
Oracle Linux 8
Creating Custom Images With Image Builder

F77249-01
June 2024

Oracle Linux 8 Creating Custom Images With Image Builder,

F77249-01

Copyright © 2024, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 About Image Builder

Blueprints 1-1

Customizations 1-2

Composer Images 1-2

2 Preparing to Use Image Builder

System Requirements 2-1

Installing Image Builder 2-1

About Default Image Builder Repositories 2-2

Creating Custom Repositories 2-2

3 Deploying Custom Image Builder Images

Preparing the Blueprint 3-1

Creating the Image in Image Builder 3-2

4 Use Cases in Deploying Image Builder Images

Creating ISO Images for Deployment 4-1

A Image Types and Output Formats

iii

B Blueprint Format

iv

Preface

Oracle Linux 8: Creating Custom Images With Image Builder provides information about
creating customized images of Oracle Linux that you can deploy on different platforms such as
the cloud or bare metal systems.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also

v

https://docs.oracle.com/en/operating-systems/oracle-linux/8/ibldr/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

1
About Image Builder

Image builder is a tool for creating customized images of Oracle Linux that you can deploy on
different platforms such as the cloud or bare metal systems. With image builder, you can
generate these customized images in different formats, such as tar or iso.

Image Builder isn't automatically included in an Oracle Linux installation and requires a
separate package download. After installing image builder and completing the required system
configurations, you can use either the command line or the Cockpit web console to create
custom Oracle Linux images.

Note:

For more information about installing Image Builder, see Installing Image Builder.

To use image builder, you need to understand the following concepts that are specific to the
way the tool works:

• Blueprints

• Customizations

• Composer Images

Blueprints
Image builder uses blueprints to create custom images.

A blueprint is the primary reference for creating custom images with image builder. A blueprint
consists of block entries that define the specifications for the images. Block entries in a
blueprint contain varied information but can be divided into two kinds: entries for packages and
entries for other customizations.

Each block entry has a heading. The general headings are either [[packages]] if the block
entry contains package information, or [[customizations]] if the block contains
customizations that are unrelated to packages.

Package information specify packages to be downloaded for the image and include the
following:

• Packages: A package block entry requires the package name and version. The version
format follows dnf version specifications. For example, the version for a major release is
specified as n.n.n, such as 8.7.0. To specify the latest package version, enter an asterisk
(*) in place of the version number. For a minor release, type major-nbr.*, such as 8.*.

• Package groups: A package group block entry requires only the name of the package
group. The information is entered under a [[groups]] heading.

Definitions in a block entry follow the convention parameter = "value". For more information
about the contents of a blueprint, see Blueprint Format.

1-1

When you create images based on a blueprint, those images become associated with that
blueprint in the image builder interface of the Cockpit web console.

To create or edit a blueprint, you can use any text editor. However, you must save the blueprint
in Tom's Obvious Minimal Language (TOML) format.

Customizations
Customizations are blueprint entries that aren't package related.

Customizations are other image specifications that aren't part of packages. These other items
might be defined users and groups, SSH keys that implement system security, and other data.

Customizations in blueprints can be varied. A customization that has a general application,
such as specifying a host name for the image, are defined in a [[customizations]] block
entry. More specific customizations would have tags appended to the heading to become
better identifiers. For example, user definitions are in a [[customizations.user]] block, while
serviced customizations are under the [[customizations.services]] heading, and so on.

Similar to package listings, customization parameters also follow the parameter = value
format.

Composer Images
Composer images are images that are generated by the composer cli-compose command.
They're the final product in image building.

The actual creation of a custom image occurs when you run the composer-cli compose
command. Therefore, the image is called a Composer image. A Composer image is the final
result of an image builder operation.

Aside from the definitions that are specified in the blueprint, a Composer image also includes
logs, metadata, processes that are run to create the image, and other relevant data.

Composer images are of different types. For each type, the system automatically installs
default packages. Also, the type has associated services that are enabled automatically when
the image is deployed. For example, for a tar image, the system automatically includes the
policycoreutils and selinux-policy-targetd packages. However, no extra services are
enabled.

Customizations in the blueprint can specify other services that need to be enabled. However,
these customizations can not override the required services for an image type that are
automatically enabled when the image is deployed.

