
Oracle Linux 8
Managing Storage Devices

F29276-15
June 2024

Oracle Linux 8 Managing Storage Devices,

F29276-15

Copyright © 2022, 2024, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 Using Disk Partitions

Disk Partitions in Oracle Linux 1-1

Partitioning Disks by Using fdisk 1-1

Displaying the Partition Table 1-3

Creating Partitions 1-4

Partitioning Disks by Using parted 1-4

Creating Partitions 1-5

Customizing Labels 1-6

Automatic Device Mappings for Partitions and File Systems 1-7

Listing Device Mapping Information 1-8

Manually Mapping Partition Tables to Devices 1-10

Creating Device Mappings by Using kpartx 1-10

Listing Partition Mappings For a Device by Using kpartx 1-10

Removing Partition Mappings by Using kpartx 1-11

2 Recommendations for Solid State Drives

3 Working With Logical Volume Manager

Initializing and Managing Physical Volumes 3-1

Creating and Managing Volume Groups 3-2

Creating and Managing Logical Volumes 3-3

Creating and Managing Grouping With Tags 3-3

Managing Activation and Automatic Activation 3-4

Creating Logical Volume Snapshots 3-6

iii

Using Thinly-Provisioned Logical Volumes 3-6

Configuring and Managing Thinly-Provisioned Logical Volumes 3-7

Using snapper With Thinly-Provisioned Logical Volumes 3-7

4 Working With Software RAID

Software RAID Levels 4-1

Creating Software RAID Devices using mdadm 4-2

Creating and Managing Software RAID Devices using LVM 4-3

RAID Level 0 (Striping) LVM Examples 4-4

RAID Level 1 (Mirroring) LVM Examples 4-5

RAID Level 5 (Striping with Distributed Parity) LVM Examples 4-7

RAID Level 6 (Striping with Double Distributed Parity) LVM Examples 4-9

RAID Level 10 (Striping of Mirrored Disks) LVM Examples 4-11

5 Using Encrypted Block Devices

About Encrypted Block Devices 5-1

Creating Encrypted Volumes 5-1

6 Working With Linux I-O Storage

About iSCSI Devices 6-1

Configuring an iSCSI Target 6-2

Restoring a Saved Configuration for an iSCSI target 6-4

Configuring an iSCSI Initiator 6-5

Updating the Discovery Database 6-7

7 Using Multipathing for Efficient Storage

Device Multipathing Sample Setup 7-1

Configuring Multipathing 7-3

Working With the Multipathing Configuration File 7-4

iv

Preface

Oracle Linux 8: Managing Storage Devices provides information about storage device
management, as well as instructions on how to configure and manage disk partitions, swap
space, logical volumes, software RAID, block device encryption, iSCSI storage, and
multipathing.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,

v

https://docs.oracle.com/en/operating-systems/oracle-linux/8/stordev/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

1
Using Disk Partitions

All storage devices, from hard disks to solid state drives to SD cards, must be partitioned to
become usable. A device must have at least one partition, although you can create several
partitions on any device.

Partitioning divides a disk drive into one or more reserved areas called partitions. Information
about these partitions are stored in the partition table on the disk drive. The OS treats each
partition as a separate disk that can contain a file system.

You create more partitions to simplify backups, enhance system security, and meet other
needs, such as setting up development sandboxes and test areas. You can add partitions to
store data that frequently changes, such as user home directories, databases, and log file
directories.

Disk Partitions in Oracle Linux
Oracle Linux requires one partition for the root file system. Further, two other partitions are
typically reserved for swap space and the boot file system. On x86 and x86_64 systems, the
system BIOS can access only the first 1024 cylinders of the disk at boot time. Configuring a
separate boot partition in this region on the disk enables the GRUB bootloader to access the
kernel image and other files that are required to boot the system.

For hard disks with a master boot record (MBR), the partitioning scheme supports up to 4
primary partitions. In turn, a primary partition can further be divided into up to 11 logical
partitions. The primary partition that contains the logical partitions is known as an extended
partition. The MBR scheme supports disks up to 2 TB in size.

On hard disks with a GUID Partition Table (GPT), you can configure up to 128 partitions. The
GPT partition scheme doesn't use the concept of extended or logical partitions. If the disk's
size is larger than 2 TB, use GPT to configure the device's partitions.

Note:

When you partition a block storage device, align the primary and logical partitions on
one-megabyte (1048576 bytes) boundaries. If partitions, file system blocks, or RAID
stripes are incorrectly aligned and overlap the boundaries of the underlying storage's
sectors or pages, the device controller would modify twice as many sectors or pages
than if correct alignment is used. This recommendation applies to most block storage
devices, including hard disk drives, solid state drives (SSDs), LUNs on storage
arrays, and host RAID adapters.

Partitioning Disks by Using fdisk
To create and manage hard disks that use MBRs, use the fdisk command. Alternatively, you
can use the cfdisk utility, which is a text-based, graphical version of fdisk.

Before running fdisk, complete the following requirements first:

1-1

• Unmount any mounted partition on the disk.

• Disable any partition that's being used as swap space by using the swapoff command.

• Backup the data on the disk to be configured.

fdisk can be used either interactively or directly with command line options and arguments.

Note:

The two modes can differ in the options they support to perform specific actions. To
list supported options while in interactive mode, enter m at the mode's prompt. For
supported options in the command line mode, type:

fdisk -h

To run the fdisk command interactively, specify only the name of the disk device as an
argument, for example:

sudo fdisk /dev/sda

Welcome to fdisk (util-linux 2.32.1)
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help):

The following commands are useful for managing partitions:

p
Displays the current partition table.

n
Initiates the process for creating new partitions.

t
Changes the partition type.

Tip:

To list all the supported partition types, enter l.

w
Commits changes you made to the partition table, then exits the interactive session.

q
Disregards any configuration changes you made and exits the session.

m
Displays all the supported commands in the interactive mode.

For more information, see the cfdisk(8) and fdisk(8) manual pages.

Chapter 1
Partitioning Disks by Using fdisk

1-2

Displaying the Partition Table
To display the partition table, enter p at the fdisk prompt, for example:

Command (m for help): p

Disk /dev/sda: 36.5 GiB, 39191576576 bytes, 76546048 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x67fb0c7a

Device Boot Start End Sectors Size Id Type
/dev/sda1 * 2048 1026047 1024000 500M 83 Linux
/dev/sda2 1026048 76546047 75520000 36G 8e Linux LVM

Command (m for help):

The output contains device information summary such as disk size, disklabel type, and
partition details. The partition details are specified under the following field names:

Device
Lists the current partitions on the device.

Boot
Identifies the boot partition with an asterisk (*). This partition contains the files that the GRUB
bootloader needs to boot the system. Only one partition can be bootable.

Start and End
Lists the start and end offsets in sectors that mark a sector's boundaries. All partitions are
aligned on one-megabyte boundaries.

Sectors
Displays sector sizes.

Size
Displays partition sizes.

Id and Type
Indicates a representative number and its corresponding representative number.
Oracle Linux typically supports the following types:

5 Extended
An extended partition that can contain up to four logical partitions.

82 Linux swap
Swap space partition.

83 Linux
Linux partition for a file system that's not managed by LVM. This is the default partition
type.

8e Linux LVM
Linux partition that's managed by LVM.

Chapter 1
Partitioning Disks by Using fdisk

1-3

Creating Partitions
The following example shows how to use the different fdisk interactive commands to partition
a disk. 2 partitions are created on /dev/sdb. The first partition is assigned 2 GB while the
second partition uses all the remaining disk space.

sudo fdisk /dev/sdb

The command runs a menu-based system where you must select the appropriate responses to
configure the partition. Example inputs are displayed in the following interactive session:

...
Command (m for help): n
Partition type
 p primary (0 primary, 0 extended, 4 free)
 e extended (container for logical partitions)
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-32767999, default 2048): <Enter>
Last sector, +sectors or +size{K,M,G,T,P} (2048-32767999, default 32767999): +2G

Created a new partition 1 of type 'Linux' and of size 2 GiB.

Command (m for help): n
Partition type
 p primary (1 primary, 0 extended, 3 free)
 e extended (container for logical partitions)
Select (default p): p
Partition number (2-4, default 2): 2
First sector (4196352-32767999, default 4196352): <Enter>
Last sector, +sectors or +size{K,M,G,T,P} (4196352-32767999, default 32767999): <Enter>

Created a new partition 2 of type 'Linux' and of size 13.6 GiB.

Command (m for help): p
Disk /dev/sdb: 15.6 GiB, 16777216000 bytes, 32768000 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x460247f0

Device Boot Start End Sectors Size Id Type
/dev/sdb1 2048 4196351 4194304 2G 83 Linux
/dev/sdb2 4196352 32767999 28571648 13.6G 83 Linux

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

Partitioning Disks by Using parted
To create and manage hard disks that use GPTs, use the parted command. The command
enables you to perform typical partition operations as fdisk. However, parted is more

Chapter 1
Partitioning Disks by Using parted

1-4

advanced because it supports a larger set of commands and more disk label types including
GPT disks.

Before running parted, complete the following requirements first:

• Unmount any mounted partition on the disk.

• Disable any partition that's being used as swap space by using the swapoff command.

• Backup the data on the disk to be configured.

You can use parted either interactively or directly with command line arguments. To run
parted interactively, specify only the name of the disk device as an argument, for example:

sudo parted /dev/sdb

GNU Parted 3.2
Using /dev/sdb
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted)

The following commands are useful for managing partitions:

print
Displays the current partition table.

mklabel
Creates a partition type according to the label you choose.

mkpart
Starts the process for creating new partitions.

quit
Exits the session.

Note:

In interactive sessions, changes are committed to disk immediately. Unlike fdisk,
the parted utility doesn't have an option for quitting without saving changes.

help
Displays all the supported commands in the interactive mode.

Creating Partitions
The following example shows how to use the different parted commands to create 2 disk
partitions. The first partition is assigned 2 GB while the second partition uses all the remaining
disk space.

sudo parted /dev/sdb

The command runs a menu-based system where you must select the appropriate responses to
configure the partition. Example inputs are displayed in the following interactive session:

GNU Parted 3.2
Using /dev/sdb
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) print

Chapter 1
Partitioning Disks by Using parted

1-5

Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sdb: 16.8GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags

(parted) mkpart
Partition type? primary/extended? primary
File system type? [ext2]? <Enter>
Start? 1
End? 2GB
(parted) print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sdb: 16.8GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
 1 1049kB 2000MB 1999MB primary ext2 lba

(parted) mkpart
Partition type? primary/extended? primary
File system type? [ext2]? <Enter>
Start? 2001
End? -0
(parted) print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sdb: 16.8GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
 1 1049kB 2000MB 1999MB primary ext2 lba
 2 2001MB 16.8GB 14.8GB primary ext2 lba

(parted) quit

Note:

Unless you specify otherwise, the size for the Start and End offsets is in megabytes.
To use another unit of measure, type the value and the unit together, for example,
2GB. To assign all remaining disk space to the partition, enter -0 for the End offset as
shown in the example.

Customizing Labels
By default, parted creates msdos-labeled partitions. When partitioning with this label, you're
also prompted for the partition type. Partition types can be primary, extended, or logical.

To use a different label, you would need to specify that label first with the mklabel command
before creating the partition. Depending on the label, you would be prompted during the

Chapter 1
Partitioning Disks by Using parted

1-6

partitioning process for information, such as the partition name, as shown in the following
example:

sudo parted /dev/sdb

The command runs a menu-based system where you must select the appropriate responses to
configure the partition. Example inputs are displayed in the following interactive session:

GNU Parted 3.2
Using /dev/sdb
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) mklabel
New disk label type? gpt
Warning: The existing disk label on /dev/sdb will be destroyed and all data on
this disk will be lost. Do you want to continue?
Yes/No? yes
(parted) print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sdb: 16.8GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:

Number Start End Size File system Name Flags

(parted) mkpart
Partition name? []? Example
File system type? [ext2]? linux-swap
Start? 1
End? 2GB
(parted) print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sdb: 16.8GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:

Number Start End Size File system Name Flags
 1 1049kB 2000MB 1999MB linux-swap(v1) Example

(parted) quit

To know which types of file systems and labels are supported by parted, consult the GNU
Parted User Manual at https://www.gnu.org/software/parted/manual/, or enter info parted
to view the online user manual. For more information, see the parted(8) manual page.

