
Oracle Linux 8
Managing Local File Systems

F24265-13
January 2024



Oracle Linux 8 Managing Local File Systems,

F24265-13

Copyright © 2020, 2024, Oracle and/or its affiliates.



Contents

 Preface

Documentation License vi

Conventions vi

Documentation Accessibility vi

Access to Oracle Support for Accessibility vi

Diversity and Inclusion vii

1   About File System Management

Supported File Systems 1-1

Maximum File and File System Size Requirements 1-2

2   Performing Basic File System Administration

Building File Systems 2-1

Mounting File Systems 2-1

About the mount Command 2-2

Using More Options of the mount Command 2-4

Mounting a File That Contains a File System Image 2-5

About the File System Mount Table 2-5

Configuring the Automounter 2-6

About the Automounter Configuration File 2-6

Installing and Enabling the Automounter 2-7

Creating a File System on a File Within Another File System 2-8

About Access Control Lists 2-9

Enabling ACL Support 2-9

Setting and Displaying ACLs 2-9

About Disk Quotas 2-11

Enabling Disk Quotas on File Systems 2-11

Assigning Disk Quotas to Users and Groups 2-12

Setting Project Quotas 2-12

Setting a Grace Period for Soft Limits 2-13

Displaying Disk Quotas 2-13

iii



Enabling and Disabling Disk Quotas 2-14

Reporting on Disk Quota Usage 2-14

Maintaining the Accuracy of Disk Quota Reporting 2-14

3   Managing the Btrfs File System

Setting Up and Administering a Btrfs File System 3-1

Creating a Btrfs File System 3-2

Modifying a Btrfs File System 3-3

Compressing and Defragmenting a Btrfs File System 3-4

Resizing a Btrfs File System 3-5

Creating Subvolumes and Snapshots 3-5

Creating Swap Files on a Btrfs File System 3-7

Creating Backups and Using the Btrfs Send/Receive Feature 3-8

Creating a Reference Backup in Preparation for Creating an Incremental Backup 3-9

Creating an Incremental Backup 3-10

Managing Quotas for Btrfs Subvolumes With Quota Groups 3-10

Replacing Devices on a Live File System 3-10

Creating Snapshots of Files 3-11

Automating File System Snapshots With the Snapper Utility 3-11

Creating a Snapper Configuration for a Subvolume 3-12

Creating Different Types of Snapshots 3-12

Automatic Snapper Snapshots 3-14

Working With Btrfs Snapshots by Using Snapper 3-15

Working With a Btrfs root File System 3-16

Creating Snapshots of the root File System 3-17

Mounting Alternate Snapshots as the root File System 3-18

Deleting Snapshots of the root File System 3-18

4   Managing the Ext File System

Converting an Ext File System to a Btrfs File System 4-1

Converting a Non Root File Ext File System to a Btrfs File System 4-2

Converting a Non Root Ext File System to a Later Version 4-2

Converting a Root Ext File System to a Later Version 4-3

Checking and Repairing an Ext File System 4-4

Changing the Frequency of File System Checking for Ext File Systems 4-5

5   Managing the XFS File System

Installing XFS Packages 5-2

Creating an XFS File System 5-3

iv



Modifying an XFS File System 5-3

Growing an XFS File System 5-4

Creating an XFS File System With the Reflink Feature 5-5

Freezing and Unfreezing an XFS File System 5-5

Managing Quotas on an XFS File System 5-6

Backing Up and Restoring an XFS File System 5-7

Checking and Repairing an XFS File System 5-9

Defragmenting an XFS File System 5-10

v



Preface

Oracle Linux 8: Managing Local File Systems provides information about managing file
systems and storage devices on Oracle Linux 8 systems.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–
Share Alike 4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute
this content or an adaptation of it, you must provide attribution to Oracle and retain the
original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis,
or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands
within a paragraph, URLs, code in
examples, text that appears on the screen,
or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle
Accessibility Conformance Report at https://www.oracle.com/corporate/accessibility/
templates/t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit https://www.oracle.com/corporate/
accessibility/learning-support.html#support-tab.

Preface

vi

https://docs.oracle.com/en/operating-systems/oracle-linux/8/fsadmin/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab


Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Preface

vii



1
About File System Management

This chapter describes local file system management in Oracle Linux. Information about file
systems and minimum requirements for each file system type is also provided.

Supported File Systems
Oracle Linux supports many local file system types that you can configure on block devices,
which include the following:

btrfs
A copy-on-write file system that's designed to address the expanding scalability
requirements of large storage subsystems. Btrfs supports the following: snapshots, a roll-
back capability, checksum functionality for data integrity, transparent compression, and
integrated logical volume management.

Note:

In Oracle Linux 8, the Btrfs file system type is supported on Unbreakable
Enterprise Kernel (UEK) releases only.

ext4
A version of the extended file system. Ext4 supports the same features that are supported by
Ext3, with added support for extents or contiguous physical blocks, preallocation, delayed
allocation, speedier file system checking, more robust journaling, and several other
enhancements.

XFS
A high-performance, journaling file system that provides high scalability for I/O threads, file
system bandwidth, file size, and file system size, even for file systems that span many
storage devices.

To list recognized file system types on a system, use the following command:

sudo ls /sbin/mkfs.*

Note that the following output might differ, depending on the setup:

sudo ls /sbin/mkfs.*
/sbin/mkfs.cramfs   /sbin/mkfs.ext4   /sbin/mkfs.msdos
/sbin/mkfs.ext2     /sbin/mkfs.fat    /sbin/mkfs.vfat
/sbin/mkfs.ext3     /sbin/mkfs.minix  /sbin/mkfs.xfs

These executables are used to make the file system type that's specified by their extension.
For example, mkfs.msdos is the other name for mkdosfs. The mkfs.cramfs command
creates a compressed ROM, read-only cramfs file system for use by embedded or small-
footprint systems.

1-1



Maximum File and File System Size Requirements
File system limitations are affected by kernel versions and features, and also by the
architecture of the system on which Oracle Linux is installed. The values that are
shown in the table are estimates, based on the known variables that might affect the
maximum theoretical value that can be achieved. The theoretical values might be
greater than those depicted here, while the actual, achievable values might be lesser
than the values that are shown, depending on the hardware and kernel version that's
used.

The following table describes the maximum file size and maximum file system size for
the btrfs, ext4, and xfs file systems.

File System Type Maximum File Size Maximum File
System Size

Supported Kernels

btrfs 8 EiB 8 EiB UEK, starting with
Unbreakable
Enterprise Kernel
Release 6 (UEK R6)

ext4 16 TiB 1 EiB RHCK and UEK

xfs 8 EiB 8 EiB RHCK and UEK

The limits for the ext4 file system that are described in the previous table are greater
than those recommended and might prove unstable. If you intend for the systems you
work on to eventually use bigger file system sizes or file sizes, then using either the
Btrfs or XFS file system is recommended.

The maximum supported size for a bootable logical unit number (LUN) is 50 TB. GPT
and UEFI support are required for LUNs that are larger than 2 TB.

The maximum size of the address space that's available to each process is 128 TB.

For information about maximum file sizes and maximum file system sizes for OCFS2,
see the chapter on OCFS2 in Oracle Linux 8: Managing Shared File Systems.

Chapter 1
Maximum File and File System Size Requirements

1-2

https://docs.oracle.com/en/operating-systems/oracle-linux/8/shareadmin/


2
Performing Basic File System Administration

This chapter describes basic tasks for administering file systems. The chapter also describes
how to configure Access Control Lists (ACLs) and how to configure and manage disk quotas.

Building File Systems
The mkfs command syntax enables you to build a file system on a block device:

sudo mkfs [options] device

Typically, the -t fstype and -L label options are used with the mkfscommand. The
following example builds an ext4 file system with the label Project:

sudo mkfs -t ext4 -L Projects /dev/sdb1

If you don't specify the file system type, an ext2 file system is created by default.

You can also omit -t fstype and instead use the appropriate full mkfs.<extension>
command as listed in /sbin. The following command produces the same result as the
previous command:

sudo mkfs.ext4 -L Projects /dev/sdb1

To display the file system type, use the blkid command, for example:

sudo blkid /dev/sdb1

The output of the previous command would be similar to the following:

/dev/sdb1: UUID="ad8113d7-b279-4da8-b6e4-cfba045f66ff" BLOCK_SIZE="512" TYPE="ext4" 
  PARTUUID="PARTUUID="6a0cf5e9-09e5-40cf-ab47-3166e1c60f24" LABEL="Projects"

Each file system type supports several features that you can enable or disable by specifying
more options with either the mkfs command format or the full mkfs.<extension>
command. For example, you can use the -J option to specify the size and location of the
journal that's used by the ext* file system types.

For more information, see the blkid(8), mkfs(8), and mkfs.fstype(8) manual pages.

Mounting File Systems
To access a file system's contents, you need to attach its block device to a mount point in the
directory hierarchy. Any directory can be used to function as a mount point.

Typically, you create a directory for a mount point. If you use an existing directory, the
contents remain hidden until you unmount the overlying file system.

2-1



About the mount Command
You use the mount command to attach the device containing the file system to the
mount point as follows:

sudo mount [options] device mount_point

The device can be mounted by referencing its name, UUID, or label. For example, to
mount the file system that was created in the previous section to /var/projects, any
of the following commands can be used after you create the directory by running the
following commands:

sudo mkdir /var/projects

sudo mount /dev/sdb1 /var/projects

sudo mount UUID="ad8113d7-b279-4da8-b6e4-cfba045f66ff" /var/projects

sudo mount LABEL="Projects" /var/projects

Issuing the mount command by itself displays all the mounted file systems. In the
following example, an extract of the command's output indicates the following:

• /dev/sdb1 with an ext4 file system is mounted on /var/projects for both reading
and writing

• /dev/mapper/vg_host01-lv_root, an LVM logical volume also with an ext4 file
system, is mounted on / for both reading and writing:

sudo mount

The output of the previous command would be similar to the following:

/dev/sdb1 on /var/projects type ext4 (rw)
/dev/mapper/vg_host01-lv_root on / type ext4 (rw)
...

Or, you can use the cat /proc/mounts command to display information about
mounted file systems.

The df -h command displays information about file systems and their use of disk
space:

Filesystem      Size  Used Avail Use% Mounted on
...
/dev/sda3        46G   18G   29G  39% /
/dev/sda2       795M  452M  344M  57% /boot
/dev/sda1       100M  5.7M   95M   6% /boot/efi
...

To attach or bind a block device at several mount points, use the mount -B
command.

You can also remount part of a directory hierarchy, which need not be a complete file
system, somewhere else. For example, you would use the following command to
mount /var/projects/project1 on /mnt, for example:

sudo mount -B /var/projects/project1 /mnt

Chapter 2
Mounting File Systems

2-2



Each directory hierarchy acts as a mirror of the other. The same files are accessible in either
location. However, any submounts aren't replicated. These mirrors don't provide data
redundancy.

To mount a file over another file, you would use the following command:

sudo touch /mnt/foo

sudo mount -B /etc/hosts /mnt/foo

In the previous example, the /etc/hosts and /mnt/foo mount points represent the same file.
The existing file that acts as a mount point isn't accessible until you unmount the overlying
file.

To include submounts in the mirror, use the -R option to create a recursive bind.

When you use the -B or -R option, the file system mount options remain the same as those
for the original mount point. To change, the mount options, use a separate remount
command, for example:

sudo mount -o remount,ro /mnt/foo

You can mark the submounts in a mount point as being shared, private, or secondary. You
can specify the following options:

mount --make-shared mount_point
Any mounts or unmounts under the specified mount point propagate to any mirrors that you
create, and this mount hierarchy reflects mounts or unmount changes that you make to other
mirrors.

mount --make-private mount_point
Any mounts or unmounts under the specified mount point don't propagate to other mirrors,
nor does this mount hierarchy reflect mounts or unmount changes that you make to other
mirrors.

mount --make-slave mount_point
Any mounts or unmounts under the specified mount point don't propagate to other mirrors,
but this mount hierarchy does reflect mounts or unmount changes that you make to other
mirrors.

To prevent a mount from being mirrored by using the -B or -R options, mark its mount point
as being unbindable:

sudo mount --make-unbindable mount_point

To move a mounted file system, directory hierarchy, or file between mount points, use the -M
option, for example:

sudo touch /mnt/foo

sudo mount -M /mnt/foo /mnt/bar

To unmount a file system, use the umount command:

sudo umount /var/projects

Or, you can specify the block device if it's mounted on only one mount point.

