
Oracle Linux 9
Managing the Btrfs File System

G26930-01
July 2025

Oracle Linux 9 Managing the Btrfs File System,

G26930-01

Copyright © 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 About the Btrfs File System

2 Installing the Btrfs Utilities

3 Setting Up and Administering a Btrfs File System

Creating and Mounting a Btrfs File System 3-1

Changing Btrfs File System Devices 3-3

Defragmenting and Compressing a Btrfs File System 3-4

Resizing a Btrfs File System 3-5

4 Managing Subvolumes and Snapshots

Creating Btrfs Subvolumes and Snapshots 4-2

Mounting Btrfs Subvolumes 4-3

Managing Quotas for Btrfs Subvolumes With Quota Groups 4-4

Automating File System Snapshots With the Snapper Utility 4-4

Installing Snapper 4-5

Creating a Snapper Configuration for a Subvolume 4-5

Understanding Different Types of Snapshots 4-6

Configuring Automatic Snapper Snapshots 4-8

Automating Single Backups To Create a Snapper Timeline 4-8

Automating Pre And Post Backups For DNF Transactions 4-9

Working With Btrfs Snapshots by Using Snapper 4-9

iii

Mounting Snapper Snapshots 4-11

5 Using Data Block Sharing to Copy Files

6 Creating Backups and Using the Btrfs Send/Receive Feature

Creating a Reference Backup in Preparation for Creating an Incremental Backup 6-2

Creating an Incremental Backup 6-2

7 Working With a Btrfs root File System

Creating Snapshots of the root File System 7-2

Mounting a Snapshot as the Root File System 7-2

Deleting Snapshots of the root File System 7-3

8 Creating Swap Files on a Btrfs File System

9 Converting an Ext File System to a Btrfs File System

Converting an Ext File System to a Btrfs File System 9-1

iv

Preface

Oracle Linux 9: Managing the Btrfs File System provides information about managing the Btrfs
file system on Oracle Linux 9 systems.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and

v

https://docs.oracle.com/en/operating-systems/oracle-linux/9/btrfs/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

1
About the Btrfs File System

The Btrfs file system is designed to meet the expanding scalability requirements of large
storage subsystems. Because the Btrfs file system uses B-trees in its implementation, its name
is derived from the name of those data structures, although it's not a true acronym. A B-tree is
a tree-like data structure that enables file systems and databases to efficiently access and
update large blocks of data, irrespective of how large the tree grows.

The Btrfs file system provides the following important features:

• Snapshots: Btrfs uses Copy-On-Write (COW) functionality so that you can take near
instant readable and writable snapshots. Snapshots can enable you to roll back a file
system to a previous state, even after converting it from an ext3 or ext4 file system.

• Instant file copy: Similar to snapshots, you can use the reflink feature available in Btrfs to
perform instant copies of large files on the file system.

• Logical Volume Management: Btrfs includes integrated logical volume management that
feature built-in data redundancy, software RAID functionality, and the ability to dynamically
add and remove storage capacity.

• Online maintenance: Btrfs includes features for online repair and maintenance
operations, which minimizes downtime.

• Corruption detection and correction: Btrfs verifies checksums each time a data block is
read from disk to help ensure data integrity.

• Compression and Defragmentation: Btrfs includes automatic and transparent
defragmentation for improved performance. Also, Btrfs can apply compression to the file
system, individual subvolumes, or to specific files and directories. Compression can
provide significant disk space savings.

• Remote send and receive: Btrfs includes a send and receive function that can be used to
efficiently perform remote incremental backups to save bandwidth and to easily create a
remote mirror of a subvolume.

• File system seeding: Btrfs can be used to create a read-only file system that acts as a
template to seed other Btrfs file systems, similar in functionality to other union mount file
system types such as overlayfs or qcow2.

For more information, visit https://btrfs.readthedocs.io/.

For an overview of local file system management, see Oracle Linux 9: Performing File System
Administration.

Note:

In Oracle Linux, the Btrfs file system type, and all the features that are documented
are supported on the Unbreakable Enterprise Kernel (UEK) release only. Working
with Btrfs file system features requires that you boot the system by using UEK R7 or
later.

1-1

https://btrfs.readthedocs.io/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/fsadmin/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/fsadmin/

2
Installing the Btrfs Utilities

Btrfs on Oracle Linux requires that the system is booted with UEK and that you install the
btrfs-progs package to perform file system administration tasks on the file system.

Btrfs isn't available for RHCK, so you need to ensure that the system has UEK installed and is
booted into the correct kernel. Also, install the btrfs-progs package that provides many Btrfs
administration tools, including the mkfs.btrfs command that you use to format a device with
the Btrfs file system.

1. Enable the appropriate UEK yum repository or ULN channel for the system, if this hasn't
already been done.

For example, to enable the ol9_UEKR7 repository, run:

sudo dnf config-manager --enable ol9_UEKR7

2. Install UEK on the system, if it isn't already installed.

sudo dnf install -y kernel-uek

If the system isn't already booted into UEK, you might need to reboot the system.

3. Validate that the btrfs kernel module is available for the booted kernel.

modinfo btrfs

4. Install the btrfs-progs package.

sudo dnf install -y btrfs-progs

2-1

3
Setting Up and Administering a Btrfs File
System

This section describes procedures to create a Btrfs file system as well as administering it for a
more efficient use.

Creating and Mounting a Btrfs File System
Use the mkfs.btrfs command to create a Btrfs file system that's laid out across one or more
block devices.

Btrfs can be used on a single block device, or you can use the built-in RAID functionality to
format the file system across more than one block device.

When formatting more than one block device, Btrfs defaults to mirror the file system metadata
across the devices. If you specify a single device, the metadata is duplicated on that device,
unless you specify to use only one copy of the metadata.

The devices can be whole block device(s), disk partitions, files, loopback devices, multipath
devices, or LUNs that implement RAID in hardware.

See the mkfs.btrfs(8) manual page for more detailed information about the mkfs.btrfs
command the various Btrfs configurations that you can create.

1. Identify the target device, partition, or file that you want to format with Btrfs.

Typically, you might use the lsblk command to list block devices and partitions that are
available to the system.

Note that formatting a file system is a destructive operation and erases any data on the
target device. Ensure that the following steps use the correct target device or file paths.