Automatic Device Mappings for Partitions and File Systems
Device mappings are handled automatically on Oracle Linux, by the kernel and the udev
service. In the case of disk devices, the kernel automatically creates device mappings for disks
and their partitions using a non persistent naming scheme in the form of /dev/sdxy, for
example /dev/sda1. A problem with this approach is that the device naming scheme depends
on the order in which devices are detected, which means that device names can change easily.
Typically, device names change when changes to the boot process exist or when storage
devices or their related controllers fail.

Avoid using the non persistent disk or partition names when configuring mount points in /etc/
fstab.

Chapter 1
Automatic Device Mappings for Partitions and File Systems

1-7

https://www.gnu.org/software/parted/manual/

Udev is a subsystem that works with the kernel to monitor hardware or device changes and
manages events related to changes. Storage devices, partitions, and file systems are all
allocated unique identifiers that the udev subsystem can read and use to automatically
configure device mappings that you can use to identify the device or partition that you intend to
work use. Device mappings for storage devices managed by udev are stored in /dev/disks
and you can identify a device by various identifiers, including the unique partition UUID, file
system UUID, or the partition label.

When configuring mount points in /etc/fstab, use the file system UUID or, if set, the partition
label, for example:

UUID=8980b45b-a2ce-4df6-93d8-d1e72f3664a0 /boot xfs defaults 0 0
LABEL=home /home xfs defaults 0 0

Note that because file systems can span multiple devices, defining mount points against the
file system UUID is preferable to using a partition UUID or label. File system UUIDs are
assigned when the file system is created and is stored as part of the file system itself. If you
copy the file system to a different device, the file system retains the same file system UUID.
However, if you reformat a device by using the mkfs command, the device loses the file
system UUID and a new UUID is generated.

Listing Device Mapping Information
You can use the lsblk command to list device information for any block device attached to
the system:

Tip:

Use the -o +UUID option to display the UUIDs for each device and partition listed, or
use the -f option to get a display of important file system information.

lsblk -f

Output might appear as follows, indicating a tree of file system mappings:

NAME FSTYPE FSVER LABEL UUID
FSAVAIL FSUSE% MOUNTPOINTS
sda

├─sda1 vfat FAT16 DDD4-C455
94.5M 5% /boot/efi
├─sda2 xfs 8980b45b-a2ce-4df6-93d8-d1e72f3664a0
1.5G 26% /boot
└─sda3 LVM2_member LVM2 001 LzsEPR-Mnbk-kQZY-eV3n-9u1T-lFXZ-
x7ANgD
 ├─ocivolume-root xfs 26029274-0a04-4dc5-b794-2576b9a16884
28.6G 25% /
 └─ocivolume-oled xfs 3cbc8301-6f0e-4947-bbe6-f3669b9e6985
9.9G 1% /var/oled

You can also use the udevadm info command to obtain information about any udev
mappings on the system. For example:

sudo udevadm info /dev/sda3

Output might appear as follows, listing all the device links that udev has created for the device
and any other information that udev has on the device:

Chapter 1
Automatic Device Mappings for Partitions and File Systems

1-8

P: /devices/pci0000:00/0000:00:04.0/virtio1/host2/target2:0:0/2:0:0:1/block/sda/sda3
N: sda3
L: 0
S: disk/by-partuuid/18b918a1-16ca-4a07-91c6-455c6dc59fac
S: oracleoci/oraclevda3
S: disk/by-id/wwn-0x60170f5736a64bd7accb6a5e66fe70ee-part3
S: disk/by-path/pci-0000:00:04.0-scsi-0:0:0:1-part3
S: disk/by-id/scsi-360170f5736a64bd7accb6a5e66fe70ee-part3
S: disk/by-id/lvm-pv-uuid-LzsEPR-Mnbk-kQZY-eV3n-9u1T-lFXZ-x7ANgD
E: DEVPATH=/devices/pci0000:00/0000:00:04.0/virtio1/host2/target2:0:0/2:0:0:1/block/sda/
sda3
E: DEVNAME=/dev/sda3
E: DEVTYPE=partition
E: DISKSEQ=9
E: PARTN=3
E: MAJOR=8
E: MINOR=3
E: SUBSYSTEM=block
E: USEC_INITIALIZED=20248855
E: ID_SCSI=1
E: ID_VENDOR=ORACLE
E: ID_VENDOR_ENC=ORACLE\x20\x20
E: ID_MODEL=BlockVolume
E: ID_MODEL_ENC=BlockVolume\x20\x20\x20\x20\x20
E: ID_REVISION=1.0
E: ID_TYPE=disk
E: ID_SERIAL=360170f5736a64bd7accb6a5e66fe70ee
E: ID_SERIAL_SHORT=60170f5736a64bd7accb6a5e66fe70ee
E: ID_WWN=0x60170f5736a64bd7
E: ID_WWN_VENDOR_EXTENSION=0xaccb6a5e66fe70ee
E: ID_WWN_WITH_EXTENSION=0x60170f5736a64bd7accb6a5e66fe70ee
E: ID_BUS=scsi
E: ID_PATH=pci-0000:00:04.0-scsi-0:0:0:1
E: ID_PATH_TAG=pci-0000_00_04_0-scsi-0_0_0_1
E: ID_PART_TABLE_UUID=a0b1f7d8-e84b-461f-a016-c3fcfed369c3
E: ID_PART_TABLE_TYPE=gpt
E: ID_SCSI_INQUIRY=1
E: ID_FS_UUID=LzsEPR-Mnbk-kQZY-eV3n-9u1T-lFXZ-x7ANgD
E: ID_FS_UUID_ENC=LzsEPR-Mnbk-kQZY-eV3n-9u1T-lFXZ-x7ANgD
E: ID_FS_VERSION=LVM2 001
E: ID_FS_TYPE=LVM2_member
E: ID_FS_USAGE=raid
E: ID_PART_ENTRY_SCHEME=gpt
E: ID_PART_ENTRY_UUID=18b918a1-16ca-4a07-91c6-455c6dc59fac
E: ID_PART_ENTRY_TYPE=e6d6d379-f507-44c2-a23c-238f2a3df928
E: ID_PART_ENTRY_NUMBER=3
E: ID_PART_ENTRY_OFFSET=4401152
E: ID_PART_ENTRY_SIZE=100456415
E: ID_PART_ENTRY_DISK=8:0
E: SCSI_TPGS=0
E: SCSI_TYPE=disk
E: SCSI_VENDOR=ORACLE
E: SCSI_VENDOR_ENC=ORACLE\x20\x20
E: SCSI_MODEL=BlockVolume
E: SCSI_MODEL_ENC=BlockVolume\x20\x20\x20\x20\x20
E: SCSI_REVISION=1.0
E: SCSI_IDENT_LUN_NAA_REGEXT=60170f5736a64bd7accb6a5e66fe70ee
E: UDISKS_IGNORE=1
E: DEVLINKS=/dev/disk/by-partuuid/18b918a1-16ca-4a07-91c6-455c6dc59fac
 /dev/oracleoci/oraclevda3
 /dev/disk/by-id/wwn-0x60170f5736a64bd7accb6a5e66fe70ee-part3
 /dev/disk/by-path/pci-0000:00:04.0-scsi-0:0:0:1-part3

Chapter 1
Automatic Device Mappings for Partitions and File Systems

1-9

 /dev/disk/by-id/scsi-360170f5736a64bd7accb6a5e66fe70ee-part3
 /dev/disk/by-id/lvm-pv-uuid-LzsEPR-Mnbk-kQZY-eV3n-9u1T-lFXZ-x7ANgD
E: TAGS=:systemd:
E: CURRENT_TAGS=:systemd:

Manually Mapping Partition Tables to Devices
The kpartx utility maps to device files the partitions of any block device or file that contains a
partition table. The command reads the partition table, creates device files for the partitions,
and stores the device files in /dev/mapper. Each device file represents a disk volume or a disk
partition on a device or within an image file.

For more information, see the kpartx(8) manual page.

Creating Device Mappings by Using kpartx
The -a option creates the device mappings. The following example uses the disk partitions
that were created in Creating Partitions as basis for creating the mapping. The example begins
by showing the partition table:

1. Display the partition table.

sudo fdisk -l /dev/sdb

...
Device Boot Start End Sectors Size Id Type
/dev/sdb1 2048 3907583 3905536 1.9G 83 Linux
/dev/sdb2 3907584 32767999 28860416 13.8G 83 Linux

2. Map the partitions.

sudo kpartx -av /dev/sdb

add map sdb1 (253:2): 0 3905536 linear 8:16 2048
add map sdb2 (253:3): 0 28860416 linear 8:16 3907584

3. Display /dev/mapper contents.

ls /dev/mapper

control sdb1 sdb2 vg_main-lv_root vg_main-lv_swap

Listing Partition Mappings For a Device by Using kpartx
To list the partitions in the device, use the -l option.

In the following example, the first column of the output identifies the device files in /dev/
mapper.

sudo kpartx -l /dev/sdb

sdb1 : 0 3905536 /dev/sdb 2048
sdb2 : 0 28860416 /dev/sdb 3907584

The kpartx command also works with image files such as an installation image. For example,
for an image file system.img, you can do the following:

sudo kpartx -a system.img

sudo kpartx -l system.img

Chapter 1
Manually Mapping Partition Tables to Devices

1-10

loop0p1 : 0 204800 /dev/loop0 2048
loop0p2 : 0 12288000 /dev/loop0 206848
loop0p3 : 0 4096000 /dev/loop0 212494848
loop0p4 : 0 2 /dev/loop0 16590848

The output of the previous command shows that the drive image contains four partitions.

Removing Partition Mappings by Using kpartx
If a partition isn't in use you can remove the device mapping for the partition by using the -d
option:

sudo kpartx -d system.img
ls /dev/mapper

control

Chapter 1
Manually Mapping Partition Tables to Devices

1-11

2
Recommendations for Solid State Drives

Similar to other storage devices, solid state drives (SSDs) require their partitions to be on 1 MB
boundaries.

For btrfs and ext4 file systems on SSDs, specifying the discard option with mount sends
discard (TRIM) commands to an underlying SSD whenever blocks are freed. This option can
extend the working life of the device. However, the option also has a negative impact on
performance, even for SSDs that support queued discards.

Instead, use the fstrim command to discard empty and unused blocks, especially before
reinstalling the operating system or before creating a new file system on an SSD. Schedule
fstrim to run when impact on system performance is minimal. You can also apply fstrim to
a specific range of blocks rather than the whole file system.

Note:

Using a minimal journal size of 1024 file-system blocks for ext4 on an SSD improves
performance. However, journaling also improves the robustness of the file system,
and therefore should not be disabled completely.

Btrfs automatically enables SSD optimization for a device if the value of /sys/block/device/
queue/rotational is 0, such as in the case of Xen Virtual Devices (XVD). If btrfs doesn't
detect a device as being an SSD, enable SSD optimization by specifying the ssd option to
mount. Note, however, that setting the ssd option doesn't imply that discard is also set.

To disable SSD optimization, specify the nossd option to mount.

If you configure swap files or partitions on an SSD, reduce the tendency of the kernel to
perform anticipatory writes to swap, which is controlled by the value of the vm.swappiness
kernel parameter and displayed as /proc/sys/vm/swappiness. The value of vm.swappiness
can be in the range 0 to 100, where a higher value implies a greater propensity to write to
swap. The default value is 60. The suggested value when swap has been configured on SSD
is 1. Use the following commands to change the value:

echo "vm.swappiness = 1" >> /etc/sysctl.conf

sudo sysctl -p

...
vm.swappiness = 1

For additional swap-related information in connection with the btrfs file system, see Creating
Swap Files on a Btrfs File System in Oracle Linux 8: Managing Local File Systems.

2-1

https://docs.oracle.com/en/operating-systems/oracle-linux/8/fsadmin/

3
Working With Logical Volume Manager

Logical Volume Manager (LVM) enables you to manage multiple physical volumes and
configure mirroring and striping of logical volumes. Through its use of the device mapper (DM)
to create an abstraction layer, LVM provides you the capability to by which you can configure
physical and logical volumes. With LVM, you obtain data redundancy as well increased I/O
performance.