For more information, see the mount(8) and umount(8) manual pages.

Chapter 2
Mounting File Systems

2-3



Using More Options of the mount Command
You can identify the mount command behavior by using the -o option to specify
options in a comma-separated list. Some of these options are as follows:

Note:

These options can also be entered in the /etc/fstab file.

auto
Causes the file system to be mounted automatically by using the mount -a
command.

exec
Causes the execution of any binary files in the file system.

loop
Uses a loop device (/dev/loop*) to mount a file that contains a file system image.
See Mounting a File That Contains a File System Image, Creating a File System on a
File Within Another File System, and the losetup(8) manual page.

Note:

The default number of available loop devices is 8. You can use the kernel
boot parameter max_loop=N to configure up to 255 devices. Or, add the
following entry to /etc/modprobe.conf:

options loop max_loop=N 

In the previous example, N is the number of loop devices that you require
(from 0 to 255), and then reboot the system.

noauto
Prevents the file system from being mounted automatically when mount -a is issued.

noexec
Prevents the execution of any binary files in the file system.

nouser
Prevents any user other than the root user from mounting or unmounting the file
system.

remount
Remounts the file system if it's already mounted. You would typically combine this
option with another option such as ro or rw to change the behavior of a mounted file
system.

ro
Mounts a file system as read-only.

Chapter 2
Mounting File Systems

2-4



rw
Mounts a file system for reading and writing.

user
Allows any user to mount or unmount the file system.

The following examples show different ways to use the mount -o command syntax.

• Mount the /dev/sdd1 file system as /test with read-only access and grant only the root
user to mount or unmount the file system:

sudo mount -o nouser,ro /dev/sdd1 /test
• Mount an ISO image file on /mount/cdrom with read-only access by using the loop

device:

sudo mount -o ro,loop ./Linux-Server-dvd.iso /media/cdrom
• Remount the /test file system with both read and write access, and prohibit the

execution of any binary files that are in the file system:

sudo mount -o remount,rw,noexec /test

Mounting a File That Contains a File System Image
A loop device lets you access a file as a block device. For example, you can mount a file that
contains a DVD ISO image on the directory mount point /ISO as follows:

sudo mount -t iso9660 -o ro,loop /var/ISO_files/V33411-01.iso /ISO

If required, create a permanent entry for the file system in the /etc/fstab file, for example:

/var/ISO_files/V33411-01.iso          /ISO      iso9660    ro,loop     0 0

About the File System Mount Table
The /etc/fstab file contains the file system mount table, which provides all the information
that the mount command requires to mount block devices or implement binding of mounts. If
you add a file system, you must create the appropriate entry in the /etc/fstab file to ensure
that the file system is mounted at boot time. The following are typical entries from this file:

/dev/sda1         /boot   ext4     defaults  1 2
/dev/sda2         /       ext4     defaults  1 1
/dev/sda3         swap    swap     defaults  0 0

The descriptions of each field in the previous output are as follows:

• The first field indicates the device to mount, which is specified by the device name, UUID,
or device label, or the specification of a remote file system. A UUID or device label is
preferable to a device name if the device name could change, for example:

LABEL=Projects    /var/projects  ext4  defaults  1 2

Note that the first field specifies the path of the file system, directory hierarchy, or file
that's to be mounted on the mount point specified by the second field. The third and
fourth fields are specified as none and bind.

• The second field is either the mount point for a file system or swap to indicate a swap
partition. The mount point must be a path to either a file or a directory.

Chapter 2
Mounting File Systems

2-5



• The third field is the file system type, such as ext4 or swap.

• The fourth field specifies any mount options.

• The fifth column specifies whether the dump command dumps the file system (1)
or not (0).

• The sixth column identifies the order by which the fsck command performs a file
system check at boot time. The root file system has the value 1, while other file
systems have 2. A value of 0 skips checking, as is appropriate for swap, for file
systems that aren't mounted at boot time, and for binding of existing mounts.

For bind mounts, only the first four fields are specified, for example:

path    mount_point    none     bind

For more information, see the fstab(5) manual page.

Configuring the Automounter
The automounter mounts file systems when they're accessed, rather than maintaining
connections for those mounts all the time. When a file system becomes inactive for a
certain period, the automounter unmounts it. Using automounting frees up system
resources and improves system performance.

The automounter consists of two components: the autofs kernel module and the
automount user-space daemon. It also references entries in /etc/auto.master, which
is the automounter configuration file.

About the Automounter Configuration File
In the /etc/auto.master configuration file, each map entry specifies a mount point
and a map file that contains definitions of the remote file systems that can be mounted,
for example:

/-          /etc/auto.direct
/misc       /etc/auto.misc
/net        -hosts

The previous example shows the following types of map entries:

• /-: direct map entry. Direct map entries always specify /- as the mount point.

• /misc: indirect map entry.

• /net: host map entry. Host maps always specify the keyword -hosts instead of a
map file.

A direct map contains definitions of directories that are automounted at the specified
absolute path. In the example, the auto.direct map file might contain an entry similar
to the following:

/usr/man   -fstype=nfs,ro,soft             host01:/usr/man

This entry is a directive to do the following:

• Mount the file system /usr/man that's exported by host01 by specifying the ro and
soft options.

Chapter 2
Configuring the Automounter

2-6



• Create the /usr/man mount point if it doesn't already exist. If the mount point exists , the
mounted file system hides any existing files that it contains.

Because the default file system type is NFS, the previous example can be shortened to read
as follows:

/usr/man   -ro,soft                        host01:/usr/man

An indirect map contains definitions of directories or keys that are automounted relative to the
mount point (/misc) that's specified in the /etc/auto.master file. For example, the /etc/
auto.misc map file might contain entries similar to the following:

xyz       -ro,soft                         host01:/xyz
cd        -fstype=iso9600,ro,nosuid,nodev        :/dev/cdrom
abc       -fstype=ext3                           :/dev/hda1
fenetres  -fstype=cifs,credentials=credfile      ://fenetres/c

Note that the /misc directory must already exist; however, the automounter creates a mount
point for the keys xyz, cd , and so on, if they don't already exist, and then removes them
when it unmounts the file system.

For example, using the ls /misc/xyz command causes the automounter to the mount
the /xyz directory, exported by host01 as /misc/xyz.

The cd and abc entries mount the following local file systems: an ISO image from the CD-
ROM drive on /misc/cd and an ext3 file system from /dev/hda1 on /misc/abc. The fenetres
entry mounts a Samba share as /misc/fenetres.

If a host map entry exists, and a command references an NFS server that's relative to the
mount point (/net) by name, the automounter mounts all the directories that the server
exports within a subdirectory of the mount point named for the server. For example, the
cd /net/host03 command causes the automounter to mount all exports from host03
under the /net/host03 directory. By default, the automounter uses the nosuid,nodev,intr
mount options unless you override the options in the host map entry, as follows:

/net        -hosts    -suid,dev,nointr

Note:

The name of the NFS server must be resolvable to an IP address in DNS or
the /etc/hosts file.

For more information about NFS administration, see the Using NFS in Oracle Linux chapter
in Oracle Linux 8: Managing Shared File Systems Oracle Linux 9: Managing Shared File
Systems. See also the hosts.master(5) and auto.master(5) manual pages.

Installing and Enabling the Automounter
1. Install the autofs package and any other packages that are required to support remote

file systems:

sudo dnf install autofs
2. Edit the /etc/auto.master configuration file to define map entries that are appropriate to

the file systems.

Chapter 2
Configuring the Automounter

2-7

https://docs.oracle.com/en/operating-systems/oracle-linux/8/shareadmin/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/shareadmin/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/shareadmin/


See About the Automounter Configuration File for reference.

3. Start the autofs service, and configure the service to start following a system
reboot:

sudo systemctl start autofs
sudo systemctl enable autofs

You can configure various settings for autofs in the /etc/sysconfig/autofs file,
including the idle timeout value after which a file system is automatically unmounted.

If you change the /etc/auto.master or /etc/sysconfig/autofs file, restart the
autofs service to reread these files:

sudo systemctl restart autofs

For more information, see the automount(8) and autofs(5) manual pages.

Creating a File System on a File Within Another File System
1. Create an empty file of the required size:

sudo dd if=/dev/zero of=/fsfile bs=1024 count=1000000

The output of the previous command would be as follows:

1000000+0 records in
1000000+0 records out
1024000000 bytes (1.0 GB) copied, 8.44173 s, 121 MB/s

2. Create a file system on the file:

sudo mkfs.ext4 -F /fsfile

The output of the previous command would be as follows:

mke2fs 1.44.6 (5-Mar-2019)
Discarding device blocks: done                            
Creating filesystem with 250000 4k blocks and 62592 inodes
Filesystem UUID: 17ef1d96-c595-4f19-891b-112a56b54c82
Superblock backups stored on blocks: 
    32768, 98304, 163840, 229376

Allocating group tables: done                            
Writing inode tables: done                            
Creating journal (4096 blocks): done
Writing superblocks and filesystem accounting information: done

3. Mount the file as a file system by using a loop device:

sudo mount -o loop /fsfile /mnt

The file appears as a normal file system when you run the sudo mount
command:

...
/fsfile on /mnt type ext4 (rw,loop=/dev/loop0)

sudo df -h

Filesystem            Size  Used Avail Use% Mounted on
...
/fsfile               962M   18M  896M   2% /mnt

Chapter 2
Creating a File System on a File Within Another File System

2-8



If required, create a permanent entry for the file system in /etc/fstab:

/fsfile          /mnt      ext4    rw,loop     0 0

About Access Control Lists
POSIX Access Control Lists (ACLs) provide a richer access control model than traditional
UNIX Discretionary Access Control (DAC) that sets read, write, and execute permissions for
the owner, group, and all other system users. You can configure ACLs that define access
rights for more than a single user or group, and specify rights for programs, processes, files,
and directories. If you set a default ACL on a directory, its descendents inherit the same rights
automatically. You can use ACLs with the btrfs, OCFS2, ext3, ext4, and XFS file systems,
including mounted NFS file systems.

An ACL consists of a set of rules that specify how a specific user or group can access the file
or directory with which the ACL is associated. A regular ACL entry specifies access
information for a single file or directory. A default ACL entry is set on directories only, and
specifies default access information for any file within the directory that doesn't have an
access ACL.

Enabling ACL Support
1. Ensure that the acl package is installed. If not, use the following command:

sudo dnf install acl
2. Edit the /etc/fstab file and change the entries for any file systems that you want to use

ACLs so that they include the appropriate option that supports ACLs, for example:

LABEL=/work      /work       ext4     acl     0 0

For mounted Samba shares, use the cifsacl option instead of acl.

3. Remount the file systems:

sudo mount -o remount /work

Setting and Displaying ACLs
To add or modify the ACL rules for file, use the setfacl command with the following syntax:

sudo setfacl -m rules file ...

ACL rules accept the following forms:

[d:]u: user[: permissions]
Sets the access ACL for the user specified by name or user ID. The permissions apply to the
owner if no user is specified.

[d:]g: group[: permissions]
Sets the access ACL for a group specified by name or group ID. The permissions apply to
the owning group if no group is specified.

[d:]m[:][: permissions]
Sets the effective rights mask, which is the union of all permissions of the owning group and
all user and group entries.

Chapter 2
About Access Control Lists

2-9



[d:]o[:][: permissions]
Sets the access ACL for other (everyone else to whom no other rule applies).

The permissions are as follows and are used with the chmod command.

• r: read

• w: write

• x: execute

The d: prefix is used to apply the rule to the default ACL for a directory.

To display a file's ACL, use the getfacl command, for example:

sudo getfacl foofile

The output of this command would be as follows:

# file: foofile
# owner: bob
# group: bob
user::rw-
user::fiona:r--
user::jack:rw-
user::jill:rw-
group::r--
mask::r--
other::r--

If extended ACLs are active on a file, the ls -l command displays a plus sign (+)
after the permissions:

-rw-r--r--+ 1 bob bob  105322 Apr 11 11:02 foofile

The following examples show how to set and display ACLs for directories and files:

• To grant read access to a file or directory by a user:

sudo setfacl -m u:user:r file
• To display the name, owner, group, and ACL for a file or directory:

sudo getfacl file
• To remove write access to a file for all groups and users by changing the effective

rights mask rather than the ACL:

sudo setfacl -m m::rx file

Note that the -x option removes rules for a user or group.

