
Oracle Linux 9
Managing the System With systemd

G13060-02
April 2025

Oracle Linux 9 Managing the System With systemd,

G13060-02

Copyright © 2024, 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 About systemd

systemd Configuration 1-1

systemd Units 1-1

2 systemd Utilities

systemctl System State Commands 2-1

Running systemctl on a Remote System 2-1

Configuring System Date and Time Settings 2-2

Configuring System Language (Locale) and Keyboard Settings 2-4

Changing the Language Setting 2-4

Installing Language Locales Individually 2-5

Changing the Keyboard Layout 2-6

3 Targets

Displaying Default and Active System-State Targets 3-1

Changing Default and Active System-State Targets 3-3

4 Service Management

Starting and Stopping Services 4-1

Enabling and Disabling Services 4-1

Displaying the Status of Services 4-3

Controlling Access to System Resources 4-5

Creating a User-Based systemd Service 4-6

iii

Changing systemd Service Unit Files 4-7

About Service Unit Files 4-7

Configurable Options in Service Unit Files 4-8

5 Working with Timers

Using Timer Units to Control Service Unit Runtime 5-2

Configuring a Realtime Timer Unit 5-3

Configuring a Monotonic Timer Unit 5-4

Running a Transient Timer Unit 5-5

6 Core Dumps

Enabling Core Dumps 6-1

Configuring Core Dumps 6-1

Analyzing Core Dumps 6-2

Exporting Core Dumps 6-2

7 About Control Groups

About Control Groups and systemd 7-2

Using systemd to Manage cgroups v2 7-4

About Slices and Resource Allocation in systemd 7-5

Slices, Services, and Scopes in the cgroup Hierarchy 7-7

systemd Scopes 7-8

Setting Resource Controller Options and Creating Custom Slices 7-9

Using Service Unit Files 7-9

Using Drop-in Files 7-12

Using systemctl set-property 7-14

iv

Preface

Oracle Linux 9: Managing the System With systemd describes how to use systemd to manage
core system configuration, services, timer units, and resource usage.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and

v

https://docs.oracle.com/en/operating-systems/oracle-linux/9/systemd/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

1
About systemd

systemd is the system initialization and service manager in Oracle Linux. The systemd daemon
is the first process that starts after a system boots and is the final process that's running when
the system shuts down. systemd controls the final stages of booting and prepares the system
for use. It also speeds up booting by loading services concurrently.

Tip:

See for a hands-on tutorial and video demonstrations on working with systemd in
Oracle Linux.

For more information about system boot, see Oracle Linux 9: Managing Kernels and System
Boot

systemd Configuration
systemd reads its configuration from files in the /etc/systemd directory. For example,
the /etc/systemd/system.conf file controls how systemd handles system initialization.

The systemd daemon starts services during the boot process by reading the symbolic
link /etc/systemd/system/default.target. The following example shows the value
of /etc/systemd/system/default.target on a system configured to boot to a multiuser
mode without a graphical user interface, a target called multi-user.target:

sudo ls -l /etc/systemd/system/default.target

 /etc/systemd/system/default.target -> /usr/lib/systemd/system/multi-
user.target

Note:

You can use a kernel boot parameter to override the default system target. See
Oracle Linux 9: Managing Kernels and System Boot for information about setting
kernel boot parameters.

systemd Units
systemd organizes the different types of resources it manages into units. Most units are
configured in unit configuration files that enable you to configure these units according to
system needs. In addition to the files, you can also use systemd runtime commands to
configure the units.

1-1

https://docs.oracle.com/en/operating-systems/oracle-linux/9/boot/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/boot/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/boot/

To display all the types of units available in systemd, use the following command:

sudo systemctl -t help

Available unit types:
service
mount
swap
socket
target
device
automount
timer
path
slice
scope

The following list describes some system units that you can manage on an Oracle Linux
system by using systemd:

Services
Service unit configuration files have the file name format service_name.service, for example
sshd.service, crond.service, and httpd.service.
Service units start and control daemons and the processes of which the daemons consist.
The following example shows how you might start the systemd service unit for the Apache
HTTP server, httpd.service:

sudo systemctl start httpd.service

See Service Management for more information.

Targets
Target unit configuration files have the file name format target_name.target, for example
graphical.target.
Targets are similar to runlevels. A system reaches different targets during the boot process as
resources get configured. For example, a system reaches network-pre.target before it
reaches the target network-online.target.
Many target units have dependencies. For example, the activation of graphical.target (for a
graphical session) fails unless multi-user.target (for multiuser system) is also active.
See Targets for more information.

File System Mount Points
Mount unit configuration files have the file name format mount_point_name.mount.
Mount units enable you to mount file systems at boot time. For example, you can run the
following command to mount the temporary file system (tmpfs) on /tmp at boot time:

sudo systemctl enable tmp.mount

Devices
Device unit configuration files have the file name format device_unit_name.device.
Device units are named after the /sys and /dev paths they control. For example, the
device /dev/sda5 is exposed in systemd as dev-sda5.device.

Chapter 1
systemd Units

1-2

Device units enable you to implement device-based activation.

Sockets
Socket unit configuration files have the file name format socket_unit_name.socket.
Each "*.socket" file needs a corresponding "*.service" file to configure the service to start on
incoming traffic on the socket.
Socket units enable you to implement socket-based activation.

Timers
Timer unit configuration files have the file name format timer_unit_name.timer.
Each "*.timer" file needs a corresponding "*.service" file to configure the service to start at a
configured timer event. A Unit configuration entry can be used to specify a service that's
named differently to the timer unit, if required.
Timer units can control when service units are run and can act as an alternative to using the
cron daemon. Timer units can be configured for calendar time events, monotonic time events,
and can be run asynchronously.
See Working with Timers for more information.

Paths to systemd unit configuration files vary depending on their purpose and whether systemd
is running in 'user' or 'system' mode. For example, configuration for units that are installed from
packages might be available in /usr/lib/systemd/system or in /usr/local/lib/
systemd/system, while a user mode configuration unit is likely to be stored
in $HOME/.config/systemd/user. See the systemd.unit(5) manual page for more information.

Chapter 1
systemd Units

1-3

2
systemd Utilities

systemd provides several command line utilities you can use to view and change the system.

Utility Purpose Manual Page

systemctl Manage units and change the
system state.

systemctl(1)

timedatectl View and change time and date
settings on the system.

timedatectl(1)

localectl View and change language and
keyboard settings on the
system.

localectl(1)

systemctl System State Commands
Some systemctl subcommands control the state of the system. Each of these system
commands activate a related target.

For more information, see the systemctl(1) manual page.

Command Description Target

systemctl halt Stop all running software, stop
the kernel, and leave the
hardware powered on.

halt.target

systemctl hibernate Save the contents of system
memory to disk and power off
the hardware.

hibernate.target

systemctl hybrid-sleep Save the contents of system
memory to disk and leave the
hardware powered on.

hybrid-sleep.target

systemctl poweroff Halt and power off the system. poweroff.target
systemctl reboot Reboot the system. reboot.target
systemctl suspend Power off most hardware in

the system while preserving
power to memory.

suspend.target

Running systemctl on a Remote System
You can run systemctl commands on a remote system where the sshd service is running.
Include the -H option and the hostname with the systemctl command to control the system
remotely.

For more information see the systemctl(1) manual page.

The following example shows how to check the status of the crond service on a remote
system.

2-1

• Run the following command: sudo systemctl -H root@10.0.0.2 status crond
The remote system returns results similar to the following:

root@10.0.0.2's password: password
crond.service - Command Scheduler
 Loaded: loaded (/usr/lib/systemd/system/crond.service; enabled;
preset: enabled)
 Active: active (running) since Tue 2024-08-20 09:44:42 CDT; 1 day 6h
ago
 Main PID: 2421 (crond)
 Tasks: 1 (limit: 196846)
 Memory: 1.3M
 CPU: 1.174s
 CGroup: /system.slice/crond.service
 └─2421 /usr/sbin/crond -n

Configuring System Date and Time Settings
System time is based on the POSIX time standard, where time is measured as the number of
seconds that have elapsed from 00:00:00 Coordinated Universal Time (UTC), Thursday,
January 1, 1970. A day is defined as 86400 seconds and leap seconds are subtracted
automatically.

Date and time representation on a system can be set to match a specific timezone. To list the
available timezones, run:

timedatectl list-timezones

To set the system timezone to match a value returned from the available timezones, you can
run:

timedatectl set-timezone America/Los_Angeles

Substitute America/Los_Angeles with a valid timezone entry.

This command sets a symbolic link from /etc/localtime to point to the appropriate zone
information file in /usr/share/zoneinfo/. The setting takes effect immediately. Some long
running processes that use /etc/localtime to detect the current system timezone might not
detect a change in system timezone until the process is restarted.