In LVM, you first create volume groups from physical volumes. Physical volumes are storage
devices such as disk array LUNs, software or hardware RAID devices, hard drives, and disk
partitions. Over these physical volumes, you create volume groups. In turn, you configure
logical volumes in a volume group. Logical volumes become the foundation for configuring
software RAID, encryption, and other storage features.

You create file systems on logical volumes and mount the logical volume devices in the same
way as you would a physical device. If a file system on a logical volume becomes full with data,
you can increase the volume's capacity by using free space in the volume group. You can then
grow the file system, if the file system supports that capability. Physical storage devices can be
added to a volume group to further increase its capacity.

LVM is non disruptive and transparent to users. Thus, management tasks such as increasing
logical volume sizes, changing their layouts dynamically, or reconfiguring physical volumes
don't require any system downt time.

Before setting up logical volumes on the system, complete the following requirements:

• Backup the data on the devices assigned for the physical volume.

• Unmount those devices. Creating physical volumes fails on mounted devices.

Configuring logical volumes with LVM involves the following tasks which you perform
sequentially.

1. Creating physical volumes from selected storage devices.

2. Creating a volume group from physical volumes.

3. Configuring logical volumes over the volume group.

4. As needed, creating snapshots of logical volumes.

Initializing and Managing Physical Volumes
The following example sets up /dev/sdb, /dev/sdc, /dev/sdd, and /dev/sde as physical
volumes:

sudo pvcreate -v /dev/sd[bcde]

Set up physical volume for “/dev/sdb” with 6313482 available
sectors
Zeroing start of device /dev/sdb
Physical volume “/dev/sdb” successfully created
...

3-1

To display information about physical volumes, use the pvdisplay, pvs, and pvscan
commands.

To remove a physical volume from the control of LVM, use the pvremove command:

sudo pvremove device

Other commands that are available for managing physical volumes include pvchange, pvck,
pvmove, and pvresize.

For more information, see the lvm(8), pvcreate(8), and other LVM manual pages.

Creating and Managing Volume Groups
The following example creates the volume group myvg from the newly created physical
volumes:

sudo vgcreate -v myvg /dev/sd[bcde]

The following output is displayed:

Wiping cache of LVM-capable devices
Adding physical volume ‘/dev/sdb’ to volume group ‘myvg’
Adding physical volume ‘/dev/sdc’ to volume group ‘myvg’
Adding physical volume ‘/dev/sdd’ to volume group ‘myvg’
Adding physical volume ‘/dev/sde’ to volume group ‘myvg’
Archiving volume group “myvg” metadata (seqno 0).
Creating volume group backup “/etc/lvm/backup/myvg” (seqno 1).
Volume group “myvg” successfully created

LVM divides the storage space within a volume group into physical extents An extent, with a
default size of 4 MB, is the smallest unit that LVM uses when allocating storage to logical
volumes.

The allocation policy determines how LVM allocates extents from either a volume group or a
logical volume. The default allocation policy for a volume group is normal, whose rules include,
for example, not placing parallel stripes on the same physical volume. For a logical volume, the
default allocation policy is inherit, which means that the logical volume uses the same policy
as the volume group. Other allocation policies are anywhere, contiguous and cling, and
cling_by_tags.

To change allocation policies, use the lvchange or vgchange commands. As an alternative,
set a preferred allocation policy directly when creating a volume group or logical volume.

The vgextend and vgreduce commands add physical volumes to a volume group or
removes them. The commands enable you to manipulate the size of the volume group.

sudo vgextend | vgreduce [options] vol_group physical_vol

To display information about volume groups, use the vgdisplay, vgs, and vgscan
commands.

To remove a volume group from LVM, use the vgremove command:

sudo vgremove vol_group

The command warns you if logical volumes exist in the group and prompts for confirmation.

Other commands that are available for managing volume groups include vgchange, vgck,
vgexport, vgimport, vgmerge, vgrename, and vgsplit.

Chapter 3
Creating and Managing Volume Groups

3-2

For more information, see the lvm(8), vgcreate(8), and other LVM manual pages.

Creating and Managing Logical Volumes
This example creates the logical volume mylv of size 2 GB in the volume group myvg:

sudo lvcreate -v --size 2g --name mylv myvg

The following output is displayed:

Archiving volume group “myvg” metadata (seqno 1).
Creating logical volume mylv
Create volume group backup “/etc/lvm/backup/myvg” (seqno 2).
Activating logical volume myvg/mylv.
...
Logical volume "mylv" created.

lvcreate uses the device mapper to create a block device file entry under /dev for each
logical volume. The command also uses udev to set up symbolic links to this device file
from /dev/mapper and /dev/ volume_group. For example, the device that corresponds to the
logical volume mylv in the volume group myvg might be /dev/dm-3, to which /dev/mapper/
myvg-mylv and /dev/myvg/mylv are symbolically linked.

In commands or scripts, always refer to the devices in /dev/mapper or /dev/ volume_group,
rather than to /dev/dm-*. Those names are persistent and are created automatically by the
device mapper early in the boot process. In contrast, the /dev/dm-* devices aren't guaranteed
to be persistent across reboots.

You manage and use a logical volume as you would a physical storage device, such as
configuring a logical volume as a file system, a swap partition, an Automatic Storage
Management (ASM) disk, or a raw device.

To display information about logical volumes, use the lvdisplay, lvs, and lvscan
commands.

To remove a logical volume from a volume group, use the lvremove command:

sudo lvremove vol_group/logical_vol

Other commands that are available for managing logical volumes include lvchange,
lvconvert, lvmdiskscan, lvmsadc, lvmsar, lvrename, and lvresize.

For more information, see the lvm(8), lvcreate(8), and other LVM manual pages.

Creating and Managing Grouping With Tags
A tag is a string of characters that groups LVM objects of the same type. Only objects in a
volume group (VG) can be tagged, such as physical volumes (PV) and logical volumes (LV).
PVs lose their tags if they are removed from a VG because tags are stored as part of the VG
metadata and are deleted when a PV is removed.

Multiple LVM command can use tags. When you use a tag in a command, the command adds
all objects that possess the tag that are of the type expected by its position in the command.
You can also use tags to automate actions such as activating all objects within a tagged group.

To create and manage LVM object groupings with tags, do the following:

Chapter 3
Creating and Managing Logical Volumes

3-3

1. To add a tag to one or more existing objects, use the following command:

pvchange --addtag @tag PV
pvchange --addtag @tag VG
pvchange --addtag @tag LV

In the previous, tag is the name of the tag and should always be prefix with the "@"
character. PV is one or more physical volume, VG is one or more volume group, and LV is
one or more logical volume. The --addtag option can be repeated to add multiple tags with
one command.

Note:

Valid tag characters are A-Z a-z 0-9 _ + . - / = ! : # & and can be up to 1024
characters. Tags cannot start with a hyphen.

2. To add a tag when creating objects, use the following command:

vgcreate --addtag @tag VG
lvcreate --addtag @tag LV

3. To delete a tag from one or more existing objects, use the following command:

pvchange --deltag @tag PV
pvchange --deltag @tag VG
pvchange --deltag @tag LV

The --deltag option can be repeated to add multiple tags with one command.

4. To display tags, use the following command:

pvs -o tags PV
pvs -o tags VG
pvs -o tags LV

For more information about tags, see the lvm(8), pvcreate(8), and other LVM manual
pages.

Managing Activation and Automatic Activation
You can activate or deactivate logical volumes using the lvchange command. Activating a
logical volume makes the logical volume usable through a block device. Deactivating a logical
volume makes the logical volume inactive and inaccessible to the kernel.

Additionally, you can enable automatic activation for logical volumes or volume groups, which
applies to all logical volumes in the volume group. Automatic activation activates logical
volumes in response to attaching an LVM device to a machine. When you attach all physical
volumes in a volume group, the volume group is complete, and the logical volumes in the
volume group automatically activate. This automatic behavior can be disabled or enabled using
vgchange or lvchange with the --setautoactivation option.

Chapter 3
Managing Activation and Automatic Activation

3-4

You can also control which logical volumes can be automatically activated by listing which
logical volumes can be activated in the /etc/lvm/lvm.conf auto_activation_volume_list
parameter.

To manage the activation status of a logical volume, do the following:

1. To deactivate a logical volume, use the following command:

lvchange -an VG LG

In the previous, VG is the name of the volume group and LG is the name of the logical
volume to be deactivated.

2. To deactivate all logical volumes in a volume group, use the following command:

lvchange -an VG

3. To activate a deactivated logical volume, use the following command:

lvchange -ay VG LG

Note:

systemd automatically mounts LVM volumes using the mount points specified in
the /etc/fstab file.

4. To activate all deactivated logical volumes in a volume group, use the following command:

lvchange -ay VG

5. To control which logical volumes can be activated using lvchange commands described
above, you can also use the /etc/lvm/lvm.conf configuration file, with the activation/
volume_list configuration option. The following example shows that the volume list can
specify an entire volume group or just one logical volume within a volume group:

volume_list = ["VG", "VG/LV"]

You can also use one or more tags to specify which logical devices can be activated. For
example:

volume_list = ["@tag1", "@tag2, "@tag3"]

If you leave the brackets empty, then no device can be activated.

volume_list = []

To manage the automatic activation of logical volumes, do the following:

1. To enable or disable automatic activation for a volume group, use the following command:

vgchange --setautoactivation <y|n>

2. To enable or disable automatic activation for a logical volume, use the following command:

Chapter 3
Managing Activation and Automatic Activation

3-5

lvchange --setautoactivation <y|n>
3. To control automatic activation using the /etc/lvm/lvm.conf configuration file, specify

volume groups, or a volume group and a specific logical volume within it, to the
activation/auto_activation_volume_list configuration option:

auto_activation_volume_list = ["VG", "VG/LV"]

You can also use tags to enable autoactivation. For example:

auto_activation_volume_list = ["@tag1", "@tag2, "@tag3"]

If you leave the brackets empty, the automatic activation functionality is completely
disabled.

auto_activation_volume_list = []

Creating Logical Volume Snapshots
To create a snapshot of an existing logical volume, use lvcreate --snapshot, for example:

sudo lvcreate --size 500m --snapshot --name mylv-snapshot myvg/mylv

Logical volume “mylv-snapshot” created

You can mount and modify the contents of the snapshot independently of the original volume.
Or, you can preserve the snapshot as a record of the state of the original volume at the time
that the snapshot was taken.

The snapshot usually occupies less space than the original volume, depending on how much
the contents of the volumes diverge over time. In the example, assume that the snapshot only
requires one quarter of the space of the original volume. To calculate how much data is
allocated to the snapshot, do the following:

1. Issue the lvs command.

2. From the command output, check the value under the Snap% column.

A value approaching 100% indicates that the snapshot is low on storage space.

3. Use lvresize to either grow the snapshot or reduce its size to save storage space.

To merge a snapshot with its original volume, use the lvconvert --merge command.

To remove a logical volume snapshot from a volume group, use the lvremove command as
you would for a logical volume, for example:

sudo lvremove myvg/mlv-snapshot

For more information, see the lvcreate(8) and lvremove (8) manual pages.

Using Thinly-Provisioned Logical Volumes
Thinly provisioned logical volumes have virtual sizes that are typically greater than the physical
storage on which you create them. You create thinly provisioned logical volumes from storage
that you have assigned to a special type of logical volume called a thin pool. LVM assigns
storage on demand from a thin pool to a thinly-provisioned logical volume as required by the

Chapter 3
Creating Logical Volume Snapshots

3-6

applications that access the volume. You need to use the lvs command to monitor the usage
of the thin pool so that you can increase its size if its available storage is in danger of being
exhausted.

Configuring and Managing Thinly-Provisioned Logical Volumes
Creating thinly provisioned logical volumes involves two steps:

1. Create a thin pool.

sudo lvcreate --size size --thin vol_group/pool_name
2. Create a thinly provisioned logical volume.

sudo lvcreate --virtualsize size --thin vol_group/thin_pool_name --name logical_vol
In the following example, the thin pool mytp of size 1 GB is first created from the volume group
myvg:

sudo lvcreate --size 1g --thin myvg/mytp
Logical volume "mytp" created

Then, the thinly provisioned logical volume mytv is created with a virtual size of 2 GB:

sudo lvcreate --virtualsize 2g --thin myvg/mytp --name mytv
Logical volume "mytv" created

Note that the size of mytp is less than that of mytv.