2. Use the mkfs.btrfs command to format the device or devices.

sudo mkfs.btrfs [options] <device> [<device>...]

To format a single block device, /dev/sdb, with Btrfs, you can run:

sudo mkfs.btrfs /dev/sdb

To format several block devices, in a RAID10 configuration, you can run:

sudo mkfs.btrfs -d raid10 -m raid10 /dev/sdb /dev/sdc /dev/sdb /dev/sde

Note that in the example, RAID10 requires a minimum of four block devices and stripes
data across mirrored pairs. The appropriate number of devices required to achieve the
specified RAID configuration must be used when formatting the file system.

The mkfs.btrfs command automatically scans the new Btrfs devices into the kernel. To
scan and assemble all the relevant devices of the volume in the kernel you need to run the

3-1

btrfs device scan command. You can undo this action by using the btrfs device
scan --forget command. To assemble all the relevant devices of the volume, you
might need to run the btrfs device scan command.

3. Mount the file system.

For example, you can run:

sudo mount /dev/sdb /mnt

If you have formatted the file system across several devices, you can specify any of the
component devices to perform the mount.

Note that the default subvolume is mounted unless an alternative subvolume ID or path is
specified. See Mounting Btrfs Subvolumes for more information.

4. View the disk space information for the mounted Btrfs file system, by using the btrfs
filesystem df command.

For example, you can run:

btrfs filesystem df /mnt

The btrfs filesystem df command displays more exact information about the space
that's used by a Btrfs file system than the df command.

For more detailed information about the file system, use the btrfs filesystem usage
command. For example:

btrfs filesystem usage /mnt

Overall:
 Device size: 1.95TiB
 Device allocated: 5.03GiB
 Device unallocated: 1.95TiB
 Device missing: 0.00B
 Used: 256.00KiB
 Free (estimated): 999.48GiB (min: 999.48GiB)
 Data ratio: 2.00
 Metadata ratio: 2.00
 Global reserve: 3.25MiB (used: 0.00B)

Data,RAID10: Size:2.00GiB, Used:0.00B (0.00%)
 /dev/nvme0n1p6 1.00GiB
 /dev/nvme0n1p7 1.00GiB
 /dev/nvme0n1p8 1.00GiB
 /dev/nvme0n1p9 1.00GiB

Metadata,RAID10: Size:512.00MiB, Used:112.00KiB (0.02%)
 /dev/nvme0n1p6 256.00MiB
 /dev/nvme0n1p7 256.00MiB
 /dev/nvme0n1p8 256.00MiB
 /dev/nvme0n1p9 256.00MiB

System,RAID10: Size:16.00MiB, Used:16.00KiB (0.10%)
 /dev/nvme0n1p6 8.00MiB

Chapter 3
Creating and Mounting a Btrfs File System

3-2

 /dev/nvme0n1p7 8.00MiB
 /dev/nvme0n1p8 8.00MiB
 /dev/nvme0n1p9 8.00MiB

Unallocated:
 /dev/nvme0n1p6 498.74GiB
 /dev/nvme0n1p7 498.74GiB
 /dev/nvme0n1p8 498.74GiB
 /dev/nvme0n1p9 498.74GiB

Changing Btrfs File System Devices
You can use the btrfs device command to add, remove, or replace devices, and the
btrfs rebalance command to rebalance the layout of the file system data and metadata
across devices. The following table describes each of the commands that can use to perform
these tasks.

Command Description

btrfs device add device mountpoint Add a device to the file system that's mounted
on the specified mount point, for example:

sudo btrfs device add /dev/sdd /mnt

btrfs device delete device mountpoint Remove a device from a mounted file system,
for example:

sudo btrfs device
delete /dev/sde /mnt

btrfs device delete missing
mountpoint

Remove a failed device from the file system
that's mounted in degraded mode, for example:

sudo btrfs device remove missing /mnt

To mount a file system in degraded mode,
specify the -o degraded option to the mount
command.
For a RAID configuration, if the number of
devices would become less than the minimum
number that are required, you must add the
replacement device before removing the failed
device.

Chapter 3
Changing Btrfs File System Devices

3-3

Command Description

btrfs device replace start source_dev
target_dev mountpoint

Replace devices on a live file system without
unmounting the file system or stopping any
tasks that are using the file system, for
example:

sudo btrfs device replace
start /dev/sdb /dev/sdk /mnt

If the system crashes or loses power while the
replacement is taking place, the operation
resumes when the system next mounts the file
system.
The target device must be the same size or
larger than the source device. If the source
device is no longer available, or you specify the
-r option, the data is reconstructed by using
redundant data that's obtained from other
devices, such as another available mirror.
The source device is removed from the file
system when the operation is complete.
Use the btrfs replace status
mountpoint command to check the progress of
the replacement operation and the btrfs
replace cancel mountpoint command to
cancel the operation.

btrfs filesystem balance mountpoint After adding or removing devices, redistribute
the file system data and metadata across the
available devices.

Defragmenting and Compressing a Btrfs File System
You can defragment the file system to increase I/O performance. You can also compress a
Btrfs file system to increase its effective capacity.

You can defragment the file system or any files and directories within the file system by running
the btrfs filesystem defragment command. You can automatically run defragmentation
on the file system by setting the autodefrag option when you mount it. However, note that
automatic defragmentation isn't recommended for large databases or for images of virtual
machines.

Note:

Defragmenting a file or a subvolume with a copy-on-write copy breaks the link
between the file and its copy. For example, if you defragment a subvolume that has a
snapshot, the disk usage by the subvolume and its snapshot increases because the
snapshot is no longer a copy-on-write image of the subvolume.

You can apply compression during a defragmentation, but compression can also be set as a
mount option so that it's applied to the whole file system, or can be set as a property on a
subvolume so that it's applied to a particular subvolume.

Chapter 3
Defragmenting and Compressing a Btrfs File System

3-4

Three different compression types are supported:

• zlib: General-purpose and widely used compression with balanced speed and
compression ratio.

• lzo: Rapid compression and decompression with a lower compression ratio than other
options.

• zstd: High compression ratio and rapid compression and decompression.

You can enable compression at any point and only the new writes are compressed unless
compression is applied when defragmentation is run.

