
Oracle Linux 9
Managing Core System Configuration

F56701-15
May 2024

Oracle Linux 9 Managing Core System Configuration,

F56701-15

Copyright © 2022, 2024, Oracle and/or its affiliates.

Contents

 Preface

Documentation License vii

Conventions vii

Documentation Accessibility vii

Access to Oracle Support for Accessibility vii

Diversity and Inclusion vii

1 Managing Kernels and System Boot

About the Boot Process 1-1

About UEFI-Based Booting 1-1

About BIOS-Based Booting 1-2

About the GRUB 2 Bootloader 1-2

About Linux Kernels 1-3

Managing Kernels in GRUB 2 Using grubby 1-4

Kernel Boot Parameters 1-5

Modifying Kernel Boot Parameters Before Booting 1-7

Modifying GRUB 2 Default Kernel Boot Parameters 1-7

2 Managing System Services With systemd

About the systemd Service Manager 2-1

systemd Units 2-1

About System-State Targets 2-3

Displaying Default and Active System-State Targets 2-3

Changing Default and Active System-State Targets 2-5

Shutting Down, Suspending, and Rebooting the System 2-6

Managing Services 2-6

Starting and Stopping Services 2-6

Enabling and Disabling Services 2-7

Displaying the Status of Services 2-8

Controlling Access to System Resources 2-10

Running systemctl on a Remote System 2-11

Modifying systemd Service Unit Files 2-11

iii

About Service Unit Files 2-12

Configurable Options in Service Unit Files 2-12

Creating a User-Based systemd Service 2-15

Using Timer Units to Control Service Unit Runtime 2-16

Configuring a Realtime Timer Unit 2-16

Configuring a Monotonic Timer Unit 2-17

Running a Transient Timer Unit 2-18

3 Configuring System Settings

About the /etc/sysconfig Files 3-1

About the /proc Virtual File System 3-2

Virtual Files and Directories Under /proc 3-3

Modifying Kernel Parameters 3-7

Parameters That Control System Performance 3-10

Parameters That Control Kernel Panics 3-11

About the /sys Virtual File System 3-12

Virtual Directories Under the /sys Directory 3-13

Configuring System Language (Locale) and Keyboard Settings 3-14

Changing the Language Setting 3-14

Installing Language Locales Individually 3-15

Changing the Keyboard Layout 3-16

Configuring System Date and Time Settings 3-16

Configuring the Watchdog Service 3-18

4 Managing System Devices

About Device Files 4-1

About the Udev Device Manager 4-3

About Udev Rules 4-4

Querying Udev and Sysfs 4-7

Modifying Udev Rules 4-11

5 Managing Kernel Modules

About Kernel Modules 5-1

Listing Information About Loaded Modules 5-2

Loading and Unloading Modules 5-4

About Module Parameters 5-5

Specifying Modules To Be Loaded at Boot Time 5-6

Preventing Modules From Loading at Boot Time 5-6

iv

About Weak Update Modules 5-7

6 Configuring Huge Pages

Available Huge Page Features 6-1

HugeTLB Pages 6-1

Transparent HugePages 6-2

Configuring HugeTLB Pages 6-2

Kernel Boot Parameters for HugeTLB Pages 6-2

File-Based Configuration Parameters for HugeTLB Pages 6-3

Configuring HugeTLB Pages at Boot Time 6-10

Requesting HugeTLB Pages by Using Kernel Parameters at Boot Time 6-10

Requesting HugeTLB Pages Using NUMA Node Specific Parameters Early in the
Boot Process 6-10

Configuring HugeTLB at Runtime 6-11

Configuring HugeTLB Pages for a Specific NUMA Node at Runtime 6-12

Configuring Transparent HugePages 6-12

Parameters Used to Configure Transparent HugePages 6-12

Configuring Transparent HugePages at Runtime 6-14

Retrieving the Current Status of Transparent HugePages 6-15

Changing the Current Status of Transparent HugePages 6-15

Changing the defrag Setting of Transparent HugePages 6-16

7 Managing Resources

About Control Groups 7-1

About Kernel Resource Controllers 7-2

About the Control Group File System 7-3

About Control Groups and systemd 7-4

About Resource Distribution Models 7-5

Using cgroups v2 to Manage Resources for Applications 7-6

Enabling cgroups v2 7-6

Preparing the Control Group for Distribution of CPU Time 7-7

Setting CPU Weight to Regulate Distribution of CPU Time 7-8

Using systemd to Manage cgroups v2 7-10

About Slices and Resource Allocation in systemd 7-11

Slices, Services, and Scopes in the cgroup Hierarchy 7-13

systemd Scopes 7-15

Setting Resource Controller Options and Creating Custom Slices 7-16

Using Service Unit Files 7-16

Using Drop-in Files 7-19

Using systemctl set-property 7-21

v

Using cgroups v2 to Manage Resources for Users 7-23

vi

Preface

Oracle Linux 9: Managing Core System Configuration provides information about configuring
Oracle Linux 9 systems, including the boot loader configuration and processes, system
devices, services and settings, as well as kernel parameters.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also

vii

https://docs.oracle.com/en/operating-systems/oracle-linux/9/osmanage/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

viii

1
Managing Kernels and System Boot

This chapter describes the Oracle Linux boot process and how to configure and use the
GRand Unified Bootloader (GRUB) version 2 and boot-related kernel parameters.

Tip:

See Manage the Boot Kernel for Oracle Linux for a hands-on tutorial and video
demonstrations on configuring the boot kernel in Oracle Linux.

About the Boot Process
Understanding the Oracle Linux boot process can help you troubleshoot problems when
booting a system. The boot process involves several files, and errors in these files are the
usual cause of boot problems. Boot processes and configuration differ depending on whether
the hardware uses UEFI firmware or legacy BIOS to handle system boot.

About UEFI-Based Booting
On a UEFI-based system running the Oracle Linux release, the system boot process uses the
following sequence:

1. The system's UEFI firmware performs a power-on self-test (POST) and then detects and
initializes peripheral devices and the hard disk.

2. UEFI searches for a GPT partition with a specific globally unique identifier (GUID) that
identifies it as the EFI System Partition (ESP). This partition contains EFI applications such
as boot loaders. In case of the presence of multiple boot devices, the UEFI boot manager
uses the appropriate ESP based on the order that's defined in the boot manager. With the
efibootmgr tool, you can define a different order, if you don't want to use the default
definition.

3. The UEFI boot manager checks whether Secure Boot is enabled. If Secure Boot is
disabled, the boot manager runs the GRUB 2 bootloader on the ESP.

Otherwise, the boot manager requests a certificate from the boot loader and validates this
against keys stored in the UEFI Secure Boot key database. To handle the certificate
validation process, the environment is configured to perform a 2-stage boot process and
the shim.efi application that's responsible for certification is loaded first before loading the
GRUB 2 bootloader. If the certificate is valid, the boot loader runs and, in turn, validates the
kernel that it's configured to load.

See Oracle Linux: Working With UEFI Secure Boot for more information on Secure Boot.

4. The boot loader loads the vmlinuz kernel image file into memory and extracts the contents
of the initramfs image file into a temporary, memory-based file system (tmpfs).

5. The kernel loads the driver modules from the initramfs file system that are needed to
access the root file system.

1-1

https://docs.oracle.com/en/learn/oracle-linux-kernels/
https://docs.oracle.com/en/operating-systems/oracle-linux/secure-boot/

6. The kernel starts the systemd process with a process ID of 1 (PID 1). See About the
systemd Service Manager.

7. systemd runs any additional processes defined for it.

Note:

Specify any other actions to be processed during the boot process by defining
your own systemd unit. This method is the preferred approach than using
the /etc/rc.local file.

About BIOS-Based Booting
On a BIOS-based system running the Oracle Linux release, the boot process is as follows:

1. The system's BIOS performs a power-on self-test (POST), and then detects and initializes
any peripheral devices and the hard disk.

2. The BIOS reads the Master Boot Record (MBR) into memory from the boot device. The
MBR stores information about the organization of partitions on that device, the partition
table, and the boot signature which is used for error detection. The MBR also includes the
pointer to the boot loader program (GRUB 2). The boot program itself can be on the same
device or on another device.

3. The boot loader loads the vmlinuz kernel image file into memory and extracts the contents
of the initramfs image file into a temporary, memory-based file system (tmpfs).

4. The kernel loads the driver modules from the initramfs file system that are needed to
access the root file system.

5. The kernel starts the systemd process with a process ID of 1 (PID 1). See About the
systemd Service Manager for more information.

6. systemd runs any additional processes defined for it.

Note:

Specify any other actions to be processed during the boot process by defining
user systemd units. This method is the preferred approach than using the /etc/
rc.local file.

About the GRUB 2 Bootloader
In addition to Oracle Linux, GRUB 2 can load and chain-load many proprietary operating
systems. GRUB 2 understands the formats of file systems and kernel executable files.
Therefore, it can load an arbitrary OS without needing to know the exact location of the kernel
on the boot device. GRUB 2 requires only the file name and drive partitions to load a kernel.
You can configure this information by using the GRUB 2 menu or by entering it on the
command line.

GRUB 2 behavior is based on configuration files. On BIOS-based systems, the configuration
file is /boot/grub2/grub.cfg. On UEFI-based systems, the configuration file is /
boot/efi/EFI/redhat/grub.cfg. Each kernel version's boot parameters are stored in

Chapter 1
About the GRUB 2 Bootloader

1-2

independent configuration files in /boot/loader/entries. Each kernel configuration is
stored with the file name machine_id-kernel_version.el8.arch.conf.

Note:

Don't edit the GRUB 2 configuration file directly.

The grub2-mkconfig command generates the configuration file using the template
scripts in /etc/grub.d and menu-configuration settings taken from the
configuration file, /etc/default/grub.

The default menu entry is set by the value of the GRUB_DEFAULT parameter in /etc/default/
grub. If GRUB_DEFAULT is set to saved, you can use the grub2-set-default and grub2-
reboot commands to specify the default entry. The command grub2-set-default sets the
default entry for all subsequent reboots, while grub2-reboot sets the default entry for the
next reboot only.

If you specify a numeric value as the value of GRUB_DEFAULT or as an argument to either
grub2-reboot or grub2-set-default, GRUB 2 counts the menu entries in the
configuration file starting at 0 for the first entry.

For more information about using, configuring, and customizing GRUB 2, see the GNU GRUB
Manual, which is also installed as /usr/share/doc/grub2-tools-2.00/grub.html.

About Linux Kernels
The Linux Foundation provides a hub for open source developers to code, manage, and scale
different open technology projects. It also manages the Linux Kernel Organization that exists to
distribute various versions of the Linux kernel which is at the core of all Linux distributions,
including those used by Oracle Linux. The Linux kernel manages the interactions between the
computer hardware and user space applications that run on Oracle Linux.

You must install and run one of these Linux kernels with Oracle Linux:

• Unbreakable Enterprise Kernel (UEK): UEK is based on a stable kernel branch from the
Linux Foundation, with customer-driven additions, and multiple UEKs can exist for a
specific Oracle Linux release. Its focus is performance, stability, and minimal backports by
tracking the mainline source code provided by the Linux Kernel Organization, as closely as
is practical. UEK is tested and used to run Oracles Engineered Systems, Oracle Cloud
Infrastructure (OCI), and large enterprise deployments for Oracle customers.
UEK includes some packages or package versions that aren't available in RHCK. Some
examples are btrfs-tools, rds, and rdma related packages, and some kernel tuning tools.

• Red Hat Compatible Kernel (RHCK): RHCK is fully compatible with the Linux kernel that's
distributed in a corresponding Red Hat Enterprise Linux (RHEL) release. You can use
RHCK to ensure full compatibility with applications that run on Red Hat Enterprise Linux.

Chapter 1
About Linux Kernels

1-3

https://www.gnu.org/software/grub/manual/grub/grub.html
https://www.gnu.org/software/grub/manual/grub/grub.html

Important:

Linux kernels are critical for running applications in the Oracle Linux user space.
Therefore, you must keep the kernel current with the latest bug fixes, enhancements,
and security updates provided by Oracle. To do so, implement a continuous update
and upgrade strategy. See Oracle Linux: Ksplice User's Guide for information on how
to keep the kernel updated without any requirement to reboot the system. See Oracle
Linux: Managing Software on Oracle Linux for general information about keeping
software on the system up-to-date.

See Unbreakable Enterprise Kernel documentation for more information about UEK.

Managing Kernels in GRUB 2 Using grubby
You can use the grubby command to view and manage kernels.

Use the following command to display the kernels that are installed and configured on the
system:

sudo grubby --info=ALL

To configure a specific kernel as the default boot kernel, run:

sudo grubby --set-default /boot/vmlinuz-4.18.0-80.el8.x86_64

You can also use the grubby command to update a kernel configuration entry to add or
remove kernel boot arguments, for example:

sudo grubby --remove-args="rhgb quiet" --
args=rd_LUKS_UUID=luks-39fec799-6a6c-4ac1-ac7c-1d68f2e6b1a4 \
--update-kernel /boot/vmlinuz-4.18.0-80.el8.x86_64

For more information about the grubby command, see the grubby(8) manual page.

For a hands-on tutorial on the use of grubby to manage kernels, see Manage the Boot Kernel
for Oracle Linux.

Chapter 1
Managing Kernels in GRUB 2 Using grubby

1-4

https://docs.oracle.com/en/operating-systems/oracle-linux/ksplice-user/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/
https://docs.oracle.com/en/operating-systems/uek/
https://docs.oracle.com/en/learn/oracle-linux-kernels/
https://docs.oracle.com/en/learn/oracle-linux-kernels/

Important:

Security scanners on the system might report CVEs for any kernel on the system
that's not used as the running or default kernel. As a good practice and to avoid
unnecessary noise and false positives that are being reported by the scanner,
remove unused kernels after you switch kernels.

For example, if you switch to RHCK from UEK, follow these steps to ensure a proper
transition:

1. Set the default kernel to RHCK with the appropriate grubby command.

See the preceding examples for the correct command syntax.

2. Reboot the system to ensure that you're now running RHCK.

3. Remove the UEK kernel.

sudo dnf remove kernel-uek

4. Disable the UEK repositories by running the following command:

for uek_repo in $(dnf repolist enabled|grep UEK|awk '{print $1}');
do sudo dnf config-manager disable $uek_repo; done

5. Downgrade kernel plumbing packages and remove orphan packages.

sudo dnf downgrade $(sudo package-cleanup --orphans)

Likewise, if you choose to use UEK as the standard kernel, consider removing
RHCK. For instructions to remove RHCK, see Remove the Red Hat Compatible
Kernel With the kernel-transition Package.

Kernel Boot Parameters
The following table describes some commonly used kernel boot parameters.

Option Description

0, 1, 2, 3, 4, 5, or 6, or
systemd.unit=runlevelN.target

Specifies the nearest systemd-equivalent
system-state target to match a legacy SysV run
level. N can take an integer value between 0
and 6.
Systemd maps system-state targets to mimic the
legacy SysV init system.
For a description of system-state targets, see
About System-State Targets.

1, s, S, single, or
systemd.unit=rescue.target

Specifies the rescue shell. The system boots to
single-user mode prompts for the root
password.

3 or systemd.unit=multi-user.target Specifies the systemd target for multiuser,
nongraphical login.

Chapter 1
Kernel Boot Parameters

1-5

https://docs.oracle.com/en/learn/ol-kerntran/
https://docs.oracle.com/en/learn/ol-kerntran/

Option Description

5 or systemd.unit=graphical.target Specifies the systemd target for multiuser,
graphical login.

-b, emergency, or
systemd.unit=emergency.target

Specifies emergency mode. The system boots to
single-user mode and prompts for the root
password. Fewer services are started than
when in rescue mode.

KEYBOARDTYPE=kbtype Specifies the keyboard type, which is written
to /etc/sysconfig/keyboard in the
initramfs.

KEYTABLE=kbtype Specifies the keyboard layout, which is written
to /etc/sysconfig/keyboard in the
initramfs.

LANG=language_territory.codeset Specifies the system language and code set,
which is written to /etc/sysconfig/i18n
in the initramfs.

max_loop=N Specifies the number of loop devices (/dev/
loop*) that are available for accessing files as
block devices. The default and maximum
values of N are 8 and 255.

nouptrack Disables Ksplice Uptrack updates from being
applied to the kernel.

quiet Reduces debugging output.

rd_LUKS_UUID=UUID Activates an encrypted Linux Unified Key Setup
(LUKS) partition with the specified UUID.

rd_LVM_VG=vg/lv_vol Specifies an LVM volume group and volume to
be activated.

rd_NO_LUKS Disables detection of an encrypted LUKS
partition.

rhgb Specifies to use the Red Hat graphical boot
display to indicate the progress of booting.

rn_NO_DM Disables Device-Mapper (DM) RAID detection.

rn_NO_MD Disables Multiple Device (MD) RAID detection.

ro root=/dev/mapper/vg-lv_root Specifies that the root file system is to be
mounted read-only, and specifies the root file
system by the device path of its LVM volume
(where vg is the name of the volume group).

rw root=UUID=UUID Specifies that the root (/) file system is to be
mounted read-writable at boot time, and
specifies the root partition by its UUID.

selinux=0 Disables SELinux.

SYSFONT=font Specifies the console font, which is written
to /etc/sysconfig/i18n in the initramfs.

Chapter 1
Kernel Boot Parameters

1-6

The kernel boot parameters that were last used to boot a system are recorded in /proc/
cmdline, for example:

sudo cat /proc/cmdline

BOOT_IMAGE=(hd0,msdos1)/vmlinuz-4.18.0-80.el8.x86_64 root=/dev/mapper/ol-root
ro \
crashkernel=1G-4G:192M,4G-64G:256M,64G-:512M resume=/dev/mapper/ol-swap
rd.lvm.lv=ol/root \
rd.lvm.lv=ol/swap rhgb quiet

For more information, see the kernel-command-line(7) manual page.

Modifying Kernel Boot Parameters Before Booting
To modify boot parameters before booting a kernel, follow these steps:

1. When the GRUB boot menu appears at the beginning of the boot process, use the arrow
keys to highlight the required kernel and press the space bar.

2. Press E to edit the boot configuration for the kernel.

3. Use the arrow keys to bring the cursor to the end of the line that starts with linux, which is
the boot configuration line for the kernel.

4. Modify the boot parameters.

You can add parameters such as systemd.target=runlevel1.target, which instructs the
system to boot into the rescue shell.

5. Press Ctrl+X to boot the system.

Modifying GRUB 2 Default Kernel Boot Parameters
To modify the boot parameters for the GRUB 2 configuration so that these parameters are
applied by default at every reboot, follow these steps:

1. Edit /etc/default/grub and add parameter settings to the GRUB_CMDLINE_LINUX
definition, for example:

GRUB_CMDLINE_LINUX="vconsole.font=latarcyrheb-sun16 vconsole.keymap=uk
crashkernel=1G-4G:192M,4G-64G:256M,64G-:512M rd.lvm.lv=ol/swap
rd.lvm.lv=ol/root biosdevname=0
rhgb quiet systemd.unit=runlevel3.target"

This example adds the parameter systemd.unit=runlevel3.target so that the system
boots into multiuser, nongraphical mode by default.

2. Rebuild /boot/grub2/grub.cfg:

sudo grub2-mkconfig -o /boot/grub2/grub.cfg

The change takes effect at the next system reboot of all configured kernels.

Chapter 1
Modifying Kernel Boot Parameters Before Booting

1-7

Note:

For systems that boot with UEFI, the grub.cfg file is located in the /
boot/efi/EFI/redhat directory because the boot configuration is stored on a
dedicated FAT32-formatted partition.

After the system has successfully booted, the EFI folder on that partition is mounted
inside the /boot/efi directory on the root file system for Oracle Linux.

Chapter 1
Modifying GRUB 2 Default Kernel Boot Parameters

1-8

2
Managing System Services With systemd

The systemd daemon is the system initialization and service manager in Oracle Linux. This
chapter describes how to use systemd to manage system processes, services and systemd
targets.

Tip:

See Use systemd on Oracle Linux for a hands-on tutorial and video demonstrations
on working with systemd in Oracle Linux.

About the systemd Service Manager
The systemd daemon is the first process that starts after a system boots and is the final
process that's running when the system shuts down. systemd controls the final stages of
booting and prepares the system for use. It also speeds up booting by loading services
concurrently.

systemd reads its configuration from files in the /etc/systemd directory. For example,
the /etc/systemd/system.conf file controls how systemd handles system initialization.

The systemd daemon starts services during the boot process by reading the symbolic
link /etc/systemd/system/default.target. The following example shows the value
of /etc/systemd/system/default.target on a system configured to boot to a multiuser
mode without a graphical user interface, a target called multi-user.target:

sudo ls -l /etc/systemd/system/default.target

 /etc/systemd/system/default.target -> /usr/lib/systemd/system/multi-
user.target

Note:

You can use a kernel boot parameter to override the default system target. See
Kernel Boot Parameters.

systemd Units
systemd organizes the different types of resources it manages into units. Most units are
configured in unit configuration files that enable you to configure these units according to
system needs. In addition to the files, you can also use systemd runtime commands to
configure the units.

2-1

https://docs.oracle.com/en/learn/use_systemd/

The following list describes some system units that you can manage on an Oracle Linux
system by using systemd:

Services
Service unit configuration files have the filename format service_name.service, for example
sshd.service, crond.service, and httpd.service.
Service units start and control daemons and the processes of which the daemons consist.
The following example shows how you might start the systemd service unit for the Apache
HTTP server, httpd.service:

sudo systemctl start httpd.service

Targets
Target unit configuration files have the filename format target_name.target, for example
graphical.target.
Targets are similar to runlevels. A system reaches different targets during the boot process as
resources get configured. For example, a system reaches network-pre.target before it
reaches the target network-online.target.
Many target units have dependencies. For example, the activation of graphical.target (for a
graphical session) fails unless multi-user.target (for multiuser system) is also active.

File System Mount Points
Mount unit configuration files have the filename format mount_point_name.mount.
Mount units enable you to mount filesystems at boot time. For example, you can run the
following command to mount the temporary file system (tmpfs) on /tmp at boot time:

sudo systemctl enable tmp.mount

Devices
Device unit configuration files have the filename format device_unit_name.device.
Device units are named after the /sys and /dev paths they control. For example, the
device /dev/sda5 is exposed in systemd as dev-sda5.device.
Device units enable you to implement device-based activation.

Sockets
Socket unit configuration files have the filename format socket_unit_name.socket.
Each "*.socket" file needs a corresponding "*.service" file to configure the service to start on
incoming traffic on the socket.
Socket units enable you to implement socket-based activation.

