
Oracle Linux 9
Managing the Oracle Cluster File System
Version 2

G26608-01
July 2025

Oracle Linux 9 Managing the Oracle Cluster File System Version 2,

G26608-01

Copyright © 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 About OCFS2

2 OCFS2 Use Cases

Load Balancing Use Case 2-1

Oracle Real Application Cluster Use Case 2-1

Oracle Database Use Case 2-1

3 Setting Up an OCFS2 Cluster

Planning for an OCFS2 Cluster 3-1

Installing the Cluster Software 3-2

Configuring the Cluster Layout 3-3

Configuring and Starting the O2CB Cluster Stack 3-6

4 Working With OCFS2 Volumes

Creating and Mounting OCFS2 Volumes 4-2

Querying and Changing Volume Parameters 4-3

5 Creating a Local OCFS2 File System

6 Troubleshooting OCFS2 Issues

Recommended Debugging Tools and Practices 6-1

iii

Mounting the debugfs File System 6-1

Configuring OCFS2 Tracing 6-2

Commands for Tracing OCFS2 Issues 6-2

OCFS2 Tracing Methods and Examples 6-2

Debugging File System Locks 6-3

Configuring the Behavior of Fenced Nodes With Kdump 6-5

iv

Preface

This chapter includes information about managing the Oracle Cluster File System Version 2
(OCFS2) in Oracle Linux 9, including tasks for configuring, administering, troubleshooting, and
using OCFS2.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also

v

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

1
About OCFS2

OCFS2 (Oracle Cluster File System Version 2) is a general-purpose shared-disk file system
intended for use with clusters. OCFS2 offers high performance and high availability. You can
also mount an OCFS2 volume on a standalone system that's not clustered.

Oracle Cluster File System Version 2 (OCFS2) is available on Unbreakable Enterprise Kernel
(UEK) releases only, starting with Unbreakable Enterprise Kernel Release 6 (UEK R6).

Using OCFS2 offers the following benefits:

• You can use the reflink command with OCFS2 to create copy-on-write clones of
individual files. You can also use the cp --reflink command similarly to how you would
on a Btrfs file system. Typically, these clones let you save disk space when storing copies
of files that are similar, such as virtual machine (VM) images or Linux Containers.

Note:

When you use the reflink command, the resulting file system becomes a clone
of the original file system, which means that their UUIDs are identical. When
creating a clone with the reflink command, you must change the UUID by using
the tunefs.ocfs2 command. See Querying and Changing Volume Parameters

• Mounting a local OCFS2 file system lets you later migrate the file system to a cluster file
system without requiring any conversion.

• OCFS2 provides local file system semantics. Therefore, most applications can use
OCFS2. Applications that are cluster-aware can use cache-coherent parallel I/O from
many cluster nodes to balance activity across the cluster, or they can use the available file-
system functionality to fail over and run on another node if a node fails.

1-1

2
OCFS2 Use Cases

This section describes some typical use cases for OCFS2.

Load Balancing Use Case
You can use OCFS2 nodes to share resources between client systems. For example, the
nodes could export a shared file system by using Samba or NFS. To distribute service requests
between the nodes, you can use round-robin DNS, a network load balancer; or, you can
specify which node each client uses.

Oracle Real Application Cluster Use Case

Note:

Check the Oracle Database installation documentation for Linux to verify that the
platform is certified for use with the current Oracle Linux release: https://
docs.oracle.com/en/database/oracle/oracle-database/index.html.

Oracle Real Application Cluster (RAC) uses its own cluster stack, Cluster Synchronization
Services (CSS). You can use O2CB with CSS, but note that each stack is configured
independently for timeouts, nodes, and other cluster settings. You can use OCFS2 to host the
voting disk files and the Oracle cluster registry (OCR), but not the grid infrastructure user's
home, which must exist on a local file system on each node.

Because both CSS and O2CB use the lowest node number as a tie breaker in quorum
calculations, ensure that the node numbers are the same in both clusters. If required, edit the
O2CB configuration file, /etc/ocfs2/cluster.conf, to make the node numbering consistent.
Then, update this file on all the nodes. The change takes effect when the cluster is restarted.

Oracle Database Use Case

Note:

Check the Oracle Database installation documentation for Linux to verify that the
platform is certified for use with the current Oracle Linux release: https://
docs.oracle.com/en/database/oracle/oracle-database/index.html.