• To defragment a Btrfs file system, run:

sudo btrfs filesystem defragment /mnt

• To mount a Btrfs file system with automatic defragmentation enabled, run:

sudo mount -o autodefrag /dev/sdb /mnt

• To apply compression to a Btrfs file system during a defragmentation operation, run:

sudo btrfs filesystem defragment -czlib /mnt

• To apply compression to a subvolume by setting a compression property on the
subvolume, use the btrfs property set command.

sudo btrfs property set /mnt/subvol1 compression zstd

• To apply compression when mounting the file system, run:

sudo mount -o compress=lzo /dev/sdb /mnt

Resizing a Btrfs File System
You can use the btrfs filesystem resize command to resize a mounted Btrfs file
system.

You can use the btrfs command to increase the size of a mounted Btrfs file system if enough
space exists on the underlying devices to accommodate the change. You also use the btrfs
command to decrease its size, if the file system has enough available free space. Note that
running the command doesn't have any effect on the layout or size of the underlying devices.

• To increase the size of a Btrfs file system by a specified amount, such as 2 GB, run:

sudo btrfs filesystem resize +2g /mybtrfs1

• To decrease the size of a Btrfs file system by a specified amount, such as 4 GB, run:

sudo btrfs filesystem resize -4g /mybtrfs2

• To specify the size of a Btrfs file system to a specified size, such as 20GB, run:

sudo btrfs filesystem resize 20g /mybtrfs3

Chapter 3
Resizing a Btrfs File System

3-5

4
Managing Subvolumes and Snapshots

The top level of a Btrfs file system is a subvolume consisting of a named B-tree structure
containing directories, files, and possibly further subvolumes that are also named B-trees, each
of which also contains directories and files, and so on.

Snapshots are a type of subvolume that record the contents of their parent subvolumes at the
time that you took the snapshot. If you take a snapshot of a Btrfs file system and don't write to
it, the snapshot records the state of the original file system and forms a stable image from
which you can make a backup. If you make a snapshot writable, you can treat it as a
alternative version of the original file system. The copy-on-write functionality of a btrfs file
system means that snapshots are created quickly and consume little disk space initially.

Taking snapshots of a subvolume isn't a recursive process. If you create a snapshot of a
subvolume, every subvolume or snapshot that the subvolume contains is mapped to an empty
directory of the same name inside that snapshot.

NOT_SUPPORTED:

Snapshots record the state of the file system at a moment in time. As such, it's not
possible to guarantee file system integrity for transactional processes that might have
been in operation at the time when a snapshot was taken. While utilities such as the
snapper command might help capture before and after snapshots for particular
operations, such as when using the dnf command, these snapshots are still
unaware of other processes that might be running on the system at the same time. If
you have processes that have intensive I/O or memory usage, such as database or
middleware applications, stop these or ensure that all activity is complete before
taking a snapshot to reduce the likelihood of data integrity or file system corruption
issues within the snapshot.

The snapper command to be used to create and manage Btrfs snapshots and provides
automation facilities to ensure that snapshots are taken at key system events such as during
software installation or upgrade, see Automating File System Snapshots With the Snapper
Utility.

You can mount a Btrfs subvolume as though it were a disk device. If you mount a snapshot
instead of its parent subvolume, you effectively roll back the state of the file system to when the
snapshot was taken. By default, the operating system mounts the parent Btrfs volume, which
has an ID of 5, unless you use the set-default option to change the default subvolume. If
you set a new default subvolume, the system mounts that subvolume going forward. Y

After you have rolled back a file system by mounting a snapshot, you can take snapshots of
the snapshot to record its state as it changes.

Deleting a subvolume deletes all subvolumes under it in the B-tree hierarchy. For this reason,
you can't remove the topmost subvolume of a Btrfs file system, which has an ID of 5.

4-1

Creating Btrfs Subvolumes and Snapshots
Subvolumes and snapshots are key features within Btrfs. Subvolumes can be mounted
anywhere within the file system. Snapshots are types of subvolumes that create Copy-On-
Write (COW) copies of the data within a subvolume at a moment in time, thereby providing
incremental backup and rollback functionality within the file system.

1. Use the btrfs subvolume create command to create a subvolume.

To create a subvolume, specify the path to the subvolume that you want to create on the
mounted Btrfs file system:

btrfs subvolume create /mnt/subvolume1

The subvolume is created and appears as an empty subdirectory within the directory on
the mounted Btrfs file system where you created it.

2. Use the btrfs subvolume snapshot command to create a snapshot of a subvolume.

To create a snapshot of a subvolume, specify the path to the subvolume that you want to
create a snapshot of and the path on the Btrfs file system where you want to store
snapshots. For example, you might run:

btrfs subvolume snapshot /mnt/subvolume1 /mnt/subvolume1_$(date -I)

A snapshot of subvolume1 is created using the current date as part of its name. The
snapshot operation is nearly instant because of the COW nature of the file system. The
snapshot contains all the data from the subvolume that it was created from at the moment
in time that it was created. The snapshot also doesn't use a significant amount of extra
disk space.

Important:

Taking snapshots of a subvolume isn't a recursive process. If you create a
snapshot of a subvolume, every subvolume or snapshot that the subvolume
contains is mapped to an empty directory of the same name inside that snapshot.

You can automate snapshots of the file system by using the Snapper utility. See
Automating File System Snapshots With the Snapper Utility for more information.

3. Use the btrfs subvolume list command to list all the subvolumes within a btrfs file
system.

List the subvolumes within a Btrfs file system at a mount point, for example:

btrfs subvolume list /mnt

All the subvolumes from the top-level subvolume in the file system at the specified path are
listed, regardless of whether the path is mounted onto a subvolume deeper into the tree of
subvolumes. Snapshots are also listed, because snapshots are also subvolumes.

Chapter 4
Creating Btrfs Subvolumes and Snapshots

4-2

Note:

You can use this command to find the ID values of the available subvolumes or
snapshots. The subvolume ID value can be useful when mounting an alternative
subvolume or snapshot for a rollback.

4. Use the btrfs subvolume delete command to delete a subvolume when you no
longer need it.

For example, to delete a snapshot or subvolume, you can run:

btrfs subvolume delete /mnt/snapshots/subvol_2025-01-24

Mounting Btrfs Subvolumes
You can mount subvolumes by subvolume ID or path. This facility makes it easy to access and
switch out the subvolumes that are used at different mount points. Most notably, you can use
the ability to mount specified subvolumes to easily rollback a mount point to use a particular
snapshot.