Note that timezones are largely used for display purposes or to handle user input. Changing
timezone doesn't change the time for the system clock. You can change the presentation for
system time in any console by setting the TZ environment variable. For example, to see the
current time in Tokyo, you can run:

TZ="Asia/Tokyo" date

Chapter 2
Configuring System Date and Time Settings

2-2

You can check the system's current date and time configuration by running the timedatectl
command on its own:

timedatectl

 Local time: Wed 2021-07-17 00:50:58
EDT

 Universal time: Wed 2021-07-17 04:50:58
UTC

 RTC time: Wed 2021-07-17
04:50:55

 Time zone: America/New_York (EDT,
-0400)

System clock synchronized:
yes

 NTP service:
active

 RTC in local TZ: no

To set system time manually, use the timedatectl set-time command:

timedatectl set-time "2021-07-17 01:59:59"

This command sets the current system time based on the time specified assuming the
currently set system timezone. The command also updates the system Real Time Clock
(RTC).

Tip:

See for a hands-on tutorial that describes how to use tools to configure system
parameters such as date, time, and locale.

Consider configuring the system to use network time synchronization for more accurate time-
keeping. Using network time synchronization is important especially when setting up high-
availability or when using network-based file systems.

For more information about configuring the network time services that use NTP, see Oracle
Linux 9: Setting Up Networking.

Chapter 2
Configuring System Date and Time Settings

2-3

https://docs.oracle.com/en/operating-systems/oracle-linux/9/network/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/network/

Tip:

See Configure Chrony on Oracle Linux for a hands-on tutorial on setting up and
configuring the chronyd service.

If you configure an NTP service, enable NTP by running the following command:

timedatectl set-ntp true

This command enables and starts the chronyd service, if available.

Configuring System Language (Locale) and Keyboard Settings
System-wide preferences for language and keyboard are stored in the locale configuration file
(/etc/locale.conf). You can query and change these settings as needed using
localectl command. Note that the systemd process reads the locale configuration file at
boot and applies these settings to every system-wide service, user interface, and user profile,
unless they're overridden by other programs or users. For more information about configuring
these system-wide settings, see:

• Changing the Language Setting

• Changing the Keyboard Layout

Note:

System-wide preferences for language and keyboard are also configurable during
installation. For details on how to configure these settings at installation, see Oracle
Linux 9: Installing Oracle Linux.

Changing the Language Setting
The system locale language setting defines the language in which text appears in the Linux
user interfaces (text-based and graphical).

To query and change the language setting on the system, follow these steps:

1. To check the current language locale set on the system, type:

localectl status

For example, the following system language locale output indicates: English (en) as the
language, US as the country code, and UTF-8 as the codeset.

 System Locale: LANG=en_US.UTF-8
2. To list all possible language locales available on the system, type:

localectl list-locales

To search the output for a specific language locale, use the grep command. For example,
to list all possible English locales available for configuration, type:

localectl list-locales | grep en

Chapter 2
Configuring System Language (Locale) and Keyboard Settings

2-4

https://docs.oracle.com/en/learn/ol-chrony/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/install/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/install/

3. To set the default language locale on the system, type:

sudo localectl set-locale LANG=locale_name

Where:

• locale_name is replaced with the name retrieved earlier from the list-locales
output.

For example, to set British English as the system language locale, type:

sudo localectl set-locale LANG=en_GB.utf8

Note:

Locale options are typically listed in the following format:
LANGUAGE_COUNTRY.CODESET[@MODIFIERS]. The LANGUAGE is an ISO 639 language
code, for example, en for English and COUNTRY is an ISO 3166 country code. The
two letter country code in this example is GB for Great Britain and the United
Kingdom. The CODESET is the character set or encoding, for example, utf-8.

For more information on how to configure language locale options on the system, see the
locale manual page.

Installing Language Locales Individually
A langpack is a metapackage that consists of dependencies that provide support for a
specified language. The dependencies include packages for locales, fonts, and other
functionality for using a language on a system.

For a given language, one of the dependencies the langpack installs is glibc-langpack-
<locale_code>. To reduce storage space required for languages, you can choose to install only
the individual glibc locale langpack packages (glibc-langpack-<locale_code>).

1. To list all language packs already installed on the system and all language packs available
on the ol8_appstream repository, type:

sudo dnf list langpacks-*

For example, the following shows that this system has Spanish, French, Japanese, and
Russian language packs installed followed by a truncated list of language packs available
on ol9_appstream.

sudo dnf list langpacks-*
Last metadata expiration check: 0:00:35 ago on Wed 08 May 2024 04:04:39 PM
GMT.
Installed Packages
langpacks-core-en.noarch 3.0-16.el9
@ol9_appstream
langpacks-core-font-en.noarch 3.0-16.el9
@ol9_appstream
langpacks-en.noarch 3.0-16.el9
@ol9_appstream
Available Packages
langpacks-af.noarch 3.0-16.el9
ol9_appstream

Chapter 2
Configuring System Language (Locale) and Keyboard Settings

2-5

langpacks-am.noarch 3.0-16.el9
ol9_appstream
langpacks-ar.noarch 3.0-16.el9
ol9_appstream
langpacks-as.noarch 3.0-16.el9
ol9_appstream
 ...

2. Use dnf to install a language pack. For example, the following installs the Japanese
language pack:

sudo dnf install langpacks-ja.noarch
3. To list all installed and all available glibc Langpack packages, run the following command:

sudo dnf list glibc-langpack*

4. To install a glibc language pack, run the following command:

sudo dnf install glibc-langpack-language_code

In the previous command, language_code is the language code you want to install. For
example, the following example installs Japanese.

sudo dnf install glibc-langpack-ja.x86_64

Changing the Keyboard Layout
The keyboard layout settings enable you to specify a keymap locale for the Linux user
interfaces (text-based and graphical).

To query and change the keyboard layout settings on the system, follow these steps:

1. To check the current keyboard layout configuration on the system, type:

localectl status

For example, the following keyboard layout output indicates a US country code for the
virtual console keymap and a US country code for the X11 layout.

 System Locale: LANG=en_US.UTF-8
 VC Keymap: us
 X11 Layout: us

2. To list all possible keyboard layout configurations available, type:

localectl list-keymaps

To search the output for a specific keymap name, use the grep command. For example, to
list British compatible keyboard layouts, type:

localectl list-keymaps | grep gb
3. To set the default keyboard layout on the system, type:

sudo localectl set-keymap keymap_name

Where:

Chapter 2
Configuring System Language (Locale) and Keyboard Settings

2-6

• keymap_name is replaced with the name of the keymap retrieved earlier from the
list-keymaps output.

Note that the keymap name change applies to both the virtual console and the x11 layout
settings. If you want the X11 layout to differ from the virtual console keymap, use the --
no-convert option, for example:

sudo localectl --no-convert set-x11-keymap keymap_name

The no-convert option retains the previous x11 keyboard layout setting.

For more information on how to use the localectl command line utility to change
keyboard system settings, see thelocalectl manual page.

Chapter 2
Configuring System Language (Locale) and Keyboard Settings

2-7

3
Targets

By using targets, you can control systemd so that it starts only the services that are required for
a specific purpose. For example, you set the default target to multi-user.target on a
production server so that the graphical user interface isn't used when the system boots. In a
case where you need to troubleshoot or perform diagnostics, you might consider setting the
target to rescue.target, where only root logs onto the system to run the minimum number of
services.

Each run level defines the services that systemd stops or starts. As an example, systemd starts
network services for multi-user.target and the X Window System for graphical.target,
and stops both services for rescue.target.

Table 3-1 shows the commonly used system-state targets and the equivalent runlevel targets.

Table 3-1 System-State Targets and Equivalent Runlevel Targets

System-State Targets Equivalent Runlevel Targets Description

graphical.target runlevel5.target Set up a multiuser system with
networking and display
manager.

multi-user.target runlevel2.target
runlevel3.target
runlevel4.target

Set up a nongraphical
multiuser system with
networking.

poweroff.target runlevel0.target Shut down and power off the
system.

reboot.target runlevel6.target Shut down and reboot the
system.

rescue.target runlevel1.target Set up a rescue shell.

Note that runlevel* targets are implemented as symbolic links.

For more information, see the systemd.target(5) manual page.

Displaying Default and Active System-State Targets
To display the default system-state target, use the systemctl get-default command:

sudo systemctl get-default

graphical.target

3-1

To display the active targets on a system, use the systemctl list-units --type
target command:

sudo systemctl list-units --type target [--all]

UNIT LOAD ACTIVE SUB DESCRIPTION
basic.target loaded active active Basic System
cryptsetup.target loaded active active Local Encrypted Volumes
getty.target loaded active active Login Prompts
graphical.target loaded active active Graphical Interface
local-fs-pre.target loaded active active Local File Systems (Pre)
local-fs.target loaded active active Local File Systems
multi-user.target loaded active active Multi-User System
network-online.target loaded active active Network is Online
network-pre.target loaded active active Network (Pre)
network.target loaded active active Network
nfs-client.target loaded active active NFS client services
nss-user-lookup.target loaded active active User and Group Name Lookups
paths.target loaded active active Paths
remote-fs-pre.target loaded active active Remote File Systems (Pre)
remote-fs.target loaded active active Remote File Systems
rpc_pipefs.target loaded active active rpc_pipefs.target
rpcbind.target loaded active active RPC Port Mapper
slices.target loaded active active Slices
sockets.target loaded active active Sockets
sound.target loaded active active Sound Card
sshd-keygen.target loaded active active sshd-keygen.target
swap.target loaded active active Swap
sysinit.target loaded active active System Initialization
timers.target loaded active active Timers

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.