To create a snapshot of mytv, don't specify the size of the snapshot. Otherwise, its storage
would not be provisioned from mytp, for example:

sudo lvcreate --snapshot --name mytv-snapshot myvg/mytv
Logical volume “mytv-snapshot” created

If the volume group has sufficient space, use the lvresize command as needed to increase
the size of a thin pool, for example:

sudo lvresize -L+1G myvg/mytp
Extending logical volume mytp to 2 GiB
Logical volume mytp successfully resized

For more information, see the lvcreate(8) and lvresize(8) manual pages.

Using snapper With Thinly-Provisioned Logical Volumes
The snapper utility is another tool for creating and maintaining thin snapshots of thinly-
provisioned logical volumes.

To set up the snapper configuration for an existing mounted volume:

sudo snapper -c config_name create-config -f "lvm(fs_type)" fs_name

config_name
Name of the configuration

fs_type
File system type (ext4 or xfs)

Chapter 3
Using Thinly-Provisioned Logical Volumes

3-7

fs_name
Path of the file system.

The command adds an entry for config_name to /etc/sysconfig/snapper, creates the
configuration file /etc/snapper/configs/config_name , and sets up a .snapshots
subdirectory for the snapshots.

By default, snapper sets up a cron.hourly job to create snapshots in the .snapshot
subdirectory of the volume and a cron.daily job to clean up old snapshots. You can edit the
configuration file to disable or change this behavior. For more information, see the snapper-
configs(5) manual page.

With snapper, you can create 3 types of snapshots:

post
A post snapshot records the state of a volume after a modification. A post snapshot should
always be paired with a pre snapshot that you take immediately before you make the
modification.

pre
A pre snapshot records the state of a volume immediately before a modification. A pre
snapshot should always be paired with a post snapshot that you take immediately after you
have completed the modification.

single
A single snapshot records the state of a volume but does not have any association with other
snapshots of the volume.

For example, the following commands create a pre snapshot and a post snapshots of a
volume:

sudo snapper -c config_name create -t pre -p N

... Modify the volume's contents ...

sudo snapper -c config_name create -t post --pre-num N -p N'

The -p option causes snapper to display the number of the snapshot so that you can
reference it when you create the post snapshot or when you compare the contents of the pre
and post snapshots.

To display the files and directories that have been added, removed, or modified between the
pre and post snapshots, use the status subcommand:

sudo snapper -c config_name status N

To display the differences between the contents of the files in the pre and post snapshots, use
the diff subcommand:

sudo snapper -c config_name diff .. N'

To list the snapshots that exist for a volume:

sudo snapper -c config_name list

To delete a snapshot, specify its number to the delete subcommand:

sudo snapper -c config_name delete N''

To undo the changes in the volume from post snapshot N' to pre snapshot N:

Chapter 3
Using Thinly-Provisioned Logical Volumes

3-8

sudo snapper -c config_name undochange N .. N'

For more information, see the snapper(8) manual page.

Chapter 3
Using Thinly-Provisioned Logical Volumes

3-9

4
Working With Software RAID

The Redundant Array of Independent Disks (RAID) feature provides the capability to spread
data across multiple drives to increase capacity, implement data redundancy, and increase
performance. RAID is implemented either in hardware through intelligent disk storage that
exports the RAID volumes as LUNs, or in software by the operating system. The Oracle Linux
kernel uses the multiple device (MD) driver to support software RAID to create virtual devices
from two or more physical storage devices. MD enables you to organize disk drives into RAID
devices and implement different RAID levels.

You can create RAID devices using mdadm or Logical Volume Manager (LVM).

Software RAID Levels
The following software RAID levels are commonly implemented with Oracle Linux:

Linear RAID (spanning)
Combines drives as a larger virtual drive. This level provides no data redundancy nor
performance benefit. Resilience decreases because the failure of a single drive renders the
array unusable.

RAID-0 (striping)
Increases performance but doesn't provide data redundancy. Data is broken down into units
(stripes) and written to all the drives in the array. Resilience decreases because the failure of a
single drive renders the array unusable.

RAID 0+1 (mirroring of striped disks)
Combines RAID-0 and RAID-1 by mirroring a striped array to provide both increased
performance and data redundancy. Failure of a single disk causes one of the mirrors to be
unusable until you replace the disk and repopulate it with data. Resilience is degraded while
only a single mirror remains available. RAID 0+1 is usually as expensive as or slightly more
expensive than RAID-1.

RAID-1 (mirroring)
Provides data redundancy and resilience by writing identical data to each drive in the array. If
one drive fails, a mirror can satisfy I/O requests. Mirroring is an expensive solution because
the same information is written to all of the disks in the array.

RAID 1+0 (striping of mirrored disks or RAID-10)
Combines RAID-0 and RAID-1 by striping a mirrored array to provide both increased
performance and data redundancy. Failure of a single disk causes part of one mirror to be
unusable until you replace the disk and repopulate it with data. Resilience is degraded while
only a single mirror retains a complete copy of the data. RAID 1+0 is typically as expensive as
or slightly more expensive than RAID-1.

RAID-5 (striping with distributed parity)
Increases read performance by using striping and provides data redundancy. The parity is
distributed across all the drives in an array, but it doesn't take up as much space as a
complete mirror. Write performance is reduced to some extent as a result of the need to
calculate parity information and to write the information in addition to the data. If one disk in

4-1

the array fails, the parity information is used to reconstruct data to satisfy I/O requests. In this
mode, read performance and resilience are degraded until you replace the failed drive and
repopulate the new drive with data and parity information. RAID-5 is intermediate in expense
between RAID-0 and RAID-1.

RAID-6 (Striping with double distributed parity)
A more resilient variant of RAID-5 that can recover from the loss of two drives in an array. The
double parity is distributed across all the drives in an array, to ensure redundancy at the
expense of taking up more space than RAID-5. For example, in an array of four disks, if two
disks in the array fails, the parity information is used to reconstruct data. Usable disks are the
number of disks minus two. RAID-6 is used when data redundancy and resilience are
important, but performance is not. RAID-6 is intermediate in expense between RAID-5 and
RAID-1.

Creating Software RAID Devices using mdadm
1. Run the mdadm command to create the MD RAID device as follows:

sudo mdadm --create md_device --level=RAID_level [options] --raid-devices=Ndevices

md_device
Name of the RAID device, for example, /dev/md0.

RAID_level
Level number of the RAID to create, for example, 5 for a RAID-5 configuration.

--raid-devices=N
Number of devices to become part of the RAID configuration.

devices
Devices to be configured as RAID, for example, /dev/sd[bcd] for 3 devices for the RAID
configuration.

The devices you list must total to the number you specified for --raid-devices.

This example creates a RAID-5 device /dev/md1 from /dev/sdb, /dev/sdc, and dev/sdd:

sudo mdadm --create /dev/md1 --level=5 -raid-devices=3 /dev/sd[bcd]

The previous example creates a RAID-5 device /dev/md1 out of 3 devices. We can use 4
devices where one device is configured as a spare for expansion, reconfiguration, or
replacement of failed drives:

sudo mdadm --create /dev/md1 --level=5 -raid-devices=3 --spare-devices=1 /dev/
sd[bcde]

2. (Optional) Add the RAID configuration to /etc/mdadm.conf:

sudo mdadm --examine --scan >> /etc/mdadm.conf

Based on the configuration file, mdadm assembles the arrays at boot time.

For example, the following entries define the devices and arrays that correspond
to /dev/md0 and /dev/md1:

DEVICE /dev/sd[c-g]
ARRAY /dev/md0 devices=/dev/sdf,/dev/sdg
ARRAY /dev/md1 spares=1 devices=/dev/sdb,/dev/sdc,/dev/sdd,/dev/sde

Chapter 4
Creating Software RAID Devices using mdadm

4-2

For more examples, see the sample configuration file /usr/share/doc/mdadm-3.2.1/
mdadm.conf-example.

An MD RAID device is used in the same way as any physical storage device. For example, the
RAID device can be configured as an LVM physical volume, a file system, a swap partition, an
Automatic Storage Management (ASM) disk, or a raw device.

To check the status of the MD RAID devices, view /proc/mdstat:

cat /proc/mdstat

Personalities : [raid1]
mdo : active raid1 sdg[1] sdf[0]

To display a summary or detailed information about MD RAID devices, use the --query or --
detail option, respectively, with mdadm.

For more information, see the md(4), mdadm(8), and mdadm.conf(5) manual pages.

Creating and Managing Software RAID Devices using LVM
1. Ensure that you have created a sufficient number of physical volumes in a volume group to

accommodate your LVM RAID logical volume requirements. For more information about
creating physical volumes and volume groups, see Working With Logical Volume Manager.

2. Review the raid_fault_policy value in the /etc/lvm/lvm.conf file that specifies how a
RAID instance that uses redundant devices reacts to a drive failure. The default value is
"warn" which indicates that RAID is configured to log a warning in the system logs. This
means that in the event of a device failure, manual action is required to replace the failed
device.

3. Run the lvcreate command to create the LVM RAID device. See the following sections
for examples:

• RAID Level 0 (Striping) LVM Examples

• RAID Level 1 (Mirroring) LVM Examples

• RAID Level 5 (Striping with Distributed Parity) LVM Examples

• RAID Level 6 (Striping with Double Distributed Parity) LVM Examples

• RAID Level 10 (Striping of Mirrored Disks) LVM Examples

4. Create the filesystem you want on your device. For example, the following command
creates an ext4 file system on a RAID 6 logical volume.

sudo mkfs.ext4 /dev/myvg/mylvraid6
mke2fs 1.46.2 (28-Feb-2021)
Creating filesystem with 264192 4k blocks and 66096 inodes
Filesystem UUID: 05a78be5-8a8a-44ee-9f3f-1c4764c957e8
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376

5. Consider persisting the logical volume by editing your /etc/fstab file. For example,
adding the following line that includes the UUID created in the previous step ensures that
the logical volume is remounted after a reboot.

UUID=05a78be5-8a8a-44ee-9f3f-1c4764c957e8 /mnt ext4 defaults 0 0

Chapter 4
Creating and Managing Software RAID Devices using LVM

4-3

For more information about using UUIDs with the /etc/fstab file, see Automatic Device
Mappings for Partitions and File Systems .

6. In the event that a device failure occurs for LVM RAID levels 5, 6, and 10, ensure that you
have a replacement physical volume attached to the volume group that contains the failed
RAID device, and do one of the following:

• Use the following command to switch to a random spare physical volume present in
the volume group:

sudo lvconvert --repair volume_group/logical_volume

In the previous example, volume_group is the volume group and logical_volume is the
LVM RAID logical volume.

• Use the following command to switch to a specific physical volume present in the
volume group:

sudo lvconvert --repair volume_group/logical_volume physical_volume

In the previous example, physical_volume is the specific volume you want to replace
the failed physical volume with. For example, /dev/sdb1.

RAID Level 0 (Striping) LVM Examples
Before you can do RAID level 0, you need at least two or more devices. The following example
creates a RAID level 0 logical volume mylvraid0 of size 2 GB in the volume group myvg.

lvcreate --type raid0 --size 2g --stripes 3 --stripesize 4 -n mylvraid0 myvg

The logical volume contains three stripes, which is the number of devices to use in myvg
volume group. The stripesize of four kilobytes is the size of data that can be written to one
device before moving to the next device.

The following output is displayed:

 Rounding size 2.00 GiB (512 extents) up to stripe boundary size 2.00 GiB (513 extents).
 Logical volume "mylvraid0" created.

The lsblk command shows that three out of the four physical volumes are now running the
myvg-mylvraid0 RAID 0 logical volume. Additionally, each instances of myvg-mylvraid0 is a
subvolume included in another subvolume containing the data for the RAID logical volume.
Each subvolume contains the data subvolume that are labled myvg-mylvraid0_rimage_0,
myvg-mylvraid0_rimage_1, and myvg-mylvraid0_rimage_2 .

