network (10.0.2.0/24) do not use the
gateway. The default entry means that any packets destined for addresses outside the local
network are routed via the gateway 10.0.2.2.

Chapter 1
Configuring Network Routing

1-15

Note:

You might be used to using the route command to configure routing.
However, route is considered obsolete and will eventually be replaced
altogether by the ip command.

You can also use the netstat -rn command to display this information:

Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
10.0.2.0 0.0.0.0 255.255.255.0 U 0 0 0 em1
0.0.0.0 10.0.2.2 0.0.0.0 UG 0 0 0 em1

To add or delete a route from the table, use the ip route add or ip route del
commands. For example, to replace the entry for the static default route:

sudo ip route del default
sudo ip route show

10.0.2.0/24 dev em1 proto kernel scope link src 10.0.2.15

sudo ip ro add default via 10.0.2.1 dev em1 proto static
sudo ip route show

10.0.2.0/24 dev em1 proto kernel scope link src 10.0.2.15
default via 10.0.2.1 dev em1 proto static

To add a route to the network 10.0.3.0/24 via 10.0.3.1 over interface em2, and then
delete that route:

sudo ip route add 10.0.4.0/24 via 10.0.2.1 dev em2
sudo ip route show

10.0.2.0/24 dev em1 proto kernel scope link src 10.0.2.15
10.0.3.0/24 via 10.0.3.1 dev em2
default via 10.0.2.2 dev em1 proto static

sudo ip route del 10.0.3.0/24
sudo ip route show

10.0.2.0/24 dev em1 proto kernel scope link src 10.0.2.15
default via 10.0.2.2 dev em1 proto static

The ip route get command is a useful feature that allows you to query the route
on which the system will send packets to reach a specified IP address, for example:

sudo ip route get 23.6.118.140

23.6.118.140 via 10.0.2.2 dev em1 src 10.0.2.15
 cache mtu 1500 advmss 1460 hoplimit 64

In this example, packets to 23.6.118.140 are sent out of the em1 interface via the
gateway 10.0.2.2.

Any changes that you make to the routing table using ip route do not persist across
system reboots. To permanently configure static routes, you can configure them by
creating a route-interface file in/etc/sysconfig/network-scripts for the interface.

Chapter 1
Configuring Network Routing

1-16

For example, you would configure a static route for the em1 interface in a file named route-
em1. An entry in these files can take the same format as the arguments to the ip route
add command.

For example, to define a default gateway entry for em1, create an entry such as the following
in route-em1:

default via 10.0.2.1 dev em1

The following entry in route-em2 would define a route to 10.0.3.0/24 via 10.0.3.1 over em2:

10.0.3.0/24 via 10.0.3.1 dev em2

Any changes that you make to a route-interface file do not take effect until you restart
either the network service or the interface.

For more information, see the ip(8) and netstat(8) manual pages.

Chapter 1
Configuring Network Routing

1-17

2
Configuring Network Addressing

This chapter describes how to configure a DHCP server, DHCP client, and Network Address
Translation.

About the Dynamic Host Configuration Protocol
The Dynamic Host Configuration Protocol (DHCP) enables client systems to obtain network
configuration information from a DHCP server each time that they connect to the network.
The DHCP server is configured with a range of IP addresses and other network configuration
parameters that clients need.

When you configure an Oracle Linux system as a DHCP client, the client daemon, dhclient,
contacts the DHCP server to obtain the networking parameters. As DHCP is broadcast-
based, the client must be on the same subnet as either a server or a relay agent. If a client
cannot be on the same subnet as the server, a DHCP relay agent can be used to pass DHCP
messages between subnets.

The server provides a lease for the IP address that it assigns to a client. The client can
request specific terms for the lease, such as the duration. You can configure a DHCP server
to limit the terms that it can grant for a lease. Provided that a client remains connected to the
network, dhclient automatically renews the lease before it expires. You can configure the
DHCP server to provide the same IP address to a client based on the MAC address of its
network interface.

The advantages of using DHCP include:

• centralized management of IP addresses

• ease of adding new clients to a network

• reuse of IP addresses reducing the total number of IP addresses that are required

• simple reconfiguration of the IP address space on the DHCP server without needing to
reconfigure each client

For more information about DHCP, see RFC 2131.

Configuring a DHCP Server
To configure an Oracle Linux system as a DHCP server:

1. Install the dhcp package:

sudo yum install dhcp
2. Edit the /etc/dhcp/dhcpd.conf file to store the settings that the DHCP server can

provide to the clients.

The following example configures the domain name, a range of client addresses on the
192.168.2.0/24 subnet from 192.168.2.101 through 192.168.2.254 together with the IP
addresses of the default gateway and the DNS server, the default and maximum lease

2-1

https://tools.ietf.org/html/rfc2131

times in seconds, and a static IP address for the application server svr01 that is
identified by its MAC address:

option domain-name "mydom.org";
option domain-name-servers 192.168.2.1, 10.0.1.4;
option broadcast-address 192.168.2.255;
option routers 192.168.2.1;

subnet 192.168.2.0 netmask 255.255.255.0 {
 range 192.168.2.101 192.168.2.254;
 default-lease-time 10800;
 max-lease-time 43200;
}

host svr01 {
 hardware ethernet 80:56:3e:00:10:00;
 fixed-address 192.168.2.100;
 max-lease-time 86400;
}

The DHCP server sends the information in the option lines to each client when it
requests a lease on an IP address. An option applies only to a subnet if you define
it inside a subnet definition. In the example, the options are global and apply to
both the subnet and host definitions. The subnet and host definitions have
different settings for the maximum lease time.

Note:

In Oracle Linux 7, the DHCP server no longer reads its configuration
from /etc/sysconfig/dhcpd. Instead, it reads /etc/dhcp/dhcpd.conf to
determine the interfaces on which it should listen.

For more information and examples, see /usr/share/doc/dhcp-version/
dhcpd.conf.sample and the dhcpd(8) and dhcp-options(5) manual pages.

3. Touch the /var/lib/dhcpd/dhcpd.leases file, which stores information about
client leases:

sudo touch /var/lib/dhcpd/dhcpd.leases
4. Enter the following commands to start the DHCP service and ensure that it starts

after a reboot:

sudo systemctl start dhcpd
sudo systemctl enable dhcpd

For information about configuring a DHCP relay, see the dhcrelay(8) manual page.

Configuring a DHCP Client
To configure an Oracle Linux system as a DHCP client:

1. Install the dhclient package:

sudo yum install dhclient

Chapter 2
Configuring a DHCP Client

2-2

2. Edit /container/name/rootfs/etc/sysconfig/network-scripts/ifcfg-iface , where
iface is the name of the network interface, and change the value of BOOTPROTO to read as:

BOOTPROTO=dhcp
3. Edit /etc/sysconfig/network and verify that it contains the following setting:

NETWORKING=yes
4. To specify options for the client, such as the requested lease time and the network

interface on which to request an address from the server, create the file /etc/
dhclient.conf containing the required options.

The following example specifies that the client should use the em2 interface, request a
lease time of 24 hours, and identify itself using its MAC address:

interface "em2" {
 send dhcp-lease-time 86400;
 send dhcp-client-identifier 80:56:3e:00:10:00;
}

For more information, see the dhclient.conf(5) manual page.

5. Restart the network interface or the network service to enable the client, for example:

sudo systemctl restart network

When the client has requested and obtained a lease, information about this lease is
stored in /var/lib/dhclient/dhclient-interface.leases.

For more information, see the dhclient(8) manual page.

About Network Address Translation
Network Address Translation (NAT) assigns a public address to a computer or a group of
computers inside a private network with a different address scheme. The public IP address
masquerades all requests as going to one server rather than several servers. NAT is useful
for limiting the number of public IP addresses that an organization must finance, and for
providing extra security by hiding the details of internal networks.

The netfilter kernel subsystem provides the nat table to implement NAT in addition to its
tables for packet filtering. The kernel consults the nat table whenever it handles a packet that
creates a new incoming or outgoing connection.

Note:

If your want a system to be able to route packets between two of its network
interfaces, you must turn on IP forwarding:

echo 1 > /proc/sys/net/ipv4/ip_forward

You can use the Firewall Configuration GUI (firewall-config) to configure masquerading
and port forwarding.

Chapter 2
About Network Address Translation

2-3

3
Configuring the Name Service

This chapter describes how to use BIND to set up a DNS name server.

About DNS and BIND
The Domain Name System (DNS) is a network-based service that maps (resolves) domain
names to IP addresses. For a small, isolated network, you could use entries in the /etc/hosts
file to provide the mapping, but most networks that are connected to the Internet use DNS.

DNS is a hierarchical and distributed database, where each level of the hierarchy is delimited
by a period (.). Consider the following fully qualified domain name (FQDN):

wiki.us.mydom.com.

The root domain, represented by the final period in the FQDN, is usually omitted, except in
DNS configuration files:

wiki.us.mydom.com

In this example, the top-level domain is com, mydom is a subdomain of com, us is a subdomain
of mydom, and wiki is the host name. Each of these domains are grouped into zones for
administrative purposes. A DNS server, or name server, stores the information that is needed
to resolve the component domains inside a zone. In addition, a zone's DNS server stores
pointers to the DNS servers that are responsible for resolving each subdomain.

If a client outside the us.mydom.com domain requests that its local name server resolve a
FQDN such as wiki.us.mydom.com into an IP address for which the name server is not
authoritative, the name server queries a root name server for the address of a name server
that is authoritative for the com domain. Querying this name server returns the IP address of a
name server for mydom.com. In turn, querying this name server returns the IP address of the
name server for us.oracle.com, and querying this final name server returns the IP address
for the FQDN. This process is known as a recursive query, where the local name server
handles each referral from an external name server to another name server on behalf of the
resolver.

Iterative queries rely on the resolver being able to handle the referral from each external
name server to trace the name server that is authoritative for the FQDN. Most resolvers use
recursive queries and so cannot use name servers that support only iterative queries.
Fortunately, most

Oracle Linux provides the Berkeley Internet Name Domain (BIND) implementation of DNS.
The bind package includes the DNS server daemon (named), tools for working with DNS such
as rndc, and a number of configuration files, including the following:

/etc/named.conf
Contains settings for named and lists the location and characteristics of the zone files for your
domain. Zone files are usually stored in /var/named.

3-1

/etc/named.rfc1912.zones
Contains several zone sections for resolving local loopback names and addresses.

/var/named/named.ca
Contains a list of the root authoritative DNS servers.

About Types of Name Servers
You can configure several types of name server using BIND, including:

Master name server
Authoritative for one or more domains, a primary (master) name server maintains its
zone data in several database files, and can transfer this information periodically to
any backup (slave) name servers that are also configured in the zone. An
organization might maintain two primary name servers for a zone: one primary server
outside the firewall to provide restricted information about the zone for publicly
accessible hosts and services, and a hidden or stealth primary server inside the
firewall that holds details of internal hosts and services.

Slave name server
Acting as a backup to a primary name server, a backup name server maintains a copy
of the zone data, which it periodically refreshes from the primary server's copy.

Stub name server
A primary name server for a zone might also be configured as a stub name server
that maintains information about the primary and backup name servers of child zones.

Caching-only name server
Performs queries on behalf of a client and stores the responses in a cache after
returning the results to the client. It is not authoritative for any domains and the
information that it records is limited to the results of queries that it has cached.

Forwarding name server
Forwards all queries to another name server and caches the results, which reduces
local processing, external access, and network traffic.

In practice, a name server can be a combination of several of these types in complex
configurations.

About DNS Configuration Files
Domains are grouped into zones and zones are configured through the use of zone
files. Zone files store information about domains in the DNS database. Each zone file
contains directives and resource records. Optional directives apply settings to a zone
or instruct a name server to perform certain tasks. Resource records specify zone
parameters and define information about the systems (hosts) in a zone.

For examples of BIND configuration files, see /usr/share/doc/bind-version/
sample/ .

/etc/named.conf
The main configuration file for named is /etc/named.conf, which contains settings for
named and the top-level definitions for zones, for example:

Chapter 3
About Types of Name Servers

3-2

include "/etc/rndc.key";

controls {
 inet 127.0.0.1 allow { localhost; } keys { "rndc-key"; }
};

zone "us.mydom.com" {
 type master;
 file "master-data";
 allow-update { key "rndc-key"; };
 notify yes;
};

zone "mydom.com" IN {
 type slave;
 file "sec/slave-data";
 allow-update { key "rndc-key"; };
 masters {10.1.32.1;};
};

zone "2.168.192.in-addr.arpa" IN {
 type master;
 file "reverse-192.168.2";
 allow-update { key “rndc-key”; };
 notify yes;
};

The include statement allows external files to be referenced so that potentially sensitive data
such as key hashes can be placed in a separate file with restricted permissions.

The controls statement defines access information and the security requirements that are
necessary to use the rndc command with the named server:

inet
Specifies which hosts can run rndc to control named. In this example, rndc must be run on
the local host (127.0.0.1).

keys
Specifies the names of the keys that can be used. The example specifies using the key
named rndc-key, which is defined in /etc/rndc.key. Keys authenticate various actions by
named and are the primary method of controlling remote access and administration.

The zone statements define the role of the server in different zones.

The following zone options are used:

type
Specifies that this system is the primary name server for the zone us.mydom.com and a
backup server for mydom.com. 2.168.192.in-addr.arpa is a reverse zone for resolving IP
addresses to host names. See About Resource Records for Reverse-name Resolution.

file
Specifies the path to the zone file relative to /var/named. The zone file for us.mydom.com is
stored in /var/named/master-data and the transferred zone data for mydom.com is cached
in /var/named/sec/slave-data.

Chapter 3
About DNS Configuration Files

3-3

allow-update
Specifies that a shared key must exist on both the primary and backup name servers
for a zone transfer to take place from the primary server to the backup. The following
is an example record for a key in /etc/rndc.key:

key "rndc-key" {
 algorithm hmac-md5;
 secret "XQX8NmM41+RfbbSdcqOejg==";
};

You can use the rndc-confgen -a command to generate a key file.

notify
Specifies whether to notify the backup name servers when the zone information is
updated.

masters
Specifies the primary name server for a backup name server.

The next example is taken from the default /etc/named.conf file that is installed with
the bind package, and which configures a caching-only name server.

options {
 listen-on port 53 { 127.0.0.1; };
 listen-on-v6 port 53 { ::1; };
 directory "/var/named";
 dump-file "/var/named/data/cache_dump.db";
 statistics-file "/var/named/data/named_stats.txt";
 memstatistics-file "/var/named/data/named_mem_stats.txt";
 allow-query { localnets; };
 recursion yes;

 dnssec-enable yes;
 dnssec-validation yes;
 dnssec-lookaside auto;

 /* Path to ISC DLV key */
 bindkeys-file "/etc/named.iscdlv.key";

 managed-keys-directory "/var/named/dynamic";
};

logging {
 channel default_debug {
 file "data/named.run";
 severity dynamic;
 };
};

zone "." IN {
 type hint;
 file "named.ca";
};

include "/etc/named.rfc1912.zones";
include "/etc/named.root.key";

The options statement defines global server configuration options and sets defaults
for other statements.

Chapter 3
About DNS Configuration Files

3-4

listen-on
The port on which named listens for queries.

directory
Specifies the default directory for zone files if a relative pathname is specified.

dump-file
Specifies where named dumps its cache if it crashes.

statistics-file
Specifies the output file for the rndc stats command.

memstatistics-file
Specifies the output file for named memory-usage statistics.

allow-query
Specifies which IP addresses may query the server. localnets specifies all locally attached
networks.

recursion
Specifies whether the name server performs recursive queries.

dnssec-enable
Specifies whether to use secure DNS (DNSSEC).

dnssec-validation
Whether the name server should validate replies from DNSSEC-enabled zones.

dnssec-lookaside
Whether to enable DNSSEC Lookaside Validation (DLV) using the key in /etc/
named.iscdlv.key defined by bindkeys-file.

The logging section enables logging of messages to /var/named/data/named.run. The
severity parameter controls the logging level, and the dynamic value means that this level
can be controlled by using the rndc trace command.

The zone section specifies the initial set of root servers using a hint zone. This zone specifies
that named should consult /var/named/named.ca for the IP addresses of authoritative servers
for the root domain (.).

For more information, see the named.conf(5) manual page and the BIND documentation
in /usr/share/doc/bind-version/arm.

About Resource Records in Zone Files
A resource record in a zone file contains the following fields, some of which are optional
depending on the record type:

Name
Domain name or IP address.

TTL (time to live)
The maximum time that a name server caches a record before it checks whether a newer
one is available.

Chapter 3
About DNS Configuration Files

3-5

Class
Always IN for Internet.

Type
Type of record, for example:

A (address)
IPv4 address corresponding to a host.

AAAA (address)
IPv6 address corresponding to a host.

CNAME (canonical name)
Alias name corresponding to a host name.

MX (mail exchange)
Destination for email addressed to the domain.

NS (name server)
Fully qualified domain name of an authoritative name server for a domain.

PTR (pointer)
Host name corresponding to an IP address for address to name lookups (reverse-
name resolution).

SOA (start of authority)
Authoritative information about a zone, such as the primary name server, the
email address of the domain's administrator, and the domain's serial number. All
records following a SOA record relate to the zone that it defines up to the next SOA
record.