Chapter 1
Customizations

1-2

2
Preparing to Use Image Builder

To prepare for using image builder, complete the following:

• Fulfill the system requirements.

• Install the image builder component packages.

• Configure specific repositories needed by the OS image.

System Requirements
Image builder needs to run on a dedicated system with the following minimal configurations:

• 2-core processors

• 4 GiB of memory

• 20 GiB available disk space in the /var directory

• Access to the Internet

• Appropriate privileges for performing administrator tasks

Note:

A dedicated virtual machine can also serve as the environment for running image
builder.

Installing Image Builder
Image builder isn't automatically included in an Oracle Linux installation. This task describes
how to install and configure image builder.

1. Install the image builder packages.

sudo dnf install -y osbuild-composer composer-cli cockpit-composer bash-
completion

2. Enable the image builder service to automatically start after every system reboot.

sudo systemctl enable --now osbuild-composer.socket
sudo systemctl enable --now cockpit.socket

3. (Optional) Enable the autocomplete feature of the composer-cli command by loading the
configuration script.

source /etc/bash_completion.d/composer-cli

2-1

About Default Image Builder Repositories
Composed images use image builder repositories to download their required packages.

Image builder doesn't use the system repositories that are defined in /etc/yum.repos.d/ in
a typical Oracle Linux installation. Instead, the repository definitions for image builder are
automatically installed in /usr/share/osbuild-composer/repositories. In this
directory, repository definitions are contained in files in JSON format, which is different from the
*.repo files in /etc/yum.repos.d/.

The following extract is an example of a *.json repository file for the latest Oracle Linux 8
release on the x86_64 platform.

{
 "x86_64": [
 {
 "name": "ol8_baseos_latest",
 "baseurl": "https://yum.oracle.com/repo/OracleLinux/OL8/baseos/latest/
x86_64/",
 "gpgkey": "THE ENTIRE GPG PUBLIC KEY BLOCK",
 "check_gpg": true,
 "enabled": true
 },
 {
 ...other repositories...
 }
]
}

The repository definitions in the JSON file correspond to information in the parallel *.repo file
in /etc/yum.repos.d directory. In the previous example, the JSON file is based on
the /etc/yum.repos.d/oracle-linux-ol9.repo file.

You can override the default repositories in /usr/share/osbuild-composer/
repositories by defining custom repositories in a different location.

Creating Custom Repositories
This task describes how to create a separate custom repository file to override the default
repositories that are created when you install image builder.

1. Create directory to store the customized repositories.

sudo mkdir -p /etc/osbuild-composer/repositories

2. Using a text editor, create a file for the version of Oracle Linux image you want to create.

As an alternative, copy a default repository file to use as a template. For example, for an
Oracle Linux 8 image, you would copy the Oracle Linux 8 json file from the default location.

sudo cp /usr/share/osbuild-composer/repositories/OL8.json /etc/osbuild-
composer/repositories/

Chapter 2
About Default Image Builder Repositories

2-2

3. Specify the following information, as they're available, on the file:

• System architecture of the OS

• name: name of the repository

• metalink
• baseurl: the yum URL of the repository

• mirrorlist
• gpgkey: package GPG key block

• check_gpg: must always be set to true

The following is an example of a JSON file for an Oracle Linux 9 image:

{
 "x86_64": [
 {
 "name": "ol8_baseos_latest",
 "metalink": "",
 "baseurl": "https://yum.oracle.com/repo/OracleLinux/OL8/baseos/
latest/x86_64/",
 "mirrorlist": "",
 "gpgkey": "-----BEGIN PGP PUBLIC KEY BLOCK-----\n\n (…)",
 "check_gpg": true,
 "enabled": true,
 "metadata_expire": ""
 }
]
}

4. (Optional) Verify that the URLs in the file are correct by comparing them to the
corresponding repository file in /etc/yum.repos.d.

For the current example, you would use an Oracle Linux repository file for verification.

cat /etc/yum.repos.d/oracle-linux-ol8.repo
5. Restart osbuild-composer.service.

sudo systemctl restart osbuild-composer.service

Chapter 2
Creating Custom Repositories

2-3

3
Deploying Custom Image Builder Images

Deploying a custom image applies the following work flow:

1. Create a blueprint, or edit an existing blueprint.

2. Import the blueprint.

3. Create the image based on the blueprint.

4. Download the resulting image.

5. Install the software according to the image speifications.

Preparing the Blueprint
The process for deploying a custom image begins with the blueprint preparation. The following
task uses command lines to create or edit a blueprint. To use the web console interface
instead, see Oracle Linux: Using the Cockpit Web Console.