1. Mount a subvolume to a specified mount point by using the mount command and specify
the subvolid option or by using the subvol option.

You can mount any subvolume or snapshot by specifying its subvolume ID or subvolume
path as an option when running the mount command. For example, to mount using the
subvolume ID:

sudo mount -o "subvolid=256" /dev/sdb /home

You can get the subvolume ID for any subvolume or snapshot by using the btrfs
subvolume list command.

To mount a subvolume by specifying its subvolume path, you can run:

sudo mount -o "subvol=/snapshots/home_2025-01-24" /dev/sdb /home

Note:

When mounting the subvolume by using the subvol option, the subvolume path
must exist within the root subvolume of the Btrfs file system, even if that location
is nested. You can't mount a subvolume by path if it's a subvolume of another
subvolume. If you need to mount a nested subvolume, mount it by using the
subvolid option.

2. Set the default ID for a Btrfs file system to use when it's mounted by using the btrfs
subvolume set-default command.

Chapter 4
Mounting Btrfs Subvolumes

4-3

You can change the default subvolume ID that the system uses when mounting a Btrfs file
system. This operation is often useful when you're trying to rollback a system mount to a
previous snapshot. To change the default subvolume ID, run:

sudo btrfs subvolume set-default 256 /mnt

When the file system is next mounted, the subvolume specified by the value that you set is
loaded as the default subvolume and attached to the mount point.

You can check the current default subvolume ID for the file system by running the btrfs
subvolume get-default command.

Setting the default subvolume ID is useful if trying to configure a root file system to use a
snapshot to rollback to a previous point in time. See Working With a Btrfs root File System
for more information.

Managing Quotas for Btrfs Subvolumes With Quota Groups

Note:

Be aware that the quota groups feature is available as a Technology Preview only in
Oracle Linux. Working with this feature requires that you boot the system by using
UEK R7 or later.

1. Use the btrfs quota enable command to enable quotas on a volume:

Enable quotas by running following command on a newly created Btrfs file system before
any creating any subvolumes:

sudo btrfs quota enable volume

2. Assign a quota-group limit to a subvolume by using the btrfs qgroup limit
command:

The following example shows how you would use this command:

sudo btrfs qgroup limit 1g /myvol/subvol1

sudo btrfs qgroup limit 512m /myvol/subvol2

3. To find out the quota usage for a subvolume, use the btrfs qgroup show command.

For example, run:

btrfs qgroup show /myvol/subvol1

Automating File System Snapshots With the Snapper Utility
The Snapper utility can be used to automate the management of file system snapshots. The
utility can make it easier to create and delete snapshots, while enabling users to compare the

Chapter 4
Managing Quotas for Btrfs Subvolumes With Quota Groups

4-4

differences between snapshots and revert changes at the file level. For information about the
Snapper utility, visit the upstream project page at http://snapper.io/.

NOT_SUPPORTED:

Snapshots record the state of the file system at a moment in time. As such, it's not
possible to guarantee file system integrity for transactional processes that might have
been in operation at the time when a snapshot was taken. While utilities such as the
snapper command might help capture before and after snapshots for particular
operations, such as when using the dnf command, these snapshots are still
unaware of other processes that might be running on the system at the same time. If
you have processes that might have intensive I/O or memory usage, such as
database or middleware applications, stop these or ensure that all activity is complete
before taking a snapshot to help reduce the likelihood of data integrity or file system
corruption issues within the snapshot.

Installing Snapper
If not already installed, you can install the Snapper utility from the ol9_UEKR7 yum repository.

• Use the dnf command to install Snapper.

sudo dnf install -y snapper

Creating a Snapper Configuration for a Subvolume
You can use the snapper command to create and manage snapshots of Btrfs subvolumes.
You must create a configuration entry for each Btrfs subvolume that you want to use with
Snapper. If a subvolume is mounted at a directory that's outside of the default SELinux policy
configuration, you might need to update SELinux file contexts for that directory to use Snapper
to create snapshots of that directory.

1. Create a Snapper configuration for an existing mounted Btrfs subvolume.

To set up the Snapper configuration for an existing mounted Btrfs subvolume:

sudo snapper -c config_name create-config -f btrfs fs_name

In the previous command, config_name is the name of the configuration and fs_name is
the path of the mounted Btrfs subvolume. Running the command does the following:

• Adds an entry for config_name to the /etc/sysconfig/snapper file.

• Creates the configuration file /etc/snapper/configs/config_name .

• Sets up a .snapshots subvolume for the snapshots.

For example, the following command sets up the Snapper configuration for a Btrfs root file
system:

sudo snapper -c root_config create-config -f btrfs /

Chapter 4
Automating File System Snapshots With the Snapper Utility

4-5

http://snapper.io/

2. Use the snapper list-configs command to list all the existing configurations:

sudo snapper list-configs

Config | Subvolume
------------+----------
home_config | /home
root_config | /

3. Update SELinux file contexts for any directories outside of the default policy.

The default Snapper SELinux policy allows Snapper to manage snapshots in the /, /
etc, /mnt, /usr, /var and HOME_ROOT (usually /home). If you create a directory, for
example /data or /srv, you might need to set the SELinux file context for that directory
so that Snapper can create and manage snapshots for that directory.

For example to enable Snapper to manage snapshots on the /data directory, you can
run:

sudo semanage fcontext -a -t snapperd_data_t "/data/\.snapshots(/.*)?"
sudo restorecon -R -v /data

Understanding Different Types of Snapshots
You can create the following three types of snapshots by using the snapper command:

single
You use a single snapshot to record the state of a subvolume but it doesn't have any
association with other snapshots of the subvolume.

pre
You use a pre snapshot to record the state of a subvolume before a modification. A pre
snapshot is always paired with a post snapshot that you take immediately after you have
completed the modification.

post
You use a post snapshot to record the state of a subvolume after a modification. A post
snapshot is always paired with a pre snapshot that you take immediately before you make the
modification.

To create a single snapshot of a subvolume, use the snapper create command, for
example:

sudo snapper -c root_config create --description "Regular daily snapshot"

Single snapshots are useful for periodic backup purposes and can also be used to create a
back-up timeline, as described in Configuring Automatic Snapper Snapshots.