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
...
sdb 8:16 0 50G 0 disk
└─myvg-mylvraid0_rimage_0 252:2 0 684M 0 lvm
 └─myvg-mylvraid0 252:5 0 2G 0 lvm
sdc 8:32 0 50G 0 disk
└─myvg-mylvraid0_rimage_1 252:3 0 684M 0 lvm
 └─myvg-mylvraid0 252:5 0 2G 0 lvm
sdd 8:48 0 50G 0 disk

Chapter 4
Creating and Managing Software RAID Devices using LVM

4-4

└─myvg-mylvraid0_rimage_2 252:4 0 684M 0 lvm
 └─myvg-mylvraid0 252:5 0 2G 0 lvm
sde 8:64 0 50G 0 disk

To display information about logical volumes, use the lvdisplay, lvs, and lvscan
commands.

To remove a RAID 0 logical volume from a volume group, use the lvremove command:

sudo lvremove vol_group/logical_vol

Other commands that are available for managing logical volumes include lvchange,
lvconvert, lvmdiskscan, lvrename, lvextend, lvreduce, and lvresize.

RAID Level 1 (Mirroring) LVM Examples
Before you can do RAID level 1, you need at least two or more devices. The following example
creates a RAID level 1 logical volume mylvraid1 of size 1 GB in the volume group myvg.

lvcreate --type raid1 -m 1 --size 1G -n mylvraid1 myvg

The following output is displayed:

 Logical volume "mylvraid1" created.

The -m specifies that you want 1 mirror device in the myvg volume group where identical data is
written to the first device and second mirror device. You can specify additional mirror devices if
you want. For example, -m 2 would create two mirrors of the first device. If one device fails the
other device mirrors can continue to process requests.

The lsblk command shows that two out of the four available physical volumes are now part of
the myvg-mylvraid1 RAID 1 logical volume. Additionally, each instance of myvg-mylvraid1
includes subvolume pairs for data and metadata. Each data subvolumes are labled myvg-
mylvraid1_rimage_0 and myvg-mylvraid1_rimage_1. Each metadata subvolumes are labled
myvg-mylvraid1_rmeta_0 and myvg-mylvraid1_rmeta_1.

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOIN
...
sdb 8:16 0 50G 0 disk
├─myvg-mylvraid1_rmeta_0 252:2 0 4M 0 lvm
│ └─myvg-mylvraid1 252:6 0 1G 0 lvm
└─myvg-mylvraid1_rimage_0 252:3 0 1G 0 lvm
 └─myvg-mylvraid1 252:6 0 1G 0 lvm
sdc 8:32 0 50G 0 disk
├─myvg-mylvraid1_rmeta_1 252:4 0 4M 0 lvm
│ └─myvg-mylvraid1 252:6 0 1G 0 lvm
└─myvg-mylvraid1_rimage_1 252:5 0 1G 0 lvm
 └─myvg-mylvraid1 252:6 0 1G 0 lvm
sdd 8:48 0 50G 0 disk
sde 8:64 0 50G 0 disk

Chapter 4
Creating and Managing Software RAID Devices using LVM

4-5

To display information about logical volumes, use the lvdisplay, lvs, and lvscan
commands. For example, you can use the following command to show the synchronization
rate between devices in myvg:

sudo lvs -a -o name,sync_percent,devices myvg
 LV Cpy%Sync Devices
 mylvraid1 21.58 mylvraid1_rimage_0(0),mylvraid1_rimage_1(0)
 [mylvraid1_rimage_0] /dev/sdf(1)
 [mylvraid1_rimage_1] /dev/sdg(1)
 [mylvraid1_rmeta_0] /dev/sdf(0)
 [mylvraid1_rmeta_1] /dev/sdg(0)

To remove a RAID 1 logical volume from a volume group, use the lvremove command:

sudo lvremove vol_group/logical_vol

Other commands that are available for managing logical volumes include lvchange,
lvconvert, lvmdiskscan, lvrename, lvextend, lvreduce, and lvresize.

For example, you can enable the data integrity feature when creating a RAID 1 logical volume
using the --raidintegrity y option. This creates subvolumes used to detect and correct data
corruption in your RAID images. You can also add or remove this subvolume after creating the
logical volume using the following lvconvert command:

sudo lvconvert --raidintegrity y myvg/mylvraid1
 Creating integrity metadata LV mylvraid1_rimage_0_imeta with size 20.00 MiB.
 Logical volume "mylvraid1_rimage_0_imeta" created.
 Creating integrity metadata LV mylvraid1_rimage_1_imeta with size 20.00 MiB.
 Logical volume "mylvraid1_rimage_1_imeta" created.
 Limiting integrity block size to 512 because the LV is active.
 Using integrity block size 512 for file system block size 4096.
 Logical volume myvg/mylvraid1 has added integrity.

You can also use lvconvert to split a mirror into individual linear logical volumes. For example,
the following command splits the mirror:

sudo lvconvert --splitmirror 1 -n lvnewlinear myvg/mylvraid1
Are you sure you want to split raid1 LV myvg/mylvraid1 losing all resilience?
[y/n]: y

If you had a three instance mirror, the same command would create a two way mirror and a
linear logical volume.

You can also add or remove mirrors to an existing mirror. For example, the following command
increases a two way mirror to a three way mirror by adding a third mirror:

sudo lvconvert -m 2 myvg/mylvraid1
Are you sure you want to convert raid1 LV myvg/mylvraid1 to 3 images
enhancing resilience? [y/n]: y
 Logical volume myvg/mylvraid1 successfully converted.

Chapter 4
Creating and Managing Software RAID Devices using LVM

4-6

And performing the same command again, but with -m 1 instead deletes the third mirror back
down to a two way mirror again and also specify which drive to have removed.

sudo lvconvert -m1 myvg/mylvraid1 /dev/sdd
Are you sure you want to convert raid1 LV myvg/mylvraid1 to 2 images reducing
resilience? [y/n]: y
 Logical volume myvg/mylvraid1 successfully converted.

For more information, see the lvmraid, lvcreate, and lvconvert manual pages.

RAID Level 5 (Striping with Distributed Parity) LVM Examples
Before you can do RAID level 5, you need at least three or more devices. The following
example creates a RAID level 5 logical volume mylvraid5 of size 1 GB in the volume group
myvg.

lvcreate --type raid5 -i 2 --size 1G -n mylvraid5 myvg

The following output is displayed:

 Using default stripesize 64.00 KiB.
 Rounding size 1.00 GiB (256 extents) up to stripe boundary size <1.01 GiB (258
extents).
 Logical volume "mylvraid5" created.

The logical volume contains two stripes, which is the number of devices to use in the myvg
volume group. However, the total usable number of devices requires that an additional device
be added to account for the parity information. And so, a stripe size of two requires three
available drives such that striping and parity information is spread across all three, even
though the total usable device space available for striping is only equivalent to two devices.
The parity information across all three devices is sufficient to deal with the loss of one of the
devices.

The stripesize is not specified in the creation command, so the default of 64 kilobytes is used.
This is the size of data that can be written to one device before moving to the next device.

The lsblk command shows that three out of the four available physical volumes are now part
of the myvg-mylvraid5 RAID 5 logical volume. Additionally, each instance of myvg-mylvraid5
includes subvolume pairs for data and metadata. Each data subvolumes are labelled myvg-
mylvraid5_rimage_0, myvg-mylvraid5_rimage_1, and myvg-mylvraid5_rimage_2. Each
metadata subvolumes are labelled myvg-mylvraid5_rmeta_0, myvg-mylvraid5_rmeta_1 and
myvg-mylvraid5_rmeta_2.

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOIN
...
sdb 8:16 0 50G 0 disk
├─myvg-mylvraid5_rmeta_0 252:2 0 4M 0 lvm
│ └─myvg-mylvraid5 252:8 0 1G 0 lvm
└─myvg-mylvraid5_rimage_0 252:3 0 512M 0 lvm
 └─myvg-mylvraid5 252:8 0 1G 0 lvm
sdc 8:32 0 50G 0 disk
├─myvg-mylvraid5_rmeta_1 252:4 0 4M 0 lvm
│ └─myvg-mylvraid5 252:8 0 1G 0 lvm
└─myvg-mylvraid5_rimage_1 252:5 0 512M 0 lvm

Chapter 4
Creating and Managing Software RAID Devices using LVM

4-7

 └─myvg-mylvraid5 252:8 0 1G 0 lvm
sdd 8:48 0 50G 0 disk
├─myvg-mylvraid5_rmeta_2 252:6 0 4M 0 lvm
│ └─myvg-mylvraid5 252:8 0 1G 0 lvm
└─myvg-mylvraid5_rimage_2 252:7 0 512M 0 lvm
 └─myvg-mylvraid5 252:8 0 1G 0 lvm
sde 8:64 0 50G 0 disk

To display information about logical volumes, use the lvdisplay, lvs, and lvscan
commands. For example, you can use the following command to show the synchronization
rate between devices in myvg:

sudo lvs -a -o name,copy_percent,devices myvg
 LV Cpy%Sync
Devices
 mylvraid5 25.00
mylvraid5_rimage_0(0),mylvraid5_rimage_1(0),mylvraid5_rimage_2(0)
 [mylvraid5_rimage_0] /dev/
sdf(1)
 [mylvraid5_rimage_1] /dev/
sdg(1)
 [mylvraid5_rimage_2] /dev/
sdh(1)
 [mylvraid5_rmeta_0] /dev/
sdf(0)
 [mylvraid5_rmeta_1] /dev/
sdg(0)
 [mylvraid5_rmeta_2] /dev/sdh(0)

To remove a RAID 5 logical volume from a volume group, use the lvremove command:

sudo lvremove vol_group/logical_vol

Other commands that are available for managing logical volumes include lvchange,
lvconvert, lvmdiskscan, lvrename, lvextend, lvreduce, and lvresize.

For example, you can enable the data integrity feature when creating a RAID 5 logical volume
using the --raidintegrity y option. This creates subvolumes used to detect and correct data
corruption in your RAID images. You can also add or remove this subvolume after creating the
logical volume using the following lvconvert command:

sudo lvconvert --raidintegrity y myvg/mylvraid5
 Creating integrity metadata LV mylvraid5_rimage_0_imeta with size 12.00 MiB.
 Logical volume "mylvraid5_rimage_0_imeta" created.
 Creating integrity metadata LV mylvraid5_rimage_1_imeta with size 12.00 MiB.
 Logical volume "mylvraid5_rimage_1_imeta" created.
 Creating integrity metadata LV mylvraid5_rimage_2_imeta with size 12.00 MiB.
 Logical volume "mylvraid5_rimage_2_imeta" created.
 Limiting integrity block size to 512 because the LV is active.
 Using integrity block size 512 for file system block size 4096.
 Logical volume myvg/mylvraid5 has added integrity.

For more information, see the lvmraid, lvcreate, and lvconvert manual pages.

Chapter 4
Creating and Managing Software RAID Devices using LVM

4-8

RAID Level 6 (Striping with Double Distributed Parity) LVM Examples
Before you can do RAID level 6, you need at least five or more devices. The following example
creates a RAID level 6 logical volume mylvraid6 of size 1 GB in the volume group myvg.

lvcreate --type raid6 -i 3 -L 1G -n mylvraid6 myvg

The following output is displayed:

 Using default stripesize 64.00 KiB.
 Rounding size 1.00 GiB (256 extents) up to stripe boundary size <1.01 GiB (258
extents).
 Logical volume "mylvraid6" created.

The logical volume contains three stripes, which is the number of devices to use in the myvg
volume group. However, the total usable number of devices requires that an additional two
devices be added to account for the double parity information. And so, a stripe size of three
requires five available drives such that striping and double parity information is spread across
all five, even though the total usable device space available for striping is only equivalent to
three devices. The parity information across all five devices is sufficient to deal with the loss of
two of the devices.

The stripesize is not specified in the creation command, so the default of 64 kilobytes is used.
This is the size of data that can be written to one device before moving to the next device.

The lsblk command shows that all five of the available physical volumes are now part of the
myvg-mylvraid6 RAID 6 logical volume. Additionally, each instance of myvg-mylvraid6
includes subvolume pairs for data and metadata. Each data subvolumes are labelled myvg-
mylvraid6_rimage_0, myvg-mylvraid6_rimage_1, myvg-mylvraid6_rimage_2, myvg-
mylvraid6_rimage_3, and myvg-mylvraid6_rimage_4. Each metadata subvolumes are labelled
myvg-mylvraid6_rmeta_0, myvg-mylvraid6_rmeta_1, myvg-mylvraid6_rmeta_2, myvg-
mylvraid6_rmeta_3, and myvg-mylvraid6_rmeta_4.