1. Prepare the blueprint, which can either be a newly created blueprint or a an existing one.

• Create a blueprint

a. Use any text editor to create a text file.

b. Enter blueprint specifications based on the packages and customizations that you
want to be associated with the image.

Ensure that you provide the basic metadata information about the blueprint. For
reference, see Blueprint Format.

c. Save the file as a toml file, for example, myblueprint.toml.

d. Push or import the blueprint into image builder.

sudo composer-cli blueprints push blueprint
• Edit an existing blueprint

a. (Optional) List available blueprints.

sudo composer-cli blueprints list
b. Save or export the blueprint you want to edit.

sudo composer-cli save blueprint
c. Use a text editor to edit the blueprint by revising package and customization entries as

required.

d. Remove the line packages = [] if it exists in the blueprint.

e. Update the version by incrementing the number as appropriate.

Ensure that the version follows the scheme in https://semver.org/.

f. Save the changes.

g. Push or import the blueprint into image builder.

3-1

https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/
https://semver.org/

sudo composer-cli blueprints push blueprint
2. (Optional) Display the blueprint configuration.

sudo composer-cli blueprints show blueprint
3. Verify that the blueprint's components and versions and corresponding dependencies are

valid.

sudo composer-cli blueprints depsolve blueprint.toml

If image builder is unable to validate the dependencies, remove the osbuild-composer
cache.

sudo rm -rf /var/cache/osbuild-composer/*
sudo systemctl restart osbuild-composer

Creating the Image in Image Builder
You must have an existing blueprint to use for creating an image.

1. Create the image with the blueprint specifications.

sudo composer-cli compose start blueprint image-type

For a list of valid image types, see Image Types and Output Formats. Alternatively, type:

sudo composer-cli compose types

While the process is running in the background, the composer image's UUID is displayed.

Use the UUID to track the progress of the image building process with the following
command:

sudo composer-cli compose info image-uuid

2. After the process ends, check the status of the image.

sudo composer-cli status image-uuid

The image's status should indicate FINISHED.

3. Download the image file.

sudo composer-cli compose image image-uuid

To download the image's metadata and logs, type:

sudo composer-cli compose [metadata|logs] image-uuid

Chapter 3
Creating the Image in Image Builder

3-2

4
Use Cases in Deploying Image Builder Images

This chapter shows cases where image builder is used to create and deploy images for
specific setup and configurations.

Creating ISO Images for Deployment
You must have a valid blueprint with the specifications you require for the image. This blueprint
must be pushed or imported to Image Builder. To fulfill these requirements, see Preparing the
Blueprint.

Perform this procedure to create an ISO which installs the OS on a bare metal system. At the
end of the procedure, an .iso file is created that contains the following:

• Standard Anaconda installer ISO

• Embedded Oracle Linux system tar file

• Kickstart file that installs the commit with the minimum default requirements

The installer ISO contains a preconfigured system image that you can use to install on a bare
metal system.

1. (Optional) Verify that the blueprint for the ISO image is in Image Builder.

sudo composer-cli blueprints show blueprint

2. Create the ISO image.

sudo composer-cli compose start blueprint iso

While the process is running in the background, the composer image's UUID is displayed.

3. After the process ends, check the status of the image.

sudo composer-cli status image-uuid

The image's status should indicate FINISHED.

4. Download the ISO image file.

sudo composer-cli compose image image-uuid

The ISO image file contains a *.tar file which is the OS image to be installed on a system.

5. (Optional) Mount the downloaded image and extract the contents.

a. Mount the downloaded image.

sudo mount -o ro iso-image /mnt

4-1

iso-image includes the full path and the name of the ISO image file.

The /mnt/ mount point contains the liveimag.tar.gz file.

b. Extract the contents of the *.tar file

tar xvf /mnt/liveimg.tar.gz

6. Select the appropriate method for installing the OS.

For example, you can use the ISO image as an installer when booting a system from a
location where you want to automatically load the image to a hard disk. Otherwise, you can
extract the image file, as described, and use this file to manually deploy the image to a
target environment (such as a cloud environment, virtual machine, and so on).