For actions that are likely to result in specific file system modifications that you might need to
roll back, you can use pre and post snapshots to capture snapshots of the file system before
and after a transaction.

Chapter 4
Automating File System Snapshots With the Snapper Utility

4-6

For example, the following commands create pre and post snapshots of a subvolume:

sudo snapper -c root_config create -t pre -p

After you have created the pre snapshot, perform some action that makes a change to the file
system. Then run the following command to create a post snapshot.

sudo snapper -c root_config create -t post --pre-num N -p

Specifying the -p option with the snapper command displays the number of the snapshot so
that you can reference it when creating the post snapshot or when comparing the contents of
the pre and post snapshots.

The action of creating a pre and post snapshot can be condensed by using the --command
option with the snapper create command to wrap a specified command line operation with
pre and post snapshots. For example:

snapper -c root create --command "cd /tmp/build; make install" \
 --description "Installing a home built binary"

Pre and post snapshots are often used when performing system changes that might be too
complex to revert manually, such as when installing or upgrading packages.

The DNF Snapper plugin that's described in Configuring Automatic Snapper Snapshots uses
pre and post snapshots in exactly this way and uses the description field to store the DNF
transaction that triggered the snapshot.

For example, in the following set of snapshots, you can identify periodic, single snapshots that
are triggered as part of a timeline and then a pre and post snapshot that's triggered by the DNF
Snapper plugin when the vim package is installed.

$ sudo snapper -c root list

 # | Type | Pre # | Date | User | Cleanup |
Description | Userdata
---+--------+-------+------------------------------+------+----------
+--------------------------+---------
0 | single | | | root | |
current |
1 | single | | Wed 25 Nov 2020 07:00:30 EST | root | timeline |
timeline |
2 | single | | Wed 25 Nov 2020 08:00:01 EST | root | timeline |
timeline |
3 | single | | Wed 25 Nov 2020 09:00:01 EST | root | timeline |
timeline |
4 | pre | | Wed 25 Nov 2020 09:07:21 EST | root | number
| /usr/bin/dnf install vim |
5 | post | 4 | Wed 25 Nov 2020 09:07:25 EST | root | number
| /usr/bin/dnf install vim |
6 | single | | Wed 25 Nov 2020 10:00:01 EST | root | timeline |
timeline |

Chapter 4
Automating File System Snapshots With the Snapper Utility

4-7

Configuring Automatic Snapper Snapshots

Snapper can be configured to perform automatic periodic backups to create a system timeline
that you can use to roll the system back to a moment in time. You can also use a DNF plugin
with Snapper so that pre and post backups are created for every DNF transaction after the
plugin has been installed.

Automated periodic backups are provided as a key feature included with Snapper. These
backups take advantage of Snapper's single backup feature and use a systemd timer unit to
automatically take backups on an hourly schedule. A second systemd timer unit is included to
prune backups to reduce the number of snapshots stored on the system. The timeline options
for each Snapper configuration can be customized for each subvolume.

See Automating Single Backups To Create a Snapper Timeline for more information about
Snapper timeline configuration.

The DNF plugin for Snapper is a powerful tool that can be used to quickly roll a system back to
the moment before you performed a software installation or upgrade. This tool is helpful if a
software installation or upgrade is likely to perform significant changes to the file system or to
current system configuration. See https://dnf-plugins-extras.readthedocs.io/en/latest/
snapper.html for more information. SeeAutomating Pre And Post Backups For DNF
Transactions to learn how to enable this feature on the system.

Automating Single Backups To Create a Snapper Timeline
Snapper can be configured to perform periodic single backups to create a Snapper timeline
that you can roll back to for any of the subvolumes that you have configured on the system.

The following steps describe how to enable the systemd units that control Snapper timeline
management, and how to configure the number of snapshots to store within the timeline. See
the snapper(8) and snapper-configs(5) manual pages for more information.

1. Enable the snapper-timeline systemd unit.

Automatic snapshots are triggered by a systemd timer unit that you must enable to so that
the timeline can be created:

sudo systemctl enable --now snapper-timeline.timer

2. Enable the snapper-cleanup systemd unit to automatically remove stale snapshots and
keep snapshots manageable.

sudo systemctl enable --now snapper-cleanup.timer

By default, the Snapper timeline configuration keeps 10 hourly, 10 daily, 10 monthly, and
10 yearly snapshots. Snapshots are pruned by the cleanup timer.

3. Review subvolume Snapper configurations to customize Snapper timeline configuration.

Each Snapper configuration contains settings for a periodic backup, which is controlled by
the TIMELINE_CREATE configuration variable in the /etc/snapper/configs/config_name
file.

When the systemd timer units are enabled, periodic snapshot events trigger automatically
for every Snapper configuration that has the TIMELINE_CREATE variable enabled. To disable

Chapter 4
Automating File System Snapshots With the Snapper Utility

4-8

https://dnf-plugins-extras.readthedocs.io/en/latest/snapper.html
https://dnf-plugins-extras.readthedocs.io/en/latest/snapper.html

periodic snapshots for a particular subvolume configuration, change the variable value to
no in the configuration file.

You can also edit the configuration to control the number of timeline snapshots that are
kept by the snapper-cleanup process. Set these values by changing the following
configuration variables:

TIMELINE_LIMIT_HOURLY="10"
TIMELINE_LIMIT_DAILY="10"
TIMELINE_LIMIT_WEEKLY="10"
TIMELINE_LIMIT_MONTHLY="10"
TIMELINE_LIMIT_YEARLY="10"

Automating Pre And Post Backups For DNF Transactions
You can install the DNF Snapper plugin on a system to automatically trigger pre and post
snapshots for DNF transactions.

This feature can help you roll back changes in cases where system package upgrades cause a
failure that you need to debug or to enable you to analyze which files were changed during an
installation or upgrade. Note that this plugin requires no user configuration or interaction to
work. Pre and post snapshots are created automatically for every DNF transaction after the
plugin is installed on the system.

• Use the dnf command to install the plugin:

sudo dnf install -y python3-dnf-plugin-snapper

Working With Btrfs Snapshots by Using Snapper
Use this tabulated summary of commonly performed actions as a reference when you're
working with Snapper to manage Btrfs snapshots. For more information, see the snapper(8)
manual page.