Data
The information that the record stores, such as an IP address in an A record, or a host
name in a CNAME or PTR record.

The following example shows the contents of a typical zone file such as /var/named/
master-data:

$TTL 86400 ; 1 day
@ IN SOA dns.us.mydom.com. root.us.mydom.com. (
 57 ; serial
 28800 ; refresh (8 hours)
 7200 ; retry (2 hours)
 2419200 ; expire (4 weeks)
 86400 ; minimum (1 day)
)
 IN NS dns.us.mydom.com.

dns IN A 192.168.2.1
us.mydom.com IN A 192.168.2.1
svr01 IN A 192.168.2.2
www IN CNAME svr01
host01 IN A 192.168.2.101
host02 IN A 192.168.2.102
host03 IN A 192.168.2.103
...

A comment on a line is preceded by a semicolon (;).

Chapter 3
About DNS Configuration Files

3-6

The $TTL directive defines the default time-to-live value for all resource records in the zone.
Each resource record can define its own time-to-live value, which overrides the global setting.

The SOA record is mandatory and included the following information:

us.mydom.com
The name of the domain.

dns.us.mydom.com.
The fully qualified domain name of the name server, including a trailing period (.) for the root
domain.

root.us.mydom.com.
The email address of the domain administrator.

serial
A counter that, if incremented, tells named to reload the zone file.

refresh
The time after which a primary name server notifies backup name servers that they should
refresh their database.

retry
If a refresh fails, the time that a backup name server should wait before attempting another
refresh.

expire
The maximum elapsed time that a backup name server has to complete a refresh before its
zone records are no longer considered authoritative and it will stop answering queries.

minimum
The minimum time for which other servers should cache information obtained from this zone.

An NS record declares an authoritative name server for the domain.

Each A record specifies the IP address that corresponds to a host name in the domain.

The CNAME record creates the alias www for svr01.

For more information, see the BIND documentation in /usr/share/doc/bind-version/arm.

About Resource Records for Reverse-name Resolution
Forward resolution returns an IP address for a specified domain name. Reverse-name
resolution returns a domain name for a specified IP address. DNS implements reverse-name
resolution by using the special in-addr.arpa and ip6.arpa domains for IPv4 and IPv6.

The characteristics for a zone's in-addr.arpa or ip6.arpa domains are usually defined
in /etc/named.conf, for example:

zone "2.168.192.in-addr.arpa" IN {
 type master;
 file "reverse-192.168.2";
 allow-update { key “rndc-key”; };
 notify yes;
};

Chapter 3
About DNS Configuration Files

3-7

The zone's name consists of in-addr.arpa preceded by the network portion of the IP
address for the domain with its dotted quads written in reverse order.

If your network does not have a prefix length that is a multiple of 8, see RFC 2317 for
the format that you should use instead.

The PTR records in in-addr.arpa or ip6.arpa domains define host names that
correspond to the host portion of the IP address. The following example is taken from
the /var/named/reverse-192.168.2 zone file:

$TTL 86400 ;
@ IN SOA dns.us.mydom.com. root.us.mydom.com. (
 57 ;
 28800 ;
 7200 ;
 2419200 ;
 86400 ;
)
 IN NS dns.us.mydom.com.

1 IN PTR dns.us.mydom.com.
1 IN PTR us.mydom.com.
2 IN PTR svr01.us.mydom.com.
101 IN PTR host01.us.mydom.com.
102 IN PTR host02.us.mydom.com.
103 IN PTR host03.us.mydom.com.
...

For more information, see the BIND documentation in /usr/share/doc/bind-
version/arm.

Configuring a Name Server
By default, the BIND installation allows you to configure a caching-only name server
using the configuration settings that are provided in /etc/named.conf and files that it
includes. This procedure assumes that you will either use the default settings or
configure new named configuration and zone files.

To configure a name server:

1. Install the bind package:

sudo yum install bind
2. If NetworkManager is enabled on the system, edit the /etc/sysconfig/network-

scripts/ifcfg-interface file, and add the following entry:

DNS1=127.0.0.1

This line causes NetworkManager to add the following entry to /etc/resolv.conf
when the network service starts:

nameserver 127.0.0.1

This entry points the resolver at the local name server.

If you have disabled NetworkManager, edit /etc/resolv.conf to include the
nameserver 127.0.0.1 entry.

3. If required, modify the named configuration and zone files.

Chapter 3
Configuring a Name Server

3-8

https://tools.ietf.org/html/rfc2317

4. Configure the system firewall to allow incoming TCP connections to port 53 and incoming
UDP datagrams on port 53:

sudo firewall-cmd --zone=zone --add-port=53/tcp --add-port=53/udp
sudo firewall-cmd --permanent --zone=zone --add-port=53/tcp --add-port=53/udp

5. Restart the network service, restart the named service, and configure named to start
following system reboots:

sudo systemctl restart network
sudo systemctl start named
sudo systemctl enable named

Administering the Name Service
The rndc command allows you to administer the named service, either locally or from a
remote machine (if permitted in the controls section of the /etc/named.conf file). To prevent
unauthorized access to the service, rndc must be configured to listen on the selected port
(by default, port 953), and both named and rndc must have access to the same key. To
generate a suitable key, use the rndc-confgen command:

rndc-confgen -a
wrote key file "/etc/rndc.key"

To ensure that only root can read the file:

chmod o-rwx /etc/rndc.key

To check the status of the named service:

rndc status
number of zones: 3
debug level: 0
xfers running: 0
xfers deferred: 0
soa queries in progress: 0
query logging is OFF
recursive clients: 0/1000
tcp clients: 0/100
server is up and running

If you modify the named configuration file or zone files, rndc reload instructs named to
reload the files:

rndc reload
server reload successful

For more information, see the named(8), rndc(8) and rndc-confgen(8) manual pages.

Performing DNS Lookups
The host utility is recommended for performing DNS lookups. Without any arguments, host
displays a summary of its command-line arguments and options. For example, look up the IP
address for host01:

host host01

Perform a reverse lookup for the domain name that corresponds to an IP address:

Chapter 3
Administering the Name Service

3-9

host 192.168.2.101

Query DNS for the IP address that corresponds to a domain:

host dns.us.mydoc.com

Use the -v and -t options to display verbose information about records of a certain
type:

host -v -t MX www.mydom.com

Trying "www.mydom.com"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 49643
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;www.mydom.com. IN MX

;; ANSWER SECTION:
www.mydom.com. 135 IN CNAME www.mydom.com.acme.net.
www.mydom.com.acme.net. 1240 IN CNAME d4077.c.miscacme.net.

;; AUTHORITY SECTION:
c.miscacme.net. 2000 IN SOA m0e.miscacme.net.
hostmaster.misc.com. ...

Received 163 bytes from 10.0.0.1#53 in 40 ms

The -a option (equivalent to -v -t ANY) displays all available records for a zone:

host -a www.us.mydom.com

Trying "www.us.mydom.com"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 40030
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.us.mydom.com. IN ANY

;; ANSWER SECTION:
www.us.mydom.com. 263 IN CNAME www.us.mydom.acme.net.

Received 72 bytes from 10.0.0.1#53 in 32 ms

For more information, see the host(1) manual page.

Chapter 3
Performing DNS Lookups

3-10

4
Configuring Network Time

This chapter describes how to configure a system to use the chrony, Network Time Protocol
(NTP), or Precision Time Protocol (PTP) daemons for setting the system time.

About the chronyd Daemon
The chrony package provides a chronyd service daemon and chronyc utility that enable
mobile systems and virtual machines to update their system clock after a period of
suspension or disconnection from a network.

The chronyd service is primarily designed to allow mobile systems and virtual machines to
update their system clock after a period of suspension or disconnection from a network.
However, you can also use it to implement a simple NTP client or a NTP server. When used
as an NTP server, chronyd can synchronise with higher stratum NTP servers or it can act as
a stratum 1 server using time signals received from the Global Positioning System (GPS) or
radio broadcasts such as DCF77, MSF, or WWVB.

You can use the chronyc command to manage the chronyd service.

Note:

chronyd uses NTP version 3 (RFC 1305), whose features are compatible with NTP
version 4 (RFC 5905). However, chronyd does not support several important
features of NTP version 4 nor does it support the use of PTP.

Configuring the chronyd Service
To configure the chronyd service on a system:

1. Install the chrony package.

sudo yum install chrony
2. Edit /etc/chrony.conf to set up the configuration for chronyd.

Note:

The default configuration assumes that the system has network access to
public NTP servers with which it can synchronise. The firewall rules for your
internal networks might well prevent access to these servers but instead allow
access to local NTP servers.

The following example shows a sample configuration for a system that can access three
NTP servers:

4-1

https://tools.ietf.org/html/rfc1305
https://tools.ietf.org/html/rfc5905

server NTP_server_1
server NTP_server_2
server NTP_server_3
driftfile /var/lib/chrony/drift
keyfile /etc/chrony.keys
commandkey 1
generatecommandkey

The commandkey directive specifies the keyfile entry that chronyd uses to
authenticate both chronyc commands and NTP packets. The
generatecommandkey directive causes chronyd to generate an SHA1-based
password automatically when the service starts.

To configure chronyd to act as an NTP server for a specified client or subnet, use
the allow directive, for example:

server NTP_server_1
server NTP_server_2
server NTP_server_3
allow 192.168.2/24
driftfile /var/lib/chrony/drift
keyfile /etc/chrony.keys
commandkey 1
generatecommandkey

If a system has only intermittent access to NTP servers, the following configuration
might be appropriate:

server NTP_server_1 offline
server NTP_server_2 offline
server NTP_server_3 offline
driftfile /var/lib/chrony/drift
keyfile /etc/chrony.keys
commandkey 1
generatecommandkey

If you specify the offline keyword, chronyd does not poll the NTP servers until it
is told that network access is available. You can use the chronyc -a online
and chronyc -a offline command to inform chronyd of the state of network
access.

3. If remote access to the local NTP service is required, configure the system firewall
to allow access to the NTP service in the appropriate zones, for example:

sudo firewall-cmd --zone=zone --add-service=ntp

success

sudo firewall-cmd --zone=zone --permanent --add-service=ntp

success
4. Start the chronyd service and configure it to start following a system reboot.

sudo systemctl start chronyd
sudo systemctl enable chronyd

You can use the chronyc command to display information about the operation of
chronyd or to change its configuration, for example:

sudo chronyc -a

Chapter 4
About the chronyd Daemon

4-2

chrony version version
...
200 OK

chronyc> sources

210 Number of sources = 4
MS Name/IP address Stratum Poll Reach LastRx Last sample
===
^+ service1-eth3.debrecen.hp 2 6 37 21 -2117us[-2302us] +/- 50ms
^* ns2.telecom.lt 2 6 37 21 -811us[-997us] +/- 40ms
^+ strato-ssd.vpn0.de 2 6 37 21 +408us[+223us] +/- 78ms
^+ kvm1.websters-computers.c 2 6 37 22 +2139us[+1956us] +/- 54ms

chronyc> sourcestats

210 Number of sources = 4
Name/IP Address NP NR Span Frequency Freq Skew Offset Std Dev
==
service1-eth3.debrecen.hp 5 4 259 -0.394 41.803 -2706us 502us
ns2.telecom.lt 5 4 260 -3.948 61.422 +822us 813us
strato-ssd.vpn0.de 5 3 259 1.609 68.932 -581us 801us
kvm1.websters-computers.c 5 5 258 -0.263 9.586 +2008us 118us

Reference ID : 212.59.0.2 (ns2.telecom.lt)
Stratum : 3
Ref time (UTC) : Tue Sep 30 12:33:16 2014
System time : 0.000354079 seconds slow of NTP time
Last offset : -0.000186183 seconds
RMS offset : 0.000186183 seconds
Frequency : 28.734 ppm slow
Residual freq : -0.489 ppm
Skew : 11.013 ppm
Root delay : 0.065965 seconds
Root dispersion : 0.007010 seconds
Update interval : 64.4 seconds
Leap status : Normal
chronyc> exit

chronyc> tracking

Reference ID : 212.59.0.2 (ns2.telecom.lt)
Stratum : 3
Ref time (UTC) : Tue Sep 30 12:33:16 2014
System time : 0.000354079 seconds slow of NTP time
Last offset : -0.000186183 seconds
RMS offset : 0.000186183 seconds
Frequency : 28.734 ppm slow
Residual freq : -0.489 ppm
Skew : 11.013 ppm
Root delay : 0.065965 seconds
Root dispersion : 0.007010 seconds
Update interval : 64.4 seconds
Leap status : Normal

chronyc> exit

Using the -a option to chronyc is equivalent to entering the authhash and password
subcommands, and avoids you having to specify the hash type and password every time that
you use chronyc:

Chapter 4
About the chronyd Daemon

4-3

sudo cat /etc/chrony.keys

1 SHA1 HEX:4701E4D70E44B8D0736C8A862CFB6B8919FE340E
chronyc
...
chronyc> authhash SHA1
chronyc> password HEX:4701E4D70E44B8D0736C8A862CFB6B8919FE340E
200 OK

For more information, see the chrony(1) and chronyc(1) manual pages, /usr/
share/doc/chrony-version/chrony.txt, or use the info chrony command.

About the NTP Daemon
The ntpd daemon can synchronise the system clock with remote NTP servers, with
local reference clocks, or with GPS and radio time signals. ntpd provides a complete
implementation of NTP version 4 (RFC 5905) and is also compatibility with versions 3
(RFC 1305), 2 (RFC 1119), and 1 (RFC 1059).

You can configure ntpd to run in several different modes, as described at http://
doc.ntp.org/4.2.6p5/assoc.html, using both symmetric-key and public-key
cryptography, as described at http://doc.ntp.org/4.2.6p5/authopt.html.

Configuring the ntpd Service
To configure the ntpd service on a system:

1. Install the ntp package.

sudo yum install ntp
2. Edit /etc/ntp.conf to set up the configuration for ntpd.

Note:

The default configuration assumes that the system has network access
to public NTP servers with which it can synchronise. The firewall rules for
your internal networks might well prevent access to these servers but
instead allow access to local NTP servers.

The following example shows a sample NTP configuration for a system that can
access three NTP servers:

server NTP_server_1
server NTP_server_2
server NTP_server_3
server 127.127.1.0
fudge 127.127.1.0 stratum 10
driftfile /var/lib/ntp/drift
restrict default nomodify notrap nopeer noquery

The server and fudge entries for 127.127.1.0 cause ntpd to use the local system
clock if the remote NTP servers are not available. The restrict entry allows
remote systems only to synchronise their time with the local NTP service.

Chapter 4
About the NTP Daemon

4-4

https://tools.ietf.org/html/rfc5905
https://tools.ietf.org/html/rfc1305
https://tools.ietf.org/html/rfc1119
https://tools.ietf.org/html/rfc1059
http://doc.ntp.org/4.2.6p5/assoc.html
http://doc.ntp.org/4.2.6p5/assoc.html
http://doc.ntp.org/4.2.6p5/authopt.html

For more information about configuring ntpd, see http://doc.ntp.org/4.2.6p5/
manyopt.html.

3. Create the drift file.

touch /var/lib/ntp/drift
4. If remote access to the local NTP service is required, configure the system firewall to

allow access to the NTP service in the appropriate zones, for example:

sudo firewall-cmd --zone=zone --add-service=ntp

success

sudo firewall-cmd --zone=zone --permanent --add-service=ntp

success
5. Start the ntpd service and configure it to start following a system reboot.

sudo systemctl start ntpd
sudo systemctl enable ntpd

You can use the ntpq and ntpstat commands to display information about the operation of
ntpd, for example:

sudo ntpq -p

 remote refid st t when poll reach delay offset jitter
==
*ns1.proserve.nl 193.67.79.202 2 u 21 64 377 31.420 10.742 3.689
-pomaz.hu 84.2.46.19 3 u 22 64 377 59.133 13.719 5.958
+server.104media 193.67.79.202 2 u 24 64 377 32.110 13.436 5.222
+public-timehost 193.11.166.20 2 u 28 64 377 57.214 9.304 6.311

sudo ntpstat

synchronised to NTP server (80.84.224.85) at stratum 3
 time correct to within 76 ms
 polling server every 64

For more information, see the ntpd(8), ntpd.conf(5), ntpq(8), and ntpstat(8) manual
pages and http://doc.ntp.org/4.2.6p5/.

About PTP
PTP allows you to synchronise system clocks on a local area network to a higher accuracy
than NTP. Provided that network drivers support either hardware or software time stamping, a
PTP clock can use the time stamps in PTP messages to compensate for propagation delays
across a network. Software time stamping allows PTP to synchronise systems to within a few
tens of microseconds. With hardware time stamping, PTP can synchronise systems to within
a few tenths of a microsecond. If you require high-precision time synchronization of systems,
use hardware time stamping. Both the UEK R3 and RHCK kernels support PTP version 2 as
defined in IEEE 1588.

A typical PTP configuration on an enterprise local area network consists of:

• One or more grandmaster clock systems.

