Oracle® Linux 7
Security Guide
Abstract

Oracle® Linux 7: Security Guide provides security guidelines for the Oracle Linux 7 operating system.
Table of Contents

Preface ... v
1 About System Security .. 1
 1.1 Overview of System Security in Oracle Linux .. 1
 1.2 Understanding the Oracle Linux Environment ... 2
 1.3 Recommended Deployment Configurations .. 2
 1.4 Component Security .. 3
 1.5 Basic Security Considerations .. 3
 1.5.1 Keep Software Up to Date .. 4
 1.5.2 Restrict Network Access to Critical Services .. 4
 1.5.3 Follow the Principle of Least Privilege ... 4
 1.5.4 Monitor System Activity .. 4
 1.5.5 Keep Up to Date on the Latest Security Information 4
 1.6 Security Considerations for Developers .. 4
 1.6.1 Design Principles for Secure Coding ... 4
 1.6.2 General Guidelines for Secure Coding .. 5
 1.6.3 General Guidelines for Network Programs ... 7
2 Security Guidelines .. 9
 2.1 Minimizing the Software Footprint .. 9
 2.2 Configuring System Logging ... 10
 2.3 Disabling Core Dumps ... 11
 2.4 Minimizing Active Services .. 11
 2.5 Locking Down Network Services ... 14
 2.6 Configuring a Packet-Filtering Firewall .. 14
 2.7 Configuring TCP Wrappers ... 14
 2.8 Configuring Kernel Parameters .. 15
 2.9 Restricting Access to SSH Connections ... 15
 2.10 Configuring File System Mounts, File Permissions, and File Ownership 16
 2.11 Checking User Accounts and Privileges ... 17
3 Secure Installation and Configuration ... 21
 3.1 Pre-Installation Tasks ... 21
 3.2 Installing Oracle Linux ... 21
 3.2.1 Shadow Passwords and Hashing Algorithms ... 22
 3.2.2 Strong Passwords ... 22
 3.2.3 Separate Disk Partitions ... 22
 3.2.4 Encrypted Disk Partitions .. 22
 3.2.5 Software Selection .. 23
 3.2.6 Network Time Service .. 23
 3.3 Post-Installation Tasks ... 23
4 Implementing Oracle Linux Security .. 25
 4.1 Configuring Access to Network Services .. 25
 4.2 Configuring Packet-filtering Firewalls .. 26
 4.2.1 Controlling the firewalld Firewall Service .. 28
 4.2.2 Controlling the iptables Firewall Service ... 30
 4.3 Configuring OpenSSH ... 33
 4.4 Configuring TCP Wrappers ... 33
 4.5 Using chroot Jails to Protect the Root (/) Directory .. 35
 4.5.1 Running DNS and FTP Services in a Chroot Jail .. 35
 4.5.2 Creating a Chroot Jail ... 35
 4.5.3 Using a Chroot Jail .. 36
 4.6 Configuring and Using Software Management ... 36
 4.6.1 Configuring Update and Patch Management ... 38
4.6.2 Installing and Using the Yum Security Plugin .. 38
4.7 Configuring and Using Data Encryption .. 41
4.8 Configuring and Using Certificate Management .. 41
4.9 Configuring and Using Authentication ... 41
4.10 Configuring and Using Pluggable Authentication Modules 42
4.11 Configuring and Using Access Control Lists .. 42
4.12 Configuring and Using SELinux .. 42
4.13 Configuring and Using Auditing ... 42
4.14 Configuring and Using System Logging ... 44
 4.14.1 Configuring Logwatch .. 47
4.15 Configuring and Using Process Accounting .. 47
4.16 Configuring and Using Linux Containers .. 48
4.17 Configuring and Using Kernel Security Mechanisms 48
 4.17.1 Address Space Layout Randomization .. 48
 4.17.2 Data Execution Prevention ... 49
 4.17.3 Position Independent Executables ... 49
5 Using OpenSCAP to Scan for Vulnerabilities ... 51
 5.1 About SCAP ... 51
 5.2 Installing the SCAP Packages ... 52
 5.3 About the oscap Command .. 52
 5.4 Displaying the Available SCAP Information .. 52
 5.5 Displaying Information About a SCAP File .. 54
 5.6 Displaying Available Profiles .. 54
 5.7 Validating OVAL and XCCDF Files ... 55
 5.8 Running a Scan Against a Profile .. 55
 5.9 Generating a Full Security Guide .. 57
 5.10 Running an OVAL Auditing Scan .. 58
6 FIPS 140-2 Compliance in Oracle Linux ... 61
 6.1 FIPS Validated Cryptographic Modules for Oracle Linux 61
 6.2 Enabling FIPS Mode on Oracle Linux ... 62
 6.3 Installing FIPS Validated Cryptographic Modules for Oracle Linux 65
7 Oracle Linux 7 Common Criteria Certification ... 67
Preface

Oracle® Linux 7: Security Guide provides security guidelines for the Oracle Linux 7 operating system. The guide presents steps that you can take to harden an Oracle Linux system and the features that you can use to protect your data and applications. You can tailor the recommendations in the guide to suit your site security policy.

Audience

This document is intended for administrators who analyze security requirements, implement site security policy, install and configure the Oracle Linux operating system, and maintain system and network security. It is assumed that readers have a general knowledge of Linux administration, a good foundation in software security, and knowledge of your organization's site security policy.

Related Documents

The documentation for this product is available at:

Oracle® Linux 7 Documentation

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td><code>monospace</code></td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle recognizes the influence of ethnic and cultural values and is working to remove language from our products and documentation that might be considered insensitive. While doing so, we are also mindful of the necessity to maintain compatibility with our customers' existing technologies and the need to ensure continuity of service as Oracle's offerings and
industry standards evolve. Because of these technical constraints, our effort to remove insensitive terms is an ongoing, long-term process.
Chapter 1 About System Security

Table of Contents

1.1 Overview of System Security in Oracle Linux ... 1
1.2 Understanding the Oracle Linux Environment ... 2
1.3 Recommended Deployment Configurations ... 2
1.4 Component Security ... 3
1.5 Basic Security Considerations .. 3
 1.5.1 Keep Software Up to Date .. 4
 1.5.2 Restrict Network Access to Critical Services ... 4
 1.5.3 Follow the Principle of Least Privilege ... 4
 1.5.4 Monitor System Activity ... 4
 1.5.5 Keep Up to Date on the Latest Security Information .. 4
1.6 Security Considerations for Developers ... 4
 1.6.1 Design Principles for Secure Coding ... 4
 1.6.2 General Guidelines for Secure Coding .. 5
 1.6.3 General Guidelines for Network Programs .. 7

This chapter discusses topics related to system security and its implementation in Oracle Linux.

1.1 Overview of System Security in Oracle Linux

Oracle Linux provides a complete security stack, from network firewall control to access control security policies, and is designed to be secure by default.

Traditional Linux security is based on a Discretionary Access Control (DAC) policy, which provides minimal protection from broken software or from malware that is running as a normal user or as root. The SELinux enhancement to the Linux kernel implements the Mandatory Access Control (MAC) policy, which allows you to define a security policy that provides granular permissions for all users, programs, processes, files, and devices. The kernel's access control decisions are based on all the security relevant information available, and not solely on the authenticated user identity. By default, SELinux is enabled when you install an Oracle Linux system.

Oracle Linux has evolved into a secure enterprise-class operating system that can provide the performance, data integrity, and application uptime necessary for business-critical production environments.

Thousands of production systems at Oracle run Oracle Linux and numerous internal developers use it as their development platform. Oracle Linux is also at the heart of several Oracle engineered systems, including the Oracle Exadata Database Machine, Oracle Exalytics In-Memory Machine, Oracle Exalogic Elastic Cloud, and Oracle Database Appliance.

Oracle On Demand services, which deliver software as a service (SaaS) at a customer's site, via an Oracle data center, or at a partner site, use Oracle Linux at the foundation of their solution architectures. Backed by Oracle support, these mission-critical systems and deployments depend fundamentally on the built-in security and reliability features of the Oracle Linux operating system.

Released under an open-source license, Oracle Linux includes the Unbreakable Enterprise Kernel that provides the latest Linux innovations while offering tested performance and stability. Oracle has been a key participant in the Linux community, contributing code enhancements such as Oracle Cluster File
Understanding the Oracle Linux Environment

System and the Btrfs file system. From a security perspective, having roots in open source is a significant advantage. The Linux community, which includes many experienced developers and security experts, reviews posted Linux code extensively prior to its testing and release. The open-source Linux community has supplied many security improvements over time, including access control lists (ACLs), cryptographic libraries, and trusted utilities.

1.2 Understanding the Oracle Linux Environment

To better understand your security needs, ask yourself the following questions:

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Which resources am I protecting?</td>
<td>Many resources in the production environment can be protected, including information in databases accessed by WebLogic Server and the availability, performance, applications, and the integrity of the Web site. Consider the resources you want to protect when deciding the level of security you must provide.</td>
</tr>
<tr>
<td>From whom am I protecting the resources?</td>
<td>For most Web sites, resources must be protected from everyone on the Internet. But should the Web site be protected from the employees on the intranet in your enterprise? Should your employees have access to all resources within the WebLogic Server environment? Should the system administrators have access to all WebLogic resources? Should the system administrators be able to access all data? You might consider giving access to highly confidential data or strategic resources to only a few well trusted system administrators. Perhaps it would be best to allow no system administrators access to the data or resources.</td>
</tr>
<tr>
<td>What will happen if the protections on strategic resources fail?</td>
<td>In some cases, a fault in your security scheme is easily detected and considered nothing more than an inconvenience. In other cases, a fault might cause great damage to companies or individual clients that use the Web site. Understanding the security ramifications of each resource will help you protect it properly.</td>
</tr>
</tbody>
</table>

1.3 Recommended Deployment Configurations

This section describes recommended architectures for deploying Oracle products with secure Internet access.

Figure 1.1, “Simple Firewall Deployment Configuration” shows a simple deployment architecture.

Figure 1.1 Simple Firewall Deployment Configuration

This single-computer deployment may be cost effective for small organizations. However, it cannot provide high availability because all components are stored on the same computer.
Figure 1.2, “DMZ Deployment Configuration” shows the recommended configuration, which uses the well-known and generally accepted Internet-Firewall-DMZ-Firewall-Intranet architecture.

A demilitarized zone (DMZ) refers to a server that is isolated by firewalls from both the Internet and the intranet, and which acts a buffer between them. The firewalls that separate DMZ zones provide two essential functions:

- Block any traffic types that are not permitted.
- Provide intrusion containment in the event that successful intrusions take over processes or processors.

1.4 Component Security

Each application software component usually has its own security considerations that you should take into account independently of those that apply to the operating system. Refer to the security guidelines for each component to determine how best to configure it for the requirements of security at your site.

1.5 Basic Security Considerations

The following are fundamental principles for using Oracle Linux securely.
1.5.1 Keep Software Up to Date

One of the principles of good security practice is to keep all software versions and patches up to date. Throughout this document, we assume a maintenance level of Oracle Linux Release 7 or later.

For more information, see Section 4.6, “Configuring and Using Software Management”

1.5.2 Restrict Network Access to Critical Services

Keep both middle-tier applications and databases behind a firewall. In addition, place a firewall between middle-tier applications and databases if these are hosted on separate servers. The firewalls provide assurance that access to these systems is restricted to a known network route, which can be monitored and restricted, if necessary. As an alternative, a firewall router substitutes for multiple, independent firewalls.

If firewalls cannot be used, restrict access based upon IP address. Restricting database access by IP address often causes application client/server programs to fail for DHCP clients. To resolve this, consider using static IP addresses, a software/hardware VPN or Windows Terminal Services or its equivalent.

For more information, see Section 4.1, “Configuring Access to Network Services”.

1.5.3 Follow the Principle of Least Privilege

The principle of least privilege states that users should be given the least amount of privilege to perform their jobs. Over ambitious granting of responsibilities, roles, grants, and so on, especially early on in an organization’s life cycle when people are few and work needs to be done quickly, often leaves a system wide open for abuse. User privileges should be reviewed periodically to determine relevance to current job responsibilities.

For more information, see Section 2.11, “Checking User Accounts and Privileges”.

1.5.4 Monitor System Activity

System security stands on three legs: good security protocols, proper system configuration, and system monitoring. Auditing and reviewing audit records address the third requirement. Each component within a system has some degree of monitoring capability. Follow audit advice in this document and regularly monitor audit records.

For more information, see Section 4.13, “Configuring and Using Auditing”.

1.5.5 Keep Up to Date on the Latest Security Information

Oracle continually improves its software and documentation. Check regularly on the Oracle Technology Network at https://www.oracle.com/technetwork/server-storage/linux for revisions. For information about common vulnerabilities and exposures (CVE) and errata that are available on the Unbreakable Linux Network, see https://linux.oracle.com/cve and https://linux.oracle.com/errata.

1.6 Security Considerations for Developers

1.6.1 Design Principles for Secure Coding

The following well-established design principles are recommended for secure coding:
General Guidelines for Secure Coding

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least privilege</td>
<td>A process or user should be given only those privileges that are necessary to complete a task. User privileges should be assigned according to their role, but not otherwise. To create a minimal protection domain, assign rights when a process or thread requires them and remove them afterwards. This principle limits the potential damage that can result from attacks and user errors.</td>
</tr>
<tr>
<td>Economy of mechanism</td>
<td>Keep the design simple. There is less to go wrong, fewer inconsistencies are possible, and the code is easier to understand and debug.</td>
</tr>
<tr>
<td>Complete mediation</td>
<td>Check every attempt to access to a resource, not just the first. For example, Linux checks access permissions when a process opens a file but not thereafter. If a file's permissions change while a process has the file open, unauthorized access can result. Ideally, one could argue that the permissions should be checked whenever an open file is accessed. In practise, such checking is considered to be an unnecessary overhead given the circumstances under which access was first obtained.</td>
</tr>
<tr>
<td>Open design</td>
<td>Security should not depend on the secrecy of the code's design or implementation, sometimes referred to as security through obscurity. For example, an open back door to a system is only as secure as the knowledge of its existence. Of course, this principle does not apply to information such as passwords or cryptographic keys, knowledge of which should also be shared among as few people as possible. For this reason, many secure authentication schemes also rely on biometric identification or the possession of a physical artifact such a hardware token or smart card, in addition to knowledge of a PIN code or password.</td>
</tr>
<tr>
<td>Separation of privilege</td>
<td>Divide the code into modules, where each module requires a specific, limited set of privileges to perform a specific task. Typically, multiple privileges should be required to grant access to a sensitive operation. This principle ensures separation of duty and provides defense in depth. For example, a main thread that has no privileges can generate a privileged thread to perform a task. A successful attack against the main thread thus gains minimal access to the system.</td>
</tr>
<tr>
<td>Least common mechanism</td>
<td>A system should isolate users and their activities from each other. Users should not share processes or threads and information channels should not be shared between users.</td>
</tr>
<tr>
<td>Fail-safe defaults</td>
<td>The default action should be to deny access to an operation. Should an attempt to perform an operation be denied, the system is as secure as it was before the operation started.</td>
</tr>
<tr>
<td>Accountability</td>
<td>Log the user and their privileges for each action that he or she attempts to perform. Any logs should be capable of being rotated and archived to avoid filling up a file system.</td>
</tr>
<tr>
<td>Psychological acceptability</td>
<td>Security mechanisms should be easy to install, configure, and use so that a user is less tempted to try to bypass them.</td>
</tr>
</tbody>
</table>

1.6.2 General Guidelines for Secure Coding

The following coding practices are recommended:
General Guidelines for Secure Coding

• Check that input data is what the program expects by performing type, length, and bound checking. Inputs include command-line arguments and environment variables in addition to data that a user enters.

• Check input data for the inclusion of constructs such as shell commands, SQL statements, and XML and HTML code that might be used in an injection attack.