Specify the noatime option when mounting volumes that host Oracle datafiles, control files,
redo logs, voting disk, and OCR. The noatime option disables unnecessary updates to the
access time on the inodes.

2-1

https://docs.oracle.com/en/database/oracle/oracle-database/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/index.html

Specify the nointr mount option to prevent signals interrupting I/O transactions that are in
progress.

By default, the init.ora parameter filesystemio_options directs the database to perform
direct I/O to the Oracle datafiles, control files, and redo logs. Specify the datavolume mount
option for volumes that contain the voting disk and OCR. Do not specify this option for volumes
that host the Oracle user's home directory or Oracle E-Business Suite.

To prevent database blocks from becoming fragmented across a disk, ensure that the file
system cluster size is at least as large as the database block size, which is typically 8KB. If you
specify the file system usage type as datafiles when using the mkfs.ocfs2 command, the
file system cluster size is set to 128KB.

To enable many nodes to maximize throughput by concurrently streaming data to an Oracle
datafile, OCFS2 deviates from the POSIX standard by not updating the modification time
(mtime) on the disk when performing non-extending direct I/O writes. The value of mtime is
updated in memory. However, OCFS2 doesn't write the value to disk unless an application
extends or truncates the file or performs a operation to change the file metadata, such as using
the touch command. This behavior leads to results with different nodes reporting different
time stamps for the same file. Use the following command to view the on-disk timestamp of a
file:

sudo debugfs.ocfs2 -R "stat /file_path" device | grep "mtime:"

Chapter 2
Oracle Database Use Case

2-2

3
Setting Up an OCFS2 Cluster

A cluster consists of members called nodes. For best performance, give each node in the
cluster at least two network interfaces. The first interface is connected to a public network to
provide general access to the systems, while the second interface is used for private
communications between the nodes and the cluster heartbeat. The second interface lets the
cluster nodes coordinate their access to shared resources and monitor each other's state.

Important:

Both network interfaces must be connected through a network switch. Also, you must
ensure that all the network interfaces are configured and working before configuring
the cluster.

Planning for an OCFS2 Cluster
In addition to the hardware requirements for the cluster, you must also decide on the
hostnames and IP addresses of the cluster members and which heartbeat mode the cluster
uses.

In a cluster configuration, small packets travel throughout the entire setup over a specific UDP
port, including all the networks configured for the cluster. These packets establish routes
between the cluster nodes and show the health of the cluster network. For this reason, the
packets are also called heartbeats.

You can configure a cluster to run in either of the following heartbeat modes:

• Local heartbeat thread for each shared device (default heartbeat mode).

In this configuration, a node starts a heartbeat thread when it mounts an OCFS2 volume
and stops the thread when it unmounts the volume. CPU overhead is large on nodes that
mount many OCFS2 volumes because each mount requires a separate heartbeat thread.
Likewise, many mounts increases the risk of a node becoming isolated from the cluster,
because of a heartbeat I/O timeout on a single mount. This is known as fencing.

• Global heartbeat on specific shared devices.

This mode lets you configure any OCFS2 volume as a global heartbeat device, if the
volume occupies a whole disk device and not a partition. In this mode, the heartbeat to the
device starts when the cluster becomes online and stops when the cluster goes offline.
This mode is recommended for clusters that mount many OCFS2 volumes. A node fences
itself out of the cluster if a heartbeat I/O timeout occurs on more than half the global
heartbeat devices. To provide redundancy against failure of one of the devices, configure
at least three global heartbeat devices.

The following figure shows a cluster with four nodes that are connected using a network switch
to a LAN and a network storage server. The nodes and storage server are also connected
using a switch to a private network that's used for the local cluster heartbeat.

3-1

Figure 3-1 Cluster Configuration by Using a Private Network

Although you can configure and use OCFS2 without using a private network, this increases the
probability of a node fencing itself out of the cluster because of an I/O heartbeat timeout.

The following table provides recommendations for minimum cluster size settings for different
file system size ranges:

File System Size Suggested Minimum Cluster Size

1 GB - 10 GB 8K

10GB - 100 GB 16K

100 GB - 1 TB 32K

1 TB - 10 TB 64K

10 TB - 16 TB 128K

Installing the Cluster Software
This task shows you how to install OCFS2. For greatest efficiency, use the same version of
OCFS2 and a compatible UEK release on all cluster nodes. In a rolling update of a cluster, the
nodes can have different versions of OCFS2 and UEK. When this is the case, the cluster node
running the earliest version sets the usable features of the software for the entire cluster.