A grandmaster clock is typically implemented as specialized hardware that can use high-
accuracy GPS signals or lower-accuracy code division multiple access (CDMA) signals,

Chapter 4
About PTP

4-5

http://doc.ntp.org/4.2.6p5/manyopt.html
http://doc.ntp.org/4.2.6p5/manyopt.html
http://doc.ntp.org/4.2.6p5/
https://www.nist.gov/el/isd/ieee/ieee1588.cfm

radio clock signals, or NTP as a time reference source. If several grandmaster
clocks are available, the best master clock (BMC) algorithm selects the
grandmaster clock based on the settings of their priority1, clockClass,
clockAccuracy, offsetScaledLogVariance, and priority2 parameters and their
unique identifier, in that order.

• Several boundary clock systems.

Each boundary clock is backed up to a grandmaster clock on one subnetwork and
relays PTP messages to one or more additional subnetworks. A boundary clock is
usually implemented as a function of a network switch.

• Multiple slave clock systems.

Each slave clock on a subnetwork is backed up to a boundary clock, which acts as
the master clock for that slave clock.

A simpler configuration is to set up a single grandmaster clock and multiple slave
clocks on the same network segment, which removes any need for an intermediate
layer of boundary clocks.

Grandmaster and slave clock systems that use only one network interface for PTP are
termed ordinary clocks.

Boundary clocks require at least two network interfaces for PTP: one interface acts a
slave to a grandmaster clock or a higher-level boundary clock; the other interfaces act
as masters to slave clocks or lower-level boundary clocks.

Synchronization of boundary and slave clock systems is achieved by sending time
stamps in PTP messages. By default, PTP messages are sent in UDPv4 datagrams. It
is also possible to configure PTP to use UDPv6 datagrams or Ethernet frames as its
transport mechanism.

To be able to use PTP with a system, the driver for at least one of the system's
network interfaces must support either software or hardware time stamping. To find out
whether the driver for a network interface supports time stamping, use the ethtool
command as shown in the following example:

sudo ethtool -T em1

Time stamping parameters for em1:
Capabilities:
 hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
 software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)
 hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
 software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)
 software-system-clock (SOF_TIMESTAMPING_SOFTWARE)
 hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)
...

The output from ethtool in this example shows that the em1 interface supports both
hardware and software time stamping capabilities.

With software time stamping, ptp4l synchronises the system clock to an external
grandmaster clock.

If hardware time stamping is available, ptp4l can synchronise the PTP hardware clock
to an external grandmaster clock. In this case, you use the phc2sys daemon to
synchronise the system clock with the PTP hardware clock.

Chapter 4
About PTP

4-6

Configuring the PTP Service
To configure the PTP service on a system:

1. Install the linuxptp package.

sudo yum install linuxptp
2. Edit /etc/sysconfig/ptp4l and define the start-up options for the ptp4l daemon.

Grandmaster clocks and slave clocks require that you define only one interface.

For example, to use hardware time stamping with interface em1 on a slave clock:

OPTIONS="-f /etc/ptp4l.conf -i em1 -s"

To use software time stamping instead of hardware time stamping, specify the -S option:

OPTIONS="-f /etc/ptp4l.conf -i em1 -S -s"

Note:

The -s option specifies that the clock operates only as a slave (slaveOnly
mode). Do not specify this option for a grandmaster clock or a boundary clock.

For a grandmaster clock, omit the -s option, for example:

OPTIONS="-f /etc/ptp4l.conf -i em1"

A boundary clock requires that you define at least two interfaces, for example:

OPTIONS="-f /etc/ptp4l.conf -i em1 -i em2"

You might need to edit the file /etc/ptp4l.conf to make further adjustments to the
configuration of ptp4l, for example:

• For a grandmaster clock, set the value of the priority1 parameter to a value
between 0 and 127, where lower values have higher priority when the BMC algorithm
selects the grandmaster clock. For a configuration that has a single grandmaster
clock, a value of 127 is suggested.

• If you set the value of summary_interval to an integer value N instead of 0, ptp4l
writes summary clock statistics to /var/log/messages every 2N seconds instead of
every second (20 = 1). For example, a value of 10 would correspond to an interval of
210 or 1024 seconds.

• The logging_level parameter controls the amount of logging information that ptp4l
records. The default value of logging_level is 6, which corresponds to LOG_INFO. To
turn off logging completely, set the value of logging_level to 0. Alternatively, specify
the -q option to ptp4l.

For more information, see the ptp4l(8) manual page.

3. Configure the system firewall to allow access by PTP event and general messages to
UDP ports 319 and 320 in the appropriate zone, for example:

sudo firewall-cmd --zone=zone --add-port=319/udp --add-port=320/udp

Chapter 4
About PTP

4-7

success

sudo firewall-cmd --permanent --zone=zone --add-port=319/udp --add-
port=320/udp

success
4. Start the ptp4l service and configure it to start following a system reboot.

sudo systemctl start ptp4l
sudo systemctl enable ptp4l

5. To configure phc2sys on a clock system that uses hardware time stamping:

a. Edit /etc/sysconfig/phc2sys and define the start-up options for the phc2sys
daemon.

On a boundary clock or slave clock, synchronise the system clock with the
PTP hardware clock that is associated with the slave network interface, for
example:

OPTIONS="-c CLOCK_REALTIME -s em1 -w"

Note:

The slave network interface on a boundary clock is the one that it
uses to communicate with the grandmaster clock.

The -w option specifies that phc2sys waits until ptp4l has synchronised the
PTP hardware clock before attempting to synchronise the system clock.

On a grandmaster clock, which derives its system time from a reference time
source such as GPS, CDMA, NTP, or a radio time signal, synchronise the
network interface's PTP hardware clock from the system clock, for example:

OPTIONS="-c em1 -s CLOCK_REALTIME -w"

For more information, see the phc2sys(8) manual page.

b. Start the phc2sys service and configure it to start following a system reboot.

sudo systemctl start phc2sys
sudo systemctl enable phc2sys

You can use the pmc command to query the status of ptp4l operation. The following
example shows the results of running pmc on a slave clock system that is directly
connected to the grandmaster clock system without any intermediate boundary clocks:

sudo pmc -u -b 0 'GET TIME_STATUS_NP'

sending: GET TIME_STATUS_NP
 080027.fffe.7f327b-0 seq 0 RESPONSE MANAGEMENT TIME_STATUS_NP
 master_offset -98434
 ingress_time 1412169090025854874
 cumulativeScaledRateOffset +1.000000000
 scaledLastGmPhaseChange 0
 gmTimeBaseIndicator 0
 lastGmPhaseChange 0x0000'0000000000000000.0000
 gmPresent true
 gmIdentity 080027.fffe.d9e453

Chapter 4
About PTP

4-8

sudo pmc -u -b 0 'GET CURRENT_DATA_SET'

sending: GET CURRENT_DATA_SET
 080027.fffe.7f327b-0 seq 0 RESPONSE MANAGEMENT CURRENT_DATA_SET
 stepsRemoved 1
 offsetFromMaster 42787.0
 meanPathDelay 289207.0

Useful information in this output includes:

gmIdentity
The unique identifier of the grandmaster clock, which is based on the MAC address of its
network interface.

gmPresent
Whether an external grandmaster clock is available. This value is displayed as false on the
grandmaster clock itself.

meanPathDelay
An estimate of how many nanoseconds by which synchronization messages are delayed.

offsetFromMaster
The most recent measurement of the time difference in nanoseconds relative to the
grandmaster clock.

stepsRemoved
The number of network steps between this system and the grandmaster clock.

For more information, see the phc2sys(8), pmc(8), and ptp4l(8) manual pages, https://
www.zhaw.ch/en/engineering/institutes-centres/ines/downloads/documents.html, and IEEE
1588.

Using PTP as a Time Source for NTP
To make the PTP-adjusted system time on an NTP server available to NTP clients, include
the following entries in /etc/ntp.conf on the NTP server to define the local system clock as
the time reference:

server 127.127.1.0
fudge 127.127.1.0 stratum 0

Note:

Do not configure any additional server lines in the file.

For more information, see Configuring the ntpd Service.

Chapter 4
About PTP

4-9

https://www.zhaw.ch/en/engineering/institutes-centres/ines/downloads/documents.html
https://www.zhaw.ch/en/engineering/institutes-centres/ines/downloads/documents.html
https://www.nist.gov/el/isd/ieee/ieee1588.cfm
https://www.nist.gov/el/isd/ieee/ieee1588.cfm

5
Configuring the Apache HTTP Web Service

This chapter describes how to configure a basic HTTP server.

About the Apache HTTP Server
Oracle Linux provides the Apache HTTP Server, which is an open-source web server
developed by the Apache Software Foundation. The Apache server hosts web content, and
responds to requests for this content from web browsers such as Firefox.

Installing the Apache HTTP Server
To install the Apache HTTP server:

1. Enter the following command:

sudo yum install httpd
2. Start the server, and configure it to start after system reboots:

sudo apachectl start
sudo systemctl enable httpd

3. Check for configuration errors:

sudo apachectl configtest
4. Create firewall rules to allow access to the ports on which the HTTP server listens, for

example:

sudo firewall-cmd --zone=zone --add-service=http
sudo firewall-cmd --permanent --zone=zone --add-service=http

Configuring the Apache HTTP Server

Note:

Any changes that you make to the configuration of the Apache HTTP server do not
take effect until you restart the server:

sudo apachectl restart

The main configuration file for the Apache HTTP server is /etc/httpd/conf/httpd.conf. You
can modify the directives in this file to customize Apache for your environment.

The directives include:

5-1

Allow from client [client ...] | all
Specifies a list of clients that can access content or all to serve content to any client.
The Order directive determines the order in which httpd evaluates Allow and Deny
directives.

Deny from client [client ...] | all
Specifies a list of clients that cannot access content or all to disallow all clients. The
Order directive determines the order in which httpd evaluates Allow and Deny
directives.

DocumentRoot directory-path
The top level directory for Apache server content. The apache user requires read
access to any files and read and execute access to the directory and any of its sub-
directories. Do not place a slash at the end of the directory path.
For example:

DocumentRoot /var/www/html

If you specify a different document root or link to content that is not under /var/www/
html and SELinux is enabled in enforcing mode on your system, change the default
file type of the directory hierarchy that contains the content to httpd_sys_content_t:

1. Use the semanage command to define the default file type of the content
directory as httpd_sys_content_t:

sudo /usr/sbin/semanage fcontext -a -t httpd_sys_content_t " content_dir
(/.*)?"

2. Use the restorecon command to apply the file type to the entire content
directory hierarchy.

sudo /sbin/restorecon -R -v content_dir

ErrorLog filename | syslog[:facility]
If set to a file name, specifies the file, relative to ServerRoot, to which httpd sends
error messages.
If set to syslog, specifies that httpd send errors to rsyslogd. A facility argument
specifies the rsyslogd facility. The default facility is local7.
For example:

ErrorLog logs/error_log

Listen [IP_address:]port
Accept incoming requests on the specified port or IP address and port combination.
By default, the httpd server accepts requests on port 80 for all network interfaces. For
a port number other than 80, HTTP requests to the server must include the port
number.
For example:

Listen 80
Listen 192.168.2.1:8080

LoadModule module path
The Apache HTTP server can load external modules (dynamic shared objects or
DSOs) to extend its functionality. The module argument is the name of the DSO, and
filename is the path name of the module relative to ServerRoot.
For example:

Chapter 5
Configuring the Apache HTTP Server

5-2

LoadModule auth_basic_module modules/mod_auth_basic.so

Order deny,allow | allow,deny
Specifies the order in which httpd evaluates Allow and Deny directives.
For example, permit access only to clients from the mydom.com domain:

Order deny,allow
Deny from all
Allow from .mydom.com

The following directives would not permit access by any client:

Order allow,deny
Deny from all
Allow from .mydom.com

ServerName FQDN[:port]
Specifies the fully qualified domain name or IP address of the httpd server and an optional
port on which the server listens. The FQDN must be resolvable to an IP address. If you do
not specify a FQDN, the server performs a reverse-name lookup on the IP address. If you do
not specify a port, the server uses the port corresponding to the incoming request.
For example:

ServerName www.mydom.com:80

ServerRoot directory-path
The top of the directory hierarchy where the httpd server keeps its configuration, error, and
log files. Do not place a slash at the end of the directory path.
For example:

ServerRoot /etc/httpd

Timeout seconds
Specifies the number of seconds that httpd waits for network operations to finish before
reporting a timeout error. The default value is 60 seconds.

UserDir directory-path ... | disabled [user ...] | enabled user ...
If set to disabled, disallows users identified by the space-separated user argument to
publish content from their home directories. If no users are specified, all users are
disallowed.
If set to enabled, allows users identified by the space-separated user argument to publish
content from their home directories, provided that they are not specified as an argument to
disabled.
directory-path is the name of a directory from which httpd publishes content. A relative path
is assumed to be relative to a user’s home directory. If you specify more than one directory
path, httpd tries each alternative in turn until find a web page. If directory-path is not
defined, the default is ~/public_html. Do not place a slash at the end of the directory path.
For example:

UserDir disabled root guest
UserDir enabled oracle alice
UserDir www http://www.mydom.com/

The root and guest users are disabled from content publishing. Assuming that ServerName
is set to www.mydom.com, browsing http://www.example.com/~alice displays alice's web
page, which must be located at ~alice/www or http://www.example.com/alice (that is, in
the directory alice relative to ServerRoot).

Chapter 5
Configuring the Apache HTTP Server

5-3

Note:

You would usually change the settings in the <IfModule mod_userdir.c>
container to allow users to publish user content.

For more information, see https://httpd.apache.org/docs/current/mod/directives.html.

Testing the Apache HTTP Server
To test that an Apache HTTP server is working:

• From the local system, direct a browser on the local system to http://localhost.

• From a remote system, direct a browser to http:// followed by the value of the
ServerName directive specified in the configuration file (/etc/httpd/conf/
httpd.conf).

If the browser displays the Apache 2 Test Page, the server is working correctly.

To test that the server can deliver content, create an HTML file named index.html in
the directory specified by the DocumentRoot directive (by default, /var/www/html).
After reloading the page, the browser should display this HTML file instead of the
Apache 2 Test Page.

Configuring Apache Containers
Apache containers are special directives that group other directives, often to create
separate web directory hierarchies with different characteristics. A container is
delimited by the XML-style tags <type> and </type>, where type is the container type.

The following are examples of container types:

<Directory directory-path>
Applies the contained directives to directories under directory-path. The following
example applies the Deny, Allow, and AllowOverride directives to all files and
directories under /var/www/html/sandbox.

<Directory /var/www/html/sandbox>
 Deny from all
 Allow from 192.168.2.
 AllowOverride All
</Directory>

The AllowOverride directive is only used in Directory containers and specifies which
classes of directives are allowed in .htaccess files. (.htaccess configuration files
typically contain user authentication directives for a web directory.) The directive
classes control such aspects as authorization, client access, and directory indexing.
You can specify the argument All to permit all classes of directives in .htaccess files,
a space-separated list of directive classes to permit only those classes, or None to
make the server ignore .htaccess files altogether.

Chapter 5
Testing the Apache HTTP Server

5-4

https://httpd.apache.org/docs/current/mod/directives.html

Note:

If SELinux is enabled on the system, you must change the default file type if the file
system hierarchy specified by <Directory> is not under /var/www/html.

<IfModule [!]module>
Applies directives if the specified module has been loaded, or, when the exclamation point
(!) is specified, if the module has not been loaded.
The following example disallows user-published content if mod_userdir.c has been loaded:

<IfModule mod_userdir.c>
 UserDir disabled
</IfModule>

<Limit method ...>
Places limits on the specified HTTP methods (such as GET, OPTIONS, POST, and PUT) for
use with a Uniform Resource Identifier (URI).
The following example limits systems in mydom.com to using only the GET and PUT methods to
perform HTTP downloads and uploads:

<Limit GET PUT>
 Order deny,allow
 Deny from all
 Allow from .example.com
</Limit>

Systems outside mydom.com cannot use GET and PUT with the URI.

<LimitExcept method ...>
Places limits on all except the specified HTTP methods for use with a Uniform Resource
Identifier (URI).
The following example disallows any system from using any method other than GET and
POST:

<LimitExcept GET POST>
 Order deny,allow
 Deny from all
</Limit>

VirtualHost IP_address:port ...
Specifies a group of directives that define a container for a virtual host. See Configuring
Apache Virtual Hosts.

About Nested Containers
The following example illustrates how you can nest containers, using <Limit> and
<LimitExcept> containers to permit GET, POST, and OPTIONS to be used with user directories
under /home/*/public_html.

<Directory /home/*/public_html>
 AllowOverride FileInfo AuthConfig Limit
 Options MultiViews Indexes SymLinksIfOwnerMatch \
 IncludesNoExec
 <Limit GET POST OPTIONS>
 Order allow,deny
 Allow from all

Chapter 5
Configuring Apache Containers

5-5

 </Limit>
 <LimitExcept GET POST OPTIONS>
 Order deny,allow
 Deny from all
 </LimitExcept>
</Directory>

In the example, the AllowOverride directive specifies the following directive classes:

AuthConfig
Permits the use of the authorization directives.

FileInfo
Permits the use of directives that control document types.

Limit
Permits the use of directives that control host access.

The Options directive controls the features of the server for the directory hierarchy, for
example:

FollowSymLinks
Follow symbolic links under the directory hierarchy.