Table 4-1 Commonly Used Snapper Command Reference

Action Command and Description

Create a single snapshot. To create a single snapshot of a subvolume, use
the snapper create command, for
example:

sudo snapper -c config_name create --
description "description"

Create pre and post snapshots for a command. Use the --command option with the snapper
create command to wrap an operation with
pre and post snapshots. For example:

snapper -c config_name create --
command "command" \
 --description "description"

Chapter 4
Automating File System Snapshots With the Snapper Utility

4-9

Table 4-1 (Cont.) Commonly Used Snapper Command Reference

Action Command and Description

List snapshots for a configuration. To list the snapshots that exist for a Snapper
configuration or subvolume, run:

sudo snapper -c config_name list

View file and directory changes between
snapshots.

To display the files and directories that have
been added, removed, or changed between two
snapshots, use the status subcommand and
specify the numbers of the two snapshots that
you want to compare:

sudo snapper -c config_name status
N .. N'

Show the differences within files between
snapshots.

To display the differences between the contents
of all the files between two snapshots, use the
diff subcommand:

sudo snapper -c config_name diff
N .. N'

You can also display the difference in a single
file over two snapshots by providing the full
path to the file:

sudo snapper -c config_name diff
N .. N' /path/to/file

Delete a snapshot. To delete a snapshot, specify its number to the
delete subcommand:

sudo snapper -c config_name delete
N''

Chapter 4
Automating File System Snapshots With the Snapper Utility

4-10

Table 4-1 (Cont.) Commonly Used Snapper Command Reference

Action Command and Description

Undo the changes made to files between a pre
and a post snapshot.

To undo the changes in the subvolume from
post snapshot N' to pre snapshot N':

sudo snapper -c config_name
undochange N .. N'

Note that undoing a change doesn't revert the
file system to the previous snapshot but it
reverts modifications made to existing files in
the snapshot. This means that files created
after the snapshot was taken continue to
remain after an undochange operation. The
undochange subcommand doesn't check data
integrity for its changes. Be careful of using this
command without clearly evaluating the
implications of the changes that it's likely to
make.

Mounting Snapper Snapshots
You can mount any snapshot generated by Snapper in the same way as any other Btrfs
snapshot. You might need to correlate the snapshot volume id with the Snapper snapshot
number to work out which snapshot to mount or restore.

1. Run the snapper list command to identify the number of the snapshot to roll back to.

For example, to see all pre and post snapshots, to roll back to a snapshot from before a
DNF package update was run:

sudo snapper -c root list -t pre-post

Running the previous command might produce the following output:

Pre # | Post # | Pre Date | Post
Date | Description | Userdata
------+--------+------------------------------
+------------------------------+---------------------------------+---------
 4 | 5 | Wed 25 Nov 2020 09:07:21 EST | Wed 25 Nov 2020 09:07:25
EST | /usr/bin/dnf install vim |
 127 | 128 | Mon 30 Nov 2020 08:25:42 EST | Mon 30 Nov 2020 08:30:57
EST | /usr/bin/dnf update |

Note that the snapshot number of the pre snapshot that we intend to mount is 127 in this
case.

2. Use the btrfs subvolume list command to obtain the subvolume ID for the Snapper
snapshot.

Chapter 4
Automating File System Snapshots With the Snapper Utility

4-11

For example, to get the subvolume ID of the snapshot with the Snapper snapshot number
of 127.:

sudo btrfs subvolume list /|grep .snapshots.*127

The output of the previous command is as follows:

ID 521 gen 11533 top level 268 path .snapshots/127/snapshot

Note that the subvolume ID is listed as 521 for this snapshot.

3. Use the mount command with the subvolid option to specify the subvolume ID of the
snapshot to mount:

sudo mount -o subvolid=521 /dev/sda2 /mnt

You can also use this information to boot into a snapshot of the root file system. See
Mounting a Snapshot as the Root File System for more information.

Chapter 4
Automating File System Snapshots With the Snapper Utility

4-12

5
Using Data Block Sharing to Copy Files

Use the cp command with the --reflink option to create lightweight copies of a file within
the same subvolume of a Btrfs file system.

The --reflink option takes advantage of the copy-on-write mechanism to save disk space
and to perform almost instantaneous copy operations. The Btrfs file system creates a new
inode that shares the same disk blocks as the existing file, rather than creating a complete
copy of the file's data or creating a link that points to the file's inode. The resulting file appears
to be a copy of the original file, but the original data blocks aren't duplicated. If you write to one
of the files after you have copied using the --reflink option, the Btrfs file system makes
copies of the blocks before they're written to, preserving the other file's content.

To create a lightweight copy of a file named foo to a file named bar, run:

cp --reflink foo bar

The resulting file, bar, doesn't use any extra disk space and is created instantaneously,
regardless of the size of the original file, foo. Disk space is used as each of the files is written
to.

5-1

6
Creating Backups and Using the Btrfs Send/
Receive Feature

Note:

Working with the Btrfs send/receive feature requires that you boot the system by
using UEK R7 or later.

The send operation compares two subvolumes and writes a description of how to convert one
subvolume, the parent subvolume, into the other subvolume, which is the sent subvolume. You
would usually direct the output to a file for later use or pipe it to a receive operation for
immediate use.

The simplest form of the send operation writes a complete description of a subvolume, for
example:

sudo btrfs send [-v] [-f sent_file] ... subvol

You can specify many instances of the -v option to display increasing amounts of debugging
output. The -f option is used to save the output to a file. Note that both of these options are
implicit in the following usage examples.

The following form of the send operation writes a complete description of how to convert one
subvolume to another subvolume:

sudo btrfs send -p parent_subvol sent_subvol

If a subvolume such as a snapshot of the parent volume, known as a clone source, will be
available during the receive operation from which some data can be recovered, you can
specify the clone source to reduce the size of the output file:

sudo btrfs send [-p parent_subvol] [-c clone_src] ... subvol

You can specify the -c option for each of the clone source that exist. If you don't specify the
parent subvolume, btrfs chooses a suitable parent from the clone sources.

Use the receive operation to regenerate the sent subvolume at a specified path, for example:

sudo btrfs receive [-f sent_file] mountpoint

6-1

Creating a Reference Backup in Preparation for Creating an
Incremental Backup

The following procedure describes how to create a reference backup, which is a prerequisite to
setting up an incremental backup and restore process for a subvolume by using the send/
receive feature.