Timers
Timer unit configuration files have the filename format timer_unit_name.timer.
Each "*.timer" file needs a corresponding "*.service" file to configure the service to start at a
configured timer event. A Unit configuration entry can be used to specify a service that's
named differently to the timer unit, if required.
Timer units can control when service units are run and can act as an alternative to using the
cron daemon. Timer units can be configured for calendar time events, monotonic time events,
and can be run asynchronously.

Paths to systemd unit configuration files vary depending on their purpose and whether systemd
is running in 'user' or 'system' mode. For example, configuration for units that are installed from
packages might be available in /usr/lib/systemd/system or in /usr/local/lib/
systemd/system, while a user mode configuration unit is likely to be stored
in $HOME/.config/systemd/user. See the systemd.unit(5) manual page for more information.

Chapter 2
About the systemd Service Manager

2-2

See About System-State Targets.

About System-State Targets
By using system-state targets, you can control systemd so that it starts only the services that
are required for a specific purpose. For example, you set the default target to multi-
user.target on a production server so that the graphical user interface isn't used when the
system boots. In a case where you need to troubleshoot or perform diagnostics, you might
consider setting the target to rescue.target, where only root logs onto the system to run the
minimum number of services.

Each run level defines the services that systemd stops or starts. As an example, systemd starts
network services for multi-user.target and the X Window System for graphical.target,
and stops both services for rescue.target.

Table 2-1 shows the commonly used system-state targets and the equivalent runlevel targets.

Table 2-1 System-State Targets and Equivalent Runlevel Targets

System-State Targets Equivalent Runlevel Targets Description

graphical.target runlevel5.target Set up a multiuser system with
networking and display
manager.

multi-user.target runlevel2.target
runlevel3.target
runlevel4.target

Set up a nongraphical
multiuser system with
networking.

poweroff.target runlevel0.target Shut down and power off the
system.

reboot.target runlevel6.target Shut down and reboot the
system.

rescue.target runlevel1.target Set up a rescue shell.

Note that runlevel* targets are implemented as symbolic links.

For more information, see the systemd.target(5) manual page.

Displaying Default and Active System-State Targets
To display the default system-state target, use the systemctl get-default command:

sudo systemctl get-default

graphical.target

Chapter 2
About System-State Targets

2-3

To display the active targets on a system, use the systemctl list-units --type
target command:

sudo systemctl list-units --type target [--all]

UNIT LOAD ACTIVE SUB DESCRIPTION
basic.target loaded active active Basic System
cryptsetup.target loaded active active Local Encrypted Volumes
getty.target loaded active active Login Prompts
graphical.target loaded active active Graphical Interface
local-fs-pre.target loaded active active Local File Systems (Pre)
local-fs.target loaded active active Local File Systems
multi-user.target loaded active active Multi-User System
network-online.target loaded active active Network is Online
network-pre.target loaded active active Network (Pre)
network.target loaded active active Network
nfs-client.target loaded active active NFS client services
nss-user-lookup.target loaded active active User and Group Name Lookups
paths.target loaded active active Paths
remote-fs-pre.target loaded active active Remote File Systems (Pre)
remote-fs.target loaded active active Remote File Systems
rpc_pipefs.target loaded active active rpc_pipefs.target
rpcbind.target loaded active active RPC Port Mapper
slices.target loaded active active Slices
sockets.target loaded active active Sockets
sound.target loaded active active Sound Card
sshd-keygen.target loaded active active sshd-keygen.target
swap.target loaded active active Swap
sysinit.target loaded active active System Initialization
timers.target loaded active active Timers

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.

24 loaded units listed. Pass --all to see loaded but inactive units, too.
To show all installed unit files use 'systemctl list-unit-files'.

The output for a system with the graphical target active shows that this target depends on
other active targets, including network and sound to support networking and sound.

Use the --all option to include inactive targets in the list.

For more information, see the systemctl(1) and systemd.target(5) manual pages.

Chapter 2
About System-State Targets

2-4

Note:

Target is only one of systemd types of units. To display all the types of units, use the
following command:

sudo systemctl -t help

Available unit types:
service
mount
swap
socket
target
device
automount
timer
path
slice
scope

Changing Default and Active System-State Targets
Use the systemctl set-default command to change the default system-state target:

sudo systemctl set-default multi-user.target

Removed /etc/systemd/system/default.target.
Created symlink /etc/systemd/system/default.target → /usr/lib/systemd/system/
multi-user.target

Note:

This command changes the target to which the default target is linked, but doesn't
change the state of the system.

To change the current active system target, use the systemctl isolate command, for
example:

sudo systemctl isolate multi-user.target

For more information, see the systemctl(1) manual page.

Chapter 2
About System-State Targets

2-5

Shutting Down, Suspending, and Rebooting the System
Table 2-2 systemctl Commands for Shutting Down, Suspending, and Rebooting a
System

systemctl Command Description

systemctl halt Halt the system.

systemctl hibernate Put the system into hibernation.

systemctl hybrid-sleep Put the system into hibernation and suspend its
operation.

systemctl poweroff Halt and power off the system.

systemctl reboot Reboot the system.

systemctl suspend Suspend the system.

For more information, see the systemctl(1) manual page.

Managing Services
Services in an Oracle Linux system are managed by the systemctl subcommand command.

Examples of subcommands are enable, disable, stop, start, restart, reload, and status.

For more information, see the systemctl(1) manual page.

Starting and Stopping Services
To start a service, use the systemctl start command:

sudo systemctl start sshd

To stop a service, use the systemctl stop command:

sudo systemctl stop sshd

Changing the state of a service only lasts while the system remains at the same state. If you
stop a service and then change the system-state target to one in which the service is
configured to run (for example, by rebooting the system), the service restarts. Similarly, starting
a service doesn't enable the service to start following a reboot. See Enabling and Disabling
Services.

Chapter 2
Shutting Down, Suspending, and Rebooting the System

2-6

Enabling and Disabling Services
You can use the systemctl command to enable or disable a service from starting when the
system boots, for example:

sudo systemctl enable httpd

Created symlink /etc/systemd/system/multi-user.target.wants/httpd.service
→ /usr/lib/systemd/system/httpd.service.

The enable command activates a service by creating a symbolic link for the lowest-level
system-state target at which the service should start. In the previous example, the command
creates the symbolic link httpd.service for the multi-user target.

Disabling a service removes the symbolic link:

sudo systemctl disable httpd

Removed /etc/systemd/system/multi-user.target.wants/httpd.service.

To check whether a service is enabled, use is-enabled subcommand as shown in the
following examples:

sudo systemctl is-enabled httpd

disabled

sudo systemctl is-enabled sshd

enabled

After running the systemctl disable command, the service can still be started or stopped
by user accounts, scripts, and other processes. However, if you need to ensure that the service
might be started inadvertently, for example, by a conflicting service, then use the systemctl
mask command as follows:

sudo systemctl mask httpd

Created symlink from '/etc/systemd/system/multi-user.target.wants/
httpd.service' to '/dev/null'

Chapter 2
Managing Services

2-7

The mask command sets the service reference to /dev/null. If you try to start a service that
has been masked, you will receive an error as shown in the following example:

sudo systemctl start httpd

Failed to start httpd.service: Unit is masked.

To relink the service reference back to the matching service unit configuration file, use the
systemctl unmask command:

sudo systemctl unmask httpd

For more information, see the systemctl(1) manual page.

Displaying the Status of Services
To check whether a service is running, use the is-active subcommand. The output would
either be active) or inactive, as shown in the following examples:

sudo systemctl is-active httpd

active

systemctl is-active sshd

inactive

The status subcommand provides a detailed summary of the status of a service, including a
tree that displays the tasks in the control group (CGroup) that the service implements:

sudo systemctl status httpd

httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled; vendor
preset: disabled)
 Active: active (running) since ...
 Docs: man:httpd.service(8)
 Main PID: 11832 (httpd)
 Status: "Started, listening on: port 80"
 Tasks: 213 (limit: 26213)
 Memory: 32.5M
 CGroup: /system.slice/httpd.service
 ├─11832 /usr/sbin/httpd -DFOREGROUND
 ├─11833 /usr/sbin/httpd -DFOREGROUND
 ├─11834 /usr/sbin/httpd -DFOREGROUND
 ├─11835 /usr/sbin/httpd -DFOREGROUND
 └─11836 /usr/sbin/httpd -DFOREGROUND

Chapter 2
Managing Services

2-8

Jul 17 00:14:32 Unknown systemd[1]: Starting The Apache HTTP Server...
Jul 17 00:14:32 Unknown httpd[11832]: Server configured, listening on: port 80
Jul 17 00:14:32 Unknown systemd[1]: Started The Apache HTTP Server.

A cgroup is a collection of processes that are bound together so that you can control their
access to system resources. In the example, the cgroup for the httpd service is
httpd.service, which is in the system slice.

Slices divide the cgroups on a system into different categories. To display the slice and cgroup
hierarchy, use the systemd-cgls command:

sudo systemd-cgls

Control group /:
-.slice
├─user.slice
│ └─user-1000.slice
│ ├─user@1000.service
│ │ └─init.scope
│ │ ├─6488 /usr/lib/systemd/systemd --user
│ │ └─6492 (sd-pam)
│ └─session-7.scope
│ ├─6484 sshd: root [priv]
│ ├─6498 sshd: root@pts/0
│ ├─6499 -bash
│ ├─6524 sudo systemd-cgls
│ ├─6526 systemd-cgls
│ └─6527 less
├─init.scope
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 16
└─system.slice
 ├─rngd.service
 │ └─1266 /sbin/rngd -f --fill-watermark=0
 ├─irqbalance.service
 │ └─1247 /usr/sbin/irqbalance --foreground
 ├─libstoragemgmt.service
 │ └─1201 /usr/bin/lsmd -d
 ├─systemd-udevd.service
 │ └─1060 /usr/lib/systemd/systemd-udevd
 ├─polkit.service
 │ └─1241 /usr/lib/polkit-1/polkitd --no-debug
 ├─chronyd.service
 │ └─1249 /usr/sbin/chronyd
 ├─auditd.service
 │ ├─1152 /sbin/auditd
 │ └─1154 /usr/sbin/sedispatch
 ├─tuned.service
 │ └─1382 /usr/libexec/platform-python -Es /usr/sbin/tuned -l -P
 ├─systemd-journald.service
 │ └─1027 /usr/lib/systemd/systemd-journald
 ├─atd.service
 │ └─1812 /usr/sbin/atd -f
 ├─sshd.service
 │ └─1781 /usr/sbin/sshd

Chapter 2
Managing Services

2-9

The system.slice contains services and other system processes. user.slice contains user
processes, which run within transient cgroups called scopes. In the example, the processes for
the user with ID 1000 are running in the scope session-7.scope under the slice /
user.slice/user-1000.slice.

You can use the systemctl command to limit the CPU, I/O, memory, and other resources
that are available to the processes in service and scope cgroups. See Controlling Access to
System Resources.

For more information, see the systemctl(1) and systemd-cgls(1) manual pages.

Controlling Access to System Resources
Use the systemctl command to control a cgroup's access to system resources, for example:

sudo systemctl [--runtime] set-property httpd CPUShares=512 MemoryLimit=1G

CPUShare controls access to CPU resources. As the default value is 1024, a value of 512
halves the access to CPU time that the processes in the cgroup have. Similarly, MemoryLimit
controls the maximum amount of memory that the cgroup can use.

Note:

You don't need to specify the .service extension to the name of a service.

If you specify the --runtime option, the setting doesn't persist across system
reboots.

Alternatively, you can change the resource settings for a service under the [Service] heading
in the service's configuration file in /usr/lib/systemd/system. After editing the file, make
systemd reload its configuration files and then restart the service:

sudo systemctl daemon-reload
sudo systemctl restart service

You can run general commands within scopes and use systemctl to control the access that
these transient cgroups have to system resources. To run a command within in a scope, use
the systemd-run command:

sudo systemd-run --scope --unit=group_name [--slice=slice_name]

If you don't want to create the group under the default system slice, you can specify another
slice or the name of a new slice. The following example runs a command named mymonitor
in mymon.scope under myslice.slice:

sudo systemd-run --scope --unit=mymon --slice=myslice mymonitor

Running as unit mymon.scope.

Chapter 2
Managing Services

2-10

Note:

If you don't specify the --scope option, the control group is a created as a service
rather than as a scope.

You can then use systemctl to control the access that a scope has to system resources in
the same way as for a service. However, unlike a service, you must specify the .scope
extension, for example:

sudo systemctl --runtime set-property mymon.scope CPUShares=256

For more information see the systemctl(1), systemd-cgls(1), and systemd.resource-
control(5) manual pages.

Running systemctl on a Remote System
If the sshd service is running on a remote Oracle Linux system, specify the -H option with the
systemctl command to control the system remotely, for example:

sudo systemctl -H root@10.0.0.2 status sshd

root@10.0.0.2's password: password
sshd.service - OpenSSH server daemon
 Loaded: loaded (/usr/lib/systemd/system/sshd.service; enabled)
 Active: active (running) since ...
 Process: 1498 ExecStartPre=/usr/sbin/sshd-keygen (code=exited, status=0/
SUCCESS)
 Main PID: 1524 (sshd)
 CGroup: /system.slice/sshd.service

For more information see the systemctl(1) manual page.

Modifying systemd Service Unit Files
To change the configuration of systemd services, copy the files with .service, .target, .mount
and .socket extensions from /usr/lib/systemd/system to /etc/systemd/system.

After you have copied the files, you can edit the versions in /etc/systemd/system. The files
in /etc/systemd/system take precedence over the versions in /usr/lib/systemd/
system. Files in /etc/systemd/system aren't overwritten when you update a package that
touches files in /usr/lib/systemd/system.

To revert to the default systemd configuration for a particular service, you can either rename or
delete the copies in /etc/systemd/system.

The following sections describe the different parts of a service unit file that you can edit and
customize for a system.

Chapter 2
Modifying systemd Service Unit Files

2-11

About Service Unit Files
Services run based on their corresponding service unit files. A service unit file typically
contains the following sections, with each section having its respective defined options that
determine how a specific service runs:

[Unit]
Contains information about the service.

[UnitType]:
Contains options that are specific to the unit type of the file. For example, in a service unit file
this section is titled [Service] and contains options that are specific to units of the service
type, such as ExecStart or StandardOutput.
Only those unit types that offer options specific to their type have such a section.

[Install]
Contains installation information for the specific unit. The information in this section is used by
the systemctl enable and systemctl disable commands.

A service unit file might contain the following configurations for a service.

[Unit]
Description=A test service used to develop a service unit file template

[Service]
Type=simple
StandardOutput=journal
ExecStart=/usr/lib/systemd/helloworld.sh

[Install]
WantedBy=default.target

Configurable Options in Service Unit Files describes some commonly used configured options
available under each section. A complete list is also available in the systemd.service(5) and
systemd.unit(5) manual pages.

Configurable Options in Service Unit Files
Each of the following lists deals with a separate section of the service unit file.

Description of Options Under [Unit] Section

The following list provides a general overview of the commonly used configurable options
available in the [Unit] section of service unit file:

Description
Provides information about the service. The information is displayed when you run the
systemctl status command on the unit.

Documentation
Contains a space-separated list of URIs referencing documentation for this unit or its
configuration.

Chapter 2
Modifying systemd Service Unit Files

2-12

After
Configures the unit to only run after the units listed in the option finish starting up.
In the following example, if the file var3.service has the following entry, then it's only started
after units var1.service and var2.service have started:

 After=var1.service var2.service

Requires
Configures a unit to have requirement dependencies on other units. If a unit is activated, those
listed in its Requires option are also activated.

Wants
A less stringent version of the Requires option. For example, a specific unit can be activated
even if one of those listed in its Wants option fails to start.

Description of Options Under [Service] Section

This following list gives a general overview of the commonly used configurable options
available in the [Service] section of a service unit file.

Type
Configures the process start-up type for the service unit.
By default, this parameter's value is simple, which indicates that the service's main process is
that which is started by the ExecStart parameter.
Typically, if a service's type is simple, then the definition can be omitted from the file.

StandardOutput
Configures the how the service's events are logged. For example, consider a service unit file
has the following entry:

StandardOutput=journal

In the example, the value journal indicates that the events are recorded in the journal, which
can be viewed by using the journalctl command.

ExecStart
Specifies the full path and command that starts the service, for example, /usr/bin/npm
start.

ExecStop
Specifies the commands to run to stop the service started through ExecStart.

ExecReload
Specifies the commands to run to trigger a configuration reload in the service.

Restart
Configures whether the service is to be restarted when the service process exits, is stopped,
or when a timeout is reached.

Chapter 2
Modifying systemd Service Unit Files

2-13

Note:

This option doesn't apply when the process is stopped cleanly by a systemd
operation, for example a systemctl stop or systemctl restart. In these cases, the
service isn't restarted by this configuration option.

RemainAfterExit
A Boolean value that configures whether the service is to be considered active even when all
of its processes have exited. The default value is no.

Description of Options Under [Install] Section

This following list gives a general overview of the commonly used configurable options
available in the [Install] section of service unit file.

Alias
A space-separated list of names for a unit.
At installation time, systemctl enable creates symlinks from these names to the unit
filename.
Aliases are only effective when the unit is enabled.

RequiredBy
Configures the service to be required by other units.
For example, consider a unit file var1.service that has the following configuration added to it:

RequiredBy=var2.service var3.service

When var1.service is enabled, both var2.service and var3.service are granted a
Requires dependency upon var1.service. This dependency is defined by a symbolic link
that's created in the .requires folder of each dependent service (var2.service and
var3.service) that points to the var1.service system unit file.

WantedBy
Specifies a list of units that are to be granted a wants dependency upon the service whose file
you're editing.
For example, consider a unit file var1.service that has the following configuration added to it:

WantedBy=var2.service var3.service

When var1.service is enabled, both var2.service and var3.service are granted a Wants
dependency upon var1.service. This dependency is defined by a symbolic link that's created
in the “.wants” folder of each dependent service (var2.service and var3.service) that points
to the system unit file for var1.service .

Also
Lists additional units to install or remove when the unit is installed or removed.

DefaultInstance
The DefaultInstance option applies to template unit files only.
Template unit files enable the creation of multiple units from a single configuration file. The
DefaultInstance option specifies the instance for which the unit is enabled if the template is
enabled without any explicitly set instance.

Chapter 2
Modifying systemd Service Unit Files

2-14

Creating a User-Based systemd Service
In addition to the system-wide systemd files, systemd enables you to create user-based
services that you can run from a user level without requiring root access and privileges. These
user-based services are under user control and are configurable independent of system
services.

The following are some distinguishing features of user-based systemd services:

• User-based systemd services are linked with a specific user account.

• They're created under the associated user’s home directory in $HOME/.config/systemd/
user/.

• After these services are enabled, they start when the associated user logs in. This
behavior differs from that of enabled systemd services which start when the system boots.

This feature is useful when creating podman container services. For more information about
podman, see Oracle Linux: Podman User's Guide.

To create a user based service:

1. Create the service's unit file in the ~/.config/systemd/user directory, for example:

touch ~/.config/systemd/user/myservice.service

2. Open the unit file and specify the values to the options you want to use, such as
Description, ExecStart, WantedBy, and so on.

For reference, see Configurable Options in Service Unit Files and the systemd.service(5)
and systemd.unit(5) manual pages.

3. Enable the service to start automatically when you log in.

sudo systemctl --user enable myservice.service

Note:

When you log out, the service is stopped unless the root user has enabled
processes to continue to run for the user.

See Use systemd on Oracle Linux for more information.

4. Start the service.

sudo systemctl --user start myservice.service

5. Verify that the service is running.

sudo systemctl --user status myservice.service

Chapter 2
Creating a User-Based systemd Service

2-15

https://docs.oracle.com/en/operating-systems/oracle-linux/podman/
https://docs.oracle.com/en/learn/use_systemd/

Using Timer Units to Control Service Unit Runtime
Timer units can be configured to control when service units run. You can use timer units
instead of configuring the cron daemon for time-based events. Timer units can be more
complicated to configure than creating a crontab entry. However, timer units are more
configurable and the services that they control can be configured for better logging and deeper
integration with systemd architecture.

Timer units are started, enabled, and stopped similarly to service units. For example, to enable
and start a timer unit immediately, type:

sudo systemctl enable --now myscript.timer

To list all existing timers on the system, to see when they last ran, and when they're next
configured to run, type:

systemctl list-timers

For more information about system timers, see the systemd.timer(5) and systemd.time(7)
manual pages.

Configuring a Realtime Timer Unit
Realtime timers activate on a calendar event, similar to events in a crontab. The option
OnCalendar specifies when the timer runs a service.

• If needed, create a .service file that defines the service to be triggered by the timer unit.
In the following procedure, the sample service is /etc/systemd/system/
update.service which is a service unit that runs an update script.

For more information about creating service units, see Creating a User-Based systemd
Service.

• Decide the time and frequency for running the service. In this procedure, the timer is
configured to run the service every 2 hours from Monday to Friday.

This task shows you how to create a system timer to trigger a service to run based on a
calendar event. The definition of the calendar event is similar to entries that you put in a cron
job.

1. Create the /etc/systemd/system/update.timer with the following content:

[Unit]
Description="Run the update.service every two hours from Mon to Fri."

[Timer]
OnCalendar=Mon..Fri 00/2
Unit=update.service

[Install]
WantedBy=multi-user.target

Chapter 2
Using Timer Units to Control Service Unit Runtime

2-16

Defining OnCalendar can vary from a simple wetting such as OnCalendar=weekly
definitions that are more detailed. However, the format for defining settings is constant, as
follows:

DayofWeek Year-Month-Day Hour:Minute:Second

The following definition means "the first 4 days of each month at 12:00 o'clock noon, but
only if that day is either a Monday or a Tuesday":

OnCalendar=Mon,Tue *-*-01..04 12:00:00

For other ways to define OnCalendar and for more timer options that you can configure in
the system timer file, see the systemd.timer(5) and systemd.time(7) manual pages.

2. Check that all the files related to this timer are configured correctly.

systemd-analyze verify /etc/systemd/system/update.*

Any detected errors are reported on the screen.

3. Start the timer.

sudo systemctl start update.timer

This command starts the timer for the current session only.

4. Ensure that the timer starts when the system is booted.

sudo systemctl enable update.timer

Configuring a Monotonic Timer Unit
Monotonic timers that activate after a time span relative to a varying starting point, such as a
boot event, or when a particular systemd unit becomes active. These timer units stop if the
computer is temporarily suspended or shut down. Monotonic timers are configured by using
the OnTypeSec option, where Type is the name of the event to which the timer is related.
Common monotonic timers include OnBootSec and OnUnitActiveSec.

• If needed, create a .service file that defines the service to be triggered by the timer unit.
In the following procedure, the sample service is /etc/systemd/system/
update.service which is a service unit that runs an update script.

For more information about creating service units, see Creating a User-Based systemd
Service.