For a tutorial on how to configure OCFS2, see Use Oracle Cluster File System Tools on Oracle
Linux.

Important:

Perform the following procedure on each cluster node.

Chapter 3
Installing the Cluster Software

3-2

https://docs.oracle.com/en/learn/ol-ocfs2/
https://docs.oracle.com/en/learn/ol-ocfs2/

1. Check which version of the kernel the node is running.

uname -r

If required, update each node to ensure that all nodes are running the same kernel version.

2. Install the OCFS2 packages.

sudo dnf install -y ocfs2-tools

3. Configure the firewall.

Configure the firewall to provide access on the interface that the cluster uses for private
cluster communication.

By default, the cluster uses both TCP and UDP over port 7777.

sudo firewall-cmd --permanent --add-port=7777/tcp --add-port=7777/udp

4. Disable SELinux.

Edit the /etc/selinux/config file to disable SELinux, by entering the setting shown in
bold:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=disabled

Configuring the Cluster Layout
The following task describes how to create a cluster, add nodes, and configure the chosen
heartbeat mode. Run the commands on a single host that you want to be a node in the cluster.

The examples shown create a cluster called mycluster, with the following hostnames and IP
addresses as nodes in the cluster:

• ol-sys0: 10.1.0.100

• ol-sys1: 10.1.0.110

• ol-sys2: 10.1.0.120

1. Define the cluster.

Create a cluster definition by running the following command on any node:

sudo o2cb add-cluster cluster-name

For example, to create the cluster mycluster from the ol-sys1 host, run the following
command on ol-sys1:

sudo o2cb add-cluster mycluster

2. Add nodes to the cluster.

Chapter 3
Configuring the Cluster Layout

3-3

Add the current host and all other required hosts as nodes to the cluster.

sudo o2cb add-node cluster-name hostname --ip ip_address

The IP address is the IP address that's used by the node for private communication in the
cluster.

For example, to add nodes to mycluster from ol-sys1, you would type the following
commands on ol-sys1:

sudo o2cb add-node mycluster ol-sys0 --ip 10.1.0.100
sudo o2cb add-node mycluster ol-sys1 --ip 10.1.0.110
sudo o2cb add-node mycluster ol-sys2 --ip 10.1.0.120

Note:

OCFS2 only works with IPv4 addresses.

3. (Optional) Configure the global heartbeat mode.

The default heartbeat mode for the cluster is local. If you want the cluster to run in global
heartbeat mode, do the following:

a. Run the following command on every cluster device:

sudo o2cb add-heartbeat cluster-name device-name

For example, for mycluster, you set the cluster heartbeat on /dev/sdd, /dev/sdg,
and /dev/sdj as follows:

sudo o2cb add-heartbeat mycluster /dev/sdd
sudo o2cb add-heartbeat mycluster /dev/sdg
sudo o2cb add-heartbeat mycluster /dev/sdj

b. Set the cluster's heartbeat mode to global.

sudo o2cb heartbeat-mode cluster-name global

Important:

You must configure the global heartbeat feature to use whole disk devices. You
can't use disk partitions for global heartbeat mode.

4. Copy the cluster configuration file to each cluster node.

Copy the cluster /etc/ocfs2/cluster.conf file to each node in the cluster.

5. (Optional) Show information about the cluster.

Run the following command to display information about the cluster:

sudo o2cb list-cluster cluster-name

Chapter 3
Configuring the Cluster Layout

3-4

A three-node cluster with a global heartbeat would display information similar to the
following:

node:
 name = ol-sys0
 cluster = mycluster
 number = 0
 ip_address = 10.1.0.100
 ip_port = 7777

node:
 name = ol-sys1
 cluster = mycluster
 number = 1
 ip_address = 10.1.0.110
 ip_port = 7777

node:
 name = ol-sys2
 cluster = mycluster
 number = 2
 ip_address = 10.1.0.120
 ip_port = 7777

cluster:
 name = mycluster
 heartbeat_mode = global
 node_count = 3

heartbeat:
 cluster = mycluster
 region = 7DA5015346C245E6A41AA85E2E7EA3CF

heartbeat:
 cluster = mycluster
 region = 4F9FBB0D9B6341729F21A8891B9A05BD

heartbeat:
 cluster = mycluster
 region = B423C7EEE9FC426790FC411972C91CC3

The heartbeat regions are represented by the UUIDs of their block devices.

