
Oracle Linux 8
Building RPM Packages From Source

F44226-04
April 2022

Oracle Linux 8 Building RPM Packages From Source,

F44226-04

Copyright © 2021, 2022, Oracle and/or its affiliates.

Contents

 Preface

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 About Building Source Packages

About Source RPMS 1-1

About the Module Build Service 1-2

2 General Requirements

Enable Required Developer Repositories 2-1

Install Packaging Tools and the Module Build Service 2-1

3 Building Non-Modular Source RPM Packages

Using rpmbuild Directly 3-1

Using the mock Utility to Build Sources 3-2

4 Building Modules

Create Git Repositories for Module Sources 4-1

Download Module Sources 4-1

Generate a Working modulemd and Plan the Required Git Repositories 4-3

Create Source Git Repositories and Branches 4-6

Remote Git Repositories 4-6

Local Git Repositories 4-7

Configure MBS for Remote Source Repositories 4-8

Module Build Service Mock Configuration 4-8

Triggering a Build 4-10

iii

Test a Module Build 4-10

iv

Preface

Oracle® Linux 8: Building RPM Packages From Source describes how to set up the Module
Build Service (MBS) to build modular RPM packages from source for Oracle Linux 8. The
information in this document is for training purposes and can be used in a development
environment to build software sources as modular binary RPM packages for Oracle Linux 8
so that changes to code can be easily tested across test platforms. Note that Oracle does not
support packages that are built externally and also does not support all of the components
within a build environment.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an action,
or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle Accessibility
Conformance Report at https://www.oracle.com/corporate/accessibility/templates/
t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to

v

https://docs.oracle.com/en/operating-systems/oracle-linux/8/distro-builder/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and
documentation. We are also mindful of the necessity to maintain compatibility with our
customers' existing technologies and the need to ensure continuity of service as
Oracle's offerings and industry standards evolve. Because of these technical
constraints, our effort to remove insensitive terms is ongoing and will take time and
external cooperation.

Preface

vi

1
About Building Source Packages

This chapter provides overview information about building and packaging source packages
as binary RPM packages. A distinction is made between building standard non-modular
source packages and building source that is distributed within DNF modules and streams.
Some information on how to obtain source packages is also provided.

NOT_SUPPORTED:

This documentation illustrates how source packages for Oracle Linux 8 can be built
and packaged as binary RPM packages to effectively bootstrap Oracle Linux 8 from
source. The information that is provided here is intended to assist developers in
understanding how to build and package source code for Oracle Linux 8. Oracle
does not support packages that are built externally. These instructions do not imply
support for the infrastructure that is described or for any package build processes.

About Source RPMS
All of the sources for Oracle Linux packages are available on the Oracle Linux yum server
and ULN. For any package, you can download the relevant source RPM and rebuild the
binary equivalent by using the rpmbuild utility. Source RPM packages contain the source
code, which is provided as a tarball. Also included are any other patches that Oracle may
apply during the build, as well as a SPEC file that provides important build information, which
includes a list of the build dependencies that are required to build the package and build
instructions for any actions that should be taken at different stages of the package build
process.

Obtaining source packages is straightforward. You can manually download each source
package that you wish to build by using the dnf download command. For example, to
download the latest source package for the UEK package that is shipped for Oracle Linux 8,
run:

sudo dnf download --source kernel-uek

Note that you can encounter some issues when downloading the source RPM packages by
using the dnf download command if the package is released as a module. If necessary,
you can manually download source packages directly from https://yum.oracle.com/oracle-
linux-8.html.

Modular packages contain metadata with information about the packages that are part of the
module and are made available in a modular RPM repository that includes a YAML file that
provides more information about the modules and streams available. You cannot download
sources for modular packages directly by using the dnf download command. For more
information about downloading modular packages, see Download Module Sources.

More information about DNF modularity is provided in Oracle® Linux: Managing Software on
Oracle Linux.

1-1

https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/

If you intend to build the majority of packages directly from source, you should
consider creating a mirror of the yum repositories or ULN channels where the
packages are located. On an Oracle Linux 8 system, you can easily create a mirror of
all of the repositories or channels that your system is subscribed to by running the
following command:

mkdir source_rpms

sudo dnf reposync --source -p source_rpms

The previous command downloads all of the sources for every package in every
repository for which the system is subscribed. You must ensure that the file system on
which you host these source RPM packages has sufficient space to store these
packages. You can find out how much space is used by each repository by running
dnf repolist -v.

For modular packages, the dnf reposync command downloads the source RPM
packages for each defined module stream, which means that multiple versions of the
same source package may exist in the repository mirror.

More information about the RPM packaging format can be found at https://rpm.org/
documentation and a detailed guide to RPM packaging is available at https://rpm-
packaging-guide.github.io/.