• To remove the rules for a user from the ACL of a file:

sudo setfacl -x u:user file
• To remove the rules for a group from the ACL of a file:

sudo setfacl -x g:group file
• To remove all the extended ACL entries from a file or directory, specify the -b

option:

sudo setfacl -b file
• To copy the ACL of file f1 to file f2:

Chapter 2
About Access Control Lists

2-10



sudo getfacl f1 | setfacl --set-file=- f2
• To set a default ACL of read and execute access for other on a directory:

sudo setfacl -m d:o:rx directory
• To promote the ACL settings of a directory to default ACL settings that can be inherited:

sudo getfacl --access directory | setfacl -d -M- directory
• to remove the default ACL from a directory, specify the -k option:

sudo setfacl -k directory
For more information, see the acl(5), setfacl(1), and getfacl(1) manual pages.

About Disk Quotas
You can set disk quotas to restrict the amount of disk space or blocks that users or groups
can use, to limit the number of files or inodes that users or groups can create, and to notify
you when usage is reaching a specified limit. A hard limit specifies the maximum number of
blocks or inodes that are available to a user or group on the file system. Users or groups can
exceed a soft limit for a period, which is known as a grace period.

Oracle Linux 8 doesn't provide support for user and group disk quotas for a Btrfs file system.
However, quota support at the subvolume level is available for a Btrfs file system as a
technology preview in this release. For more information, see Managing Quotas for Btrfs
Subvolumes With Quota Groups.

For information about how to configure quotas for an XFS file system, see Managing Quotas
on an XFS File System.

Enabling Disk Quotas on File Systems
Disk quotas are enabled at mount. The following table describes the options that you can
specify with the mount command to enable quotas.

Mount Option Description

gqnoenforce Enable group quotas. Report usage, but do not
enforce usage limits.

gquota Enable group quotas and enforce usage limits.

pqnoenforce Enable project quotas. Report usage, but do not
enforce usage limits.

pquota Enable project quotas and enforce usage
limits.

uqnoenforce Enable user quotas. Report usage, but don't
enforce usage limits.

uquota Enable user quotas and enforce usage limits.

1. Install the quota package on the system, if not already installed:

sudo dnf install quota
2. Add the usrquota or grpquota options to the file system's /etc/fstab entry:

/dev/sdb1       /home        ext4    usrquota,grpquota   0 0

Chapter 2
About Disk Quotas

2-11



3. Remount the file system:

sudo mount -o remount /home
4. Create the quota database files:

sudo quotacheck -cug /home

The previous command creates the files aquota.user and aquota.group in the
root of the file system, which is /home in this example.

For more information, see the quotacheck(8) manual page.

Assigning Disk Quotas to Users and Groups
1. For a user, use the following command:

sudo edquota username

for a group, use the following command:

sudo edquota -g group

Running the previous command opens a text file opens in the default editor that's
defined by the EDITOR environment variable. Therefore, you can specify the limits
for the user or group, for example:

Disk quotas for user guest (uid 501)
Filesystem  blocks  soft  hard  inodes  soft  hard
 /dev/sdb1   10325     0     0    1054     0     0

The blocks and inodes entries reflect the user's current usage on a file system.

Tip:

Setting a limit to 0 disables quota checking and enforcement for the
corresponding blocks or inodes category.

2. Edit the soft and hard block limits for the number of blocks and inodes, then save
the changes.

Or, you can use the setquota command to configure quota limits from the command
line. The -p option applies quota settings from one user or group to another user or
group.

Note that when using XFS file systems, xfs_quota is the preferred tool to manage
quota information. See Managing Quotas on an XFS File System for more information.

For more information, see the edquota(8) and setquota(8) manual pages.

Setting Project Quotas
Some file systems enable you to set quotas on individual directory hierarchies, which
are known as managed trees. Each managed tree is uniquely identified by a project ID
and an optional project name. The ability to control the disk usage of a directory
hierarchy is useful if you don't otherwise want to set quota limits for a privileged user,

Chapter 2
About Disk Quotas

2-12



for example, /var/log, or if many users or groups have write access to a directory, for
example, /var/tmp.

To define a project and set quota limits for it:

1. Mount the file system with project quotas enabled.

sudo mount -o pquota device mountpoint

For example, to enable project quotas for the /myxfs file system, you would use the
following command:

sudo mount -o pquota /dev/vg0/lv0 /myxfs
2. Define a unique project ID for the directory hierarchy in the /etc/projects file.

sudo echo project_ID:mountpoint/directory |sudo tee -a /etc/projects

For example, you would set a project ID of 51 for the directory hierarchy /myxfs/testdir
as follows:

sudo echo 51:/myxfs/testdir |sudo tee -a /etc/projects
3. Create an entry in the /etc/projid file that maps a project name to the project ID.

sudo echo project_name:project_ID |sudo tee -a /etc/projid

For example, you would map the project name testproj to the project with ID 51 as
follows:

sudo echo testproj:51 |sudo tee -a /etc/projid
For more information, see the projects(5) and projid(5) manual pages.

With the file system mounted to enable project quotas and project IDs set for the directory
hierarchy, you can set limits for the project quota using edquota or xfs_quota. Note that
when using XFS file systems, xfs_quota is preferred. See Managing Quotas on an XFS
File System for more information.

Setting a Grace Period for Soft Limits
1. Run the following command to set a grace period for soft limits:

sudo edquota -t

Running the previous command opens a text file in a default text editor, thus enabling you
to specify the grace period, as shown in the following example:

Grace period before enforcing soft limits for users:
Time units may be: days, hours, minutes, or seconds
  Filesystem     Block grace period     Inode grace period
  /dev/sdb1            7days                  7days 

2. Specify the grace periods for the soft limits on the number of blocks and inodes, then
save the changes.

For more information, see the edquota(8) manual page.

Displaying Disk Quotas
To display a user's disk usage, use the quota command without any options or arguments:

Chapter 2
About Disk Quotas

2-13



sudo quota username

To display a group's disk usage, add the -g option, use the following command:

sudo quota -g group

To display information about file systems, where usage is over the quota limits, add the
-q option, for example:

sudo quota -q

Users can also use the quota command to display disk usage for themselves and
their group.

For more information, see the quota(1) manual page.

Enabling and Disabling Disk Quotas
To disable disk quotas for all users, groups on a specific file system, use the following
command:

sudo quotaoff -guv filesystem

To disable disk quotas for all users, groups, and file systems, use the following
command:

sudo quotaoff -aguv

Reactivate disk quotas for all users, groups, and file systems as follows:

sudo quotaon -aguv

For more information, see the quotaon(1) manual page.

Reporting on Disk Quota Usage
To display the disk quota usage for a file system:

sudo repquota filesystem

To display the disk quota usage for all file systems:

sudo repquota -a

For more information, see the repquota(8) manual page.

Maintaining the Accuracy of Disk Quota Reporting
Uncontrolled system shutdowns can lead to inaccuracies in disk quota reports.

The following steps show how to rebuild the quota database for a file system:

1. Disable disk quotas for the file system:

sudo quotaoff -guv filesystem
2. Unmount the file system:

sudo umount filesystem

Chapter 2
About Disk Quotas

2-14



3. Rebuild the quota databases:

sudo quotacheck -guv filesystem
4. Mount the file system:

sudo mount filesystem
5. Enable disk quotas for the file system:

sudo quotaoff -guv filesystem
For more information, see the quotacheck(8) manual page.

Chapter 2
About Disk Quotas

2-15



3
Managing the Btrfs File System

The Btrfs file system is designed to meet the expanding scalability requirements of large
storage subsystems. Because the Btrfs file system uses B-trees in its implementation, its
name is derived from the name of those data structures, although it is not a true acronym. A
B-tree is a tree-like data structure that enables file systems and databases to efficiently
access and update large blocks of data, irrespective of how large the tree grows.

The Btrfs file system provides the following important features:

• Copy-on-write functionality, which enables you to create both readable and writable
snapshots and roll back a file system to a previous state, even after converting it from an
ext3 or ext4 file system.

• Checksum functionality, which ensures data integrity.

• Snapshots send and receive for remote incremental backups.

• Transparent compression, which saves disk space.

• Transparent defragmentation for improved performance.

• Integrated, logical volume management, which enables you to implement RAID 0, RAID
1, RAID 10, RAID1C3 or RAID1C4 configurations, and dynamically add or remove
storage capacity.

For more information, visit https://btrfs.wiki.kernel.org/.

For an overview of local file system management, see About File System Management.

Note:

In Oracle Linux 8, the Btrfs file system type, as well as all of the features that are
documented in this chapter is supported on the Unbreakable Enterprise Kernel
(UEK) release only. Working with Btrfs file system features requires that you boot
the system by using UEK R6 or later.

Setting Up and Administering a Btrfs File System
This section describes procedures to create a Btrfs file system as well as administering it for
a more efficient use.

3-1

https://btrfs.wiki.kernel.org/index.php/Main_Page


Creating a Btrfs File System

Note:

Note that the /sbin/mkfs.* tool is not provided by the same package as
the kernel modules that are required by the btrfs command. Use the
modinfo btrfs command to check whether the btrfs module is available in
the kernel that is booted. Also, if the btrfs-progs package is not installed on
your system, you will need to install it.

You can use the mkfs.btrfs command to create a Btrfs file system that is laid out
across one or more block devices. The default configuration is to mirror the filesystem
metadata across the devices. If you specify a single device, the metadata is duplicated
on that device, unless you specify to use only one copy of the metadata. The devices
can be whole block device(s), simple disk partitions, files, loopback devices (that is,
disk images in memory), multipath devices, or LUNs that implement RAID in hardware.

See the mkfs.btrfs(8) manual page for more detailed information about the
mkfs.btrfs command the various Btrfs configurations that you can create.

When you want to mount the file system, you can specify it by any of its component
devices, for example:

sudo mkfs.btrfs -d raid10 -m raid10 /dev/sd[fghijk]

sudo mount /dev/sdf mountpoint

The mkfs.btrfs command automatically scans the new Btrfs devices into the kernel.
To scan and assemble all of the relevant devices of the volume in the kernel you need
to run the btrfs device scan command. You can undo this action by using the
btrfs device scan --forget command. To assemble all of the relevant devices
of the volume, you might need to run the btrfs device scan command.

You can obtain the RAID configuration for a mounted btrfs file system as follows:

sudo btrfs filesystem df mountpoint

Note that the btrfs filesystem df command displays more accurate information
about the space that is used by a Btrfs file system than by using the df command.

You can also use the btrfs filesystem usage command to display information
about all of the btrfs file systems that are on a system, for example:

sudo btrfs filesystem usage /btrfs

Overall:
    Device size: 1.95TiB
    Device allocated: 5.03GiB
    Device unallocated: 1.95TiB
    Device missing: 0.00B
    Used: 256.00KiB
    Free (estimated): 999.48GiB (min: 999.48GiB)
    Data ratio: 2.00
    Metadata ratio: 2.00

Chapter 3
Setting Up and Administering a Btrfs File System

3-2



    Global reserve: 3.25MiB (used: 0.00B)

Data,RAID10: Size:2.00GiB, Used:0.00B (0.00%)
   /dev/nvme0n1p6 1.00GiB
   /dev/nvme0n1p7 1.00GiB
   /dev/nvme0n1p8 1.00GiB
   /dev/nvme0n1p9 1.00GiB

Metadata,RAID10: Size:512.00MiB, Used:112.00KiB (0.02%)
   /dev/nvme0n1p6 256.00MiB
   /dev/nvme0n1p7 256.00MiB
   /dev/nvme0n1p8 256.00MiB
   /dev/nvme0n1p9 256.00MiB

System,RAID10: Size:16.00MiB, Used:16.00KiB (0.10%)
   /dev/nvme0n1p6 8.00MiB
   /dev/nvme0n1p7 8.00MiB
   /dev/nvme0n1p8 8.00MiB
   /dev/nvme0n1p9 8.00MiB

Unallocated:
   /dev/nvme0n1p6 498.74GiB
   /dev/nvme0n1p7 498.74GiB
   /dev/nvme0n1p8 498.74GiB
   /dev/nvme0n1p9 498.74GiB

Modifying a Btrfs File System
You can use the btrfs command to add or remove devices and rebalance the layout of the
file system data and metadata across devices. The following table describes each of the
commands that can use to perform these tasks.