The same cluster mycluster with a local heartbeat would display the following information:

node:
 name = ol-sys0
 cluster = mycluster
 number = 0
 ip_address = 10.1.0.100
 ip_port = 7777

node:
 name = ol-sys1
 cluster = mycluster
 number = 1

Chapter 3
Configuring the Cluster Layout

3-5

 ip_address = 10.1.0.110
 ip_port = 7777

node:
 name = ol-sys2
 cluster = mycluster
 number = 2
 ip_address = 10.1.0.120
 ip_port = 7777

cluster:
 name = mycluster
 heartbeat_mode = local
 node_count = 3

Configuring and Starting the O2CB Cluster Stack
The following steps configure and start the O2CB cluster stack and must be run on every node
in the cluster.

1. Configure the node.

Run the following command to configure the node:

sudo /sbin/o2cb.init configure

The configuration process prompts you for extra information. You need to specify the
following:

• Load the O2CB driver on boot: Specify y or n, which is the default setting.

• Cluster to start at boot: Specify the name of the cluster. The name must match that in
the /etc/ocfs2/cluster.conf file.

• For the remaining parameters, the default values are typically adequate.

2. Check the status of the cluster stack.

Verify the settings for the cluster stack:

sudo /sbin/o2cb.init status

A cluster that uses local heartbeat mode displays information similar to the following:

Driver for "configfs": Loaded
Filesystem "configfs": Mounted
Stack glue driver: Loaded
Stack plugin "o2cb": Loaded
Driver for "ocfs2_dlmfs": Loaded
Filesystem "ocfs2_dlmfs": Mounted
Checking O2CB cluster "mycluster": Online
 Heartbeat dead threshold: 61
 Network idle timeout: 30000
 Network keepalive delay: 2000
 Network reconnect delay: 2000

Chapter 3
Configuring and Starting the O2CB Cluster Stack

3-6

 Heartbeat mode: Local
Checking O2CB heartbeat: Active

A cluster that uses global heartbeat mode displays information similar to the following:

Driver for "configfs": Loaded
Filesystem "configfs": Mounted
Stack glue driver: Loaded
Stack plugin "o2cb": Loaded
Driver for "ocfs2_dlmfs": Loaded
Filesystem "ocfs2_dlmfs": Mounted
Checking O2CB cluster "mycluster": Online
 Heartbeat dead threshold: 61
 Network idle timeout: 30000
 Network keepalive delay: 2000
 Network reconnect delay: 2000
 Heartbeat mode: Global
Checking O2CB heartbeat: Active
 7DA5015346C245E6A41AA85E2E7EA3CF /dev/sdd
 4F9FBB0D9B6341729F21A8891B9A05BD /dev/sdg
 B423C7EEE9FC426790FC411972C91CC3 /dev/sdj

3. Enable the o2cb and ocfs2 services.

Enable the o2cb and ocfs2 services so that they start on boot after networking is enabled.

sudo systemctl enable o2cb

sudo systemctl enable ocfs2

4. Configure the sysctlkernel parameters.

Edit the /etc/sysctl.d/99-sysctl.conf file to configure the following kernel settings for
cluster operations:

• kernel.panic = 30

This setting specifies the number of seconds after a panic before a system reboots.
The default value is zero. If you want a memory image to be created before the system
reboots, assign a larger value.

• kernel.panic_on_oops = 1

This setting causes the system to panic if a kernel oops occurs. So, if a kernel thread
required for cluster operation fails, the system reboots. Otherwise, a node might not
know whether another node is slow to respond or unavailable, which eventually
causes all cluster operations to suspend.

5. Save the changes to the sysctl configuration.

Apply the configuration by running the following command:

sudo sysctl -p

The o2cb.init command accepts other subcommands which let you administer the cluster,
such as the following:

• /sbin/o2cb.init status: Check the status of the cluster stack.

Chapter 3
Configuring and Starting the O2CB Cluster Stack

3-7

• /sbin/o2cb.init online: Bring the cluster stack online.

• /sbin/o2cb.init offline: Take the cluster stack offline.

• /sbin/o2cb.init unload: Unload the cluster stack.

To view other available subcommands, run the command o2cb.init by itself.