• Decide the time and frequency for running the service. In this procedure, the timer is
configured to run the service 10 minutes after a system boot, and every 2 hours from when
the service is last activated.

This task shows you how to create a system timer to trigger a service to run at specific events,
which are when the system boots or after 2 hours have lapsed from the timer's activation.

Chapter 2
Using Timer Units to Control Service Unit Runtime

2-17

1. Create the /etc/systemd/system/update.timer with the following content:

[Unit]
Description="Run the update.service every two hours from Mon to Fri."

[Timer]
OnBootSec=10min
OnUnitActiveSec=2h
Unit=update.service

[Install]
WantedBy=multi-user.target

For more timer options that you can configure in the system timer, see the
systemd.timer(5) and systemd.time(7) manual pages.

2. Check that all the files related to this timer are configured correctly.

systemd-analyze verify /etc/systemd/system/update.*

Any detected errors are reported on the screen.

3. Start the timer.

sudo systemctl start update.timer

This command starts the timer for the current session only.

4. Ensure that the timer starts when the system is booted.

sudo systemctl enable update.timer

Running a Transient Timer Unit
Transient timers are temporary timers that are valid only for the current session. These timers
can be created to run a program or script directly without requiring service or timer units to be
configured within systemd. These units are generated by using the systemd-run command.
See the systemd-run(1) manual page for more information.

The parameter options that you would add to the unit-file.timer file also serve as
arguments when you use systemd-run command to run a transient timer unit.

The following examples show how to use systemd-run to activate transient timers.

• Run update.service after 2 hours have elapsed.

sudo systemd-run --on-active="2h" --unit update.service

• Create ~/tmp/myfile after 1 hour.

sudo systemd-run --on-active="1h" /bin/touch ~/tmp/myfile

Chapter 2
Using Timer Units to Control Service Unit Runtime

2-18

• Run ~/myscripts/update.sh 5 minutes after the service manager is started. Use this
syntax to run a service after the service manager has started at user login.

sudo systemd-run --on-startup="5m" ~/myscripts/update.sh

• Run myjob.service 10 minutes after system boot.

sudo systemd-run --on-boot="10m" --unit myjob.service

• Run report.service at the end of the day.

sudo systemd-run --on-calendar="17:00:00"

Chapter 2
Using Timer Units to Control Service Unit Runtime

2-19

3
Configuring System Settings

This chapter describes the files and virtual file systems that you can use to change the
configuration settings for the system.

Also see Configure System Settings on Oracle Linux for a hands-on tutorial on how to
configure system settings as described in this chapter.

About the /etc/sysconfig Files
The /etc/sysconfig directory contains files that control the system's configuration. The
contents of this directory depend on the packages that you have installed on the system.

Certain files that you might find in the /etc/sysconfig directory include the following:

atd
Specifies command line arguments for the atd daemon.

crond
Passes arguments to the crond daemon at boot time.

chronyd
Passes arguments to the chronyd daemon used for NTP services at boot time.

firewalld
Passes arguments to the firewall daemon (firewalld) at boot time.

named
Passes arguments to the name service daemon at boot time. The named daemon is a Domain
Name System (DNS) server that's part of the Berkeley Internet Name Domain (BIND)
distribution. This server maintains a table that associates host names with IP addresses on
the network.

samba
Passes arguments to the smbd, nmbd, and winbindd daemons at boot time to support file-
sharing connectivity for Windows clients, NetBIOS-over-IP naming service, and connection
management to domain controllers.

selinux
Controls the state of SELinux on the system. This file is a symbolic link to /etc/selinux/
config.
For more information, see Oracle Linux: Administering SELinux.

snapper
Defines a list of btrfs file systems and thinly provisioned LVM volumes whose contents can be
recorded as snapshots by the snapper utility.
For more information, see Oracle Linux 9: Managing Local File Systems.

sysstat
Configures logging parameters for system activity data collector utilities such as sar.

3-1

https://docs.oracle.com/en/learn/ol-sysctl/
https://docs.oracle.com/en/operating-systems/oracle-linux/selinux/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/fsadmin/

For more information, see /usr/share/doc/initscripts*/sysconfig.txt.

About the /proc Virtual File System
The files in the /proc directory hierarchy contain information about the system hardware and
the processes that are running on the system. You can change the configuration of the kernel
by writing to certain files that have write permission.

Files that are under the /proc directory are virtual files that the kernel creates on demand to
present a browsable view of the underlying data structures and system information. As such, /
proc is an example of a virtual file system. Most virtual files are listed as 0 bytes in size, but
they contain large amount of information when viewed.

Virtual files such as /proc/interrupts, /proc/meminfo, /proc/mounts, and /proc/
partitions provide a view of the system’s hardware. Other files, such as /proc/
filesystems and the files under /proc/sys, provide information about the system's
configuration and through which you can change configurations as needed.

Files that contain information about related topics are grouped into virtual directories. A
separate directory exists in the /proc directory for each process that's running on the system.
The directory's name corresponds to the numeric process ID. For example, /proc/1
corresponds to the systemd process that has a PID of 1.

To examine virtual files, you can use commands such as cat, less, and view, as shown in
the following example:

cat /proc/cpuinfo

processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 42
model name : Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz
stepping : 7
cpu MHz : 2393.714
cache size : 6144 KB
physical id : 0
siblings : 2
core id : 0
cpu cores : 2
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 5
wp : yes
...

Chapter 3
About the /proc Virtual File System

3-2

For files that contain nonhuman-readable content, you can use utilities such as lspci, free,
top, and sysctl to access information. For example, the lspci command lists PCI devices
on a system:

sudo lspci

00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
00:01.1 IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev 01)
00:02.0 VGA compatible controller: InnoTek Systemberatung GmbH VirtualBox
Graphics Adapter
00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet
Controller (rev 02)
00:04.0 System peripheral: InnoTek Systemberatung GmbH VirtualBox Guest
Service
00:05.0 Multimedia audio controller: Intel Corporation 82801AA AC'97 Audio
Controller (rev 01)
00:06.0 USB controller: Apple Inc. KeyLargo/Intrepid USB
00:07.0 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 08)
00:0b.0 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family)
USB2 EHCI Controller
00:0d.0 SATA controller: Intel Corporation 82801HM/HEM (ICH8M/ICH8M-E) SATA
Controller [AHCI mode]
 (rev 02)
...

Virtual Files and Directories Under /proc
The following table describes the most useful virtual files and directories under the /proc
directory hierarchy.

Chapter 3
About the /proc Virtual File System

3-3

Table 3-1 Useful Virtual Files and Directories Under the /proc Directory

Virtual File or Directory Description

PID (Directory) Provides information about the process with
the process ID (PID). The directory's owner and
group is same as the process's. Useful files
under the directory include:

cmdline
Command path.

cwd
Symbolic link to the process's current working
directory.

environ
Environment variables.

exe
Symbolic link to the command executable.

fd/N
File descriptors.

maps
Memory maps to executable and library files.

root
Symbolic link to the effective root directory for
the process.

stack
The contents of the kernel stack.

status
Run state and memory usage.

buddyinfo Provides information for diagnosing memory
fragmentation.

bus (directory) Contains information about the various buses
(such as pci and usb) that are available on the
system. You can use commands such as lspci,
lspcmcia, and lsusb to display information
for such devices.

cgroups Provides information about the resource
control groups that are in use on the system.

cmdline Lists parameters passed to the kernel at boot
time.

cpuinfo Provides information about the system's CPUs.

crypto Provides information about all installed
cryptographic cyphers.

devices Lists the names and major device numbers of
all currently configured characters and block
devices.

Chapter 3
About the /proc Virtual File System

3-4

Table 3-1 (Cont.) Useful Virtual Files and Directories Under the /proc Directory

Virtual File or Directory Description

dma Lists the direct memory access (DMA) channels
that are currently in use.

driver (directory) Contains information about drivers used by the
kernel, such as those for nonvolatile RAM
(nvram), the real-time clock (rtc), and memory
allocation for sound (snd-page-alloc).

execdomains Lists the execution domains for binaries that
the Oracle Linux kernel provides.

filesystems Lists the file system types that the kernel
provides. Entries marked with nodev aren't in
use.

fs (directory) Contains information about mounted file
systems, organized by file system type.

interrupts Records the number of interrupts per interrupt
request queue (IRQ) for each CPU after system
startup.

iomem Lists the system memory map for each physical
device.

ioports Lists the range of I/O port addresses that the
kernel uses with devices.

irq (directory) Contains information about each IRQ. You can
configure the affinity between each IRQ and the
system CPUs.

kcore Presents the system's physical memory in core
file format that you can examine using a
debugger such as crash or gdb. This file isn't
human-readable.

kmsg Records kernel-generated messages, which are
picked up by programs such as dmesg.

loadavg Displays the system load averages (number of
queued processes) for the past 1, 5, and 15
minutes, the number of running processes, the
total number of processes, and the PID of the
process that's running.

locks Displays information about the file locks that
the kernel is currently holding on behalf of
processes. The information provided includes:
• lock class (FLOCK or POSIX)
• lock type (ADVISORY or MANDATORY)
• access type (READ or WRITE)
• process ID
• major device, minor device, and inode

numbers
• bounds of the locked region

mdstat Lists information about multiple-disk RAID
devices.

Chapter 3
About the /proc Virtual File System

3-5

Table 3-1 (Cont.) Useful Virtual Files and Directories Under the /proc Directory

Virtual File or Directory Description

meminfo Reports the system's usage of memory in more
detail than is available using the free or top
commands.

modules Displays information about the modules that
are currently loaded into the kernel. The
lsmod command formats and displays the
same information, excluding the kernel
memory offset of a module.

mounts Lists information about all mounted file
systems.

net (directory) Provides information about networking
protocol, parameters, and statistics. Each
directory and virtual file describes aspects of
the configuration of the system's network.

partitions Lists the major and minor device numbers,
number of blocks, and name of partitions
mounted by the system.

scsi/device_info Provides information about SCSI devices.

scsi/scsi and

scsi/sg/*
Provide information about configured SCSI
devices, including vendor, model, channel, ID,
and LUN data .

self Symbolic link to the process that's examining /
proc.

slabinfo Provides detailed information about slab
memory usage.

softirqs Displays information about software interrupts
(softirqs). A softirq is similar to a hardware
interrupt (hardirq) and configures the kernel
to perform asynchronous processing that
would take too long during a hardware
interrupt.

stat Records information about the system from
when it was started, including:

cpu
Total CPU time (measured in jiffies) spent in
user mode, low-priority user mode, system
mode, idle, waiting for I/O, handling hardirq
events, and handling softirq events.

cpuN
Times for CPU N.

swaps Provides information about swap devices. The
units of size and usage are in kilobytes.

Chapter 3
About the /proc Virtual File System

3-6

Table 3-1 (Cont.) Useful Virtual Files and Directories Under the /proc Directory

Virtual File or Directory Description

sys (directory) Provides information about the system and also
enables you to enable, disable, or modify kernel
features. You can write new settings to any file
that has write permission. See Modifying Kernel
Parameters.

The following subdirectory hierarchies of /
proc/sys contain virtual files, some of whose
values you can alter:

dev
Device parameters.

fs
File system parameters.

kernel
Kernel configuration parameters.

net
Networking parameters.

sysvipc (directory) Provides information about the usage of System
V Interprocess Communication (IPC) resources
for messages (msg), semaphores (sem), and
shared memory (shm).

tty (directory) Provides information about the available and
currently used terminal devices on the system.
The drivers virtual file lists the devices that
are currently configured.

vmstat Provides information about virtual memory
usage.

For more information, see the proc(5) manual page.

Modifying Kernel Parameters
Some virtual files under /proc, and especially under /proc/sys, are writable. You can adjust
settings in the kernel through these files. For example, to change the hostname, you would
revise the /proc/sys/kernel/hostname file as follows:

echo www.mydomain.com > /proc/sys/kernel/hostname

Chapter 3
About the /proc Virtual File System

3-7

Other files take binary or Boolean values, such as the setting of IP forwarding, which is defined
in /proc/sys/net/ipv4/ip_forward:

cat /proc/sys/net/ipv4/ip_forward

0

echo 1 > /proc/sys/net/ipv4/ip_forward
cat /proc/sys/net/ipv4/ip_forward

1

You can use the sysctl command to view or modify values under the /proc/sys directory.

Note:

Even root can't bypass the file access permissions of virtual file entries under /
proc. If you change the value of a read-only entry such as /proc/partitions, no
kernel code exists to service the write() system call.

To display the current kernel settings, use the following command:

sysctl -a

kernel.sched_child_runs_first = 0
kernel.sched_min_granularity_ns = 2000000
kernel.sched_latency_ns = 10000000
kernel.sched_wakeup_granularity_ns = 2000000
kernel.sched_shares_ratelimit = 500000
...

Note:

The delimiter character in the name of a setting is a period (.) rather than a slash (/)
in a path relative to /proc/sys, such as net.ipv4.ip_forward. This setting
represents net/ipv4/ip_forward. As another example, kernel.msgmax represents
kernel/msgmax.

To display an individual setting, specify its name as the argument to sysctl:

sysctl net.ipv4.ip_forward
net.ipv4.ip_forward = 0

Chapter 3
About the /proc Virtual File System

3-8

To change the value of a setting, use the following command format:

sysctl -w net.ipv4.ip_forward=1
net.ipv4.ip_forward = 1

Changes that you make in this way remain in force only until the system is rebooted. To make
configuration changes persist after the system is rebooted, you must add them to the /etc/
sysctl.d directory as a configuration file. Any changes that you make to the files in this
directory take effect when the system reboots or if you run the sysctl --system command,
for example:

echo 'net.ipv4.ip_forward=1' > /etc/sysctl.d/ip_forward.conf
grep -r ip_forward /etc/sysctl.d

/etc/sysctl.d/ip_forward.conf:net.ipv4.ip_forward=1

sysctl net.ipv4.ip_forward

net.ipv4.ip_forward = 0

sysctl --system

* Applying /usr/lib/sysctl.d/00-system.conf ...
net.bridge.bridge-nf-call-ip6tables = 0
net.bridge.bridge-nf-call-iptables = 0
net.bridge.bridge-nf-call-arptables = 0
* Applying /usr/lib/sysctl.d/50-default.conf ...
kernel.sysrq = 16
kernel.core_uses_pid = 1
net.ipv4.conf.default.rp_filter = 1
net.ipv4.conf.all.rp_filter = 1
net.ipv4.conf.default.accept_source_route = 0
net.ipv4.conf.all.accept_source_route = 0
net.ipv4.conf.default.promote_secondaries = 1
net.ipv4.conf.all.promote_secondaries = 1
fs.protected_hardlinks = 1
fs.protected_symlinks = 1
* Applying /etc/sysctl.d/99-sysctl.conf ...
* Applying /etc/sysctl.d/ip_forward.conf ...
net.ipv4.ip_forward = 1
* Applying /etc/sysctl.conf ...

sysctl net.ipv4.ip_forward

net.ipv4.ip_forward = 1

For more information, see the sysctl(8) and sysctl.d(5) manual pages.

Chapter 3
About the /proc Virtual File System

3-9

Parameters That Control System Performance
The following parameters control various aspects of system performance:

fs.file-max
Specifies the maximum number of open files for all processes. Increase the value of this
parameter if you see messages about running out of file handles.

kernel.io_uring_disabled
Specifies the disabled setting for creating io_uring instances. io_uring provides an interface
to handle asynchronous I/O operations that can significantly improve performance for storage
and networking. io_uring is supported with UEK and is enabled by default when running UEK
on Oracle Linux.
You can set the following values for the io_uring parameter:

• kernel.io_uring_disabled=0 (default). This setting specifies all processes can create
io_uring instances.

• kernel.io_uring_disabled=1. This setting specifies only processes with CAP_SYS_ADMIN
privileges can create io_uring instances.

• kernel.io_uring_disabled=2. This setting specifies that io_uring instance creation is
disabled for all users.

net.core.netdev_max_backlog
Specifies the size of the receiver backlog queue, which is used if an interface receives packets
faster than the kernel can process them. If this queue is too small, packets are lost at the
receiver, rather than on the network.

net.core.rmem_max
Specifies the maximum read socket buffer size. To minimize network packet loss, this buffer
must be large enough to handle incoming network packets.

net.core.wmem_max
Specifies the maximum write socket buffer size. To minimize network packet loss, this buffer
must be large enough to handle outgoing network packets.

net.ipv4.tcp_available_congestion_control
Displays the TCP congestion avoidance algorithms that are available for use. Use the
modprobe command if you need to load additional modules such as tcp_htcp to implement
the htcp algorithm.

net.ipv4.tcp_congestion_control
Specifies which TCP congestion avoidance algorithm is used.

net.ipv4.tcp_max_syn_backlog
Specifies the number of outstanding SYN requests that are allowed. Increase the value of this
parameter if you see synflood warnings in the logs that are caused by the server being
overloaded by legitimate connection attempts.

net.ipv4.tcp_rmem
Specifies minimum, default, and maximum receive buffer sizes that are used for a TCP
socket. The maximum value can't be larger than net.core.rmem_max.

Chapter 3
About the /proc Virtual File System

3-10

net.ipv4.tcp_wmem
Specifies minimum, default, and maximum send buffer sizes that are used for a TCP socket.
The maximum value can't be larger than net.core.wmem_max.

vm.swappiness
Specifies how likely the kernel is to write loaded pages to swap rather than drop pages from
the system page cache. When set to 0, swapping only occurs to avoid an out of memory
condition. When set to 100, the kernel swaps aggressively. For a desktop system, setting a
lower value can improve system responsiveness by decreasing latency. The default value is
60.

Caution:

This parameter is intended for use with laptop computers to reduce power
consumption by the hard disk. Do not adjust this value on server systems.

Parameters That Control Kernel Panics
The following parameters control the circumstances under which a kernel panic can occur:

kernel.hung_task_panic
If set to 1, the kernel panics if any kernel or user thread sleeps in the TASK_UNINTERRUPTIBLE
state (D state) for more than kernel.hung_task_timeout_secs seconds. A process remains in
D state while waiting for I/O to complete. You can't stop or interrupt a process in this state.
The default value is 0, which disables the panic.

Tip:

To diagnose a hung thread, you can examine /proc/PID/stack, which displays
the kernel stack for both kernel and user threads.

kernel.hung_task_timeout_secs
Specifies how long a user or kernel thread can remain in D state before a warning message is
generated or the kernel panics, if the value of kernel.hung_task_panic is 1. The default value
is 120 seconds. A value of 0 disables the timeout.

kernel.nmi_watchdog
If set to 1 (default), enables the nonmaskable interrupt (NMI) watchdog thread in the kernel. To
use the NMI switch or the OProfile system profiler to generate an undefined NMI, set the value
of kernel.nmi_watchdog to 0.

kernel.panic
Specifies the number of seconds after a panic before a system automatically resets itself.
If the value is 0, which is the default value, the system bcomes suspended, and you can
collect detailed information about the panic for troubleshooting.
To enable automatic reset, set a nonzero value. If you require a memory image (vmcore),
leave enough time for Kdump to create this image. The suggested value is 30 seconds,
although large systems require a longer time.

Chapter 3
About the /proc Virtual File System

3-11

kernel.panic_on_io_nmi
If set to 0 (default), the system tries to continue operations if the kernel detects an I/O channel
check (IOCHK) NMI that typically indicates a uncorrectable hardware error. If set to 1, the
system panics.

kernel.panic_on_oops
If set to 0, the system tries to continue operations if the kernel detects an oops or BUG
condition. If set to 1 (default), the system delays a few seconds to give the kernel log daemon,
klogd, time to record the oops output before the panic occurs.
In an OCFS2 cluster. set the value to 1 to specify that a system must panic if a kernel oops
occurs. If a kernel thread required for cluster operation fails, the system must reset itself.
Otherwise, another node might not detect whether a node is slow to respond or unable to
respond, causing cluster operations to halt.

kernel.panic_on_unrecovered_nmi
If set to 0 (default), the system tries to continue operations if the kernel detects an NMI that
usually indicates an uncorrectable parity or ECC memory error. If set to 1, the system panics.

kernel.softlockup_panic
If set to 0 (default), the system tries to continue operations if the kernel detects a soft-lockup
error that causes the NMI watchdog thread to fail to update its timestamp for more than twice
the value of kernel.watchdog_thresh seconds. If set to 1, the system panics.

kernel.unknown_nmi_panic
If set to 1, the system panics if the kernel detects an undefined NMI. You would usually
generate an undefined NMI by manually pressing an NMI switch. As the NMI watchdog thread
also uses the undefined NMI, set the value of kernel.unknown_nmi_panic to 0 if you set
kernel.nmi_watchdog to 1.

kernel.watchdog_thresh
Specifies the interval between generating an NMI performance monitoring interrupt that the
kernel uses to check for hard-lockup and soft-lockup errors. A hard-lockup error is assumed if
a CPU is unresponsive to the interrupt for more than kernel.watchdog_thresh seconds. The
default value is 10 seconds. A value of 0 disables the detection of lockup errors.

vm.panic_on_oom
If set to 0 (default), the kernel’s OOM-killer scans through the entire task list and stops a
memory-hogging process to avoid a panic. If set to 1, the kernel panics but can survive under
certain conditions. If a process limits allocations to certain nodes by using memory policies or
cpusets, and those nodes reach memory exhaustion status, the OOM-killer can stop one
process. No panic occurs in this case because other nodes’ memory might be free and the
system as a whole might not yet be out of memory. If set to 2, the kernel always panics when
an OOM condition occurs. Settings of 1 and 2 are for intended for use with clusters,
depending on the defined failover policy.

About the /sys Virtual File System
In addition to the /proc file system, the kernel exports information to the /sys virtual file
system (sysfs). Programs such as the dynamic device manager (udev), use /sys to access
device and device driver information.

Chapter 3
About the /sys Virtual File System

3-12

Note:

/sys exposes kernel data structures and control points, which implies that the
directory contains circular references, where a directory links to an ancestor directory.
Thus, a find command used on /sys might never stop.

Virtual Directories Under the /sys Directory
The following table describes some useful virtual directories under the /sys directory
hierarchy.

Table 3-2 Virtual Directories Under /sys

Virtual Directory Description

block Contains subdirectories for block devices. For
example: /sys/block/sda.

bus Contains subdirectories for each physical bus
type, such as pci, pcmcia, scsi, or usb. Under
each bus type, the devices directory lists
discovered devices, and the drivers directory
contains directories for each device driver.

class Contains subdirectories for every class of
device that's registered with the kernel.

dev Contains the char/ and block/ directories.
Inside these two directories are symlinks
named major:minor. These symlinks point to
the sysfs directory for the particular device.
The /sys/dev directory provides a quick way
to look up the sysfs interface for a device from
the result of the stat(2) operation.

devices Contains the global device hierarchy of all
devices on the system. The platform directory
contains peripheral devices such as device
controllers that are specific to a particular
platform. The system directory contains non
peripheral devices such as CPUs and APICs. The
virtual directory contains virtual and pseudo
devices. See Managing System Devices.

firmware Contains subdirectories for firmware objects.

fs Contains subdirectories for file system objects.

kernel Contains subdirectories for other kernel objects

module Contains subdirectories for each module loaded
into the kernel. You can alter some parameter
values for loaded modules. See About Module
Parameters.

power Contains attributes that control the system's
power state.