Includes
Permits server-side includes.

IncludesNoExec
Prevents the server from running #exec cmd and #exec cgi server-side includes.

Indexes
Generates a web directory listing if the DirectoryIndex directive is not set.

MultiViews
Allows the server to determine the file to use that best matches the client's
requirements based on the MIME type when several versions of the file exist with
different extensions.

SymLinksIfOwnerMatch
Allows the server to follow a symbolic link if the file or directory being pointed to has
the same owner as the symbolic link.

For more information, see https://httpd.apache.org/docs/current/mod/directives.html.

Configuring Apache Virtual Hosts
The Apache HTTP server supports virtual hosts, meaning that it can respond to
requests that are directed to multiple IP addresses or host names that correspond to
the same host machine. You can configure each virtual host to provide different
content and to behave differently.

You can configure virtual hosts in two ways:

• IP-based Virtual Hosts (host-by-IP)

Each virtual host has its own combination of IP address and port. The server
responds to the IP address with which the host name resolves. Host-by-IP is

Chapter 5
Configuring Apache Virtual Hosts

5-6

https://httpd.apache.org/docs/current/mod/directives.html

needed to server HTTPS requests because of restrictions in the SSL (Secure Sockets
Layer) protocol.

• Name-based Virtual Hosts (host-by-name)

All virtual hosts share a common IP address. Apache responds to the request by
mapping the host name in the request to ServerName and ServerAlias directives for the
virtual host in the configuration file.

To configure a virtual host, you use the <VirtualHost hostname> container. You must also
divide all served content between the virtual hosts that you configure.

The following example shows a simple name-based configuration for two virtual hosts:

NameVirtualHost *:80

<VirtualHost *:80>
 ServerName websvr1.mydom.com
 ServerAlias www.mydom-1.com
 DocumentRoot /var/www/http/websvr1
 ErrorLog websvr1.error_log
</VirtualHost>

<VirtualHost *:80>
 ServerName websvr2.mydom.com
 ServerAlias www.mydom-2.com
 DocumentRoot /var/www/http/sebsvr2
 ErrorLog websvr2.error_log
</VirtualHost>

For more information, see https://httpd.apache.org/docs/2.2/vhosts/.

Chapter 5
Configuring Apache Virtual Hosts

5-7

https://httpd.apache.org/docs/2.2/vhosts/

6
Email Service Configuration

This chapter describes email programs and protocols that are available with Oracle Linux,
and how to set up a basic Sendmail client.

About Email Programs
A Mail User Agent is an email client application that allows you to create and read email
messages, set up mailboxes to store and organize messages, and send outbound messages
to a Mail Transfer Agent (MTA). Many MUAs can also retrieve email messages from remote
servers using the Post Office Protocol (POP) or Internet Message Access Protocol (IMAP).

A Mail Transfer Agent (MTA) transports email messages between systems by using the
Simple Mail Transport Protocol (SMTP). The mail delivery services from the client program to
a destination server possibly traverses several MTAs in its route. Oracle Linux offers two
MTAs, Postfix and Sendmail, and also includes the special purpose MTA, Fetchmail for use
with SLIP and PPP.

A Mail Delivery Agent (MDA) performs the actual delivery of an email message. The MTA
invokes an MDA, such as Procmail, to place incoming email in the recipient’s mailbox file.
MDAs distribute and sort messages on the local system that email client application can
access.

About Email Protocols
Several different network protocols are required to deliver email messages. These protocols
work together to allow different systems, often running different operating systems and
different email programs, to send, transfer, and receive email.

About SMTP
The Simple Mail Transfer Protocol (SMTP) is a transport protocol that provides mail delivery
services between email client applications and servers, and between the originating server
and the destination server. You must specify the SMTP server when you configure outgoing
email for an email client application.

SMTP does not require authentication. Anyone can use SMTP to send email, including junk
email and unsolicited bulk email. If you administer an SMTP server, you can configure relay
restrictions that limit users from sending email through it. Open relay servers do not have any
such restrictions. Both Postfix and Sendmail are SMTP server programs that use SMTP.
Unless you own a domain in which you want to receive email, you do not need to set up an
SMTP server.

About POP and IMAP
The Post Office Protocol (POP) is an email access protocol that email client applications use
to retrieve email messages from the mailbox on a remote server, typically maintained by an

6-1

Internet Service Provider (ISP). POP email clients usually delete the message on the
server when it has been successfully retrieved or within a short time period thereafter.

The Internet Message Access Protocol (IMAP) is an email access protocol that email
client applications use to retrieve email messages from a remote server, typically
maintained by their organization. The entire message is downloaded only when you
open it, and you can delete messages from the server without first downloading them.
Email is retained on the server when using IMAP.

Both POP and IMAP allow you to manage mail folders and create multiple mail
directories to organize and store email.

The dovecot package provides the dovecot service that implements both an IMAP
server and a POP server.

By default, the dovecot service runs IMAP and POP together with their secure
versions that use Secure Socket Layer (SSL) encryption for client authentication and
data transfer sessions. The IMAP and POP servers provided by dovecot are
configured to work as installed. It is usually unnecessary to modify the configuration
file, /etc/dovecot.conf.

For more information, see the dovecot(1) manual page and /usr/share/doc/
dovecot-version .

About the Postfix SMTP Server
Postfix is configured as the default MTA on Oracle Linux. Although Postfix does not
have as many features as Sendmail, it is easier to administer than Sendmail and its
features are sufficient to meet the requirements of most installations. You should only
use Sendmail if you want to use address re-writing rules or mail filters (milters) that are
specific to Sendmail. Most mail filters function correctly with Postfix. If you do use
Sendmail, disable or uninstall Postfix to avoid contention over network port usage.

Postfix has a modular design that consists of a primary daemon and several smaller
processes. Postfix stores its configuration files in the /etc/postfix directory,
including:

access
Specifies which hosts are allowed to connect to Postfix.

main.cf
Contains global configuration options for Postfix.

master.cf
Specifies how the Postfix master daemon and other Postfix processes interact to
deliver email.

transport
Specifies the mapping between destination email addresses and relay hosts.

By default, Postfix does not accept network connections from any system other than
the local host. To enable mail delivery for other hosts, edit /etc/postfix/main.cf and
configure their domain, host name, and network information.

Restart the Postfix service after making any configuration changes:

sudo systemctl restart postfix

Chapter 6
About the Postfix SMTP Server

6-2

For more information, see postfix(1) and other Postfix manual pages, Forwarding
Email, /usr/share/doc/postfix-version , and http://www.postfix.org/documentation.html.

About the Sendmail SMTP Server
Sendmail is highly configurable and is the most commonly used MTA on the Internet.
Sendmail is mainly used to transfer email between systems, but it is capable of controlling
almost every aspect of how email is handled.

Sendmail is distributed in the following packages:

procmail
Contains Procmail, which acts as the default local MDA for Sendmail. This package is
installed as a dependency of the sendmail package.

sendmail
Contains the Sendmail MTA.

sendmail-cf
Contains configuration files for Sendmail.

To install the Sendmail packages, enter:

sudo yum install sendmail sendmail-cf

For more information, see the sendmail(8) manual page .

About Sendmail Configuration Files
The main configuration file for Sendmail is /etc/mail/sendmail.cf, which is not intended to
be manually edited. Instead, make any configuration changes in the /etc/mail/sendmail.mc
file.

If you want Sendmail to relay email from other systems, change the following line in
sendmail.mc:

DAEMON_OPTIONS(`Port=smtp,Addr=127.0.0.1, Name=MTA')dnl

so that it reads:

dnl # DAEMON_OPTIONS(`Port=smtp,Addr=127.0.0.1, Name=MTA')dnl

The leading dnl stands for delete to new line, and effectively comments out the line.

After you have edited sendmail.mc, restart the sendmail service to regenerate sendmail.cf:

sudo systemctl restart sendmail

Alternatively, you can use the make script in /etc/mail:

sudo /etc/mail/make all

However, Sendmail does not use the regenerated configuration file until you restart the
server.

Other important Sendmail configuration files in /etc/mail include:

Chapter 6
About the Sendmail SMTP Server

6-3

http://www.postfix.org/documentation.html

access
Configures a relay host that processes outbound mail from the local host to other
systems. This is the default configuration:

Connect: localhost.localdomain RELAY
Connect: localhost RELAY
Connect: 127.0.0.1 RELAY

To configure Sendmail to relay mail from other systems on a local network, add an
entry such as the following:

Connect: 192.168.2 RELAY

mailertable
Configures forwarding of email from one domain to another. The following example
forwards email sent to the yourorg.org domain to the SMTP server for the mydom.com
domain:

yourorg.org smtp:[mydom.com]

virtusertable
Configures serving of email to multiple domains. Each line starts with a destination
address followed by the address to which Sendmail forwards the email. For example,
the following entry forwards email addressed to any user at yourorg.org to the same
user name at mydom.com:

@yourorg.org %1@mydom.com

Each of these configuration files has a corresponding database (.db) file in /etc/mail
that Sendmail reads. After making any changes to any of the configuration files, restart
the sendmail service. To regenerate the database files, run the /etc/mail/make
all command. As for sendmail.cf, Sendmail does not use the regenerated database
files until you restart the server.

Forwarding Email
You can forward incoming email messages with the Postfix local delivery agent or
with Sendmail by configuring the /etc/aliases file. Entries in this file can map
inbound addresses to local users, files, commands, and remote addresses.

The following example redirects email for postmaster to root, and forwards email sent
to admin on the local system to several other users, including usr04, who is on a
different system:

postmaster: root
admin: usr01, usr02, usr03, usr04@another-system.com

To direct email to a file, specify an absolute path name instead of the destination
address. To specify a command, precede it with a pipe character (|). The next
example erases email sent to nemo by sending it to /dev/null, and runs a script
named aggregator to process emails sent to fixme:

nemo: /dev/null
fixme: |/usr/local/bin/aggregator

After changing the file, run the command newaliases to rebuild the indexed
database file.

Chapter 6
Forwarding Email

6-4

For more information, see the aliases(5) manual page.

Configuring a Sendmail Client
A Sendmail client sends outbound mail to another SMTP server, which is typically
administered by an ISP or the IT department of an organization, and this server then relays
the email to its destination.

To configure a Sendmail client:

1. If the account on the SMTP server requires authentication:

a. Create an auth directory under /etc/mail that is accessible only to root:

sudo mkdir /etc/mail/auth
sudo chmod 700 /etc/mail/auth

b. In the auth directory, create a file smtp-auth that contains the authentication
information for the SMTP server, for example:

sudo echo 'AuthInfo:smtp.isp.com: "U:username" "P:password"' > /etc/mail/auth/
smtp-auth

In the previous command, smtp.isp.com is the FQDN of the SMTP server, and
username and password are the name and password of the account.

c. Create the database file from smtp-auth, and make both files read-writable only by
root:

cd /etc/mail/auth
makemap hash smtp-auth < smtp-auth
chmod 600 smtp-auth smtp-auth.db

2. Edit /etc/mail/sendmail.mc, and change the following line:

dnl define('SMART_host', 'smtp.your.provider')dnl

to read:

define('SMART_host', 'smtp.isp.com')dnl

In the previous command, smtp.isp.com is the FQDN of the SMTP server.

3. If the account on the SMTP server requires authentication, add the following lines after
the line that defines SMART_host:

define('RELAY_MAILER_ARGS', 'TCP $h port')dnl
define('confAUTH_MECHANISMS', 'EXTERNAL GSSAPI DIGEST-MD5 CRAM-MD5 LOGIN PLAIN')dnl
FEATURE('authinfo','hash /etc/mail/auth/smtp-auth.db')dnl
define(`confAUTH_OPTIONS', `A p y')dnl

In the previouis command, port is the port number that is used by the SMTP server (for
example, 587 for SMARTTLS or 465 for SSL/TLS).

4. Edit /etc/sysconfig/sendmail and set the value of DAEMON to no:

DAEMON=no

This entry disables sendmail from listening on port 25 for incoming email.

5. Restart the sendmail service:

sudo systemctl restart sendmail

Chapter 6
Configuring a Sendmail Client

6-5

To test the configuration, send email to an account in another domain.

This configuration does not receive or relay incoming email. You can use a client
application to receive email via POP or IMAP.

Chapter 6
Configuring a Sendmail Client

6-6

7
Configuring High Availability Features

This chapter describes how to configure the Pacemaker and Corosync technologies to create
an HA cluster that delivers continuous access to services running across multiple nodes.

More information and documentation on Pacemaker and Corosync can also be found at
https://clusterlabs.org/pacemaker/doc/.

About Oracle Linux High Availability Services
Oracle Linux high availability services comprises several open-source packages, including
Corosync and Pacemaker, to provide the tools to achieve high availability for applications and
services running on Oracle Linux. You may download Corosync, Pacemaker and the
functional sub packages from the Unbreakable Linux Network at https://linux.oracle.com or
the Oracle Linux yum server at https://yum.oracle.com.

Corosync is an open source cluster engine that includes an API to implement a number of
high availability features, including an availability manager that can restart a process when it
fails, a configuration and statistics database and a quorum system that can notify applications
when quorum is achieved or lost.

Corosync is installed in conjunction with Pacemaker, an open source high availability cluster
resource manager responsible for managing the life-cycle of software deployed on a cluster
and for providing high availability services. High availability services are achieved by
detecting and recovering from node and resource level failures via the API provided by the
cluster engine.

Pacemaker also ships with the Pacemaker Command Shell (pcs) that can be used to access
and configure the cluster and its resources. The pcs daemon runs as a service on each node
in the cluster, making it possible to synchronize configuration changes across all of the nodes
in the cluster.

Oracle provides support for Corosync and Pacemaker used for an active-passive 2-node
(1:1) cluster configuration on Oracle Linux 7.3 or higher. Support for clustering services does
not imply support for Oracle products clustered using these services.

Oracle also provides Oracle Clusterware for high availability clustering with Oracle Database.
You can find more information at https://www.oracle.com/database/technologies/rac/
clusterware.html.

Installing Pacemaker and Corosync
On each node in the cluster, install the pcs and pacemaker software packages along with all
available resource and fence agents from the Oracle Linux yum server or from the
Unbreakable Linux Network.

sudo yum install pcs pacemaker resource-agents fence-agents-all

If you are running firewalld, you should add the high-availability service on each of
the nodes, so that the service components are able to communicate across the network. This

7-1

https://clusterlabs.org/pacemaker/doc/
https://linux.oracle.com
https://yum.oracle.com
https://www.oracle.com/database/technologies/rac/clusterware.html
https://www.oracle.com/database/technologies/rac/clusterware.html

step typically enables TCP ports 2224 (used by the pcs daemon), 3121 (for
Pacemaker Remote nodes), 21064 (for DLM resources); and UDP ports 5405 (for
Corosync clustering) and 5404 (for Corosync multicast, if this is configured).

sudo firewall-cmd --permanent --add-service=high-availability
sudo firewall-cmd --add-service=high-availability

To use the pcs command to configure and manage your cluster, a password must be
set on each node for the hacluster user. It is helpful if the password that you set for
this user is the same on each node. Use the passwd command on each node to set
the password:

sudo passwd hacluster

To use the pcs command, the pcsd service must be running on each of the nodes in
the cluster. You can set this service to run and to start at boot using the following
commands:

sudo systemctl start pcsd.service
sudo systemctl enable pcsd.service

Configuring an Initial Cluster and Service
In the following example, a cluster is configured across two nodes hosted on systems
with the resolvable hostnames of node1 and node2. Each system is installed and
configured using the instructions provided in Installing Pacemaker and Corosync.

The cluster is configured to run a service, Dummy, that is included in the resource-
agents package that you should have installed along with the pacemaker packages.
This tool simply keeps track of whether it is running or not. We configure Pacemaker
with an interval parameter that determines how long it should wait between checks to
determine whether the Dummy process has failed.

We manually stop the Dummy process outside of the Pacemaker tool to simulate a
failure and use this to demonstrate how the process is restarted automatically on an
alternate node.

Creating the Cluster
1. Authenticate the pcs cluster configuration tool for the hacluster user on each

node in your configuration. To do this, run the following command on one of the
nodes that will form part of the cluster:

sudo pcs cluster auth node1node2 -u hacluster

Replace node1 and node2 with the resolvable hostnames of the nodes that will
form part of the cluster. The tool will prompt you to provide a password for the
hacluster user. You should provide the password that you set for this user when
you installed and configured the Pacemaker software on each node.

2. To create the cluster, use the pcs cluster setup command. You must specify
a name for the cluster and the resolvable hostnames for each node in the cluster:

sudo pcs cluster setup --name pacemaker1 node1 node2

Replace pacemaker1 with an appropriate name for the cluster. Replace node1 and
node2 with the resolvable hostnames of the nodes in the cluster.

Chapter 7
Configuring an Initial Cluster and Service

7-2

3. Start the cluster on all nodes. You can do this manually using the pcs command:

sudo pcs cluster start --all

You can also do this by starting the pacemaker and corosync services from systemd:

sudo systemctl start pacemaker.service
sudo systemctl start corosync.service

Optionally, you can enable these services to start at boot time, so that if a node reboots it
automatically rejoins the cluster:

sudo systemctl enable pacemaker.service
sudo systemctl enable corosync.service

Some users prefer not to enable these services, so that a node failure resulting in a full
system reboot can be properly debugged before it rejoins the cluster.