1. Create a read-only snapshot of the subvolume to serve as an initial reference point for the
backup.

sudo btrfs subvolume snapshot -r /vol /vol/backup_0

2. Ensure that the snapshot has been written to disk by running the sync command.

sudo sync

3. Create a subvolume or directory on a Btrfs file system as a backup area to receive the
snapshot, for example, /backupvol.

4. Send the snapshot to /backupvol.

sudo btrfs send /vol/backup_0 | btrfs receive /backupvol

The previous command creates the /backupvol/backup_0 subvolume.

After creating the reference backup, you can then create incremental backups, as needed.
See Creating an Incremental Backup.

Creating an Incremental Backup
The following instructions describe how to create an incremental backup by using the send/
receive feature. Note that before creating an incremental backup, you must first create a
reference backup. See Creating a Reference Backup in Preparation for Creating an
Incremental Backup.

To create an incremental backup:

1. Create a snapshot of the subvolume.

sudo btrfs subvolume snapshot -r /vol /vol/backup_1

2. Ensure that the snapshot has been written to disk by running the sync command.

sudo sync

3. Send only the differences between the reference backup and the new backup to the
backup area.

For example:, run

sudo btrfs send -p /vol/backup_0 /vol/backup_1 | btrfs receive /backupvol

Running the previous command creates the /backupvol/backup_1 subvolume.

Chapter 6
Creating a Reference Backup in Preparation for Creating an Incremental Backup

6-2

7
Working With a Btrfs root File System

Important:

In Oracle Linux, the Btrfs file system and all the features that are documented in this
chapter are supported in the Unbreakable Enterprise Kernel (UEK) release only.
Working with Btrfs file system features requires that you boot the system by using
UEK R7 or later.

You can create a Btrfs root file system during an installation. To do so, you must boot the
system by using UEK R7 or later.

Although Oracle Linux uses the default top level ID set with an ID of 5, the root file system is
created as a subvolume within the top level file system on a system that's installed with Btrfs
as the root file system. Therefore, when you view the subvolume list, you might see output
similar to the following:

ID 256 gen 1591 top level 5 path boot
ID 258 gen 1591 top level 5 path root
ID 259 gen 1514 top level 5 path home
ID 262 gen 1514 top level 258 path var/lib/portables"

In the output, the installation root file system subvolume has an ID of 258. The subvolume with
ID 258 (root) is mounted as /. The default subvolume (root) with ID 258 is mounted as the
active root file system. For example, the mount command shows the device that's mounted as
the root file system and indicates the subvolume ID (258):

Note that the top-level file system isn't mounted by default. To mount the top-level file system
volume, use the subvolid option to specify the subvolume ID as 5. For example, you might
run:

sudo mount -o subvolid=5 /dev/sda2 /mnt

If you list the contents of /mnt, you can view each of the subvolumes within the file system
volume, including the root subvolume.

By setting the default subvolume to use at the root file system and keeping the top-level file
system unmounted, we achieve cleaner separation between actively used subvolumes and
underlying file system maintenance such as the storage of snapshots.

By mounting the top level file system, you can easily create a snapshot of the root file system.
If you need to rollback to a snapshot, you can change the default subvolume for the file system
to match the subvolume ID of the snapshot that you want to roll back to.

7-1

Creating Snapshots of the root File System
Creating snapshots of a Btrfs root file system is no different to creating a snapshot of any other
subvolume, but to keep snapshots separated from the root subvolume, we store them at the
top level of the file system.

1. Mount the top-level subvolume ID on a suitable mount point.

sudo mount -o subvolid=5 /dev/sda2 /mnt

2. Create a directory in the file system to store any snapshots, if this doesn't already exist.

sudo mkdir -p /mnt/.snapshots

3. Take a snapshot of the file system.

sudo btrfs subvolume snapshot / /mnt/.snapshots/root_snapshot_1

4. Unmount the top level of the file system.

sudo umount /mnt

5. Verify that the list of subvolumes includes the newly created snapshot.

sudo btrfs subvolume list /

ID 256 gen 1332 top level 5 path boot
ID 258 gen 1349 top level 5 path root
ID 259 gen 1309 top level 5 path home
ID 261 gen 1309 top level 258 path var/lib/portables
ID 264 gen 1348 top level 5 path .snapshots/root_snapshot_1

Mounting a Snapshot as the Root File System
To roll back changes to the system, you can mount a snapshot as the root file system by
specifying its ID as the default subvolume.

1. Find the subvolume ID for the snapshot that you want to use to replace the root file
system.

For example, to get a listing of subvolumes and snapshots with their IDs, run:

sudo btrfs subvolume list /

2. Use the btrfs subvolume set-default command to change the default subvolume
ID to use for the / mount point.

sudo btrfs subvolume set-default 264 /

3. Update the system GRUB configuration to ensure that the subvolume default isn't
overwritten by a kernel boot argument.

Chapter 7
Creating Snapshots of the root File System

7-2

For example, run:

default_kernel=$(sudo grubby --default-kernel);
sudo grubby --remove-args="rootflags=subvol=root" --update-
kernel $default_kernel

4. Reboot the system for the changes to take effect.

sudo reboot

5. After the system has booted, validate that the snapshot subvolume is mounted on the root
file system at /.

You can review the information returned by the mount command:

sudo mount|grep 'on / '

The command might return output similar to the following:

/dev/sda2 on / type btrfs
(rw,relatime,seclabel,space_cache,subvolid=264,subvol=/.snapshots/root-
snapshot1)

Or run btrfs inspect-internal rootid to return the subvolume ID for the
subvolume mounted at the / mount point.

sudo btrfs inspect-internal rootid /

Deleting Snapshots of the root File System

Note:

A snapshot can't be deleted if it's set as the default ID for a subvolume. Deleting a
snapshot while it's in use as the root file system might cause system failure and
requires a hard physical reset. Before deleting a snapshot that's set as the default
subvolume for the root File System, change the default ID and reboot the system, for
example:

sudo btrfs subvolume set-default 258 /
reboot

To delete a snapshot, do the following:

1. Mount the top level of the file system.

For example, run:

sudo mount -o subvolid=5 /dev/sda2 /mnt

Chapter 7
Deleting Snapshots of the root File System

7-3

2. Use the btrfs subvolume delete command to delete the snapshot.

sudo btrfs subvolume delete /mnt/.snapshots/root-snapshot1

3. Unmount the top level of the file system:

sudo umount /mnt

The list of subvolumes relative to the root file system now doesn't include snapshots/
root-snapshot1.

sudo btrfs subvolume list /

ID 256 gen 1332 top level 5 path boot
ID 258 gen 1349 top level 5 path root
ID 259 gen 1309 top level 5 path home
ID 261 gen 1309 top level 258 path var/lib/portables

Chapter 7
Deleting Snapshots of the root File System

7-4

8
Creating Swap Files on a Btrfs File System

Swap space is used in Oracle Linux when the amount of physical memory (RAM) is full. If the
system needs more memory resources, and the RAM is full, inactive pages in memory are
moved to the swap space. Although swap space is helpful for systems with a small amount of
RAM, don't use swap space as a replacement for more RAM. You can allocate swap space to
a dedicated swap partition, which is the recommended method. Or, you can use a swap file; or,
you can combine the use of swap partitions and swap files.

Swap files in Btrfs are supported with the following limitations:

• A swap file can't be on a snapshotted subvolume. Instead, we recommend that you create
a subvolume on which to place the swap file.

• Btrfs doesn't support swap files on file systems that span several devices.

The following are step-by-step instructions for creating a swap file in Btrfs. Before creating the
new swap file, calculate the size of the swap file in MB. Then, multiply that number by 1024 to
find the number of blocks the file requires. For example, the block size of a 64 MB swap file is
65536.

1. Use the dd command to create an empty file to use as the swap file.

sudo dd if=/dev/zero of=/swapfile bs=1024 count=65536

2. Set up the swap file by using the mkswap command:

sudo mkswap /swapfile

3. Change the permissions on the file so that it's not world readable:

sudo chmod 0600 /swapfile

4. Enable the swap file at boot time by editing the /etc/fstab file.

The /etc/fstab file must contain a line similar to the following:

/swapfile swap swap defaults 0 0

5. Regenerate the mount units and register the new configuration in the /etc/fstab file.

sudo systemctl daemon-reload

6. Activate the new swap file by using the swapon command:

sudo swapon /swapfile

Running the swapon command activates the new swap file immediately.

8-1

You can run the following commands to test whether the new swap file was successfully
created and by inspecting the active swap space:

sudo cat /proc/swaps
sudo free -h

Chapter 8

8-2

9
Converting an Ext File System to a Btrfs File
System

You can use the btrfs-convert utility to convert an ext file system to a Btrfs file system.
The utility preserves an image of the original file system in a snapshot named extN_saved,
such as ext4_saved. With this snapshot, you can roll back the conversion, even if you have
changed the btrfs file system.

Note that you can't convert a root file system or a bootable partition, such as /boot, to Btrfs.

Note:

The conversion to Btrfs isn't supported on the Arm (aarch64) platform. If you're
running Oracle Linux on the aarch64 platform, you can migrate data from one file
system to another file system.

Converting an Ext File System to a Btrfs File System
You can perform the conversion of an Ext file system to Btrfs on file systems that aren't used
as the root partition or the boot partition.

Caution:

Although the conversion tooling stores an image of the Ext file system metadata that
you can use to roll back to soon after converting to Btrfs, ensure that you have a full
backup of the file system in case the conversion fails or the rollback image is
removed and you want to revert to using the Ext file system.

To convert an Ext file system other than the root file system to Btrfs:

1. Unmount the file system.

sudo umount mountpoint

2. Run the correct version of fsck (for example, fsck.ext4) on the underlying device to
check and correct the integrity of file system.

sudo fsck.extN -f device

3. Convert the file system to a btrfs file system.

sudo btrfs-convert device

9-1

4. Edit the file /etc/fstab, and change the file system type of the file system to btrfs. For
example:

/dev/sdb /myfs btrfs defaults 0 0

5. Mount the converted file system on the old mount point.

sudo mount device mountpoint

6. Verify the file system and review the Ext backup image.

Check that the Btrfs file system is correctly initialized and that the data is still available on
the file system. For example:

sudo btrfs filesystem usage mountpoint
ls -lah mountpoint

Note that the file system includes a subvolume labeled ext2_saved:

sudo btrfs subvolume list

The subvolume contains an image of the Ext file system that can be used to roll the file
system back to its original Ext file system type. You can roll the file system back by
running:

sudo umount mountpoint
sudo btrfs-convert -r device

The file system is rolled back to its original Ext file system type.

The Ext file system image takes up disk space and might no longer be usable or required
after you perform other disk or file system operations on the Btrfs file system. You can
remove this backup by running:

btrfs subvolume delete mountpoint/ext2_saved

Chapter 9
Converting an Ext File System to a Btrfs File System

9-2

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About the Btrfs File System
	2 Installing the Btrfs Utilities
	3 Setting Up and Administering a Btrfs File System
	Creating and Mounting a Btrfs File System
	Changing Btrfs File System Devices
	Defragmenting and Compressing a Btrfs File System
	Resizing a Btrfs File System

	4 Managing Subvolumes and Snapshots
	Creating Btrfs Subvolumes and Snapshots
	Mounting Btrfs Subvolumes
	Managing Quotas for Btrfs Subvolumes With Quota Groups
	Automating File System Snapshots With the Snapper Utility
	Installing Snapper
	Creating a Snapper Configuration for a Subvolume
	Understanding Different Types of Snapshots
	Configuring Automatic Snapper Snapshots
	Automating Single Backups To Create a Snapper Timeline
	Automating Pre And Post Backups For DNF Transactions

	Working With Btrfs Snapshots by Using Snapper
	Mounting Snapper Snapshots

	5 Using Data Block Sharing to Copy Files
	6 Creating Backups and Using the Btrfs Send/Receive Feature
	Creating a Reference Backup in Preparation for Creating an Incremental Backup
	Creating an Incremental Backup

	7 Working With a Btrfs root File System
	Creating Snapshots of the root File System
	Mounting a Snapshot as the Root File System
	Deleting Snapshots of the root File System

	8 Creating Swap Files on a Btrfs File System
	9 Converting an Ext File System to a Btrfs File System
	Converting an Ext File System to a Btrfs File System