• Check the type, length, and bounds of arguments to system calls and library routines. If possible, use library routines that guard against buffer overflows.

• Use full pathnames for file-name arguments, do not use files in world-writable directories, verify that a file being written to is not actually a symbolic link, and protect against the unintended overwriting of existing files.

• Check the type, length, and bounds of values returned by system calls and library routines. Make the code respond appropriately to any error codes that system calls and library functions set or return.

• Do not assume the state of the shell environment. Check any settings that a program inherits from the shell, such as the user file-creation mask, signal handling, file descriptors, current working directory, and environment variables, especially PATH and IFS. Reset the settings if necessary.

• Perform assert checking on variables that can take a finite set of values.

• Log information about privileged actions and error conditions. Do not allow the program to dump a core file on an end-user system.

• Do not echo passwords to the screen, or transmit or store them as clear text. Before transmitting or storing a password, combine it with a salt value and use a secure one-way algorithm such as SHA-512 to create a hash.

• If your program uses a pseudo-random number generating routine, verify that the numbers that it generates are sufficiently random for your requirements. You should also use a good random seed that a potential attacker should not be able to predict. See RFC 4086, Randomness Requirements for Security, for more information.

• It is recommended that Address Space Layout Randomization (ASLR) is enabled on the host system as this feature can help defeat certain types of buffer overflow attacks. See Section 4.17.1, “Address Space Layout Randomization”.

• When compiling and linking your program, use the Position Independent Executables (PIE) feature to generate a position-independent binary. See Section 4.17.3, “Position Independent Executables”.

• Consider using chroot() to confine the operating boundary of your program to a specified location within a file system.

• Do not execute a shell command by calling popen() or syscall() from within a program, especially from a setuid or setgid program.

The following guidelines apply if your program has its setuid or setgid bit set so that it can perform privileged actions on behalf of a user who does not possess those privileges:

• Do not set the setuid or setgid bit on shell scripts. However, if you use Perl scripts that are setuid or setgid, perl runs in taint mode, which is claimed to be more secure than using the equivalent C code. See the perlsec(1) manual page for details.

• Restrict the use of the privilege that setuid or setgid grants to the functionality that requires it, and then return the effective UID or GID to that of the user. If possible, perform the privileged functionality in a separate, closely-monitored thread or process.
• Do not allow a setuid or setgid program to execute child processes using execl() or execvp(), which use the PATH environment variable.

1.6.3 General Guidelines for Network Programs

The following coding practices are recommended for network programs:

• Perform a reverse lookup on an IP address to obtain the fully qualified domain name, and then use that domain name look up the IP address. The two IP addresses should be identical.

• Protect a service against Denial of Service (DoS) attacks by allowing it to stop processing requests if it becomes overloaded.

• Set timeouts on read and write requests over the network.

• Check the content, bounds, value, and type of data received over the network, and reject any data that does not conform to what the program expects.

• Use certificates or preshared keys to authenticate the local and remote ends of the network connection.

• Use a well-established technology such as TLS or SSL to encrypt data sent over the network connection.

• Wherever possible, use existing networking protocols and technologies whose security characteristics are well known.

• Log information about successful and unsuccessful connection attempts, data reception and transmission errors, and changes to the service state.
Chapter 2 Security Guidelines

Table of Contents

2.1 Minimizing the Software Footprint ... 9
2.2 Configuring System Logging .. 10
2.3 Disabling Core Dumps .. 11
2.4 Minimizing Active Services ... 11
2.5 Locking Down Network Services ... 14
2.6 Configuring a Packet-Filtering Firewall .. 14
2.7 Configuring TCP Wrappers .. 14
2.8 Configuring Kernel Parameters .. 14
2.9 Restricting Access to SSH Connections ... 15
2.10 Configuring File System Mounts, File Permissions, and File Ownership 16
2.11 Checking User Accounts and Privileges .. 17

This chapter provides guidelines that help secure your Oracle Linux system.

For information about how to use OpenSCAP to scan a system for vulnerabilities, see Chapter 5, Using OpenSCAP to Scan for Vulnerabilities.

2.1 Minimizing the Software Footprint

On systems on which Oracle Linux has been installed, remove unneeded RPMs to minimize the software footprint. For example, you could uninstall the X Windows package (xorg-x11-server-Xorg) if it is not required on a server system.

To discover which package provides a given command or file, use the yum provides command, as shown in the following example:

```bash
$ yum provides /usr/sbin/sestatus
...
policycoreutils-2.0.83-19.24.0.1.el6.x86_64 : SELinux policy core utilities
Repo        : installed
Matched from:
Other       : Provides-match: /usr/sbin/sestatus
```

To display the files that a package provides, use the repoquery utility, which is included in the yum-utils package. For example, the following command lists the files that the btrfs-progs package provides.

```bash
$ repoquery -l btrfs-progs
/sbin/btrfs
/sbin/btrfs-convert
/sbin/btrfs-debug-tree
```

To uninstall a package, use the yum remove command, as shown in this example:

```bash
$ yum remove xinetd
Loaded plugins: refresh-packagekit, security
Setting up Remove Process
Resolving Dependencies
---> Running transaction check
---> Package xinetd.x86_64 2:2.3.14-35.el6_3 will be erased
---> Finished Dependency Resolution
```
Dependencies Resolved

<table>
<thead>
<tr>
<th>Package</th>
<th>Arch</th>
<th>Version</th>
<th>Repository</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>xinetd</td>
<td>x86_64</td>
<td>2:2.3.14-35.el6_3</td>
<td>@ol6_latest</td>
<td>259 k</td>
</tr>
</tbody>
</table>

Transaction Summary

Remove 1 Package(s)

Installed size: 259 k
Is this ok [y/N]: y

The following table lists packages that you should not install or that you should remove using the `yum remove` command if they are already installed.

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>krb5-appl-clients</td>
<td>Kerberos versions of ftp, rcp, rlogin, rsh and telnet. If possible, use SSH instead.</td>
</tr>
<tr>
<td>rsh, rsh-server</td>
<td>rcp, rlogin, and rsh use unencrypted communication that can be snooped. Use SSH instead.</td>
</tr>
<tr>
<td>samba</td>
<td>Network services used by Samba. Remove this package if the system is not acting as an Active Directory server, a domain controller, or as a domain member, and it does not provide Microsoft Windows file and print sharing functionality.</td>
</tr>
<tr>
<td>talk, talk-server</td>
<td>talk is considered obsolete.</td>
</tr>
<tr>
<td>telnet, telnet-server</td>
<td>telnet uses unencrypted communication that can be snooped. Use SSH instead.</td>
</tr>
<tr>
<td>tftp, tftp-server</td>
<td>TFTP uses unencrypted communication that can be snooped. Use only if required to support legacy hardware. If possible, use SSH or other secure protocol instead.</td>
</tr>
<tr>
<td>xinetd</td>
<td>The security model used by the Internet listener daemon is deprecated.</td>
</tr>
<tr>
<td>ybind, ypserv</td>
<td>The security model used by NIS is inherently flawed. Use an alternative such as LDAP or Kerberos instead.</td>
</tr>
</tbody>
</table>

2.2 Configuring System Logging

Verify that the `rsyslog` logging service is running:

```
# systemctl is-active rsyslog
active
```
Disabling Core Dumps

If the `rsyslogd` service is not running, start it and enable it to start when the system is rebooted:

```
# systemctl start rsyslog
# systemctl enable rsyslog
```

Ensure that each log file referenced in `/etc/rsyslog.conf` exists and is owned and only readable by `root`:

```
# touch logfile
# chown root:root logfile
# chmod 0600 logfile
```

It is also recommended that you use a central log server and that you configure Logwatch on that server. See Section 4.14, "Configuring and Using System Logging".

2.3 Disabling Core Dumps

Core dumps can contain information that an attacker might be able to exploit and they take up a large amount of disk space. To prevent the system creating core dumps when the operating system terminates a program due to a segment violation or other unexpected error, add the following line to `/etc/security/limits.conf`:

```
*  hard  core  0
```

You can restrict access to core dumps to certain users or groups, as described in the `limits.conf(5)` manual page.

By default, the system prevents `setuid` and `setgid` programs, programs that have changed credentials, and programs whose binaries do not have read permission from dumping core. To ensure that the setting is permanently recorded, add the following lines to `/etc/sysctl.conf`:

```
# Disallow core dumping by setuid and setgid programs
fs.suid_dumpable = 0
```

Then, run the `sysctl -p` command.

Note

A value of 1 permits core dumps that are readable by the owner of the dumping process. A value of 2 permits core dumps that are readable only by `root` for debugging purposes.

2.4 Minimizing Active Services

Restrict services to only those that a server requires. The default installation for an Oracle Linux server configures a minimal set of services:

- `cupsd` and `lpd` (print services)
- `sendmail` (email delivery service)
- `sshd` (openSSH services)

If possible, configure one type of service per physical machine, virtual machine, or Linux Container. This technique limits exposure if a system is compromised.

If a service is not used, remove the software packages that are associated with the service. If it is not possible to remove a service because of software dependencies, use the `chkconfig` and `service` commands to disable the service.
Minimizing Active Services

For services that are in use, apply the latest Oracle support patches and security updates to keep software packages up to date. To protect against unauthorized changes, ensure that the `/etc/services` file is owned by `root` and writable only by `root`.

```
# ls -Z /etc/services
-rw-r--r--. root root system_u:object_r:etc_t:SystemLow /etc/services
```

Unless specifically stated otherwise, consider disabling the services that are described in the following table, if they are not used on your system.

<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>anacron</td>
<td>Executes commands periodically. Primarily intended for use on laptop and user desktop machines that do not run continuously.</td>
</tr>
<tr>
<td>automount</td>
<td>Manages mount points for the automatic file-system mounter. Disable this service on servers that do not require automounter functionality.</td>
</tr>
<tr>
<td>bluetooth</td>
<td>Supports the connections of Bluetooth devices. Primarily intended for use on laptop and user desktop machines. Bluetooth provides an additional potential attack surface. Disable this service on servers that do not require Bluetooth functionality.</td>
</tr>
<tr>
<td>gpm</td>
<td>(General Purpose Mouse) Provides support for the mouse pointer in a text console.</td>
</tr>
<tr>
<td>hidd</td>
<td>(Bluetooth Human Interface Device daemon) Provides support for Bluetooth input devices such as a keyboard or mouse. Primarily intended for use on laptop and user desktop machines. Bluetooth provides an additional potential attack surface. Disable this service on servers that do not require Bluetooth functionality.</td>
</tr>
<tr>
<td>irqbalance</td>
<td>Distributes hardware interrupts across processors on a multiprocessor system. Disable this service on servers that do not require this functionality.</td>
</tr>
<tr>
<td>iscsi</td>
<td>Controls logging in to iSCSI targets and scanning of iSCSI devices. Disable this service on servers that do not access iSCSI devices.</td>
</tr>
<tr>
<td>iscsid</td>
<td>Implements control and management for the iSCSI protocol. Disable this service on servers that do not access iSCSI devices.</td>
</tr>
<tr>
<td>kdump</td>
<td>Allows a <code>kdump</code> kernel to be loaded into memory at boot time or a kernel dump to be saved if the system panics. Disable this service on servers that you do not use for debugging or testing.</td>
</tr>
<tr>
<td>mcstrans</td>
<td>Controls the SELinux Context Translation System service.</td>
</tr>
<tr>
<td>mdmonitor</td>
<td>Checks the status of all software RAID arrays on the system. Disable this service on servers that do not use software RAID.</td>
</tr>
<tr>
<td>pcscd</td>
<td>(PC/SC Smart Card Daemon) Supports communication with smart-card readers. Primarily intended for use on laptop and user desktop machines to support smart-card authentication. Disable this service on servers that do not use smart-card authentication.</td>
</tr>
<tr>
<td>sandbox</td>
<td>Sets up <code>/tmp</code>, <code>/var/tmp</code>, and home directories to be used with the <code>pam_namespace</code>, <code>sandbox</code>, and <code>xguest</code> application confinement utilities. Disable this service if you do not use these programs.</td>
</tr>
<tr>
<td>setroubleshoot</td>
<td>Controls the SELinux Troubleshooting service, which provides information about SELinux Access Vector Cache (AVC) denials to the <code>sealert</code> tool.</td>
</tr>
<tr>
<td>smartd</td>
<td>Communicates with the Self-Monitoring, Analysis and Reporting Technology (SMART) systems that are integrated into many ATA-3 and later, and SCSI-3...</td>
</tr>
</tbody>
</table>
Minimizing Active Services

<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk drives. SMART systems monitor disk drives to measure reliability, predict disk degradation and failure, and perform drive testing.</td>
<td></td>
</tr>
<tr>
<td>xfs</td>
<td>Caches fonts in memory to improve the performance of X Window System applications.</td>
</tr>
</tbody>
</table>

Consider disabling the network services that are described in the following table, if they are not used on your system.

<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>avahi-daemon</td>
<td>Implements Apple’s Zero configuration networking (also known as Rendezvous or Bonjour). Primarily intended for use on laptop and user desktop machines to support music and file sharing. Disable this service on servers that do not require this functionality.</td>
</tr>
<tr>
<td>cups</td>
<td>Implements the Common UNIX Printing System. Disable this service on servers that do not need to provide this functionality.</td>
</tr>
<tr>
<td>hplip</td>
<td>Implements HP Linux Imaging and Printing to support faxing, printing, and scanning operations on HP inkjet and laser printers. Disable this service on servers that do not require this functionality.</td>
</tr>
<tr>
<td>isdn</td>
<td>(Integrated Services Digital Network) Provides support for network connections over ISDN devices. Disable this service on servers that do not directly control ISDN devices.</td>
</tr>
<tr>
<td>netfs</td>
<td>Mounts and unmounts network file systems, including NCP, NFS, and SMB. Disable this service on servers that do not require this functionality.</td>
</tr>
<tr>
<td>network</td>
<td>Activates all network interfaces that are configured to start at boot time.</td>
</tr>
<tr>
<td>NetworkManager</td>
<td>Switches network connections automatically to use the best connection that is available.</td>
</tr>
<tr>
<td>nfslock</td>
<td>Implements the Network Status Monitor (NSM) used by NFS. Disable this service on servers that do not require this functionality.</td>
</tr>
<tr>
<td>nmb</td>
<td>Provides NetBIOS name services used by Samba. Disable this service and remove the samba package if the system is not acting as an Active Directory server, a domain controller, or as a domain member, and it does not provide Microsoft Windows file and print sharing functionality.</td>
</tr>
<tr>
<td>portmap</td>
<td>Implements Remote Procedure Call (RPC) support for NFS. Disable this service on servers that do not require this functionality.</td>
</tr>
<tr>
<td>rhnsd</td>
<td>Queries the Unbreakable Linux Network (ULN) for updates and information.</td>
</tr>
<tr>
<td>rpcgssd</td>
<td>Used by NFS. Disable this service on servers that do not require this functionality.</td>
</tr>
<tr>
<td>rpcidmapd</td>
<td>Used by NFS. Disable this service on servers that do not require this functionality.</td>
</tr>
<tr>
<td>smb</td>
<td>Provides SMB network services used by Samba. Disable this service and remove the samba package if the system is not acting as an Active Directory server, a domain controller, or as a domain member, and it does not provide Microsoft Windows file and print sharing functionality.</td>
</tr>
</tbody>
</table>

To stop a service and prevent it from starting when you reboot the system, use the following commands:

```bash
# systemctl stop service_name
```
systemctl disable service_name

2.5 Locking Down Network Services

Note

It is recommended that you do not install the `xinetd` Internet listener daemon. If you do not need this service, remove the package altogether by using the `yum remove xinetd` command.

If you must enable `xinetd` on your system, minimize the network services that `xinetd` can launch by disabling those services that are defined in the configuration files in `/etc/xinetd.d` and which are not needed.