Setting Cluster Parameters
1. Fencing is an advanced feature that helps protect your data from being corrupted by

nodes that may be failing or unavailable. Pacemaker uses the term stonith (shoot the
other node in the head) to describe fencing options. Since this configuration depends on
particular hardware and a deeper understanding of the fencing process, we recommend
disabling the fencing feature for this example.

sudo pcs property set stonith-enabled=false

Fencing is an important part of setting up a production level HA cluster and is disabled in
this example to keep things simple. If you intend to take advantage of stonith, see
Fencing Configuration for more information.

2. Since this example is a two-node cluster, you can disable the no-quorum policy, as
quorum requires a minimum of three nodes to make any sense. Quorum is only achieved
when more than half of the nodes agree on the status of the cluster. In this example,
quorum can never be reached, so configure the cluster to ignore the quorum state:

sudo pcs property set no-quorum-policy=ignore
3. Configure a migration policy. In this example we configure the cluster to move the service

to a new node after a single failure:

sudo pcs resource defaults migration-threshold=1

Creating a Service and Testing Failover
Creating a service and testing failover

Services are created and are usually configured to run a resource agent that is responsible
for starting and stopping processes. Most resource agents are created according to the OCF
(Open Cluster Framework) specification defined as an extension for the Linux Standard Base
(LSB). There are many handy resource agents for commonly used processes included in the
resource-agents packages, including a variety of heartbeat agents that track whether
commonly used daemons or services are still running.

In this example we set up a service that uses a Dummy resource agent created precisely for
the purpose of testing Pacemaker. We use this agent because it requires the least possible
configuration and does not make any assumptions about your environment or the types of
services that you intend to run with Pacemaker.

Chapter 7
Configuring an Initial Cluster and Service

7-3

1. To add the service as a resource, use the pcs resource create command.
Provide a name for the service. In the example below, we use the name
dummy_service for this resource:

sudo pcs resource create dummy_service ocf:pacemaker:Dummy op monitor
interval=120s

To invoke the Dummy resource agent, a notation (ocf:pacemaker:Dummy) is used
to specify that it conforms to the OCF standard, that it runs in the pacemaker
namespace and that the Dummy script should be used. If you were configuring a
heartbeat monitor service for an Oracle Database, you might use the
ocf:heartbeat:oracle resource agent.

The resource is configured to use the monitor operation in the agent and an
interval is set to check the health of the service. In this example we set the interval
to 120s to give the service some time to fail while you are demonstrating failover.
By default, this is usually set to 20 seconds, but may be modified depending on
the type of service and your own environment.

2. As soon as you create a service, the cluster attempts to start the resource on a
node using the resource agent's start command. You can see the resource start
and run status by running the pcs status command:

sudo pcs status

Cluster name: pacemaker1
Stack: corosync
Current DC: node1 (version 1.1.16-12.el7-94ff4df) - partition with quorum
Last updated: Wed Jan 17 06:35:18 2018
Last change: Wed Jan 17 03:08:00 2018 by root via cibadmin on node1

2 nodes configured
1 resource configured

Online: [node2 node1]

Full list of resources:

 dummy_service (ocf::pacemaker:Dummy): Started node2

Daemon Status:
 corosync: active/enabled
 pacemaker: active/enabled
 pcsd: active/enabled

3. Simulate service failure by force stopping the service directly, using
crm_resource, so that the cluster is unaware that the service has been manually
stopped.

sudo crm_resource --resource dummy_service --force-stop
4. Run crm_mon in interactive mode so that you can wait until you see the node fail

and a Failed Actions message is displayed. You should see the service restart
on the alternate node.

sudo crm_mon

Stack: corosync
Current DC: node1 (version 1.1.16-12.el7-94ff4df) - partition with quorum
Last updated: Wed Jan 17 06:41:04 2018
Last change: Wed Jan 17 06:39:02 2018 by root via cibadmin on node1

Chapter 7
Configuring an Initial Cluster and Service

7-4

2 nodes configured
1 resource configured

Online: [node2 node1]

Active resources:

dummy_service (ocf::pacemaker:Dummy): Started node1

Failed Actions:
* dummy_service_monitor_120000 on node2 'not running' (7): call=16,
status=complete, exitreason='none',
 last-rc-change='Wed Jan 17 06:41:02 2018', queued=0ms, exec=0ms

You can use the Ctrl-C key combination to exit out of crm_mon at any point.

5. You can try to reboot the node where the service is running to see that failover also
occurs in the case of node failure. Note that if you have not enabled the corosync and
pacemaker services to start on boot, you may need to start the service on the node that
you have rebooted, manually. For example:

sudo pcs cluster start node1

Fencing Configuration
Fencing or stonith is used to protect data when nodes become unresponsive. If a node fails
to respond, it may still be accessing data. To be sure that your data is safe, you can use
fencing to prevent a live node from having access to the data until the original node is truly
offline. To do this, you must configure a device that can ensure that a node is taken offline.
There are a number of fencing agents available that can be configured for this purpose. In
general, stonith relies on particular hardware and service protocols that can force reboot or
shutdown nodes physically to protect the cluster.

In this section, different configurations using some of the available fencing agents are
presented as examples. Note that these examples make certain presumptions about
hardware and assume that you are already aware of how to set up, configure and use the
hardware concerned. The examples are provided for basic guidance and it is recommended
that you also refer to upstream documentation to familiarize yourself with some of the
concepts presented here.

Before proceeding with any of these example configurations, you must ensure that stonith is
enabled for your cluster configuration:

sudo pcs property set stonith-enabled=true

After you have configured stonith, you can check your configuration to ensure that it is set
up correctly by running the following commands:

sudo pcs stonith show --full
sudo pcs cluster verify -V

To check the status of your stonith configuration, run:

sudo pcs stonith

To check the status of your cluster, run:

sudo pcs status

Chapter 7
Fencing Configuration

7-5

IPMI LAN Fencing
Intelligent Platform Management Interface (IPMI) is an interface to a subsystem that
provides management features of the host system's hardware and firmware and
includes facilities to power cycle a system over a dedicated network without any
requirement to access the system's operating system. The fence_ipmilan fencing
agent can be configured for the cluster so that stonith can be achieved across the
IPMI LAN.

If your systems are configured for IPMI, you can run the following commands on one
of the nodes in the cluster to enable the ipmilan fencing agent and to configure
stonith for both nodes:

sudo pcs stonith create ipmilan_n1_fencing fence_ipmilan pcmk_host_list=node1
delay=5 \
ipaddr=203.0.113.1 login=root passwd=password lanplus=1 op monitor interval=60s

sudo pcs stonith create ipmilan_n2_fencing fence_ipmilan pcmk_host_list=node2 \
ipaddr=203.0.113.2 login=root passwd=password lanplus=1 op monitor interval=60s

In the above example, the host named node1 has an IPMI LAN interface configured on
the IP 203.0.113.1. The host named node2 has an IPMI LAN interface configured on
the IP 203.0.113.2. The root user password for the IPMI login on both systems is
specified here as password. In each instance, you should replace these configuration
variables with the appropriate information to match your own environment.

Note that the delay option should only be set to one node. This helps to ensure that in
the rare case of a fence race condition only one node is killed and the other continues
to run. Without this option set, it is possible that both nodes believe they are the only
surviving node and simultaneously reset each other.

NOT_SUPPORTED:

The IPMI LAN agent exposes the login credentials of the IPMI subsystem in
plain text. Your security policy should ensure that it is acceptable for users
with access to the Pacemaker configuration and tools to also have access to
these credentials and the underlying subsystems concerned.

SCSI Fencing
The SCSI Fencing agent is used to provide storage level fencing. This protects
storage resources from being written to by two nodes at the same time, using SCSI-3
PR (Persistent Reservation). Used in conjunction with a watchdog service, a node can
be reset automatically via stonith when it attempts to access the SCSI resource
without a reservation.

To configure an environment in this way, install the watchdog service on both nodes
and copy the provided fence_scsi_check script to the watchdog configuration before
enabling the service:

sudo yum install watchdog
sudo cp /usr/share/cluster/fence_scsi_check /etc/watchdog.d/
sudo systemctl enable --now watchdog

Chapter 7
Fencing Configuration

7-6

To use this fencing agent, you must also enable the iscsid service provided in the iscsi-
initiator-utils package on both nodes:

sudo yum install -y iscsi-initiator-utils
sudo systemctl enable --now iscsid

Once both nodes are configured with the watchdog service and the iscsid service, you can
configure the fence_scsi fencing agent on one of the cluster nodes to monitor a shared
storage device, such as an iSCSI target. For example:

sudo pcs stonith create scsi_fencing fence_scsi pcmk_host_list="node1 node2" \
 devices="/dev/sdb" meta provides="unfencing"

In the example, node1 and node2 are the hostnames of the nodes in the cluster and /dev/sdb
is the shared storage device. You should replace these variables with the appropriate
information to match your own environment.

SBD Fencing
Storage Based Death (SBD) is a daemon that can run on a system and monitor shared
storage and that can use a messaging system to track cluster health. SBD can trigger a reset
in the event that the appropriate fencing agent determines that stonith should be
implemented.

To set up and configure SBD fencing, stop the cluster by running the following command on
one of the nodes:

sudo pcs cluster stop --all

On each node, install and configure the SBD daemon:

sudo yum install sbd

Edit /etc/sysconfig/sbd to set the SBD_DEVICE parameter to identify the shared storage
device. For example, if your shared storage device is available on /dev/sdc, edit the file to
contain the line:

SBD_DEVICE="/dev/sdc"

Enable the SBD service in systemd:

sudo systemctl enable --now sbd

On one of the nodes, create the SBD messaging layout on the shared storage device and
confirm that it is in place. For example, to set up and verify messaging on the shared storage
device at /dev/sdc, run the following commands:

sudo sbd -d /dev/sdc create
sudo sbd -d /dev/sdc list

Finally, start the cluster and configure the fence_sbd fencing agent for the shared storage
device. For example, to configure the shared storage device, /dev/sdc, run the following
commands on one of the nodes:

sudo pcs cluster start --all
sudo pcs stonith create sbd_fencing fence_sbd devices=/dev/sdc

Chapter 7
Fencing Configuration

7-7

IF-MIB Fencing
IF-MIB fencing takes advantage of SNMP to access the IF-MIB on an Ethernet
network switch and to shutdown the port on the switch to effectively take a host offline.
This leaves the host running, but disconnects it from the network. It is worth bearing in
mind that any FibreChannel or InfiniBand connections could remain intact, even after
the Ethernet connection has been terminated, which could mean that data made
available on these connections could still be at risk. As a result, it is best to configure
this as a fallback fencing mechanism. See Configuring Fencing Levels for more
information on how to use multiple fencing agents together to maximise stonith
success.

To configure IF-MIB fencing, ensure that your switch is configured for SNMP v2c at
minimum and that SNMP SET messages are enabled. For example, on an Oracle
Switch, via the ILOM CLI, you could run:

sudo set /SP/services/snmp/ sets=enabled
sudo set /SP/services/snmp/ v2c=enabled

On one of the nodes in your cluster, configure the fence_ifmib fencing agent for each
node in your environment. For example:

sudo pcs stonith create ifmib_n1_fencing fence_ifmib pcmk_host_list=node1 \
ipaddr=203.0.113.10 community=private port=1 delay=5 op monitor interval=60s

sudo pcs stonith create ifmib_n2_fencing fence_ifmib pcmk_host_list=node2 \
ipaddr=203.0.113.10 community=private port=2 op monitor interval=60s

In the above example, the switch SNMP IF-MIB is accessible at the IP address
203.0.113.10. The host node1 is connected to port 1 on the switch. The host node2 is
connected to port 2 on the switch. You should replace these variables with the
appropriate information to match your own environment.

Configuring Fencing Levels
If you have configured multiple fencing agents, you may want to set different fencing
levels. Fencing levels allow you to prioritize different approaches to fencing and can
provide a valuable mechanism to provide fallback options should a default fencing
approach fail.

Each fencing level is attempted in ascending order starting from level 1. If the fencing
agent configured for a particular level fails, the fencing agent from the next level is
attempted instead.

For example, you may wish to configure IPMI-LAN fencing at level 1, but fallback to IF-
MIB fencing as a level 2 option. Using the example configurations from IPMI LAN
Fencing and IF-MIB Fencing, you could run the following commands on one of the
nodes to set the fencing levels for each configured agent:

sudo pcs stonith level add 1 node1 ipmilan_n1_fencing
sudo pcs stonith level add 1 node2 ipmilan_n2_fencing
sudo pcs stonith level add 2 node1 ifmib_n1_fencing
sudo pcs stonith level add 2 node2 ifmib_n2_fencing

Chapter 7
Fencing Configuration

7-8

8
Configuring Load Balancing

This chapter describes how to configure the Keepalived and HAProxy technologies for
balancing access to network services while maintaining continuous access to those services.

About HAProxy
HAProxy is an application layer (Layer 7) load balancing and high availability solution that
you can use to implement a reverse proxy for HTTP and TCP-based Internet services.

The configuration file for the haproxy daemon is /etc/haproxy/haproxy.cfg. This file must
be present on each server on which you configure HAProxy for load balancing or high
availability.

For more information, see http://www.haproxy.org/#docs, the /usr/share/doc/haproxy-
version documentation, and the haproxy(1) manual page.

Installing and Configuring HAProxy
To install HAProxy:

1. Install the haproxy package on each front-end server:

sudo yum install haproxy
2. Edit /etc/haproxy/haproxy.cfg to configure HAProxy on each server. See About the

HAProxy Configuration File.

3. Enable IP forwarding and binding to non-local IP addresses:

echo "net.ipv4.ip_forward = 1" >> /etc/sysctl.conf
echo "net.ipv4.ip_nonlocal_bind = 1" >> /etc/sysctl.conf
sysctl -p

net.ipv4.ip_forward = 1
net.ipv4.ip_nonlocal_bind = 1

4. Enable access to the services or ports that you want HAProxy to handle.

For example, to enable access to HTTP and make this rule persist across reboots, enter
the following commands:

sudo firewall-cmd --zone=zone --add-service=http

success

sudo firewall-cmd --permanent --zone=zone --add-service=http

success

To allow incoming TCP requests on port 8080:

sudo firewall-cmd --zone=zone --add-port=8080/tcp

8-1

http://www.haproxy.org/#docs

success

sudo firewall-cmd --permanent --zone=zone --add-port=8080/tcp

success
5. Enable and start the haproxy service on each server:

sudo systemctl enable haproxy
ln -s '/usr/lib/systemd/system/haproxy.service' '/etc/systemd/system/multi-
user.target.wants/haproxy.service'
sudo systemctl start haproxy

If you change the HAProxy configuration, reload the haproxy service:

sudo systemctl reload haproxy

About the HAProxy Configuration File
The /etc/haproxy/haproxy.cfg configuration file is divided into the following sections:

global
Defines global settings such as the syslog facility and level to use for logging, the
maximum number of concurrent connections allowed, and how many processes to
start in daemon mode.

defaults
Defines default settings for subsequent sections.

listen
Defines a complete proxy, implicitly including the frontend and backend components.

frontend
Defines the ports that accept client connections.

backend
Defines the servers to which the proxy forwards client connections.

For examples of how to configure HAProxy, see:

• Configuring Simple Load Balancing Using HAProxy

• Making HAProxy Highly Available Using Keepalived

• Making HAProxy Highly Available Using Oracle Clusterware

Configuring Simple Load Balancing Using HAProxy
The following example uses HAProxy to implement a front-end server that balances
incoming requests between two back-end web servers, and which is also able to
handle service outages on the back-end servers.

Figure 8-1 shows an HAProxy server (10.0.0.10), which is connected to an externally
facing network (10.0.0.0/24) and to an internal network (192.168.1.0/24). Two web
servers, websvr1 (192.168.1.71) and websvr2 (192.168.1.72), are accessible on the
internal network. The IP address 192.168.1.10 is in the private address range
192.168.1.0/24, which cannot be routed on the Internet. An upstream network

Chapter 8
Configuring Simple Load Balancing Using HAProxy

8-2

address translation (NAT) gateway or a proxy server provides access to and from the
Internet.

Figure 8-1 Example HAProxy Configuration for Load Balancing

Chapter 8
Configuring Simple Load Balancing Using HAProxy

8-3

You might use the following configuration in /etc/haproxy/haproxy.cfg on the server:

global
 daemon
 log 127.0.0.1 local0 debug
 maxconn 50000
 nbproc 1

defaults
 mode http
 timeout connect 5s
 timeout client 25s
 timeout server 25s
 timeout queue 10s

Handle Incoming HTTP Connection Requests
listen http-incoming
 mode http
 bind 10.0.0.10:80
Use each server in turn, according to its weight value
 balance roundrobin
Verify that service is available
 option httpchk OPTIONS * HTTP/1.1\r\nHost:\ www
Insert X-Forwarded-For header
 option forwardfor
Define the back-end servers, which can handle up to 512 concurrent connections
each
 server websvr1 192.168.1.71:80 weight 1 maxconn 512 check
 server websvr2 192.168.1.72:80 weight 1 maxconn 512 check

This configuration balances HTTP traffic between the two back-end web servers
websvr1 and websvr2, whose firewalls are configured to accept incoming TCP
requests on port 80.