Command Description

btrfs device add device mountpoint Add a device to the file system that is mounted
on the specified mount point, for example:
btrfs device add /dev/sdd /myfs

btrfs device delete device mountpoint Remove a device from a mounted file system,
for example:
btrfs device delete /dev/sde /
myfs

btrfs device delete missing
mountpoint

Remove a failed device from the file system
that is mounted in degraded mode, for
example:
btrfs device remove missing /myfs
To mount a file system in degraded mode,
specify the -o degraded option to the
mount command.

For a RAID configuration, if the number of
devices would fall below the minimum
number that are required, you must add the
replacement device before removing the failed
device.

Chapter 3
Setting Up and Administering a Btrfs File System

3-3



Command Description

btrfs filesystem balance mountpoint After adding or removing devices, redistribute
the file system data and metadata across the
available devices.

Compressing and Defragmenting a Btrfs File System
You can compress a Btrfs file system to increase its effective capacity, as well as
defragment it to increase I/O performance.

The following three compression types are supported:

• zlib
• lzo
• zstd
There are three ways in which you can enable compression:

• By using the subvolume property, for example:

sudo btrfs subvolume create /btrfs/sv1 

sudo btrfs property set /btrfs/sv1 compression zstd
• By using the mount option in one of the following ways:

Use the lzo type to compress the file data on the whole file system:

sudo mount -o compress=lzo /dev/sdb /btrfs

Use the zstd type to compress a subvolume and then mount it at the /btrfs1
mount point:

sudo mount -o compress=zstd,subvolume=sv1 /devsdb /btrfs1 
• By using defragment, for example:

sudo btrfs filesystem defragment -czlib /btrfs1/akzo
You can enable compression at any point and only the new writes are compressed or
defragmentation is run.

You can compress a Btrfs file system at the same time that you defragment it.

To defragment a Btrfs file system, use the following command:

sudo btrfs filesystem defragment filesystem_name

To defragment a Btrfs file system and compress it at the same time, use the following
command:

sudo btrfs filesystem defragment -c filesystem_name

You can use the following command to defragment and optionally compress individual
file system objects such as directories and files within a Btrfs file system:

sudo btrfs filesystem defragment [-c] file_name ...  

Chapter 3
Setting Up and Administering a Btrfs File System

3-4



To set up automatic defragmentation, specify the autodefrag option when you mount the
file system. However, note that automatic defragmentation is not recommended for large
databases or for images of virtual machines.

Note:

Defragmenting a file or a subvolume with a copy-on-write copy breaks the link
between the file and its copy. For example, if you defragment a subvolume that has
a snapshot, the disk usage by the subvolume and its snapshot will increase
because the snapshot is no longer a copy-on-write image of the subvolume.

Resizing a Btrfs File System
You can use the btrfs command to increase the size of a mounted Btrfs file system as long
as there is space on the underlying devices to accommodate the change. You also use the
btrfs command to decrease its size, if the file system has sufficient available free space.
Note that running the command does not have any effect on the layout or size of the
underlying devices.

You would increase the size of /mybtrfs1 by 2 GB as follows:

sudo btrfs filesystem resize +2g /mybtrfs1

The following example shows how to set the size of /mybtrfs3 to 20 GB:

sudo btrfs filesystem resize 20g /mybtrfs3

The following command decreases the size of /mybtrfs2 by 4 GB:

sudo btrfs filesystem resize -4g /mybtrfs2

Creating Subvolumes and Snapshots
The top level of a Btrfs file system is a subvolume consisting of a named b-tree structure
containing directories, files, and possibly further btrfs subvolumes that are also named b-
trees, each of which also contains directories and files, and so on.

To create a subvolume, change directories to the position in the btrfs file system for which
you want to create the subvolume, then run the following command:

sudo btrfs subvolume create subvolume_name

Snapshots are a type of subvolume that record the contents of their parent subvolumes at the
time that you took the snapshot. If you take a snapshot of a btrfs file system and do not
write to it, the snapshot records the state of the original file system and forms a stable image
from which you can make a backup. If you make a snapshot writable, you can treat it as a
alternate version of the original file system. The copy-on-write functionality of a btrfs file
system means that snapshots are created quickly and consume very little disk space initially.

Chapter 3
Creating Subvolumes and Snapshots

3-5



Note:

Taking snapshots of a subvolume is not a recursive process. If you create a
snapshot of a subvolume, every subvolume or snapshot that the subvolume
contains is mapped to an empty directory of the same name inside that
snapshot.

The following table describes commands to use to perform some common snapshot
operations.

Command Description

btrfs subvolume snapshot
pathname pathname / snapshot_path

Create a snapshot snapshot_path of a
parent subvolume or snapshot specified by
pathname, for example:
btrfs subvolume snapshot /
mybtrfs /mybtrfs/snapshot1

btrfs subvolume list pathname List the subvolumes or snapshots of a
subvolume or snapshot that is specified by
pathname, for example:
btrfs subvolume list /mybtrfs

Note:

You can use this
command to
determine the
ID of a
subvolume or
snapshot.

btrfs subvolume set-default ID
pathname

By default, mount the snapshot or
subvolume that is specified by its ID
instead of the parent subvolume, for
example:
btrfs subvolume set-default 4 /
mybtrfs

btrfs subvolume get-default
pathname

Displays the ID of the default subvolume
that is mounted for the specified
subvolume, for example:
btrfs subvolume get-default /
mybtrfs

You can mount a Btrfs subvolume as though it were a disk device. If you mount a
snapshot instead of its parent subvolume, you effectively roll back the state of the file
system to when the snapshot was taken. By default, the operating system mounts the
parent Btrfs volume, which has an ID of 0, unless you use the set-default option to
change the default subvolume. If you set a new default subvolume, the system mounts
that subvolume going forward. You can override the default setting by specifying any of
the mount options that are described in the following table.

Chapter 3
Creating Subvolumes and Snapshots

3-6



Mount Option Description

subvolid= snapshot-ID Mount the subvolume or snapshot that is
specified by its subvolume ID instead of the
default subvolume.

subvol= pathname / snapshot_path Mount the subvolume or snapshot that is
specified by its pathname instead of the
default subvolume.

Note:

The subvolume or
snapshot must be
located in the root
of the Btrfs file
system.

After you have rolled back a file system by mounting a snapshot, you can take snapshots of
the snapshot to record its state.

When you no longer require a subvolume or snapshot, you can delete it as follows:

sudo btrfs subvolume delete subvolume_path

Deleting a subvolume deletes all of the subvolumes under it in the b-tree hierarchy. For this
reason, you cannot remove the topmost subvolume of a btrfs file system, which has an ID of
0.

For information about using the snapper command to create and manage Btrfs snapshots,
see Automating File System Snapshots With the Snapper Utility.

NOT_SUPPORTED:

Snapshots record the state of the file system at a moment in time. As such, it is not
possible to guarantee file system integrity for transactional processes that may have
been in operation at the time when a snapshot was taken. While utilities like the
snapper command may help to capture before and after snapshots for particular
operations, such as when using the dnf command, these snapshots are still
unaware of other processes that may be running on the system at the same time. If
you have processes that may have intensive I/O or memory usage, such as
database or middleware applications, you should stop these or ensure that all
activity is complete before taking a snapshot to help to reduce the likelihood of data
integrity or file system corruption issues within the snapshot.

Creating Swap Files on a Btrfs File System
Swap space is used in Oracle Linux when the amount of physical memory (RAM) is full. If the
system needs more memory resources, and the RAM is full, inactive pages in memory are
moved to the swap space. Although swap space is helpful for systems with a small amount of

Chapter 3
Creating Swap Files on a Btrfs File System

3-7



RAM, don't use swap space as a replacement for more RAM. You can allocate swap
space to a dedicated swap partition, which is the recommended method. Or, you can
use a swap file; or, you can combine the use of swap partitions and swap files.

Swap files in Btrfs are supported with the following limitations:

• A swap file can't be on a snapshotted subvolume. Instead, we recommend that
you create a subvolume on which to place the swap file.

• Btrfs doesn't support swap files on file systems that span several devices.

The following are step-by-step instructions for creating a swap file in Btrfs. Before
creating the new swap file, calculate the size of the swap file in MB. Then, multiply that
number by 1024 to find the number of blocks the file requires. For example, the block
size of a 64 MB swap file is 65536.

1. Create an empty file, for example:

sudo dd if=/dev/zero of=/swapfile bs=1024 count=65536
2. Set up the swap file by running the following command:

sudo mkswap /swapfile
3. Change the permissions on the file so that it's not world readable:

sudo chmod 0600 /swapfile
4. Enable the swap file at boot time by editing the /etc/fstab file as the root user to

include the following entry:

/swapfile swap swap defaults 0 0
5. Regenerate the mount units and register the new configuration in the /etc/fstab

file:

sudo systemctl daemon-reload
6. Activate the new swap file:

sudo swapon /swapfile

Running the previous command activates the new swap file immediately.

Or, you can run the following command to test whether the new swap file was
successfully created by inspecting the active swap space:

sudo cat /proc/swaps

sudo free -h

Creating Backups and Using the Btrfs Send/Receive
Feature

Note:

Working with the Btrfs send/receive feature requires that you boot the system
by using UEK R6 or later..

Chapter 3
Creating Backups and Using the Btrfs Send/Receive Feature

3-8



The send operation compares two subvolumes and writes a description of how to convert one
subvolume, the parent subvolume, into the other subvolume, which is the sent subvolume.
You would usually direct the output to a file for later use or pipe it to a receive operation for
immediate use.

The simplest form of the send operation writes a complete description of a subvolume, for
example:

sudo btrfs send [-v] [-f sent_file] ... subvol
               

You can specify many instances of the -v option to display increasing amounts of debugging
output. The -f option is used to save the output to a file. Note that both of these options are
implicit in the following usage examples.

The following form of the send operation writes a complete description of how to convert one
subvolume to another subvolume:

sudo btrfs send -p parent_subvol sent_subvol

If a subvolume such as a snapshot of the parent volume, known as a clone source, will be
available during the receive operation from which some data can be recovered, you can
specify the clone source to reduce the size of the output file:

sudo btrfs send [-p parent_subvol] [-c clone_src] ... subvol

You can specify the -c option for each of the clone source that exist. If you don't specify the
parent subvolume, btrfs chooses a suitable parent from the clone sources.

Use the receive operation to regenerate the sent subvolume at a specified path, for example:

sudo btrfs receive [-f sent_file] mountpoint

Creating a Reference Backup in Preparation for Creating an Incremental
Backup

The following procedure describes how to create a reference backup, which is a prerequisite
to setting up an incremental backup and restore process for a subvolume by using the send/
receive feature.

1. Create a read-only snapshot of the subvolume to serve as an initial reference point for
the backup.

sudo btrfs subvolume snapshot -r /vol /vol/backup_0
2. Ensure that the snapshot has been written to disk by running the sync command.

sudo sync
3. Create a subvolume or directory on a Btrfs file system as a backup area to receive the

snapshot, for example, /backupvol.

4. Send the snapshot to /backupvol.

sudo btrfs send /vol/backup_0 | btrfs receive /backupvol

The previous command creates the /backupvol/backup_0 subvolume.

After creating the reference backup, you can then create incremental backups, as
needed. See Creating an Incremental Backup.

Chapter 3
Creating Backups and Using the Btrfs Send/Receive Feature

3-9



Creating an Incremental Backup
The following instructions describe how to create an incremental backup by using the
send/receive feature. Note that before creating an incremental backup, you must first
create a reference backup. See Creating a Reference Backup in Preparation for
Creating an Incremental Backup.

To create an incremental backup:

1. Create a snapshot of the subvolume.

sudo btrfs subvolume snapshot -r /vol /vol/backup_1
2. Ensure that the snapshot has been written to disk by running the sync command.

sudo sync
3. Send only the differences between the reference backup and the new backup to

the backup area, for example:

sudo btrfs send -p /vol/backup_0 /vol/backup_1 | btrfs receive /backupvol

Running the previous comman creates the /backupvol/backup_1 subvolume.