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOIN
...
sdb 8:16 0 50G 0 disk
├─myvg-mylvraid5_rmeta_0 252:2 0 4M 0 lvm
│ └─myvg-mylvraid5 252:12 0 1G 0 lvm
└─myvg-mylvraid5_rimage_0 252:3 0 344M 0 lvm
 └─myvg-mylvraid5 252:12 0 1G 0 lvm
sdc 8:32 0 50G 0 disk
├─myvg-mylvraid5_rmeta_1 252:4 0 4M 0 lvm
│ └─myvg-mylvraid5 252:12 0 1G 0 lvm
└─myvg-mylvraid5_rimage_1 252:5 0 344M 0 lvm
 └─myvg-mylvraid5 252:12 0 1G 0 lvm
sdd 8:48 0 50G 0 disk
├─myvg-mylvraid5_rmeta_2 252:6 0 4M 0 lvm
│ └─myvg-mylvraid5 252:12 0 1G 0 lvm
└─myvg-mylvraid5_rimage_2 252:7 0 344M 0 lvm
 └─myvg-mylvraid5 252:12 0 1G 0 lvm
sde 8:64 0 50G 0 disk
├─myvg-mylvraid5_rmeta_3 252:8 0 4M 0 lvm
│ └─myvg-mylvraid5 252:12 0 1G 0 lvm
└─myvg-mylvraid5_rimage_3 252:9 0 344M 0 lvm

Chapter 4
Creating and Managing Software RAID Devices using LVM

4-9

 └─myvg-mylvraid5 252:12 0 1G 0 lvm
sdf 8:80 0 50G 0 disk
├─myvg-mylvraid5_rmeta_4 252:10 0 4M 0 lvm
│ └─myvg-mylvraid5 252:12 0 1G 0 lvm
└─myvg-mylvraid5_rimage_4 252:11 0 344M 0 lvm
 └─myvg-mylvraid5 252:12 0 1G 0 lvm

To display information about logical volumes, use the lvdisplay, lvs, and lvscan
commands. For example, you can use the following command to show the synchronization
rate between devices in myvg:

sudo lvs -a -o name,sync_percent,devices myvg
 LV Cpy%Sync
Devices

 mylvraid6 31.26
mylvraid6_rimage_0(0),mylvraid6_rimage_1(0),mylvraid6_rimage_2(0),mylvraid6_ri
mage_3(0),mylvraid6_rimage_4(0)
 [mylvraid6_rimage_0] /dev/
sdf(1)

 [mylvraid6_rimage_1] /dev/
sdg(1)

 [mylvraid6_rimage_2] /dev/
sdh(1)

 [mylvraid6_rimage_3] /dev/
sdi(1)

 [mylvraid6_rimage_4] /dev/
sdj(1)

 [mylvraid6_rmeta_0] /dev/
sdf(0)

 [mylvraid6_rmeta_1] /dev/
sdg(0)

 [mylvraid6_rmeta_2] /dev/
sdh(0)

 [mylvraid6_rmeta_3] /dev/
sdi(0)

 [mylvraid6_rmeta_4] /dev/sdj(0)

To remove a RAID 6 logical volume from a volume group, use the lvremove command:

sudo lvremove vol_group/logical_vol

Other commands that are available for managing logical volumes include lvchange,
lvconvert, lvmdiskscan, lvrename, lvextend, lvreduce, and lvresize.

Chapter 4
Creating and Managing Software RAID Devices using LVM

4-10

For example, you can enable the data integrity feature when creating a RAID 6 logical volume
using the --raidintegrity y option. This creates subvolumes used to detect and correct data
corruption in your RAID images. You can also add or remove this subvolume after creating the
logical volume using the following lvconvert command:

sudo lvconvert --raidintegrity y myvg/mylvraid6
 Creating integrity metadata LV mylvraid6_rimage_0_imeta with size 8.00 MiB.
 Logical volume "mylvraid6_rimage_0_imeta" created.
 Creating integrity metadata LV mylvraid6_rimage_1_imeta with size 8.00 MiB.
 Logical volume "mylvraid6_rimage_1_imeta" created.
 Creating integrity metadata LV mylvraid6_rimage_2_imeta with size 8.00 MiB.
 Logical volume "mylvraid6_rimage_2_imeta" created.
 Creating integrity metadata LV mylvraid6_rimage_3_imeta with size 8.00 MiB.
 Logical volume "mylvraid6_rimage_3_imeta" created.
 Creating integrity metadata LV mylvraid6_rimage_4_imeta with size 8.00 MiB.
 Logical volume "mylvraid6_rimage_4_imeta" created.
 Limiting integrity block size to 512 because the LV is active.
 Using integrity block size 512 for file system block size 4096.
 Logical volume myvg/mylvraid6 has added integrity.

For more information, see the lvmraid, lvcreate, and lvconvert manual pages.

RAID Level 10 (Striping of Mirrored Disks) LVM Examples
Before you can do RAID level 10, you need at least four or more devices. The following
example creates a RAID level 10 logical volume mylvraid10 of size 10 GB in the volume group
myvg.

sudo lvcreate --type raid10 -i 2 -m 1 --size 10G -n mylvraid10 myvg

The following output is displayed:

 Logical volume "mylvraid10" created.

The -m specifies that you want 1 mirror device in the myvg volume group where identical data is
written to pairs of mirrored device sets which are also using striping across the sets. Logical
volume data remains available if one or more devices remains in each mirrored device set.

The lsblk command shows that four out of the five available physical volumes are now part of
the myvg-mylvraid10 RAID 10 logical volume. Additionally, each instance of myvg-mylvraid10
includes subvolume pairs for data and metadata. Each data subvolumes are labelled myvg-
mylvraid10_rimage_0, myvg-mylvraid10_rimage_1, myvg-mylvraid10_rimage_2, and myvg-
mylvraid10_rimage_3. Each metadata subvolumes are labelled myvg-mylvraid10_rmeta_0,
myvg-mylvraid10_rmeta_1, myvg-mylvraid10_rmeta_2, and myvg-mylvraid10_rmeta_3.

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOIN
...
sdb 8:16 0 50G 0 disk
├─myvg-mylvraid10_rmeta_0 252:2 0 4M 0 lvm
│ └─myvg-mylvraid10 252:10 0 10G 0 lvm
└─myvg-mylvraid10_rimage_0 252:3 0 5G 0 lvm
 └─myvg-mylvraid10 252:10 0 10G 0 lvm
sdc 8:32 0 50G 0 disk

Chapter 4
Creating and Managing Software RAID Devices using LVM

4-11

├─myvg-mylvraid10_rmeta_1 252:4 0 4M 0 lvm
│ └─myvg-mylvraid10 252:10 0 10G 0 lvm
└─myvg-mylvraid10_rimage_1 252:5 0 5G 0 lvm
 └─myvg-mylvraid10 252:10 0 10G 0 lvm
sdd 8:48 0 50G 0 disk
├─myvg-mylvraid10_rmeta_2 252:6 0 4M 0 lvm
│ └─myvg-mylvraid10 252:10 0 10G 0 lvm
└─myvg-mylvraid10_rimage_2 252:7 0 5G 0 lvm
 └─myvg-mylvraid10 252:10 0 10G 0 lvm
sde 8:64 0 50G 0 disk
├─myvg-mylvraid10_rmeta_3 252:8 0 4M 0 lvm
│ └─myvg-mylvraid10 252:10 0 10G 0 lvm
└─myvg-mylvraid10_rimage_3 252:9 0 5G 0 lvm
 └─myvg-mylvraid10 252:10 0 10G 0 lvm
sdf 8:80 0 50G 0 disk

To display information about logical volumes, use the lvdisplay, lvs, and lvscan
commands. For example, you can use the following command to show the synchronization
rate between devices in myvg:

sudo lvs -a -o name,sync_percent,devices myvg
 LV Cpy%Sync
Devices

 mylvraid101 68.82
mylvraid10_rimage_0(0),mylvraid10_rimage_1(0),mylvraid10_rimage_2(0),mylvraid1
0_rimage_3(0)
 [mylvraid10_rimage_0] /dev/
sdf(1)

 [mylvraid10_rimage_1] /dev/
sdg(1)

 [mylvraid10_rimage_2] /dev/
sdh(1)

 [mylvraid10_rimage_3] /dev/
sdi(1)

 [mylvraid10_rmeta_0] /dev/
sdf(0)

 [mylvraid10_rmeta_1] /dev/
sdg(0)

 [mylvraid10_rmeta_2] /dev/
sdh(0)

 [mylvraid10_rmeta_3] /dev/sdi(0)

To remove a RAID 10 logical volume from a volume group, use the lvremove command:

sudo lvremove vol_group/logical_vol

Chapter 4
Creating and Managing Software RAID Devices using LVM

4-12

Other commands that are available for managing logical volumes include lvchange,
lvconvert, lvmdiskscan, lvrename, lvextend, lvreduce, and lvresize.

For example, you can enable the data integrity feature when creating a RAID 10 logical volume
using the --raidintegrity y option. This creates subvolumes used to detect and correct data
corruption in your RAID images. You can also add or remove this subvolume after creating the
logical volume using the following lvconvert command:

sudo lvconvert --raidintegrity y myvg/mylvraid10
 Creating integrity metadata LV mylvraid10_rimage_0_imeta with size 108.00
MiB.
 Logical volume "mylvraid10_rimage_0_imeta" created.
 Creating integrity metadata LV mylvraid10_rimage_1_imeta with size 108.00
MiB.
 Logical volume "mylvraid10_rimage_1_imeta" created.
 Creating integrity metadata LV mylvraid10_rimage_2_imeta with size 108.00
MiB.
 Logical volume "mylvraid10_rimage_2_imeta" created.
 Creating integrity metadata LV mylvraid10_rimage_3_imeta with size 108.00
MiB.
 Logical volume "mylvraid10_rimage_3_imeta" created.
 Using integrity block size 512 for unknown file system block size, logical
block size 512, physical block size 4096.
 Logical volume myvg/mylvraid10 has added integrity.

For more information, see the lvmraid, lvcreate, and lvconvert manual pages.

Chapter 4
Creating and Managing Software RAID Devices using LVM

4-13

5
Using Encrypted Block Devices

When you install Oracle Linux, you have the option to configure encryption on system volumes
except the boot partition. To protect the bootable partition itself, consider using any password
protection mechanism that's built into the BIOS or setting up a GRUB password.

About Encrypted Block Devices
The device mapper supports the encryption of block devices through the dm-crypt device
driver. Data on these devices are accessible at boot time only with proper credentials. dm-
crypt encrypts disk partitions, RAID volumes, and LVM physical volumes, regardless of their
contents.

Creating Encrypted Volumes
The cryptsetup utility sets up Linux Unified Key Setup (LUKS) encryption on the device and
to manage authentication.

LUKS is an encryption specification that implements a platform independent and standard on-
disk format. The standard ensures interoperability and compatibility among different
distributions and programs. The implementation also includes tools that would simplify the
administration of the encrypted disks. If used, this feature requires a passphrase at boot time.
The correct passphrase then unlocks the encryption key to enable volume decryption.

For more information about LUKS, see the https://gitlab.com/cryptsetup/cryptsetup/blob/
master/README.md file.

To encrypt volumes with LUKS, follow these steps:

1. Initialize a LUKS partition on the device and set up the initial key, for example:

sudo cryptsetup luksFormat /dev/sdd

The following warning is displayed:

WARNING!
========
This will overwrite data on /dev/sdd irrevocably.
Are you sure? (Type uppercase yes): YES
Enter LUKS passphrase: passphrase
Verify passphrase: passphrase

2. Open the device and create the device mapping, for example:

sudo cryptsetup luksOpen /dev/sdd cryptfs

You're prompted to enter the passphrase:

Enter passphrase for /dev/sdd: passphrase

The encrypted volume is accessible as /dev/mapper/cryptfs.

3. Create an entry for the encrypted volume in /etc/crypttab, for example:

5-1

https://gitlab.com/cryptsetup/cryptsetup/blob/master/README.md
https://gitlab.com/cryptsetup/cryptsetup/blob/master/README.md

<target name> <source device> <key file> <options>
cryptfs /dev/sdd none luks

This entry causes the operating system to prompt you for the passphrase at boot time.