About the Module Build Service
The Module Build Service (MBS) is a build management utility that coordinates build
jobs specifically for DNF modules. This utility provides an interface to:

• manage client-side tooling,

• validate build configuration for each module,

• set up the appropriate build environment,

• and handle build scheduling, tracking, and reporting.

The upstream project is hosted at https://pagure.io/fm-orchestrator.

The Mock build tool is used within MBS to facilitate builds of the source packages.
Mock builds source RPM packages within a chroot environment. This tool simply sets
up the environment and populates it based on the contents of a configuration file. The
source RPM packages are then built within the chroot environment and packaged as
RPM binaries. The Mock build tool can be threaded within MBS to improve
performance and speed up builds for many modules in parallel.

Oracle provides packages for MBS and its dependencies in a developer repository.
These packages include some initial configuration that can help you get started with
building modules directly from the sources that are provided by Oracle.

Chapter 1
About the Module Build Service

1-2

https://rpm.org/documentation
https://rpm.org/documentation
https://rpm-packaging-guide.github.io/
https://rpm-packaging-guide.github.io/
https://pagure.io/fm-orchestrator

2
General Requirements

This chapter describes the required steps for building both modular and standard source
packages. Preparing a system as a build server requires that you enable developer
repositories which contain unsupported software. You must ensure that your system is
current with the latest updates and you must install the required build packages and
dependencies .

If you are building modular packages, several additional setup steps are required. For
instance you are also required to either host source content yourself either on a remote Git
service or locally within your own Git repositories. Modular package repositories must be
populated with source code and the Module Build Service must be configured appropriately.
Furthermore, you must configure the Module Build Service and related tools so that modular
RPMs can be generated. Information on this is provided in more detail in Building Modules.

Enable Required Developer Repositories

Important:

Enabling the following repositories can result in a system running unsupported
packages. A system that is used for the purpose of building modular RPM packages
from source is, by nature, an unsupported system. If you proceed with these
instructions, use a dedicated system for which you do not intend to obtain direct
support from Oracle.

Many of the development tools, libraries and dependencies required to build the source
available for Oracle Linux 8 are hosted in unsupported developer repositories. Before
proceeding make sure that your system is up to date so that you have the most recent
version of any of the release packages installed:

sudo dnf update

Install the oracle-epel-release-el8 package if it is not already installed and enable all of
the required developer repositories:

sudo dnf install oracle-epel-release-el8

sudo dnf config-manager --enable ol8_codeready_builder

sudo dnf config-manager --enable ol8_developer_EPEL

sudo dnf config-manager --enable ol8_distro_builder

Install Packaging Tools and the Module Build Service
Install the tools and utilities required to build a RPM binaries from a source tar files and a
SPEC file, along with MBS:

2-1

sudo dnf install -y rpm-build yum-utils mock module-build-service oracle-mbs-
tools

You may need to install some additional dependencies before you are able to start
building all of your source packages and to meet any of your own build requirements.
Typically, build teams additionally install the following:

sudo dnf install -y gcc python3-service-identity

Optionally, if you use Git Large File Storage (LFS) to store RPM sources, install the
git-lfs package:

sudo dnf install git-lfs

Chapter 2
Install Packaging Tools and the Module Build Service

2-2

3
Building Non-Modular Source RPM Packages

This chapter describes how to build non-modular source RPM packages. Two methods are
provided: the first is more direct and uses the rpmbuild utility directly; the second requires
that you set up the mock utility and configure the system to process builds using this tool.
There are several advantages to using the mock utility to build packages and you should
consider using this tool if you intend to do mutliple or regular builds of different packages.

Using rpmbuild Directly
The simplest approach for building is to use the rpmbuild --rebuild command to build a
binary RPM package directly from the source RPM package. This tool takes the source RPM
package and extracts it into a standard hierarchy within ~/rpmbuild/; the tool checks that all
of the build dependencies specified in the associated SPEC file that is stored in ~/rpmbuild/
SPECS are satisfied; the source tarballs in ~/rpmbuild/SOURCES are extracted into a build
directory, and are each built before being packaged into a binary RPM package, which is
stored in ~/rpmbuild/RPMS.

Important:

Do not build source RPM packages as the root user. The build processes often run
scripts and processes that you may not have full control over and that could easily
cause system failure or could compromise a system.

Note:

When using the rpmbuild tool to build source RPM packages directly, you may
see warning messages similar to the following:

warning: user mockbuild does not exist - using root

These warnings can be ignored, as they are related to the way these source
packages are set up for build by using the mock utility within a more complex build
environment.