Managing Quotas for Btrfs Subvolumes With Quota Groups

Note:

Be aware that the quota groups feature is available as a Technology Preview
only in Oracle Linux 8. Working with this feature requires that you boot the
system by using UEK R6 or later.

Enable quotas by running following command on a newly created Btrfs file system
before any creating any subvolumes:

sudo btrfs quota enable volume

Assign a quota-group limit to a subvolume by using the following command:

sudo btrfs qgroup limit size /volume/subvolume

The following example shows how you would use this command:

sudo btrfs qgroup limit 1g /myvol/subvol1

sudo btrfs qgroup limit 512m /myvol/subvol2

To find out the quota usage for a subvolume, use the btrfs qgroup show path
command.

Replacing Devices on a Live File System
You can replace devices on a live file system without unmounting the file system or
stopping any tasks that are using the file system. If the system crashes or loses power

Chapter 3
Managing Quotas for Btrfs Subvolumes With Quota Groups

3-10



while the replacement is taking place, the operation resumes when the system next mounts
the file system.

To replace a device on a mounted Btrfs file system, use the following command:

sudo btrfs replace start source_dev target_dev [-r] mountpoint

In the previous command, source_dev and target_dev specify the source device to be
replaced (source device) and the replacement device (target device). The mountpoint
specifies the file system that is using the source device. The target device must be the same
size or larger than the source device. If the source device is no longer available, or you
specify the -r option, the data is reconstructed by using redundant data that is obtained from
other devices,. such as another available mirror. The source device is removed from the file
system when the operation is complete.

Use the btrfs replace status mountpoint command to check the progress of the
replacement operation and the btrfs replace cancel mountpoint command to cancel
the operation.

Creating Snapshots of Files
Use the cp command with the --reflink option to create lightweight copies of a file within
the same subvolume of a Btrfs file system. The copy-on-write mechanism saves disk space
and enables copy operations to be almost instantaneous. The Btrfs file system creates a new
inode that shares the same disk blocks as the existing file, rather than creating a complete
copy of the file's data or creating a link that points to the file's inode. The resulting file
appears to be a copy of the original file, but the original data blocks are not duplicated. If you
subsequently write to one of the files, the Btrfs file system makes copies of the blocks before
they are written to, preserving the other file's content.

For example, you would create a snapshot named bar of a file named foo as follows:

cp -reflink foo bar

Automating File System Snapshots With the Snapper Utility
The Snapper utility can be used to automate the management of file system snapshots. The
utility can make it easier to create and delete snapshots, while enabling users to compare the
differences between snapshots and revert changes at the file level. For information about the
Snapper utility, visit the upstream project page at http://snapper.io/.

NOT_SUPPORTED:

Snapshots record the state of the file system at a moment in time. As such, it is not
possible to guarantee file system integrity for transactional processes that may have
been in operation at the time when a snapshot was taken. While utilities like the
snapper command may help to capture before and after snapshots for particular
operations, such as when using the dnf command, these snapshots are still
unaware of other processes that may be running on the system at the same time. If
you have processes that may have intensive I/O or memory usage, such as
database or middleware applications, you should stop these or ensure that all
activity is complete before taking a snapshot to help to reduce the likelihood of data
integrity or file system corruption issues within the snapshot.

Chapter 3
Creating Snapshots of Files

3-11

http://snapper.io/


If not already installed, you can install the Snapper utility from the ol8_UEKR6 yum
repository, by running:

sudo dnf install -y snapper

Creating a Snapper Configuration for a Subvolume
You can use the snapper command to create and manage snapshots of Btrfs
subvolumes.

To set up the snapper configuration for an existing mounted Btrfs subvolume:

sudo snapper -c config_name create-config -f btrfs fs_name

In the previous command, config_name is the name of the configuration and fs_name
is the path of the mounted Btrfs subvolume. Running the command does the following:

• Adds an entry for config_name to the /etc/sysconfig/snapper file.

• Creates the configuration file /etc/snapper/configs/config_name .

• Sets up a .snapshots subvolume for the snapshots.

For example, the following command sets up the snapper configuration for a Btrfs root
file system:

sudo snapper -c root create-config -f btrfs /

Use the snapper list-configs command to list all of the existing configurations:

sudo snapper list-configs

Config      | Subvolume
------------+----------
home_config | /home    
root        | /        

Note:

The default snapper SELinux policy allows snapper to manage snapshots in
the /, /etc, /mnt, /usr, /var and HOME_ROOT (usually /home). If you create a
new directory, for example /data or /srv. You may need to set the SELinux
file context for that directory so that snapper can create and manage
snapshots for that directory. For example to enable snapper to manage
snapshots on the /data directory, you can run:

$ sudo semanage fcontext -a -t snapperd_data_t "/data/\.snapshots(/.*)?"
$ sudo restorecon -R -v /data

Creating Different Types of Snapshots
You can create the following three types of snapshots by using the snapper
command:

Chapter 3
Automating File System Snapshots With the Snapper Utility

3-12



post
You use a post snapshot to record the state of a subvolume after a modification. A post
snapshot should always be paired with a pre snapshot that you take immediately before you
make the modification.

pre
You use a pre snapshot to record the state of a subvolume before a modification. A pre
snapshot should always be paired with a post snapshot that you take immediately after you
have completed the modification.

single
You use a single snapshot to record the state of a subvolume but it does not have any
association with other snapshots of the subvolume.

To create a single snapshot of a subvolume, use the snapper create command, for
example:

sudo snapper -c config_name create --description "description"

Single snapshots are useful for periodic backup purposes and can also be used to create a
back-up timeline, as described in Automatic Snapper Snapshots. For actions that are likely to
result in specific file system modifications that you may need to roll back, you can use pre
and post snapshots to capture snapshots of the file system before and after a transaction.

For example, the following commands create pre and post snapshots of a subvolume:

sudo snapper -c config_name create -t pre -p N

... Modify the subvolume's contents...

sudo snapper -c config_name create -t post --pre-num N -p N'

Specifying the -p option with the snapper command displays the number of the snapshot so
that you can reference it when creating the post snapshot or when comparing the contents of
the pre and post snapshots.

Note that you can use the --command option with the snapper command to wrap an
operation with pre and post snapshots. For example:

snapper -c root create --command "cd /tmp/build; make install" \
    --description "Installing a home built binary"

Pre and post snapshots are frequently used when performing system changes that may be
too complex to revert manually, such as when installing or upgrading packages. The DNF
snapper plugin that is described in Automatic Snapper Snapshots uses pre and post
snapshots in exactly this way and uses the description field to store the DNF transaction that
triggered the snapshot.

For example, in the following set of snapshots, you can identify periodic, single snapshots
that are triggered as part of a timeline and then a pre and post snapshot that is triggered by
the DNF snapper plugin when the vim package is installed.

$ sudo snapper -c root list

 # | Type   | Pre # | Date                         | User | Cleanup  | 
Description              | Userdata
---+--------+-------+------------------------------+------+----------
+--------------------------+---------
0  | single |       |                              | root |          | 

Chapter 3
Automating File System Snapshots With the Snapper Utility

3-13



current                  |         
1  | single |       | Wed 25 Nov 2020 07:00:30 EST | root | timeline | 
timeline                 |         
2  | single |       | Wed 25 Nov 2020 08:00:01 EST | root | timeline | 
timeline                 |         
3  | single |       | Wed 25 Nov 2020 09:00:01 EST | root | timeline | 
timeline                 |         
4  | pre    |       | Wed 25 Nov 2020 09:07:21 EST | root | number   
| /usr/bin/dnf install vim |         
5  | post   |     4 | Wed 25 Nov 2020 09:07:25 EST | root | number   
| /usr/bin/dnf install vim |         
6  | single |       | Wed 25 Nov 2020 10:00:01 EST | root | timeline | 
timeline                 |         

Automatic Snapper Snapshots
By default, each snapper configuration contains settings for a periodic backup, which
is controlled by the TIMELINE_CREATE configuration variable in the /etc/snapper/
configs/config_name file. Automatic snapshots are triggered by a systemd timer unit
that you must enable to allow the timeline to be created:

sudo systemctl enable --now snapper-timeline.timer

A second systemd timer unit handles the cleanup of stale snapshots so that your
snapshots remain manageable. You should enable this unit as well, for example:

sudo systemctl enable --now snapper-cleanup.timer

When the systemd timer units are enabled, periodic snapshot events trigger
automatically for every snapper configuration that has the TIMELINE_CREATE variable
enabled. If you wish to disable periodic snapshots for a particular configuration,
change the variable value to no in the configuration file.

By default, the snapper timeline configuration keeps 10 hourly, 10 daily, 10 monthly,
and 10 yearly snapshots. Snapshots are pruned by the cleanup timer. For busy
subvolumes such as the root subvolume, you might want to modify these values to
better cater to your requirements. You set these values by changing the following
configuration variables:

TIMELINE_LIMIT_HOURLY="10"
TIMELINE_LIMIT_DAILY="10"
TIMELINE_LIMIT_WEEKLY="10"
TIMELINE_LIMIT_MONTHLY="10"
TIMELINE_LIMIT_YEARLY="10"

The cleanup timer also prunes other snapshots to keep the total number of snapshots
reduced. See the SNAPPER(8) and SNAPPER-CONFIGS(5) manual pages for more
information.

You can install the DNF snapper plugin on a system to automatically trigger pre and
post snapshots for DNF transactions. This feature can help you roll back changes in
cases where system package upgrades cause a failure that you need to debug or to
enable you to analyze which files were modified during an installation or upgrade. Note
that this plugin requires no user configuration or interaction to work. To install the
plugin, use the following command:

sudo dnf install python3-dnf-plugin-snapper

Chapter 3
Automating File System Snapshots With the Snapper Utility

3-14



When installed, a snapshot is triggered for each subsequent DNF transaction. See https://
dnf-plugins-extras.readthedocs.io/en/latest/snapper.html for more information.

Working With Btrfs Snapshots by Using Snapper
To list the snapshots that exist for a snapper configuration or subvolume, run:

sudo snapper -c config_name list

To display the files and directories that have been added, removed, or modified between two
snapshots, use the status subcommand and specify the numbers of the two snapshots that
you want to compare:

sudo snapper -c config_name status N .. N'

To display the differences between the contents of all the files in between two snapshots, use
the diff subcommand:

sudo snapper -c config_name diff N .. N'

You can also display the difference in a single file over two snapshots by providing the full
path to the file:

sudo snapper -c config_name diff N .. N' /path/to/file

To delete a snapshot, specify its number to the delete subcommand:

sudo snapper -c config_name delete N''

To undo the changes in the subvolume from post snapshot N' to pre snapshot N':

sudo snapper -c config_name undochange N .. N'

Note that undoing a change does not revert the file system to the previous snapshot but it
reverts modifications made to existing files in the snapshot. This means that files created
after the snapshot was taken continue to remain after an undochange operation. The
undochange subcommand does not check data integrity for its changes. You should be
careful of using this command without clearly evaluating the implications of the changes that
it is likely to make.

For more information, see the snapper(8) manual page.

You can mount any snapshot generated by snapper just as you would work with any other
Btrfs snapshot. You may need to correlate the snapshot volume id with the snapper snapshot
number to work out which snapshot you should mount or restore. Run the snapper list
command to identify the number of the snapshot you wish to roll back to. For example, to see
all pre and post snapshots, to roll back to a snapshot from before a DNF package update was
run:

sudo snapper -c root list -t pre-post

Running the previous command produces the following output:

Pre # | Post # | Pre Date                     | Post Date                    | 
Description                     | Userdata
------+--------+------------------------------+------------------------------
+---------------------------------+---------
   4  |     5  | Wed 25 Nov 2020 09:07:21 EST | Wed 25 Nov 2020 09:07:25 EST 
| /usr/bin/dnf install vim        |         

Chapter 3
Automating File System Snapshots With the Snapper Utility

3-15

https://dnf-plugins-extras.readthedocs.io/en/latest/snapper.html
https://dnf-plugins-extras.readthedocs.io/en/latest/snapper.html


 127  |   128  | Mon 30 Nov 2020 08:25:42 EST | Mon 30 Nov 2020 08:30:57 EST 
| /usr/bin/dnf update             |         

Note that the number of the pre snapshot that we intend to mount is 127 in this case.
Use the btrfs subvolume list command to obtain the subvolume ID for the
snapper snapshot and use this or the path to the snapshot subvolume to mount the file
system, for example:

sudo btrfs subvolume list /|grep .snapshots.*127  

The output of the previous command is as follows:

ID 521 gen 11533 top level 268 path .snapshots/127/snapshot

Then, run the following command:

sudo mount -o subvolid=521 /dev/sda2 /mnt

You can also use this information to boot into a snapshot of the root file system. See 
Mounting Alternate Snapshots as the root File System for more infomration.