For more information about installing Oracle Linux, see Oracle Linux 8: Installing Oracle
Linux.

Chapter 4
Creating ISO Images for Deployment

4-2

https://docs.oracle.com/en/operating-systems/oracle-linux/8/install/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/install/

A
Image Types and Output Formats

Image builder can generate different types of image that can be deployed on specific
platforms.

Image Description Output File Extension

Oracle Linux optical disc image .iso
Oracle Cloud Infrastructure images .qcow2
TAR Archive .tar
QEMU QCOW2 image .qcow2
Azure Disk Image .vhd
Amazon Machine Image Disk .raw

To list the types of image that you can build, run the following command:

sudo composer-cli compose types

A-1

B
Blueprint Format

Blueprint content consists of basic metadata information, package information, and
customizations.

A blueprint contains the specifications for an image builder custom image. The general types of
information that you can add to a blueprint are package related information and other
customizations. Elements in a typical blueprint file include: 1) basic metadata information, 2)
package listing, and 3) other customizations. All configuration entries in a blueprint use the
parameter = "value" format convention.

Basic Metadata Information

The blueprint's metadata provides general information about the blueprint itself. The metadata
is entered at the top of the file and consists of the blueprint name, an optional description, and
a version. The version follows the semantic versioning scheme in https://semver.org/. You
define the metadata only one time in the entire blueprint.

Important:

The metadata information is required in any blueprint.

name = "Blueprint name"
description = "Description of the blueprint"
version = "Version number"

Package Information

Package information is a general term that includes list of packages, modules, containers, and
groups., each Each entry has its corresponding heading in the format [[heading]].

The parameters under each heading depend on what the heading describes. For example
package and module lists require the name and version of the package. Containers and
groups require different information and would use other parameters. Each package, module,
container, or group listing must have its own heading, as shown in the following example:

[[packages]]
name = "tmux"
version = "2.7"

[[packages]]
name = "python3"
version = "3.6.8"

[[groups]]
name = "graphical-admin-tools"

Customizations

Customizations are blueprint specifications in addition to package lists. While a customization
would typically appear under the heading [[customization]], more specific customizations

B-1

https://semver.org/

append a keyword to the heading for better identification. Customizations typically use multiple
parameters than package information entries.

The following example shows customizations for the image's hostname, locale, time zone, and
groups.

Note:

A custom group refers to a UNIX group, which is different from a group of packages
to be downloaded. Therefore, a custom UNIX group definition has its own blueprint
heading that's distinct from a package group heading.

[[customizations]]
hostname = "system1"

[[customizations.locale]]
languages = ["en_GB.utf8"]
keyboard = "gb"

[[customizations.timezone]]
timezone = "Europe/Dublin"
ntpservers = ["uk.pool.ntp.org"]

[[customizations.groups]]
name = "students"

Other customizations that you can define include the following:

• Users: Contains all the required details that apply to the specific user account, such as the
user's name, home directory, the user's default shell, groups to which the user is assigned,
and so on.

• SSH key: Contains the particular user's name and the public SSH key that you create for
the user. This key is added to the user's authorized_keys file.

• Kernel: Contains arguments to append to the bootloader's command line.

• Firewall ports: Contain the list of ports that you want to open. The ports are specified by
using the port:protocol format, for example, 22:tcp.

• Firewall services: A separate listing that contains a list of services that you enable and
disable for the image. To identify which services you can enable or disable, run the
firewall-cmd --get-services command.

• Systemd services: Similar to firewall services, this entry contains a list of systemd services
that you enable and disable for an image.

The preceding list is partial. For a complete list of blueprint entries, see https://osbuild.org/
docs/user-guide/blueprint-reference/.

Appendix B

B-2

https://osbuild.org/docs/user-guide/blueprint-reference/
https://osbuild.org/docs/user-guide/blueprint-reference/

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About Image Builder
	Blueprints
	Customizations
	Composer Images

	2 Preparing to Use Image Builder
	System Requirements
	Installing Image Builder
	About Default Image Builder Repositories
	Creating Custom Repositories

	3 Deploying Custom Image Builder Images
	Preparing the Blueprint
	Creating the Image in Image Builder

	4 Use Cases in Deploying Image Builder Images
	Creating ISO Images for Deployment

	A Image Types and Output Formats
	B Blueprint Format