For more information, see https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt.

Chapter 3
About the /sys Virtual File System

3-13

https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt

Configuring System Language (Locale) and Keyboard Settings
System-wide preferences for language and keyboard are stored in the locale configuration file
(/etc/locale.conf). You can query and change these settings as needed using
localectl command. Note that the systemd process reads the locale configuration file at
boot and applies these settings to every system-wide service, user interface, and user profile,
unless they're overridden by other programs or users. For more information about configuring
these system-wide settings, see:

• Changing the Language Setting

• Changing the Keyboard Layout

Note:

System-wide preferences for language and keyboard are also configurable during
installation. For details on how to configure these settings at installation, see Oracle
Linux 9: Installing Oracle Linux.

Changing the Language Setting
The system locale language setting defines the language in which text appears in the Linux
user interfaces (text-based and graphical).

To query and change the language setting on the system, follow these steps:

1. To check the current language locale set on the system, type:

localectl status

For example, the following system language locale output indicates: English (en) as the
language, US as the country code, and UTF-8 as the codeset.

 System Locale: LANG=en_US.UTF-8
2. To list all possible language locales available on the system, type:

localectl list-locales

To search the output for a specific language locale, use the grep command. For example,
to list all possible English locales available for configuration, type:

localectl list-locales | grep en
3. To list all language packs already installed on your system and all language packs

available on the ol8_appstream repository, type:

sudo dnf list langpacks-*

For example, the following shows that this system has Spanish, French, Japanese, and
Russian language packs installed followed by a truncated list of language packs available
on ol9_appstream.

sudo dnf list langpacks-*
Last metadata expiration check: 0:00:35 ago on Wed 08 May 2024 04:04:39 PM
GMT.

Chapter 3
Configuring System Language (Locale) and Keyboard Settings

3-14

https://docs.oracle.com/en/operating-systems/oracle-linux/9/install/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/install/

Installed Packages
langpacks-core-en.noarch 3.0-16.el9
@ol9_appstream
langpacks-core-font-en.noarch 3.0-16.el9
@ol9_appstream
langpacks-en.noarch 3.0-16.el9
@ol9_appstream
Available Packages
langpacks-af.noarch 3.0-16.el9
ol9_appstream
langpacks-am.noarch 3.0-16.el9
ol9_appstream
langpacks-ar.noarch 3.0-16.el9
ol9_appstream
langpacks-as.noarch 3.0-16.el9
ol9_appstream
 ...

4. Use dnf to install a language pack. For example, the following installs the Japanese
language pack:

sudo dnf install langpacks-ja.noarch

5. To set the default language locale on the system, type:

sudo localectl set-locale LANG=locale_name

Where:

• locale_name is replaced with the name retrieved earlier from the list-locales
output.

For example, to set British English as the system language locale, type:

sudo localectl set-locale LANG=en_GB.utf8

Note:

Locale options are typically listed in the following format:
LANGUAGE_COUNTRY.CODESET[@MODIFIERS]. The LANGUAGE is an ISO 639 language
code, for example, en for English and COUNTRY is an ISO 3166 country code. The
two letter country code in this example is GB for Great Britain and the United
Kingdom. The CODESET is the character set or encoding, for example, utf-8.

For more information on how to configure language locale options on the system, see the
locale manual page.

Installing Language Locales Individually
To reduce storage space required for languages, you can choose to install individual glibc
locale langpack packages (glibc-langpack-<locale_code>).

To list all installed and all available glibc Langpack packages, run the following command:

sudo dnf list glibc-langpack*

Chapter 3
Configuring System Language (Locale) and Keyboard Settings

3-15

To install a language pack, run the following command:

sudo dnf install glibc-langpack-language_code

In the previous command, language_code is the language code you want to install. For
example, the following example installs Japanese.

sudo dnf install glibc-langpack-ja.x86_64

Changing the Keyboard Layout
The keyboard layout settings enable you to specify a keymap locale for the Linux user
interfaces (text-based and graphical).

To query and change the keyboard layout settings on the system, follow these steps:

1. To check the current keyboard layout configuration on the system, type:

localectl status

For example, the following keyboard layout output indicates a US country code for the
virtual console keymap and a US country code for the X11 layout.

 System Locale: LANG=en_US.UTF-8
 VC Keymap: us
 X11 Layout: us

2. To list all possible keyboard layout configurations available, type:

localectl list-keymaps

To search the output for a specific keymap name, use the grep command. For example, to
list British compatible keyboard layouts, type:

localectl list-keymaps | grep gb
3. To set the default keyboard layout on the system, type:

sudo localectl set-keymap keymap_name

Where:

• keymap_name is replaced with the name of the keymap retrieved earlier from the
list-keymaps output.

Note that the keymap name change applies to both the virtual console and the x11 layout
settings. If you want the X11 layout to differ from the virtual console keymap, use the --
no-convert option, for example:

sudo localectl --no-convert set-x11-keymap keymap_name

The no-convert option retains the previous x11 keyboard layout setting.

For more information on how to use the localectl command line utility to change
keyboard system settings, see thelocalectl manual page.

Configuring System Date and Time Settings
System time is based on the POSIX time standard, where time is measured as the number of
seconds that have elapsed from 00:00:00 Coordinated Universal Time (UTC), Thursday,

Chapter 3
Configuring System Date and Time Settings

3-16

January 1, 1970. A day is defined as 86400 seconds and leap seconds are subtracted
automatically.

Date and time representation on a system can be set to match a specific timezone. To list the
available timezones, run:

timedatectl list-timezones

To set the system timezone to match a value returned from the available timezones, you can
run:

timedatectl set-timezone America/Los_Angeles

Substitute America/Los_Angeles with a valid timezone entry.

This command sets a symbolic link from /etc/localtime to point to the appropriate zone
information file in /usr/share/zoneinfo/. The setting takes effect immediately. Some long
running processes that use /etc/localtime to detect the current system timezone might not
detect a change in system timezone until the process is restarted.

Note that timezones are largely used for display purposes or to handle user input. Changing
timezone doesn't change the time for the system clock. You can change the presentation for
system time in any console by setting the TZ environment variable. For example, to see the
current time in Tokyo, you can run:

TZ="Asia/Tokyo" date

You can check the system's current date and time configuration by running the timedatectl
command on its own:

timedatectl

 Local time: Wed 2021-07-17 00:50:58
EDT

 Universal time: Wed 2021-07-17 04:50:58
UTC

 RTC time: Wed 2021-07-17
04:50:55

 Time zone: America/New_York (EDT,
-0400)

System clock synchronized:
yes

 NTP service:
active

Chapter 3
Configuring System Date and Time Settings

3-17

 RTC in local TZ: no

To set system time manually, use the timedatectl set-time command:

timedatectl set-time "2021-07-17 01:59:59"

This command sets the current system time based on the time specified assuming the
currently set system timezone. The command also updates the system Real Time Clock
(RTC).

Tip:

See Learn How to Localize Your Installation on Oracle Linux for a hands-on tutorial
that describes how to use tools to configure system parameters such as date, time,
and locale.

Consider configuring the system to use network time synchronization for more accurate time-
keeping. Using network time synchronization is important especially when setting up high-
availability or when using network-based file systems.

For more information about configuring the network time services that use NTP, see Oracle
Linux 9: Setting Up Networking.

Tip:

See Configure Chrony on Oracle Linux for a hands-on tutorial on setting up and
configuring the chronyd service.

If you configure an NTP service, enable NTP by running the following command:

timedatectl set-ntp true

This command enables and starts the chronyd service, if available.

Configuring the Watchdog Service
Watchdog is an Oracle Linux service that runs in the background to monitor host availability
and processes and reports back to the kernel. If the Watchdog service fails to notify the kernel
that the system is healthy, the kernel typically automatically reboots the system.

To install the Watchdog package, run:

sudo dnf install watchdog

To configure the Watchdog service, edit the /etc/watchdog.conf file. The
watchdog.conf file includes all Watchdog configuration properties. For information on how to
edit this file, see the watchdog.conf(5) manual page.

Chapter 3
Configuring the Watchdog Service

3-18

https://docs.oracle.com/en/learn/oracle-linux-localization/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/network/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/network/
https://docs.oracle.com/en/learn/ol-chrony/

To enable and start the Watchdog service, run:

sudo systemctl enable --now watchdog

The Watchdog service immediately starts and runs in the background.

Note:

The Watchdog service starts and runs immediately after a power reset.

Chapter 3
Configuring the Watchdog Service

3-19

4
Managing System Devices

This chapter describes how the system uses device files and how the Udev device manager
dynamically creates or removes device node files.

About Device Files
The /dev directory contains device files or device nodes that provide access to peripheral
devices such as hard disks, to resources on peripheral devices such as disk partitions, and
pseudo devices such as a random number generator.

The /dev directory has several subdirectory hierarchies, each of which holds device files that
relate to a certain type of device. However, the contents of these subdirectories are
implemented as symbolic links to corresponding files in /dev. Thus, the files can be accessed
either through the linked file in /dev or the corresponding file in the subdirectory.

Using the ls -l /dev command lists files, some of which are flagged as being either type b
(for block) or type c (for character). These devices have an associated pair of numbers that
identify the device to the system.

ls -l /dev

total 0
crw-r--r--. 1 root root 10, 235 Aug 20 08:36 autofs
drwxr-xr-x. 2 root root 240 Sep 20 07:37 block
drwxr-xr-x. 2 root root 100 Aug 20 08:36 bsg
drwxr-xr-x. 3 root root 60 Nov 4 2019 bus
lrwxrwxrwx. 1 root root 3 Aug 20 08:36 cdrom -> sr0
drwxr-xr-x. 2 root root 2720 Sep 20 07:37 char
crw-------. 1 root root 5, 1 Aug 20 08:36 console
lrwxrwxrwx. 1 root root 11 Aug 20 08:36 core -> /proc/kcore
drwxr-xr-x. 3 root root 60 Nov 4 2019 cpu
crw-------. 1 root root 10, 62 Aug 20 08:36 cpu_dma_latency
drwxr-xr-x. 7 root root 140 Aug 20 08:36 disk
brw-rw----. 1 root disk 253, 0 Aug 20 08:36 dm-0
brw-rw----. 1 root disk 253, 1 Aug 20 08:36 dm-1
brw-rw----. 1 root disk 253, 2 Aug 20 08:36 dm-2
lrwxrwxrwx. 1 root root 13 Aug 20 08:36 fd -> /proc/self/fd
crw-rw-rw-. 1 root root 1, 7 Aug 20 08:36 full
crw-rw-rw-. 1 root root 10, 229 Aug 20 08:36 fuse
crw-------. 1 root root 10, 228 Aug 20 08:36 hpet
drwxr-xr-x. 2 root root 0 Aug 20 08:36 hugepages
crw-------. 1 root root 10, 183 Aug 20 08:36 hwrng
lrwxrwxrwx. 1 root root 12 Aug 20 08:36 initctl -> /run/initctl
drwxr-xr-x. 3 root root 220 Aug 20 08:36 input
crw-r--r--. 1 root root 1, 11 Aug 20 08:36 kmsg
lrwxrwxrwx. 1 root root 28 Aug 20 08:36 log -> /run/systemd/journal/
dev-log
brw-rw----. 1 root disk 7, 0 Sep 23 01:28 loop0

4-1

crw-rw----. 1 root disk 10, 237 Sep 20 07:37 loop-control
drwxr-xr-x. 2 root root 120 Aug 20 08:36 mapper
crw-------. 1 root root 10, 227 Aug 20 08:36 mcelog
crw-r-----. 1 root kmem 1, 1 Aug 20 08:36 mem
crw-------. 1 root root 10, 59 Aug 20 08:36 memory_bandwidth
drwxrwxrwt. 2 root root 40 Nov 4 2019 mqueue
drwxr-xr-x. 2 root root 60 Aug 20 08:36 net
crw-------. 1 root root 10, 61 Aug 20 08:36 network_latency
crw-------. 1 root root 10, 60 Aug 20 08:36 network_throughput
crw-rw-rw-. 1 root root 1, 3 Aug 20 08:36 null
crw-------. 1 root root 10, 144 Aug 20 08:36 nvram
drwxr-xr-x. 2 root root 100 Aug 20 08:36 ol_ca-virtdoc-oltest1
crw-r-----. 1 root kmem 1, 4 Aug 20 08:36 port
crw-------. 1 root root 108, 0 Aug 20 08:36 ppp
crw-rw-rw-. 1 root tty 5, 2 Oct 7 08:10 ptmx
drwxr-xr-x. 2 root root 0 Aug 20 08:36 pts
crw-rw-rw-. 1 root root 1, 8 Aug 20 08:36 random
drwxr-xr-x. 2 root root 60 Nov 4 2019 raw
lrwxrwxrwx. 1 root root 4 Aug 20 08:36 rtc -> rtc0
crw-------. 1 root root 251, 0 Aug 20 08:36 rtc0
brw-rw----. 1 root disk 8, 0 Aug 20 08:36 sda
brw-rw----. 1 root disk 8, 1 Aug 20 08:36 sda1
brw-rw----. 1 root disk 8, 2 Aug 20 08:36 sda2
brw-rw----. 1 root disk 8, 16 Aug 20 08:36 sdb
brw-rw----. 1 root disk 8, 17 Aug 20 08:36 sdb1
crw-rw----. 1 root cdrom 21, 0 Aug 20 08:36 sg0

Block devices support random access to data, seeking media for data, and typically buffers
data while data is being written or read. Examples of block devices include hard disks, CD-
ROM drives, flash memory, and other addressable memory devices.

Character devices support the streaming of data to or from a device. The data isn't typically
buffered nor is random access granted to data on a device. The kernel writes data to or reads
data from a character device 1 byte at a time. Examples of character devices include
keyboards, mice, terminals, pseudo terminals, and tape drives. tty0 and tty1 are character
device files that correspond to terminal devices so users can log in from serial terminals or
terminal emulators.

Pseudo terminals secondary devices emulate real terminal devices to interact with software.
For example, a user might log in to a terminal device such as /dev/tty1, which then uses the
pseudo terminal primary device, /dev/pts/ptmx, to interact with an underlying pseudo
terminal device. The character device files for pseudo terminal secondary and primary devices
are located in the /dev/pts directory, as shown in the following example:

ls -l /dev/pts

total 0
crw--w----. 1 guest tty 136, 0 Mar 17 10:11 0
crw--w----. 1 guest tty 136, 1 Mar 17 10:53 1
crw--w----. 1 guest tty 136, 2 Mar 17 10:11 2
c---------. 1 root root 5, 2 Mar 17 08:16 ptmx

Chapter 4
About Device Files

4-2

Some device entries, such as stdin for the standard input, are symbolically linked through the
self subdirectory of the proc file system. The pseudo-terminal device file to which they
actually point depends on the context of the process.

ls -l /proc/self/fd/[012]

lrwx------. 1 root root 64 Oct 7 08:23 /proc/self/fd/0 -> /dev/pts/0
lrwx------. 1 root root 64 Oct 7 08:23 /proc/self/fd/1 -> /dev/pts/0
lrwx------. 1 root root 64 Oct 7 08:23 /proc/self/fd/2 -> /dev/pts/0

Character devices, such as null, random, urandom, and zero are examples of pseudo devices
that provide access to virtual functionality implemented in software rather than to physical
hardware.

/dev/null is a data sink. Data that you write to /dev/null effectively disappears but the
write operation succeeds. Reading from /dev/null returns EOF (end-of-file).

/dev/zero is a data source of an unlimited number of 0-value bytes.

/dev/random and /dev/urandom are data sources of streams of pseudo random bytes. To
maintain high-entropy output, /dev/random blocks if its entropy pool doesn't contain sufficient
bits of noise. /dev/urandom doesn't block and, thereforem, the entropy of its output might not
be as consistently high as that of /dev/random. However, neither /dev/random nor /dev/
urandom are considered to be truly random enough for the purposes of secure cryptography
such as military-grade encryption.

You can find out the size of the entropy pool and the entropy value for /dev/random from
virtual files under /proc/sys/kernel/random:

cat /proc/sys/kernel/random/poolsize

4096

cat /proc/sys/kernel/random/entropy_avail

3467

For more information, see the null(4), pts(4), and random(4) manual pages.

About the Udev Device Manager
The Udev device manager dynamically creates or removes device node files at boot time .
When creating a device node, udev reads the device’s /sys directory for attributes such as the
label, serial number, and bus device number.

Udev can use persistent device names to guarantee consistent naming of devices across
reboots, regardless of their order of discovery. Persistent device names are especially
important when using external storage devices.

Chapter 4
About the Udev Device Manager

4-3

The configuration file for udev is /etc/udev/udev.conf, in which you can define the
udev_log logging priority, which can be set to err, info and debug. Note that the default value
is err.

For more information, see the udev(7) manual page.

About Udev Rules
Udev uses rules files to determine how to identify devices and create device names. The udev
service (systemd-udevd) reads the rules files at system start-up and stores the rules in
memory. If the kernel discovers a new device or an existing device goes offline, the kernel
sends an event action (uevent) notification to udev, which matches the in-memory rules against
the device attributes in the /sys directory to identify the device.

Multiple rules files exist in different directories. However, you only need to know about /etc/
udev/rules.d/*.rules files because these are the only rules files that you can modify. See
Modifying Udev Rules.

Udev processes the rules files in lexical order, regardless of the directory of the rule files. Rules
files in /etc/udev/rules.d override rules files of the same name in other locations.

The following rules are extracted from the file /lib/udev/rules.d/50-udev-
default.rules and illustrate the syntax of udev rules:

do not edit this file, it will be overwritten on update

SUBSYSTEM=="block", SYMLINK{unique}+="block/%M:%m"
SUBSYSTEM!="block", SYMLINK{unique}+="char/%M:%m"

KERNEL=="pty[pqrstuvwxyzabcdef][0123456789abcdef]", GROUP="tty", MODE="0660"
KERNEL=="tty[pqrstuvwxyzabcdef][0123456789abcdef]", GROUP="tty", MODE="0660"
...
mem
KERNEL=="null|zero|full|random|urandom", MODE="0666"
KERNEL=="mem|kmem|port|nvram", GROUP="kmem", MODE="0640"
...
block
SUBSYSTEM=="block", GROUP="disk"
...
network
KERNEL=="tun", MODE="0666"
KERNEL=="rfkill", MODE="0644"

CPU
KERNEL=="cpu[0-9]*", MODE="0444"
...
do not delete static device nodes
ACTION=="remove", NAME=="", TEST=="/lib/udev/devices/%k", \
 OPTIONS+="ignore_remove"
ACTION=="remove", NAME=="?*", TEST=="/lib/udev/devices/$name", \
 OPTIONS+="ignore_remove"

A rule either assigns a value to a key or it tries to find a match for a key by comparing its
current value with the specified value. The following table shows the assignment and
comparison operators that you can use.

Chapter 4
About Udev Rules

4-4

Operator Description

= Assign a value to a key, overwriting any
previous value.

+= Assign a value by appending it to the key's
current list of values.

:= Assign a value to a key. This value cannot be
changed by any further rules.

== Match the key's current value against the
specified value for equality.

!= Match the key's current value against the
specified value for equality.

You can use the following shell-style pattern-matching characters in values.

Character Description

? Matches a single character.

* Matches any number of characters, including
zero.

[] Matches any single character or character from
a range of characters specified within the
brackets. For example, tty[sS][0-9] would
match ttys7 or ttyS7.

The following table describes commonly used match keys in rules.

Match Key Description

ACTION Matches the name of the action that led to an
event. For example, ACTION="add" or
ACTION="remove".

ENV{key} Matches a value for the device property key.
For example, ENV{DEVTYPE}=="disk".

KERNEL Matches the name of the device that is affected
by an event. For example, KERNEL=="dm-*" for
disk media.

NAME Matches the name of a device file or network
interface. For example, NAME="?*" for any
name that consists of one or more characters.

SUBSYSTEM Matches the subsystem of the device that is
affected by an event. For example,
SUBSYSTEM=="tty".

TEST Tests wheter the specified file or path exists; for
example, TEST=="/lib/udev/devices/$name",
where $name is the name of the currently
matched device file.

Other match keys include ATTR{filename}, ATTRS{filename}, DEVPATH, DRIVER, DRIVERS,
KERNELS, PROGRAM, RESULT, SUBSYSTEMS, and SYMLINK.

The following table describes commonly used assignment keys in rules.

Chapter 4
About Udev Rules

4-5

Assignment Key Description

ENV{key} Specifies a value for the device property key,
such as GROUP="disk".

GROUP Specifies the group for a device file, such as
GROUP="disk".

IMPORT{type} Specifies a set of variables for the device
property, depending on type:

cmdline
Import a single property from the boot kernel
command line. For simple flags, udev sets the
value of the property to 1. For example,
IMPORT{cmdline}="nodmraid".

db
Interpret the specified value as an index into
the device database and import a single
property, which must have already been set by
an earlier event. For example,
IMPORT{db}="DM_UDEV_LOW_PRIORITY_FLAG".

file
Interpret the specified value as the name of a
text file and import its contents, which must be
in environmental key format. For example,
IMPORT{file}="keyfile".

parent
Interpret the specified value as a key-name
filter and import the stored keys from the
database entry for the parent device. For
example IMPORT{parent}="ID_*".

program
Run the specified value as an external program
and imports its result, which must be in
environmental key format. For example
IMPORT{program}="usb_id --export %p".

MODE Specifies the permissions for a device file, such
as MODE="0640".

NAME Specifies the name of a device file, such as
NAME="em1".

OPTIONS Specifies rule and device options, such as
OPTIONS+="ignore_remove", which means that
the device file isn't removed if the device is
removed.

OWNER Specifies the owner for a device file, such as
GROUP="root".

RUN Specifies a command to be run after the device
file has been created, such as RUN+="/usr/bin/
eject $kernel", where $kernel is the kernel
name of the device.

Chapter 4
About Udev Rules

4-6

Assignment Key Description

SYMLINK Specifies the name of a symbolic link to a
device file, such as SYMLINK+="disk/by-
uuid/$env{ID_FS_UUID_ENC}", where $env{}
is substituted with the specified device
property.

Other assignment keys include ATTR{key}, GOTO, LABEL, RUN, and WAIT_FOR.

The following table describes the string substitutions that are commonly used with the GROUP,
MODE, NAME, OWNER, PROGRAM, RUN, and SYMLINK keys.