After implementing simple /var/www/html/index.html files on the web servers and
using curl to test connectivity, the following output demonstrate how HAProxy
balances the traffic between the servers and how it handles the httpd service stopping
on websvr1:

$ while true; do curl http://10.0.0.10; sleep 1; done
This is HTTP server websvr1 (192.168.1.71).
This is HTTP server websvr2 (192.168.1.72).
This is HTTP server websvr1 (192.168.1.71).
This is HTTP server websvr2 (192.168.1.72).
...
This is HTTP server websvr2 (192.168.1.72).
<html><body><h1>503 Service Unavailable</h1>
No server is available to handle this request.
</body></html>
This is HTTP server websvr2 (192.168.1.72).
This is HTTP server websvr2 (192.168.1.72).
This is HTTP server websvr2 (192.168.1.72).
...
This is HTTP server websvr2 (192.168.1.72).
This is HTTP server websvr2 (192.168.1.72).
This is HTTP server websvr2 (192.168.1.72).
This is HTTP server websvr1 (192.168.1.71).
This is HTTP server websvr2 (192.168.1.72).
This is HTTP server websvr1 (192.168.1.71).
...

Chapter 8
Configuring Simple Load Balancing Using HAProxy

8-4

^C
$

In this example, HAProxy detected that the httpd service had restarted on websvr1 and
resumed using that server in addition to websvr2.

By combining the load balancing capability of HAProxy with the high availability capability of
Keepalived or Oracle Clusterware, you can configure a backup load balancer that ensures
continuity of service in the event that the primary load balancer fails. See Making HAProxy
Highly Available Using Keepalived and Making HAProxy Highly Available Using Oracle
Clusterware.

See Installing and Configuring HAProxy for details of how to install and configure HAProxy.

Configuring HAProxy for Session Persistence
Many web-based application require that a user session is persistently served by the same
web server.

If you want web sessions to have persistent connections to the same server, you can use a
balance algorithm such as hdr, rdp-cookie, source, uri, or url_param.

If your implementation requires the use of the leastconn, roundrobin, or static-rr
algorithm, you can implement session persistence by using server-dependent cookies.

To enable session persistence for all pages on a web server, use the cookie directive to
define the name of the cookie to be inserted and add the cookie option and server name to
the server lines, for example:

 cookie WEBSVR insert
 server websvr1 192.168.1.71:80 weight 1 maxconn 512 cookie 1 check
 server websvr2 192.168.1.72:80 weight 1 maxconn 512 cookie 2 check

HAProxy includes an additional Set-Cookie: header that identifies the web server in its
response to the client, for example: Set-Cookie: WEBSVR=N; path=page_path . If a client
subsequently specifies the WEBSVR cookie in a request, HAProxy forwards the request to the
web server whose server cookievalue matches the value of WEBSVR.

The following example demonstrates how an inserted cookie ensures session persistence:

while true; do curl http://10.0.0.10; sleep 1; done

This is HTTP server websvr1 (192.168.1.71).
This is HTTP server websvr2 (192.168.1.72).
This is HTTP server websvr1 (192.168.1.71).

^CC
curl http://10.0.0.10 -D /dev/stdout

HTTP/1.1 200 OK
Date: ...
Server: Apache/2.4.6 ()
Last-Modified: ...
ETag: "26-5125afd089491"
Accept-Ranges: bytes
Content-Length: 38
Content-Type: text/html; charset=UTF-8
Set-Cookie: WEBSVR=2; path=/

Chapter 8
Configuring Simple Load Balancing Using HAProxy

8-5

This is HTTP server svr2 (192.168.1.72).

while true; do curl http://10.0.0.10 --cookie "WEBSVR=2;"; sleep 1; done

This is HTTP server websvr2 (192.168.1.72).
This is HTTP server websvr2 (192.168.1.72).
This is HTTP server websvr2 (192.168.1.72).

^C

To enable persistence selectively on a web server, use the cookie directive to specify
that HAProxy should expect the specified cookie, usually a session ID cookie or other
existing cookie, to be prefixed with the server cookie value and a ~ delimiter, for
example:

 cookie SESSIONID prefix
 server websvr1 192.168.1.71:80 weight 1 maxconn 512 cookie 1 check
 server websvr2 192.168.1.72:80 weight 1 maxconn 512 cookie 2 check

If the value of SESSIONID is prefixed with a server cookie value, for example: Set-
Cookie: SESSIONID=N~Session_ID;, HAProxy strips the prefix and delimiter from the
SESSIONID cookie before forwarding the request to the web server whose server
cookie value matches the prefix.

The following example demonstrates how using a prefixed cookie enables session
persistence:

while true; do curl http://10.0.0.10 --cookie "SESSIONID=1~1234;"; sleep 1; done

This is HTTP server websvr1 (192.168.1.71).
This is HTTP server websvr1 (192.168.1.71).
This is HTTP server websvr1 (192.168.1.71).

^C

A real web application would usually set the session ID on the server side, in which
case the first HAProxy response would include the prefixed cookie in the Set-Cookie:
header.

About Keepalived
Keepalived uses the IP Virtual Server (IPVS) kernel module to provide transport layer
(Layer 4) load balancing, redirecting requests for network-based services to individual
members of a server cluster. IPVS monitors the status of each server and uses the
Virtual Router Redundancy Protocol (VRRP) to implement high availability.

The configuration file for the keepalived daemon is /etc/keepalived/
keepalived.conf. This file must be present on each server on which you configure
Keepalived for load balancing or high availability.

For more information, see https://www.keepalived.org/documentation.html, the /usr/
share/doc/keepalive-version documentation, and the keepalived(8) and
keepalived.conf(5) manual pages.

Chapter 8
About Keepalived

8-6

https://www.keepalived.org/documentation.html

Installing and Configuring Keepalived
To install Keepalived:

1. Install the keepalived package on each server:

sudo yum install keepalived
2. Edit /etc/keepalived/keepalived.conf to configure Keepalived on each server. See

About the Keepalived Configuration File.

3. Enable IP forwarding:

sudo echo "net.ipv4.ip_forward = 1" >> /etc/sysctl.conf
sudo sysctl -p

net.ipv4.ip_forward = 1
4. Add firewall rules to allow VRRP communication using the multicast IP address

224.0.0.18 and the VRRP protocol (112) on each network interface that Keepalived will
control, for example:

sudo firewall-cmd --direct --permanent --add-rule ipv4 filter INPUT 0 \
--in-interface enp0s8 --destination 224.0.0.18 --protocol vrrp -j ACCEPT

success

sudo firewall-cmd --direct --permanent --add-rule ipv4 filter OUTPUT 0 \
--out-interface enp0s8 --destination 224.0.0.18 --protocol vrrp -j ACCEPT

success

sudo firewall-cmd --reload

success
5. Enable and start the keepalived service on each server:

sudo systemctl enable keepalived
sudo ln -s '/usr/lib/systemd/system/keepalived.service' '/etc/systemd/system/multi-
user.target.wants/keepalived.service'
sudo systemctl start keepalived

If you change the Keepalived configuration, reload the keepalived service:

sudo systemctl reload keepalived

About the Keepalived Configuration File
The /etc/keepalived/keepalived.conf configuration file is divided into the following
sections:

global_defs
Defines global settings such as the email addresses for sending notification messages, the
IP address of an SMTP server, the timeout value for SMTP connections in seconds, a string
that identifies the host machine, the VRRP IPv4 and IPv6 multicast addresses, and whether
SNMP traps should be enabled.

Chapter 8
Installing and Configuring Keepalived

8-7

static_ipaddress
static_routes
Define static IP addresses and routes, which VRRP cannot change. These sections
are not required if the addresses and routes are already defined on the servers and
these servers already have network connectivity.

vrrp_sync_group
Defines a VRRP synchronization group of VRRP instances that fail over together.

vrrp_instance
Defines a moveable virtual IP address for a member of a VRRP synchronization
group's internal or external network interface, which accompanies other group
members during a state transition. Each VRRP instance must have a unique value of
virtual_router_id, which identifies which interfaces on the primary and backup
servers can be assigned a given virtual IP address. You can also specify scripts that
are run on state transitions to BACKUP, MASTER, and FAULT, and whether to trigger
SMTP alerts for state transitions.

vrrp_script
Defines a tracking script that Keepalived can run at regular intervals to perform
monitoring actions from a vrrp_instance or vrrp_sync_group section.

virtual_server_group
Defines a virtual server group, which allows a real server to be a member of several
virtual server groups.

virtual_server
Defines a virtual server for load balancing, which is composed of several real servers.

For examples of how to configure Keepalived, see:

• Configuring Simple Virtual IP Address Failover Using Keepalived

• Configuring Load Balancing Using Keepalived in NAT Mode

• Configuring Load Balancing Using Keepalived in DR Mode

• Making HAProxy Highly Available Using Keepalived

Configuring Simple Virtual IP Address Failover Using
Keepalived

A typical Keepalived high-availability configuration consists of one primary server and
one or more backup servers. One or more virtual IP addresses, defined as VRRP
instances, are assigned to the primary server's network interfaces so that it can
service network clients. The backup servers listen for multicast VRRP advertisement
packets that the primary server transmits at regular intervals. The default
advertisement interval is one second. If the backup nodes fail to receive three
consecutive VRRP advertisements, the backup server with the highest assigned
priority takes over as the primary server and assigns the virtual IP addresses to its
own network interfaces. If several backup servers have the same priority, the backup
server with the highest IP address value becomes the primary server.

The following example uses Keepalived to implement a simple failover configuration
on two servers. One server acts as the primary server and the other acts as a backup.
The primary server has a higher priority than the backup server.

Chapter 8
Configuring Simple Virtual IP Address Failover Using Keepalived

8-8

The following figure shows how the virtual IP address 10.0.0.100 is initially assigned to the
primary server (10.0.0.71). When the primary server fails, the backup server (10.0.0.72)
becomes the new primary server and is assigned the virtual IP address 10.0.0.100.

Figure 8-2 Example Keepalived Configuration for Virtual IP Address Failover

You might use the following configuration in /etc/keepalived/keepalived.conf on the
primary (master) server:

global_defs {
 notification_email {
 root@mydomain.com
 }
 notification_email_from svr1@mydomain.com
 smtp_server localhost
 smtp_connect_timeout 30
}

vrrp_instance VRRP1 {
 state MASTER
Specify the network interface to which the virtual address is assigned
 interface enp0s8
The virtual router ID must be unique to each VRRP instance that you define
 virtual_router_id 41
Set the value of priority higher on the primary server than on a backup server
 priority 200
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1066
 }
 virtual_ipaddress {
 10.0.0.100/24
 }
}

Chapter 8
Configuring Simple Virtual IP Address Failover Using Keepalived

8-9

The configuration of the backup server is the same, except for the
notification_email_from, state, priority, and possibly interface values, if the
system hardware configuration is different:

global_defs {
 notification_email {
 root@mydomain.com
 }
 notification_email_from svr2@mydomain.com
 smtp_server localhost
 smtp_connect_timeout 30
}

vrrp_instance VRRP1 {
 state BACKUP
Specify the network interface to which the virtual address is assigned
 interface enp0s8
 virtual_router_id 41
Set the value of priority lower on the backup server than on the primary
server
 priority 100
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1066
 }
 virtual_ipaddress {
 10.0.0.100/24
 }
}

In the event that the primary server (svr1) fails, keepalived assigns the virtual IP
address 10.0.0.100/24 to the enp0s8 interface on the backup server (svr2), which
becomes the primary server.

To determine whether a server is acting as the primary server, you can use the ip
command to see whether the virtual address is active, for example:

sudo ip addr list enp0s8

3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
qlen 1000
 link/ether 08:00:27:cb:a6:8d brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.72/24 brd 10.0.0.255 scope global enp0s8
 inet 10.0.0.100/24 scope global enp0s8
 inet6 fe80::a00:27ff:fecb:a68d/64 scope link
 valid_lft forever preferred_lft forever

Alternatively, search for Keepalived messages in /var/log/messages that show
transitions between states, for example:

...51:55 ... VRRP_Instance(VRRP1) Entering BACKUP STATE

...

...53:08 ... VRRP_Instance(VRRP1) Transition to MASTER STATE

...53:09 ... VRRP_Instance(VRRP1) Entering MASTER STATE

...53:09 ... VRRP_Instance(VRRP1) setting protocol VIPs.

...53:09 ... VRRP_Instance(VRRP1) Sending gratuitous ARPs on enp0s8 for
10.0.0.100

Chapter 8
Configuring Simple Virtual IP Address Failover Using Keepalived

8-10

Note:

Only one server should be active as the primary (master) server at any time. If more
than one server is configured as the primary server, it is likely that there is a
problem with VRRP communication between the servers. Check the network
settings for each interface on each server and check that the firewall allows both
incoming and outgoing VRRP packets for multicast IP address 224.0.0.18.

See Installing and Configuring Keepalived for details of how to install and configure
Keepalived.

Configuring Load Balancing Using Keepalived in NAT Mode
The following example uses Keepalived in NAT mode to implement a simple failover and load
balancing configuration on two servers. One server acts as the primary server and the other
acts as a backup. The primary server has a higher priority than the backup server. Each of
the servers has two network interfaces, where one interface is connected to the side facing
an external network (192.168.1.0/24) and the other interface is connected to an internal
network (10.0.0.0/24) on which two web servers are accessible.

The following figure shows that the Keepalived primary server has the network addresses
192.168.1.10, 192.168.1.1 (virtual), 10.0.0.10, and 10.0.0.100 (virtual). The Keepalived
backup server has the network addresses 192.168.1.11 and 10.0.0.11. The web servers,
websvr1 and websvr2, have the network addresses 10.0.0.71 and 10.0.0.72, respectively.

Chapter 8
Configuring Load Balancing Using Keepalived in NAT Mode

8-11

Figure 8-3 Example Keepalived Configuration for Load Balancing in NAT Mode

You might use the following configuration in /etc/keepalived/keepalived.conf on
the primary server:

global_defs {
 notification_email {
 root@mydomain.com
 }
 notification_email_from svr1@mydomain.com
 smtp_server localhost
 smtp_connect_timeout 30
}

vrrp_sync_group VRRP1 {
Group the external and internal VRRP instances so they fail over together
 group {
 external
 internal
 }
}

vrrp_instance external {
 state MASTER
 interface enp0s8
 virtual_router_id 91
 priority 200
 advert_int 1
 authentication {
 auth_type PASS

Chapter 8
Configuring Load Balancing Using Keepalived in NAT Mode

8-12

 auth_pass 1215
 }
Define the virtual IP address for the external network interface
 virtual_ipaddress {
 192.168.1.1/24
 }
}

vrrp_instance internal {
 state MASTER
 interface enp0s9
 virtual_router_id 92
 priority 200
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
Define the virtual IP address for the internal network interface
 virtual_ipaddress {
 10.0.0.100/24
 }
}

Define a virtual HTTP server on the virtual IP address 192.168.1.1
virtual_server 192.168.1.1 80 {
 delay_loop 10
 protocol TCP
Use round-robin scheduling in this example
 lb_algo rr
Use NAT to hide the back-end servers
 lb_kind NAT
Persistence of client sessions times out after 2 hours
 persistence_timeout 7200

 real_server 10.0.0.71 80 {
 weight 1
 TCP_CHECK {
 connect_timeout 5
 connect_port 80
 }
 }

 real_server 10.0.0.72 80 {
 weight 1
 TCP_CHECK {
 connect_timeout 5
 connect_port 80
 }
 }
}

The previous configuration is similar to the configuration shown in Configuring Simple Virtual
IP Address Failover Using Keepalived, with the additional definition of a vrrp_sync_group
section so that the network interfaces are assigned together on failover, as well as a
virtual_server section to define the real back-end servers that Keepalived uses for load
balancing. The value of lb_kind is set to NAT mode, which means that the Keepalived server
handles both inbound and outbound network traffic for the client on behalf of the back-end
servers.

Chapter 8
Configuring Load Balancing Using Keepalived in NAT Mode

8-13

The configuration of the backup server is the same, except for the
notification_email_from, state, priority, and possibly interface values, if the
system hardware configuration is different:

global_defs {
 notification_email {
 root@mydomain.com
 }
 notification_email_from svr2@mydomain.com
 smtp_server localhost
 smtp_connect_timeout 30
}

vrrp_sync_group VRRP1 {
Group the external and internal VRRP instances so they fail over together
 group {
 external
 internal
 }
}

vrrp_instance external {
 state BACKUP
 interface enp0s8
 virtual_router_id 91
 priority 100
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
Define the virtual IP address for the external network interface
 virtual_ipaddress {
 192.168.1.1/24
 }
}

vrrp_instance internal {
 state BACKUP
 interface enp0s9
 virtual_router_id 92
 priority 100
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
Define the virtual IP address for the internal network interface
 virtual_ipaddress {
 10.0.0.100/24
 }
}

Define a virtual HTTP server on the virtual IP address 192.168.1.1
virtual_server 192.168.1.1 80 {
 delay_loop 10
 protocol TCP
Use round-robin scheduling in this example
 lb_algo rr
Use NAT to hide the back-end servers
 lb_kind NAT

Chapter 8
Configuring Load Balancing Using Keepalived in NAT Mode

8-14

Persistence of client sessions times out after 2 hours
 persistence_timeout 7200

 real_server 10.0.0.71 80 {
 weight 1
 TCP_CHECK {
 connect_timeout 5
 connect_port 80
 }
 }

 real_server 10.0.0.72 80 {
 weight 1
 TCP_CHECK {
 connect_timeout 5
 connect_port 80
 }
 }
}

Two further configuration changes are required:

• Configure firewall rules on each Keepalived server (primary and backup) that you
configure as a load balancer as described in Configuring Firewall Rules for Keepalived
NAT-Mode Load Balancing.