You use an encrypted volume in the same way as you would a physical storage device, for
example, as an LVM physical volume, file system, swap partition, Automatic Storage
Management (ASM) disk, or raw device. For example, to mount the encrypted volume
automatically, you would create an entry in the /etc/fstab to mount the mapped device (/dev/
mapper/cryptfs), not the physical device (/dev/sdd).

To verify the status of an encrypted volume:

sudo cryptsetup status cryptfs

The following output is displayed:

/dev/mapper/cryptfs is active.
type: LUKS1
cipher: aes-cbs-essiv:sha256
keysize: 256 bits
device: /dev/xvdd1
offset: 4096 sectors
size: 6309386 sectors
mode: read/write

To remove the device mapping:

1. Unmount any existing file system in the encrypted volume.

2. Remove the mapped device from /dev/mapper.

For example, for the encrypted volume cryptfs, use the following command:

sudo cryptsetup luksClose /dev/mapper/cryptfs
For more information, see the cryptsetup(8) and crypttab(5) manual pages.

Chapter 5
Creating Encrypted Volumes

5-2

6
Working With Linux I-O Storage

Oracle Linux uses the Linux-IO Target (LIO) to provide the block-storage SCSI target for FCoE,
iSCSI, and Mellanox InfiniBand (iSER and SRP). You manage LIO by using the targetcli
shell provided in the targetcli package. Note that Mellanox InfiniBand is only supported with
UEK. You can install the targetcli package by running:

sudo dnf install -y targetcli

Fibre Channel over Ethernet (FCoE) encapsulates Fibre Channel packets in Ethernet frames,
which enables them to be sent over Ethernet networks. To configure FCoE storage, you need
to install the fcoe-utils package that includes both the fcoemon service and the fcoeadm
command. You can install the fcoe-utils package by running:

sudo dnf install -y fcoe-utils

About iSCSI Devices
The Internet Small Computer System Interface (iSCSI) is an IP-based standard for connecting
storage devices. iSCSI encapsulates SCSI commands in IP network packets to support data
transfer over long distances and sharing of storage by client systems. iSCSI uses the existing
IP infrastructure and doesn't require the purchase and installation of fiber-optic cabling and
interface adapters that are needed to implement Fibre Channel (FC) storage area networks.

A client system (iSCSI initiator) accesses the storage server (iSCSI target) over an IP network.
To an iSCSI initiator, the storage appears to be locally attached.

An iSCSI target is typically a dedicated, network-connected storage device but it can also be a
general-purpose computer.

Figure 6-1 shows a simple network where several iSCSI initiators can access the shared
storage that's attached to an iSCSI target.

Figure 6-1 iSCSI Initiators and an iSCSI Target Connected via an IP-based Network

6-1

A hardware-based iSCSI initiator uses a dedicated iSCSI HBA. Oracle Linux supports iSCSI
initiator functionality in software. The kernel-resident device driver uses the existing network
interface card (NIC) and network stack to emulate a hardware iSCSI initiator. The iSCSI
initiator functionality isn't available at the level of the system BIOS. Thus, you can't boot an
Oracle Linux system from iSCSI storage.

To improve performance, some network cards implement TCP/IP Offload Engines (TOE) that
can create a TCP frame for the iSCSI packet in hardware. Oracle Linux doesn't support TOE,
although suitable drivers might be available directly from some card vendors.

For more information about LIO, see http://linux-iscsi.org/wiki/Main_Page.

Configuring an iSCSI Target
The following procedure describes how to set up a basic iSCSI target on an Oracle Linux
system by using block storage backends. Note that you can use other storage backend types
to set up an iSCSI target.

In the example, the targetcli command saves the current configuration to /etc/target/
saveconfig.json. See the targetcli(8) manual page for additional information.

1. Run the targetcli interactive shell:

sudo targetcli

targetcli shell version 2.1.53
Copyright 2011-2013 by Datera, Inc and others.
For help on commands, type 'help'.

2. (Optional) Use the ls command to list the object hierarchy, which is initially empty:

ls

o- / ... [...]
 o- backstores .. [...]
 | o- block .. [Storage Objects: 0]
 | o- fileio ... [Storage Objects: 0]
 | o- pscsi .. [Storage Objects: 0]
 | o- ramdisk .. [Storage Objects: 0]
 o- iscsi .. [Targets: 0]
 o- loopback ... [Targets: 0]

3. Change to the /backstores/block directory and create a block storage object for the disk
partitions that you want to provide as LUNs, for example:

cd /backstores/block
/backstores/block> create name=LUN_0 dev=/dev/sdb
Created block storage object LUN_0 using /dev/sdb.
/backstores/block> create name=LUN_1 dev=/dev/sdc
Created block storage object LUN_1 using /dev/sdc.

The names that you assign to the storage objects are arbitrary.

Note:

The device path varies based on the Oracle Linux instance's disk configuration.

4. Change to the /iscsi directory and create an iSCSI target:

Chapter 6
Configuring an iSCSI Target

6-2

https://linux-iscsi.org/wiki/Targetcli

cd /iscsi
/iscsi> create
Created target iqn.2013-01.com.mydom.host01.x8664:sn.ef8e14f87344.
Created TPG 1.

5. (Optional): List the target portal group (TPG) hierarchy, which is initially empty:

/iscsi> ls

o- iscsi .. [Targets: 1]
 o- iqn.2013-01.com.mydom.host01.x8664:sn.ef8e14f87344 [TPGs: 1]
 o- tpg1 ... [no-gen-acls, no-auth]
 o- acls .. [ACLs: 0]
 o- luns .. [LUNs: 0]
 o- portals .. [Portals: 0]

6. Change to the luns subdirectory of the TPG directory hierarchy and add the LUNs to the
target portal group:

/iscsi> cd iqn.2013-01.com.mydom.host01.x8664:sn.ef8e14f87344/tpg1/luns
/iscsi/iqn.20...344/tpg1/luns> create /backstores/block/LUN_0
Created LUN 0.
/iscsi/iqn.20...344/tpg1/luns> create /backstores/block/LUN_1
Created LUN 1.

7. Change to the portals subdirectory of the TPG directory hierarchy and specify the IP
address and TCP port of the iSCSI endpoint:

/iscsi/iqn.20...344/tpg1/luns> cd ../portals
/iscsi/iqn.20.../tpg1/portals> create 10.150.30.72 3260
Using default IP port 3260
Created network portal 10.150.30.72:3260.

The default TCP port number is 3260.

Note:

An existing default portal would cause the portal creation to fail and a message
similar to the following is generated:

Could not create NetworkPortal in configFS

To resolve the issue, delete the default portal, then create the new portal again,
for example:

/iscsi/iqn.20.../tpg1/portals> delete 0.0.0.0 ip_port=3260

8. Enable TCP port 3260 either by adding the port or adding the iSCSI target:

• Add the port:

sudo firewall-cmd --permanent --add-port=3260/tcp
• Add the target:

sudo firewall-cmd --permanent --add-service \
iqn.2013-01.com.mydom.host01.x8664:sn.ef8e14f87344

9. List the object hierarchy, which now shows the configured block storage objects and TPG:

/iscsi/iqn.20.../tpg1/portals> ls /

Chapter 6
Configuring an iSCSI Target

6-3

o- / ... [...]
 o- backstores .. [...]
 | o- block .. [Storage Objects: 1]
 | | o- LUN_0 [/dev/sdb (10.0GiB) write-thru activated]
 | | o- LUN_1 [/dev/sdc (10.0GiB) write-thru activated]
 | o- fileio ... [Storage Objects: 0]
 | o- pscsi .. [Storage Objects: 0]
 | o- ramdisk .. [Storage Objects: 0]
 o- iscsi .. [Targets: 1]
 | o- iqn.2013-01.com.mydom.host01.x8664:sn.ef8e14f87344 [TPGs: 1]
 | o- tpg1 ... [no-gen-acls, no-auth]
 | o- acls .. [ACLs: 0]
 | o- luns .. [LUNs: 1]
 | | o- lun0 [block/LUN_0 (/dev/sdb)]
 | | o- lun1 [block/LUN_1 (/dev/sdc)]
 | o- portals .. [Portals: 1]
 | o- 10.150.30.72:3260 .. [OK]
 o- loopback ... [Targets: 0]

10. Configure the access rights for logins by initiators.

For example, to configure a demonstration mode that does not require authentication,
change to the TGP directory and set the attributes as shown in the following example:

/iscsi/iqn.20.../tpg1/portals> cd ..
/iscsi/iqn.20...14f87344/tpg1> set attribute authentication=0
demo_mode_write_protect=0
 generate_node_acls=1 cache_dynamic_acls=1
Parameter authentication is now '0'.
Parameter demo_mode_write_protect is now '0'.
Parameter generate_node_acls is now '1'.
Parameter cache_dynamic_acls is now '1'.

Caution:

The demonstration mode is inherently insecure. For information about
configuring secure authentication modes, see http://linux-iscsi.org/wiki/
ISCSI#Define_access_rights.

11. Change to the root (/) directory and save the configuration.

This step ensures that the changes persist across system reboots. Omitting the step might
result in an empty configuration.

/iscsi/iqn.20...14f87344/tpg1> cd /
/> saveconfig
Last 10 configs saved in /etc/target/backup.
Configuration saved to /etc/target/saveconfig.json

12. Enable the target service.

sudo systemctl enable target.service

Restoring a Saved Configuration for an iSCSI target
To restore a saved configuration for an iSCSI target, start the targetcli interactive shell and
then run the following command:

sudo targetcli

Chapter 6
Restoring a Saved Configuration for an iSCSI target

6-4

https://linux-iscsi.org/wiki/ISCSI#Define_access_rights
https://linux-iscsi.org/wiki/ISCSI#Define_access_rights

targetcli shell version 2.1.fb46
Copyright 2011-2013 by Datera, Inc and others.
For help on commands, type 'help'.
/> restoreconfig /etc/target/saveconfig.json

The /etc/target/saveconfig.json file stores the most recently saved configuration.

As an alternative, run the following command to restore saved configurations from previous
versions:

/> restoreconfig /etc/target/backup/saveconfig-20180516-18:53:29.json

Configuring an iSCSI Initiator
1. Install the iscsi-initiator-utils package:

sudo dnf install iscsi-initiator-utils
2. Use a discovery method, such as SendTargets or the Internet Storage Name Service

(iSNS), to discover the iSCSI targets at the specified IP address.

For example, you would use SendTargets as follows:

sudo iscsiadm -m discovery -t sendtargets -p 10.150.30.72

The following output is displayed:

10.150.30.72:3260,1 iqn.2013-01.com.mydom.host01.x8664:sn.ef8e14f87344

This command also starts the iscsid service if it is not already running.

Note:

Before running the discovery process, ensure that the firewall is configured to
accept communication with an iSCSI target and that ICMP traffic is allowed.

3. Display information about the targets that are now stored in the discovery database.

sudo iscsiadm -m discoverydb -t st -p 10.150.30.72

BEGIN RECORD 6.2.0.873-14
discovery.startup = manual
discovery.type = sendtargets
discovery.sendtargets.address = 10.150.30.72
discovery.sendtargets.port = 3260
discovery.sendtargets.auth.authmethod = None
discovery.sendtargets.auth.username = <empty>
discovery.sendtargets.auth.password = <empty>
discovery.sendtargets.auth.username_in = <empty>
discovery.sendtargets.auth.password_in = <empty>
discovery.sendtargets.timeo.login_timeout = 15
discovery.sendtargets.use_discoveryd = No
discovery.sendtargets.discoveryd_poll_inval = 30
discovery.sendtargets.reopen_max = 5
discovery.sendtargets.timeo.auth_timeout = 45
discovery.sendtargets.timeo.active_timeout = 30
discovery.sendtargets.iscsi.MaxRecvDataSegmentLength = 32768
END RECORD

4. Establish a session and log in to a specific target:

Chapter 6
Configuring an iSCSI Initiator

6-5

sudo iscsiadm -m node -T iqn.2013-01.com.mydom.host01.x8664:sn.ef8e14f87344 \
-p 10.150.30.72:3260 -l

Login to [iface: default, target: iqn.2003-01.org.linux-iscsi.localhost.x8664:
sn.ef8e14f87344, portal: 10.150.30.72,3260] successful.