String Substitution Description

$attr{file} or

%s{file}
Specifies the value of a device attribute from a
file under /sys, such as
ENV{MATCHADDR}="$attr{address}".

$devpath or

%p
The device path of the device in the sysfs file
system under /sys, such as RUN+="keyboard-
force-release.sh $devpath common-
volume-keys".

$env{key} or

%E{key}
Specifies the value of a device property, such as
SYMLINK+="disk/by-id/md-
name-$env{MD_NAME}-part%n".

$kernel or

%k
Specifies the kernel name for the device.

$major or

%M
Specifies the major number of a device, such as
IMPORT{program}="udisks-dm-export %M
%m".

$minor or

%m
Specifies the minor number of a device, such as
RUN+="$env{LVM_SBIN_PATH}/lvm pvscan --
cache --major $major --minor $minor".

$name Specifies the device file of the current device,
such as TEST=="/lib/udev/devices/$name".

Udev expands the strings specified for RUN immediately before its program is run, which is after
udev has finished processing all other rules for the device. For the other keys, udev expands
the strings while it's processing the rules.

For more information, see the udev(7) manual page.

Querying Udev and Sysfs
You can use the udevadm command to query the udev database and sysfs.

Chapter 4
Querying Udev and Sysfs

4-7

To query the sysfs device path relative to /sys that corresponds to the device file /dev/sda:

udevadm info --query=path --name=/dev/sda

/devices/pci0000:00/0000:00:0d.0/host0/target0:0:0/0:0:0:0/block/sda

To query the symbolic links that point to /dev/sda, use the following command:

udevadm info --query=symlink --name=/dev/sda

block/8:0
disk/by-id/ata-VBOX_HARDDISK_VB6ad0115d-356e4c09
disk/by-id/scsi-SATA_VBOX_HARDDISK_VB6ad0115d-356e4c09
disk/by-path/pci-0000:00:0d.0-scsi-0:0:0:0

To query the properties of /dev/sda, use the following command:

udevadm info --query=property --name=/dev/sda

UDEV_LOG=3
DEVPATH=/devices/pci0000:00/0000:00:0d.0/host0/target0:0:0/0:0:0:0/block/sda
MAJOR=8
MINOR=0
DEVNAME=/dev/sda
DEVTYPE=disk
SUBSYSTEM=block
ID_ATA=1
ID_TYPE=disk
ID_BUS=ata
ID_MODEL=VBOX_HARDDISK
ID_MODEL_ENC=VBOX\x20HARDDISK\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20.
..
ID_REVISION=1.0
ID_SERIAL=VBOX_HARDDISK_VB579a85b0-bf6debae
ID_SERIAL_SHORT=VB579a85b0-bf6debae
ID_ATA_WRITE_CACHE=1
ID_ATA_WRITE_CACHE_ENABLED=1
ID_ATA_FEATURE_SET_PM=1
ID_ATA_FEATURE_SET_PM_ENABLED=1
ID_ATA_SATA=1
ID_ATA_SATA_SIGNAL_RATE_GEN2=1
ID_SCSI_COMPAT=SATA_VBOX_HARDDISK_VB579a85b0-bf6debae
ID_PATH=pci-0000:00:0d.0-scsi-0:0:0:0
ID_PART_TABLE_TYPE=dos
LVM_SBIN_PATH=/sbin
UDISKS_PRESENTATION_NOPOLICY=0
UDISKS_PARTITION_TABLE=1
UDISKS_PARTITION_TABLE_SCHEME=mbr
UDISKS_PARTITION_TABLE_COUNT=2
UDISKS_ATA_SMART_IS_AVAILABLE=0

Chapter 4
Querying Udev and Sysfs

4-8

DEVLINKS=/dev/block/8:0 /dev/disk/by-id/ata-VBOX_HARDDISK_VB579a85b0-
bf6debae ...

To query the entire information for /dev/sda, use the following command:

udevadm info --query=all --name=/dev/sda

P: /devices/pci0000:00/0000:00:0d.0/host0/target0:0:0/0:0:0:0/block/sda
N: sda
W: 37
S: block/8:0
S: disk/by-id/ata-VBOX_HARDDISK_VB579a85b0-bf6debae
S: disk/by-id/scsi-SATA_VBOX_HARDDISK_VB579a85b0-bf6debae
S: disk/by-path/pci-0000:00:0d.0-scsi-0:0:0:0
E: UDEV_LOG=3
E: DEVPATH=/devices/pci0000:00/0000:00:0d.0/host0/target0:0:0/0:0:0:0/
block/sda
E: MAJOR=8
E: MINOR=0
E: DEVNAME=/dev/sda
E: DEVTYPE=disk
E: SUBSYSTEM=block
E: ID_ATA=1
E: ID_TYPE=disk
E: ID_BUS=ata
E: ID_MODEL=VBOX_HARDDISK
E:
ID_MODEL_ENC=VBOX\x20HARDDISK\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20.
..
E: ID_SERIAL=VBOX_HARDDISK_VB579a85b0-bf6debae
E: ID_SERIAL_SHORT=VB579a85b0-bf6debae
E: ID_ATA_WRITE_CACHE=1
E: ID_ATA_WRITE_CACHE_ENABLED=1
E: ID_ATA_FEATURE_SET_PM=1
E: ID_ATA_FEATURE_SET_PM_ENABLED=1
E: ID_ATA_SATA=1
E: ID_ATA_SATA_SIGNAL_RATE_GEN2=1
E: ID_SCSI_COMPAT=SATA_VBOX_HARDDISK_VB579a85b0-bf6debae
E: ID_PATH=pci-0000:00:0d.0-scsi-0:0:0:0
E: ID_PART_TABLE_TYPE=dos
E: LVM_SBIN_PATH=/sbin
E: UDISKS_PRESENTATION_NOPOLICY=0
E: UDISKS_PARTITION_TABLE=1
E: UDISKS_PARTITION_TABLE_SCHEME=mbr
E: UDISKS_PARTITION_TABLE_COUNT=2
E: UDISKS_ATA_SMART_IS_AVAILABLE=0
E: DEVLINKS=/dev/block/8:0 /dev/disk/by-id/ata-VBOX_HARDDISK_VB579a85b0-
bf6debae ...

Chapter 4
Querying Udev and Sysfs

4-9

To display all of the properties of /dev/sda, as well as the parent devices that udev has found
in /sys, use the following command:

udevadm info --attribute-walk --name=/dev/sda

...
 looking at device '/devices/pci0000:00/0000:00:0d.0/host0/
target0:0:0/0:0:0:0/block/sda':
 KERNEL=="sda"
 SUBSYSTEM=="block"
 DRIVER==""
 ATTR{range}=="16"
 ATTR{ext_range}=="256"
 ATTR{removable}=="0"
 ATTR{ro}=="0"
 ATTR{size}=="83886080"
 ATTR{alignment_offset}=="0"
 ATTR{capability}=="52"
 ATTR{stat}==" 20884 15437 1254282 338919 5743 8644
103994 109005 ...
 ATTR{inflight}==" 0 0"

 looking at parent device '/devices/pci0000:00/0000:00:0d.0/host0/
target0:0:0/0:0:0:0':
 KERNELS=="0:0:0:0"
 SUBSYSTEMS=="scsi"
 DRIVERS=="sd"
 ATTRS{device_blocked}=="0"
 ATTRS{type}=="0"
 ATTRS{scsi_level}=="6"
 ATTRS{vendor}=="ATA "
 ATTRS{model}=="VBOX HARDDISK "
 ATTRS{rev}=="1.0 "
 ATTRS{state}=="running"
 ATTRS{timeout}=="30"
 ATTRS{iocounterbits}=="32"
 ATTRS{iorequest_cnt}=="0x6830"
 ATTRS{iodone_cnt}=="0x6826"
 ATTRS{ioerr_cnt}=="0x3"
 ATTRS{modalias}=="scsi:t-0x00"
 ATTRS{evt_media_change}=="0"
 ATTRS{dh_state}=="detached"
 ATTRS{queue_depth}=="31"
 ATTRS{queue_ramp_up_period}=="120000"
 ATTRS{queue_type}=="simple"

 looking at parent device '/devices/pci0000:00/0000:00:0d.0/host0/
target0:0:0':
 KERNELS=="target0:0:0"
 SUBSYSTEMS=="scsi"
 DRIVERS==""

 looking at parent device '/devices/pci0000:00/0000:00:0d.0/host0':
 KERNELS=="host0"
 SUBSYSTEMS=="scsi"

Chapter 4
Querying Udev and Sysfs

4-10

 DRIVERS==""

 looking at parent device '/devices/pci0000:00/0000:00:0d.0':
 KERNELS=="0000:00:0d.0"
 SUBSYSTEMS=="pci"
 DRIVERS=="ahci"
 ATTRS{vendor}=="0x8086"
 ATTRS{device}=="0x2829"
 ATTRS{subsystem_vendor}=="0x0000"
 ATTRS{subsystem_device}=="0x0000"
 ATTRS{class}=="0x010601"
 ATTRS{irq}=="21"

ATTRS{local_cpus}=="00000000,00000000,00000000,00000000,00000000,00000000,0000
0000,00000003"
 ATTRS{local_cpulist}=="0-1"
 ATTRS{modalias}=="pci:v00008086d00002829sv00000000sd00000000bc01sc06i01"
 ATTRS{numa_node}=="-1"
 ATTRS{enable}=="1"
 ATTRS{broken_parity_status}=="0"
 ATTRS{msi_bus}==""
 ATTRS{msi_irqs}==""

 looking at parent device '/devices/pci0000:00':
 KERNELS=="pci0000:00"
 SUBSYSTEMS==""
 DRIVERS==""

The command starts at the device that's specified by the device path and walks the chain of
parent devices. For every device that the command finds, the command displays the possible
attributes for the device and its parent devices by using the match key format for udev rules.

For more information, see the udevadm(8) manual page.

Modifying Udev Rules
The order in which rules are evaluated is important. Udev processes rules in lexical order. If
you want to add custom rules, you need udev to locate and evaluate these rules before the
default rules.

The following example illustrates how to implement a udev rules file that adds a symbolic link to
the disk device /dev/sdb.

1. Create a rule file under /etc/udev/rules.d with a file name such as 10-local.rules
that udev reads before any other rules file.

The following rule in 10-local.rules creates the symbolic link /dev/my_disk, which
points to /dev/sdb:

KERNEL=="sdb", ACTION=="add", SYMLINK="my_disk"

Chapter 4
Modifying Udev Rules

4-11

Listing the device files in /dev shows that udev hasn't yet applied the rule:

ls /dev/sd* /dev/my_disk

ls: cannot access /dev/my_disk: No such file or directory
/dev/sda /dev/sda1 /dev/sda2 /dev/sdb

2. To simulate how udev applies its rules to create a device, you can use the udevadm test
command with the device path of sdb listed under the /sys/class/block hierarchy, for
example:

udevadm test /sys/class/block/sdb

calling: test
version ...
This program is for debugging only, it does not run any program
specified by a RUN key. It may show incorrect results, because
some values may be different, or not available at a simulation run.
...
LINK 'my_disk' /etc/udev/rules.d/10-local.rules:1
...
creating link '/dev/my_disk' to '/dev/sdb'
creating symlink '/dev/my_disk' to 'sdb
...
ACTION=add
DEVLINKS=/dev/disk/by-id/ata-VBOX_HARDDISK_VB186e4ce2-f80f170d
 /dev/disk/by-uuid/a7dc508d-5bcc-4112-b96e-f40b19e369fe
 /dev/my_disk
...

3. Restart the systemd-udevd service:

sudo systemctl restart systemd-udevd

After udev processes the rules files, the symbolic link /dev/my_disk has been added:

ls -F /dev/sd* /dev/my_disk

/dev/my_disk@ /dev/sda /dev/sda1 /dev/sda2 /dev/sdb

4. (Optional) To undo the changes, remove /etc/udev/rules.d/10-local.rules
and /dev/my_disk, then run systemctl restart systemd-udevd again.

Chapter 4
Modifying Udev Rules

4-12

5
Managing Kernel Modules

This chapter describes how to load, unload, and modify the behavior of kernel modules.

About Kernel Modules
The boot loader loads the kernel into memory. You can add new code to the kernel by including
the source files in the kernel source tree and recompiling the kernel. Kernel modules provide
device drivers that enable the kernel to access new hardware, support different file system
types, and extend its functionality in other ways. The modules can be dynamically loaded and
unloaded on demand. To avoid wasting memory on unused device drivers, Oracle Linux
supports loadable kernel modules (LKMs), which enable a system to run with only the device
drivers and kernel code that are required to be loaded into memory.

Note:

From UEK R7 onward, kernel packaging changes are applied to provide a more
streamlined kernel. Kernel modules that are required for most server configurations
are provided in the kernel-uek-modules package, while optional kernel modules for
hardware less often found in server configurations, such as Bluetooth, Wi-Fi, and
video capture cards, can be found in the kernel-uek-modules-extra package. Note
that both of these packages require the kernel-uek-firmware package to be
installed.

You can view the contents of these packages by running:

dnf repoquery -l kernel-uek-modules
dnf repoquery -l kernel-uek-modules-extra

To install all available kernel modules, run:

sudo dnf install -y kernel-uek-modules kernel-uek-modules-extra linux-
firmware

See Unbreakable Enterprise Kernel Release 7: Release Notes (5.15.0-0.30).

Kernel modules can be signed to protect the system from running malicious code at boot time.
When UEFI Secure Boot is enabled, only kernel modules that contain the correct signature
information can be loaded. See Oracle Linux: Working With UEFI Secure Boot for more
information.

5-1

https://docs.oracle.com/en/operating-systems/uek/7/relnotes7.0/
https://docs.oracle.com/en/operating-systems/oracle-linux/secure-boot/

Listing Information About Loaded Modules
The lsmod command lists the modules that are loaded into the kernel:

lsmod

Module Size Used by
udp_diag 16384 0
ib_core 311296 0
tcp_diag 16384 0
inet_diag 24576 2 tcp_diag,udp_diag
nfsv3 49152 0
nfs_acl 16384 1 nfsv3
...
dm_mirror 24576 0
dm_region_hash 20480 1 dm_mirror
dm_log 20480 2 dm_region_hash,dm_mirror
...

The output shows the module name, the amount of memory it uses, the number of processes
using the module and the names of other modules on which it depends. The module dm_log,
for example, depends on the dm_region_hash and dm_mirror modules. The example also
shows that two processes are using all three modules.

Show detailed information about a module by using the modinfo command:

modinfo ahci

filename: /lib/modules/5.4.17-2136.306.1.3.el8uek.x86_64/kernel/
drivers/ata/ahci.ko.xz
version: 3.0
license: GPL
description: AHCI SATA low-level driver
author: Jeff Garzik
srcversion: 3F4E4F52FD2D5F8BBD5F972
alias: pci:v*d*sv*sd*bc01sc06i01*
alias: pci:v00001C44d00008000sv*sd*bc*sc*i*
...
depends: libahci,libata
retpoline: Y
intree: Y
name: ahci
vermagic: 5.4.17-2136.306.1.3.el8uek.x86_64 SMP mod_unload modversions
sig_id: PKCS#7
signer: Oracle CA Server
sig_key: 22:07:CB:47:59:F3:50:A0:A2:FA:24:CE:B4:00:53:4E:C5:1D:C6:2A
sig_hashalgo: sha512
signature: 2F:AE:AF:6D:56:92:69:C4:77:AB:E1:3D:41:09:AF:A6:FC:1D:3B:A2:
 9C:23:79:6F:17:82:D5:A3:9B:61:64:32:72:9B:98:C9:8C:89:73:FB:
 A4:86:4F:B5:7D:DF:84:8E:05:26:4F:22:CB:02:41:38:7B:7C:CB:C2:
 ...
 9F:FD:94:8F:35:9B:2A:89:3E:E1:17:40:49:79:30:8B:92:4D:3A:9A:

Chapter 5
Listing Information About Loaded Modules

5-2

 F4:C7:82:8D:26:BE:6D:FB:71:C6:E5:FD
parm: marvell_enable:Marvell SATA via AHCI (1 = enabled) (int)
parm: mobile_lpm_policy:Default LPM policy for mobile chipsets (int)

...

The output would include the following information:

filename
Absolute path of the kernel object file.

version
Version number of the module. Note that the version number might not be updated for patched
modules and might be missing or removed in newer kernels.

license
License information for the module.

description
Short description of the module.

author
Author credit for the module.

srcversion
Hash of the source code used to create the module.

alias
Internal alias names for the module.

depends
Comma-separated list of any modules on which this module depends.

retpoline
A flag indicating that the module is built that includes a mitigation against the Spectre security
vulnerability.

intree
A flag indicating that the module is built from the kernel in-tree source and isn't tainted.

vermagic
Kernel version that was used to compile the module, which is checked against the current
kernel when the module is loaded.

sig_id
The method used to store signing keys that might have been used to sign a module for Secure
Boot, typically PKCS#7

signer
The name of the signing key used to sign a module for Secure Boot.

sig_key
The signature key identifier for the key used to sign the module.

sig_hashalgo
The algorithm used to generate the signature hash for a signed module.

Chapter 5
Listing Information About Loaded Modules

5-3

signature
The signature data for a signed module.

parm
Module parameters and descriptions.

Modules are loaded into the kernel from kernel object files (/lib/modules/
kernel_version/kernel/*ko*). To display the absolute path of a kernel object file, specify
the -n option, for example:

modinfo -n parport

/lib/modules/5.4.17-2136.306.1.3.el8uek.x86_64/kernel/drivers/parport/
parport.ko.xz

For more information, see the lsmod(5) and modinfo(8) manual pages.

Loading and Unloading Modules
The modprobe command loads kernel modules, for example:

sudo modprobe nfs
sudo lsmod | grep nfs

nfs 266415 0
lockd 66530 1 nfs
fscache 41704 1 nfs
nfs_acl 2477 1 nfs
auth_rpcgss 38976 1 nfs
sunrpc 204268 5 nfs,lockd,nfs_acl,auth_rpcgss

Include the -v (verbose) option to show whether any additional modules are loaded to resolve
dependencies.

sudo modprobe -v nfs

insmod /lib/modules/4.18.0-80.el8.x86_64/kernel/net/sunrpc/auth_gss/
auth_rpcgss.ko
insmod /lib/modules/4.18.0-80.el8.x86_64/kernel/fs/nfs_common/nfs_acl.ko
insmod /lib/modules/4.18.0-80.el8.x86_64/kernel/fs/fscache/fscache.ko
...

Note:

The modprobe command does not reload modules that are already loaded. You
must first unload a module before you can load it again.

Chapter 5
Loading and Unloading Modules

5-4

Use the -r option to unload kernel modules:

sudo modprobe -rv nfs

rmmod /lib/modules/4.18.0-80.el8.x86_64/kernel/fs/nfs/nfs.ko
rmmod /lib/modules/4.18.0-80.el8.x86_64/kernel/fs/lockd/lockd.ko
rmmod /lib/modules/4.18.0-80.el8.x86_64/kernel/fs/fscache/fscache.ko
...

Modules are unloaded in reverse order in which they were first loaded. Modules aren't
unloaded if a process or another loaded module requires them.

For more information, see the modprobe(8) and modules.dep(5) manual pages.

About Module Parameters
To modify a module's behavior, specify parameters for the module in the modprobe command:

sudo modprobe module_name parameter=value ...

Separate multiple parameter and value pairs with spaces. Array values are represented by a
comma-separated list, for example:

sudo modprobe foo arrayparm=1,2,3,4

Alternatively, change the values of some parameters for loaded modules and built-in drivers by
writing the new value to a file under /sys/module/module_name/parameters, for
example:

echo 0 | sudo tee /sys/module/ahci/parameters/skip_host_reset

Configuration files (/etc/modprobe.d/*.conf) specify module options, create module
aliases, and override the usual behavior of modprobe for modules with special requirements.
The /etc/modprobe.conf file that was used with earlier versions of modprobe is also valid
if it exists. Entries in the /etc/modprobe.conf and /etc/modprobe.d/*.conf files use
the same syntax.

The following are commonly used commands in modprobe configuration files:

alias
Creates an alternative name for a module. The alias can include shell wildcards. To create an
alias for the sd-mod module:

alias block-major-8-* sd_mod

blacklist
Ignore a module's internal alias that's displayed by the modinfo command. This command is
typically used in the following conditions:

• The associated hardware isn't required.

Chapter 5
About Module Parameters

5-5

• Two or more modules both support the same devices.

• A module invalidly claims to support a device.

For example, to demote the alias for the frame-buffer driver cirrusfb, type:

blacklist cirrusfb

The /etc/modprobe.d/blacklist.conf file prevents hotplug scripts from loading a
module so that a different driver binds the module instead regardless of which driver happens
to be probed first. If it doesn't already exist, you must create it.

install
Runs a shell command instead of loading a module into the kernel. For example, load the
module snd-emu10k1-synth instead of snd-emu10k1:

install snd-emu10k1 /sbin/modprobe --ignore-install snd-emu10k1 && /sbin/
modprobe snd-emu10k1-synth

options
Defines options for a module. For example, to define the nohwcrypt and qos options for the
b43 module, type:

options b43 nohwcrypt=1 qos=0

remove
Runs a shell command instead of unloading a module. To unmount /proc/fs/nfsd before
unloading the nfsd module, type:

remove nfsd { /bin/umount /proc/fs/nfsd > /dev/null 2>&1 || :; } ;
/sbin/modprobe -r --first-time --ignore-remove nfsd

For more information, see the modprobe.conf(5) manual page.

Specifying Modules To Be Loaded at Boot Time
The system loads most modules automatically at boot time. You can also add modules to be
loaded by creating a configuration file for the module in the /etc/modules-load.d directory.
The file name must have the extension .conf.

For example to force the bnxt_en.conf to load at boot time, run the following command:

echo bnxt_en | sudo tee /etc/modules-load.d/bnxt_en.conf

Changes to the /etc/modules-load.d directory persist across reboots.

Preventing Modules From Loading at Boot Time
You can prevent modules from loading at boot time by adding a deny rule in a configuration file
in the /etc/modprobe.d directory and then rebuilding the initial ramdisk used to load the
kernel at boot time.

Chapter 5
Specifying Modules To Be Loaded at Boot Time

5-6

1. Create a configuration file to prevent the module from loading. For example:

sudo tee /etc/modprobe.d/bnxt_en-deny.conf <<'EOF'
#DENY bnxt_en
blacklist bnxt_en
install bnxt_en /bin/false
EOF

2. Rebuild the initial ramdisk image:

sudo dracut -f -v

3. Reboot the system for the changes to take effect:

sudo reboot

WARNING:

Disabling modules can have unintended consequences and can prevent a system
from booting properly or from being fully functional after boot. As a best practice,
create a backup ramdisk image before making changes and ensure that the
configuration is correct.