Chapter 3
Configuring and Starting the O2CB Cluster Stack

3-8

4
Working With OCFS2 Volumes

Use the mkfs.ocfs2 command to configure OCFS2 volumes. The command accepts different
options and arguments which let you control how how volumes are created, including the
following:

-b blocksize, --block-size blocksize
Specifies the unit size for I/O transactions to and from the file system, and the size of inode
and extent blocks. Available block sizes are 512 (512 bytes), 1K, 2K, and 4K. The default and
recommended block size is 4K (4 kilobytes).

-C clustersize, --cluster-size clustersize
Specifies the unit size for space used to allocate file data. The available cluster sizes are 4K,
8K, 16K, 32K, 64K, 128K, 256K, 512K, and 1M (1 megabyte). The default cluster size is 4K (4
kilobytes).

--fs-feature-level=feature-level
Lets you select a set of file system features from the following choices:

• default: Lets you use sparse files, unwritten extents, and inline data features.

• max-compat: Only makes available features that are understood by older versions of
OCFS2.

• max-features: Makes all features of OCFS2 available.

--fs_features=feature
Lets you enable or disable individual features such as sparse files, unwritten extents, and
backup superblocks. For more information, see the mkfs.ocfs2(8) manual page.

-J journalsize, --journal-size journalsize
Specifies the size of the write-ahead journal. If not specified, the size is calculated from the file
system usage type that you specify using the -T option, and, otherwise, from the volume size.
The default size of the journal is 64M (64 MB) for datafiles, 256M (256 MB) for mail, and
128M (128 MB) for vmstore.

-L label, --label label
Specifies a descriptive name for the volume that lets you identify it easily on different cluster
nodes.

-N number-of-slots, --node-slots number-of-slots
Specifies the maximum number of nodes that can concurrently access a volume, which is
limited by the number of node slots for system files such as the file system journal. For best
performance, set the number of node slots to at least twice the number of nodes. If you later
increase the number of node slots, performance can suffer because the journal is no longer
contiguously laid out on the outer edge of the disk platter.

-T file-system-usage-type
Specifies the usage type of the file system, which is one of the following three options:

4-1

• datafiles: Database files are typically few in number, fully allocated, and relatively large.
Such files require few metadata changes, and don't benefit from having a large journal.

• mail: Mail server files are typically many in number, and relatively small. Such files require
many metadata changes, and benefit from having a large journal.

• vmstore: Virtual machine image files are typically few in number, sparsely allocated, and
relatively large. Such files require a moderate number of metadata changes and a
medium sized journal.

Creating and Mounting OCFS2 Volumes
When creating OCFS2 volumes, consider the following:

• Don't create an OCFS2 volume on an LVM logical volume, as LVM isn't cluster-aware.

• After you have created an OCFS2 volume, you can't change the block and cluster size of
that volume. You can use the tunefs.ocfs2 command to change other file system settings,
with certain restrictions. For more information, see the tunefs.ocfs2(8) manual page.

• If you intend the volume to store database files, don't specify a cluster size that's smaller
than the block size of the database.

• The default cluster size of 4 KB isn't suitable if the file system is larger than a few
gigabytes.

1. Create an OCFS2 volume.

The following command creates the volume with a label on the specified device:

sudo mkfs.ocfs2 -L "myvol" /dev/sdc1

Without extra options or arguments, the volume uses default values for some of its
properties, such as 4 KB block and cluster size, eight node slots, 256 MB journal, and
makes default file system features available. These default settings are only suitable to
create volumes for file systems that are no larger than a few gigabytes.

Tip:

Ensure that the device corresponds to a partition so that you can use the label
when mounting the volume.

Specify options to the mkfs.ocfs2 command to create volumes with different
characteristics. Consider the following examples:

• Create a labeled volume for use as a database.

sudo mkfs.ocfs2 -L "dbvol" -T datafiles /dev/sdd2

In this case, the cluster size is set to 128 KB and the journal size to 32 MB.

• Create a volume with specific property settings.

sudo mkfs.ocfs2 -C 16K -J size=128M -N 16 --fs-feature-level=max-
features --fs-features=norefcount /dev/sde1

Chapter 4
Creating and Mounting OCFS2 Volumes

4-2

This command specifies cluster and journal sizes, and the number of node slots. All
file system features are enabled, except norefcount trees.

2. On each cluster member, mount the created volume.

a. Create a mount point.

sudo mkdir /u01

b. Mount the volume.

sudo mount -L myvol /u01

c. Check the status of the heartbeat mode.

sudo o2cb.init status

The heartbeat becomes active after the volume is mounted.