5. Verify that the session is active and display the available LUNs:

sudo iscsiadm -m session -P 3

The following output is displayed:

iSCSI Transport Class version 2.0-870
version 6.2.0.873-14
Target: iqn.2003-01.com.mydom.host01.x8664:sn.ef8e14f87344 (non-flash)
 Current Portal: 10.0.0.2:3260,1
 Persistent Portal: 10.0.0.2:3260,1

 Interface:

 Iface Name: default
 Iface Transport: tcp
 Iface Initiatorname: iqn.1994-05.com.mydom:ed7021225d52
 Iface IPaddress: 10.0.0.2
 Iface HWaddress: <empty>
 Iface Netdev: <empty>
 SID: 5
 iSCSI Connection State: LOGGED IN
 iSCSI Session State: LOGGED_IN
 Internal iscsid Session State: NO CHANGE
.
.
.

 Attached SCSI devices:

 Host Number: 8 State: running
 scsi8 Channel 00 Id 0 Lun: 0
 Attached scsi disk sdb State: running
 scsi8 Channel 00 Id 0 Lun: 1
 Attached scsi disk sdc State: running

The LUNs are represented as SCSI block devices (sd*) in the local /dev directory, for example:

sudo fdisk -l | grep /dev/sd[bc]

Disk /dev/sdb: 10.7 GB, 10737418240 bytes, 20971520 sectors
Disk /dev/sdc: 10.7 GB, 10737418240 bytes, 20971520 sectors

To distinguish between target LUNs, examine the paths under /dev/disk/by-path, which is
displayed by using the following command:

ls -l /dev/disk/by-path/

lrwxrwxrwx 1 root root 9 May 15 21:05
 ip-10.150.30.72:3260-iscsi-iqn.2013-01.com.mydom.host01.x8664:
 sn.ef8e14f87344-lun-0 -> ../../sdb
lrwxrwxrwx 1 root root 9 May 15 21:05
 ip-10.150.30.72:3260-iscsi-iqn.2013-01.com.mydom.host01.x8664:
 sn.ef8e14f87344-lun-1 -> ../../sdc

You can view the initialization messages for the LUNs in the /var/log/messages file, for
example:

Chapter 6
Configuring an iSCSI Initiator

6-6

grep sdb /var/log/messages

...
May 18 14:19:36 localhost kernel: [12079.963376] sd 8:0:0:0: [sdb] Attached SCSI disk
...

You configure and use a LUN in the same way that you would any other physical storage
device, for example, as an LVM physical volume, a file system, a swap partition, an Automatic
Storage Management (ASM) disk, or a raw device.

When creating mount entries for iSCSI LUNs in /etc/fstab, specify the _netdev option, for
example:

UUID=084591f8-6b8b-c857-f002-ecf8a3b387f3 /iscsi_mount_point ext4 _netdev
0 0

This option indicates that the file system resides on a device that requires network access, and
prevents the system from mounting the file system until the network has been enabled.

Note:

When adding iSCSI LUN entries to /etc/fstab, see the LUN by using UUID= UUID
rather than the device path. A device path can change after reconnecting the storage
or rebooting the system. To display the UUID of a block device, the blkid command.

Any discovered LUNs remain available across reboots provided that the target
continues to serve those LUNs and you don't log the system off the target.

For more information, see the iscsiadm(8) and iscsid(8) manual pages.

Updating the Discovery Database
If the LUNs that are available on an iSCSI target change, use the iscsiadm command on an
iSCSI initiator to update the entries in its discovery database. The following example assumes
that the target supports the SendTargets discovery method

To add new records that aren't in the database:

sudo iscsiadm --mode discoverydb -type st -p 10.150.30.72 -o new --discover

To update existing records in the database:

sudo iscsiadm -m discoverydb -t st -p 10.150.30.72 -o update --discover

To delete records from the database that are no longer supported by the target:

sudo iscsiadm -m discoverydb -t st -p 10.150.30.72 -o delete --discover

For more information, see the iscsiadm(8) manual page.

Chapter 6
Updating the Discovery Database

6-7

7
Using Multipathing for Efficient Storage

Multiple paths to storage devices provide connection redundancy, failover capability, load
balancing, and improved performance. Device-Mapper Multipath (DM-Multipath) is a
multipathing tool that enables you to represent multiple I/O paths between a server and a
storage device as a single path.

Device Multipathing Sample Setup
You would typically configure multipathing on a system that can access storage on a Fibre
Channel-based storage area network (SAN), or on an iSCSI initiator if redundant network
connections exist between the initiator and the target.

Figure 7-1 shows a simple DM-Multipath configuration where two I/O paths are configured
between a server and a disk on a SAN-attached storage array:

• Between host bus adapter hba1 on the server and controller ctrl1 on the storage array.

• Between host bus adapter hba2 on the server and controller ctrl2 on the storage array.

7-1

Figure 7-1 DM-Multipath Mapping of Two Paths to a Disk over a SAN

Without DM-Multipath, the system treats each path as being separate even though both paths
connect to the same storage device. DM-Multipath creates a single multipath device, /dev/
mapper/mpathN , that subsumes the underlying devices, /dev/sdc and /dev/sdf.

The multipathing service (multipathd) handles I/O from and to a multipathed device in one of
the following ways:

Active/Active
I/O is distributed across all available paths, either by round-robin assignment or dynamic load-
balancing.

Active/Passive (standby failover)
I/O uses only one path. If the active path fails, DM-Multipath switches I/O to a standby path.
This is the default configuration.

Chapter 7
Device Multipathing Sample Setup

7-2

Note:

DM-Multipath can provide failover in the case of path failure, such as in a SAN fabric.
Disk media failure must be handled by using either a software or hardware RAID
solution.

The naming of multipath devices is managed by multipathing's user_friendly_names property
in the multipath.conf file. If set to no, then the devices are named based on their World Wide
Identifiers (WWIDs) in /dev/mapper/WWID . WWIDs are unique to their respective devices.

If the property is set to yes, the devices are mapped as /dev/mapper/mpathN , where N is the
multipath group number. In addition, you can use the alias attribute to assign meaningful
names to the devices. See Working With the Multipathing Configuration File.

To check the status of user_friendly_names and other DM-multipath settings, issue the
mpathconf command, for example:

sudo mpathconf

Information similar to the following is displayed:

multipath is enabled
find_multipaths is enabled
user_friendly_names is enabled
dm_multipath modules is loaded
multipathd is running

Alternatively, you can view the settings in /etc/multipath.conf.

You can use the multipath device in /dev/mapper to reference the storage in the same way as
you would any other physical storage device. For example, you can configure it as an LVM
physical volume, file system, swap partition, Automatic Storage Management (ASM) disk, or
raw device.

Configuring Multipathing
1. Install the device-mapper-multipath package.

sudo dnf install device-mapper-multipath
2. Activate the basic configuration settings of the multipathing feature.

sudo mpathconf --enable --with_multipathd y

This command also creates the /etc/multipath.conf file.

3. (Optional) To know the status of multipathing, type:

sudo mpathconf
4. Edit /etc/multipath.conf as required.

For details, see Working With the Multipathing Configuration File.

To display the current multipath configuration, run multipath -ll:

sudo multipath -ll

The command displays output similar to the following, when multipath is configured properly:

Chapter 7
Configuring Multipathing

7-3

mpath1(360000970000292602744533030303730) dm-0 SUN,(StorEdge 3510|T4
size=20G features=‘0’ hwhandler=‘0’ wp=rw
|-+- policy=‘round-robin 0’ prio=1 status=active
| ‘- 5:0:0:2 sdb 8:16 active ready running
‘-+- policy=‘round-robin 0’ prio=1 status=active
 ‘- 5:0:0:3 sdc 8:32 active ready running

The sample output shows that /dev/mapper/mpath1 subsumes two paths (/dev/sdb and /dev/
sdc) to 20 GB of storage in an active/active configuration using round-robin I/O path selection.
The WWID that identifies the storage is 360000970000292602744533030303730 and the name
of the multipath device under sysfs is dm-0.

For more information, see the mpathconf(8), multipath(8), multipathd(8),
multipath.conf(5), and scsi_id(8) manual pages.

Working With the Multipathing Configuration File
Through the /etc/multipath.conf file, you can add a combination of definitions that
customizes multipathing according to your system environment setup. You can obtain a
commented example configuration from /usr/share/doc/device-mapper-multipath/
multipath.conf.

The /etc/multipath.conf file is divided into the following typical sections:

defaults
Defines default multipath settings, which can be overridden by settings in the devices section.
In turn, definitions in the devices section can be overridden by settings in the multipaths
section.

blacklist
Defines devices that are excluded from multipath topology discovery. Excluded devices cannot
be subsumed by a multipath device.
The example shows different ways that you can use to exclude devices: by WWID (wwid) and
by device name (devnode).

blacklist_exceptions
Defines devices that are included in multipath topology discovery, even if the devices are
implicitly or explicitly listed in the blacklist section.

multipaths
Defines settings for a multipath device that's identified by its WWID.
The alias attribute specifies the name of the multipath device as it will appear in /dev/mapper
instead of a name based on either the WWID or the multipath group number.

devices
Defines settings for individual types of storage controller. Each controller type is identified by
the vendor, product, and optional revision settings, which must match the information in
sysfs for the device.
To add a storage device that DM-Multipath doesn't list as being supported, obtain the vendor,
product, and revision information from the vendor, model, and rev files under /sys/block/
device_name/device.

The following entries in /etc/multipath.conf would be appropriate for setting up active/
passive multipathing to an iSCSI LUN with the specified WWID.

defaults {
 user_friendly_names yes

Chapter 7
Working With the Multipathing Configuration File

7-4

 uid_attribute ID_SERIAL
}

multipaths {
 multipath {
 wwid 360000970000292602744533030303730
 }
}

In this standby failover configuration, I/O continues through a remaining active network
interface if a network interface fails on the iSCSI initiator.

Note:

If you edit /etc/multipath.conf, restart the multipathd service to make it re-read
the file:

sudo systemctl restart multipathd

For more information about configuring entries in /etc/multipath.conf, refer to the
multipath.conf(5) manual page.

Chapter 7
Working With the Multipathing Configuration File

7-5

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Using Disk Partitions
	Disk Partitions in Oracle Linux
	Partitioning Disks by Using fdisk
	Displaying the Partition Table
	Creating Partitions

	Partitioning Disks by Using parted
	Creating Partitions
	Customizing Labels

	Automatic Device Mappings for Partitions and File Systems
	Listing Device Mapping Information

	Manually Mapping Partition Tables to Devices
	Creating Device Mappings by Using kpartx
	Listing Partition Mappings For a Device by Using kpartx
	Removing Partition Mappings by Using kpartx

	2 Recommendations for Solid State Drives
	3 Working With Logical Volume Manager
	Initializing and Managing Physical Volumes
	Creating and Managing Volume Groups
	Creating and Managing Logical Volumes
	Creating and Managing Grouping With Tags
	Managing Activation and Automatic Activation
	Creating Logical Volume Snapshots
	Using Thinly-Provisioned Logical Volumes
	Configuring and Managing Thinly-Provisioned Logical Volumes
	Using snapper With Thinly-Provisioned Logical Volumes

	4 Working With Software RAID
	Software RAID Levels
	Creating Software RAID Devices using mdadm
	Creating and Managing Software RAID Devices using LVM
	RAID Level 0 (Striping) LVM Examples
	RAID Level 1 (Mirroring) LVM Examples
	RAID Level 5 (Striping with Distributed Parity) LVM Examples
	RAID Level 6 (Striping with Double Distributed Parity) LVM Examples
	RAID Level 10 (Striping of Mirrored Disks) LVM Examples

	5 Using Encrypted Block Devices
	About Encrypted Block Devices
	Creating Encrypted Volumes

	6 Working With Linux I-O Storage
	About iSCSI Devices
	Configuring an iSCSI Target
	Restoring a Saved Configuration for an iSCSI target
	Configuring an iSCSI Initiator
	Updating the Discovery Database

	7 Using Multipathing for Efficient Storage
	Device Multipathing Sample Setup
	Configuring Multipathing
	Working With the Multipathing Configuration File