24 loaded units listed. Pass --all to see loaded but inactive units, too.
To show all installed unit files use 'systemctl list-unit-files'.

The output for a system with the graphical target active shows that this target depends on
other active targets, including network and sound to support networking and sound.

Use the --all option to include inactive targets in the list.

For more information, see the systemctl(1) and systemd.target(5) manual pages.

Chapter 3
Displaying Default and Active System-State Targets

3-2

Changing Default and Active System-State Targets
Use the systemctl set-default command to change the default system-state target:

sudo systemctl set-default multi-user.target

Removed /etc/systemd/system/default.target.
Created symlink /etc/systemd/system/default.target → /usr/lib/systemd/system/
multi-user.target

Note:

This command changes the target to which the default target is linked, but doesn't
change the state of the system.

To change the current active system target, use the systemctl isolate command, for
example:

sudo systemctl isolate multi-user.target

For more information, see the systemctl(1) manual page.

Chapter 3
Changing Default and Active System-State Targets

3-3

4
Service Management

Services in an Oracle Linux system are managed by the systemctl subcommand command.

Examples of subcommands are enable, disable, stop, start, restart, reload, and status.

For more information, see the systemctl(1) manual page.

Starting and Stopping Services
To start a service, use the systemctl start command:

sudo systemctl start sshd

To stop a service, use the systemctl stop command:

sudo systemctl stop sshd

Changing the state of a service only lasts while the system remains at the same state. If you
stop a service and then change the system-state target to one in which the service is
configured to run (for example, by rebooting the system), the service restarts. Similarly, starting
a service doesn't enable the service to start following a reboot. See Enabling and Disabling
Services.

Enabling and Disabling Services
You can use the systemctl command to enable or disable a service from starting when the
system boots, for example:

sudo systemctl enable httpd

Created symlink /etc/systemd/system/multi-user.target.wants/httpd.service
→ /usr/lib/systemd/system/httpd.service.

The enable command activates a service by creating a symbolic link for the lowest-level
system-state target at which the service starts. In the previous example, the command creates
the symbolic link httpd.service for the multi-user target.

Note:

To start the service at the same time you enable it, include the --now option in the
command. For example: sudo systemctl enable --now httpd

4-1

Disabling a service removes the symbolic link:

sudo systemctl disable httpd

Removed /etc/systemd/system/multi-user.target.wants/httpd.service.

To check whether a service is enabled, use is-enabled subcommand as shown in the
following examples:

sudo systemctl is-enabled httpd

disabled

sudo systemctl is-enabled sshd

enabled

After running the systemctl disable command, the service can still be started or stopped
by user accounts, scripts, and other processes. However, if you need to ensure that the service
might be started inadvertently, for example, by a conflicting service, then use the systemctl
mask command as follows:

sudo systemctl mask httpd

Created symlink from '/etc/systemd/system/multi-user.target.wants/
httpd.service' to '/dev/null'

The mask command sets the service reference to /dev/null. If you try to start a service that
has been masked, you will receive an error as shown in the following example:

sudo systemctl start httpd

Failed to start httpd.service: Unit is masked.

To relink the service reference back to the matching service unit configuration file, use the
systemctl unmask command:

sudo systemctl unmask httpd

For more information, see the systemctl(1) manual page.

Chapter 4
Enabling and Disabling Services

4-2

Displaying the Status of Services
To check whether a service is running, use the is-active subcommand. The output would
either be active) or inactive, as shown in the following examples:

sudo systemctl is-active httpd

active

systemctl is-active sshd

inactive

The status subcommand provides a detailed summary of the status of a service, including a
tree that displays the tasks in the control group (CGroup) that the service implements:

sudo systemctl status httpd

httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled; vendor
preset: disabled)
 Active: active (running) since ...
 Docs: man:httpd.service(8)
 Main PID: 11832 (httpd)
 Status: "Started, listening on: port 80"
 Tasks: 213 (limit: 26213)
 Memory: 32.5M
 CGroup: /system.slice/httpd.service
 ├─11832 /usr/sbin/httpd -DFOREGROUND
 ├─11833 /usr/sbin/httpd -DFOREGROUND
 ├─11834 /usr/sbin/httpd -DFOREGROUND
 ├─11835 /usr/sbin/httpd -DFOREGROUND
 └─11836 /usr/sbin/httpd -DFOREGROUND

Jul 17 00:14:32 Unknown systemd[1]: Starting The Apache HTTP Server...
Jul 17 00:14:32 Unknown httpd[11832]: Server configured, listening on: port 80
Jul 17 00:14:32 Unknown systemd[1]: Started The Apache HTTP Server.

A cgroup is a collection of processes that are bound together so that you can control their
access to system resources. In the example, the cgroup for the httpd service is
httpd.service, which is in the system slice.

Chapter 4
Displaying the Status of Services

4-3

Slices divide the cgroups on a system into different categories. To display the slice and cgroup
hierarchy, use the systemd-cgls command:

sudo systemd-cgls

Control group /:
-.slice
├─user.slice
│ └─user-1000.slice
│ ├─user@1000.service
│ │ └─init.scope
│ │ ├─6488 /usr/lib/systemd/systemd --user
│ │ └─6492 (sd-pam)
│ └─session-7.scope
│ ├─6484 sshd: root [priv]
│ ├─6498 sshd: root@pts/0
│ ├─6499 -bash
│ ├─6524 sudo systemd-cgls
│ ├─6526 systemd-cgls
│ └─6527 less
├─init.scope
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 16
└─system.slice
 ├─rngd.service
 │ └─1266 /sbin/rngd -f --fill-watermark=0
 ├─irqbalance.service
 │ └─1247 /usr/sbin/irqbalance --foreground
 ├─libstoragemgmt.service
 │ └─1201 /usr/bin/lsmd -d
 ├─systemd-udevd.service
 │ └─1060 /usr/lib/systemd/systemd-udevd
 ├─polkit.service
 │ └─1241 /usr/lib/polkit-1/polkitd --no-debug
 ├─chronyd.service
 │ └─1249 /usr/sbin/chronyd
 ├─auditd.service
 │ ├─1152 /sbin/auditd
 │ └─1154 /usr/sbin/sedispatch
 ├─tuned.service
 │ └─1382 /usr/libexec/platform-python -Es /usr/sbin/tuned -l -P
 ├─systemd-journald.service
 │ └─1027 /usr/lib/systemd/systemd-journald
 ├─atd.service
 │ └─1812 /usr/sbin/atd -f
 ├─sshd.service
 │ └─1781 /usr/sbin/sshd

The system.slice contains services and other system processes. user.slice contains user
processes, which run within transient cgroups called scopes. In the example, the processes for
the user with ID 1000 are running in the scope session-7.scope under the slice /
user.slice/user-1000.slice.

Chapter 4
Displaying the Status of Services

4-4

You can use the systemctl command to limit the CPU, I/O, memory, and other resources
that are available to the processes in service and scope cgroups. See Controlling Access to
System Resources.

For more information, see the systemctl(1) and systemd-cgls(1) manual pages.

Controlling Access to System Resources
Use the systemctl command to control a cgroup's access to system resources, for example:

sudo systemctl [--runtime] set-property httpd CPUShares=512 MemoryLimit=1G

CPUShare controls access to CPU resources. As the default value is 1024, a value of 512
halves the access to CPU time that the processes in the cgroup have. Similarly, MemoryLimit
controls the maximum amount of memory that the cgroup can use.

Note:

You don't need to specify the .service extension to the name of a service.

If you specify the --runtime option, the setting doesn't persist across system
reboots.

Alternatively, you can change the resource settings for a service under the [Service] heading
in the service's configuration file in /usr/lib/systemd/system. After editing the file, make
systemd reload its configuration files and then restart the service:

sudo systemctl daemon-reload
sudo systemctl restart service

You can run general commands within scopes and use systemctl to control the access that
these transient cgroups have to system resources. To run a command within in a scope, use
the systemd-run command:

sudo systemd-run --scope --unit=group_name [--slice=slice_name]

If you don't want to create the group under the default system slice, you can specify another
slice or the name of a new slice. The following example runs a command named mymonitor
in mymon.scope under myslice.slice:

sudo systemd-run --scope --unit=mymon --slice=myslice mymonitor

Running as unit mymon.scope.

Chapter 4
Controlling Access to System Resources

4-5

Note:

If you don't specify the --scope option, the control group is a created as a service
rather than as a scope.

You can then use systemctl to control the access that a scope has to system resources in
the same way as for a service. However, unlike a service, you must specify the .scope
extension, for example:

sudo systemctl --runtime set-property mymon.scope CPUShares=256

For more information see About Control Groups and the systemctl(1), systemd-cgls(1), and
systemd.resource-control(5) manual pages.

Creating a User-Based systemd Service
In addition to the system-wide systemd files, systemd enables you to create user-based
services that you can run from a user level without requiring root access and privileges. These
user-based services are under user control and are configurable independent of system
services.

The following are some distinguishing features of user-based systemd services:

• User-based systemd services are linked with a specific user account.

• They're created under the associated user’s home directory in $HOME/.config/systemd/
user/.

• After these services are enabled, they start when the associated user logs in. This
behavior differs from that of enabled systemd services which start when the system boots.

This feature is useful when creating podman container services. For more information about
podman, see Oracle Linux: Podman User's Guide.