• Configure a default route for the virtual IP address of the load balancer's internal network
interface on each back-end server that you intend to use with the Keepalived load
balancer as described in Configuring Back-End Server Routing for Keepalived NAT-Mode
Load Balancing.

See Installing and Configuring Keepalived for details of how to install and configure
Keepalived.

Configuring Firewall Rules for Keepalived NAT-Mode Load Balancing
If you configure Keepalived to use NAT mode for load balancing with the servers on the
internal network, the Keepalived server handles all inbound and outbound network traffic and
hides the existence of the back-end servers by rewriting the source IP address of the real
back-end server in outgoing packets with the virtual IP address of the external network
interface.

To configure a Keepalived server to use NAT mode for load balancing:

1. Configure the firewall so that the interfaces on the external network side are in a different
zone from the interfaces on the internal network side.

The following example demonstrates how to move interface enp0s9 to the internal zone
while interface enp0s8 remains in the public zone:

sudo firewall-cmd --get-active-zones

public
 interfaces: enp0s8 enp0s9

sudo firewall-cmd --zone=public --remove-interface=enp0s9

success

sudo firewall-cmd --zone=internal --add-interface=enp0s9

Chapter 8
Configuring Load Balancing Using Keepalived in NAT Mode

8-15

success

sudo firewall-cmd --permanent --zone=public --remove-interface=enp0s9

success

sudo firewall-cmd --permanent --zone=internal --add-interface=enp0s9

success

sudo firewall-cmd --get-active-zones

internal
 interfaces: enp0s9
public
 interfaces: enp0s8

2. Configure NAT mode (masquerading) on the external network interface, for
example:

sudo firewall-cmd --zone=public --add-masquerade

success

sudo firewall-cmd --permanent --zone=public --add-masquerade

success

sudo firewall-cmd --zone=public --query-masquerade

yes

sudo firewall-cmd --zone=internal --query-masquerade

no
3. If not already enabled for your firewall, configure forwarding rules between the

external and internal network interfaces, for example:

sudo firewall-cmd --direct --permanent --add-rule ipv4 filter FORWARD 0 \
-i enp0s8 -o enp0s9 -m state --state RELATED,ESTABLISHED -j ACCEPT

success

sudo firewall-cmd --direct --permanent --add-rule ipv4 filter FORWARD 0 \
-i enp0s9 -o enp0s8 -j ACCEPT

success

sudo firewall-cmd --direct --permanent --add-rule ipv4 filter FORWARD 0 \
-j REJECT --reject-with icmp-host-prohibited

success

sudo firewall-cmd --reload
4. Enable access to the services or ports that you want Keepalived to handle.

For example, to enable access to HTTP and make this rule persist across reboots,
enter the following commands:

sudo firewall-cmd --zone=public --add-service=http

Chapter 8
Configuring Load Balancing Using Keepalived in NAT Mode

8-16

success

sudo firewall-cmd --permanent --zone=public --add-service=http

success

Configuring Back-End Server Routing for Keepalived NAT-Mode Load
Balancing

On each back-end real servers that you intend to use with the Keepalived load balancer,
ensure that the routing table contains a default route for the virtual IP address of the load
balancer's internal network interface.

For example, if the virtual IP address is 10.0.0.100, you can use the ip command to
examine the routing table and to set the default route:

sudo ip route show

10.0.0.0/24 dev enp0s8 proto kernel scope link src 10.0.0.71

sudo ip route add default via 10.0.0.100 dev enp0s8
sudo ip route show

default via 10.0.0.100 dev enp0s8
10.0.0.0/24 dev enp0s8 proto kernel scope link src 10.0.0.71

To make the default route for enp0s8 persist across reboots, create the file /etc/sysconfig/
network-scripts/route-enp0s8:

sudo echo "default via 10.0.0.100 dev enp0s8" > /etc/sysconfig/network-scripts/route-
enp0s8

Configuring Load Balancing Using Keepalived in DR Mode
The following example uses Keepalived in direct routing (DR) mode to implement a simple
failover and load balancing configuration on two servers. One server acts as the primary
server and the other acts as a backup. The primary server has a higher priority than the
backup server. Each of Keepalived servers has a single network interface and the servers are
connected to the same network segment (10.0.0.0/24) on which two web servers are
accessible.

Figure 8-4 shows that the Keepalived primary server has network the addresses 10.0.0.11
and 10.0.0.1 (virtual). The Keepalived backup server has the network address 10.0.0.12.
The web servers, websvr1 and websvr2, have the network addresses 10.0.0.71 and
10.0.0.72, respectively. In addition, both web servers are configured with the virtual IP
address 10.0.0.1 so that they accept packets with that destination address. Incoming
requests are received by the primary server and redirected to the web servers, which
respond directly.

Chapter 8
Configuring Load Balancing Using Keepalived in DR Mode

8-17

Figure 8-4 Example Keepalived Configuration for Load Balancing in DR Mode

You might use the following configuration in /etc/keepalived/keepalived.conf on
the primary server:

global_defs {
 notification_email {
 root@mydomain.com
 }
 notification_email_from svr1@mydomain.com
 smtp_server localhost
 smtp_connect_timeout 30
}

vrrp_instance external {
 state MASTER
 interface enp0s8
 virtual_router_id 91
 priority 200
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
 virtual_ipaddress {
 10.0.0.1/24
 }
}

virtual_server 10.0.0.1 80 {
 delay_loop 10
 protocol TCP
 lb_algo rr
Use direct routing
 lb_kind DR
 persistence_timeout 7200

Chapter 8
Configuring Load Balancing Using Keepalived in DR Mode

8-18

 real_server 10.0.0.71 80 {
 weight 1
 TCP_CHECK {
 connect_timeout 5
 connect_port 80
 }
 }

 real_server 10.0.0.72 80 {
 weight 1
 TCP_CHECK {
 connect_timeout 5
 connect_port 80
 }
 }
}

The virtual server configuration is similar to that given in Configuring Load Balancing Using
Keepalived in NAT Mode except that the value of lb_kind is set to DR (Direct Routing), which
means that the Keepalived server handles all inbound network traffic from the client before
routing it to the back-end servers, which reply directly to the client, bypassing the Keepalived
server. This configuration reduces the load on the Keepalived server but is less secure as
each back-end server requires external access and is potentially exposed as an attack
surface. Some implementations use an additional network interface with a dedicated gateway
for each web server to handle the response network traffic.

The configuration of the backup server is the same, except for the
notification_email_from, state, priority, and possibly interface values, if the system
hardware configuration is different:

global_defs {
 notification_email {
 root@mydomain.com
 }
 notification_email_from svr2@mydomain.com
 smtp_server localhost
 smtp_connect_timeout 30
}

vrrp_instance external {
 state BACKUP
 interface enp0s8
 virtual_router_id 91
 priority 100
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
 virtual_ipaddress {
 10.0.0.1/24
 }
}

virtual_server 10.0.0.1 80 {
 delay_loop 10
 protocol TCP
 lb_algo rr
Use direct routing

Chapter 8
Configuring Load Balancing Using Keepalived in DR Mode

8-19

 lb_kind DR
 persistence_timeout 7200

 real_server 10.0.0.71 80 {
 weight 1
 TCP_CHECK {
 connect_timeout 5
 connect_port 80
 }
 }

 real_server 10.0.0.72 80 {
 weight 1
 TCP_CHECK {
 connect_timeout 5
 connect_port 80
 }
 }
}

Two further configuration changes are required:

• Configure firewall rules on each Keepalived server (primary and backup) that you
configure as a load balancer as described in Configuring Firewall Rules for
Keepalived DR-Mode Load Balancing.

• Configure the arp_ignore and arp_announce ARP parameters and the virtual IP
address for the network interface on each back-end server that you intend to use
with the Keepalived load balancer as described in Configuring the Back-End
Servers for Keepalived DR-Mode Load Balancing.

See Installing and Configuring Keepalived for details of how to install and configure
Keepalived.

Configuring Firewall Rules for Keepalived DR-Mode Load Balancing
Enable access to the services or ports that you want Keepalived to handle.

For example, to enable access to HTTP and make this rule persist across reboots,
enter the following commands:

sudo firewall-cmd --zone=public --add-service=http

success

sudo firewall-cmd --permanent --zone=public --add-service=http

success

Configuring the Back-End Servers for Keepalived DR-Mode Load
Balancing

The example configuration requires that the virtual IP address is configured on the
primary Keepalived server and on each back-end server. The Keepalived configuration
maintains the virtual IP address on the primary Keepalived server.

Only the primary Keepalived server should respond to ARP requests for the virtual IP
address. You can set the arp_ignore and arp_announce ARP parameters for the

Chapter 8
Configuring Load Balancing Using Keepalived in DR Mode

8-20

network interface of each back-end server so that they do not respond to ARP requests for
the virtual IP address.

To configure the ARP parameters and virtual IP address on each back-end server:

1. Configure the ARP parameters for the primary network interface, for example enp0s8:

sudo echo "net.ipv4.conf.enp0s8.arp_ignore = 1" >> /etc/sysctl.conf
sudo echo "net.ipv4.conf.enp0s8.arp_announce = 2" >> /etc/sysctl.conf
sudo sysctl -p

net.ipv4.conf.enp0s8.arp_ignore = 1
net.ipv4.conf.enp0s8.arp_announce = 2

2. To define a virtual IP address that persists across reboots, edit /etc/sysconfig/
network-scripts/ifcfg-iface and add IPADDR1 and PREFIX1 entries for the virtual IP
address, for example:

...
NAME=enp0s8
...
IPADDR0=10.0.0.72
GATEWAY0=10.0.0.100
PREFIX0=24
IPADDR1=10.0.0.1
PREFIX1=24
...

This example defines the virtual IP address 10.0.0.1 for enp0s8 in addition to the
existing real IP address of the back-end server.

3. Reboot the system and verify that the virtual IP address has been set up:

sudo ip addr show enp0s8

2: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
qlen 1000
 link/ether 08:00:27:cb:a6:8d brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.72/24 brd 10.0.0.255 scope global enp0s8
 inet 10.0.0.1/24 brd 10.0.0.255 scope global secondary enp0s8
 inet6 fe80::a00:27ff:fecb:a68d/64 scope link
 valid_lft forever preferred_lft forever

Configuring Keepalived for Session Persistence and Firewall
Marks

Many web-based application require that a user session is persistently served by the same
web server.

If you enable the load balancer in Keepalived to use persistence, a client connects to the
same server provided that the timeout period (persistence_timeout) has not been exceeded
since the previous connection.

Firewall marks are another method for controlling session access so that Keepalived
forwards a client's connections on different ports, such as HTTP (80) and HTTPS (443), to
the same server, for example:

sudo firewall-cmd --direct --permanent --add-rule ipv4 mangle PREROUTING 0 \
-d virtual_IP_addr/32 -p tcp -m multiport --dports 80,443 -j MARK --set-mark 123

Chapter 8
Configuring Keepalived for Session Persistence and Firewall Marks

8-21

success

sudo firewall-cmd --reload

These commands set a firewall mark value of 123 on packets that are destined for
ports 80 or 443 at the specified virtual IP address.

You must also declare the firewall mark (fwmark) value to Keepalived by setting it on
the virtual server instead of a destination virtual IP address and port, for example:

virtual_server fwmark 123 {
 ...
}

This configuration causes Keepalived to route the packets based on their firewall mark
value rather than the destination virtual IP address and port. When used in conjunction
with session persistence, firewall marks help ensure that all ports used by a client
session are handled by the same server.

Making HAProxy Highly Available Using Keepalived
The following example uses Keepalived to make the HAProxy service fail over to a
backup server in the event that the primary server fails.

The following figure shows two HAProxy servers, which are connected to an externally
facing network (10.0.0.0/24), as 10.0.0.11 and 10.0.0.12, and to an internal
network (192.168.1.0/24), as 192.168.1.11 and 192.168.1.12. One HAProxy server
(10.0.0.11) is configured as a Keepalived primary server with the virtual IP address
10.0.0.10 and the other (10.0.0.12) is configured as a Keepalived backup server.
Two web servers, websvr1 (192.168.1.71), and websvr2 (192.168.1.72), are
accessible on the internal network. The IP address 10.0.0.10 is in the private address
range 10.0.0.0/24, which cannot be routed on the Internet. An upstream network
address translation (NAT) gateway or a proxy server provides access to and from the
Internet.

Chapter 8
Making HAProxy Highly Available Using Keepalived

8-22

Figure 8-5 Example of a Combined HAProxy and Keepalived Configuration with Web
Servers on a Separate Network

The HAProxy configuration on both 10.0.0.11 and 10.0.0.12 is very similar to Configuring
Simple Load Balancing Using HAProxy. The IP address on which HAProxy listens for
incoming requests is the virtual IP address that Keepalived controls.

global
 daemon
 log 127.0.0.1 local0 debug
 maxconn 50000
 nbproc 1

defaults
 mode http
 timeout connect 5s
 timeout client 25s
 timeout server 25s
 timeout queue 10s

Handle Incoming HTTP Connection Requests on the virtual IP address controlled by
Keepalived
listen http-incoming
 mode http
 bind 10.0.0.10:80
Use each server in turn, according to its weight value
 balance roundrobin
Verify that service is available
 option httpchk OPTIONS * HTTP/1.1\r\nHost:\ www
Insert X-Forwarded-For header

Chapter 8
Making HAProxy Highly Available Using Keepalived

8-23

 option forwardfor
Define the back-end servers, which can handle up to 512 concurrent connections
each
 server websvr1 192.168.1.71:80 weight 1 maxconn 512 check
 server websvr2 192.168.1.72:80 weight 1 maxconn 512 check

It is also possible to configure HAProxy and Keepalived directly on the web servers as
shown in the following figure. As in the previous example, one HAProxy server
(10.0.0.11) is configured as the Keepalived primary server, with the virtual IP address
10.0.0.10, and the other (10.0.0.12) is configured as a Keepalived backup server.
The HAProxy service on the primary server listens on port 80 and forwards incoming
requests to one of the httpd services, which listen on port 8080.

Figure 8-6 Example of a Combined HAProxy and Keepalived Configuration
with Integrated Web Servers

The HAProxy configuration is the same as the previous example, except for the IP
addresses and ports of the web servers.

...
 server websvr1 10.0.0.11:8080 weight 1 maxconn 512 check
 server websvr2 10.0.0.12:8080 weight 1 maxconn 512 check

The firewall on each server must be configured to accept incoming TCP requests on
port 8080.

The Keepalived configuration for both example configurations is similar to that given in
Configuring Simple Virtual IP Address Failover Using Keepalived.

The primary (master) server has the following Keepalived configuration:

global_defs {
 notification_email {
 root@mydomain.com
 }

Chapter 8
Making HAProxy Highly Available Using Keepalived

8-24

 notification_email_from haproxy1@mydomain.com
 smtp_server localhost
 smtp_connect_timeout 30
}

vrrp_instance VRRP1 {
 state MASTER
Specify the network interface to which the virtual address is assigned
 interface enp0s8
The virtual router ID must be unique to each VRRP instance that you define
 virtual_router_id 41
Set the value of priority higher on the primary server than on a backup server
 priority 200
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1066
 }
 virtual_ipaddress {
 10.0.0.10/24
 }
}

The configuration of the backup server is the same, except for the
notification_email_from, state, priority, and possibly interface values, if the system
hardware configuration is different:

global_defs {
 notification_email {
 root@mydomain.com
 }
 notification_email_from haproxy2@mydomain.com
 smtp_server localhost
 smtp_connect_timeout 30
}

vrrp_instance VRRP1 {
 state BACKUP
Specify the network interface to which the virtual address is assigned
 interface enp0s8
 virtual_router_id 41
Set the value of priority lower on the backup server than on the primary server
 priority 100
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1066
 }
 virtual_ipaddress {
 10.0.0.10/24
 }
}

In the event that the primary server (haproxy1) fails, keepalived assigns the virtual IP
address 10.0.0.10/24 to the enp0s8 interface on the backup server (haproxy2), which then
becomes the primary server.

See Installing and Configuring HAProxy and Installing and Configuring Keepalived for details
on how to install and configure HAProxy and Keepalived.

Chapter 8
Making HAProxy Highly Available Using Keepalived

8-25

About Keepalived Notification and Tracking Scripts
Notification scripts are executable programs that Keepalived invokes when a server
changes state. You can implements notification scripts to perform actions such as
reconfiguring a network interface or starting, reloading or stopping a service.