About Weak Update Modules
External modules, such as drivers that are installed by using a driver update disk or that are
installed from an independent package, are typically installed in the /lib/modules/kernel-
version/extra directory. Modules that are stored in this directory are preferred over any
matching modules that are included with the kernel when these modules are being loaded.
Installed external drivers and modules can override existing kernel modules to resolve
hardware issues. For each kernel update, these external modules must be made available to
each compatible kernel so that potential boot issues resulting from driver incompatibilities with
the affected hardware can be avoided.

Because the requirement to load the external module with each compatible kernel update is
system critical, a mechanism exists for external modules to be loaded as weak update
modules for compatible kernels.

You make weak update modules available by creating symbolic links to compatible modules in
the /lib/modules/kernel-version/weak-updates directory. The package manager
handles this process automatically when it detects driver modules that are installed in
the /lib/modules/kernel-version/extra directories for any compatible kernels.

For example, if a newer kernel is compatible with a module that was installed for the previous
kernel, an external module (such as kmod-kvdo) is automatically added as a symbolic link in

Chapter 5
About Weak Update Modules

5-7

the weak-updates directory as part of the installation process, as shown in the following
command output:

ls -l /lib/modules/4.18.0-80.el8.x86_64/weak-updates/kmod-kvdo/uds

lrwxrwxrwx. 1 root root 68 Oct 8 07:57 uds.ko ->
/lib/modules/4.18.0-80.0.0.0.1.el8.x86_64/extra/kmod-kvdo/uds/uds.ko

ls -l /lib/modules/4.18.0-80.el8.x86_64/weak-updates/kmod-kvdo/vdo

lrwxrwxrwx. 1 root root 68 Oct 8 07:57 uds.ko ->
/lib/modules/4.18.0-80.0.0.0.1.el8.x86_64/extra/kmod-kvdo/uds/uds.ko

The symbolic link enables the external module to loaded for kernel updates.

Weak updates are beneficial and ensure that no extra work is required to carry an external
module through kernel updates. Any potential driver-related boot issues after kernel upgrades
are prevented, thus provides a more predictable running of a system and its hardware.

In certain cases, you might remove weak update modules in place of a newer kernel, for
example, in the case where an issue with a shipped driver has been resolved in a newer
kernel. In this case, you might prefer to use the new driver rather than the external module that
you installed as part of a driver update.

To remove weak update modules, use the following command:

rm -rf /lib/modules/4.18.0-80.el8.x86_64/weak-updates/kmod-kvdo/

Running this command manually removes the symbolic links for each kernel.

Alternatively, you can use the weak-modules command, which safely removes the specified
weak update module for the compatible kernels or the command removes the weak update
modules for the current kernel. You can use the weak-modules command similarly to add
weak update modules.

You can also use the weak-modules command with the dry-run option to test the results
without making actual changes, for example:

weak-modules --remove-kernel --dry-run --verbose
rm -rf kmod-kvdo

For more information about external driver modules and driver update disks, see Oracle Linux
9: Installing Oracle Linux.

Chapter 5
About Weak Update Modules

5-8

https://docs.oracle.com/en/operating-systems/oracle-linux/9/install/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/install/

6
Configuring Huge Pages

In Oracle Linux, physical memory is managed in fixed-size blocks called pages. In the x86_64
architecture, the default size of each page is 4 KB.

The kernel stores virtual to physical address mappings for the pages in a data structure known
as the page table. However, page table lookups are resource-intensive, so the most recently
used addresses are cached in the CPU’s Translation Lookaside Buffer (TLB) for faster
retrieval. When the CPU needs to fulfill a request for an address-mapping, the CPU first
searches the TLB cache. A TLB hit describes the CPU finding the address in the TLB cache. A
TLB miss describes the CPU unable to find the requested address-mapping in the cache, in
which case the system would perform a resource intensive lookup on the page table to retrieve
the address information.

The default page size of 4 KB is suitable for most applications. However, for applications that
work with large amounts of memory, the number of 4 KB pages required can be large and can
lead to a high number of TLB misses and a performance overhead. Oracle Linux provides
huge page features so that applications requiring more memory can have their requirements
fulfilled with fewer pages.

Available Huge Page Features
The following huge page features are included in Oracle Linux:

HugeTLB Pages
HugeTLB pages are also called static huge pages.

With HugeTLB pages feature, you can reserve pools of huge pages, each of a specified
quantity, for each huge page size. The available huge page size options on x86_64 platforms
are 2 MB and 1 GB.

For more information about configuring HugeTLB pages, see Configuring HugeTLB Pages

Note:

Best Practices:

• Make requests to the kernel for static huge pages as close to boot time as
possible, when the occurrence of memory fragmentation is at a minimum.

• Huge pages can reduce the amount of memory available to the system.
Therefore, when requesting a reserved huge page pool, ensure the pool isn't
oversized and that the system’s access to memory isn't impacted.

6-1

Transparent HugePages
The Transparent HugePages (THP) feature is enabled by default in Oracle Linux. With THP,
the kernel automatically assigns huge pages to processes. With THP, you can assign only 2
MB pages on x86_64 platforms.

THP can run in the following modes:

• system-wide (default): The kernel assigns huge pages to processes that use large
contiguous virtual memory areas whenever it's possible to do so.

• per-process: The kernel only assigns huge pages to application processes that explicitly
request huge pages through the madvise() system call.

For more information about configuring THP, see Configuring Transparent HugePages

Configuring HugeTLB Pages
You can configure HugeTLB pages by using the following types of parameters:

• Kernel boot parameters

• File-based configuration parameters

The following sections discuss the parameters in greater detail.

Kernel Boot Parameters for HugeTLB Pages
The kernel boot options enable you to specify values such as the size and the number of
pages to be reserved in the kernel’s pool. Using the kernel boot parameters is the most reliable
method of requesting huge pages.

The following table describes the kernel boot parameters available for HugeTLB page setup.

Table 6-1 The Kernel Boot Command Line Parameters for Requesting HugeTLB Pages

Parameters Purpose Accepted Value Option on
x86_64 Architecture

default_hugepagesz Defines the default size of
persistent huge pages
configured in the kernel at
boot time.

2M(default), 1G

Chapter 6
Configuring HugeTLB Pages

6-2

Table 6-1 (Cont.) The Kernel Boot Command Line Parameters for Requesting HugeTLB
Pages

Parameters Purpose Accepted Value Option on
x86_64 Architecture

hugepagesz and hugepages Size parameter hugepagesz is
used with quantity parameter
hugepages to reserve a pool of
a specified page size and
quantity. For example, to
request a pool of 1500 pages of
size 2 MB, the command line
options would be as follows:
hugepagesz=2M
hugepages=1500
If multiple huge page sizes are
supported, the
"hugepagesz=<size>
hugepages=<qty>" pair can be
specified multiple times, once
for each page size. For
example, you can use the
following command line
options to request one pool of
four pages of 1 GB size, and a
second pool of 1500 pages of 2
MB size:

hugepagesz=1G
hugepages=4
hugepagesz=2M
hugepages=1500

Hugepagesz: 2M, 1G
hugepages: 0 or greater

Note:

In a NUMA system, pages reserved with kernel command line options, as shown in
the previous table, are divided equally between the NUMA nodes.
If the requirement is to have a different number of pages on each node, you can use
the file-based HugeTLB parameters in the sysfs file system. See File-Based
Configuration Parameters for HugeTLB Pages and Requesting HugeTLB Pages
Using NUMA Node Specific Parameters Early in the Boot Process.

File-Based Configuration Parameters for HugeTLB Pages
The file-based configuration parameters provide runtime access to the configuration settings.

Chapter 6
Configuring HugeTLB Pages

6-3

Note:

In addition to accessing the settings at runtime, you can also initialize the parameters
early in the boot process, for example, by creating a start-up bash script or by setting
the parameters up in a local rc init script.

Multiple instances of each file-based parameter can be configured on a system. For example,
on a system that can handle both 2 MB and 1 GB HugeTLB page sizes, several nr_hugepages
settings can exist. This parameter defines the number of pages in a pool, including the
following:

• File /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages for the
number of pages in the pool of 2 MB pages.

• File /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages for the
number of pages in the pool of 1 GB pages.

The following table outlines commonly used HugeTLB configuration parameters and the
multiple file instances that you might find for each parameter.

Chapter 6
Configuring HugeTLB Pages

6-4

Table 6-2 Commonly Used File-Based HugeTLB Parameters

Parameter Purpose File Paths for Different
Instances

nr_hugepages • Each instance of
nr_hugepages defines the
current number of huge
pages in the pool
associated with that
instance.

• Can be modified at
runtime.

• Example command:

echo 20 | sudo tee /
proc/sys/vm/
nr_hugepages

• Default value is 0.

The file path formats for
different instances of
nr_hugepages are as follows:
• File location: /

proc/sys/vm/
nr_hugepages (present
on all systems).

• File location: /sys/
kernel/mm/
hugepages/
hugepages-<SIZE>kB/
nr_hugepages (present
on systems that support
more than one huge page
size).

• File location: /sys/
devices/system/
node/node{0,1,2…n}/
hugepages/
hugepages-<SIZE>kB/
nr_hugepages (present
on NUMA systems only).

Note:

Use the NUMA
node specific
path format if
you need to
request different
quantities of
pages of
different sizes to
be supported on
specific NUMA
nodes. If you use
any other path
format (for
example, /
proc/sys/vm/
nr_hugepages
) to request
HugeTLB pages.
The pages are
divided equally
between the
NUMA nodes.

Chapter 6
Configuring HugeTLB Pages

6-5

Table 6-2 (Cont.) Commonly Used File-Based HugeTLB Parameters

Parameter Purpose File Paths for Different
Instances

nr_overcommit_hugepages • Each instance of
nr_overcommit_hugepage
s defines the additional
number of huge pages
that's higher then the
quantity specified by
nr_hugepages. It can be
created by the system at
runtime through
overcommitting memory.

• As these additional huge
pages become unused,
they're freed and returned
to the kernel’s normal
page pool.

• Example command:

echo 20 | sudo tee /
proc/sys/vm/
nr_overcommit_hugepa
ges

The file path formats for
different instances of
nr_overcommit_hugepages
are as follows:
• File location /

proc/sys/vm/
nr_overcommit_hugep
ages (present on all
systems).

• File location: /sys/
kernel/mm/hugepages/
hugepages-<SIZE>kB/
nr_overcommit_hugepage
s (present on systems that
support more than one
huge page size).

No

te:

The
nr_
ove
rco
mmi
t_h
uge
pag
es
par
am
ete
r
isn'
t
defi
ned
at
the
ind
ivid
ual
nod
e
lev
el,
so
no
nod

Chapter 6
Configuring HugeTLB Pages

6-6

Table 6-2 (Cont.) Commonly Used File-Based HugeTLB Parameters

Parameter Purpose File Paths for Different
Instances

e
spe
cifi
c
file
exi
sts
for
this
sett
ing.

free_hugepages • Read-only parameter.
• Each instance of

free_hugepages returns
the number of huge pages
in its associated page pool
that have yet to be
allocated.

The file path formats for
different instances of
free_hugepages are as
follows:
• File location: /sys/

kernel/mm/
hugepages/
hugepages-<SIZE>kB/
free_hugepages
(present on systems that
support more than one
huge page size).

• File location: /sys/
devices/system/
node/node{0,1,2…n}/
hugepages/
hugepages-<SIZE>kB/
free_hugepages
(present on NUMA systems
only).

Chapter 6
Configuring HugeTLB Pages

6-7

Table 6-2 (Cont.) Commonly Used File-Based HugeTLB Parameters

Parameter Purpose File Paths for Different
Instances

surplus_hugepages • Read-only parameter.
• Each instance of

surplus_hugepages
returns the number of
huge pages that have been
overcommitted from its
associated page pool.

The file path formats for
different instances of
surplus_hugepages are as
follows:
• File location: /sys/

kernel/mm/hugepages/
hugepages-<SIZE>kB/
surplus_hugepages
(present on systems that
support more than one
huge page size).

• File location: /sys/
devices/system/node/
node{0,1,2…n}/
hugepages/hugepages-
<SIZE>kB/
surplus_hugepages
(present on NUMA systems
only).

The following sections show file branches under which different instances of the HugeTLB
parameters are stored:

/proc/sys/vm

All systems that support static huge pages contain HugeTLB parameter files under /
proc/sys/vm.

Note:

On many systems, including many Oracle database servers, the procfs file system is
the main parameter-set used.

The sysctl parameter vm.nr_hugepages that's commonly initialized in scripts that
request huge pages also writes to the procfs file /proc/sys/vm/nr_hugepages.

The following are example folders under branch /proc/sys/vm:

 ├── ...
 ├── ...
 ├── nr_hugepages
 ├── ...
 ├── nr_overcommit_hugepages
 ├── ...
 ├── ...

Chapter 6
Configuring HugeTLB Pages

6-8

/sys/kernel/mm/hugepages/

Systems that support multiple size pools contain HugeTLB parameter files in size-specific
folders under /sys/kernel/mm/hugepages/.

The following are example folders under branch /sys/kernel/mm/hugepages/:

└── hugepages-2048kB
 ├── free_hugepages
 ├── nr_hugepages
 ├── ...
 ├── nr_overcommit_hugepages
 ├── ...
 └── surplus_hugepages

└── hugepages-1048576kB
 ├── free_hugepages
 ├── nr_hugepages
 ├── ...
 ├── nr_overcommit_hugepages
 ├── ...
 └── surplus_hugepages

/sys/devices/system/node/

Only NUMA systems contain HugeTLB parameter files under /sys/devices/system/node/.

The following are example folders under branch /sys/devices/system/node:

 ├─ ...
 ├── node0
 │ ├── ...
 │ ├──hugepages
 │ hugepages-2048kB
 │ ├── free_hugepages
 │ ├── nr_hugepages
 │ └── surplus_hugepages
 │
 │ hugepages-1048576kB
 │ ├── free_hugepages
 │ ├── nr_hugepages
 │ └── surplus_hugepages
 ├── node1
 ├── ...
 ├──hugepages
 hugepages-2048kB
 ├── free_hugepages
 ├── nr_hugepages
 └── surplus_hugepages

 hugepages-1048576kB
 ├── free_hugepages
 ├── nr_hugepages
 └── surplus_hugepages

Chapter 6
Configuring HugeTLB Pages

6-9

Configuring HugeTLB Pages at Boot Time
The precise way to request huge pages at boot time depends upon the system’s requirements.
The following example procedures provide possible starting points.

Requesting HugeTLB Pages by Using Kernel Parameters at Boot Time
The following procedure shows how to use kernel command line options to specify two pools of
HugeTLB pages and a default page size on a system that handles multiple huge page sizes. In
this procedure, the following are requested:

• A default page size of 1 GB.

• One pool with four HugeTLB pages of 1 GB size.

• One pool of 1500 HugeTLB pages of 2 MB size.

Before beginning the following procedure, ensure that you have the administrative privileges
required.

1. Specify 1 GB size for kernel boot parameter default_hugepagesz and 2 pairs of
“hugepagesz=<Size_num>G hugepages=Qty_num” parameters for the two huge page pools.
Append the following line to the kernel command line options in /etc/default/grub

default_hugepagesz=1G hugepagesz=1G hugepages=4 hugepagesz=2M
hugepages=1500

2. Regenerate the GRUB2 configuration file:

a. If the system uses BIOS firmware, run the following command:

sudo grub2-mkconfig -o /boot/grub2/grub.cfg

b. If the system uses UEFI framework, run the following command:

sudo grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

3. The next time the system boots, the two huge page pools are requested.

Requesting HugeTLB Pages Using NUMA Node Specific Parameters Early in the
Boot Process

Huge Pages requested by using the kernel boot-time parameters, as shown in the previous
example, are divided equally between the NUMA nodes.

However, you might need to request a different number of huge pages for specific nodes by
setting the configuration values in a node specific file path. The file path is defined as follows:.

/sys/devices/system/node/node{0,1,2…n}/hugepages/hugepages-<SIZE>kB/

The following procedure describes how to reserve 299 pages of 2 MB size on node 0, and 300
pages of 2 MB size on node 1 on a NUMA system.

Before beginning the following procedure, ensure that you have the administrative privileges
required for all of the steps.

Chapter 6
Configuring HugeTLB Pages

6-10

1. Create a script file called hugetlb-reserve-pages.sh in the /usr/lib/systemd/
directory and add the following content.

#!/bin/sh

nodes_path=/sys/devices/system/node/
if [! -d $nodes_path]; then
 echo "ERROR: $nodes_path does not exist"
 exit 1
fi

###
#
FUNCTION
reserve_pages <number_of_pages> <node_id>
#

reserve_pages()
{
 echo $1 > $nodes_path/$2/hugepages/hugepages-2048kB/nr_hugepages
}

reserve_pages 299 node0
reserve_pages 300 node1

2. Make the script executable:

sudo chmod +x /usr/lib/systemd/hugetlb-reserve-pages.sh

3. Create a service file called hugetlb-gigantic-pages.service in the /usr/lib/
systemd/system/ directory and add the following content to it.

[Unit]
Description=HugeTLB Gigantic Pages Reservation
DefaultDependencies=no
Before=dev-hugepages.mount
ConditionPathExists=/sys/devices/system/node

[Service]
Type=oneshot
RemainAfterExit=yes
ExecStart=/usr/lib/systemd/hugetlb-reserve-pages.sh

[Install]
WantedBy=sysinit.target

4. Enable the service file.

sudo systemctl enable hugetlb-gigantic-pages

Configuring HugeTLB at Runtime
In certain cases, you might need make a request for huge pages at runtime.

Chapter 6
Configuring HugeTLB Pages

6-11

Configuring HugeTLB Pages for a Specific NUMA Node at Runtime
The following procedure shows how to request 20 HugeTLB pages of size 2048 kB for node2
at runtime.

Before starting, you must ensure you have the required administrative privileges required for all
the steps.

1. Run the numastat command to show memory statistics relating to the NUMA nodes:

numastat -cm | egrep 'Node|Huge'| grep -v AnonHugePages

 Node 0 Node 1 Node 2 Node 3 Total add
HugePages_Total 0 0 0 0 0
HugePages_Free 0 0 0 0 0
HugePages_Surp 0 0 0 0 0

2. Add the required number of huge pages of a specified size to the selected node, for
example 20 pages of 2 MB size on node 2:

echo 20 | sudo tee /sys/devices/system/node/node2/hugepages/
hugepages-2048kB/nr_hugepages

3. Run the numastat command again to ensure the request was successful and that the
requested memory (in our example 20 x 2 MB pages = 40 MB) has been added
HugePages_Total for node2:

numastat -cm | egrep 'Node|Huge'| grep -v AnonHugePages

 Node 0 Node 1 Node 2 Node 3 Total
HugePages_Total 0 0 40 0 40
HugePages_Free 0 0 40 0 40
HugePages_Surp 0 0 0 0 0

Configuring Transparent HugePages
The Transparent HugePages (THP) feature is enabled by default in Oracle Linux. However,
you might still need to access and configure THP according to the system’s needs.

The following sections look at various THP parameters and examples of how they can be
configured.

Parameters Used to Configure Transparent HugePages
The following table describes selected parameter settings that can be used when configuring
Transparent HugePages (THP).

Chapter 6
Configuring Transparent HugePages

6-12

Table 6-3 Commonly Used THP Parameters

Parameter File Location Value Options

enabled /sys/kernel/mm/
transparent_hugepage/
enabled

Sets THP and its mode, which
is one of the following:
• always (default): THP is

enabled in system-wide
mode.
In this setting, the kernel,
whenever possible, assigns
huge pages to processes
using large contiguous
virtual memory areas.

• madvise: THP is enabled in
per-process mode.
In this setting the kernel
only assigns huge pages to
application processes that
explicitly request huge
pages through the
madvise()system call.

• disabled: THP is disabled.

Chapter 6
Configuring Transparent HugePages

6-13

Table 6-3 (Cont.) Commonly Used THP Parameters

Parameter File Location Value Options

defrag /sys/kernel/mm/
transparent_hugepage/
defrag

Determines how aggressively
an application can reclaim
pages and defrag memory
when THP is unavailable. The
following list explains the
available options:
• always: An application

requesting THP stalls on
allocation failure and
directly reclaims pages
and compact memory to
obtain a THP immediately.

• defer: An application
doesn't stall but continues
using small pages. The
application requests the
kernel daemons kswapd
and kcompactd to reclaim
pages and compact
memory so that THP is
available later.

• defer+madvise:
Regions using the
madvise(MADV_HUGEPAGE)
call stall on allocation
failure and directly
reclaim pages and
compact memory to obtain
a THP immediately
However, all other regions
request the kernel
daemons kswapd and
kcompactd to reclaim
pages and compact
memory so that THP is
available later.

• madvise (default): Regions
using the
madvise(MADV_HUGEPAGE)
call stall on allocation
failure and directly
reclaim pages and
compact memory to obtain
a THP immediately.

Configuring Transparent HugePages at Runtime
The following sections show you examples of how you can configure THP at runtime by
accessing the THP parameters in the sysfs virtual file system.

Chapter 6
Configuring Transparent HugePages

6-14

Retrieving the Current Status of Transparent HugePages
To see the current setting of THP you can read the /sys/kernel/mm/
transparent_hugepage/enabled parameter as shown in the following code sample:

sudo cat /sys/kernel/mm/transparent_hugepage/enabled

[always] madvise never

The value inside the square brackets represents the current setting.

Changing the Current Status of Transparent HugePages
To change the current status of THP, you need to write the preferred settings to /sys/
kernel/mm/transparent_hugepage/enabled. The following example shows you how to
set the status to always:

1. Check the current status of THP by reading the enabled parameter.

sudo cat /sys/kernel/mm/transparent_hugepage/enabled

always madvise [never]

The value inside the square brackets represents the current setting.

2. Set THP mode to always.

echo always | sudo tee /sys/kernel/mm/transparent_hugepage/enabled

3. Confirm the change has been successful by reading the enabled parameter.

sudo cat /sys/kernel/mm/transparent_hugepage/enabled

[always] madvise never

Chapter 6
Configuring Transparent HugePages

6-15

Note:

Virtual file systems such as sysfs provide a file system interface to items that aren't
necessarily stored as files on disk. The sysfs files therefore don't always interact with
file commands in the same way that regular physical files on disk would. In the
previous example, the echo command used doesn't overwrite /sys/kernel/mm/
transparent_hugepage/enabled, as it would if used with a regular file, but
instead changes the selected option:

sudo cat /sys/kernel/mm/transparent_hugepage/enabled

always madvise [never]

echo always | sudo tee /sys/kernel/mm/transparent_hugepage/enabled

always

sudo cat /sys/kernel/mm/transparent_hugepage/enabled

[always] madvise never

.