If the build dependencies that are specified in the SPEC file are not satisfied, the rpmbuild
--rebuild command errors out and lists the failed dependencies, for example:

rpmbuild --rebuild bash-4.4.19-12.el8.src.rpm

Installing bash-4.4.19-12.el8.src.rpm
...
error: Failed build dependencies:
 autoconf is needed by bash-4.4.19-12.el8.x86_64

3-1

 ncurses-devel is needed by bash-4.4.19-12.el8.x86_64
 texinfo is needed by bash-4.4.19-12.el8.x86_64

You can either manually install each dependency that is listed in the warning; or, you
can use the dnf builddep command to resolve all of the build dependencies
specified in the SPEC file that was extracted when you ran the rpmbuildcommand,
for example:

sudo dnf builddep -y ~/rpmbuild/SPECS/bash.spec

If all of the build dependencies are satisfied and the source package has been created
appropriately, the rpmbuild --rebuild command completes after the binary
package build is complete. You can access the package in ~/rpmbuild/RPMS.

If you need to modify source, apply alternative patches, or edit the SPEC file to
perform alternate actions during different stages of the build process, you can do so
and then build the binary and source packages again directly from the SPEC file, for
example:

rpmbuild -ba ~/rpmbuild/SPECS/bash.spec

Using the mock Utility to Build Sources
The mock utility provides a wrapper that can help build sources safely and can handle
build dependency resolution for you in the background. This tool sets up a chroot
directory to handle the build process. By creating a chroot environment, several
potential build issues are handled automatically. Most importantly, the build process
itself is kept safe from affecting the host system. The chroot environment can install
build dependency packages and everything that is required to complete the build,
without actually installing unwanted packages into the host system so that the host
system can remain relatively clean of build artifacts. Because the chroot environment
contains the build process and protects the host system, build processes are
effectively privileged within the contained environment, which helps facilitate a
straightforward build and minimize potential errors. Finally, build dependencies can be
automatically resolved by using the mock utility, which can safely and automatically
trigger the appropriate dnf builddep command, as required.

The mock utility requires some preliminary configuration before using it to build for
Oracle Linux sources. A useful starting point is to create a /etc/mock/templates/
ol-8.tpl template file with a configuration similar to the following:

config_opts['chroot_setup_cmd'] = 'install tar gcc-c++ redhat-rpm-config
oraclelinux-release which xz sed \
 make bzip2 gzip gcc coreutils unzip shadow-
utils diffutils cpio bash gawk \
 rpm-build info patch util-linux findutils
grep'
config_opts['dist'] = 'el8' # only useful for --resultdir variable subst
config_opts['extra_chroot_dirs'] = ['/run/lock',]
config_opts['releasever'] = '8'
config_opts['package_manager'] = 'dnf'
config_opts['root'] = 'ol-8-{{ target_arch }}'

config_opts['dnf.conf'] = """
[main]
keepcache=1
debuglevel=2
reposdir=/dev/null

Chapter 3
Using the mock Utility to Build Sources

3-2

logfile=/var/log/yum.log
retries=20
obsoletes=1
gpgcheck=1
assumeyes=1
syslog_ident=mock
syslog_device=
install_weak_deps=0
metadata_expire=0
best=1
module_platform_id=platform:el8
protected_packages=

repos
[ol8_baseos_latest]
name=Oracle Linux 8 BaseOS Latest ($basearch)
baseurl=https://yum.oracle.com/repo/OracleLinux/OL8/baseos/latest/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1

[ol8_appstream]
name=Oracle Linux 8 Application Stream ($basearch)
baseurl=https://yum.oracle.com/repo/OracleLinux/OL8/appstream/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1

[ol8_codeready_builder]
name=Oracle Linux 8 CodeReady Builder ($basearch) - Unsupported
baseurl=https://yum.oracle.com/repo/OracleLinux/OL8/codeready/builder/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1

[ol8_distro_builder]
name=Oracle Linux 8 Distro Builder ($basearch) - Unsupported
baseurl=https://yum.oracle.com/repo/OracleLinux/OL8/distro/builder/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1

[ol8_developer_EPEL]
name=Oracle Linux $releasever EPEL Packages for Development ($basearch)
baseurl=https://yum.oracle.com/repo/OracleLinux/OL8/developer/EPEL/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1

"""

Replace /etc/mock/default.cfg with the following content, substituting x86_64 with aarch64
if you intend to build packages for Arm platforms:

include('templates/ol-8.tpl')
config_opts['target_arch'] = 'x86_64'
config_opts['legal_host_arches'] = ('x86_64',)

Before any user can use the mock utility, the user must be added to the mock group. You can
do this by running the following command:

Chapter 3
Using the mock Utility to Build Sources

3-3

sudo /usr/sbin/usermod -a -G mock $USER

Note that if the user is currently logged in, the user may need to log out and then log
back in to the system for the change in group permissions to become active.