3. (Optional) Permanently mount the OCFS2 volume.

You can automate the mount operation across system restarts by adding an entry to
the /etc/fstab file. For example:

myvol /u01 ocfs2 _netdev,defaults 0 0

In this entry, _netdev instructs the system to mount an OCFS2 volume at boot time only
after networking is started and unmounts the file system before networking is stopped.

Querying and Changing Volume Parameters
Use the tunefs.ocfs2 command to query or change volume parameters.

For example, to find out the label, UUID, and number of node slots for a volume, use the
following command:

sudo tunefs.ocfs2 -Q "Label = %V\nUUID = %U\nNumSlots =%N\n" /dev/sdb

The output of the command is similar to the following:

Label = myvol
UUID = CBB8D5E0C169497C8B52A0FD555C7A3E
NumSlots = 4

Generate a new UUID for a volume by using the following commands:

sudo tunefs.ocfs2 -U /dev/sda
sudo tunefs.ocfs2 -Q "Label = %V\nUUID = %U\nNumSlots =%N\n" /dev/sdb

Chapter 4
Querying and Changing Volume Parameters

4-3

The output is similar to the following:

Label = myvol
UUID = 48E56A2BBAB34A9EB1BE832B3C36AB5C
NumSlots = 4

Chapter 4
Querying and Changing Volume Parameters

4-4

5
Creating a Local OCFS2 File System

You can create an OCFS2 file system that you can mount locally, which isn't associated with a
cluster. Use the following command syntax:

sudo mkfs.ocfs2 -M local --fs-features=local -N 1 [options] device

The following example creates a locally mountable OCFS2 volume on /dev/sdc1, with one
node slot and the label localvol:

sudo mkfs.ocfs2 -M local --fs-features=local -N 1 -L "localvol" /dev/sdc1

To convert a local OCFS2 file system for use in a cluster, use the tunefs.ocfs2 utility as
follows:

sudo umount /dev/sdc1
sudo tunefs.ocfs2 -M cluster --fs-features=clusterinfo -N 8 /dev/sdc1

This example also increases the number of node slots from 1 to 8, letting up to eight nodes
mount the file system.

5-1

6
Troubleshooting OCFS2 Issues

The following information can help you resolve issues that you might come across when
administering OCFS2.

Recommended Debugging Tools and Practices
Use the following tools to troubleshoot OCFS2 issues:

• Install netconsole on the nodes to capture an oops trace.

• Use the tcpdump command to capture the DLM's network traffic between nodes. For
example, to capture TCP traffic on port 7777 for the private network interface em2, you
could use the following command:

sudo tcpdump -i em2 -C 10 -W 15 -s 10000 -Sw /tmp/`hostname -
s`_tcpdump.log \
-ttt 'port 7777' &

• Use the debugfs.ocfs2 command to trace events in the OCFS2 driver, view the status
of locks, walk directory structures, examine inodes, and so on. This command is similar in
behavior to the debugfs command that's used for the ext3 file system.

For more information, see the debugfs.ocfs2(8) manual page.

• Use the o2image command to save an OCFS2 file system's metadata, including
information about inodes, file names, and directory names, to an image file on another file
system. Because the image file contains only metadata, it's much smaller than the original
file system. You can use the debugfs.ocfs2 command to open the image file and
analyze the file system layout to discover the cause of a file system corruption or
performance problem.

For example, to create the image /tmp/sda2.img from the OCFS2 file system on the
device /dev/sda2, you would use the following command:

sudo o2image /dev/sda2 /tmp/sda2.img

For more information, see the o2image(8) manual page.

Mounting the debugfs File System
OCFS2 uses the debugfs file system to enable userspace access to information about its in-
kernel state. You must mount the debugfs file system to use the debugfs.ocfs2 command.

1. Edit the /etc/fstab file

Add the following line to the /etc/fstab file:

debugfs /sys/kernel/debug debugfs defaults 0 0

6-1

2. Mount the debugfs file system

Mount the debugfs file system by running the following command:

mount -a

Configuring OCFS2 Tracing
Use the following commands and methods to trace issues in OCFS2.