Changing the defrag Setting of Transparent HugePages
To change the THP defrag setting you need to write the setting of your choice to /sys/
kernel/mm/transparent_hugepage/defrag

Note:

The best defrag setting varies from system to system. Reclaiming pages and
memory compaction can increase the number of THP pages available. However, the
process also uses CPU time. Therefore, you need to find the correct balance for a
specific system.

The following example shows you how to set the defrag setting to madvise.

1. Check the current value of the defrag parameter:

sudo cat /sys/kernel/mm/transparent_hugepage/defrag

[always] defer defer+madvise madvise never

The value inside square brackets represents the current setting.

Chapter 6
Configuring Transparent HugePages

6-16

2. Set the /sys/kernel/mm/transparent_hugepage/defrag parameter to madvise:

echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/defrag

3. Confirm the change has worked by reading the defrag parameter.

sudo cat /sys/kernel/mm/transparent_hugepage/defrag

always defer defer+madvise [madvise] never

Chapter 6
Configuring Transparent HugePages

6-17

7
Managing Resources

This chapter describes how to manage the use of resources in an Oracle Linux system.

About Control Groups
Control groups, usually referred to as cgroups, are an Oracle Linux kernel feature that enables
processes (PIDs) to be organized into hierarchical groups for the purpose of resource
allocation. For example, if you have identified 3 sets of processes that need to be allocated
CPU time in a ratio of 150:100:50, you can create 3 cgroups, each with a CPU weight
corresponding to one of the 3 values in your ratio, and then assign the appropriate processes
to each cgroup.

By default, systemd creates a cgroup for the following:

• Each systemd service set up on the host.

For example, a server might have control group NetworkManager.service to group
processes owned by the NetworkManager service, and control group firewalld.service to
group processes owned by the firewalld service, and so on.

• Each user (UID) on the host.

The cgroup functionality is mounted as a virtual file system under /sys/fs/cgroup. Each
cgroup has a corresponding folder within /sys/fs/cgroup file system. For example, the
cgroups created by systemd for the services it manages can be seen by running the command
ls -l /sys/fs/cgroup/system.slice | grep ".service" as shown in the following sample
code block:

ls -l /sys/fs/cgroup/system.slice | grep ".service"
...root root 0 Mar 22 10:47 atd.service
...root root 0 Mar 22 10:47 auditd.service
...root root 0 Mar 22 10:47 chronyd.service
...root root 0 Mar 22 10:47 crond.service
...root root 0 Mar 22 10:47 dbus-broker.service
...root root 0 Mar 22 10:47 dtprobed.service
...root root 0 Mar 22 10:47 firewalld.service
...root root 0 Mar 22 10:47 httpd.service
...

You can also create cgroups of your own by creating your own folders under the /sys/fs/
cgroup virtual file system and assigning process IDs (PIDs) to different cgroups according to
your system needs. However, the recommended practice is to use systemd to configure
cgroups instead of creating the cgroups manually under /sys/fs/cgroup. See Using
systemd to Manage cgroups v2 for the recommended method of managing cgroups through
systemd.

7-1

Note:

Use systemd to configure cgroups.

Although the recommended method for configuring using systemd to manage
cgroups, this topic also covers the manual creation of cgroup folders in the /sys/fs/
cgroup file system. However, this coverage is mainly to provide background
knowledge of the kernel cgroup feature to which systemd provides access.

Oracle Linux provides two types of control groups:

Control groups version 1 (cgroups v1)
These groups provide a per-resource controller hierarchy. Each resource, such as CPU,
memory, I/O, and so on, has its own control group hierarchy. A disadvantage of this group is
the difficulty of establishing proper coordination of resource use among groups that might
belong to different process hierarchies.

Control groups version 2 (cgroups v2)
These groups provide a single control group hierarchy against which all resource controllers
are mounted. In this hierarchy, you can obtain better proper coordination of resource uses
across different resource controllers. This version is an improvement over cgroups v1 whose
over flexibility prevented proper coordination of resource use among the system consumers.

Both versions are present in Oracle Linux. However, by default, the cgroups v2 functionality is
enabled and mounted on Oracle Linux 9 systems.

For more information about control groups of both versions, see the cgroups(7) and sysfs(5)
manual pages.

About Kernel Resource Controllers
Control groups manage resource use through kernel resource controllers. A kernel resource
controller represents a single resource, such as CPU time, memory, network bandwidth, or disk
I/O.

To identify mounted resource controllers in the system, check the contents of the /procs/
cgroups file, for example:

less /proc/cgroups

#subsys_name hierarchy num_cgroups enabled
cpuset 0 103 1
cpu 0 103 1
cpuacct 0 103 1
blkio 0 103 1
memory 0 103 1
devices 0 103 1
freezer 0 103 1
net_cls 0 103 1
perf_event 0 103 1
net_prio 0 103 1
hugetlb 0 103 1

Chapter 7
About Kernel Resource Controllers

7-2

pids 0 103 1
rdma 0 103 1
misc 0 103 1

For a detailed explanation of the kernel resource controllers of both cgroups v1 and cgroups
v2, see the cgroups(7) manual page.

About the Control Group File System
This section describes how cgroup functionality is mounted as a hierarchical file system
in /sys/fs/cgroup.

The directory /sys/fs/cgroup is also called the root control group. The contents of the root
control group directory differ depending on which cgroup version is mounted on the system.
For cgroups v2, the directory contents are as follows:

ls /sys/fs/cgroup

cgroup.controllers cpuset.mems.effective memory.stat
cgroup.max.depth cpu.stat misc.capacity
cgroup.max.descendants dev-hugepages.mount sys-fs-fuse-connections.mount
cgroup.procs dev-mqueue.mount sys-kernel-config.mount
cgroup.stat init.scope sys-kernel-debug.mount
cgroup.subtree_control io.pressure sys-kernel-tracing.mount
cgroup.threads io.stat system.slice
cpu.pressure memory.numa_stat user.slice
cpuset.cpus.effective memory.pressure

You can use the mkdir command to create your own cgroup subdirectories below the root
control group. For example, you might create the following cgroup subdirectories:

• /sys/fs/cgroup/MyGroups/
• /sys/fs/cgroup/MyGroups/cgroup1
• /sys/fs/cgroup/MyGroups/cgroup2

Note:

Best practice is to create child cgroups at least 2 levels deep inside the /sys/fs/
cgroup. The examples in the preceding list follow this practice by using the first child
group, MyGroups, as a parent that contains the different cgroups needed for the
system.

Each cgroup in the hierarchy contains the following files:

cgroup.controllers
This read-only file lists the controllers available in the current cgroup. The contents of this file
match the contents of the cgroup.subtree_control file in the parent cgroup.

Chapter 7
About the Control Group File System

7-3

cgroup.subtree_control
This file contains those controllers in the cgroup.controllers file that are enabled for the
current cgroup's immediate child cgroups.
When a controller (for example, pids) is present in the cgroup.subtree_control file, the
corresponding controller-interface files (for example, pids.max) are automatically created in
the immediate children of the current cgroup.

For a sample procedure that creates child groups where you can implement resource
management for an application, see Setting CPU Weight to Regulate Distribution of CPU Time.

To remove a cgroup, ensure that the cgroup doesn't contain other child groups, and then
remove the directory. For example, to remove child group /sys/fs/cgroup/MyGroups/cgroup1
you can run the following command:.

sudo rmdir /sys/fs/cgroup/MyGroups/cgroup1

About Control Groups and systemd
Control groups can be used by the systemd system and service manager for resource
management. Systemd uses these groups to organize units and services that consume
resources. For more information about systemd, see About the systemd Service Manager.

Systemd provides different unit types, three of which are for resource control purposes:

• Service: A process or a group of processes whose settings are based on a unit
configuration file. Services encompass specified processes in a "collection" so that
systemd can start or stop the processes as one set. Service names follow the format
name.service.

• Scope: A group of externally created processes, such as user sessions, containers, virtual
machines, and so on. Similar to services, scopes encapsulate these created processes
and are started or stopped by the arbitrary processes and then registered by systemd at
runtime. Scope names follow the format name.scope.

• Slice: A group of hierarchically organized units in which services and scopes are located.
Thus, slices themselves don't contain processes. Rather, the scopes and services in a
slice define the processes. Every name of a slice unit corresponds to the path to a location
in the hierarchy. Root slices, typically user.slice for all user-based processes and
system.slice for system-based processes, are automatically created in the hierarchy.
Parent slices exist immediately below the root slice and follow the format parent-
name.slice. These root slices can then have subslices on multiple levels.

The service, the scope, and the slice units directly map to objects in the control group
hierarchy. When these units are activated, they map directly to control group paths that are
built from the unit names. To display the mapping between the systemd resource unit types and
control groups, type:

sudo systemd-cgls

Working directory /sys/fs/cgroup:
├─user.slice (#1243)
│ → trusted.invocation_id: 50ce3909b2644f919ee420adc39edb4b
│ ├─user-1001.slice (#4167)
│ │ → trusted.invocation_id: 02e80a960d4549a7a9c69ce0fb546c26
│ │ ├─session-2.scope (#4405)

Chapter 7
About Control Groups and systemd

7-4

│ │ │ ├─2417 sshd: alice [priv]
│ │ │ ├─2430 sshd: alice@pts/0
│ │ │ ├─2431 -bash
│ │ │ ├─2689 sudo systemd-cgls
│ │ │ ├─2691 systemd-cgls
│ │ │ └─2692 less
...
│ └─user@984.service … (#3827)
│ → trusted.delegate: 1
│ → trusted.invocation_id: 09b47ce9f3124239b75814114353f3f2
│ └─init.scope (#3861)
│ ├─2058 /usr/lib/systemd/systemd --user
│ └─2099 (sd-pam)
├─init.scope (#19)
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 17
└─system.slice (#53)
...
 ├─chronyd.service (#2467)
 │ → trusted.invocation_id: c0f77aaa9c7844e6bef6a6898ae4dd56
 │ └─1358 /usr/sbin/chronyd -F 2
 ├─auditd.service (#2331)
 │ → trusted.invocation_id: 756808add6a348609316c9e8c1801846
 │ └─1310 /sbin/auditd
 ├─tuned.service (#3079)
 │ → trusted.invocation_id: 2c358135fc46464d862b05550338d4f4
 │ └─1415 /usr/bin/python3 -Es /usr/sbin/tuned -l -P
 ├─systemd-journald.service (#1651)
 │ → trusted.invocation_id: 7cb7ccb14e044a899aadf47bbb583ada
 │ └─977 /usr/lib/systemd/systemd-journald
 ├─atd.service (#3623)
 │ → trusted.invocation_id: 597a7a4e5646468db407801b8562d869
 │ └─1915 /usr/sbin/atd -f
 ├─sshd.service (#3419)
 │ → trusted.invocation_id: 490504a683fc4311ab0fbeb0864a1a34
 │ └─1871 sshd: /usr/sbin/sshd -D [listener] 0 of 10-100 startups
...

For an example of how to use systemd commands such as systemctl to manage resources,
see Controlling Access to System Resources. For further technical details, see the
systemctl(1), systemd-cgls(1), and systemd.resource-control(5) manual pages.

About Resource Distribution Models
The following distribution models provide you ways of implementing control or regulation in
distributing resources for use by cgroups v2:

Weights
In this model, the weights of all the control groups are totaled. Each group receives a fraction
of the resource based on the ratio of the group's weight against the total weight.
Consider 10 control groups, each with a weight of 100 for a combined total of 1000. In this
case, each group can use a tenth of a specified resource.
Weight is typically used to distribute stateless resources. To apply this resource, the
CPUWeight option is used.

Chapter 7
About Resource Distribution Models

7-5

Limits
A control group can use the configured amount of a resource. However, you can also
overcommit resources. Therefore, the sum of the subgroups limits can exceed the limit of the
parent group.
To implement this distribution model, the MemoryMax option is used.

Protections
In this model, a group is assigned a protected boundary. If the group's resource usage
remains within the protected amount, the kernel can't deprive the group of the use of the
resource in favor of other groups that are competing for the same resource. In this model, an
overcommitment of resources is allowed.
To implement this model, the MemoryLow option is used.

Allocations
In this model, a specific absolute amount is allocated for the use of finite type of resources,
such as real-time budget.

Using cgroups v2 to Manage Resources for Applications
This section shows you how to enable the cgroups v2 feature so you can create and configure
cgroups to manage the distribution of resources amongst processes running on your system.

The sample procedure included in this section involves allocating CPU time between cgroups
that each have different application PIDs assigned to them. The CPU time and application PID
values are set in each group's cpu.weight and cgroup.procs files.

The section also includes the steps required to ensure the cpu controller and its associated
files, including the cpu.weight file, are available in the cgroups you need to create
under /sys/fs/cgroup when following the sample procedure.

Enabling cgroups v2
At boot time, Oracle Linux 9 mounts cgroups v2 by default.

1. Verify that cgroups v2 is enabled and mounted on the system.

sudo mount -l | grep cgroup

cgroup2 on /sys/fs/cgroup type cgroup2
(rw,nosuid,nodev,noexec,relatime,seclabel,nsdelegate,memory_recursiveprot)

2. Optionally, check the contents of /sys/fs/cgroup directory, which is also called the root
control group.

ll /sys/fs/cgroup/

For cgroups v2, the files in the directory should have prefixes to their file names, for
example, cgroup.*, cpu.*, memory.*, and so on. See About the Control Group File System.

Chapter 7
Using cgroups v2 to Manage Resources for Applications

7-6

Preparing the Control Group for Distribution of CPU Time
1. Verify that the cpu controller is available at the top of the hierarchy, in the root control

group, by printing the contents of the /sys/fs/cgroup/cgroup.controllers file on
the screen:

sudo cat /sys/fs/cgroup/cgroup.controllers

cpuset cpu io memory hugetlb pids rdma misc

You can add any controllers listed in the cgroup.controllers file to the
cgroup.subtree_control file in the same directory to make them available to the group's
immediate child cgroups.

2. Add the cpu controller to the cgroup.subtree_control file to make it available to
immediate child cgroups of the root.

By default, only the memory and pids controllers are in the file. To add the cpu controller,
type:

echo "+cpu" | sudo tee /sys/fs/cgroup/cgroup.subtree_control

3. Optionally, verify that the cpu controller has been added as expected.

sudo cat /sys/fs/cgroup/cgroup.subtree_control

cpu memory pids

4. Create a child group under the root control group to become the new control group for
managing CPU resources on applications.

sudo mkdir /sys/fs/cgroup/MyGroups

5. Optionally, list the contents of the new subdirectory, or child group, and confirm that the cpu
controller is present as expected:

ll /sys/fs/cgroup/MyGroups

-r—r—r--. 1 root root 0 Jun 1 10:33 cgroup.controllers
-r—r—r--. 1 root root 0 Jun 1 10:33 cgroup.events
-rw-r—r--. 1 root root 0 Jun 1 10:33 cgroup.freeze
-rw-r—r--. 1 root root 0 Jun 1 10:33 cgroup.max.depth
-rw-r—r--. 1 root root 0 Jun 1 10:33 cgroup.max.descendants
-rw-r—r--. 1 root root 0 Jun 1 10:33 cgroup.procs
-r—r—r--. 1 root root 0 Jun 1 10:33 cgroup.stat
-rw-r—r--. 1 root root 0 Jun 1 10:33 cgroup.subtree_control
…
-r—r—r--. 1 root root 0 Jun 1 10:33 cpu.stat
-rw-r—r--. 1 root root 0 Jun 1 10:33 cpu.weight
-rw-r—r--. 1 root root 0 Jun 1 10:33 cpu.weight.nice
…

Chapter 7
Using cgroups v2 to Manage Resources for Applications

7-7

-r—r—r--. 1 root root 0 Jun 1 10:33 memory.events.local
-rw-r—r--. 1 root root 0 Jun 1 10:33 memory.high
-rw-r—r--. 1 root root 0 Jun 1 10:33 memory.low
…
-r—r—r--. 1 root root 0 Jun 1 10:33 pids.current
-r—r—r--. 1 root root 0 Jun 1 10:33 pids.events
-rw-r—r--. 1 root root 0 Jun 1 10:33 pids.max

6. Enable the cpu controller in cgroup.subtree_control file in the MyGroups directory to
make it available to its immediate child cgroups:

echo "+cpu" | sudo tee /sys/fs/cgroup/MyGroups/cgroup.subtree_control

7. Optionally, verify that the cpu controller is enabled for child groups under MyGroups.

sudo cat /sys/fs/cgroup/MyGroups/cgroup.subtree_control

cpu

Setting CPU Weight to Regulate Distribution of CPU Time
This procedure is based on the following assumptions:

• The application that's consuming CPU resources excessively is sha1sum, as shown in the
following sample output of the top command:

sudo top

...
 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+
COMMAND
 33301 root 20 0 18720 1756 1468 R 99.0 0.0 0:31.09
sha1sum
 33302 root 20 0 18720 1772 1480 R 99.0 0.0 0:30.54
sha1sum
 33303 root 20 0 18720 1772 1480 R 99.0 0.0 0:30.54
sha1sum
 1 root 20 0 109724 17196 11032 S 0.0 0.1 0:03.28
systemd
 2 root 20 0 0 0 0 S 0.0 0.0 0:00.00
kthreadd
 3 root 0 -20 0 0 0 I 0.0 0.0 0:00.00
rcu_gp
 4 root 0 -20 0 0 0 I 0.0 0.0 0:00.00
rcu_par_gp
...

• The sha1sum processes have PIDs 33301, 33302, and 33303, as listed in the preceding
sample output.

Chapter 7
Using cgroups v2 to Manage Resources for Applications

7-8

Important:

As a prerequisite to the following procedure, you must complete the preparations of
cgroup-v2 as described in Preparing the Control Group for Distribution of CPU Time.
If you skipped those preparations, you can't complete this procedure.

1. Create 3 child groups in the MyGroups subdirectory.

sudo mkdir /sys/fs/cgroup/MyGroups/g1
sudo mkdir /sys/fs/cgroup/MyGroups/g2
sudo mkdir /sys/fs/cgroup/MyGroups/g3

2. Configure the CPU weight for each child group.

echo "150" | sudo tee /sys/fs/cgroup/MyGroups/g1/cpu.weight
echo "100" | sudo tee /sys/fs/cgroup/MyGroups/g2/cpu.weight
echo "50" | sudo tee /sys/fs/cgroup/MyGroups/g3/cpu.weight

3. Apply the application PIDs to their corresponding child groups.

echo "33301" | sudo tee /sys/fs/cgroup/Example/g1/cgroup.procs
echo "33302" | sudo tee /sys/fs/cgroup/Example/g2/cgroup.procs
echo "33303" | sudo /sys/fs/cgroup/Example/g3/cgroup.procs

These commands set the selected applications to become members of the MyGroups/g*/
control groups. The CPU time for each sha1sum process depends on the CPU time
distribution as configured for each group.

The weights of the g1, g2, and g3 groups that have running processes are summed up at
the level of MyGroups, which is the parent control group.

With this configuration, when all processes run at the same time, the kernel allocates to
each of the sha1sum processes the proportionate CPU time based on their respective
cgroup's cpu.weight file, as follows:

Child group cpu.weight setting Percent of CPU time
allocation

g1 150 ~50% (150/300)
g2 100 ~33% (100/300)
g3 50 ~16% (50/300)

If one child group has no running processes, then the CPU time allocation for running
processes is recalculated based on the total weight of the remaining child groups with
running processes. For example, if the g2 child group doesn't have any running processes,
then the total weight becomes 200, which is the weight of g1+g3. In this case, the CPU
time for g1 becomes 150/200 (~75%) and for g3, 50/200 (~25%)

Chapter 7
Using cgroups v2 to Manage Resources for Applications

7-9

4. Check that the applications are running in the specified control groups.

sudo cat /proc/33301/cgroup /proc/33302/cgroup /proc/33303/cgroup

0::/MyGroups/g1
0::/MyGroups/g2
0::/MyGroups/g3

5. Check the current CPU consumption after you have set the CPU weights.

top

...
 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+
COMMAND
 33301 root 20 0 18720 1748 1460 R 49.5 0.0 415:05.87
sha1sum
 33302 root 20 0 18720 1756 1464 R 32.9 0.0 412:58.33
sha1sum
 33303 root 20 0 18720 1860 1568 R 16.3 0.0 411:03.12
sha1sum
 760 root 20 0 416620 28540 15296 S 0.3 0.7 0:10.23
tuned
 1 root 20 0 186328 14108 9484 S 0.0 0.4 0:02.00
systemd
 2 root 20 0 0 0 0 S 0.0 0.0 0:00.01
kthread
...

Using systemd to Manage cgroups v2
The preferred method of managing resource allocation with cgroups v2 is to use the control
group functionality provided by systemd.

Note:

For information on enabling cgroups v2 functionality on your system, see Enabling
cgroups v2

By default, systemd creates a cgroup folder for each systemd service set up on the host.
systemd names these folders using the format servicename.service, where servicename is
the name of the service associated with the folder.

To see a list of the cgroup folders systemd creates for the services, run the ls command on the
system.slice branch of the cgroup file system as shown in the following sample code block:

ls /sys/fs/cgroup/system.slice/
...
app_service1.service cgroup.subtree_control httpd.service
app_service2.service chronyd.service ...

Chapter 7
Using systemd to Manage cgroups v2

7-10

... crond.service ...
cgroup.controllers dbus-broker.service ...
cgroup.events dtprobed.service ...
cgroup.freeze firewalld.service ...
... gssproxy.service ...
...

In the preceding command block:

• The folders app_service1.service and app_service2.service represent custom application
services you might have on your system.

In addition to service control groups, systemd also creates a cgroup folder for each user on the
host. To see the cgroups created for each user you can run the ls command on the
user.slice branch of the cgroup file system as shown in the following sample code block:

ls /sys/fs/cgroup/user.slice/
cgroup.controllers cgroup.subtree_control user-1001.slice
cgroup.events cgroup.threads user-982.slice
cgroup.freeze cgroup.type ...
...
...
...

In the preceding code block:

• Each user cgroup folder is named using the format user-UID.slice. So, control group
user-1001.slice is for a user whose UID is 1001, for example.

systemd provides high-level access to the cgroups and kernel resource controller features so
you do not have to access the file system directly. For example, to set the CPU weight of a
service called app_service1.service, you might choose to run the systemctl set-property
command as follows:

sudo systemctl set-property app_service1.service CPUWeight=150

Thus, systemd enables you to manage resource distribution at an application level, rather than
the process PID level used when configuring cgroups without using systemd functionality.

About Slices and Resource Allocation in systemd
This section looks at the way systemd initially divides each of the default kernel controllers, for
example CPU, memory and blkio, into portions called "slices" as illustrated by the following
example pie chart:

Note:

You can also create your own custom slices for resource distribution, as shown in
section Setting Resource Controller Options and Creating Custom Slices.