When the configuration is in place, you can start to build source packages by using the
mock utility. For example, to simply build a package directly from a source RPM
package:

mock --rebuild bash-4.4.19-12.el8.src.rpm

Packages are built in a chroot environment that is created for the build root that is
defined in the template. You can access the file system used in the chroot
in /var/lib/mock. For example, using the configurations presented in this
documentation would be similar to the following:

ls /var/lib/mock/ol-8-x86_64/root/builddir/build/SRPMS/

bash-4.4.19-12.el8.src.rpm

ls -lh /var/lib/mock/ol-8-x86_64/root/builddir/build/RPMS/

total 4.9M
-rw-r--r--. 1 root mock 1.6M Feb 3 02:10 bash-4.4.19-12.el8.x86_64.rpm
-rw-r--r--. 1 root mock 1.2M Feb 3 02:10 bash-debuginfo-4.4.19-12.el8.x86_64.rpm
-rw-r--r--. 1 root mock 841K Feb 3 02:10 bash-
debugsource-4.4.19-12.el8.x86_64.rpm
-rw-r--r--. 1 root mock 113K Feb 3 02:10 bash-devel-4.4.19-12.el8.x86_64.rpm
-rw-r--r--. 1 root mock 1.3M Feb 3 02:10 bash-doc-4.4.19-12.el8.x86_64.rpm

If you need to work with build artifacts within the mock chroot, you can also do the
following:

mock --shell

INFO: mock.py version 2.4 starting (python version = 3.6.8)...
Start(bootstrap): init plugins
INFO: selinux enabled
Finish(bootstrap): init plugins
Start: init plugins
INFO: selinux enabled
Finish: init plugins
INFO: Signal handler active
Start: run
Start(bootstrap): chroot init
INFO: calling preinit hooks
INFO: enabled root cache
INFO: enabled package manager cache
Start(bootstrap): cleaning package manager metadata
Finish(bootstrap): cleaning package manager metadata
INFO: enabled HW Info plugin
Finish(bootstrap): chroot init
Start: chroot init
INFO: calling preinit hooks
INFO: enabled root cache
INFO: enabled package manager cache
Start: cleaning package manager metadata
Finish: cleaning package manager metadata
INFO: enabled HW Info plugin
Finish: chroot init
Start: shell

Chapter 3
Using the mock Utility to Build Sources

3-4

ls -lah /builddir/

total 20K
drwx------. 1 root 1000 120 Feb 4 09:21 .
dr-xr-xr-x. 1 root root 212 Feb 3 02:06 ..
-rw-------. 1 root root 50 Feb 4 09:21 .bash_history
-rw-r--r--. 1 root 1000 18 Aug 2 2020 .bash_logout
-rw-r--r--. 1 root 1000 141 Aug 2 2020 .bash_profile
-rw-r--r--. 1 root 1000 376 Aug 2 2020 .bashrc
-rw-rw-r--. 1 root root 130 Feb 3 02:06 .rpmmacros
drwxrwxr-x. 1 root 1000 88 Feb 3 02:06 build

You can find out more about mock in the MOCK(1) manual page or at https://github.com/rpm-
software-management/mock/.

Chapter 3
Using the mock Utility to Build Sources

3-5

https://github.com/rpm-software-management/mock/
https://github.com/rpm-software-management/mock/

4
Building Modules

This chapter describes how to build DNF modules. Some initial setup is required and this
process is more complicated than building individual source RPMs as a module can be
comprised of many source components and dependencies. The steps described in this
chapter provide information on how to get set up and started building module from the source
packages provided for Oracle Linux 8, using the Module Build Service.

Create Git Repositories for Module Sources
MBS pulls sources from a structured Git repository and uses a module definition file to
resolve exactly which source packages are required to build a particular module stream and
version.

To facilitate this requirement, you must do the following:

• Set up Git repositories for each module that you intend to build

• Create branches within each repository for the different streams within the module

• Populate the branches with the source code that is required to build the module
packages

Download Module Sources
Module sources can be downloaded from the Oracle Linux yum server; although, this task
does require additional analysis to determine which source packages are required.

You can list all of the modules that are available within the yum repositories that you are
subscribed to by running the dnf module list command. You can check the information
for any module and stream by using the dnf module info module_name:stream
command. To limit the information that is returned to a specific module stream, version,
context, architecture, and platform, use the full module reference. For example, you would
run the following command to view the information for version 8030020200818000036 of the
2.4 stream of the httpd module:

dnf module info httpd:2.4:8030020200818000036

Name : httpd
Stream : 2.4 [d][a]
Version : 8030020200818000036
Context : 9edba152
Architecture : x86_64
Profiles : common [d], devel, minimal
Default profiles : common
Repo : ol8_appstream
Summary : Apache HTTP Server
Description : Apache httpd is a powerful, efficient, and extensible HTTP server.
Requires : platform:[el8]
Artifacts : httpd-0:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.x86_64
: httpd-devel-0:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.x86_64
: httpd-filesystem-0:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.noarch

4-1

: httpd-manual-0:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.noarch
: httpd-tools-0:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.x86_64
: mod_http2-0:1.15.7-2.module+el8.3.0+7816+49791cfd.x86_64
: mod_ldap-0:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.x86_64
: mod_md-1:2.0.8-8.module+el8.3.0+7816+49791cfd.x86_64
: mod_proxy_html-1:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.x86_64
: mod_session-0:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.x86_64
: mod_ssl-1:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.x86_64

Hint: [d]efault, [e]nabled, [x]disabled, [i]nstalled, [a]ctive

Note that the Artifacts section of the output provides the list of packages that are
available for the module.