Commands for Tracing OCFS2 Issues
The following commands are useful for tracing OCFS2 issues.

debugfs.ocfs2 -l
Lists all the trace bits and their statuses.

debugfs.ocfs2 -l SUPER allow|off|deny
Allows, disables, or disallows tracing for the superblock. If you specify deny, then even if
another tracing mode setting implicitly allows it, tracing is still disallowed.

debugfs.ocfs2 -l HEARTBEAT ENTRY EXIT allow
Enable heartbeat tracing.

debugfs.ocfs2 -l HEARTBEAT off ENTRY EXIT deny
Disable heartbeat tracing. ENTRY and EXIT parameters are set to deny, as these parameters
exist in all trace paths.

debugfs.ocfs2 -l ENTRY EXIT NAMEI INODE allow
Enable tracing for the file system.

debugfs.ocfs2 -l ENTRY EXIT deny NAMEI INODE allow
Disable tracing for the file system.

debugfs.ocfs2 -l ENTRY EXIT DLM DLM_THREAD allow
Enable tracing for the DLM.

debugfs.ocfs2 -l ENTRY EXIT deny DLM DLM_THREAD allow
Disable tracing for the DLM.

OCFS2 Tracing Methods and Examples
To obtain a trace, first enable the trace, sleep for a short while, and then disable the trace. To
avoid unnecessary output, reset the trace bits to their default settings after you have finished
tracing, as shown in the following example:

sudo debugfs.ocfs2 -l ENTRY EXIT NAMEI INODE allow && sleep 10 &&
sudo debugfs.ocfs2 -l ENTRY EXIT deny NAMEI INODE off

To limit the amount of information that's displayed, enable only the trace bits that are relevant
to diagnosing the problem.

Chapter 6
Configuring OCFS2 Tracing

6-2

If a specific file system command, such as mv, is causing an error, you might use a sequence
of commands that are shown in the following example to trace the error:

sudo debugfs.ocfs2 -l ENTRY EXIT NAMEI INODE allow
mv source destination & CMD_PID=$(jobs -p %-)
echo $CMD_PID
sudo debugfs.ocfs2 -l ENTRY EXIT deny NAMEI INODE off

Because the trace is enabled for all mounted OCFS2 volumes, knowing the correct process ID
can help you to interpret the trace.

For more information, see the debugfs.ocfs2(8) manual page.

Debugging File System Locks
If an OCFS2 volume hangs, you can use the following procedure to find out which locks are
busy and which processes are likely to be holding the locks.

In the following procedure, the Lockres value refers to the lock name that's used by DLM,
which is a combination of a lock-type identifier, inode number, and a generation number. The
following table lists the various lock types and their associated identifier.

Table 6-1 DLM Lock Types

Identifier Lock Type

D File data

M Metadata

R Rename

S Superblock

W Read-write

1. Mount the debug file system.

Mount the debug file system using the following command:

sudo mount -t debugfs debugfs /sys/kernel/debug

2. View the lock statuses.

Dump the lock statuses for the file system device, which is /dev/sdx1 in the following
example:

echo "fs_locks" | sudo debugfs.ocfs2 /dev/sdx1 | sudo tee /tmp/fslocks

Lockres: M00000000000006672078b84822 Mode: Protected Read
...

3. Retrieve the inode and generation number.

Chapter 6
Debugging File System Locks

6-3

Use the Lockres value from the previous output to obtain the inode number and generation
number for the lock.

sudo echo "stat lockres-value" | sudo debugfs.ocfs2 -n /dev/sdx1

For example, for the Locres value M00000000000006672078b84822 from the previous step,
the command output might resemble the following:

Inode: 419616 Mode: 0666 Generation: 2025343010 (0x78b84822)
...

4. Look up the file system object.

Relate the file system object to the inode number from the previous output:

sudo echo "locate inode" | sudo debugfs.ocfs2 -n /dev/sdx1

For example, for the Inode value 419616 from the previous step, the command output
might resemble the following:

419616 /linux-2.6.15/arch/i386/kernel/semaphore.c

5. Obtain the lock names for the file system object.

Obtain the names of the locks that are associated with the file system object, which in the
previous step's output is /linux-2.6.15/arch/i386/kernel/semaphore.c. Thus, you
would type:

sudo echo "encode /linux-2.6.15/arch/i386/kernel/semaphore.c" | sudo
debugfs.ocfs2 -n /dev/sdx1

M00000000000006672078b84822 D00000000000006672078b84822
W00000000000006672078b84822

In the previous example, a metadata lock, a file data lock, and a read-write lock are
associated with the file system object.