To create a user based service:

1. Create the service's unit file in the ~/.config/systemd/user directory, for example:

touch ~/.config/systemd/user/myservice.service

2. Open the unit file and specify the values to the options you want to use, such as
Description, ExecStart, WantedBy, and so on.

For reference, see Configurable Options in Service Unit Files and the systemd.service(5)
and systemd.unit(5) manual pages.

3. Enable the service to start automatically when you log in.

sudo systemctl --user enable myservice.service

Chapter 4
Creating a User-Based systemd Service

4-6

https://docs.oracle.com/en/operating-systems/oracle-linux/podman/

Note:

When you log out, the service is stopped unless the root user has enabled
processes to continue to run for the user.

See for more information.

4. Start the service.

sudo systemctl --user start myservice.service

5. Verify that the service is running.

sudo systemctl --user status myservice.service

Changing systemd Service Unit Files
To change the configuration of systemd services, copy the files with .service, .target, .mount
and .socket extensions from /usr/lib/systemd/system to /etc/systemd/system.

After you have copied the files, you can edit the versions in /etc/systemd/system. The files
in /etc/systemd/system take precedence over the versions in /usr/lib/systemd/
system. Files in /etc/systemd/system aren't overwritten when you update a package that
touches files in /usr/lib/systemd/system.

To revert to the default systemd configuration for a particular service, you can either rename or
delete the copies in /etc/systemd/system.

Another approach for changing the configuration of a service is to create a drop-in file. With
this approach, you can preserve the original unit while changing specific parameters of the
unit.

Create drop-in files in /etc/systemd/system/unit_name.d/, where the unit_name.d
directory is an existing unit, then give the drop-in files a .conf file extension. For
example: /etc/systemd/system/unit_name.d/name_of_drop-in.conf. systemd
reads the .conf file and applies the settings to the original unit.

The following sections describe the different parts of a service unit file that you can edit and
customize for a system.

About Service Unit Files
Services run based on their corresponding service unit files. A service unit file typically
contains the following sections, with each section having its respective defined options that
determine how a specific service runs:

[Unit]
Contains information about the service.

[UnitType]:
Contains options that are specific to the unit type of the file. For example, in a service unit file
this section is titled [Service] and contains options that are specific to units of the service
type, such as ExecStart or StandardOutput.

Chapter 4
Changing systemd Service Unit Files

4-7

Only those unit types that offer options specific to their type have such a section.

[Install]
Contains installation information for the specific unit. The information in this section is used by
the systemctl enable and systemctl disable commands.

A service unit file might contain the following configurations for a service.

[Unit]
Description=A test service used to develop a service unit file template

[Service]
Type=simple
StandardOutput=journal
ExecStart=/usr/lib/systemd/helloworld.sh

[Install]
WantedBy=default.target

Configurable Options in Service Unit Files describes some commonly used configured options
available under each section. A complete list is also available in the systemd.service(5) and
systemd.unit(5) manual pages.

Configurable Options in Service Unit Files
Each of the following lists deals with a separate section of the service unit file.

Description of Options Under [Unit] Section

The following list provides a general overview of the commonly used configurable options
available in the [Unit] section of service unit file:

Description
Provides information about the service. The information is displayed when you run the
systemctl status command on the unit.

Documentation
Contains a space-separated list of URIs referencing documentation for this unit or its
configuration.

After
Configures the unit to only run after the units listed in the option finish starting up.
In the following example, if the file var3.service has the following entry, then it's only started
after units var1.service and var2.service have started:

 After=var1.service var2.service

Requires
Configures a unit to have requirement dependencies on other units. If a unit is activated, those
listed in its Requires option are also activated.

Wants
A less stringent version of the Requires option. For example, a specific unit can be activated
even if one of those listed in its Wants option fails to start.

Chapter 4
Changing systemd Service Unit Files

4-8

Description of Options Under [Service] Section

This following list gives a general overview of the commonly used configurable options
available in the [Service] section of a service unit file.

Type
Configures the process start-up type for the service unit.
By default, this parameter's value is simple, which indicates that the service's main process is
that which is started by the ExecStart parameter.
Typically, if a service's type is simple, then the definition can be omitted from the file.

StandardOutput
Configures the how the service's events are logged. For example, consider a service unit file
has the following entry:

StandardOutput=journal

In the example, the value journal indicates that the events are recorded in the journal, which
can be viewed by using the journalctl command.

ExecStart
Specifies the full path and command that starts the service, for example, /usr/bin/npm
start.

ExecStop
Specifies the commands to run to stop the service started through ExecStart.

ExecReload
Specifies the commands to run to trigger a configuration reload in the service.

Restart
Configures whether the service is to be restarted when the service process exits, is stopped,
or when a timeout is reached.

Note:

This option doesn't apply when the process is stopped cleanly by a systemd
operation, for example a systemctl stop or systemctl restart. In these cases, the
service isn't restarted by this configuration option.

RemainAfterExit
A Boolean value that configures whether the service is to be considered active even when all
of its processes have exited. The default value is no.

Description of Options Under [Install] Section

This following list gives a general overview of the commonly used configurable options
available in the [Install] section of service unit file.

Alias
A space-separated list of names for a unit.
At installation time, systemctl enable creates symlinks from these names to the unit
filename.

Chapter 4
Changing systemd Service Unit Files

4-9

Aliases are only effective when the unit is enabled.

RequiredBy
Configures the service to be required by other units.
For example, consider a unit file var1.service that has the following configuration added to it:

RequiredBy=var2.service var3.service

When var1.service is enabled, both var2.service and var3.service are granted a
Requires dependency upon var1.service. This dependency is defined by a symbolic link
that's created in the .requires folder of each dependent service (var2.service and
var3.service) that points to the var1.service system unit file.

WantedBy
Specifies a list of units that are to be granted a wants dependency upon the service whose file
you're editing.
For example, consider a unit file var1.service that has the following configuration added to it:

WantedBy=var2.service var3.service

When var1.service is enabled, both var2.service and var3.service are granted a Wants
dependency upon var1.service. This dependency is defined by a symbolic link that's created
in the “.wants” folder of each dependent service (var2.service and var3.service) that points
to the system unit file for var1.service .

Also
Lists additional units to install or remove when the unit is installed or removed.

DefaultInstance
The DefaultInstance option applies to template unit files only.
Template unit files enable the creation of multiple units from a single configuration file. The
DefaultInstance option specifies the instance for which the unit is enabled if the template is
enabled without any explicitly set instance.

Chapter 4
Changing systemd Service Unit Files

4-10

5
Working with Timers

Timer unit files are a type of systemd file that the systemctl utility uses to schedule tasks,
similar to the cron utility that uses crontab and other cron jobs for the same purpose. Note
that the cron daemon runs as a service within systemd, so timer units are preferred because
they remove a layer of added processing and offer much more utility and more granular
configuration than is available in the cron service.

Typically, packages that use specific services to function in the system include their own
systemd timer unit files. Thus, when these packages are installed with Oracle Linux, the timer
unit files are automatically included. You can display with the timer files in the system with the
following command:

systemctl list-unit-files --type=timer

Note:

The list of timer files might differ depending on where Oracle Linux is running, such
as in an instance in Oracle Cloud Infrastructure, a physical system, and so on.

Each timer unit file contains parameter settings that manage the schedule of a task. For
example, the schedule for running dnf-makecache.service is set in the dnf-makecache.timer
file. The file contains the following settings:

systemctl cat dnf-makecache.timer

/usr/lib/systemd/system/dnf-makecache.timer
[Unit]
Description=dnf makecache --timer
ConditionKernelCommandLine=!rd.live.image
See comment in dnf-makecache.service
ConditionPathExists=!/run/ostree-booted
Wants=network-online.target

[Timer]
OnBootSec=10min
OnUnitInactiveSec=1h
RandomizedDelaySec=60m
Unit=dnf-makecache.service

[Install]
WantedBy=timers.target

The schedule information is specified under the [Timer] section. In the sample configuration,
the dnf-makecache.service service is set to automatically run 10 minutes after the system is

5-1

booted. The service then goes into idle mode for an hour, as specified by the
OnUnitInactiveSec parameter. At the end of the hour, the service runs again. This cycle
continues every hour indefinitely.

The RandomizedDelaySec setting provides a value limit for how much a run can be delayed
beyond its schedule. In the example, the service is allowed to run one minute later than its
schedule at the latest. This parameter is useful for preventing too many jobs that start at the
same time on a specified schedule, which would otherwise risk overloading the resources.

OnCalendar is another useful parameter for task scheduling. Suppose that the parameter is set
as follows:

OnCalendar=*:00/10

The *:00 indicates every hour at the top of the hour, while the /10 setting indicates 10
minutes. Therefore, the job is set to run hourly, at ten minutes past the top of the hour.

For a complete list of systemd timer unit file parameters for scheduling a job, see the
systemd.timer(5) manual pages.

Tip:

For a tutorial on how to use systemd in Oracle Linux, including how to configure
systemd timer unit files, see .

Using Timer Units to Control Service Unit Runtime
Timer units can be configured to control when service units run. You can use timer units
instead of configuring the cron daemon for time-based events. Timer units can be more
complicated to configure than creating a crontab entry. However, timer units are more
configurable and the services that they control can be configured for better logging and deeper
integration with systemd architecture.