To invoke a notification script, include one the following lines inside a vrrp_instance
or vrrp_sync_group section:

notify program_path
Invokes program_path with the following arguments:

$1
Set to INSTANCE or GROUP, depending on whether Keepalived invoked the program
from vrrp_instance or vrrp_sync_group.

$2
Set to the name of the vrrp_instance or vrrp_sync_group.

$3
Set to the end state of the transition: BACKUP, FAULT, or MASTER.

notify_backup program_path
notify_backup"program_patharg ..."
Invokes program_path when the end state of a transition is BACKUP. program_path is
the full pathname of an executable script or binary. If a program has arguments,
enclose both the program path and the arguments in quotes.

notify_fault program_path
notify_fault"program_patharg ..."
Invokes program_path when the end state of a transition is FAULT.

notify_master program_path
notify_master"program_patharg ..."
Invokes program_path when the end state of a transition is MASTER.

The following executable script could be used to handle the general-purpose version
of notify:

#!/bin/bash

ENDSTATE=$3
NAME=$2
TYPE=$1

case $ENDSTATE in
 "BACKUP") # Perform action for transition to BACKUP state
 exit 0
 ;;
 "FAULT") # Perform action for transition to FAULT state
 exit 0
 ;;
 "MASTER") # Perform action for transition to MASTER state
 exit 0
 ;;
 *) echo "Unknown state ${ENDSTATE} for VRRP ${TYPE} ${NAME}"

Chapter 8
About Keepalived Notification and Tracking Scripts

8-26

 exit 1
 ;;
esac

Tracking scripts are programs that Keepalived runs at regular intervals according to a
vrrp_script definition:

vrrp_script script_name {
 script "program_path
 arg ..."
 interval i # Run script every i seconds
 fall f # If script returns non-zero f times in succession, enter FAULT state
 rise r # If script returns zero r times in succession, exit FAULT state
 timeout t # Wait up to t seconds for script before assuming non-zero exit code
 weight w # Reduce priority by w on fall
}

In the example, program_path is the full pathname of an executable script or binary.

You can use tracking scripts with a vrrp_instance section by specifying a track_script
clause, for example:

vrrp_instance instance_name {
 state MASTER
 interface enp0s8
 virtual_router_id 21
 priority 200
 advert_int 1
 virtual_ipaddress {
 10.0.0.10/24
 }
 track_script {
 script_name
 ...
 }
}

If a configured script returns a non-zero exit code f times in succession, Keepalived changes
the state of the VRRP instance or group to FAULT, removes the virtual IP address 10.0.0.10
from enp0s8, reduces the priority value by w and stops sending multicast VRRP packets. If
the script subsequently returns a zero exit code r times in succession, the VRRP instance or
group exits the FAULT state and transitions to the MASTER or BACKUP state depending on its
new priority.

If you want a server to enter the FAULT state if one or more interfaces goes down, you can
also use a track_interface clause, for example:

 track_interface {
 enp0s8
 enp0s9
 }

A possible application of tracking scripts is to deal with a potential split-brain condition in the
case that some of the Keepalived servers lose communication. For example, a script could
track the existence of other Keepalived servers or use shared storage or a backup
communication channel to implement a voting mechanism. However, configuring Keepalived
to avoid a split brain condition is complex and it is difficult to avoid corner cases where a
scripted solution might not work.

For an alternative solution, see Making HAProxy Highly Available Using Oracle Clusterware.

Chapter 8
About Keepalived Notification and Tracking Scripts

8-27

Making HAProxy Highly Available Using Oracle Clusterware
When Keepalived is used with two or more servers, loss of network connectivity can
result in a split-brain condition, where more than one server acts as the primary server
and which can result in data corruption. To avoid this scenario, Oracle recommends
that you use HAProxy in conjunction with a shoot the other node in the head
(STONITH) solution such as Oracle Clusterware to support virtual IP address failover
in preference to Keepalived.

Oracle Clusterware is a portable clustering software solution that allow you to
configure independent servers so that they cooperate as a single cluster. The
individual servers within the cluster cooperate so that they appear to be a single server
to external client applications.

The following example uses Oracle Clusterware with HAProxy for load balancing to
HTTPD web server instances on each cluster node. In the event that the node running
HAProxy and an HTTPD instance fails, the services and their virtual IP addresses fail
over to the other cluster node.

The follow figure shows two cluster nodes that are connected to an externally facing
network. The nodes are also linked by a private network that is used for the cluster
heartbeat. The nodes have shared access to certified SAN or NAS storage that holds
the voting disk and Oracle Cluster Registry (OCR) in addition to service configuration
data and application data.

Chapter 8
Making HAProxy Highly Available Using Oracle Clusterware

8-28

Figure 8-7 Example of an Oracle Clusterware Configuration with Two Nodes

For a high availability configuration, Oracle recommends that the network, heartbeat, and
storage connections are multiply redundant and that at least three voting disks are
configured.

The following steps describe how to configure this type of cluster:

1. Install Oracle Clusterware on each system that will serve as a cluster node.

2. Install the haproxy and httpd packages on each node.

3. Use the appvipcfg command to create a virtual IP address for HAProxy and a separate
virtual IP address for each HTTPD service instance. For example, if there are two HTTPD
service instances, you would need to create three different virtual IP addresses.

4. Implement cluster scripts to start, stop, clean, and check the HAProxy and HTTPD
services on each node. These scripts must return 0 for success and 1 for failure.

5. Use the shared storage to share the configuration files, HTML files, logs, and all
directories and files that the HAProxy and HTTPD services on each node require to start.

If you have an Oracle Linux Support subscription, you can use OCFS2 or ASM/ACFS
with the shared storage as an alternative to NFS or other type of shared file system.

Chapter 8
Making HAProxy Highly Available Using Oracle Clusterware

8-29

6. Configure each HTTPD service instance so that it binds to the correct virtual IP
address. Each service instance must also have an independent set of
configuration, log, and other required files, so that all of the service instances can
coexist on the same server if one node fails.

7. Use the crsctl command to create a cluster resource for HAProxy and for each
HTTPD service instance. If there are two or more HTTPD service instances,
binding of these instances should initially be distributed amongst the cluster
nodes. The HAProxy service can be started on either node initially.

You can use Oracle Clusterware as the basis of a more complex solution that protects
a multi-tiered system consisting of front-end load balancers, web servers, database
servers and other components.

For more information, see the Oracle Clusterware 11g Administration and Deployment
Guide and the Oracle Clusterware 12c Administration and Deployment Guide.

Chapter 8
Making HAProxy Highly Available Using Oracle Clusterware

8-30

https://docs.oracle.com/cd/E11882_01/rac.112/e41959/toc.htm
https://docs.oracle.com/cd/E11882_01/rac.112/e41959/toc.htm
https://docs.oracle.com/database/121/CWADD/toc.htm

9
Configuring the VNC Service

This chapter describes how to enable a Virtual Network Computing (VNC) server to provide
remote access to a graphical desktop.

About VNC
Virtual Network Computing (VNC) is a system for sharing a graphical desktop over a network.
A VNC client (the "viewer") connects to, and can control, a desktop that is shared by a VNC
server on a remote system. Because VNC is platform independent, you can use any
operating system with a VNC client to connect to a VNC server. VNC makes remote
administration using graphical tools possible.

By default, all communication between a VNC client and a VNC server is not secure. You can
secure VNC communication by using an SSH tunnel. Using an SSH tunnel also reduces the
number of firewall ports that need to be open. Oracle recommends that you use SSH tunnels.

Configuring a VNC Server
To configure a VNC server:

1. Install the tigervnc-server package:

sudo yum install tigervnc-server
2. Create the VNC environment for the VNC users.

Each VNC desktop on the system runs a VNC server as a particular user. This user must
be able to log in to the system with a user name and either a password or an SSH key (if
the VNC desktop is to be accessed through an SSH tunnel).

Use the vncpasswd command to create a password for the VNC desktop. The password
must be created by the user that runs the VNC server and not root, for example:

su - vncuser
vncpasswd
Password: password
Verify: password

The password must contain at least six characters. If the password is longer than eight
characters, only the first eight characters are used for authentication. An obfuscated
version of the password is stored in $HOME/.vnc/passwd unless the name of a file is
specified with the vncpasswd command.

3. Create a service unit configuration file for each VNC desktop that is to be made available
on the system.

a. Copy the vncserver@.service template file, for example:

cp /lib/systemd/system/vncserver@.service /etc/systemd/system/
vncserver@\:display.service

9-1

In the previous command, display is the unique display number of the VNC
desktop, starting from 1. Use a backslash character (\) to escape the colon (:)
character.

Each VNC desktop is associated with a user account. For ease of
administration if you have multiple VNC desktops, you can include the name of
the VNC user in the name of the service unit configuration file, for example:

cp /lib/systemd/system/vncserver@.service /etc/systemd/system/vncserver-
vncuser@\:display.service

b. Edit the service unit configuration files.

The following sections in the configuration file should resemble the sample
entries. Replace vncuser with the actual VNC user name.

[Service]
Type=forking
WorkingDirectory=/home/vncuser
User=vncuser
Group=vncuser

Clean any existing files in /tmp/.X11-unix environment
ExecStartPre=/bin/sh -c '/usr/bin/vncserver -kill %i > /dev/null 2>&1
|| :'
ExecStart=/usr/bin/vncserver %i
PIDFile=/home/vncuser/.vnc/%H%i.pid
ExecStop=/usr/bin/vncserver -kill %i

Optionally, you can add command-line arguments for the VNC server. In the
following example, the VNC server only accepts connections from localhost,
which means the VNC desktop can only be accessed locally or through an
SSH tunnel; and the size of the window has been changed from the default
1024x768 to 640x480 using the geometry flag:

ExecStart=/usr/bin/vncserver %i -localhost -geometry 640x480
PIDFile=/home/vncuser/.vnc/%H%i.pid

4. Start the VNC desktops.

a. Make systemd reload its configuration files:

sudo systemctl daemon-reload
b. For each VNC desktop, start the service, and configure the service to start

after a system reboot. Remember to use the username and the display
number that you specified in the service unit configuration file to be associated
with that service. For example:

sudo systemctl start vncserver-vncuser@\:display.service
sudo systemctl enable vncserver-vncuser@\:display.service

Note:

If you make any changes to a service unit configuration file, you must
reload the configuration file and restart the service.

5. Configure the firewall to allow access to the VNC desktops.

Chapter 9
Configuring a VNC Server

9-2

If users will access the VNC desktops through an SSH tunnel and the SSH service is
enabled on the system, you do not need to open additional ports in the firewall. SSH is
enabled by default. For information on enabling SSH, see Oracle® Linux: Connecting to
Remote Systems With OpenSSH.

If users will access the VNC desktops directly, you must open the required port for each
desktop. The required ports can be calculated by adding the VNC desktop service display
number to 5900 (the default VNC server port). So if the display number is 1, the required
port is 5901 and if the display number is 67, the required port is 5967.

To open ports 5900 to 5903, you can use the following commands:

sudo firewall-cmd --zone=zone --add-service=vnc-server
sudo firewall-cmd --zone=zone --add-service=vnc-server --permanent

To open additional ports, for example port 5967, use the following commands:

sudo firewall-cmd --zone=zone --add-port=5967/tcp
sudo firewall-cmd --zone=zone --add-port=5967/tcp --permanent

6. Configure the VNC desktops.

By default, the VNC server runs the user's default desktop environment. This is controlled
by the VNC user's $HOME/.vnc/xstartup file, which is created automatically when the
VNC desktop service is started.

If you did not install a desktop environment when you installed the system (for example
because you selected Minimal Install as the base environment), you can install one with
the following command:

sudo yum groupinstall "server with gui"

When the installation is complete, use the systemctl get-default command to
check that the default system state is multi-user.target (multi-user command-line
environment). Use the systemctl set-default command reset the default system
state or to change it to the graphical.target (multi-user graphical environment) if you
prefer.

The $HOME/.vnc/xstartup file is a shell script that specifies the X applications to run
when the VNC desktop is started. For example, to run a KDE Plasma Workspace, you
could edit the file as follows:

#!/bin/sh
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS
#exec /etc/X11/xinit/xinitrc
startkde &

If you make any changes to a user's $HOME/.vnc/xstartup file, you must restart the VNC
desktop for the changes to take effect:

sudo systemctl restart vncserver-vncuser@\:display.service
See the vncserver(1), Xvnc(1), and vncpasswd(1) manual pages for more information.

Connecting to VNC Desktop
You can connect to a VNC desktop on an Oracle Linux 7 system using any VNC client. The
following example instructions are for the TigerVNC client. Adapt the instructions for your
client.

Chapter 9
Connecting to VNC Desktop

9-3

https://docs.oracle.com/en/operating-systems/oracle-linux/openssh/
https://docs.oracle.com/en/operating-systems/oracle-linux/openssh/

1. Install the TigerVNC client (vncviewer).

sudo yum install tigervnc
2. Start the TigerVNC client and connect to a desktop.

To connect directly to a VNC desktop, you can start the TigerVNC client and enter
host:display to specify the host name or IP address of the VNC server and the
display number of the VNC desktop to connect to. Alternatively, you can specify
the VNC desktop as an argument for the vncviewer command. For example:

vncviewer myhost.example.com:1

To connect to a VNC desktop through an SSH tunnel, use the -via option for the
vncviewer command to specify the user name and host for the SSH connection,
and use localhost:display to specify the VNC desktop. For example:

vncviewer -via vncuser@myhost.example.com localhost:67

See the vncviewer(1) manual page for more information.

Chapter 9
Connecting to VNC Desktop

9-4

	Contents
	Preface
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Configuring the System's Network
	About Network Interface Names
	About Network Interface Names
	About Network Configuration Files
	About the /etc/hosts File
	About the /etc/nsswitch.conf File
	About the /etc/resolv.conf File
	About the /etc/sysconfig/network File

	Command-Line Network Configuration Interfaces
	Configuring Network Interfaces Using Graphical Interfaces
	About Network Interface Bonding
	Configuring Network Interface Bonding

	About Network Interface Teaming
	Configuring Network Interface Teaming
	Adding Ports to and Removing Ports from a Team
	Changing the Configuration of a Port in a Team
	Removing a Team
	Displaying Information About Teams

	Configuring VLANs with Untagged Data Frames
	Using the ip Command to Create VLAN Devices

	Configuring Network Routing

	2 Configuring Network Addressing
	About the Dynamic Host Configuration Protocol
	Configuring a DHCP Server
	Configuring a DHCP Client
	About Network Address Translation

	3 Configuring the Name Service
	About DNS and BIND
	About Types of Name Servers
	About DNS Configuration Files
	/etc/named.conf
	About Resource Records in Zone Files
	About Resource Records for Reverse-name Resolution

	Configuring a Name Server
	Administering the Name Service
	Performing DNS Lookups

	4 Configuring Network Time
	About the chronyd Daemon
	Configuring the chronyd Service

	About the NTP Daemon
	Configuring the ntpd Service

	About PTP
	Configuring the PTP Service
	Using PTP as a Time Source for NTP

	5 Configuring the Apache HTTP Web Service
	About the Apache HTTP Server
	Installing the Apache HTTP Server
	Configuring the Apache HTTP Server
	Testing the Apache HTTP Server
	Configuring Apache Containers
	About Nested Containers

	Configuring Apache Virtual Hosts

	6 Email Service Configuration
	About Email Programs
	About Email Protocols
	About SMTP
	About POP and IMAP

	About the Postfix SMTP Server
	About the Sendmail SMTP Server
	About Sendmail Configuration Files

	Forwarding Email
	Configuring a Sendmail Client

	7 Configuring High Availability Features
	About Oracle Linux High Availability Services
	Installing Pacemaker and Corosync
	Configuring an Initial Cluster and Service
	Creating the Cluster
	Setting Cluster Parameters
	Creating a Service and Testing Failover

	Fencing Configuration
	IPMI LAN Fencing
	SCSI Fencing
	SBD Fencing
	IF-MIB Fencing
	Configuring Fencing Levels

	8 Configuring Load Balancing
	About HAProxy
	Installing and Configuring HAProxy
	About the HAProxy Configuration File

	Configuring Simple Load Balancing Using HAProxy
	Configuring HAProxy for Session Persistence

	About Keepalived
	Installing and Configuring Keepalived
	About the Keepalived Configuration File

	Configuring Simple Virtual IP Address Failover Using Keepalived
	Configuring Load Balancing Using Keepalived in NAT Mode
	Configuring Firewall Rules for Keepalived NAT-Mode Load Balancing
	Configuring Back-End Server Routing for Keepalived NAT-Mode Load Balancing

	Configuring Load Balancing Using Keepalived in DR Mode
	Configuring Firewall Rules for Keepalived DR-Mode Load Balancing
	Configuring the Back-End Servers for Keepalived DR-Mode Load Balancing

	Configuring Keepalived for Session Persistence and Firewall Marks
	Making HAProxy Highly Available Using Keepalived
	About Keepalived Notification and Tracking Scripts
	Making HAProxy Highly Available Using Oracle Clusterware

	9 Configuring the VNC Service
	About VNC
	Configuring a VNC Server
	Connecting to VNC Desktop