To counter potential Denial of Service (DoS) attacks, you can configure the resource limits for such services by editing `/etc/xinetd.conf` and related configuration files. For example, you can set limits for the connection rate, the number of connection instances to a service, and the number of connections from an IP address:

```plaintext
# Maximum number of connections per second and
# number of seconds for which a service is disabled
cps             = 50 10

# Maximum number of connections to a service
instances       = 50

# Maximum number of connections from an IP address
per_source      = 10
```

For more information, see the `xinetd(8)` and `xinetd.conf(5)` manual pages.

2.6 Configuring a Packet-Filtering Firewall

You can configure the Netfilter feature to act as a packet-filtering firewall that uses rules to determine whether network packets are received, dropped, or forwarded.

The primary interfaces for configuring the packet-filter rules are the `firewall-cmd` command and the Firewall Configuration GUI (`firewall-config`) or the `iptables` and `ip6tables` utilities. By default, the rules should drop any packets that are not destined for a service that the server hosts or that originate from networks other than those to which you want to allow access.

In addition, you can use Network Address Translation (NAT) to hide IP addresses behind a public IP address, and IP masquerading to alter IP header information for routed packets. You can also set rule-based packet logging and define a dedicated log file in `/etc/syslog.conf`.

For more information, see Section 4.2, “Configuring Packet-filtering Firewalls”.

2.7 Configuring TCP Wrappers

The TCP wrappers feature mediates requests from clients to services, and control access based on rules that you define in the `/etc/hosts.deny` and `/etc/hosts.allow` files. You can restrict and permit service access for specific hosts or whole networks. A common way of using TCP wrappers is to detect intrusion attempts. For example, if a known malicious host or network attempts to access a service, you can deny access and send a warning message about the event to a log file or to the system console.

For more information, see Section 4.4, “Configuring TCP Wrappers”.
2.8 Configuring Kernel Parameters

You can use several kernel parameters to counteract various kinds of attack.

`kernel.randomize_va_space` controls Address Space Layout Randomization (ASLR), which can help defeat certain types of buffer overflow attacks. A value of 0 disables ASLR, 1 randomizes the positions of the stack, virtual dynamic shared object (VDSO) page, and shared memory regions, and 2 randomizes the positions of the stack, VDSO page, shared memory regions, and the data segment. The default and recommended setting is 2.

`net.ipv4.conf.all.accept_source_route` controls the handling of source-routed packets, which might have been generated outside the local network. A value of 0 rejects such packets, and 1 accepts them. The default and recommended setting is 0.

`net.ipv4.conf.all_rp_filter` controls reversed-path filtering of received packets to counter IP address spoofing. A value of 0 disables source validation, 1 causes packets to be dropped if the routing table entry for their source address does not match the network interface on which they arrive, and 2 causes packets to be dropped if source validation by reversed path fails (see RFC 1812). The default setting is 0. A value of 2 can cause otherwise valid packets to be dropped if the local network topology is complex and RIP or static routes are used.

`net.ipv4.icmp_echo_ignore_broadcasts` controls whether ICMP broadcasts are ignored to protect against Smurf DoS attacks. A value of 1 ignores such broadcasts, and 0 accepts them. The default and recommended setting is 1.

`net.ipv4.icmp_ignore_bogus_error_message` controls whether ICMP bogus error message responses are ignored. A value of 1 ignores such messages, and 0 accepts them. The default and recommended setting is 1.

To change the value of a kernel parameter, add the setting to `/etc/sysctl.conf`, for example:

```
kernel.randomize_va_space = 1
```

and then run the `sysctl -p` command.

For additional security configurations on the kernel, see Section 4.17, “Configuring and Using Kernel Security Mechanisms”.

2.9 Restricting Access to SSH Connections

The Secure Shell (SSH) allows protected, encrypted communication with other systems. As SSH is an entry point into the system, disable it if it is not required, or alternatively, edit the `/etc/ssh/sshd_config` file to restrict its use.

For example, the following setting does not allow root to log in using SSH:

```
PermitRootLogin no
```

You can restrict remote access to certain users and groups by specifying the `AllowUsers`, `AllowGroups`, `DenyUsers`, and `DenyGroups` settings, for example:

```
DenyUsers carol dan
AllowUsers alice bob
```

The `ClientAliveInterval` and `ClientAliveCountMax` settings cause the SSH client to time out automatically after a period of inactivity, for example:
Disconnect client after 300 seconds of inactivity
ClientAliveCountMax 0
ClientAliveInterval 300

After changing the configuration file, restart the `sshd` service for the changes to take effect.

For more information, see the `sshd_config(5)` manual page.

2.10 Configuring File System Mounts, File Permissions, and File Ownership

Use separate disk partitions for operating system and user data to prevent a file system full issue from impacting the operation of a server. For example, you might create separate partitions for `/home`, `/tmp`, `/p`, `/oracle`, and so on.

Establish disk quotas to prevent a user from accidentally or intentionally filling up a file system and denying access to other users.

To prevent the operating system files and utilities from being altered during an attack, mount the `/usr` file system read-only. If you need to update any RPMs on the file system, use the `mount` command to remount `/usr` for both read and write access. After performing the update, use the `remount,ro` option to return the `/usr` file system to read-only mode.

To limit user access to non-root local file systems such as `/tmp` or removable storage partitions, specify the `noexec`, `nosuid`, `nodev` options to `mount`. These options prevent the execution of binaries (but not scripts), prevent the `setuid` bit from having any effect, and prevent the use of device files.

Use the `find` command to check for unowned files and directories on each file system, for example:

```bash
# find mount_point -mount -type f -nouser -o -nogroup -exec ls -l {} \;
# find mount_point -mount -type d -nouser -o -nogroup -exec ls -l {} \;
```

Unowned files and directories might be associated with a deleted user account, they might indicate an error with software installation or deleting, or they might be a sign of an intrusion on the system. Correct the permissions and ownership of the files and directories that you find, or remove them. If possible, investigate and correct the problem that led to their creation.

Use the `find` command to check for world-writable directories on each file system, for example:

```bash
# find mount_point -mount -type d -perm /o+w -exec ls -l {} \;
```

Investigate any world-writable directory that is owned by a user other than a system user. The user can remove or change any file that other users write to the directory. Correct the permissions and ownership of the directories that you find, or remove them.

You can also use `find` to check for `setuid` and `setgid` executables.

```bash
# find path -type f \( -perm -4000 -o -perm -2000 \) -exec ls -l {} \;
```

If the `setuid` and `setgid` bits are set, an executable can perform a task that requires other rights, such as root privileges. However, buffer overrun attacks can exploit such executables to run unauthorized code with the rights of the exploited process.

If you want to stop a `setuid` and `setgid` executable from being used by non-root users, you can use the following commands to unset the `setuid` or `setgid` bit:

```bash
# chmod u-s file
```
Checking User Accounts and Privileges

chmod g-s file

The following table lists programs for which you might want to consider unsetting the setuid and setgid.

Note

The list is not exhaustive, as many optional packages contain setuid and setgid programs.

<table>
<thead>
<tr>
<th>Program File</th>
<th>Bit Set</th>
<th>Description of Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>/usr/bin/chage</td>
<td>setuid</td>
<td>Determines password aging information (via the <code>-l</code> option).</td>
</tr>
<tr>
<td>/usr/bin/chfn</td>
<td>setuid</td>
<td>Changes finger information.</td>
</tr>
<tr>
<td>/usr/bin/chsh</td>
<td>setuid</td>
<td>Changes the login shell.</td>
</tr>
<tr>
<td>/usr/bin/crontab</td>
<td>setuid</td>
<td>Edits, lists, or removes a crontab file.</td>
</tr>
<tr>
<td>/usr/bin/wall</td>
<td>setgid</td>
<td>Sends a system-wide message.</td>
</tr>
<tr>
<td>/usr/bin/write</td>
<td>setgid</td>
<td>Sends a message to another user.</td>
</tr>
<tr>
<td>/usr/bin/Xorg</td>
<td>setuid</td>
<td>Invokes the X Windows server.</td>
</tr>
<tr>
<td>/usr/libexec/openssh/ssh-keysign</td>
<td>setuid</td>
<td>Runs the SSH helper program for host-based authentication.</td>
</tr>
<tr>
<td>/usr/sbin/mount.nfs</td>
<td>setuid</td>
<td>Mounts an NFS file system.</td>
</tr>
<tr>
<td>/sbin/mount.nfs4, /sbin/umount.nfs, and /sbin/umount.nfs4</td>
<td>setuid</td>
<td>are symbolic links to this file.</td>
</tr>
<tr>
<td>/usr/sbin/netreport</td>
<td>setgid</td>
<td>Requests notification of changes to network interfaces.</td>
</tr>
<tr>
<td>/usr/sbin/usernetctl</td>
<td>setuid</td>
<td>Controls network interfaces. Permission for a user to alter the state of a network interface also requires USERCTL=yes to be set in the interface file. You can also grant users and groups the privilege to run the ip command by creating a suitable entry in the /etc/sudoers file.</td>
</tr>
</tbody>
</table>

2.11 Checking User Accounts and Privileges

Check the system for unlocked user accounts on a regular basis by using a command similar to the following:

```
# for u in `cat /etc/passwd | cut -d: -f1 | sort`; do passwd -S $u; done
```

abrt LK 2012-06-28 0 99999 7 -1 (Password locked.)
adm LK 2011-10-13 0 99999 7 -1 (Alternate authentication scheme in use.)
apache LK 2012-06-28 0 99999 7 -1 (Password locked.)
avahi LK 2012-06-28 0 99999 7 -1 (Password locked.)
avahi-autoipd LK 2012-06-28 0 99999 7 -1 (Password locked.)
bin LK 2011-10-13 0 99999 7 -1 (Alternate authentication scheme in use.)
...

In the output that is shown in this example, the second field indicates whether a user account is locked (LK), does not have a password (NP), or has a valid password (PS). The third field shows the date on which the user last changed their password. The remaining fields show the minimum age, maximum age, warning period, and inactivity period for the password and additional information about the password's status. The unit of time is days.
Use the `passwd` command to set passwords on any accounts that are not protected.

Use the `passwd -l` command to lock unused accounts. Alternatively, use `userdel` to remove the accounts entirely.

For more information, see the `passwd(1)` and `userdel(8)` manual pages.

To specify how user passwords are aged, edit the settings in the `/etc/login.defs` file. These settings are described in the following table.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS_MAX_DAYS</td>
<td>Maximum number of days for which a password can be used before it must be changed. The default value is 99,999 days.</td>
</tr>
<tr>
<td>PASS_MIN_DAYS</td>
<td>Minimum number of days that is allowed between password changes. The default value is 0 days.</td>
</tr>
<tr>
<td>PASS_WARN_AGE</td>
<td>Number of days warning that is given before a password expires. The default value is 7 days.</td>
</tr>
</tbody>
</table>

For more information, see the `login.defs(5)` manual page.

To change how long a user's account can be inactive before it is locked, use the `usermod` command. For example, to set the inactivity period to 30 days:

```
# usermod -f 30 username
```

To change the default inactivity period for new user accounts, use the `useradd` command:

```
# useradd -D -f 30
```

A value of `-1` specifies that user accounts are not locked due to inactivity.

For more information, see the `useradd(8)` and `usermod(8)` manual pages.

Verify that no user accounts other than `root` have a user ID of 0.

```
# awk -F: "$3 == 0 { print $1 }" /etc/passwd
root
```

If you install software that creates a default user account and password, change the vendor's default password immediately. Centralized user authentication using an LDAP implementation such as OpenLDAP can help to simplify user authentication and management tasks, and also reduces the risk arising from unused accounts or accounts without a password.

By default, an Oracle Linux system is configured so that you cannot log in directly as `root`. You must log in as a named user before using either `su` or `sudo` to perform tasks as `root`. This configuration allows system accounting to trace the original login name of any user who performs a privileged administrative action. If you want to grant certain users authority to be able to perform specific administrative tasks via `sudo`, use the `visudo` command to modify the `/etc/sudoers` file. For example, the following entry grants the user `erin` the same privileges as `root` when using `sudo`, but defines a limited set of privileges to `frank` so that he can run commands such as `rpm` and `yum`:

```
erin       ALL=(ALL)       ALL
frank      ALL=SOFTWARE
```

Oracle Linux supports the pluggable authentication modules (PAM) feature, which makes it easier to enforce strong user authentication and password policies, including rules for password complexity, length,
age, expiration and the reuse of previous passwords. You can configure PAM to block user access after too many failed login attempts, after normal working hours, or if too many concurrent sessions are opened.

PAM is highly customizable by its use of different modules with customisable parameters. For example, the default password integrity checking module `pam_pwquality.so` tests password strength. The PAM configuration file (`/etc/pam.d/system-auth`) contains the following default entries for testing a password's strength:

```
password  requisite   pam_pwquality.so try_first_pass local_users_only retry=3 authtok_type=
password  sufficient pam_unix.so sha512 shadow nullok try_first_pass use_authtok
password  required    pam_deny.so
```

The line for `pam_pwquality.so` defines that a user gets three attempts to choose a good password. From the module's default settings, the password length must a minimum of six characters, of which three characters must be different from the previous password. The module only tests the quality of passwords for users who are defined in `/etc/passwd`.

The line for `pam_unix.so` specifies that the module tests the password previously specified in the stack before prompting for a password if necessary (`pam_pwquality` will already have performed such checks for users defined in `/etc/passwd`), uses SHA-512 password hashing and the `/etc/shadow` file, and allows access if the existing password is null.

You can modify the control flags and module parameters to change the checking that is performed when a user changes his or her password, for example:

```
password  required  pam_pwquality.so retry=3 minlen=8 difok=5 minclass=-1
password  required  pam_unix.so use_authtok sha512 shadow remember=5
password  required  pam_deny.so
```

The line for `pam_pwquality.so` defines that a user gets three attempts to choose a good password with a minimum of eight characters, of which five characters must be different from the previous password, and which must contain at least one upper case letter, one lower case letter, one numeric digit, and one non-alphanumeric character.

The line for `pam_unix.so` specifies that the module does not perform password checking, uses SHA-512 password hashing and the `/etc/shadow` file, and saves information about the previous five passwords for each user in the `/etc/security/opassword` file. As `nullok` is not specified, a user cannot change his or her password if the existing password is null.

The omission of the `try_first_pass` keyword means that the user is always asked for their existing password, even if he or she entered it for the same module or for a previous module in the stack.

For more information, see Section 4.10, “Configuring and Using Pluggable Authentication Modules” and the `pam_deny(8)`, `pam_pwquality(8)`, and `pam_unix(8)` manual pages.
Chapter 3 Secure Installation and Configuration

Table of Contents

3.1 Pre-Installation Tasks ... 21
3.2 Installing Oracle Linux ... 21
 3.2.1 Shadow Passwords and Hashing Algorithms 22
 3.2.2 Strong Passwords ... 22
 3.2.3 Separate Disk Partitions .. 22
 3.2.4 Encrypted Disk Partitions ... 22
 3.2.5 Software Selection ... 23
 3.2.6 Network Time Service .. 23
3.3 Post-Installation Tasks ... 23

This chapter outlines the planning process for a secure installation and describes how the choices that you make during installation affect system security.

3.1 Pre-Installation Tasks

An important consideration is the security of the physical system on which you will install Oracle Linux. If possible, keep server systems in a locked data center and limit access to authorized personnel. Such personnel should also receive appropriate administrative training as human error is often the cause of a security breach. For more information about the available Oracle Linux coursework and certification options, see https://education.oracle.com.

Aside from the risks of theft and data compromise, physical security is critical because it prevents an unauthorized user from possibly modifying the system BIOS, altering the boot device, and booting from an alternate medium. If a system is not kept in a locked data center, consider password-protecting the BIOS. Consult the system manufacturer's documentation for information about setting a BIOS password. Edit the BIOS settings to disable booting from the CD-ROM drive, floppy disk drive, USB ports, and other external devices. In addition, you can configure disk encryption during installation, or password-protect the GRUB boot loader after installation.