A single source package can be used to build several binary packages. To determine
which source packages are used for each binary package that is listed, you must use
the dnf repoquery command and disable modular filtering, for example:

dnf repoquery httpd-
filesystem-0:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.noarch --source -q --
disable-modular-filtering

httpd-2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.src.rpm

Repeat the previous query for each binary package listed in the Artifacts section of
the information that is returned from the yum server for the module.

When you have a list of all of the source packages to be downloaded, you can query
the yum server for the download URL to use to download the source package, for
example:

dnf repoquery httpd-2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.src --location -q
--disable-modular-filtering

https://yum.oracle.com/repo/OracleLinux/OL8/appstream/x86_64/getPackageSource/
httpd-2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.src.rpm

Use the URL that is returned by the command to download the source package file.
For example, use the curl command to download the package to the current
directory:

curl -O https://yum.oracle.com/repo/OracleLinux/OL8/appstream/x86_64/
getPackageSource/httpd-2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.src.rpm

Repeat these steps to download each source package from the Oracle Linux yum
server.

Chapter 4
Create Git Repositories for Module Sources

4-2

Tip:

If a module for which you intend to build the sources is enabled, you can automate
many of these steps in a simple bash loop, as shown in the following example:

for bin in $(dnf module repoquery nginx:1.14 -q);
 do
 echo "Checking for sources in $bin"
 for src in $(dnf repoquery $bin --source -q);
 do
 echo "-- Checking source package $src"
 if [! -f $src]
 then
 URL=$(dnf repoquery $(echo "${src%.*}") -q --location --disable-modular-
filtering)
 echo "----> Downloading $URL"
 curl -O $URL;
 fi
 done
done

It is not always desirable to enable modules on the build system and enabling some
modules could cause unintended conflicts. This tip is provided for users who are
more familiar with their build environment and what they intend to build.

Generate a Working modulemd and Plan the Required Git Repositories
Module configuration is defined in a YAML-formatted modulemd document that contains all of
the metadata required to package and build a module. More information about the contents
and format of the modulemd document is available at https://docs.fedoraproject.org/en-US/
modularity/policies/packaging-guidelines/.

MBS uses the module metadata configuration to determine which Git repository and branch
to use to access the source files that are used to build packages for the module.

You can use the dnf module info command with the verbose switch to get the modulemd
information that was used to build a module, for example:

dnf module info httpd:2.4:8030020200818000036 -v

Loaded plugins: builddep, changelog, config-manager, copr, debug, debuginfo-install,
download, generate_completion_cache,
 needs-restarting, playground, repoclosure, repodiff, repograph, repomanage, reposync
DNF version: 4.2.23
cachedir: /var/cache/dnf
User-Agent: constructed: 'libdnf (Oracle Linux Server 8.3; server; Linux.x86_64)'
repo: using cache for: ol8_developer_EPEL
ol8_developer_EPEL: using metadata from Fri 19 Feb 2021 09:56:59 PST.
repo: using cache for: ol8_baseos_latest
ol8_baseos_latest: using metadata from Tue 23 Feb 2021 11:19:55 PST.
repo: using cache for: ol8_appstream
ol8_appstream: using metadata from Tue 23 Feb 2021 11:49:55 PST.
repo: using cache for: ol8_codeready_builder
ol8_codeready_builder: using metadata from Tue 23 Feb 2021 11:50:47 PST.
repo: using cache for: ol8_distro_builder
ol8_distro_builder: using metadata from Tue 26 Jan 2021 14:36:37 PST.
repo: using cache for: ol8_UEKR6

Chapter 4
Create Git Repositories for Module Sources

4-3

https://docs.fedoraproject.org/en-US/modularity/policies/packaging-guidelines/
https://docs.fedoraproject.org/en-US/modularity/policies/packaging-guidelines/

ol8_UEKR6: using metadata from Tue 16 Feb 2021 09:29:11 PST.
Last metadata expiration check: 2:28:53 ago on Wed 24 Feb 2021 04:25:21 PST.
Completion plugin: Generating completion cache...