Timer units are started, enabled, and stopped similarly to service units. For example, to enable
and start a timer unit immediately, type:

sudo systemctl enable --now myscript.timer

To list all existing timers on the system, to see when they last ran, and when they're next
configured to run, type:

systemctl list-timers

For more information about system timers, see the systemd.timer(5) and systemd.time(7)
manual pages.

Chapter 5
Using Timer Units to Control Service Unit Runtime

5-2

Configuring a Realtime Timer Unit
Realtime timers activate on a calendar event, similar to events in a crontab. The option
OnCalendar specifies when the timer runs a service.

• If needed, create a .service file that defines the service to be triggered by the timer unit.
In the following procedure, the sample service is /etc/systemd/system/
update.service which is a service unit that runs an update script.

For more information about creating service units, see Creating a User-Based systemd
Service.

• Decide the time and frequency for running the service. In this procedure, the timer is
configured to run the service every 2 hours from Monday to Friday.

This task shows you how to create a system timer to trigger a service to run based on a
calendar event. The definition of the calendar event is similar to entries that you put in a cron
job.

1. Create the /etc/systemd/system/update.timer with the following content:

[Unit]
Description="Run the update.service every two hours from Mon to Fri."

[Timer]
OnCalendar=Mon..Fri 00/2
Unit=update.service

[Install]
WantedBy=multi-user.target

Defining OnCalendar can vary from a simple wetting such as OnCalendar=weekly
definitions that are more detailed. However, the format for defining settings is constant, as
follows:

DayofWeek Year-Month-Day Hour:Minute:Second

The following definition means "the first 4 days of each month at 12:00 o'clock noon, but
only if that day is either a Monday or a Tuesday":

OnCalendar=Mon,Tue *-*-01..04 12:00:00

For other ways to define OnCalendar and for more timer options that you can configure in
the system timer file, see the systemd.timer(5) and systemd.time(7) manual pages.

2. Check that all the files related to this timer are configured correctly.

systemd-analyze verify /etc/systemd/system/update.*

Any detected errors are reported on the screen.

3. Start the timer.

sudo systemctl start update.timer

Chapter 5
Configuring a Realtime Timer Unit

5-3

This command starts the timer for the current session only.

4. Ensure that the timer starts when the system is booted.

sudo systemctl enable update.timer

Configuring a Monotonic Timer Unit
Monotonic timers that activate after a time span relative to a varying starting point, such as a
boot event, or when a particular systemd unit becomes active. These timer units stop if the
computer is temporarily suspended or shut down. Monotonic timers are configured by using
the OnTypeSec option, where Type is the name of the event to which the timer is related.
Common monotonic timers include OnBootSec and OnUnitActiveSec.

• If needed, create a .service file that defines the service to be triggered by the timer unit.
In the following procedure, the sample service is /etc/systemd/system/
update.service which is a service unit that runs an update script.

For more information about creating service units, see Creating a User-Based systemd
Service.

• Decide the time and frequency for running the service. In this procedure, the timer is
configured to run the service 10 minutes after a system boot, and every 2 hours from when
the service is last activated.

This task shows you how to create a system timer to trigger a service to run at specific events,
which are when the system boots or after 2 hours have lapsed from the timer's activation.

1. Create the /etc/systemd/system/update.timer with the following content:

[Unit]
Description="Run the update.service every two hours from Mon to Fri."

[Timer]
OnBootSec=10min
OnUnitActiveSec=2h
Unit=update.service

[Install]
WantedBy=multi-user.target

For more timer options that you can configure in the system timer, see the
systemd.timer(5) and systemd.time(7) manual pages.

2. Check that all the files related to this timer are configured correctly.

systemd-analyze verify /etc/systemd/system/update.*

Any detected errors are reported on the screen.

3. Start the timer.

sudo systemctl start update.timer

This command starts the timer for the current session only.

Chapter 5
Configuring a Monotonic Timer Unit

5-4

4. Ensure that the timer starts when the system is booted.

sudo systemctl enable update.timer

Running a Transient Timer Unit
Transient timers are temporary timers that are valid only for the current session. These timers
can be created to run a program or script directly without requiring service or timer units to be
configured within systemd. These units are generated by using the systemd-run command.
See the systemd-run(1) manual page for more information.

The parameter options that you would add to the unit-file.timer file also serve as
arguments when you use systemd-run command to run a transient timer unit.

The following examples show how to use systemd-run to activate transient timers.

• Run update.service after 2 hours have elapsed.

sudo systemd-run --on-active="2h" --unit update.service

• Create ~/tmp/myfile after 1 hour.

sudo systemd-run --on-active="1h" /bin/touch ~/tmp/myfile

• Run ~/myscripts/update.sh 5 minutes after the service manager is started. Use this
syntax to run a service after the service manager has started at user login.

sudo systemd-run --on-startup="5m" ~/myscripts/update.sh

• Run myjob.service 10 minutes after system boot.

sudo systemd-run --on-boot="10m" --unit myjob.service

• Run report.service at the end of the day.

sudo systemd-run --on-calendar="17:00:00"

Chapter 5
Running a Transient Timer Unit

5-5

6
Core Dumps

Core dumps contain crash information for userspace applications and services running on
Oracle Linux. They can be generated on demand by using a debugger, or the systemd-
coredump service can be configured to generate them automatically in the event of a process
stopping prematurely.

Core dumps contain a log summary of the crash event that typically includes the process ID,
owner, termination signal, and a stack trace. For more information, see the systemd-
coredump(8) manual pages.

The coredumpctl command can be used to review core dumps that have been written to the
system journal or saved as a file. For more information, see the coredumpctl(1) manual
pages.

Enabling Core Dumps
Core dumps aren't enabled by default, so you must configure Systemd to generate them.

1. Create the /etc/systemd/system.conf.d/10-enable-coredumps.conf
configuration file and add the following content:

[Manager]
DumpCore=yes
DefaultLimitCORE=infinity

2. Restart the systemd daemon to apply the change without restarting Oracle Linux:

sudo systemctl daemon-reload

Configuring Core Dumps
1. To adjust the scope of the data captured in Systemd core dumps and define where

Systemd stores them, change the /etc/systemd/coredump.conf configuration file.

For more information, see the coredump.conf(5) manual pages.

2. Before running the coredumpctl command, remove any core dump size limits that apply to
the current shell session:

sudo ulimit -c unlimited

For more information about the ulimit command, see the ulimit(1) manual pages.

6-1

Analyzing Core Dumps
• Use the coredumpctl command to list the core dumps that are available on the system:

coredumpctl list

• To review more information about the core dumps stored for a particular application,
specify the executable as an option:

coredumpctl list executable-path

• To review all the core dumps that are stored for a failed process on the system, specify the
process ID instead:

coredumpctl list process-id

Exporting Core Dumps
1. To export the core dump for bug reporting purposes, specify the process ID and output file

when you run the coredumpctl dump command:

coredumpctl dump process-id -o output-file

2. Optionally, you can export an SOS report with extra information about the system. For
more information, see #unique_41.

3. On the same system or a different one, install the gdb package and then step through a
core dump with the GNU Debugger by using the coredumpctl debug command:

sudo dnf install gdb

coredumpctl debug process-id

For more information about the coredumpctl command, see the coredumpctl(1) manual
pages.

Chapter 6
Analyzing Core Dumps

6-2

7
About Control Groups

Control groups, usually referred to as cgroups, are an Oracle Linux kernel feature that enables
processes (PIDs) to be organized into hierarchical groups for the purpose of resource
allocation. For example, if you have identified 3 sets of processes that need to be allocated
CPU time in a ratio of 150:100:50, you can create 3 cgroups, each with a CPU weight
corresponding to one of the 3 values in your ratio, and then assign the appropriate processes
to each cgroup.

By default, systemd creates a cgroup for the following:

• Each systemd service set up on the host.

For example, a server might have control group NetworkManager.service to group
processes owned by the NetworkManager service, and control group firewalld.service to
group processes owned by the firewalld service, and so on.

• Each user (UID) on the host.

The cgroup functionality is mounted as a virtual file system under /sys/fs/cgroup. Each
cgroup has a corresponding folder within /sys/fs/cgroup file system. For example, the
cgroups created by systemd for the services it manages can be seen by running the command
ls -l /sys/fs/cgroup/system.slice | grep ".service" as shown in the following sample
code block:

ls -l /sys/fs/cgroup/system.slice | grep ".service"
...root root 0 Mar 22 10:47 atd.service
...root root 0 Mar 22 10:47 auditd.service
...root root 0 Mar 22 10:47 chronyd.service
...root root 0 Mar 22 10:47 crond.service
...root root 0 Mar 22 10:47 dbus-broker.service
...root root 0 Mar 22 10:47 dtprobed.service
...root root 0 Mar 22 10:47 firewalld.service
...root root 0 Mar 22 10:47 httpd.service
...

You can also create cgroups of your own by creating your own folders under the /sys/fs/
cgroup virtual file system and assigning process IDs (PIDs) to different cgroups according to
your system needs. However, the recommended practice is to use systemd to configure
cgroups instead of creating the cgroups manually under /sys/fs/cgroup. See Using
systemd to Manage cgroups v2 for the recommended method of managing cgroups through
systemd.