Working With a Btrfs root File System

Important:

In Oracle Linux 8, the Btrfs file system and all the features that are
documented in this chapter are supported in the Unbreakable Enterprise
Kernel (UEK) release only. Working with Btrfs file system features requires
that you boot the system by using UEK R6 or later.

You can create a Btrfs root file system during an installation. To do so, you must boot
the system by using UEK R6 or later.

To find out the ID of the parent of the root file system subvolume, use the following
command:

sudo btrfs subvolume list /

Note in the output of the previous command that the top level ID is set with an ID of 5.
The top level of the file system is effectively the root of the file system and can be used
to access all the subvolumes within the file system:

ID 256 gen 1591 top level 5 path boot
ID 258 gen 1591 top level 5 path root
ID 259 gen 1514 top level 5 path home
ID 262 gen 1514 top level 258 path var/lib/portables"

In the previous example, the installation root file system subvolume has an ID of 258.
The subvolume with ID 258 (root) is mounted as /. The default subvolume (root) with
ID 258 is mounted as the active root file system.

The mount command shows the device that's mounted as the root file system and
indicates the subvolume ID (258):

sudo mount|grep 'on / '

Chapter 3
Working With a Btrfs root File System

3-16



/dev/sda2 on / type btrfs (rw,relatime,seclabel,space_cache,subvolid=258,subvol=/root)

Note that the top-level file system in the previous output isn't mounted by default. To mount
the top-level file system volume, use the following commands:

sudo mkdir /mnt
sudo mount -o subvolid=5 /dev/sda2 /mnt

If you list the contents of /mnt, you can view each of the subvolumes within the file system
volume, including the root subvolume, for example:

ls /mnt

Running the previous command displays the following output:

boot  home  root

Note that the contents of / and /mnt/root are identical, as s shown in the following example
where a file (foo) that's created in /mnt/root is also visible in /:

sudo touch /mnt/root/foo
ls /

Running the previous command displays the following output:

bin   boot  dev  etc  foo  home  instroot  lib  lib64  media  mnt  opt  
proc  root  run  sbin  srv  sys    tmp  usr  var

Now, list the contents of /mnt/root:

sudo ls /mnt/root

bin   boot  dev  etc  foo  home  instroot  lib  lib64  media  mnt  opt  
proc  root  run  sbin  srv  sys    tmp  usr  var

Remove the /foo directory, then list the contents of /:

sudo rm -f /foo
sudo ls /

bin   boot  dev  etc  home  instroot  lib  lib64  media  mnt  opt  
proc  root  run  sbin  srv  sys    tmp  usr  var

List the contents of /mnt/root again:

sudo ls /mnt/root

bin   boot  dev  etc  home  instroot  lib  lib64  media  mnt  opt  
proc  root  run  sbin  srv  sys    tmp  usr  var

Creating Snapshots of the root File System
To take a snapshot of the current root file system:

1. Mount the top level of the root file system on a suitable mount point.

sudo mount -o subvolid=5 /dev/sda2 /mnt
2. Change directories to the mount point, then take the snapshot. In the following example,

the install subvolume is currently mounted as the root file system:

Chapter 3
Working With a Btrfs root File System

3-17



sudo cd /mnt
sudo mkdir -p /mnt/snapshots
sudo btrfs subvolume snapshot root snapshots/root_snapshot_1

3. Change directories to / and unmount the top level of the file system.

sudo cd /
sudo umount /mnt 

The list of subvolumes now includes the newly created snapshot.

sudo btrfs subvolume list /

ID 256 gen 1332 top level 5 path boot
ID 258 gen 1349 top level 5 path root
ID 259 gen 1309 top level 5 path home
ID 261 gen 1309 top level 258 path var/lib/portables
ID 264 gen 1348 top level 5 path snapshots/root_snapshot_1

Mounting Alternate Snapshots as the root File System
If you want to roll back changes to your system, you can mount a snapshot as the
root file system by specifying its ID as the default subvolume:

sudo btrfs subvolume set-default 264 /

To ensure that the GRUB command line does not overwrite your settings, make the
following update:

current_grub_kernel=$(sudo grubby --default-kernel);
sudo grubby --remove-args="rootflags=subvol=root" --update-
kernel $current_grub_kernel

Reboot the system for the changes to take effect.

Check that the snapshot subvolume ID and subvolume is mounted as the root
filesystem:

sudo mount|grep 'on / '

/dev/sda2 on / type btrfs (rw,relatime,seclabel,space_cache,subvolid=264,subvol=/
snapshots/root-snapshot1)

Deleting Snapshots of the root File System

Note:

A snapshot cannot be deleted if it is set as the default ID for a subvolume.
Deleting a snapshot while it is in use as the root file system may cause
system failure and requires a hard physical reset. Before deleting a snapshot
that is set as the default subvolume for the root File System, change the
default ID and reboot the system, for example:

sudo btrfs subvolume set-default 258 /
reboot

Chapter 3
Working With a Btrfs root File System

3-18



To delete a snapshot, do the following:

1. Mount the top level of the file system, for example:

sudo mount -o subvolid=5 /dev/sda2 /mnt
2. Change directories to the mount point and delete the snapshot.

$ sudo cd /mnt
sudo btrfs subvolume delete snapshots/root-snapshot1

3. Change directories to / and unmount the top level of the file system.

sudo cd /
sudo umount /mnt 

The list of subvolumes now does not include snapshots/root-snapshot1.

sudo btrfs subvolume list /

ID 256 gen 1332 top level 5 path boot
ID 258 gen 1349 top level 5 path root
ID 259 gen 1309 top level 5 path home
ID 261 gen 1309 top level 258 path var/lib/portables

Chapter 3
Working With a Btrfs root File System

3-19



4
Managing the Ext File System

The extended file system, or Ext, is the first file system that was written for the Linux kernel
and is in common usage across many Linux distributions. Ext has evolved through several
successive updates and is available as the Ext4 file system, which is largely backward
compatible with previous Ext file system releases but includes many added features. Key
features available in Ext4, include:

• Large file system support: Ext4 can theoretically support volumes with sizes up to 1 EiB
and single files with sizes up to 16 TiB.

• Use of extents instead of block mapping: improves large file performance and reduces
fragmentation.

• Recognizes fallocate for persistent preallocation of on-disk space for a file: improves
performance and helps to ensure contiguous disk allocation for a file.

• Use of allocate-on-flush: helps with performance and reduces fragmentation by delaying
disk space allocation until the moment that data is flushed to disk.

• Checksum functionality: ensures data integrity.

For more information, visit https://ext4.wiki.kernel.org/index.php/Main_Page.

This chapter describes tasks for administering the Ext file system in Oracle Linux 8. For an
overview of local file system management, see About File System Management.

Converting an Ext File System to a Btrfs File System
You can use the btrfs-convert utility to convert an ext file system to a Btrfs file system.
The utility preserves an image of the original file system in a snapshot named extN_saved,
such as ext4_saved. With this snapshot, you can roll back the conversion, even if you have
modified the btrfs file system.

Note that you can't convert the root file system or a bootable partition, such as /boot, to Btrfs.

Note:

The conversion to Btrfs isn't supported on the Arm (aarch64) platform. If you're
running Oracle Linux 8 on the aarch64 platform, you can migrate data from one file
system to another file system.

If you convert the root file system to Btrfs, you can use snapshots to roll back changes such
as upgrades that you have made to the file system.

4-1

https://ext4.wiki.kernel.org/index.php/Main_Page


Converting a Non Root File Ext File System to a Btrfs File
System

Caution:

Before performing a file system conversion, back up the file system from
which you can restore its state.

To convert an ext file system other than the root file system to Btrfs:

1. Unmount the file system.

sudo umount mountpoint          
2. Run the correct version of fsck (for example, fsck.ext4) on the underlying

device to check and correct the integrity of file system.

sudo fsck.extN -f device
3. Convert the file system to a btrfs file system.

sudo btrfs-convert device
4. Edit the file /etc/fstab, and change the file system type of the file system to

btrfs.

/dev/sdb               /myfs          btrfs    defaults  0 0
5. Mount the converted file system on the old mount point.

sudo mount device mountpoint           

Converting a Non Root Ext File System to a Later Version

Caution:

Before performing a file system conversion, make a backup of the file system
from which you can restore its state.

1. Unmount the current file system:

sudo umount filesystem
2. Check the system by running the fsck command appropriate to the file system.

For example, if the file system is ext2, you would use fsck.ext2 as follows:

sudo fsck.ext2 -f device
3. Use the following command with the block device corresponding to the file system:

sudo tune2fs -j device

Chapter 4
Converting a Non Root File Ext File System to a Btrfs File System

4-2



This command adds an ext3 journal inode to the file system.

4. Check the file system by using the fsck command appropriate to the higher version. For
example, if the new file system is ext3, you would use fsck.ext3 as follows:

sudo fsck.ext3 -f device
5. Correct any entry for the file system in the /etc/fstab file so that its type is defined as

the later file system version, for example, ext3 instead of ext2.

6. Remount the file system.

sudo mount filesystem
For more information, see the tune2fs(8) manual page.

Converting a Root Ext File System to a Later Version

Caution:

Before performing a root file system conversion, make a full system backup from
which you can restore its state.

1. Use the following command with the block device that corresponds to the root file system:

sudo tune2fs -j device
2. Identify which device is mounted as the root file system by running the mount command.

For example, the output of the following command shows that the root file system
corresponds to the disk partition /dev/sda2:

sudo mount

/dev/sda2 on / type ext2 (rw)
3. Shut down the system.

4. Boot the system from an Oracle Linux boot CD, DVD, or ISO.

You can download the ISO from the Oracle Software Delivery Cloud at https://
edelivery.oracle.com/linux. For convenience, these images are also available from the
Oracle Linux yum server at https://yum.oracle.com/oracle-linux-isos.html.

5. From the installation menu, select Rescue Installed System.

a. Select a language and keyboard, when prompted.

b. Select Local CD/DVD as the installation media.

c. Select No to bypass starting the network interface.

d. Select Skip to bypass selecting a rescue environment.

6. Select Start shell to obtain a bash shell promptat the bottom of the screen.

7. If the existing root file system is configured as an LVM volume, use the following
command to start the volume group, for example. If the volume group is vg_host01, type:

sudo lvchange -ay vg_host01

Chapter 4
Converting a Root Ext File System to a Later Version

4-3

https://edelivery.oracle.com/linux
https://edelivery.oracle.com/linux
https://yum.oracle.com/oracle-linux-isos.html


8. Check the file system by using the fsck command appropriate to the new file
system. If the later version is ext3, you would type the command as follows:

sudo fsck.ext3 -f device

In the previous command, device is the root file system device, /dev/sda2.

The command moves the .journal file to the journal inode.

9. Create a mount point, /mnt1, and mount the converted root file system on it.

sudo mkdir /mnt1
sudo mount -t ext3 device /mnt1

10. Edit the /mnt1/etc/fstab file to change the root file system type to ext3.

/dev/sda2        /       ext3    defaults  1 1
11. Create the .autorelabel file in the root of the mounted file system.

sudo touch /mnt1/.autorelabel

The presence of the .autorelabel file in / instructs SELinux to re-create the
security attributes of all the files on the file system.

Caution:

If you don't create the .autorelabel file, booting the system might not
succeed. In the file isn't created and the reboot fails, you can either
disable SELinux temporarily by specifying theselinux=0 value in the
kernel boot parameters; or, you can run SELinux in permissive mode by
specifying enforcing=0.

12. Unmount the converted root file system.

sudo umount /mnt1
13. Remove the installation media, then reboot the system.

Checking and Repairing an Ext File System
You use the fsck utility to check and repair file systems. For file systems other than
root (/) and /boot, mount invokes file system checking if more than a specified
number of mounts have occurred or more than 180 days have elapsed without
checking having being performed. You might want to run fsck manually if a file
system hasn't been checked for several months.

The following procedure describes how to check and repair an Ext file system.