Note

Setting a BIOS, encrypted disk, or boot-loader password requires you to enter the password whenever you reboot the system. Only disk encryption can prevent access to the data on disk when an attacker uses techniques such as resetting the BIOS, accessing the disk by booting an operating system from a memory stick, or simply removing the hard drive to read its contents on another system.

3.2 Installing Oracle Linux

When you install Oracle Linux, you can reduce the attack surface by installing only the software packages that are required for operation. Software packages are a potential source of setuid programs, network services, and libraries that an attacker can potentially use to gain access illegitimately and compromise a system.

You can use a pretested kickstart profile to provide consistent and precise control over what is installed. Automated installation using a kickstart profile reduces both security risk and administrative effort.
Alternatively, you can use Oracle Enterprise Manager Ops Center, which supports the import of OS images and explicit provisioning profiles. For more information, refer to the Oracle Enterprise Manager Ops Center documentation.

3.2.1 Shadow Passwords and Hashing Algorithms

By default, an Oracle Linux system is configured to use password hashes that are stored in the `/etc/shadow` file rather than in the world-readable `/etc/passwd` file. If shadow passwords were not used, an attacker is much more likely to be able to discover a password by applying cracking software to the hashes. Similarly, using a password-hashing algorithm that is weaker than SHA-512 would make it much easier to find likely candidates that match a hash value.

3.2.2 Strong Passwords

During installation, you are prompted to enter passwords for `root` and one additional user, if you choose the user to be authenticated locally rather than over the network. The passwords that you enter should be strong in that they should be extremely difficult to deduce by guesswork or by other means, such as automated FTP or SSH logins. By default, the installation process rejects null passwords and warns about weak passwords, but it does not enforce strong passwords. It is your responsibility to ensure that passwords are sufficiently strong.

Some general guidelines for creating a strong password are:

- Make the password at least eight characters long.
- Use a mixture of lower and upper case letters, numbers, and other characters.
- Do not include whole words from English, LEET speak, or any other language or technology, even if you spell the words in reverse order.
- Do not include personal information such as names, dates, addresses, email addresses, or telephone numbers.
- Do not use well-known acronyms, abbreviations, or character sequences such as QWERTY.
- Do not use a password that is the same as or very similar to a password that you used previously on the system.
- Use a password for `root` that is different from the password for any other user.

3.2.3 Separate Disk Partitions

The National Security Agency (NSA) recommendations state that you should set up user-writable file systems such as `/home`, `/tmp`, and `/var/tmp` on partitions that are separate from `/`. In addition, `/boot` must be a dedicated file system if you encrypt the `root` file system.

For more information, see https://www.nsa.gov/ia/_files/factsheets/rhel5-pamphlet-i731.pdf.

3.2.4 Encrypted Disk Partitions

When choosing a disk layout, you have the option of encrypting disk partitions with the Linux Unified Key Setup (LUKS) format. As for any other password, ensure that you enter a strong passphrase if you choose to encrypt any partitions.

Note

The `/boot` file system cannot be encrypted.
3.2.5 Software Selection

If you choose to customize the software to be installed on a system, you can select or deselect packages from the default set. For example, the basic server configuration does not install the Gnome and KDE desktop software and the X Windows System packages from the Desktops section. Additional packages that you might want to install on a server system are available under the Servers, Web Services, Databases, and other section headings.

3.2.6 Network Time Service

If you choose to synchronize the data and time over the network, the system is configured as an NTP client that uses the [012].rhel.pool.ntp.org public servers by default. If your systems rely on Kerberos authentication, which requires close synchronization of the clocks on each participating system, you might prefer to configure your systems to use a local NTP server instead.

3.3 Post-Installation Tasks

For information about the way that you can configure the security of an Oracle Linux system, see Chapter 4, Implementing Oracle Linux Security.

For guidelines about hardening an Oracle Linux system, see Chapter 2, Security Guidelines.
Chapter 4 Implementing Oracle Linux Security

Table of Contents

4.1 Configuring Access to Network Services ... 25
4.2 Configuring Packet-filtering Firewalls ... 26
 4.2.1 Controlling the firewalld Firewall Service ... 28
 4.2.2 Controlling the iptables Firewall Service ... 30
4.3 Configuring OpenSSH ... 33
4.4 Configuring TCP Wrappers ... 33
4.5 Using chroot Jails to Protect the Root (/) Directory ... 35
 4.5.1 Running DNS and FTP Services in a Chroot Jail ... 35
 4.5.2 Creating a Chroot Jail ... 35
 4.5.3 Using a Chroot Jail .. 36
4.6 Configuring and Using Software Management ... 36
 4.6.1 Configuring Update and Patch Management ... 38
 4.6.2 Installing and Using the Yum Security Plugin .. 38
4.7 Configuring and Using Data Encryption .. 41
4.8 Configuring and Using Certificate Management ... 41
4.9 Configuring and Using Authentication ... 41
4.10 Configuring and Using Pluggable Authentication Modules ... 42
4.11 Configuring and Using Access Control Lists .. 42
4.12 Configuring and Using SELinux .. 42
4.13 Configuring and Using Auditing .. 42
4.14 Configuring and Using System Logging ... 44
 4.14.1 Configuring Logwatch ... 47
4.15 Configuring and Using Process Accounting .. 47
4.16 Configuring and Using Linux Containers .. 48
4.17 Configuring and Using Kernel Security Mechanisms .. 48
 4.17.1 Address Space Layout Randomization ... 48
 4.17.2 Data Execution Prevention ... 49
 4.17.3 Position Independent Executables .. 49

This chapter describes the various ways in which you can configure the security of an Oracle Linux system.

4.1 Configuring Access to Network Services

As networks are usually the primary point of entry point into IT systems, you can use network intrusion prevention and detection tools to help avert or uncover a security breach. You can then take steps such as disabling unused network services and configure a packet-filtering firewall and TCP wrappers.

There are several open-source tools for performing packet logging and analysis. For example, tcpdump and Snort capture TCP traffic and analyze it for suspicious usage patterns, such as those that typically occur with port scans or network DoS attacks. Sguil incorporates tcpdump, Snort, and the Wireshark protocol analyzer to provide a network intrusion and detection system that simplifies log analysis and reporting.

You can check what services are running on a system by using port scanning utilities. The following examples show the information that the netstat, lsof, and nmap commands return about open TCP ports and the associated services:

```bash
# netstat -tulp
```
4.2 Configuring Packet-filtering Firewalls

A packet filtering firewall filters incoming and outgoing network packets based on the packet header information. You can create packet filter rules that determine whether packets are accepted or rejected. For example, if you create a rule to block a port, any request is made to that port that is blocked by the firewall, and the request is ignored. Any service that is listening on a blocked port is effectively disabled.

The Oracle Linux kernel uses the Netfilter feature to provide packet filtering functionality for IPv4 and IPv6 packets.
Netfilter consists of two components:

- A **netfilter** kernel component consisting of a set of tables in memory for the rules that the kernel uses to control network packet filtering.

- Utilities to create, maintain, and display the rules that **netfilter** stores. In Oracle Linux 7, the default firewall utility is **firewall-cmd**, which is provided by the **firewalld** package.

If you prefer, you can enable the **iptables** and **iptables6** services and use the **iptables** and **ip6tables** utilities, provided by the **iptables** package. These were the default utilities for firewall configuration in Oracle Linux 6.

The **firewalld**-based firewall has the following advantages over an **iptables**-based firewall:

- Unlike the **iptables** and **ip6tables** commands, using **firewalld-cmd** does not restart the firewall and disrupt established TCP connections.

- **firewalld** supports dynamic zones, which allow you to implement different sets of firewall rules for systems such as laptops that can connect to networks with different levels of trust. You are unlikely to use this feature with server systems.

- **firewalld** supports D-Bus for better integration with services that depend on firewall configuration.

To implement a general-purpose firewall, you can use the Firewall Configuration GUI (**firewall-config**), provided by the **firewall-config** package.

Figure 4.1 shows the Firewall Configuration GUI.
To create or modify a firewall configuration from the command line, use the `firewall-cmd` utility (or, if you prefer, the `iptables`, or `ip6tables` utilities) to configure the packet filtering rules.

The packet filtering rules are recorded in the `/etc/firewalld` hierarchy for `firewalld` and in the `/etc/sysconfig/iptables` and `/etc/sysconfig/ip6tables` files for `iptables` and `ip6tables`.

4.2.1 Controlling the firewalld Firewall Service

The `firewalld` service is enabled by default in Oracle Linux 7. You can use the `systemctl` command to start, stop, or restart the service, and to query its status.

4.2.1.1 Configuring the firewalld Zone

To check the zone for which your system's firewall is configured:

```bash
# firewall-cmd --get-active-zone
```

The command does not display any results if the system has not been assigned to a zone.
Use the following command to display all available zones:

```
# firewall-cmd --get-zones
block dmz drop external home internal public trusted work
```

To configure your system for the `work` zone on a local network connected via the `em1` interface:

```
# firewall-cmd --zone=work --change-interface=em1
success
```

Querying the current zone now shows that the firewall is configured on the interface `em1` for the `work` zone:

```
# firewall-cmd --get-active-zone
work

interfaces: em1
```

To make the change permanent, you can change the default zone for the system, for example:

```
# firewall-cmd --get-default-zone
public
# firewall-cmd --set-default-zone=work
success
# firewall-cmd --get-default-zone
work
```

4.2.1.2 Controlling Access to Services

You can permit or deny access to a service by specifying its name. The following command lists the services to which access is allowed on the local system for the `work` zone:

```
# firewall-cmd --zone=work --list-services
ssh samba
```

In this example, the system allows access by SSH and Samba clients.

To permit access by NFS and HTTP clients when the `work` zone is active, use the `--add-service` option:

```
# firewall-cmd --zone=work --add-service=http --add-service=nfs
success
# firewall-cmd --zone=work --list-services
http nfs ssh samba
```

Note

If you do not specify the zone, the change is applied to the default zone, not the currently active zone.

To make rule changes persist across reboots, run the command again, additionally specifying the `--permanent` option:

```
# firewall-cmd --permanent --zone=work --add-service=http --add-service=nfs
success
```

To remove access to a service, use the `--remove-service` option, for example:

```
# firewall-cmd --zone=work --remove-service=samba
success
# firewall-cmd --permanent --zone=work --remove-service=samba
success
# firewall-cmd --zone=work --list-services
```
4.2.1.3 Controlling Access to Ports

You can permit or deny access to a port by specifying the port number and the associated protocol. The `--list-port` option lists the ports and associated protocols to which you have explicitly allowed access, for example:

```
# firewall-cmd --zone=work --list-ports
3689/tcp
```

You can use the `--add-port` option to permit access:

```
# firewall-cmd --zone=work --add-port=5353/udp
success
# firewall-cmd --permanent --zone=work --add-port=5353/udp
success
# firewall-cmd --zone=work --list-ports
5353/udp 3689/tcp
```

Similarly, the `--remove-port` option removes access to a port. Remember to re-run the command with the `--permanent` option if you want to make the change persist.

To display all the firewall rules that are defined for a zone, use the `--list-all` option:

```
# firewall-cmd --zone=work --list-all
work (default,active)
   interfaces: em1
   sources: http nfs ssh
   services: http nfs ssh
   ports: 5353/udp 3689/tcp
   masquerade: no
   forward-ports: 
   icmp-blocks: 
   rich rules:
```

For more information, see the `firewall-cmd(1)` manual page.

4.2.2 Controlling the iptables Firewall Service

If you want to use `iptables` instead of `firewalld`, first stop and disable the `firewalld` service before starting the `iptables` firewall service and enabling it to start when the system boots:

```
# systemctl stop firewalld
# systemctl disable firewalld
# systemctl start iptables
# systemctl enable iptables
```

To save any changes that you have made to the firewall rules to `/etc/sysconfig/iptables`, so that the service loads them when it next starts:

```
# /sbin/iptables-save > /etc/sysconfig/iptables
```

To restart the service so that it re-reads its rules from `/etc/sysconfig/iptables`:

```
# systemctl restart iptables
```

To stop the service:

```
# systemctl stop iptables
```

To control IPv6 filtering, use `ip6tables` instead of `iptables`.
Controlling the iptables Firewall Service

For more information, see the `iptables(8)`, and `ip6tables(8)` manual pages.

4.2.2.1 About netfilter Tables Used by iptables and ip6tables

The `netfilter` tables used by `iptables` and `ip6tables` include:

- **Filter**: The default table, which is mainly used to drop or accept packets based on their content.
- **Mangle**: This table is used to alter certain fields in a packet.
- **NAT**: The Network Address Translation table is used to route packets that create new connections.

The kernel uses the rules stored in these tables to make decisions about network packet filtering. Each rule consists of one or more criteria and a single action. If a criterion in a rule matches the information in a network packet header, the kernel applies the action to the packet. Examples of actions include:

- **ACCEPT**: Continue processing the packet.
- **DROP**: End the packet's life without notice.
- **REJECT**: As `DROP`, and additionally notify the sending system that the packet was blocked.

Rules are stored in chains, where each chain is composed of a default policy plus zero or more rules. The kernel applies each rule in a chain to a packet until a match is found. If there is no matching rule, the kernel applies the chain's default action (policy) to the packet.

Each `netfilter` table has several predefined chains. The `filter` table contains the following chains:

- **FORWARD**: Packets that are not addressed to the local system pass through this chain.
- **INPUT**: Inbound packets to the local system pass through this chain.
- **OUTPUT**: Locally created packets pass through this chain.

The chains are permanent and you cannot delete them. However, you can create additional chains in the `filter` table.

4.2.2.2 Listing Firewall Rules

Use the `iptables -L` command to list firewall rules for the chains of the `filter` table. The following example shows the default rules for a newly installed system:

```
# iptables -L
Chain INPUT (policy ACCEPT)
target     prot opt source       destination
ACCEPT     all -- anywhere     anywhere        state RELATED,ESTABLISHED
ACCEPT     icmp -- anywhere     anywhere
ACCEPT     all -- anywhere     anywhere
ACCEPT     tcp -- anywhere     anywhere        state NEW tcp dpt:ssh
ACCEPT     udp -- anywhere     anywhere        state NEW udp dpt:ipp
ACCEPT     udp -- anywhere     224.0.0.251     state NEW udp dpt:mdns
ACCEPT     tcp -- anywhere     anywhere        state NEW tcp dpt:ipp
ACCEPT     udp -- anywhere     anywhere        state NEW udp dpt:ipp
REJECT     all -- anywhere     anywhere        reject-with icmp-host-prohibited
```

Chain FORWARD (policy ACCEPT)
Controlling the iptables Firewall Service

<table>
<thead>
<tr>
<th>target</th>
<th>prot opt source</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>REJECT</td>
<td>all -- anywhere</td>
<td>anywhere</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reject-with icmp-host-prohibited</td>
</tr>
</tbody>
</table>

In this example, the default policy for each chain is **ACCEPT**. A more secure system could have a default policy of **DROP**, and the additional rules would only allow specific packets on a case-by-case basis.