document: modulemd
version: 2
data:
 name: httpd
 stream: 2.4
 version: 8030020200818000036
 context: 9edba152
 arch: x86_64
 summary: Apache HTTP Server
 description: >-
 Apache httpd is a powerful, efficient, and extensible HTTP server.
 license:
 module:
 - MIT
 content:
 - ASL 2.0
 xmd:
 mbs:
 buildrequires:
 platform:
 context: 32e30060
 filtered_rpms: []
 ref:
 stream: el8
 version: 20190214123456
 commit:
 mse: TRUE
 rpms:
 httpd:
 ref: 36bae5ca8c2cfed909cbf9bb0d7d5100ae849344
 mod_http2:
 ref: 277d39ae32712ce196bf1dab8dbcc4e636cc0a44
 mod_md:
 ref: fe6eebe9285d77b75baa3da7c313fb16682eaf46
 scmurl:
 dependencies:
 - buildrequires:
 platform: [el8]
 requires:
 platform: [el8]
 references:
 documentation: https://httpd.apache.org/docs/2.4/
 tracker: https://bz.apache.org/bugzilla/
 profiles:
 common:
 rpms:
 - httpd
 - httpd-filesystem
 - httpd-tools
 - mod_http2
 - mod_ssl
 devel:
 rpms:
 - httpd
 - httpd-devel
 - httpd-filesystem
 - httpd-tools

Chapter 4
Create Git Repositories for Module Sources

4-4

 minimal:
 rpms:
 - httpd
 api:
 rpms:
 - httpd
 - httpd-devel
 - httpd-filesystem
 - mod_ssl
 components:
 rpms:
 httpd:
 rationale: Apache httpd
 ref: stream-2.4-rhel-8.3.0
 buildorder: 10
 arches: [aarch64, i686, x86_64]
 mod_http2:
 rationale: HTTP/2 support for Apache httpd
 ref: stream-2.4-rhel-8.3.0
 buildorder: 20
 arches: [aarch64, i686, x86_64]
 mod_md:
 rationale: Certificate provisioning using ACME for Apache httpd
 ref: stream-2.4-rhel-8.3.0
 buildorder: 20
 arches: [aarch64, i686, x86_64]
 artifacts:
 rpms:
 - httpd-0:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.x86_64
 - httpd-devel-0:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.x86_64
 - httpd-filesystem-0:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.noarch
 - httpd-manual-0:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.noarch
 - httpd-tools-0:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.x86_64
 - mod_http2-0:1.15.7-2.module+el8.3.0+7816+49791cfd.x86_64
 - mod_ldap-0:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.x86_64
 - mod_md-1:2.0.8-8.module+el8.3.0+7816+49791cfd.x86_64
 - mod_proxy_html-1:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.x86_64
 - mod_session-0:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.x86_64
 - mod_ssl-1:2.4.37-30.0.1.module+el8.3.0+7816+49791cfd.x86_64
...

Note that the modulemd content that is provided by this output contains additional build
artifacts and cannot be used directly by MBS without modification. To make this content
usable, several keys in the YAML content must be removed, including the xmd and artifacts
entries. Note that the YAML content only starts in the output provided by dnf module info
at the line containing: ---.

You can either save the output from the dnf module info query and edit it manually to
generate a working modulemd file; or you can save the output from this command and run it
through the convert_repodata_modulemd.py script, include in the oracle-mbs-tools
package, to automatically parse it and generate a working YAML modulemd build
configuration file. For example:

dnf module info httpd:2.4:8030020200818000036 -v | convert_repodata_modulemd.py -i

ls *.yaml

httpd-2.4-8030020200818000036-9edba152.yaml

Chapter 4
Create Git Repositories for Module Sources

4-5

Note that you may need to change the version number in the modulemd configuration
file, as you cannot build an existing version of the same module. The typical version
label for modules uses the following convention:

<distribution version><update level><optional module version><date and time>

So for a module from Oracle Linux 8.3 with a version 01 built on 12 April 2021 at
15:30:22, the version would be: 8030120210412153022.

You should always check that the modulemd YAML file is valid before using it. You can
check validity using the modulemd-validator command. For example, run:

modulemd-validator httpd-2.4-8030020200818000036-9edba152.yaml

The following information in the modulemd YAML file is worth noting, as it describes
how source is pulled from Git, as well as the steps you might need to take before you
are able to build a module successfully:

• dependencies/buildrequires: before you are able to build the module, all build
dependencies must be met, specifically any modules listed under the
buildrequires entry must be built and made available before you can proceed
with a local build. If you are only interested in building a particular module, these
build dependencies can be met at build time and MBS can pull the required
modules from your configured yum repositories, as required.

• components/rpms: each component RPM name is used to define the Git repository
name where the source is located at the base URL that MBS is configured to use.
The ref parameter describes which branch should be used to build the correct
RPM packages for the particular module stream defined in the modulemd file.

Search the modulemd YAML file for the components:rpms entries. Each component
RPM entry represents a Git repository and is related to a corresponding source
package. The ref entry provided for each RPM is used to define the branch name
within the Git repository. For example, from the output provided above, the
httpd:2.4:8030020200818000036 module uses sources from the stream-2.4-
rhel-8.3.0 branches in each of the following three Git repositories: httpd, mod_http2
and mod_md.