NOT_SUPPORTED:

Running fsck on a mounted file system can corrupt the file system and
cause data loss.

Chapter 4
Checking and Repairing an Ext File System

4-4



1. Unmount the file system:

sudo umount filesystem
2. Use the fsck command to check the file system:

sudo fsck [-y] file-system

In the previous example, file-system specifies a device name, a mount point, a a label, or
UUID specifier, for example:

sudo fsck UUID=ad8113d7-b279-4da8-b6e4-cfba045f66ff

By default, the fsck command prompts you to choose whether it should apply a
suggested repair to the file system. If you specify the -y option, the command assumes a
yes response to all such questions.

For the ext3, and ext4 file system types, other commands that are used to perform file
system maintenance include dumpe2fs and debugfs. dumpe2fs prints super block and
block group information for the file system on a specified device. debugfs is an interactive
file system debugger that requires expert knowledge of the file system architecture. Similar
commands exist for most file system types and also require expert knowledge.

For more information, see the fsck(8) manual page.

Changing the Frequency of File System Checking for Ext File
Systems

Note:

The following procedure applies to Ext file systems only. XFS file systems, which
are the default file system type in Oracle Linux 8, detect errors automatically and
don't require periodic file system checks at boot time.

To change the number of mounts before the system automatically checks the file system for
consistency, use the following command syntax:

sudo tune2fs -c mount_count device

In the previous command, device specifies the block device that corresponds to the file
system.

A mount_count of 0 or -1 disables automatic checking, based on the number of mounts.

Tip:

Specifying a different mount_count value for each file system reduces the
probability that the system checks all the file systems at the same time.

To specify the maximum interval between file system checks, use the following command
syntax:

Chapter 4
Changing the Frequency of File System Checking for Ext File Systems

4-5



sudo tune2fs -i interval[unit] device

In the previous command, unit can be d for days, w for weeks, or m for months.

The default unit is d (for days). An interval of 0 disables checking, based on the time
that has elapsed after the last check. Even if the interval is exceeded, the file system
isn't checked until it's next mounted.

For more information, see the tune2fs(8) manual page.

Chapter 4
Changing the Frequency of File System Checking for Ext File Systems

4-6



5
Managing the XFS File System

XFS is a high-performance journaling file system that was initially created by Silicon
Graphics, Inc. for the IRIX OS and then later ported to Linux. The parallel I/O performance of
XFS provides high scalability for I/O threads, file system bandwidth, file, and file system size,
even when the file system spans many storage devices.

A typical use case for XFS is to implement a Tbyte-sized file system across several storage
servers, with each server consisting of several FC-connected disk arrays.

XFS can be used with the root (/) or boot file systems on Oracle Linux 8.

XFS has many features that are suitable for deployment in an enterprise-level computing
environment that requires the implementation of large file systems:

• Implements journaling for metadata operations.

Journaling guarantees the consistency of the file system following loss of power or a
system failure. XFS records file system updates asynchronously to a circular buffer (the
journal) before it can commit the actual data updates to disk. The journal can be stored
either internally in the data section of the file system, or externally on a separate device
to reduce contention for disk access. If the system fails or loses power, it reads the
journal when the file system is remounted, and replays any pending metadata operations
to ensure the consistency of the file system. The speed of this recovery doesn't depend
on the size of the file system.

• Is internally partitioned into allocation groups, which are virtual storage regions of fixed
size.

Any files and directories that you create can span several allocation groups. Each
allocation group manages its own set of inodes and free space independently of other
allocation groups to provide both scalability and parallelism of I/O operations. If the file
system spans many physical devices, allocation groups can optimize throughput by
taking advantage of the underlying separation of channels to the storage components.

• Is an extent-based file system.

To reduce file fragmentation and file scattering, each file's blocks can have variable
length extents, where each extent consists of one or more contiguous blocks. XFS's
space allocation scheme is designed to efficiently identify free extents that it can use for
file system operations. XFS doesn't allocate storage to the holes in sparse files. If
possible, the extent allocation map for a file is stored in its inode. Large allocation maps
are stored in a data structure maintained by the allocation group.

• Includes the reflink and deduplication features, which provides the following benefits:

– Each copy can have different file metadata (permissions, and so on) because each
copy has its own distinct inode. Only the data extents are shared.

– The file system ensures that any write causes a copy-on-write, without applications
requiring to do anything special.

– Changing one extent continues to permit all the other extents to remain shared. In
this way, space is saved on a per-extent basis. Note, however, that a change to a
hard-linked file does require a new copy of the entire file.

5-1



• Implements delayed allocation

To reduce fragmentation and increase performance, XFS reserves file system
blocks for data in the buffer cache, and allocates the block when the OS flushes
that data to disk.

• XFS recognizes extended attributes for files.

The size of each attribute's value can be up to 64 KB, and each attribute can be
allocated to either a root or a username space.

• Direct I/O in XFS implements high throughput, noncached I/O.

XFS performs DMA directly between an application and a storage device, using
the full I/O bandwidth of the device.

• Includes the snapshot facilities that volume managers, hardware subsystems, and
databases provide.

Use the xfs_freeze command to suspend and resume I/O for an XFS file
system. See Freezing and Unfreezing an XFS File System.

• XFS enables user, group, and project disk quotas on block and inode usage that
are initialized when the file system is mounted. Project disk quotas enable you to
set limits for individual directory hierarchies within an XFS file system without
regard to which user or group has write access to that directory hierarchy.

To maximize throughput for XFS file systems that you create on an underlying striped
software or hardware based array, you can use the su and sw arguments to the -d
option of the mkfs.xfs command to specify the size of each stripe unit and the
number of units per stripe. XFS uses the information to align data, inodes, and journal
appropriately for the storage. On lvm and md volumes and some hardware RAID
configurations, XFS can automatically select the best stripe parameters for you.

To defragment individual files in an active XFS file system, you can use the xfs_fsr
command. See Defragmenting an XFS File System.

To grow an XFS file system, you can use the xfs_growfs command. See Growing
an XFS File System.

To back up and restore a live XFS file system, you can use the xfsdump and
xfsrestore commands. See Backing Up and Restoring an XFS File System.

For more information about XFS, see https://xfs.wiki.kernel.org/.

For an overview of local file system management, see About File System
Management.

Installing XFS Packages

Note:

You can also obtain the XFS packages from the Oracle Linux yum server.

1. Log in to ULN, and subscribe the system to the ol8_x86_64_baseos_latest
channel.

Chapter 5
Installing XFS Packages

5-2

https://xfs.wiki.kernel.org/


2. On the system, install the xfsprogs and xfsdump packages:

sudo dnf install xfsprogs xfsdump
3. If you require the XFS development and QA packages, subscribe the system to the

ol8_x86_64_optional channel and install them:

sudo dnf install xfsprogs-devel xfsprogs-qa-devel

Creating an XFS File System
You can use the mkfs.xfs command to create an XFS file system, for example:

sudo mkfs.xfs /dev/vg0/lv0

Running the previous command produces the following output:

meta-data=/dev/vg0/lv0           isize=256    agcount=32, agsize=8473312 blks
         =                       sectsz=512   attr=2, projid32bit=0
data     =                       bsize=4096   blocks=271145984, imaxpct=25
         =                       sunit=0      swidth=0 blks
naming   =version 2              bsize=4096   ascii-ci=0
log      =internal log           bsize=4096   blocks=32768, version=2
         =                       sectsz=512   sunit=0 blks, lazy-count=1
realtime =none                   extsz=4096   blocks=0, rtextents=0 

The following examples shows how you would create an XFS file system with a stripe-unit
size of 32 KB and 6 units per stripe. To do so, you would specify the su and sw arguments to
the -d option:

sudo mkfs.xfs -d su=32k,sw=6 /dev/vg0/lv1

For more information, see the mkfs.xfs(8) manual page.

Modifying an XFS File System

Note:

You can't modify a mounted XFS file system.

You can use the xfs_admin command to modify an unmounted XFS file system, such as the
following actions:

• Enable or disable lazy counters

• Change the file system UUID

• Change the file system label

To display the existing label for an unmounted XFS file system and then apply a new label,
use the following command:

sudo xfs_admin -l /dev/sdb

label = ""

sudo xfs_admin -L "VideoRecords" /dev/sdb

Chapter 5
Creating an XFS File System

5-3



writing all SBs
new label = "VideoRecords"

Note:

The label can be a maximum of 12 characters in length.

To display the existing UUID and then generate a new UUID, use the following
command:

sudo xfs_admin -u /dev/sdb
sudo xfs_admin -U generate /dev/sdb

To clear the UUID altogether, use the following command:

sudo xfs_admin -U nil /dev/sdb

Clearing log and setting UUID
writing all SBs
new UUID = 00000000-0000-0000-0000-000000000000

To disable and then reenable lazy counters, use the following commands:

sudo xfs_admin -c 0 /dev/sdb
sudo xfs_admin -c 1 /dev/sdb

For more information, see the mkfs_admin(8) manual page.

Growing an XFS File System

Note:

You can't grow an unmounted XFS file system. Also, no command exists to
shrink an XFS file system.

You can use the xfs_growfs command to increase the size of a mounted XFS file
system if space is available on the underlying devices to accommodate the change.
The command doesn't have any effect on the layout or size of the underlying devices.
If needed, use the underlying volume manager to increase the physical storage that's
available. For example, you can use the vgextend command to increase the storage
that's available to an LVM volume group and lvextend to increase the size of the
logical volume that contains the file system.

You can't use the parted command to resize a partition that contains an XFS file
system. You must instead re-create the partition with a larger size and restore its
contents from a backup if you deleted the original partition or from the contents of the
original partition if you didn't delete it to free up disk space.

For example, you would increase the size of /myxfs1 to 4 TB, assuming a block size of
4 KB, as follows:

sudo xfs_growfs -D 1073741824 /myxfs1

Chapter 5
Growing an XFS File System

5-4



To increase the size of the file system to the maximum size that the underlying device
supports, specify the -d option:

sudo xfs_growfs -d /myxfs1

For more information, see the xfs_growfs(8) manual page.

Creating an XFS File System With the Reflink Feature
In Oracle Linux 8, you can create XFS file systems by using the Reflink feature. This feature
reduces disk space consumption and copies files faster. For example, if you use a reflink-
aware tool to copy a directory tree, the files in the copy share disk space with the original. It
takes much less time make a reflink copy of the directory tree than to create a regular copy of
a file system. In addition, no added storage is used.

Note that the reflink feature is enabled by default in Oracle Linux 8 when formatting by using
the mkfs.xfs command.

To begin working with XFS's reflink support, do the following steps:

1. Format a file system:

sudo mkfs.xfs /dev/sda1

meta-data=/dev/sda1              isize=512    agcount=4, agsize=6553600 blks
         =                       sectsz=512   attr=2, projid32bit=1
         =                       crc=1        finobt=1, sparse=1, rmapbt=0
         =                       reflink=1
data     =                       bsize=4096   blocks=26214400, imaxpct=25
         =                       sunit=0      swidth=0 blks
naming   =version 2              bsize=4096   ascii-ci=0, ftype=1
log      =internal log           bsize=4096   blocks=12800, version=2
         =                       sectsz=512   sunit=0 blks, lazy-count=1
realtime =none                   extsz=4096   blocks=0, rtextents=0

Note:

If you don't see the exact phrase reflink=1 in the mkfs command output, then
the system is too old and the feature wouldn't work on XFS.

2. Mount the file system:

sudo mount /dev/sda1 /storage

The files system is now ready to absorb new files.

For a detailed demonstration on using the reflink feature, see https://blogs.oracle.com/linux/
xfs-data-block-sharing-reflink.

Freezing and Unfreezing an XFS File System
If you need to take a hardware-based snapshot of an XFS file system, you can temporarily
stop write operations to it.

Chapter 5
Creating an XFS File System With the Reflink Feature

5-5

https://blogs.oracle.com/linux/xfs-data-block-sharing-reflink
https://blogs.oracle.com/linux/xfs-data-block-sharing-reflink


Note:

You don't need to explicitly suspend write operations if you use the
lvcreate command to take an LVM snapshot.

To freeze an XFS file system, use the -f option with the xfs_freeze command:

sudo xfs_freeze -f /myxfs

To unfreeze an XFS file system, use the -u option with the xfs_freeze command:

sudo xfs_freeze -u /myxfs

Note:

You can also use the xfs_freeze command with btrfs, ext3, and ext4 file
systems.