If you want to modify the chains, specify the **--line-numbers** option to see how the rules are numbered.

```
# iptables -L --line-numbers
Chain INPUT (policy ACCEPT)
num target     prot opt source       destination
1 ACCEPT     all -- anywhere       anywhere        state RELATED,ESTABLISHED
2 ACCEPT     icmp -- anywhere      anywhere
3 ACCEPT     all -- anywhere       anywhere
4 ACCEPT     tcp -- anywhere       anywhere        state NEW tcp dpt:ssh
5 ACCEPT     udp -- anywhere       anywhere        state NEW udp dpt:ipp
6 ACCEPT     tcp -- anywhere       224.0.0.251     state NEW tcp dpt:ipp
7 ACCEPT     udp -- anywhere       anywhere        state NEW udp dpt:ipp
8 ACCEPT     tcp -- anywhere       anywhere        state NEW udp dpt:ipp
9 REJECT     all -- anywhere       anywhere        reject-with icmp-host-prohibited
```

```
Chain FORWARD (policy ACCEPT)
num target     prot opt source       destination
1 REJECT     all -- anywhere       anywhere        reject-with icmp-host-prohibited
```

```
Chain OUTPUT (policy ACCEPT)
num target     prot opt source       destination
```

4.2.2.3 Inserting and Replacing Rules in a Chain

Use the `iptables -I` command to insert a rule in a chain. For example, the following command inserts a rule in the **INPUT** chain to allow access by TCP on port 80:

```
# iptables -I INPUT 4 -p tcp -m tcp --dport 80 -j ACCEPT
# iptables -L --line-numbers
```

```
Chain INPUT (policy ACCEPT)
num target     prot opt source       destination
1 ACCEPT     all -- anywhere       anywhere        state RELATED,ESTABLISHED
2 ACCEPT     icmp -- anywhere      anywhere
3 ACCEPT     all -- anywhere       anywhere
4 ACCEPT     tcp -- anywhere       anywhere        tcp dpt:http
5 ACCEPT     tcp -- anywhere       anywhere        state NEW tcp dpt:ssh
6 ACCEPT     udp -- anywhere       anywhere        state NEW udp dpt:ipp
7 ACCEPT     tcp -- anywhere       224.0.0.251     state NEW tcp dpt:ipp
8 ACCEPT     udp -- anywhere       anywhere        state NEW tcp dpt:ipp
9 REJECT     all -- anywhere       anywhere        reject-with icmp-host-prohibited
```

```
Chain FORWARD (policy ACCEPT)
num target     prot opt source       destination
1 REJECT     all -- anywhere       anywhere        reject-with icmp-host-prohibited
```

```
Chain OUTPUT (policy ACCEPT)
num target     prot opt source       destination
```

The output from `iptables -L` shows that the new entry has been inserted as rule 4, and the old rules 4 through 9 are pushed down to positions 5 through 10. The TCP destination port of 80 is represented as `http`, which corresponds to the following definition in the `/etc/services` file (the HTTP daemon listens for client requests on port 80):

```
http            80/tcp          www www-http    # WorldWideWeb HTTP
```
To replace the rule in a chain, use the `iptables -R` command. For example, the following command replaces rule 4 in the INPUT chain to allow access by TCP on port 443:

```
# iptables -I INPUT 4 -p tcp -m tcp --dport 443 -j ACCEPT
# iptables -L --line-numbers
Chain INPUT (policy ACCEPT)
num target     prot opt source               destination
1    ACCEPT     all  --  anywhere             anywhere            state RELATED,ESTABLISHED
2    ACCEPT     icmp --  anywhere             anywhere
3    ACCEPT     all  --  anywhere             anywhere
4    ACCEPT     tcp  --  anywhere             anywhere            tcp dpt:https
...```

The TCP destination port of 443 is represented as https, which corresponds to the following definition in the `/etc/services` file for secure HTTP on port 443:

```
https 443/tcp # http protocol over TLS/SSL
```

### 4.2.2.4 Deleting Rules in a Chain

Use the `iptables -D` command to delete a rule in a chain. For example, the following command deletes rule 4 from the INPUT chain:

```
iptables -D INPUT 4
```

To delete all rules in a chain, enter:

```
iptables -F chain
```

To delete all rules in all chains, enter:

```
iptables -F
```

### 4.2.2.5 Saving Rules

To save your changes to the firewall rules so that they are loaded when the `iptables` service next starts, use the following command:

```
#/sbin/iptables-save /etc/sysconfig/iptables
```

The command saves the rules to `/etc/sysconfig/iptables`. For IPv6, you can use `/sbin/ip6tables-save > /etc/sysconfig/ip6tables` to save the rules to `/etc/sysconfig/ip6tables`.

### 4.3 Configuring OpenSSH

OpenSSH is suite of network connectivity tools that provides secure communications between systems. OpenSSH provides another layer of protection to your organization by ensuring that network traffic is safe from external threats. For more information, see Oracle® Linux: Connecting to Remote Systems With OpenSSH.

### 4.4 Configuring TCP Wrappers

TCP wrappers provide basic filtering of incoming network traffic. You can allow or deny access from other systems to certain wrapped network services running on a Linux server. A wrapped network service is one that has been compiled against the `libwrap.a` library. You can use the `ldd` command to determine if a network service has been wrapped as shown in the following example for the `sshd` daemon:

```
ldd /usr/sbin/sshd | grep libwrap
libwrap.so.0 => /lib64/libwrap.so.0 (0x00007f8777de07000)
```
Configuring TCP Wrappers

When a remote client attempts to connect to a network service on the system, the wrapper consults the rules in the configuration files `/etc/hosts.allow` and `/etc/hosts.deny` files to determine if access is permitted.

The wrapper for a service first reads `/etc/hosts.allow` from top to bottom. If the daemon and client combination matches an entry in the file, access is allowed. If the wrapper does not find a match in `/etc/hosts.allow`, it reads `/etc/hosts.deny` from top to bottom. If the daemon and client combination matches and entry in the file, access is denied. If no rules for the daemon and client combination are found in either file, or if neither file exists, access to the service is allowed.

The wrapper first applies the rules specified in `/etc/hosts.allow`, so these rules take precedence over the rules specified in `/etc/hosts.deny`. If a rule defined in `/etc/hosts.allow` permits access to a service, any rule in `/etc/hosts.deny` that forbids access to the same service is ignored.

The rules take the following form:

```
dæmon_list [:] client_list [[:] command] [: deny]
```

In the previous example, `daemon_list` and `client_list` are comma-separated lists of daemons and clients, and the optional `command` is run when a client tries to access a daemon. You can use the keyword `ALL` to represent all daemons or all clients. Subnets can be represented by using the `*` wildcard, for example `192.168.2.*`. Domains can be represented by prefixing the domain name with a period (.), for example `.mydomain.com`. The optional `deny` keyword causes a connection to be denied even for rules specified in the `/etc/hosts.allow` file.

The following are some sample rules.

Match all clients for `scp`, `sftp`, and `ssh` access (`sshd`).

```
sshd : ALL
```

Match all clients on the `192.168.2` subnet for FTP access (`vsftpd`).

```
vsftpd : 192.168.2.*
```

Match all of the clients in the `mydomain.com` domain to gain access to all wrapped services.

```
ALL : .mydomain.com
```

Match all clients for FTP access, and displays the contents of the banner file `/etc/banners/vsftpd`. The banner file must have the same name as the daemon.

```
vsftpd : ALL : banners /etc/banners/
```

Match all of the clients on the `200.182.68` subnet for all wrapped services, and logs all such events. The `%c` and `%d` tokens are expanded to the names of the client and the daemon.

```
ALL : 200.182.68.* : spawn /usr/bin/echo `date` "Attempt by %c to connect to %d" >> /var/log/tcpwr.log
```

Match all of the clients for `scp`, `sftp`, and `ssh` access, and log the event as an `emerg` message, which is displayed on the console.

```
sshd : ALL : severity emerg
```

Match all of the clients in the `forbid.com` domain for `scp`, `sftp`, and `ssh` access, log the event, and deny access (even if the rule appears in `/etc/hosts.allow`).

```
sshd : .forbid.com : spawn /usr/bin/echo `date` "sshd access denied for %c" >>/var/log/sshd.log : deny
```

For more information, see the `hosts_access(5)` manual page.
4.5 Using chroot Jails to Protect the Root (/) Directory

A chroot operation changes the apparent root directory for a running process and its children. It allows you to run a program with a root directory other than /. The program cannot see or access files outside the designated directory tree. Such an artificial root directory is called a chroot jail, and its purpose is to limit the directory access of a potential attacker. The chroot jail locks down a given process and any user ID that it is using so that all they see is the directory in which the process is running. To the process, it appears that the directory in which it is running is the root directory.

Note

The chroot mechanism cannot defend against intentional tampering or low-level access to system devices by privileged users. For example, a chroot root user could create device nodes and mount file systems on them. A program can also break out of a chroot jail if it can gain root privilege and use chroot() to change its current working directory to the real root directory. For this reason, you should ensure that a chroot jail does not contain any setuid or setgid executables that are owned by root.

For a chroot process to be able to start successfully, you must populate the chroot directory with all required program files, configuration files, device nodes, and shared libraries at their expected locations relative to the level of the chroot directory.

4.5.1 Running DNS and FTP Services in a Chroot Jail

If the DNS name service daemon (named) runs in a chroot jail, any hacker that enters your system via a BIND exploit is isolated to the files under the chroot jail directory. Installing the bind-chroot package creates the /var/named/chroot directory, which becomes the chroot jail for all BIND files.

You can configure the vsftpd FTP server to automatically start chroot jails for clients. By default, anonymous users are placed in a chroot jail. However, local users that access an vsftpd FTP server are placed in their home directory. Specify the chroot_local_user=YES option in the /etc/vsftpd/vsftpd.conf file to place local users in a chroot jail based on their home directory.

4.5.2 Creating a Chroot Jail

To create a chroot jail:

1. Create the directory that will become the root directory of the chroot jail, for example:
   
   ```
 # mkdir /home/oracle/jail
   ```

2. Use the ldd command to find out which libraries are required by the command that you intend to run in the chroot jail, for example /usr/bin/bash:
   
   ```
 # ldd /usr/bin/bash
 linux-vdso.so.1 => (0x00007fffdedfe000)
 libtinfo.so.5 => /lib64/libtinfo.so.5 (0x0000003877000000)
 libdl.so.2 => /lib64/libdl.so.2 (0x0000003861c00000)
 libc.so.6 => /lib64/libc.so.6 (0x0000003861800000)
 /lib64/ld-linux-x86-64.so.2 (0x0000003861000000)
   ```

Note

Although the path is displayed as /lib64, the actual path is /usr/lib64 because /lib64 is a symbolic link to /usr/lib64. Similarly, /bin is a
Using a Chroot Jail

symbolic link to /usr/bin. You need to recreate such symbolic links within the chroot jail.

3. Create subdirectories of the chroot jail's root directory that have the same relative paths as the command binary and its required libraries have to the real root directory, for example:

```bash
mkdir -p /home/oracle/jail/usr/bin
mkdir -p /home/oracle/jail/usr/lib64
```

4. Create the symbolic links that link to the binary and library directories in the same manner as the symbolic links that exists in the real root directory.

```bash
ln -s /home/oracle/jail/usr/bin /home/oracle/jail/bin
ln -s /home/oracle/jail/usr/lib64 /home/oracle/jail/lib64
```

5. Copy the binary and the shared libraries to the directories under the chroot jail's root directory, for example:

```bash
cp /usr/bin/bash /home/oracle/jail/usr/bin
cp /usr/lib64/{libtinfo.so.5,libdl.so.2,libc.so.6,ld-linux-x86-64.so.2} /home/oracle/jail/usr/lib64
```

4.5.3 Using a Chroot Jail

To run a command in a chroot jail in an existing directory (chroot_jail), use the following command:

```bash
chroot chroot_jail command
```

If you do not specify a command argument, chroot runs the value of the SHELL environment variable or /usr/bin/sh if SHELL is not set.

For example, to run /usr/bin/bash in a chroot jail (having previously set it up as described in Section 4.5.2, “Creating a Chroot Jail”):

```bash
chroot /home/oracle/jail
bash-4.2# pwd
/
bash-4.2# ls
bash: ls: command not found
bash-4.2# exit
exit
#
```

You can run built-in shell commands such as pwd in this shell, but not other commands unless you have copied their binaries and any required shared libraries to the chroot jail.

For more information, see the chroot(1) manual page.

4.6 Configuring and Using Software Management

Oracle Linux provides the yum command that you can use to install or upgrade RPM packages. The main benefit of using yum is that it also installs or upgrades any package dependencies. The yum command downloads packages from repositories such as those that are available on the Oracle Linux yum server and the Unbreakable Linux Network (ULN), but you can also set up your own repositories on systems that do not have Internet access.

For more information about managing software with the yum utility, see Oracle® Linux 7: Managing Software.
The Oracle Linux yum server is a convenient way to install Oracle Linux packages rather than installing them from installation media. You can also subscribe to the Oracle Linux errata mailing list, and obtain bug fixes, security fixes and enhancements. You can access the server at https://yum.oracle.com/.

If you have registered your system with ULN, you can use `yum` with the ULN channels to maintain the software on your system.

You can use the RPM package manager to verify the integrity of installed system files. The `rpm -V package` and `rpm -VF filename` commands verify packages and files respectively by comparing them with package metadata in the RPM database. The verify operation compares file size, MD5 sum, permissions, type, owner, and group and displays any discrepancies. To see more verbose information, specify the `-v` option. You can use the `rpm -qa` command to verify the integrity of all the packages that are installed on a system, for example:

```bash
for i in `rpm -qa`
> do
> rpm -V $i > .tmp || echo -e "\nDiscepancies for package $i" && cat .tmp
> done
```

Discepancies for package gdm-2.30.4-33.0.1.el6_2.x86_64
.M....G. /var/log/gdm
.M....... /var/run/gdm
missing /var/run/gdm/greeter

Discepancies for package libgcj-4.4.6-4.el6.x86_64
..5....T. /usr/lib64/security/classpath.security

Discepancies for package sudo-1.7.4p5-12.el6_3.x86_64
S.5....T. /etc/sudoers

Discepancies for package libcgroup-0.37-4.el6.x86_64
S.5....T. /etc/cgconfig.conf

Discepancies for package yum-3.2.29-30.0.1.el6.noarch
.......T. /etc/yum.conf

Discepancies for package kernel-2.6.32-279.el6.x86_64
.......T. /etc/ld.so.conf.d/kernel-2.6.32-279.el6.x86_64.conf
...

A string of character codes indicates the discrepancies between an installed file and the metadata for that file. The following table describes the meanings of the character codes in the output of the `rpm -V` command.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description of Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>MD5 sum.</td>
</tr>
<tr>
<td>D</td>
<td>Device major or minor number.</td>
</tr>
<tr>
<td>G</td>
<td>Group ownership.</td>
</tr>
<tr>
<td>L</td>
<td>Symbolic link path.</td>
</tr>
<tr>
<td>M</td>
<td>Mode including permissions or file type.</td>
</tr>
<tr>
<td>P</td>
<td>Capabilities.</td>
</tr>
<tr>
<td>S</td>
<td>File size.</td>
</tr>
<tr>
<td>T</td>
<td>Modification time.</td>
</tr>
<tr>
<td>U</td>
<td>User ownership.</td>
</tr>
<tr>
<td>.</td>
<td>None (test passed).</td>
</tr>
</tbody>
</table>
4.6.1 Configuring Update and Patch Management

Effective security practice relies on keeping system software up to date. It is therefore essential to apply system security updates as soon as they are published. It is strongly recommended that you register every IT system with an update management infrastructure. For Oracle Linux systems, the Unbreakable Linux Network (ULN) tracks system software release levels, and advises you as soon as critical updates become available. Updates and errata are also available at no charge from the Oracle Linux yum server.

Updating the kernel or core system libraries typically requires a system reboot. In mission-critical enterprise and cloud environments, crucial updates might not get installed until you reboot the systems during a scheduled maintenance window. As a result, systems that support critical business applications could be running while they are not protected from known vulnerabilities. To tackle this problem, Oracle Linux Premier Support includes access to Oracle Ksplice, an innovative technology that enables you to apply security updates, patches, and critical bug fixes to the running kernel without requiring a reboot. Ksplice improves the security, reliability, and availability of Oracle Linux systems by enabling zero downtime updates, helping to keep systems up to date without downtime or service disruption.

For more information about Ksplice, see https://oss.oracle.com/ksplice/docs/ksplice-quickstart.pdf.

4.6.2 Installing and Using the Yum Security Plugin

The yum-plugin-security package enables you to use the yum command to obtain a list of all of the errata that are available for your system, including security updates. You can also use Oracle Enterprise Manager 12c Cloud Control or management tools such as Katello, Pulp, Red Hat Satellite, Spacewalk, and SUSE Manager to extract and display information about errata.
Installing and Using the Yum Security Plugin

To install the `yum-plugin-security` package, enter the following command:

```bash
yum install yum-plugin-security
```

To list the errata that are available for your system, enter:

```bash
yum updateinfo list
```

The output from the command sorts the available errata in order of their IDs, and it also specifies whether each erratum is a security patch (`severity/Sec.`), a bug fix (`bugfix`), or a feature enhancement (`enhancement`). Security patches are listed by their severity: Important, Moderate, or Low.

You can use the `--sec-severity` option to filter the security errata by severity, for example:

```bash
yum updateinfo list --sec-severity=Moderate
```

You can use the `--cve` option to display the errata that correspond to a specified CVE, for example:

```bash
yum updateinfo list --cve CVE-2012-2677
```

Similarly, the keywords `bugfix, enhancement`, and `security` filter the list for all bug fixes, enhancements, and security errata.

You can use the `--cve` option to display the errata that correspond to a specified CVE, for example:
Installing and Using the Yum Security Plugin

ELSA-2013-0668 Moderate/Sec. boost-date-time-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-devel-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-filesystem-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-graph-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-iostreams-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-program-options-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-python-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-regex-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-serialization-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-signals-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-system-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-test-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-wave-1.41.0-15.el6_4.x86_64

updateinfo list done

To display more information, specify info instead of list, for example:

```
yum updateinfo info --cve CVE-2012-2677
```

To update all packages for which security-related errata are available to the latest versions of the packages, even if those packages include bug fixes or new features but not security errata, enter:

```
yum --security update
```

To update all packages to the latest versions that contain security errata, ignoring any newer packages that do not contain security errata, enter:

```
yum --security update-minimal
```

To update all kernel packages to the latest versions that contain security errata, enter:

```
yum --security update-minimal kernel*
```

You can also update only those packages that correspond to a CVE or erratum, for example:

```
yum update --cve CVE-2012-3954
```
Some updates might require you to reboot the system. By default, the boot manager will automatically enable the most recent kernel version.

For more information, see the `yum-security(8)` manual page.

### 4.7 Configuring and Using Data Encryption

You can use data encryption to protect data that is stored or that is being transmitted. Data on storage devices and media can be at risk of theft or device loss. Data being transmitted over local area networks and the Internet can be intercepted or altered. In addition, data encryption to protect privacy and personal data is increasingly being made a mandatory requirement of corporate security policy and by governmental regulations (for example, HIPAA, GLBA, SOX, and PCI DSS).

Oracle Linux systems provide the following strategies for protecting data:

- When installing systems and application software, only accept RPM packages that have been digitally signed. To ensure that downloaded software packages are signed, set `gpgcheck=1` in the repository configuration file and import the GPG key provided by the software supplier. You can also install RPMs using the Secure Sockets Layer (SSL) protocol, which uses encryption to protect the communications channel.

- To protect against data theft, consider using full-disk encryption, especially on laptops, external hard drives, or removable devices such as USB memory sticks. Oracle Linux supports block device encryption using the `dm-crypt` kernel module and the Linux Unified Key Setup (LUKS) format. The `cryptsetup` administration command is available in the `cryptsetup` package. These technologies encrypt device partitions so that the data is inaccessible when a system is turned off. When the system boots and you supply the appropriate passphrase, the device is decrypted and its data is accessible. For more information, see the `cryptsetup(8)` manual page.

- Oracle Linux uses encryption to support Virtual Private Networks (VPN), Secure Shell (`ssh`), and password protection. By default, Oracle Linux uses a strong password hashing algorithm (SHA-512) and stores hashed passwords in the `/etc/shadow` file.

- Oracle Linux takes advantage of hardware-accelerated encryption on Intel CPUs that support the Advanced Encryption Standard New Instructions (AES-NI) instruction set, which speeds up the execution of AES algorithms as well as SHA-1 and RC4 algorithms on x86 and x86_64 architectures.

### 4.8 Configuring and Using Certificate Management

Public Key Infrastructure (PKI) provides the tools and framework to encrypt and validate network connections. It also provides an authentication mechanism in the form of signed certificates. Managing your certificates and implementing strong public key infrastructure is an important part of maintaining good security within your organization. For more information, see *Oracle® Linux: Managing Certificates and Public Key Infrastructure*.

### 4.9 Configuring and Using Authentication

Authentication is a method of verifying the identity of users. The operating system authenticates user names and passwords by comparing this information to data stored on the system. If the login credentials match the data, then access to the system is opened. For more information, see *Oracle® Linux 7: Setting Up System Accounts and Authentication*. 
4.10 Configuring and Using Pluggable Authentication Modules

The Pluggable Authentication Modules (PAM) feature is an authentication mechanism for applications to verify user credentials. For more information, see Oracle® Linux 7: Setting Up System Accounts and Authentication.

4.11 Configuring and Using Access Control Lists

POSIX Access Control Lists (ACLs) provide a richer access control model than traditional UNIX Discretionary Access Control (DAC) that sets read, write, and execute permissions for the owner, group, and all other system users. You can configure ACLs that define access rights for more than just a single user or group, and specify rights for programs, processes, files, and directories. If you set a default ACL on a directory, its descendents inherit the same rights automatically. The kernel provides ACL support for ext3, ext4, and NFS-exported file systems.

The following are examples of setting and displaying ACLs for directories and files.

Grant read access to a file or directory by a user.

```bash
setfacl -m u:user:r file
```

Display the name, owner, group, and ACL for a file or directory.

```bash
getfacl file
```

Remove write access to a file for all groups and users by modifying the effective rights mask rather than the ACL.

```bash
setfacl -m m::rx file
```

Remove the entry for a group from the ACL of a file.

```bash
setfacl -x g:group file
```

Copy the ACL of file `f1` to file `f2`.

```bash
getfacl f1 | setfacl --set-file=- f2
```

Promote the ACL settings of a directory to default ACL settings that can be inherited.

```bash
getfacl --access dir | setfacl -d -M- dir
```

For more information about how to manage ACLs, see the `setfacl(1)` and `getfacl(1)` manual pages.

4.12 Configuring and Using SELinux

SELinux is a kernel module that enforces and implements access control policies on Oracle Linux systems to protect services and files from malicious or unauthorized access. Use the SELinux user space tools to manage policies and to resolve access issues. For more information, see Oracle® Linux: Administering SELinux for more info

4.13 Configuring and Using Auditing

Auditing collects data at the kernel level that you can analyze to identify unauthorized activity. Auditing collects more data in greater detail than system logging, but most audited events are uninteresting and insignificant. The process of examining audit trails to locate events of interest can be a significant challenge that you will probably need to automate.
Configuring and Using Auditing

The audit configuration file, `/etc/audit/auditd.conf`, defines the data retention policy, the maximum size of the audit volume, the action to take if the capacity of the audit volume is exceeded, and the locations of local and remote audit trail volumes. The default audit trail volume is `/var/log/audit/audit.log`. For more information, see the `auditd.conf(5)` manual page.

By default, auditing captures specific events such as system logins, modifications to accounts, and `sudo` actions. You can also configure auditing to capture detailed system call activity or modifications to certain files. The kernel audit daemon (auditd) records the events that you configure, including the event type, a time stamp, the associated user ID, and success or failure of the system call.

The entries in the audit rules file, `/etc/audit/audit.rules`, determine which events are audited. Each rule is a command-line option that is passed to the `auditctl` command. You should typically configure this file to match your site's security policy.

The following are examples of rules that you might set in the `/etc/audit/audit.rules` file.

Record all unsuccessful exits from `open` and `truncate` system calls for files in the `/etc` directory hierarchy.

```
-a exit,always -S open -S truncate -F /etc -F success=0
```

Record all files opened by a user with UID 10.

```
-a exit,always -S open -F uid=10
```

Record all files that have been written to or that have their attributes changed by any user who originally logged in with a UID of 500 or greater.

```
-a exit,always -S open -F auid>=500 -F perm=wa
```

Record requests for write or file attribute change access to `/etc/sudoers`, and tag such record with the string `sudoers-change`.

```
-w /etc/sudoers -p wa -k sudoers-change
```

Record requests for write and file attribute change access to the `/etc` directory hierarchy.

```
-w /etc/ -p wa
```

Require a reboot after changing the audit configuration. If specified, this rule should appear at the end of the `/etc/audit/audit.rules` file.

```
-e 2
```

You can find more examples of audit rules in `/usr/share/doc/audit-version/stig.rules`, and in the `auditctl(8)` and `audit.rules(7)` manual pages.

Stringent auditing requirements can impose a significant performance overhead and generate large amounts of audit data. Some site security policies stipulate that a system must shut down if events cannot be recorded because the audit volumes have exceeded their capacity. As a general rule, you should direct audit data to separate file systems in rotation to prevent overspill and to facilitate backups.

You can use the `–k` option to tag audit records so that you can locate them more easily in an audit volume with the `ausearch` command. For example, to examine records tagged with the string `sudoers-change`, you would enter:

```
ausearch –k sudoers-change
```

The `aureport` command generates summaries of audit data. You can set up `cron` jobs that run `aureport` periodically to generate reports of interest. For example, the following command generates a
reports that shows every login event from 1 second after midnight on the previous day until the current time:

```
aureport -l -i -ts yesterday -te now
```

For more information, see the `auserarch(8)` and `aureport(8)` manual pages.

4.14 Configuring and Using System Logging

The log files contain messages about the system, kernel, services, and applications. The `journald` logging daemon, which is part of `systemd`, records system messages in non-persistent journal files in memory and in the `/run/log/journal` directory. `journald` forwards messages to the system logging daemon, `rsyslog`. As files in `/run` are volatile, the log data is lost after a reboot unless you create the directory `/var/log/journal`. You can use the `journalctl` command to query the journal logs.

For more information, see the `journalctl(1)` and `systemd-journald.service(8)` manual pages.

The configuration file for `rsyslogd` is `/etc/rsyslog.conf`, which contains global directives, module directives, and rules. By default, `rsyslog` processes and archives only `syslog` messages. If required, you can configure `rsyslog` to archive any other messages that `journald` forwards, including kernel, boot, `initrd`, `stdout`, and `stderr` messages.

Global directives specify configuration options that apply to the `rsyslogd` daemon. All configuration directives must start with a dollar sign (`$`) and only one directive can be specified on each line. The following example specifies the maximum size of the `rsyslog` message queue:

```
$MainMsgQueueSize 50000
```

The available configuration directives are described in the file `/usr/share/doc/rsyslog-version-number/rsyslog_conf_global.html`.

The design of `rsyslog` allows its functionality to be dynamically loaded from modules, which provide configuration directives. To load a module, specify the following directive:

```
$ModLoad MODULE_name
```

Modules have the following main categories:

- Input modules gather messages from various sources. Input module names always start with the `im` prefix (examples include `imfile` and `imrelp`).
- Filter modules allow `rsyslogd` to filter messages according to specified rules. The name of a filter module always starts with the `fm` prefix.
- Library modules provide functionality for other loadable modules. `rsyslogd` loads library modules automatically when required. You cannot configure the loading of library modules.
- Output modules provide the facility to store messages in a database or on other servers in a network, or to encrypt them. Output module names always starts with the `om` prefix (examples include `omsnmp` and `omrelp`)
- Message modification modules change the content of an `rsyslog` message.
- Parser modules allow `rsyslogd` to parse the message content of messages that it receives. The name of a parser module always starts with the `pm` prefix.
- String generator modules generate strings based on the content of messages in cooperation with `rsyslog`'s template feature. The name of a string generator module always starts with the `sm` prefix.
Input modules receive messages, which pass them to one or more parser modules. A parser module creates a representation of a message in memory, possibly modifying the message, and passes the internal representation to output modules, which can also modify the content before outputting the message.

A description of the available modules can be found in RSyslog documentation at https://www.rsyslog.com/doc/.

An rsyslog rule consists of a filter part, which selects a subset of messages, and an action part, which specifies what to do with the selected messages. To define a rule in the /etc/rsyslog.conf configuration file, specify a filter and an action on a single line, separated by one or more tabs or spaces.

You can configure rsyslog to filter messages according to various properties. The most commonly used filters are:

- Expression-based filters, written in the rsyslog scripting language, select messages according to arithmetic, boolean, or string values.
- Facility/priority-based filters filter messages based on facility and priority values that take the form facility.priority.
- Property-based filters filter messages by properties such as timegenerated or syslogtag.

The following table lists the available facility keywords for facility/priority-based filters:

<table>
<thead>
<tr>
<th>Facility Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth, authpriv</td>
<td>Security, authentication, or authorization messages.</td>
</tr>
<tr>
<td>cron</td>
<td>crond messages.</td>
</tr>
<tr>
<td>daemon</td>
<td>Messages from system daemons other than crond and rsyslogd.</td>
</tr>
<tr>
<td>kern</td>
<td>Kernel messages.</td>
</tr>
<tr>
<td>lpr</td>
<td>Line printer subsystem.</td>
</tr>
<tr>
<td>mail</td>
<td>Mail system.</td>
</tr>
<tr>
<td>news</td>
<td>Network news subsystem.</td>
</tr>
<tr>
<td>syslog</td>
<td>Messages generated internally by rsyslogd.</td>
</tr>
<tr>
<td>user</td>
<td>User-level messages.</td>
</tr>
<tr>
<td>UUCP</td>
<td>UUCP subsystem.</td>
</tr>
<tr>
<td>local0-local7</td>
<td>Local use.</td>
</tr>
</tbody>
</table>

The following table lists the available priority keywords for facility/priority-based filters, in ascending order of importance:

<table>
<thead>
<tr>
<th>Priority Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug</td>
<td>Debug-level messages.</td>
</tr>
<tr>
<td>info</td>
<td>Informational messages.</td>
</tr>
<tr>
<td>notice</td>
<td>Normal but significant condition.</td>
</tr>
<tr>
<td>warning</td>
<td>Warning conditions.</td>
</tr>
<tr>
<td>err</td>
<td>Error conditions.</td>
</tr>
<tr>
<td>crit</td>
<td>Critical conditions.</td>
</tr>
<tr>
<td>alert</td>
<td>Immediate action required.</td>
</tr>
</tbody>
</table>
### Priority Keyword | Description
---|---
emerg | System is unstable.

All messages of the specified priority and higher are logged according to the specified action. An asterisk (*) wildcard specifies all facilities or priorities. Separate the names of multiple facilities and priorities on a line with commas (,). Separate multiple filters on one line with semicolons (;). Precede a priority with an exclamation mark (!) to select all messages except those with that priority.

The following are examples of facility/priority-based filters.

Select all kernel messages with any priority.

```
kern.*
```

Select all mail messages with `crit` or higher priority.

```
mail.crit
```

Select all `daemon` and `kern` messages with `warning` or `err` priority.

```
daemon,kern.warning,err
```

Select all `cron` messages except those with `info` or `debug` priority.