Use this information to plan corresponding Git repositories and branches, as required
by the modulemd configuration information for each module and stream that you
intend to build.

Create Source Git Repositories and Branches
MBS uses Git to extract the sources that it uses. Git repositories can be located either
remotely or locally, but in either case, Git must be set up so that you can store sources
for MBS to use. Instructions are provided here for both approaches. You must create a
separate Git repository for each source component that you have downloaded. Repeat
the steps provided for each source RPM.

Remote Git Repositories
If you use a remote Git service, you must use the tools that are provided by your
service provider to create matching repositories to host the component source code for
each source RPM that you have downloaded. The repository name must match the
name of the component source RPM.

Chapter 4
Create Git Repositories for Module Sources

4-6

Import the sources into your remote Git repositories:

1. Clone your Git repository with the same name as the source component RPM defined in
the modulemd:

git clone git@git_server_URL:repository path/component.git

cd component
2. Check out the branch matching the stream ref entry for the component RPM in the

modulemd:

git checkout ref

If the branch does not yet exist, you can create a local branch with:

git checkout -b ref
3. Extract the source package into the working directory:

rpm2cpio /path/to/component.src.rpm | cpio -di
4. Add the sources to Git and push them to the remote server:

git add *

git commit -m "Import sources for component"

git push

If you had to create a new local branch to work in, when you push the sources to the
remote server you must ensure that it stores the source in a matching branch:

git push --set-upstream origin ref

Local Git Repositories
If you choose to host sources on localized Git repositories some reconfiguration is required
within the modulemd files for each module.

1. Extract the contents of the source package into an empty directory with the same name
as the source component RPM that is defined in the modulemd:

$ mkdir component

$ cd component

rpm2cpio /path/to/component.src.rpm | cpio -di
2. Initialize a local Git repository

git init
3. Add files and commit

git add *

git commit -m "Import sources for component"
4. Modify the modulemd file for this module to replace the ref entries to point to the path of

the new local repository that you have created. For example modify the following entry:

components:
 rpms:
 httpd:

Chapter 4
Create Git Repositories for Module Sources

4-7

 rationale: Apache httpd
 ref: stream-2.4-rhel-8.3.0
 buildorder: 10
 arches: [aarch64, i686, x86_64]

so that it reads:

components:
 rpms:
 httpd:
 rationale: Apache httpd
 repository: file:///home/build/httpd
 buildorder: 10
 arches: [aarch64, i686, x86_64]

Ensure that the repository entry provides the file path to the correct location of the
repository that you have created for this source component RPM.

You must edit every ref entry within the modulemd to match the local repository
sources that for the module that you are building.

Configure MBS for Remote Source Repositories
MBS automatically pulls sources from Git repositories and analyzes the modulemd
definition document to determine the repository and branch that should be used to
build a specific version of the source code. See Generate a Working modulemd and
Plan the Required Git Repositories for more information. If you have chosen to use a
remotely hosted Git service to host your sources, you must configure MBS for the
base URL where your repositories are hosted. The base URL is defined using the
RPMS_DEFAULT_REPOSITORY parameter in the /etc/module-build-service/config.py
file in the BaseConfiguration class. The default URL that is provided in the package is
set to https://exampledomain/default-rpm-repositories/. Replace the default
value with the location of a valid Git service where the source for your modular RPM
packages can be accessed. If you are hosting your Git repositories locally on the same
server and you have edited your modulemd files for this, you do not have to edit this
parameter.

Because MBS uses source control management facilities like Git to access source, an
additional parameter, DISTGITS, is set to provide the commands that are used to
access and download the source into the package buildroot. The default value
provided in the configuration should work correctly with the instructions that are
provided in this document.

To configure MBS to use a remote Git repository , edit the /etc/module-build-
service/config.py file and modify the following lines in the configuration under the
BaseConfiguration class.

RPMS_DEFAULT_REPOSITORY = 'https://exampledomain/default-rpm-repositories/'

Module Build Service Mock Configuration
Before you begin building packages by using MBS, you must check and update the
configuration for the Mock build tool that is used by MBS to build source packages into
their binary equivalents. The global configuration file that is used by Mock when it is
triggered from within MBS is located in /etc/module-build-service/mock.cfg.

Chapter 4
Configure MBS for Remote Source Repositories

4-8

Notably, this configuration sets the configuration for the different yum repositories that are
used during the build process to resolve any build dependencies or build requirements. Since
the build runs within a chroot environment, this yum configuration is separated from the host
system where MBS is running.

A working example configuration is provided within the package and enables commonly
required yum repositories. You may want to edit this file for additional repositories, if required.