6. Retrieve the DLM domain.

Establish the DLM domain of the file system by running the following command:

sudo echo "stats" | sudo debugfs.ocfs2 -n /dev/sdX1 | grep UUID: | while
read a b ; do echo $b ; done

82DA8137A49A47E4B187F74E09FBBB4B

7. Enable debugging.

Using the values of the DLM domain and the lock name, run the following command to let
you debug that DLM:

sudo echo R 82DA8137A49A47E4B187F74E09FBBB4B M00000000000006672078b84822 |
sudo tee /proc/fs/ocfs2_dlm/debug

Chapter 6
Debugging File System Locks

6-4

8. View the debug messages.

Examine the debug messages by using the dmesg | tail command, for example:

struct dlm_ctxt: 82DA8137A49A47E4B187F74E09FBBB4B, node=3, key=965960985
 lockres: M00000000000006672078b84822, owner=1, state=0 last used: 0,
 on purge list: no granted queue:
 type=3, conv=-1, node=3, cookie=11673330234144325711,
ast=(empty=y,pend=n),
 bast=(empty=y,pend=n)
 converting queue:
 blocked queue:

The DLM has three lock modes: no lock (type=0), protected read (type=3), and exclusive
(type=5). In the previous example, the lock is owned by node 1 (owner=1) and node 3 has
been granted a protected-read lock on the file-system resource.

9. Identify sleeping processes.

Use the following command to search for processes that are in an uninterruptable sleep
state, which are indicated by the D flag in the STAT column:

ps -e -o pid,stat,comm,wchan=WIDE-WCHAN-COLUMN

Note that at least one of the processes that are in the uninterruptable sleep state is
responsible for the hang on the other node.

If a process is waiting for I/O to complete, the problem could be anywhere in the I/O
subsystem, from the block device layer through the drivers, to the disk array. If the hang
concerns a user lock (flock()), the problem could lie with the application. If possible, end the
process holding the lock. If the hang is because of lack of memory or fragmented memory, you
can free up memory by ending nonessential processes. The most immediate solution is to
reset the node that's holding the lock. The DLM recovery process can then clear all the locks
owned by the dead node, enabling the cluster to continue to operate.

Configuring the Behavior of Fenced Nodes With Kdump
If the hearbeat mechanism detects that a node with a mounted OCFS2 volume has lost contact
with the other cluster nodes, that node is removed from the cluster in a process called fencing.
Fencing prevents other nodes from hanging while trying to access resources that are held by
the fenced node. By default, a fenced node automatically restarts so that it can rejoin the
cluster as soon as possible.

However, under some circumstances, you might not want this default behavior. For example, if
a node often restarts for no obvious reason, then causing the node to panic instead of
restarting is preferable, so that you can troubleshoot the issue. By enabling Kdump on the
node, you can obtain a vmcore crash dump from the fenced node and analyze it to diagnose
the cause of frequent node restarts.

1. Configure the fence method.

To configure a node to panic at the next fencing, set fence_method to panic by running the
following command on the node after the cluster starts:

echo "panic" | sudo tee /sys/kernel/config/cluster/cluster-name/
fence_method

Chapter 6
Configuring the Behavior of Fenced Nodes With Kdump

6-5

2. Persist the change across reboots.

To set the value after each system reboot, add the same line to the /etc/rc.local file.

To restore the default behavior, change the value of fence_method back to reset.

echo "reset" | sudo tee /sys/kernel/config/cluster/cluster-name/fence_method

Then, remove the panic line from /etc/rc.local if the line exists in the file.

Chapter 6
Configuring the Behavior of Fenced Nodes With Kdump

6-6

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About OCFS2
	2 OCFS2 Use Cases
	Load Balancing Use Case
	Oracle Real Application Cluster Use Case
	Oracle Database Use Case

	3 Setting Up an OCFS2 Cluster
	Planning for an OCFS2 Cluster
	Installing the Cluster Software
	Configuring the Cluster Layout
	Configuring and Starting the O2CB Cluster Stack

	4 Working With OCFS2 Volumes
	Creating and Mounting OCFS2 Volumes
	Querying and Changing Volume Parameters

	5 Creating a Local OCFS2 File System
	6 Troubleshooting OCFS2 Issues
	Recommended Debugging Tools and Practices
	Mounting the debugfs File System
	Configuring OCFS2 Tracing
	Commands for Tracing OCFS2 Issues
	OCFS2 Tracing Methods and Examples

	Debugging File System Locks
	Configuring the Behavior of Fenced Nodes With Kdump