7-1

Note:

Use systemd to configure cgroups.

Although the recommended method for configuring using systemd to manage
cgroups, this topic also covers the manual creation of cgroup folders in the /sys/fs/
cgroup file system. However, this coverage is mainly to provide background
knowledge of the kernel cgroup feature to which systemd provides access.

Oracle Linux provides two types of control groups:

Control groups version 1 (cgroups v1)
These groups provide a per-resource controller hierarchy. Each resource, such as CPU,
memory, I/O, and so on, has its own control group hierarchy. A disadvantage of this group is
the difficulty of establishing proper coordination of resource use among groups that might
belong to different process hierarchies.

Control groups version 2 (cgroups v2)
These groups provide a single control group hierarchy against which all resource controllers
are mounted. In this hierarchy, you can obtain better proper coordination of resource uses
across different resource controllers. This version is an improvement over cgroups v1 whose
over flexibility prevented proper coordination of resource use among the system consumers.

Both versions are present in Oracle Linux. However, by default, the cgroups v2 functionality is
enabled and mounted on Oracle Linux 9 systems.

For more information about control groups of both versions, see the cgroups(7) and sysfs(5)
manual pages.

About Control Groups and systemd
Control groups can be used by the systemd system and service manager for resource
management. Systemd uses these groups to organize units and services that consume
resources. For more information about systemd, see About systemd.

Systemd provides different unit types, three of which are for resource control purposes:

• Service: A process or a group of processes whose settings are based on a unit
configuration file. Services encompass specified processes in a "collection" so that
systemd can start or stop the processes as one set. Service names follow the format
name.service.

• Scope: A group of externally created processes, such as user sessions, containers, virtual
machines, and so on. Similar to services, scopes encapsulate these created processes
and are started or stopped by the arbitrary processes and then registered by systemd at
runtime. Scope names follow the format name.scope.

• Slice: A group of hierarchically organized units in which services and scopes are located.
Thus, slices themselves don't contain processes. Rather, the scopes and services in a
slice define the processes. Every name of a slice unit corresponds to the path to a location
in the hierarchy. Root slices, typically user.slice for all user-based processes and
system.slice for system-based processes, are automatically created in the hierarchy.
Parent slices exist immediately below the root slice and follow the format parent-
name.slice. These root slices can then have subslices on multiple levels.

Chapter 7
About Control Groups and systemd

7-2

The service, the scope, and the slice units directly map to objects in the control group
hierarchy. When these units are activated, they map directly to control group paths that are
built from the unit names. To display the mapping between the systemd resource unit types and
control groups, type:

sudo systemd-cgls

Working directory /sys/fs/cgroup:
├─user.slice (#1243)
│ → trusted.invocation_id: 50ce3909b2644f919ee420adc39edb4b
│ ├─user-1001.slice (#4167)
│ │ → trusted.invocation_id: 02e80a960d4549a7a9c69ce0fb546c26
│ │ ├─session-2.scope (#4405)
│ │ │ ├─2417 sshd: alice [priv]
│ │ │ ├─2430 sshd: alice@pts/0
│ │ │ ├─2431 -bash
│ │ │ ├─2689 sudo systemd-cgls
│ │ │ ├─2691 systemd-cgls
│ │ │ └─2692 less
...
│ └─user@984.service … (#3827)
│ → trusted.delegate: 1
│ → trusted.invocation_id: 09b47ce9f3124239b75814114353f3f2
│ └─init.scope (#3861)
│ ├─2058 /usr/lib/systemd/systemd --user
│ └─2099 (sd-pam)
├─init.scope (#19)
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 17
└─system.slice (#53)
...
 ├─chronyd.service (#2467)
 │ → trusted.invocation_id: c0f77aaa9c7844e6bef6a6898ae4dd56
 │ └─1358 /usr/sbin/chronyd -F 2
 ├─auditd.service (#2331)
 │ → trusted.invocation_id: 756808add6a348609316c9e8c1801846
 │ └─1310 /sbin/auditd
 ├─tuned.service (#3079)
 │ → trusted.invocation_id: 2c358135fc46464d862b05550338d4f4
 │ └─1415 /usr/bin/python3 -Es /usr/sbin/tuned -l -P
 ├─systemd-journald.service (#1651)
 │ → trusted.invocation_id: 7cb7ccb14e044a899aadf47bbb583ada
 │ └─977 /usr/lib/systemd/systemd-journald
 ├─atd.service (#3623)
 │ → trusted.invocation_id: 597a7a4e5646468db407801b8562d869
 │ └─1915 /usr/sbin/atd -f
 ├─sshd.service (#3419)
 │ → trusted.invocation_id: 490504a683fc4311ab0fbeb0864a1a34
 │ └─1871 sshd: /usr/sbin/sshd -D [listener] 0 of 10-100 startups
...

For an example of how to use systemd commands such as systemctl to manage resources,
see Controlling Access to System Resources. For further technical details, see the
systemctl(1), systemd-cgls(1), and systemd.resource-control(5) manual pages.

Chapter 7
About Control Groups and systemd

7-3

Using systemd to Manage cgroups v2
The preferred method of managing resource allocation with cgroups v2 is to use the control
group functionality provided by systemd.

Note:

For information on enabling cgroups v2 functionality on the system, see Oracle Linux
9: Managing Kernels and System Boot

By default, systemd creates a cgroup folder for each systemd service set up on the host.
systemd names these folders using the format servicename.service, where servicename is
the name of the service associated with the folder.

To see a list of the cgroup folders systemd creates for the services, run the ls command on the
system.slice branch of the cgroup file system as shown in the following sample code block:

ls /sys/fs/cgroup/system.slice/
...
app_service1.service cgroup.subtree_control httpd.service
app_service2.service chronyd.service ...
... crond.service ...
cgroup.controllers dbus-broker.service ...
cgroup.events dtprobed.service ...
cgroup.freeze firewalld.service ...
... gssproxy.service ...
...

In the preceding command block:

• The folders app_service1.service and app_service2.service represent custom application
services you might have on your system.

In addition to service control groups, systemd also creates a cgroup folder for each user on the
host. To see the cgroups created for each user you can run the ls command on the
user.slice branch of the cgroup file system as shown in the following sample code block:

ls /sys/fs/cgroup/user.slice/
cgroup.controllers cgroup.subtree_control user-1001.slice
cgroup.events cgroup.threads user-982.slice
cgroup.freeze cgroup.type ...
...
...
...

In the preceding code block:

• Each user cgroup folder is named using the format user-UID.slice. So, control group
user-1001.slice is for a user whose UID is 1001, for example.

systemd provides high-level access to the cgroups and kernel resource controller features so
you do not have to access the file system directly. For example, to set the CPU weight of a

Chapter 7
Using systemd to Manage cgroups v2

7-4

https://docs.oracle.com/en/operating-systems/oracle-linux/9/boot/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/boot/

service called app_service1.service, you might choose to run the systemctl set-property
command as follows:

sudo systemctl set-property app_service1.service CPUWeight=150

Thus, systemd enables you to manage resource distribution at an application level, rather than
the process PID level used when configuring cgroups without using systemd functionality.

About Slices and Resource Allocation in systemd
This section looks at the way systemd initially divides each of the default kernel controllers, for
example CPU, memory and blkio, into portions called "slices" as illustrated by the following
example pie chart:

Note:

You can also create your own custom slices for resource distribution, as shown in
section Setting Resource Controller Options and Creating Custom Slices.

Figure 7-1 Pie chart illustrating distribution in a resource controller, such as CPU or
Memory

Chapter 7
Using systemd to Manage cgroups v2

7-5

As the preceding pie chart shows, by default each resource controller is divided equally
between the following 3 slices:

• System (system.slice).

• User (user.slice).

• Machine (machine.slice).

The following list looks at each slice more closely. For the purposes of discussion, the
examples in the list focus on the CPU controller.

System (system.slice)
This resource slice is used for managing resource allocation amongst daemons and service
units.
As shown in the preceding example pie chart, the system slice is divided into further sub-
slices. For example, in the case of CPU resources, we might have sub-slice allocations within
the system slice that include the following:

• httpd.service (CPUWeight=100)

• sshd.service (CPUWeight =100)

• crond.service (CPUWeight =100)

• app1.service (CPUWeight =100)

• app2.service (CPUWeight =100)

In the preceding list, app1.service and app2.service represent custom application services
you might have running on your system.

User (user.slice)
This resource slice is used for managing resource allocation amongst user sessions. A single
slice is created for each UID irrespective of how many logins the associated user has active on
the server. Continuing with our pie chart example, the sub-slices might be as follows:

• user1 (CPUWeight=100, UID=982)

• user2 (CPUWeight=100, UID=1001)

Machine (machine.slice)
This slice of the resource is used for managing resource allocation amongst hosted virtual
machines, such as KVM guests, and Linux Containers. The machine slice is only present on a
server if the server is hosting virtual machines or Linux Containers.

Note:

Share allocations do not set a maximum limit for a resource.

For instance, in the preceding examples, the slice user.slice has 2 users: user1
and user2. Each user is allocated an equal share of the CPU resource available to
the parent user.slice. However, if the processes associated with user1 are idle, and
do not require any CPU resource, then its CPU share is available for allocation to
user2 if needed. In such a situation, user2 might even be allocated the entire CPU
resource apportioned to the parent user.slice if it is required by other users.