The following contents of the configuration file are provided for reference purposes:

config_opts['root'] = '$root'
config_opts['target_arch'] = '$arch'
config_opts['legal_host_arches'] = ('$arch',)
config_opts['chroot_setup_cmd'] = 'install oraclelinux-release bash bzip2 coreutils
cpio diffutils findutils gawk gcc\
 gcc-c++ grep gzip info make patch redhat-rpm-config rpm-build sed yum shadow-utils
tar unzip util-linux\
 which xz $group'
config_opts['rpmbuild_networking'] = True
config_opts['use_host_resolv'] = True
config_opts['use_nspawn'] = False
config_opts['dist'] = 'el8'
config_opts['dnf_vars'] = $dnf_vars
config_opts['releasever'] = '$releasever'
config_opts['module_enable'] = $enabled_modules
config_opts['use_bootstrap_container'] = False

config_opts['yum.conf'] = """

$yum_conf

[ol8_baseos_latest]
name=Oracle Linux 8 BaseOS Latest ($basearch)
baseurl=https://yum$ociregion.oracle.com/repo/OracleLinux/OL8/baseos/latest/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1

[ol8_appstream]
name=Oracle Linux 8 Application Stream ($basearch)
baseurl=https://yum$ociregion.oracle.com/repo/OracleLinux/OL8/appstream/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1

[ol8_codeready_builder]
name=Oracle Linux 8 CodeReady Builder ($basearch) - Unsupported
baseurl=https://yum$ociregion.oracle.com/repo/OracleLinux/OL8/codeready/
builder/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1

[ol8_distro_builder]
name=Oracle Linux 8 Distro Builder ($basearch) - Unsupported
baseurl=https://yum$ociregion.oracle.com/repo/OracleLinux/OL8/distro/builder/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1

[ol8_developer_EPEL]

Chapter 4
Module Build Service Mock Configuration

4-9

name=Oracle Linux $releasever EPEL Packages for Development ($basearch)
baseurl=https://yum$ociregion.oracle.com/repo/OracleLinux/OL8/developer/
EPEL/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1

"""

Triggering a Build
A modular build is triggered by using the mbs-manager build_module_locally
command. The command must be specified with several command-line options that
describe how the build process should function. The following example illustrates a
build of the packages for the 389-ds:1.4 module and stream:

mbs-manager build_module_locally --offline --stream 1.4 \
 --add-local-build nodejs:10:20210206155331 --file 389-ds-stream-1.4.yaml

The command-line switches in the example are described as follows:

• --offline: this option is required and uses build package requirements provided
locally on the build system so that MBS is able to build in offline mode

• --stream: this option specifies the stream of the module that you are building for.
Oracle provided module definition files specify the stream within each modulenmd
file, but you should specify the stream when running the command as the value
used in this option is used during the build process for file path naming.

• --add-local-build: this option is only required if you need to reference a local
build requirement as defined in the modulemd YAML file. You specify the build
requirements in the format module_name:stream:version. If you omit this option,
MBS pulls the required module dependency from your configured yum
repositories. If you specify a local build for any build requirements, the build must
exist within ~/modulebuild/builds/.

• --file: the path to the modulemd YAML file for the module that you are building.

Build logs and the final built packages are located at ~/modulebuild/builds/module-
module_name-stream-version/results/.

Test a Module Build
Each module build within ~/modulebuild/builds/module-module_name-stream-
version/results/ is structured in such a way as to provide a local yum repository
where you are able to access the packages for the module. As such, to test a module
build, you can configure a local yum repository and then test that the you can use the
dnf command to query the module.

For example, create a yum repository config at /etc/yum.repos.d/local.repo similar
to the following:

[local_mbs_repo]
name=Local MBS Repository
baseurl=file:///home/user/modulebuild/builds/module-module_name-stream-timestamp/
results/
gpgcheck=0
enabled=1

Chapter 4
Triggering a Build

4-10

Per the example, you would replace the user, module_name, stream and timestamp
variables with values that are appropriate to the environment you are testing.

Run the following dnf commands to validate that the module information is correct and that
the packages for the module stream can be installed:

sudo dnf module list

sudo dnf module install module_name:stream

Chapter 4
Test a Module Build

4-11

	Contents
	Preface
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About Building Source Packages
	About Source RPMS
	About the Module Build Service

	2 General Requirements
	Enable Required Developer Repositories
	Install Packaging Tools and the Module Build Service

	3 Building Non-Modular Source RPM Packages
	Using rpmbuild Directly
	Using the mock Utility to Build Sources

	4 Building Modules
	Create Git Repositories for Module Sources
	Download Module Sources
	Generate a Working modulemd and Plan the Required Git Repositories
	Create Source Git Repositories and Branches
	Remote Git Repositories
	Local Git Repositories

	Configure MBS for Remote Source Repositories
	Module Build Service Mock Configuration
	Triggering a Build
	Test a Module Build