```
cron.!info,!debug
```

By default, `/etc/rsyslog.conf` includes the following rules:

```
Log all kernel messages to the console.
Logging much else clutters up the screen.
#kern.* /dev/console

Log anything (except mail) of level info or higher.
Don't log private authentication messages!
*.info;mail.none;authpriv.none;cron.none /var/log/messages

The authpriv file has restricted access.
authpriv.* /var/log/secure

Log all the mail messages in one place.
mail.* -/var/log/maillog

Log cron stuff
cron.* /var/log/cron

Everybody gets emergency messages
*.emerg *

Save news errors of level crit and higher in a special file.
uucp,news.crit /var/log/spooler

Save boot messages also to boot.log
local7.* /var/log/boot.boot.log
```

You can send the logs to a central log server over TCP by adding the following entry to the `forwarding rules` section of `/etc/rsyslog.conf` on each log client:

```
., @@logsvr:port
```

In the previous example, `logsvr` is the domain name or IP address of the log server and `port` is the port number (usually, 514).

On the log server, add the following entry to the `MODULES` section of `/etc/rsyslog.conf`:
4.14.1 Configuring Logwatch

Logwatch is a monitoring system that you can configure to report on areas of interest in the system logs. After you install the logwatch package, the /etc/cron.daily/0logwatch script runs every night and sends an email report to root. You can set local configuration options in /etc/logwatch/conf/logwatch.conf that override the main configuration file /usr/share/logwatch/default.conf/logwatch.conf, including:

- Log files to monitor, including log files that are stored for other hosts.
- Names of services to monitor, or to be excluded from monitoring.
- Level of detail to report.
- User to be sent an emailed report.

You can also run logwatch directly from the command line.

For more information, see the logwatch(8) manual page.

4.15 Configuring and Using Process Accounting

The psacct package implements the process accounting service in addition to the following utilities that you can use to monitor process activities:

- **ac**: Displays connection times in hours for a user as recorded in the wtmp file (by default, /var/log/wtmp).
- **accton**: Turns on process accounting to the specified file. If you do not specify a file name argument, process accounting is stopped. The default system accounting file is /var/account/pacct.
- **lastcomm**: Displays information about previously executed commands as recorded in the system accounting file.
- **sa**: Summarizes information about previously executed commands as recorded in the system accounting file.
4.16 Configuring and Using Linux Containers

The Linux Containers (LXC) feature provides a way to isolate a group of processes from other processes that are running on an Oracle Linux system. LXC is a lightweight operating system virtualization technology that uses the control group (cgroup) feature to provide resource management and namespace isolation in a similar manner to chroot. Within a container, processes can have their own private view of the operating system with its own process ID space, file system structure, and network interfaces.

See the following documentation:

• See Oracle® Linux 7: Working With LXC for more information about how to configure and use Linux Containers.

• Oracle Linux Cloud Native Environment documentation at https://docs.oracle.com/en/operating-systems/olcne/.

4.17 Configuring and Using Kernel Security Mechanisms

The Linux kernel features some additional security mechanisms that you can use to enhance the security of a system. These mechanisms randomize the layout of a process's address space or prevent code from being executed in non-executable memory.

4.17.1 Address Space Layout Randomization

Address Space Layout Randomization (ASLR) can help defeat certain types of buffer overflow attacks. ASLR can locate the base, libraries, heap, and stack at random positions in a process's address space, which makes it difficult for an attacking program to predict the memory address of the next instruction. ASLR is built into the Linux kernel and is controlled by the parameter /proc/sys/kernel/randomize_va_space. The `randomize_va_space` parameter can take the following values:

0 Disable ASLR. This setting is applied if the kernel is booted with the norandmaps boot parameter.

1 Randomize the positions of the stack, virtual dynamic shared object (VDSO) page, and shared memory regions. The base address of the data segment is located immediately after the end of the executable code segment.

2 Randomize the positions of the stack, VDSO page, shared memory regions, and the data segment. This is the default setting.

You can change the setting temporarily by writing a new value to `/proc/sys/kernel/randomize_va_space`, for example:

```
echo value > /proc/sys/kernel/randomize_va_space
```

To change the value permanently, add the setting to `/etc/sysctl.conf`, for example:
kernel.randomize_va_space = value

Then, run the `sysctl -p` command.

If you change the value of `randomize_va_space`, you should test your application stack to ensure that it is compatible with the new setting.

If necessary, you can disable ASLR for a specific program and its child processes by using the following command:

```
% setarch `uname -m` -R program [args ...]
```

### 4.17.2 Data Execution Prevention

The Data Execution Prevention (DEP) feature prevents an application or service from executing code in a non-executable memory region. Hardware-enforced DEP works in conjunction with the NX (Never eXecute) bit on compatible CPUs. Oracle Linux does not emulate the NX bit in software for CPUs that do not implement the NX bit in hardware.

**Note**

You cannot disable the DEP feature.

### 4.17.3 Position Independent Executables

The Position Independent Executables (PIE) feature loads executable binaries at random memory addresses so that the kernel can disallow text relocation. To generate a position-independent binary:

- Specify the `--pie` option to `gcc` when compiling.
- Specify the `--pie` option to `ld` when linking.

To test whether a binary or library is relocatable, use the following command:

```
readelf -d elfname | grep TEXTREL
```
Chapter 5 Using OpenSCAP to Scan for Vulnerabilities

Table of Contents

5.1 About SCAP ................................................................. 51
5.2 Installing the SCAP Packages ........................................ 52
5.3 About the oscap Command ............................................ 52
5.4 Displaying the Available SCAP Information ....................... 52
5.5 Displaying Information About a SCAP File ....................... 54
5.6 Displaying Available Profiles ......................................... 54
5.7 Validating OVAL and XCCDF Files ................................. 55
5.8 Running a Scan Against a Profile .................................... 55
5.9 Generating a Full Security Guide ..................................... 57
5.10 Running an OVAL Auditing Scan ..................................... 58

This chapter describes how to use OpenSCAP to scan your Oracle Linux system for security vulnerabilities.

5.1 About SCAP

The Security Content Automation Protocol (SCAP) provides an automated, standardized methodology for managing system security, including measuring and managing system vulnerability, and evaluating policy compliance against security standards such as the Federal Information Security Management Act (FISMA). The U.S. government content repository for SCAP standards is the National Vulnerability Database (NVD), which is managed by the National Institute of Standards and Technology (NIST).

Oracle Linux provides the following SCAP packages for Oracle Linux 7:

- **openscap-utils**
  The **openscap-utils** package contains command-line tools that use the OpenSCAP library. This package previously included the oscap command-line configuration and vulnerability scanner, but this is now made available separately in the **openscap-scanner** package. The openscap-scanner package is installed as a dependency when you install the openscap-utils package.

- **openscap-scanner**
  Provides the oscap command-line configuration and vulnerability scanner, which can perform compliance checking against SCAP content including the SCAP Security Guide. This is a dependency of the openscap-utils package.

- **openscap**
  Provides the OpenSCAP open-source libraries for generating SCAP-compliance documentation. OpenSCAP received SCAP 1.2 certification from NIST in April 2014.

- **scap-security-guide**
  Provides system-hardening guidance in SCAP format, including links to government requirements. The guide provides security profiles that you can modify to comply with the security policies that you have established for your site. Starting from version v0.1.46-11.0.2.el7, a stig profile is included in this package to align with the DISA STIG for Oracle Linux 7 V1R1 published at https://public.cyber.mil/stigs/. See Section 5.6, “Displaying Available Profiles”.


5.2 Installing the SCAP Packages

Use the `yum` command to install the SCAP packages from the `ol7_x86_64_latest` channel on ULN or the `ol7_latest` repository on the Oracle Linux yum server:

```
yum install scap-security-guide
```

5.3 About the oscap Command

The `oscap` command has the following general syntax:

```
oscap [options] module operation [operation_options_and_arguments]
```

`oscap` supports the following module types:

- **cpe**: Performs operations using a Common Platform Enumeration (CPE) file.
- **cve**: Performs operations using a Common Vulnerabilities and Exposures (CVE) file.
- **cvss**: Performs operations using a Common Vulnerability Scoring System (CVSS) file.
- **ds**: Performs operations using a SCAP Data Stream (DS).
- **info**: Determines a file's type and prints information about the file.
- **oval**: Performs operations using an Open Vulnerability and Assessment Language (OVAL) file.
- **xccdf**: Performs operations using a file in eXtensible Configuration Checklist Description Format (XCCDF).

The `info`, `oval`, and `xccdf` modules are the most generally useful for scanning Oracle Linux systems.

The operations that `oscap` can perform depend on the module type. The following operations are the most generally useful with the `oval` and `xccdf` modules on Oracle Linux systems:

- **eval**: For an OVAL file, `oscap` probes the system, evaluates each definition in the file, and prints the results to the standard output.
  
  For a specified profile in an XCCDF file, `oscap` tests the system against each rule in the file and prints the results to the standard output.

- **generate**: For an OVAL XML results file, `generate report` converts the specified file to an HTML report.
  
  For an XCCDF file, `generate guide` outputs a full security guide for a specified profile.

- **validate**: Validates an OVAL or XCCDF file against an XML schema to check for errors.

For more information, see the `oscap(8)` manual page.

5.4 Displaying the Available SCAP Information

To display the supported SCAP specifications, any loaded plug-in capabilities, the locations of schema, Common Platform Enumeration (CPE), and probe files, inbuilt CPE names, and supported Open
Displaying the Available SCAP Information

Vulnerability and Assessment Language (OVAL) objects and associated SCAP probes, use the `oscap -V` command, for example:

```bash
oscap -V
OpenSCAP command line tool (oscap) 1.2.10

==== Supported specifications ====
XCCDF Version: 1.2
OVAL Version: 5.11.1
CPE Version: 2.3
CVSS Version: 2.0
CVE Version: 2.0
Asset Identification Version: 1.1
Asset Reporting Format Version: 1.1

==== Capabilities added by auto-loaded plugins ====
No plugins have been auto-loaded...

==== Paths ====
Schema files: /usr/share/openscap/schemas
Default CPE files: /usr/share/openscap/cpe
Probes: /usr/libexec/openscap

==== Inbuilt CPE names ====
Red Hat Enterprise Linux - cpe:/o:redhat:enterprise_linux
Red Hat Enterprise Linux 5 - cpe:/o:redhat:enterprise_linux:5
Red Hat Enterprise Linux 6 - cpe:/o:redhat:enterprise_linux:6
Red Hat Enterprise Linux 7 - cpe:/o:redhat:enterprise_linux:7
Community Enterprise Operating System 5 - cpe:/o:centos:centos:5
Community Enterprise Operating System 6 - cpe:/o:centos:centos:6
Community Enterprise Operating System 7 - cpe:/o:centos:centos:7
Scientific Linux 5 - cpe:/o:scientificlinux:scientificlinux:5
Scientific Linux 6 - cpe:/o:scientificlinux:scientificlinux:6
Scientific Linux 7 - cpe:/o:scientificlinux:scientificlinux:7
Fedora 16 - cpe:/o:fedoraproject:fedora:16
Fedora 17 - cpe:/o:fedoraproject:fedora:17
Fedora 18 - cpe:/o:fedoraproject:fedora:18
Fedora 19 - cpe:/o:fedoraproject:fedora:19
Fedora 20 - cpe:/o:fedoraproject:fedora:20
Fedora 21 - cpe:/o:fedoraproject:fedora:21
Fedora 22 - cpe:/o:fedoraproject:fedora:22
Fedora 23 - cpe:/o:fedoraproject:fedora:23
Fedora 24 - cpe:/o:fedoraproject:fedora:24
Fedora 25 - cpe:/o:fedoraproject:fedora:25
SUSE Linux Enterprise all versions - cpe:/o:suse:sle
SUSE Linux Enterprise Server 10 - cpe:/o:suse:sles:10
SUSE Linux Enterprise Desktop 10 - cpe:/o:suse:sled:10
SUSE Linux Enterprise Server 11 - cpe:/o:suse:sles:11
SUSE Linux Enterprise Desktop 11 - cpe:/o:suse:sled:11
SUSE Linux Enterprise Server 12 - cpe:/o:suse:sles:12
SUSE Linux Enterprise Desktop 12 - cpe:/o:suse:sled:12
openSUSE 11.4 - cpe:/o:opensuse:opensuse:11.4
openSUSE 13.1 - cpe:/o:opensuse:opensuse:13.1
openSUSE 13.2 - cpe:/o:opensuse:opensuse:13.2
openSUSE 42.1 - cpe:/o:novell:leap:42.1
openSUSE All Versions - cpe:/o:opensuse:openSUSE
Red Hat Enterprise Linux Optional Productivity Applications - cpe:/a:redhat:rhel_productivity
Red Hat Enterprise Linux Optional Productivity Applications 5 - cpe:/a:redhat:rhel_productivity:5
Oracle Linux 5 - cpe:/o:oracle:linux:5
Oracle Linux 6 - cpe:/o:oracle:linux:6
Oracle Linux 7 - cpe:/o:oracle:linux:7

==== Supported OVAL objects and associated OpenSCAP probes ====

- `system_info`: `probe_system_info`
- `family`: `probe_family`
- `filehash`: `probe_filehash`
5.5 Displaying Information About a SCAP File

To display information about a SCAP file, use the `oscap info` command, for example:

```
# oscap info com.oracle.elsa-2017.xml
```

Document type: OVAL Definitions
OVAL version: 5.3
Generated: 2017-06-01T00:00:00
Imported: 2017-06-13T23:12:06

This output shows that the file `com.oracle.elsa-2017.xml` is an OVAL definitions file.

5.6 Displaying Available Profiles

You can use the `oscap info` command to display the profiles that are supported by a checklist file such as the SCAP Security Guide, for example:

```
# oscap info "/usr/share/xml/scap/ssg/content/ssg-ol7-xccdf.xml"
```

Document type: XCCDF Checklist
Checklist version: 1.1
Status: draft
Generated: 2020-04-21
Resolved: true
Profiles:
Title: DISA STIG for Oracle Linux 7
Id: stig
Referenced check files:
 ssg-ol7-oval.xml
 ssg-ol7-ocil.xml
 system: http://scap.nist.gov/schema/ocil/2
Validating OVAL and XCCDF Files

Note

Other profiles are available and located in a different set of files, such as `ssg-rhel7-*` files. For example, to view other profiles, replace `ssg-ol7-xccdf.xml` in the command with `ssg-rhel7-xccdf.xml`.

This output shows that `ssg-ol7-xccdf.xml` provides the DISA STIG for Oracle Linux 7 (`stig`). A profile contains generic security recommendations that apply to all Oracle Linux installations and additional security recommendations that are specific to the intended usage of a system.

To obtain information about a specific profile, specify the `--profile` option.

```
# oscap info --profile stig /usr/share/xml/scap/ssg/content/ssg-ol7-xccdf.xml
```

This DISA STIG profile can be used to check compliance with the published Defense Information Systems Agency (DISA) Security Technical Implementation Guide (STIG) for Oracle Linux. For more information, see https://public.cyber.mil/stigs/.

Note

Starting from version v0.1.46-11.0.2.el7 the DISA STIG profile and it's checklist definition is deprecated in the `ssg-rhel7-xccdf.xml` and `ssg-rhel7-ds.xml` files. The `scap-security-guide` package now provides a profile aligned to DISA STIG for Oracle Linux V1R1 and the profile is available in the `ssg-ol7-xccdf.xml` and `ssg-ol7-ds.xml` files.

Note that the provided profiles in Oracle Linux 7 might not all be appropriate to your system. However, you can use them to create new profiles that test compliance with your site’s security policies.

5.7 Validating OVAL and XCCDF Files

To validate an OVAL or XCCDF file against its schema, use the `oscap validate` command and examine the exit code, for example:

```
# oscap oval validate com.oracle.elsa-2017.xml
&& echo "ok" || echo "exit code = $? not ok"
ok
# oscap xccdf validate /usr/share/xml/scap/ssg/content/ssg-ol7-xccdf.xml
&& echo "ok" || echo "exit code = $? not ok"
ok
```

An exit code of 0 indicates that the file is valid, 1 indicates an error prevented validation, and 2 indicates that the file is invalid. Error messages are written to the standard error output.

5.8 Running a Scan Against a Profile

To scan a system against an XCCDF profile, use the `oscap xccdf eval` command, for example:
This example scan performs the scan against the stig profile of the ssg-ol7-xccdf.xml checklist using the ssg-ol7-cpe-dictionary.xml CPE dictionary, and outputs the XML results and HTML report files to /tmp and /var/www/html respectively. Any rule in a profile that results in a fail potentially requires the system to be reconfigured.