To cap CPU resource, you would need to set the CPUQuota property to the required
percentage.

Chapter 7
Using systemd to Manage cgroups v2

7-6

Slices, Services, and Scopes in the cgroup Hierarchy
The pie chart analogy used in the preceding sections is a helpful way to conceptualize the
division of resources into slices. However, in terms of structural organization, the control
groups are arranged in a hierarchy. You can view the systemd control group hierarchy on your
system by running the systemd-cgls command as follows:

Tip:

To see the entire cgroup hierarchy, starting from the root slice -.slice, as in the
following example, ensure you run systemd-cgls from outside of the control group
mount point /sys/fs/cgroup/. Otherwise, If you run the command from
within /sys/fs/cgroup/, the output starts from the cgroup location from which the
command was run. See systemd-cgls(1) for more information.

systemd-cgls

Control group /:
-.slice
...
├─user.slice (#1429)
│ → user.invocation_id: 604cf5ef07fa4bb4bb86993bb5ec15e0
│ ├─user-982.slice (#4131)
│ │ → user.invocation_id: 9d0d94d7b8a54bcea2498048911136c8
│ │ ├─session-c1.scope (#4437)
│ │ │ ├─2416 /usr/bin/sudo -u ocarun /usr/libexec/oracle-cloud-agent/plugins/
runcommand/runcommand
│ │ │ └─2494 /usr/libexec/oracle-cloud-agent/plugins/runcommand/runcommand
│ │ └─user@982.service … (#4199)
│ │ → user.delegate: 1
│ │ → user.invocation_id: 37c7aed7aa6e4874980b79616acf0c82
│ │ └─init.scope (#4233)
│ │ ├─2437 /usr/lib/systemd/systemd --user
│ │ └─2445 (sd-pam)
│ └─user-1001.slice (#7225)
│ → user.invocation_id: ce93ad5f5299407e9477964494df63b7
│ ├─session-2.scope (#7463)
│ │ ├─20304 sshd: oracle [priv]
│ │ ├─20404 sshd: oracle@pts/0
│ │ ├─20405 -bash
│ │ ├─20441 systemd-cgls
│ │ └─20442 less
│ └─user@1001.service … (#7293)
│ → user.delegate: 1
│ → user.invocation_id: 70284db060c1476db5f3633e5fda7fba
│ └─init.scope (#7327)
│ ├─20395 /usr/lib/systemd/systemd --user
│ └─20397 (sd-pam)
├─init.scope (#19)
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 28

Chapter 7
Using systemd to Manage cgroups v2

7-7

└─system.slice (#53)
 ...
 ├─dbus-broker.service (#2737)
 │ → user.invocation_id: 2bbe054a2c4d49809b16cb9c6552d5a6
 │ ├─1450 /usr/bin/dbus-broker-launch --scope system --audit
 │ └─1457 dbus-broker --log 4 --controller 9 --machine-id
852951209c274cfea35a953ad2964622 --max-bytes 536870912 --max-fds 4096 --max-
matches 131072 --audit
 ...
 ├─chronyd.service (#2805)
 │ → user.invocation_id: e264f67ad6114ad5afbe7929142faa4b
 │ └─1482 /usr/sbin/chronyd -F 2
 ├─auditd.service (#2601)
 │ → user.invocation_id: f7a8286921734949b73849b4642e3277
 │ ├─1421 /sbin/auditd
 │ └─1423 /usr/sbin/sedispatch
 ├─tuned.service (#3349)
 │ → user.invocation_id: fec7f73678754ed687e3910017886c5e
 │ └─1564 /usr/bin/python3 -Es /usr/sbin/tuned -l -P
 ├─systemd-journald.service (#1837)
 │ → user.invocation_id: bf7fb22ba12f44afab3054aab661aedb
 │ └─1068 /usr/lib/systemd/systemd-journald
 ├─atd.service (#3961)
 │ → user.invocation_id: 1c59679265ab492482bfdc9c02f5eec5
 │ └─2146 /usr/sbin/atd -f
 ├─sshd.service (#3757)
 │ → user.invocation_id: 57e195491341431298db233e998fb180
 │ └─2097 sshd: /usr/sbin/sshd -D [listener] 0 of 10-100 startups
 ├─crond.service (#3995)
 │ → user.invocation_id: 4f5b380a53db4de5adcf23f35d638ff5
 │ └─2150 /usr/sbin/crond -n
 ...

The preceding sample output shows how all "*.slice" control groups reside under the root
slice -.slice. Beneath the root slice you can see the user.slice and system.slice control
groups, each with their own child cgroup sub-slices.

Examining the systemd-cgls command output you can see how, with the exception of root
-.slice , all processes are on leaf nodes. This arrangement is enforced by cgroups v2, in a
rule called the "no internal processes" rule. See cgroups (7) for more information about the
"no internal processes" rule.

The output in the preceding systemd-cgls command example also shows how slices can
have descendent child control groups that are systemd scopes. systemd scopes are reviewed
in the following section.

systemd Scopes
systemd scope is a systemd unit type that groups together system service worker processes
that have been launched independently of systemd. The scope units are transient cgroups
created programmatically using the bus interfaces of systemd.

For example, in the following sample code, the user with UID 1001 has run the systemd-cgls
command, and the output shows session-2.scope has been created for processes the user

Chapter 7
Using systemd to Manage cgroups v2

7-8

has spawned independently of systemd (including the process for the command itself , 21380
sudo systemd-cgls):

Note:

In the following example, the command has been run from within the control group
mount point /sys/fs/cgroup/. Hence, instead of the root slice, the output starts from
the cgroup location from which the command was run.

sudo systemd-cgls

Working directory /sys/fs/cgroup:
...
├─user.slice (#1429)
│ → user.invocation_id: 604cf5ef07fa4bb4bb86993bb5ec15e0
│ → trusted.invocation_id: 604cf5ef07fa4bb4bb86993bb5ec15e0
...
│ └─user-1001.slice (#7225)
│ → user.invocation_id: ce93ad5f5299407e9477964494df63b7
│ → trusted.invocation_id: ce93ad5f5299407e9477964494df63b7
│ ├─session-2.scope (#7463)
│ │ ├─20304 sshd: oracle [priv]
│ │ ├─20404 sshd: oracle@pts/0
│ │ ├─20405 -bash
│ │ ├─21380 sudo systemd-cgls
│ │ ├─21382 systemd-cgls
│ │ └─21383 less
│ └─user@1001.service … (#7293)
│ → user.delegate: 1
│ → trusted.delegate: 1
│ → user.invocation_id: 70284db060c1476db5f3633e5fda7fba
│ → trusted.invocation_id: 70284db060c1476db5f3633e5fda7fba
│ └─init.scope (#7327)
│ ├─20395 /usr/lib/systemd/systemd --user
│ └─20397 (sd-pam)

Setting Resource Controller Options and Creating Custom Slices
systemd provides the following methods for setting resource controller options, such as
CPUWeight, CPUQuota, and so on, to customize resource allocation on your system:

• Using service unit files.

• Using drop-in files.

• Using the systemctl set-property command.

The following sections provide example procedures for using each of these methods to
configure resources and slices in your system.

Using Service Unit Files
To set options in a service unit file, perform the following steps:

Chapter 7
Using systemd to Manage cgroups v2

7-9

1. Create file /etc/systemd/system/myservice1.service with the following content:

[Service]
Type=oneshot
ExecStart=/usr/lib/systemd/generate_load.sh
TimeoutSec=0
StandardOutput=tty
RemainAfterExit=yes

[Install]
WantedBy=multi-user.target

2. The service created in the preceding step requires a bash script /usr/lib/systemd/
generate_load.sh. Create the file with the following content:

#!/bin/bash
for i in {1..4};do while : ; do : ; done & done

3. Make the script runnable:

sudo chmod +x /usr/lib/systemd/generate_load.sh

4. Enable and start the service:

sudo systemctl enable myservice1 --now

5. Run the systemd-cgls command and confirm the service myservice1 is running under
system.slice:

systemd-cgls

Control group /:
-.slice
...
├─user.slice (#1429)
...
└─system.slice (#53)
 ...
 ├─myservice1.service (#7939)
 │ → user.invocation_id: e227f8f288444fed92a976d391e6a897
 │ ├─22325 /bin/bash /usr/lib/systemd/generate_load.sh
 │ ├─22326 /bin/bash /usr/lib/systemd/generate_load.sh
 │ ├─22327 /bin/bash /usr/lib/systemd/generate_load.sh
 │ └─22328 /bin/bash /usr/lib/systemd/generate_load.sh
 ├─pmie.service (#4369)
 │ → user.invocation_id: 68fcd40071594481936edf0f1d7a8e12
 ...

6. Create a custom slice for the service.

Chapter 7
Using systemd to Manage cgroups v2

7-10

Add the line Slice=my_custom_slice.slice to the [Service] section in the
myservice1.service file, created in a previous step, as shown in the following code block:

[Service]
Slice=my_custom_slice.slice
Type=oneshot
ExecStart=/usr/lib/systemd/generate_load.sh
TimeoutSec=0
StandardOutput=tty
RemainAfterExit=yes

[Install]
WantedBy=multi-user.target

NOT_SUPPORTED:

Use underscores instead of dashes to separate terms in slice names.