For more information, see the xfs_freeze(8) manual page.

Managing Quotas on an XFS File System
Use the xfs_quota tool to manage quotas on an XFS file system. This tool is catered
to quota implementation in XFS. While other quota tools, such as edquota might
enable you to edit XFS quotas, xfs_quota is preferred.

For more information, see the xfs_quota(8) manual page.

Displaying Block Usage Information

To display the block usage limits and the current usage in the myxfs file system for all
users, use the xfs_quota command, for example:

xfs_quota -x -c 'report -h' /myxfs

User quota on /myxfs (/dev/vg0/lv0)
                        Blocks              
User ID      Used   Soft   Hard Warn/Grace   
---------- --------------------------------- 
root            0      0      0  00 [------]
guest           0   200M   250M  00 [------]

The following forms of the command display the free and used counts for blocks and
inodes in the manner of the df -h command:

sudo xfs_quota -c 'df -h' /myxfs

Filesystem     Size   Used  Avail Use% Pathname
/dev/vg0/lv0 200.0G  32.2M  20.0G   1% /myxfs

sudo xfs_quota -c 'df -ih' /myxfs

Chapter 5
Managing Quotas on an XFS File System

5-6



Filesystem   Inodes   Used   Free Use% Pathname
/dev/vg0/lv0  21.0m      4  21.0m   1% /myxfs

Setting Quota Limits

If you specify the -x option to enter expert mode, you can use subcommands such as limit
to set soft and hard limits for block and inode usage by an individual user, for example:

sudo xfs_quota -x -c 'limit bsoft=200m bhard=250m isoft=200 ihard=250 guest' /myxfs 

Note that this command requires that you have mounted the file system with user quotas
enabled.

To set limits for a group on an XFS file system that you have mounted with group quotas
enabled, specify the -g option to limit:

sudo xfs_quota -x -c 'limit -g bsoft=5g bhard=6g devgrp' /myxfs

Setting Project Quota Limits

The instructions that follow here assume that you have already mounted the file system using
the pquota option and have created a project ID in /etc/projects. See Setting Project
Quotas.

1. Use the project subcommand of xfs_quota to define a managed tree in the XFS file
system for the project.

sudo xfs_quota -x -c ’project -s project_name’ mountpoint

For example, you would define a managed tree in the /myxfs file system for the project
testproj, which corresponds to the directory hierarchy /myxfs/testdir, as follows:

sudo xfs_quota -x -c ’project -s testproj’ /myxfs
2. Use the limit subcommand to set limits on the disk usage of the project.

sudo xfs_quota -x -c ’limit -p arguments project_name’ mountpoint

For example, to set a hard limit of 10 GB of disk space for the project testproj, you
would use the following command:

sudo xfs_quota -x -c ’limit -p bhard=10g testproj’ /myxfs
For more information, see the projects(5), projid(5), and xfs_quota(8) manual pages.

Backing Up and Restoring an XFS File System
The xfsdump package contains the xfsdump and xfsrestore utilities. The xfsdump
command examines the files in an XFS file system, identifies files that need to be backed up,
and copies them to the storage medium. Any backups that you create by using the xfsdump
command are portable between systems with different endian architectures. The
xfsrestore command restores a full or incremental backup of an XFS file system. You can
also restore individual files and directory hierarchies from backups.

Chapter 5
Backing Up and Restoring an XFS File System

5-7



Note:

Unlike an LVM snapshot, which immediately creates a sparse clone of a
volume, xfsdump takes time to make a copy of the file system data.

You can use the xfsdump command to create a backup of an XFS file system on a
device such as a tape drive or in a backup file on a different file system. A backup can
span several physical media that are written on the same device. Also, you can write
several backups to the same medium. Note that you can write only a single backup to
a file. The command doesn't overwrite existing XFS backups that are found on
physical media. If you need to overwrite any existing backups, you must use the
appropriate command to erase a physical medium.

For example, the following command writes a level 0 (base) backup of the XFS file
system (/myxfs) to the device, /dev/st0, and assigns a session label to the backup:

sudo xfsdump -l 0 -L "Backup level 0 of /myxfs `date`" -f /dev/st0 /myxfs

You can make incremental dumps that are relative to an existing backup by using the
same command, for example:

sudo xfsdump -l level -L "Backup level level of /myxfs `date`" -f /dev/st0 /myxfs

A level 1 backup records only file system changes after the level 0 backup, a level 2
backup records only the changes after the latest level 1 backup, and so on up to level
9.

If you interrupt a backup by typing Ctrl-C and you didn't specify the -J option
(suppress the dump inventory) to xfsdump , you can resume the dump later by
specifying the -R option, for example:

sudo xfsdump -R -l 1 -L "Backup level 1 of /myxfs `date`" -f /dev/st0 /myxfs

In the previous example, the backup session label from the earlier interrupted session
is overridden.

Use the xfsrestore command to find out information about the backups you have
made of an XFS file system or to restore data from a backup.

The xfsrestore -I command displays information about the available backups,
including the session ID and session label. To restore a specific backup session from a
backup medium, you can specify either the session ID or the session label.

For example, to restore an XFS file system from a level 0 backup by specifying the
session ID, you would use the following command:

sudo xfsrestore -f /dev/st0 -S c76b3156-c37c-5b6e-7564-a0963ff8ca8f /myxfs

Specify the -r option to cumulatively recover all the data from a level 0 backup, as
well as higher-level backups that are based on that backup:

sudo xfsrestore -r -f /dev/st0 -v silent /myxfs

This command searches for backups in the archive, based on the level 0 backup, and
then prompts you to choose whether you want to restore each backup, in turn. After
restoring the selected backup, the command exits. Note that you must run this

Chapter 5
Backing Up and Restoring an XFS File System

5-8



command several times, first selecting to restore the level 0 backup, and then later higher-
level backups, including the most recent backup that you require to restore the file system
data.

Note:

After completing a cumulative restoration of an XFS file system, delete the
housekeeping directory that the xfsrestore command creates in the destination
directory.

As shown in the following example, you can recover a selected file or subdirectory contents
from the backup medium. Running the command recovers the contents of /myxfs/profile/
examples to /tmp/profile/examples, from the backup with the specified session label:

sudo xfsrestore -f /dev/sr0 -L "Backup level 0 of /myxfs Sat Mar 2 14:47:59 GMT 2013" \
  -s profile/examples /usr/tmp

Alternatively, you can interactively browse a backup by specifying the -i option, for example:

sudo xfsrestore -f /dev/sr0 -i

The previous form of the command enables you browse a backup as though it were a file
system. You can change directories, list files, add files, delete files, or extract files from a
backup.

To copy the entire contents of one XFS file system to another, you can combine the xfsdump
and xfsrestore command by using the -J option to suppress the usual dump inventory
housekeeping that the commands perform, for example:

sudo xfsdump -J - /myxfs | xfsrestore -J - /myxfsclone

For more information, see the xfsdump(8) and xfsrestore(8) manual pages.

Checking and Repairing an XFS File System

Note:

If you have an Oracle Linux Premier Support account and observe a problem
mounting an XFS file system, send a copy of the /var/log/messages file to Oracle
Support and wait for advice.

If you can't mount an XFS file system, you can use the xfs_repair -n command to check
its consistency. Typically, you would only run this command on the device file of an
unmounted file system that you believe has a problem. The xfs_repair -n command
displays output to indicates changes that would be made to the file system in the case where
it would need to complete a repair operation, but doesn't modify the file system directly.

If you can mount the file system and you don't have a suitable backup, you can use the
xfsdump command to back up the existing file system data. However, note that the
command might fail if the file system's metadata has become corrupted.

Chapter 5
Checking and Repairing an XFS File System

5-9



You can use the xfs_repair command to repair an XFS file system that's specified
by its device file. The command replays the journal log to fix any inconsistencies that
might have resulted from the file system not being cleanly unmounted. Unless the file
system has an inconsistency, you typically don't need to use the follwoing command,
as the journal is replayed every time that you mount an XFS file system.

sudo xfs_repair device

If the journal log has become corrupted, you can reset the log by specifying the -L
option to xfs_repair.

NOT_SUPPORTED:

Resetting the log can leave the file system in an inconsistent state, resulting
in data loss and data corruption. Unless you're experienced with debugging
and repairing XFS file systems by using the xfs_db command, we
recommend that you instead re-create the file system and restore its
contents from a backup.

If you can't mount the file system or you don't have a suitable backup, running the
xfs_repair command is the only viable option, unless you're experienced in using
the xfs_db command.

xfs_db provides an internal command set for debuggin and repairing an XFS file
system manually. The commands enable you to perform scans on the file system, and
navigate and display its data structures. If you specify the -x option to enable expert
mode, you can modify the data structures.

sudo xfs_db [-x] device

For more information, see the xfs_db(8) and xfs_repair(8) manual pages, and run
the help command within xfs_db.

Defragmenting an XFS File System
You can use the xfs_fsr command to defragment whole XFS file systems or
individual files within an XFS file system. As XFS is an extent-based file system,
defragmenting a whole file system is unnecessary and also discouraged.

To defragment an individual file, use the following command to specify the name of the
file as the argument to xfs_fsr:

sudo xfs_fsr pathname

Running the xfs_fsr command without any options defragments all the mounted and
writeable XFS file systems that are listed in /etc/mtab. For two hours, the command
passes over each file system, in turn, and defragments the top 10 percent of files with
the greatest number of extents. After two hours, the command records its progress in
the /var/tmp/.fsrlast_xfs file. If you run the command again, the process is
resumed from that point.

For more information, see the xfs_fsr(8) manual page.

Chapter 5
Defragmenting an XFS File System

5-10


	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About File System Management
	Supported File Systems
	Maximum File and File System Size Requirements

	2 Performing Basic File System Administration
	Building File Systems
	Mounting File Systems
	About the mount Command
	Using More Options of the mount Command
	Mounting a File That Contains a File System Image
	About the File System Mount Table

	Configuring the Automounter
	About the Automounter Configuration File
	Installing and Enabling the Automounter

	Creating a File System on a File Within Another File System
	About Access Control Lists
	Enabling ACL Support
	Setting and Displaying ACLs

	About Disk Quotas
	Enabling Disk Quotas on File Systems
	Assigning Disk Quotas to Users and Groups
	Setting Project Quotas
	Setting a Grace Period for Soft Limits
	Displaying Disk Quotas
	Enabling and Disabling Disk Quotas
	Reporting on Disk Quota Usage
	Maintaining the Accuracy of Disk Quota Reporting


	3 Managing the Btrfs File System
	Setting Up and Administering a Btrfs File System
	Creating a Btrfs File System
	Modifying a Btrfs File System
	Compressing and Defragmenting a Btrfs File System
	Resizing a Btrfs File System

	Creating Subvolumes and Snapshots
	Creating Swap Files on a Btrfs File System
	Creating Backups and Using the Btrfs Send/Receive Feature
	Creating a Reference Backup in Preparation for Creating an Incremental Backup
	Creating an Incremental Backup

	Managing Quotas for Btrfs Subvolumes With Quota Groups
	Replacing Devices on a Live File System
	Creating Snapshots of Files
	Automating File System Snapshots With the Snapper Utility
	Creating a Snapper Configuration for a Subvolume
	Creating Different Types of Snapshots
	Automatic Snapper Snapshots
	Working With Btrfs Snapshots by Using Snapper

	Working With a Btrfs root File System
	Creating Snapshots of the root File System
	Mounting Alternate Snapshots as the root File System
	Deleting Snapshots of the root File System


	4 Managing the Ext File System
	Converting an Ext File System to a Btrfs File System
	Converting a Non Root File Ext File System to a Btrfs File System
	Converting a Non Root Ext File System to a Later Version
	Converting a Root Ext File System to a Later Version
	Checking and Repairing an Ext File System
	Changing the Frequency of File System Checking for Ext File Systems

	5 Managing the XFS File System
	Installing XFS Packages
	Creating an XFS File System
	Modifying an XFS File System
	Growing an XFS File System
	Creating an XFS File System With the Reflink Feature
	Freezing and Unfreezing an XFS File System
	Managing Quotas on an XFS File System
	Backing Up and Restoring an XFS File System
	Checking and Repairing an XFS File System
	Defragmenting an XFS File System