You can view the HTML report in a browser as shown in Figure 5.1.
5.9 Generating a Full Security Guide

To create a full security guide for a system based on an XCCDF profile, use the `oscap xccdf generate guide` command, for example:

```
# oscap xccdf generate guide --profile stig  
--cpe /usr/share/xml/scap/ssg/content/ssg-ol7-cpe-dictionary.xml  
/usr/share/xml/scap/ssg/content/ssg-ol7-xccdf.xml > /var/www/html/security_guide.html
```

You can view the security guide in a browser as shown in Figure 5.2.
Oracle provides OVAL definitions for all errata on ULN. You can use these definitions to ensure that all applicable errata are installed on an Oracle Linux system. For example, Spacewalk allows you to schedule regular auditing scans.

The following OVAL definition files are available:

- com.oracle.elsa-cve.xml: OVAL definition file for a single ELSA security patch. For example, com.oracle.elsa-20150377.xml relates to ELSA-2015-0377.
Running an OVAL Auditing Scan

com.oracle.elsa-year.xml.bz2
Compressed archive of OVAL definition files for all ELSA patches released in a given *year*.

com.oracle.else-all.xml.bz2
Compressed archive of all applicable OVAL definition files for all available ELSA patches.

To download an OVAL definitions file and perform an audit on a system:

1. **Use `wget` or a similar command to download a definitions file from** https://linux.oracle.com/security, **for example:**
   ```
   ```

2. **In the definitions file is a compressed `bz2` archive, use `bzip2` to extract the OVAL definitions file:**
   ```
   # bzip2 -d com.oracle.elsa-2017.xml.bz2
   ```

3. **Use `oscap oval eval` to audit a system using an OVAL definitions file, for example:**
   ```
   # oscap oval eval --results /tmp/elsa-results-oval.xml \
   --report /var/www/html/elsa-report-oval.html \
   /tmp/com.oracle.elsa-2017.xml
   Definition oval:com.oracle.elsa:def:20173580: false
   Definition oval:com.oracle.elsa:def:20173579: true
   Definition oval:com.oracle.elsa:def:20173576: false
   Definition oval:com.oracle.elsa:def:20173575: false
   Definition oval:com.oracle.elsa:def:20173574: true
   Definition oval:com.oracle.elsa:def:20173567: false
   Definition oval:com.oracle.elsa:def:20173566: false
   Definition oval:com.oracle.elsa:def:20173565: true
   Definition oval:com.oracle.elsa:def:20173564: false
   Definition oval:com.oracle.elsa:def:20173539: true
   Definition oval:com.oracle.elsa:def:20173538: false
   Definition oval:com.oracle.elsa:def:20173537: false
   ...
   Evaluation done.
   ```

 This example scan uses the OVAL definitions in **com.oracle.elsa-2017.xml** and outputs the XML results and HTML report files to `/tmp` and `/var/www/html` respectively. A result of **true** for a patch means that it has not been applied to a system; a result of **false** means that it has been applied.

 If you generate an XML results file but not the HTML report, you can use **oscap oval generate report** to convert the results file to an HTML report, for example:
   ```
   # oscap oval generate report /tmp/elsa-results-oval.xml \
   > /var/www/html/elsa-report-oval.html
   ```

 You can view the HTML report in a browser as shown in **Figure 5.3**.
Running an OVAL Auditing Scan

Figure 5.3 Sample OVAL Report

<table>
<thead>
<tr>
<th>System/Operating System</th>
<th>Interface Details</th>
<th>OVAL System Characteristics/Generation Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows 10</td>
<td>Ethernet</td>
<td>Safety Status: 12.1.0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OVAL Version: 1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Product Name: Microsoft Windows</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Product Version: 10.0.19043</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
<th>Severity</th>
<th>Remediation</th>
<th>Status</th>
<th>Score</th>
<th>Impact</th>
<th>Risk Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 6 FIPS 140-2 Compliance in Oracle Linux

Table of Contents

6.1 FIPS Validated Cryptographic Modules for Oracle Linux ... 61
6.2 Enabling FIPS Mode on Oracle Linux .. 62
6.3 Installing FIPS Validated Cryptographic Modules for Oracle Linux .. 65

Oracle Linux provides a set of cryptographic libraries, services, and user-level cryptographic applications that are validated at the Federal Information Processing Standard (FIPS) Publication 140-2.

FIPS Publication 140-2, *Security Requirements for Cryptographic Modules*, specifies the security requirements that must be satisfied by a cryptographic module that is used within a security system to protect sensitive, but unclassified information. The NIST/CSE Cryptographic Module Validation Program (CMVP) validates cryptographic modules to FIPS 140-2. Validated products are accepted by the Federal agencies of both the USA and Canada for the protection of sensitive or designated information.

6.1 FIPS Validated Cryptographic Modules for Oracle Linux

Oracle has completed FIPS 140-2 Level 1 certifications for cryptographic components that reside within Oracle Linux 7 Update 5 and Oracle Linux 7 Update 6. The completed certification is described in the following table.

<table>
<thead>
<tr>
<th>Cryptographic Module Name</th>
<th>Oracle Linux Release and Package Version</th>
<th>Certificate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Linux 7 OpenSSL Cryptographic Module</td>
<td>Oracle Linux 7 Update 5: openssl-libs-1.0.2k-12.0.3.el7.x86_64</td>
<td>3474</td>
</tr>
<tr>
<td>Oracle Linux 7 OpenSSL Cryptographic Module</td>
<td>Oracle Linux 7 Update 6: openssl-libs-1.0.2k-16.0.1.el7.x86_64</td>
<td>3474</td>
</tr>
<tr>
<td>Oracle Linux 7 OpenSSH Client Cryptographic Module</td>
<td>Oracle Linux 7 Update 6: opessh-clients-7.4p1-16.el7.x86_64</td>
<td>3582</td>
</tr>
<tr>
<td>Oracle Linux 7 OpenSSH Server Cryptographic Module</td>
<td>Oracle Linux 7 Update 6: opessh-server-7.4p1-16.el7.x86_64</td>
<td>3590</td>
</tr>
<tr>
<td>Oracle Linux 7 libgcrypt Cryptographic Module</td>
<td>Oracle Linux 7 Update 6: libgcrypt-1.5.3-14.el7.x86_64</td>
<td>3604</td>
</tr>
<tr>
<td>Oracle Linux 7 NSS Cryptographic Module</td>
<td>Oracle Linux 7 Update 6: nss-softokn-3.36.0-5.0.1.el7_5.x86_64</td>
<td>3616</td>
</tr>
<tr>
<td>Oracle Linux 7 Libreswan Cryptographic Module</td>
<td>Oracle Linux 7 Update 6: libreswan-3.25-4.1.0.1.el7_6.x86_64</td>
<td>3699</td>
</tr>
</tbody>
</table>
Enabling FIPS Mode on Oracle Linux

Oracle has completed FIPS 140-2 Level 1 certifications for cryptographic components that reside within Oracle Linux 7 Update 3. The completed certifications include those that are described in the following table.

<table>
<thead>
<tr>
<th>Cryptographic Module Name</th>
<th>Package Version</th>
<th>Certificate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Linux OpenSSL Cryptographic Module</td>
<td>openssl-1.0.1e60.0.1.el7_3.1.x86_64</td>
<td>3047</td>
</tr>
<tr>
<td>Oracle Linux 7 OpenSSH Server Cryptographic Module</td>
<td>openssh-6.6.1p1-35.el7_3.x86_64</td>
<td>3028</td>
</tr>
<tr>
<td>Oracle Linux 7 OpenSSH Client Cryptographic Module</td>
<td>openssh-6.6.1p1-35.el7_3.x86_64</td>
<td>3032</td>
</tr>
<tr>
<td>Oracle Linux 7 NSS Cryptographic Module</td>
<td>nss-softokn-3.16.2.3-14.4.0.1.el7.x86_64</td>
<td>3143</td>
</tr>
<tr>
<td>Oracle Linux 7 Libreswan Cryptographic Module</td>
<td>libreswan-3.15-8.0.1.el7.x86_64</td>
<td>3168</td>
</tr>
<tr>
<td>Oracle Linux 7 GnuTLS Cryptographic Module</td>
<td>gnutls-3.3.24-1.0.3.el7.x86_64, gmp-6.0.0-12.el7_1.x86_64, nettle-2.7.1-8.el7.x86_64.rpm</td>
<td>3169</td>
</tr>
<tr>
<td>Oracle Linux 7 libgcrypt Cryptographic Module</td>
<td>libgcrypt-1.5.3-13.el7_3.1.x86_64</td>
<td>3215</td>
</tr>
<tr>
<td>Oracle Linux 7 Unbreakable Enterprise Kernel</td>
<td>kernel-uek-4.1.12-124.16.4.el7uek.x86_64</td>
<td>3348</td>
</tr>
<tr>
<td>Oracle Linux 7 Kernel Crypto API Cryptographic Module</td>
<td>kernel-3.10.0-862.3.3.0.1.el7.x86_64</td>
<td>3342</td>
</tr>
</tbody>
</table>

List of modules that have received FIPS 140-2 validation

The site provides the following information for each module:
- Name and description of the module.
- Package version or versions for the module.
- Status of the FIPS 140-2 validation process.

Important

To achieve compliance with FIPS Publication 140-2, you must use the package version that the Security Policy document specifies for each respective module only. You cannot install and use other versions of the cryptographic modules.

- Instructions on how to configure the module for FIPS mode. Refer to Section 10 of the Security Policy document when you install the module to verify that the package was FIPS 140-2 validated and ensure that you correctly enable the module for FIPS mode.

6.2 Enabling FIPS Mode on Oracle Linux

You must enable FIPS mode on Oracle Linux prior to using FIPS validated cryptographic modules. The following procedure describes how to configure Oracle Linux to use only cryptographic algorithms that are FIPS validated.
Enabling FIPS Mode on Oracle Linux

Note
The following procedure applies to systems running Oracle Linux 7 Update 3, Oracle Linux 7 Update 5, or Oracle Linux 7 Update 6. However, it is recommended that you update the system on which you are enabling FIPS mode to Oracle Linux 7 Update 6.

Note also that you cannot use FIPS cryptographic modules on Oracle Linux 7 systems that are running an update prior to Update 3.

1. Ensure that the system is at Oracle Linux 7 Update 6.
2. Ensure that your system is registered with the Unbreakable Linux Network (ULN) and that you are subscribed to the ol7_x86_64_security_validation and ol7_x86_64_latest channels.

 If you are using the Oracle Linux yum server, enable the ol7_security_validation and ol7_latest repositories as follows:

   ```sh
   # yum-config-manager --enable ol7_security_validation ol7_latest
   ```

3. Install the dracut-fips package.

   ```sh
   # yum install dracut-fips
   ```

 The dracut-fips package provides the modules to build a dracut initramfs file system that performs an integrity check.

4. If the system CPU supports AES New Instructions (AES-NI), install the package.

 • Run the following command to check whether the system supports AES-NI:

   ```sh
   # grep aes /proc/cpuinfo
   ```

 • To install the package:

   ```sh
   # yum install dracut-fips-aesni
   ```

5. Recreate the initramfs file system.

   ```sh
   # dracut -f
   ```

6. Perform the following steps to re-configure the boot loader so that the system boots in FIPS mode:

 a. Identify the boot partition and the UUID of the partition. If /boot or /boot/efi resides on a separate partition, the kernel parameter boot=partition of /boot or /boot/efi must be supplied.

 Identify the partition by running the `df /boot` or `df /boot/efi` command, for example:

   ```sh
   # df /boot
   Filesystem  1K-blocks  Used  Available  Use% Mounted on
   /dev/sda1          508588 294476  214112  58% /boot
   ```

   ```sh
   # blkid /dev/sda1
   /dev/sda1: UUID="6046308a-75fc-418e-b284-72d8bfad34ba" TYPE="xfs"
   ```

 b. As the root user, edit the `/etc/default/grub` file as follows:

 i. Add the `fips=1` option to the boot loader configuration.

   ```sh
   GRUB_CMDLINE_LINUX="vconsole.font=latarcyrheb-sun16"
   ```
Enabling FIPS Mode on Oracle Linux

rd.lvm.lv=ol/swap rd.lvm.lv=ol/root crashkernel=auto
vconsole.keymap=uk rhgb quiet fips=1"

ii. If the contents of /boot reside on a partition other than the root partition, you must use the boot=UUID=boot_UUID line to the boot loader configuration to specify that the device be mounted on /boot when the kernel loads.

GRUB_CMDLINE_LINUX="vconsole.font=latarcyrheb-sun16
rd.lvm.lv=ol/swap rd.lvm.lv=ol/root crashkernel=auto
vconsole.keymap=uk rhgb quiet
boot=UUID=6046308a-75fc-418e-b284-72d8bfad34ba fips=1"

iii. Save the changes.

These steps are required for FIPS to perform kernel validation checks, where it verifies the kernel against the provided HMAC file in the /boot directory.

Note

On systems that are configured to boot with UEFI, /boot/efi is located on a dedicated partition, as it is formatted specifically to meet UEFI requirements, which does not automatically mean that /boot is located on a dedicated partition.

Only use the boot= parameter if /boot is located on a dedicated partition. If the parameter is specified incorrectly or points to a non-existent device, the system might not boot.

If your system is no longer able to boot, you can try to modify the kernel boot options in grub to specify an alternate device for the boot=UUID=boot_UUID parameter, or remove the parameter entirely.

7. Rebuild the GRUB configuration as follows:

 a. On BIOS-based systems, run the following command:

 $ grub2-mkconfig -o /boot/grub2/grub.cfg

 b. To ensure proper operation of the in-module integrity verification, prelinking must be disabled on all system files.

 By default, the prelink package is not installed on the system. However, if it is installed, disable prelinking on all libraries and binaries as follows:

 i. Set PRELINKING=no in the /etc/sysconfig/prelink configuration file.

 ii. If the libraries were already prelinked, undo the prelink on all of the system files as follows:

 $ prelink -u -a

8. Reboot the system, then verify that FIPS is enabled by running the following command:

 $ cat /proc/sys/crypto/fips_enabled
1

A response of 1 indicates that FIPS is enabled.

6.3 Installing FIPS Validated Cryptographic Modules for Oracle Linux

After you enable FIPS mode on Oracle Linux, you can then install FIPS validated cryptographic modules, as required.

Important

The system must be running Oracle Linux 7 Update 3, Oracle Linux 7 Update 5, or Oracle Linux 7 Update 6. It is recommended that you update your system to Oracle Linux 7 Update 6, which is the latest Oracle Linux update for Release 7.

Note that you cannot use FIPS cryptographic modules on Oracle Linux 7 systems that are running an update prior to Update 3.

To install FIPS validated cryptographic modules, refer to Section 10 of the Security Policy document for the module that you plan to install.

The Security Policy document explains how to verify that the package is FIPS 140-2 validated, as well as how to configure the module for FIPS mode. See Section 6.1, “FIPS Validated Cryptographic Modules for Oracle Linux”. The certificate number provides a link to the NIST FIPS 140 validation page. This page provides details about FIPS certification and the Security Policy document.
Chapter 7 Oracle Linux 7 Common Criteria Certification

Oracle Linux 7 Update 3 is certified, with two sets of certificates, under the Swedish Common Criteria Scheme. The first certification demonstrates Exact Conformance against the Protection Profile for General Purpose Operating Systems (OSPP) 4.1. The second certification has a claimed evaluation level of Evaluation Assurance Level 1 (EAL1), augmented by flaw remediation. Certificates awarded in Sweden and in 17 other countries are recognized by 30 countries under the Common Criteria Recognition Arrangement (CCRA).

The certification includes the following evaluated security functionality:

• Security Audit
• Cryptographic support
• Identification and Authentication
• User Data Protection
• Security Management
• Self-protection
• TLS and SSH protocols

Important
To achieve compliance, the Common Criteria evaluated package set must be selected at installation time, in accordance with the description that is provided in the Evaluated Configuration Guide, and installed accordingly.

For further information about the Common Criteria certification, see the following references:

• External Security Evaluations
• Common Criteria Recognition Arrangement
• Protection Profile for General Purpose Operating Systems