In systemd, a dash in a slice name is a special character: in systemd, dashes in
slice names are used to describe the full cgroup path to the slice (starting from
the root slice). For example, if you specify a slice name as "my-custom-
slice.slice", instead of creating a slice of that name, systemd creates the
following cgroups path underneath the root slice: my.slice/my-
custom.slice/my-custom-slice.slice.

7. After editing the file, ensure systemd reloads its configuration files and then restart the
service:

sudo systemctl daemon-reload
sudo systemctl restart myservice1

8. Run the systemd-cgls command and confirm the service myservice1 is now running under
custom slice my_custom_slice:

systemd-cgls

Control group /:
-.slice
...
├─user.slice (#1429)
...
├─my_custom_slice.slice (#7973)
│ → user.invocation_id: a8a493a8db1342be85e2cdf1e80255f8
│ └─myservice1.service (#8007)
│ → user.invocation_id: 9a4a6171f2844e479d4a0f347aac38ce
│ ├─22385 /bin/bash /usr/lib/systemd/generate_load.sh
│ ├─22386 /bin/bash /usr/lib/systemd/generate_load.sh
│ ├─22387 /bin/bash /usr/lib/systemd/generate_load.sh
│ └─22388 /bin/bash /usr/lib/systemd/generate_load.sh
├─init.scope (#19)
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 28
└─system.slice (#53)

Chapter 7
Using systemd to Manage cgroups v2

7-11

 ├─irqbalance.service (#2907)
 │ → user.invocation_id: 00d64c9b9d224f179496a83536dd60bb
 │ └─1464 /usr/sbin/irqbalance --foreground
 ...

Using Drop-in Files
To use a drop-in file to configure resources, perform the following steps:

1. Create the directory for your service drop-in file.

Tip:

The "drop-in" directory for drop-in files for a service is located at /etc/
systemd/system/service_name.service.d where service_name is the
name of the service.

Continuing with our example with service myservice1, we would run the following
command:

sudo mkdir -p /etc/systemd/system/myservice1.service.d/

2. Create 2 drop-in files called 00-slice.conf and 10-CPUSettings.conf in the
myservice1.service.d directory created in the preceding step.

Note:

• Multiple drop-in files with different names are applied in lexicographic order.

• These drop-in files take precedence over the service unit file.

3. Add the following contents to 00-slice.conf

[Service]
Slice=my_custom_slice2.slice
MemoryAccounting=yes
CPUAccounting=yes

4. And add the following contents to 10-CPUSettings.conf

[Service]
CPUWeight=200

5. Create a second service (myservice2) and assign it a different CPUWeight to that assigned
to myservice1:

a. Create file /etc/systemd/system/myservice2.service with the following contents:

[Service]
Slice=my_custom_slice2.slice
Type=oneshot

Chapter 7
Using systemd to Manage cgroups v2

7-12

ExecStart=/usr/lib/systemd/generate_load2.sh
TimeoutSec=0
StandardOutput=tty
RemainAfterExit=yes

[Install]
WantedBy=multi-user.target

b. The service created in the preceding step requires a bash script /usr/lib/
systemd/generate_load2.sh. Create the file with the following content:

#!/bin/bash
for i in {1..4};do while : ; do : ; done & done

c. Make the script runnable:

sudo chmod +x /usr/lib/systemd/generate_load2.sh

d. Create a drop in file /etc/systemd/system/myservice2.service.d/10-
CPUSettings.conf for myservice2 with the following contents:

[Service]
CPUWeight=400

6. Ensure systemd reloads its configuration files, and restart myservice1, and also enable
and start myservices2:

sudo systemctl daemon-reload
sudo systemctl restart myservice1
sudo systemctl enable myservice2 --now

7. Run the systemd-cgtop command to display control groups ordered by their resource
usage. You can see from the following sample output how, in addition to the resource
usage of each slice, the systemd-cgtop command displays resource usage breakdown
within each slice, so you can use it to confirm your CPU weight has been divided as
expected.

systemd-cgtop

Control Group Tasks %CPU Memory
Input/s Output/s
/ 228 198.8
712.5M - -
my_custom_slice2.slice 8 198.5
1.8M - -
my_custom_slice2.slice/myservice2.service 4 132.8
944.0K - -
my_custom_slice2.slice/myservice1.service 4 65.6
976.0K - -
user.slice 18 0.9
43.9M - -
user.slice/user-1001.slice 6 0.9
13.7M - -
user.slice/user-1001.slice/session-2.scope 4 0.9

Chapter 7
Using systemd to Manage cgroups v2

7-13

9.4M - -
system.slice 60 0.0
690.8M - -

Using systemctl set-property
The systemctl set-property command places the configuration files under the following
location:

/etc/systemd/system.control

Caution:

You must not manually edit the files systemctl set-property command creates.

Note:

The systemctl set-property command does not recognize every resource-control
property used in the system-unit and drop-in files covered earlier in this topic.

The following procedure demonstrates how you can use the systemctl set-property
command to configure resource allocation:

1. Continuing with our example, create another service file at location /etc/systemd/
system/myservice3.service with the following content:

[Service]
Type=oneshot
ExecStart=/usr/lib/systemd/generate_load3.sh
TimeoutSec=0
StandardOutput=tty
RemainAfterExit=yes
[Install]
WantedBy=multi-user.target

2. Set the slice for the service to be my_custom_slice2 (the same slice used by the services
created in from earlier steps) by adding the following line to the [Service] section in the
myservice3.service file:

Slice=my_custom_slice2.slice

Note:

The slice must be set in the service-unit file because the systemctl set-
property command does not recognize the Slice property.

Chapter 7
Using systemd to Manage cgroups v2

7-14

3. The service created in the preceding step requires a bash script /usr/lib/systemd/
generate_load3.sh. Create the file with the following content:

#!/bin/bash
for i in {1..4};do while : ; do : ; done & done

4. Make the script runnable:

sudo chmod +x /usr/lib/systemd/generate_load3.sh

5. Ensure systemd reloads its configuration files, and then enable and start the service:

sudo systemctl daemon-reload
sudo systemctl enable myservice3 --now

6. Run systemd-cgtop to confirm all 3 services, myservice1, myservice2, and myservice3,
are all running in the same slice.

7. Use systemctl set-property command to set the CPUWeight for myservice3 to 800:

sudo systemctl set-property myservice3.service CPUWeight=800

8. Confirm that a drop-in file has been created for you under /etc/systemd/
system.control/myservice3.service.d. However, you must not edit the file:

cat /etc/systemd/system.control/myservice3.service.d/50-CPUWeight.conf

This is a drop-in unit file extension, created via "systemctl set-
property"
or an equivalent operation. Do not edit.
[Service]
CPUWeight=800

9. Ensure systemd reloads its configuration files, and restart all the services:

sudo systemctl daemon-reload
sudo systemctl restart myservice1
sudo systemctl restart myservice2
sudo systemctl restart myservice3

10. Run the systemd-cgtop command to confirm your CPU weight has been divided as
expected:

systemd-cgtop

Control Group Tasks %CPU
Memory Input/s Output/s
/ 235 200.0
706.1M - -
my_custom_slice2.slice 12 198.4
2.9M - -
my_custom_slice2.slice/myservice3.service 4 112.7
976.0K - -

Chapter 7
Using systemd to Manage cgroups v2

7-15

my_custom_slice2.slice/myservice2.service 4 56.9
996.0K - -
my_custom_slice2.slice/myservice1.service 4 28.8
988.0K - -
user.slice 18 0.9
44.1M - -
user.slice/user-1001.slice 6 0.9
13.9M - -
user.slice/user-1001.slice/session-2.scope 4 0.9
9.5M - -

Chapter 7
Using systemd to Manage cgroups v2

7-16

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About systemd
	systemd Configuration
	systemd Units

	2 systemd Utilities
	systemctl System State Commands
	Running systemctl on a Remote System
	Configuring System Date and Time Settings
	Configuring System Language (Locale) and Keyboard Settings
	Changing the Language Setting
	Installing Language Locales Individually
	Changing the Keyboard Layout

	3 Targets
	Displaying Default and Active System-State Targets
	Changing Default and Active System-State Targets

	4 Service Management
	Starting and Stopping Services
	Enabling and Disabling Services
	Displaying the Status of Services
	Controlling Access to System Resources
	Creating a User-Based systemd Service
	Changing systemd Service Unit Files
	About Service Unit Files
	Configurable Options in Service Unit Files

	5 Working with Timers
	Using Timer Units to Control Service Unit Runtime
	Configuring a Realtime Timer Unit
	Configuring a Monotonic Timer Unit
	Running a Transient Timer Unit

	6 Core Dumps
	Enabling Core Dumps
	Configuring Core Dumps
	Analyzing Core Dumps
	Exporting Core Dumps

	7 About Control Groups
	About Control Groups and systemd
	Using systemd to Manage cgroups v2
	About Slices and Resource Allocation in systemd
	Slices, Services, and Scopes in the cgroup Hierarchy
	systemd Scopes
	Setting Resource Controller Options and Creating Custom Slices
	Using Service Unit Files
	Using Drop-in Files
	Using systemctl set-property