Chapter 7
Using systemd to Manage cgroups v2

7-11

Figure 7-1 Pie chart illustrating distribution in a resource controller, such as CPU or
Memory

As the preceding pie chart shows, by default each resource controller is divided equally
between the following 3 slices:

• System (system.slice).

• User (user.slice).

• Machine (machine.slice).

The following list looks at each slice more closely. For the purposes of discussion, the
examples in the list focus on the CPU controller.

System (system.slice)
This resource slice is used for managing resource allocation amongst daemons and service
units.
As shown in the preceding example pie chart, the system slice is divided into further sub-
slices. For example, in the case of CPU resources, we might have sub-slice allocations within
the system slice that include the following:

• httpd.service (CPUWeight=100)

Chapter 7
Using systemd to Manage cgroups v2

7-12

• sshd.service (CPUWeight =100)

• crond.service (CPUWeight =100)

• app1.service (CPUWeight =100)

• app2.service (CPUWeight =100)

In the preceding list, app1.service and app2.service represent custom application services
you might have running on your system.

User (user.slice)
This resource slice is used for managing resource allocation amongst user sessions. A single
slice is created for each UID irrespective of how many logins the associated user has active on
the server. Continuing with our pie chart example, the sub-slices might be as follows:

• user1 (CPUWeight=100, UID=982)

• user2 (CPUWeight=100, UID=1001)

Machine (machine.slice)
This slice of the resource is used for managing resource allocation amongst hosted virtual
machines, such as KVM guests, and Linux Containers. The machine slice is only present on a
server if the server is hosting virtual machines or Linux Containers.

Note:

Share allocations do not set a maximum limit for a resource.

For instance, in the preceding examples, the slice user.slice has 2 users: user1
and user2. Each user is allocated an equal share of the CPU resource available to
the parent user.slice. However, if the processes associated with user1 are idle, and
do not require any CPU resource, then its CPU share is available for allocation to
user2 if needed. In such a situation, user2 might even be allocated the entire CPU
resource apportioned to the parent user.slice if it is required by other users.

To cap CPU resource, you would need to set the CPUQuota property to the required
percentage.

Slices, Services, and Scopes in the cgroup Hierarchy
The pie chart analogy used in the preceding sections is a helpful way to conceptualize the
division of resources into slices. However, in terms of structural organization, the control
groups are arranged in a hierarchy. You can view the systemd control group hierarchy on your
system by running the systemd-cgls command as follows:

Chapter 7
Using systemd to Manage cgroups v2

7-13

Tip:

To see the entire cgroup hierarchy, starting from the root slice -.slice, as in the
following example, ensure you run systemd-cgls from outside of the control group
mount point /sys/fs/cgroup/. Otherwise, If you run the command from
within /sys/fs/cgroup/, the output starts from the cgroup location from which the
command was run. See systemd-cgls(1) for more information.

systemd-cgls

Control group /:
-.slice
...
├─user.slice (#1429)
│ → user.invocation_id: 604cf5ef07fa4bb4bb86993bb5ec15e0
│ ├─user-982.slice (#4131)
│ │ → user.invocation_id: 9d0d94d7b8a54bcea2498048911136c8
│ │ ├─session-c1.scope (#4437)
│ │ │ ├─2416 /usr/bin/sudo -u ocarun /usr/libexec/oracle-cloud-agent/plugins/
runcommand/runcommand
│ │ │ └─2494 /usr/libexec/oracle-cloud-agent/plugins/runcommand/runcommand
│ │ └─user@982.service … (#4199)
│ │ → user.delegate: 1
│ │ → user.invocation_id: 37c7aed7aa6e4874980b79616acf0c82
│ │ └─init.scope (#4233)
│ │ ├─2437 /usr/lib/systemd/systemd --user
│ │ └─2445 (sd-pam)
│ └─user-1001.slice (#7225)
│ → user.invocation_id: ce93ad5f5299407e9477964494df63b7
│ ├─session-2.scope (#7463)
│ │ ├─20304 sshd: oracle [priv]
│ │ ├─20404 sshd: oracle@pts/0
│ │ ├─20405 -bash
│ │ ├─20441 systemd-cgls
│ │ └─20442 less
│ └─user@1001.service … (#7293)
│ → user.delegate: 1
│ → user.invocation_id: 70284db060c1476db5f3633e5fda7fba
│ └─init.scope (#7327)
│ ├─20395 /usr/lib/systemd/systemd --user
│ └─20397 (sd-pam)
├─init.scope (#19)
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 28
└─system.slice (#53)
 ...
 ├─dbus-broker.service (#2737)
 │ → user.invocation_id: 2bbe054a2c4d49809b16cb9c6552d5a6
 │ ├─1450 /usr/bin/dbus-broker-launch --scope system --audit
 │ └─1457 dbus-broker --log 4 --controller 9 --machine-id
852951209c274cfea35a953ad2964622 --max-bytes 536870912 --max-fds 4096 --max-
matches 131072 --audit
 ...

Chapter 7
Using systemd to Manage cgroups v2

7-14

 ├─chronyd.service (#2805)
 │ → user.invocation_id: e264f67ad6114ad5afbe7929142faa4b
 │ └─1482 /usr/sbin/chronyd -F 2
 ├─auditd.service (#2601)
 │ → user.invocation_id: f7a8286921734949b73849b4642e3277
 │ ├─1421 /sbin/auditd
 │ └─1423 /usr/sbin/sedispatch
 ├─tuned.service (#3349)
 │ → user.invocation_id: fec7f73678754ed687e3910017886c5e
 │ └─1564 /usr/bin/python3 -Es /usr/sbin/tuned -l -P
 ├─systemd-journald.service (#1837)
 │ → user.invocation_id: bf7fb22ba12f44afab3054aab661aedb
 │ └─1068 /usr/lib/systemd/systemd-journald
 ├─atd.service (#3961)
 │ → user.invocation_id: 1c59679265ab492482bfdc9c02f5eec5
 │ └─2146 /usr/sbin/atd -f
 ├─sshd.service (#3757)
 │ → user.invocation_id: 57e195491341431298db233e998fb180
 │ └─2097 sshd: /usr/sbin/sshd -D [listener] 0 of 10-100 startups
 ├─crond.service (#3995)
 │ → user.invocation_id: 4f5b380a53db4de5adcf23f35d638ff5
 │ └─2150 /usr/sbin/crond -n
 ...

The preceding sample output shows how all "*.slice" control groups reside under the root
slice -.slice. Beneath the root slice you can see the user.slice and system.slice control
groups, each with their own child cgroup sub-slices.

Examining the systemd-cgls command output you can see how, with the exception of root
-.slice , all processes are on leaf nodes. This arrangement is enforced by cgroups v2, in a
rule called the "no internal processes" rule. See cgroups (7) for more information about the
"no internal processes" rule.

The output in the preceding systemd-cgls command example also shows how slices can
have descendent child control groups that are systemd scopes. systemd scopes are reviewed
in the following section.

systemd Scopes
systemd scope is a systemd unit type that groups together system service worker processes
that have been launched independently of systemd. The scope units are transient cgroups
created programmatically using the bus interfaces of systemd.

For example, in the following sample code, the user with UID 1001 has run the systemd-cgls
command, and the output shows session-2.scope has been created for processes the user
has spawned independently of systemd (including the process for the command itself , 21380
sudo systemd-cgls):

Chapter 7
Using systemd to Manage cgroups v2

7-15

Note:

In the following example, the command has been run from within the control group
mount point /sys/fs/cgroup/. Hence, instead of the root slice, the output starts from
the cgroup location from which the command was run.

sudo systemd-cgls

Working directory /sys/fs/cgroup:
...
├─user.slice (#1429)
│ → user.invocation_id: 604cf5ef07fa4bb4bb86993bb5ec15e0
│ → trusted.invocation_id: 604cf5ef07fa4bb4bb86993bb5ec15e0
...
│ └─user-1001.slice (#7225)
│ → user.invocation_id: ce93ad5f5299407e9477964494df63b7
│ → trusted.invocation_id: ce93ad5f5299407e9477964494df63b7
│ ├─session-2.scope (#7463)
│ │ ├─20304 sshd: oracle [priv]
│ │ ├─20404 sshd: oracle@pts/0
│ │ ├─20405 -bash
│ │ ├─21380 sudo systemd-cgls
│ │ ├─21382 systemd-cgls
│ │ └─21383 less
│ └─user@1001.service … (#7293)
│ → user.delegate: 1
│ → trusted.delegate: 1
│ → user.invocation_id: 70284db060c1476db5f3633e5fda7fba
│ → trusted.invocation_id: 70284db060c1476db5f3633e5fda7fba
│ └─init.scope (#7327)
│ ├─20395 /usr/lib/systemd/systemd --user
│ └─20397 (sd-pam)

Setting Resource Controller Options and Creating Custom Slices
systemd provides the following methods for setting resource controller options, such as
CPUWeight, CPUQuota, and so on, to customize resource allocation on your system:

• Using service unit files.

• Using drop-in files.

• Using the systemctl set-property command.

The following sections provide example procedures for using each of these methods to
configure resources and slices in your system.

Using Service Unit Files
To set options in a service unit file, perform the following steps:

Chapter 7
Using systemd to Manage cgroups v2

7-16

1. Create file /etc/systemd/system/myservice1.service with the following content:

[Service]
Type=oneshot
ExecStart=/usr/lib/systemd/generate_load.sh
TimeoutSec=0
StandardOutput=tty
RemainAfterExit=yes

[Install]
WantedBy=multi-user.target

2. The service created in the preceding step requires a bash script /usr/lib/systemd/
generate_load.sh. Create the file with the following content:

#!/bin/bash
for i in {1..4};do while : ; do : ; done & done

3. Make the script runnable:

sudo chmod +x /usr/lib/systemd/generate_load.sh

4. Enable and start the service:

sudo systemctl enable myservice1 --now

5. Run the systemd-cgls command and confirm the service myservice1 is running under
system.slice:

systemd-cgls

Control group /:
-.slice
...
├─user.slice (#1429)
...
└─system.slice (#53)
 ...
 ├─myservice1.service (#7939)
 │ → user.invocation_id: e227f8f288444fed92a976d391e6a897
 │ ├─22325 /bin/bash /usr/lib/systemd/generate_load.sh
 │ ├─22326 /bin/bash /usr/lib/systemd/generate_load.sh
 │ ├─22327 /bin/bash /usr/lib/systemd/generate_load.sh
 │ └─22328 /bin/bash /usr/lib/systemd/generate_load.sh
 ├─pmie.service (#4369)
 │ → user.invocation_id: 68fcd40071594481936edf0f1d7a8e12
 ...

6. Create a custom slice for the service.

Chapter 7
Using systemd to Manage cgroups v2

7-17

Add the line Slice=my_custom_slice.slice to the [Service] section in the
myservice1.service file, created in a previous step, as shown in the following code block:

[Service]
Slice=my_custom_slice.slice
Type=oneshot
ExecStart=/usr/lib/systemd/generate_load.sh
TimeoutSec=0
StandardOutput=tty
RemainAfterExit=yes

[Install]
WantedBy=multi-user.target

NOT_SUPPORTED:

Use underscores instead of dashes to separate terms in slice names.

In systemd, a dash in a slice name is a special character: in systemd, dashes in
slice names are used to describe the full cgroup path to the slice (starting from
the root slice). For example, if you specify a slice name as "my-custom-
slice.slice", instead of creating a slice of that name, systemd creates the
following cgroups path underneath the root slice: my.slice/my-
custom.slice/my-custom-slice.slice.

7. After editing the file, ensure systemd reloads its configuration files and then restart the
service:

sudo systemctl daemon-reload
sudo systemctl restart myservice1

8. Run the systemd-cgls command and confirm the service myservice1 is now running under
custom slice my_custom_slice:

systemd-cgls

Control group /:
-.slice
...
├─user.slice (#1429)
...
├─my_custom_slice.slice (#7973)
│ → user.invocation_id: a8a493a8db1342be85e2cdf1e80255f8
│ └─myservice1.service (#8007)
│ → user.invocation_id: 9a4a6171f2844e479d4a0f347aac38ce
│ ├─22385 /bin/bash /usr/lib/systemd/generate_load.sh
│ ├─22386 /bin/bash /usr/lib/systemd/generate_load.sh
│ ├─22387 /bin/bash /usr/lib/systemd/generate_load.sh
│ └─22388 /bin/bash /usr/lib/systemd/generate_load.sh
├─init.scope (#19)
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 28
└─system.slice (#53)

Chapter 7
Using systemd to Manage cgroups v2

7-18

 ├─irqbalance.service (#2907)
 │ → user.invocation_id: 00d64c9b9d224f179496a83536dd60bb
 │ └─1464 /usr/sbin/irqbalance --foreground
 ...

Using Drop-in Files
To use a drop-in file to configure resources, perform the following steps:

1. Create the directory for your service drop-in file.

Tip:

The "drop-in" directory for drop-in files for a service is located at /etc/
systemd/system/service_name.service.d where service_name is the
name of the service.

Continuing with our example with service myservice1, we would run the following
command:

sudo mkdir -p /etc/systemd/system/myservice1.service.d/

2. Create 2 drop-in files called 00-slice.conf and 10-CPUSettings.conf in the
myservice1.service.d directory created in the preceding step.

Note:

• Multiple drop-in files with different names are applied in lexicographic order.

• These drop-in files take precedence over the service unit file.

3. a. Add the following contents to 00-slice.conf

[Service]
Slice=my_custom_slice2.slice
MemoryAccounting=yes
CPUAccounting=yes

b. And add the following contents to 10-CPUSettings.conf

[Service]
CPUWeight=200

4. Create a second service (myservice2) and assign it a different CPUWeight to that assigned
to myservice1:

a. Create file /etc/systemd/system/myservice2.service with the following contents:

[Service]
Slice=my_custom_slice2.slice
Type=oneshot

Chapter 7
Using systemd to Manage cgroups v2

7-19

ExecStart=/usr/lib/systemd/generate_load2.sh
TimeoutSec=0
StandardOutput=tty
RemainAfterExit=yes

[Install]
WantedBy=multi-user.target

b. The service created in the preceding step requires a bash script /usr/lib/
systemd/generate_load2.sh. Create the file with the following content:

#!/bin/bash
for i in {1..4};do while : ; do : ; done & done

c. Make the script runnable:

sudo chmod +x /usr/lib/systemd/generate_load2.sh

d. Create a drop in file /etc/systemd/system/myservice2.service.d/10-
CPUSettings.conf for myservice2 with the following contents:

[Service]
CPUWeight=400

5. Ensure systemd reloads its configuration files, and restart myservice1, and also enable
and start myservices2:

sudo systemctl daemon-reload
sudo systemctl restart myservice1
sudo systemctl enable myservice2 --now

6. Run the systemd-cgtop command to display control groups ordered by their resource
usage. You can see from the following sample output how, in addition to the resource
usage of each slice, the systemd-cgtop command displays resource usage breakdown
within each slice, so you can use it to confirm your CPU weight has been divided as
expected.

systemd-cgtop

Control Group Tasks %CPU Memory
Input/s Output/s
/ 228 198.8
712.5M - -
my_custom_slice2.slice 8 198.5
1.8M - -
my_custom_slice2.slice/myservice2.service 4 132.8
944.0K - -
my_custom_slice2.slice/myservice1.service 4 65.6
976.0K - -
user.slice 18 0.9
43.9M - -
user.slice/user-1001.slice 6 0.9
13.7M - -
user.slice/user-1001.slice/session-2.scope 4 0.9

Chapter 7
Using systemd to Manage cgroups v2

7-20

9.4M - -
system.slice 60 0.0
690.8M - -

Using systemctl set-property
The systemctl set-property command places the configuration files under the following
location:

/etc/systemd/system.control

Caution:

You must not manually edit the files systemctl set-property command creates.

Note:

The systemctl set-property command does not recognize every resource-control
property used in the system-unit and drop-in files covered earlier in this topic.

The following procedure demonstrates how you can use the systemctl set-property
command to configure resource allocation:

1. Continuing with our example, create another service file at location /etc/systemd/
system/myservice3.service with the following content:

[Service]
Type=oneshot
ExecStart=/usr/lib/systemd/generate_load3.sh
TimeoutSec=0
StandardOutput=tty
RemainAfterExit=yes
[Install]
WantedBy=multi-user.target

2. Set the slice for the service to be my_custom_slice2 (the same slice used by the services
created in from earlier steps) by adding the following line to the [Service] section in the
myservice3.service file:

Slice=my_custom_slice2.slice

Note:

The slice must be set in the service-unit file because the systemctl set-
property command does not recognize the Slice property.

Chapter 7
Using systemd to Manage cgroups v2

7-21

3. The service created in the preceding step requires a bash script /usr/lib/systemd/
generate_load3.sh. Create the file with the following content:

#!/bin/bash
for i in {1..4};do while : ; do : ; done & done

4. Make the script runnable:

sudo chmod +x /usr/lib/systemd/generate_load3.sh

5. Ensure systemd reloads its configuration files, and then enable and start the service:

sudo systemctl daemon-reload
sudo systemctl enable myservice3 --now

6. Optionally run the to systemd-cgtop confirm all 3 services, , myservice1, myservice2, and
myservice3, are all running in the same slice.

7. Use systemctl set-property command to set the CPUWeight for myservice3 to 800:

sudo systemctl set-property myservice3.service CPUWeight=800

8. You can optionally confirm that a drop-in file has been created for you under /etc/
systemd/system.control/myservice3.service.d. However, you must not edit the
file:

cat /etc/systemd/system.control/myservice3.service.d/50-CPUWeight.conf

This is a drop-in unit file extension, created via "systemctl set-
property"
or an equivalent operation. Do not edit.
[Service]
CPUWeight=800

Ensure systemd reloads its configuration files, and restart all the services:

sudo systemctl daemon-reload
sudo systemctl restart myservice1
sudo systemctl restart myservice2
sudo systemctl restart myservice3

9. Run the systemd-cgtop command to confirm your CPU weight has been divided as
expected:

systemd-cgtop

Control Group Tasks %CPU
Memory Input/s Output/s
/ 235 200.0
706.1M - -
my_custom_slice2.slice 12 198.4
2.9M - -

Chapter 7
Using systemd to Manage cgroups v2

7-22

my_custom_slice2.slice/myservice3.service 4 112.7
976.0K - -
my_custom_slice2.slice/myservice2.service 4 56.9
996.0K - -
my_custom_slice2.slice/myservice1.service 4 28.8
988.0K - -
user.slice 18 0.9
44.1M - -
user.slice/user-1001.slice 6 0.9
13.9M - -
user.slice/user-1001.slice/session-2.scope 4 0.9
9.5M - -

Using cgroups v2 to Manage Resources for Users
The previous sample procedures describe how to manage applications' use of system
resources. You can also manage resource use by directly implementing resource filters to
users who log in to the system.

Run Control Groups Version 2 on Oracle Linux is a tutorial that provides examples on how to
control users' use of system resources. Further, the tutorial offers a lab environment where you
can perform steps in real time to regulate resource consumption by users.

Chapter 7
Using cgroups v2 to Manage Resources for Users

7-23

https://docs.oracle.com/en/learn/ol-cgroup-v2/

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Managing Kernels and System Boot
	About the Boot Process
	About UEFI-Based Booting
	About BIOS-Based Booting

	About the GRUB 2 Bootloader
	About Linux Kernels
	Managing Kernels in GRUB 2 Using grubby
	Kernel Boot Parameters
	Modifying Kernel Boot Parameters Before Booting
	Modifying GRUB 2 Default Kernel Boot Parameters

	2 Managing System Services With systemd
	About the systemd Service Manager
	systemd Units

	About System-State Targets
	Displaying Default and Active System-State Targets
	Changing Default and Active System-State Targets

	Shutting Down, Suspending, and Rebooting the System
	Managing Services
	Starting and Stopping Services
	Enabling and Disabling Services
	Displaying the Status of Services
	Controlling Access to System Resources
	Running systemctl on a Remote System

	Modifying systemd Service Unit Files
	About Service Unit Files
	Configurable Options in Service Unit Files

	Creating a User-Based systemd Service
	Using Timer Units to Control Service Unit Runtime
	Configuring a Realtime Timer Unit
	Configuring a Monotonic Timer Unit
	Running a Transient Timer Unit

	3 Configuring System Settings
	About the /etc/sysconfig Files
	About the /proc Virtual File System
	Virtual Files and Directories Under /proc
	Modifying Kernel Parameters
	Parameters That Control System Performance
	Parameters That Control Kernel Panics

	About the /sys Virtual File System
	Virtual Directories Under the /sys Directory

	Configuring System Language (Locale) and Keyboard Settings
	Changing the Language Setting
	Installing Language Locales Individually
	Changing the Keyboard Layout

	Configuring System Date and Time Settings
	Configuring the Watchdog Service

	4 Managing System Devices
	About Device Files
	About the Udev Device Manager
	About Udev Rules
	Querying Udev and Sysfs
	Modifying Udev Rules

	5 Managing Kernel Modules
	About Kernel Modules
	Listing Information About Loaded Modules
	Loading and Unloading Modules
	About Module Parameters
	Specifying Modules To Be Loaded at Boot Time
	Preventing Modules From Loading at Boot Time
	About Weak Update Modules

	6 Configuring Huge Pages
	Available Huge Page Features
	HugeTLB Pages
	Transparent HugePages

	Configuring HugeTLB Pages
	Kernel Boot Parameters for HugeTLB Pages
	File-Based Configuration Parameters for HugeTLB Pages
	Configuring HugeTLB Pages at Boot Time
	Requesting HugeTLB Pages by Using Kernel Parameters at Boot Time
	Requesting HugeTLB Pages Using NUMA Node Specific Parameters Early in the Boot Process

	Configuring HugeTLB at Runtime
	Configuring HugeTLB Pages for a Specific NUMA Node at Runtime

	Configuring Transparent HugePages
	Parameters Used to Configure Transparent HugePages
	Configuring Transparent HugePages at Runtime
	Retrieving the Current Status of Transparent HugePages
	Changing the Current Status of Transparent HugePages
	Changing the defrag Setting of Transparent HugePages

	7 Managing Resources
	About Control Groups
	About Kernel Resource Controllers
	About the Control Group File System
	About Control Groups and systemd
	About Resource Distribution Models
	Using cgroups v2 to Manage Resources for Applications
	Enabling cgroups v2
	Preparing the Control Group for Distribution of CPU Time
	Setting CPU Weight to Regulate Distribution of CPU Time

	Using systemd to Manage cgroups v2
	About Slices and Resource Allocation in systemd
	Slices, Services, and Scopes in the cgroup Hierarchy
	systemd Scopes

	Setting Resource Controller Options and Creating Custom Slices
	Using Service Unit Files
	Using Drop-in Files
	Using systemctl set-property

	Using cgroups v2 to Manage Resources for Users

