Oracle Linux

Managing Certificates and Public Key
Infrastructure

F24286-17
July 2025
ORACLE

Oracle Linux Managing Certificates and Public Key Infrastructure,
F24286-17
Copyright © 2022, 2025, Oracle and/or its affiliates.

Contents

Preface
Documentation License \Y
Conventions %
Documentation Accessibility Y%
Access to Oracle Support for Accessibility v
Diversity and Inclusion Y%

1 About Public Key Infrastructure
What Is Public Key Cryptography? 1-1
Automatic Certificate Management Environment (ACME) 1-3
2 Setting Up TLS/SSL With OpenSSL

About Key Pairs 2-1
Creating Key Pairs 2-2
Creating Certificate Signing Requests With OpenSSL 2-4
Signing Certificates With OpenSSL 2-5
Creating Self-Signed Certificates for Testing and Development 2-5
Creating a Private Certification Authority 2-6
Create the CA Root 2-6
Create an Intermediary CA 2-13
Process CSRs and Sign Certificates 2-16
Manage a Certificate Revocation List 2-17
Configure and Run an OCSP Server 2-18
Debugging and Testing Certificates With OpenSSL 2-19
Examining Certificates 2-19
Check That a Private Key Matches a Certificate 2-19
Changing Key or Certificate Format 2-19
Check Certificate Consistency and Validity 2-20
Decrypting Keys and Adding or Removing Passphrases 2-20
Using OpenSSL to Test SSL/TLS Configured Services 2-20
Using OpenSSL for File Encryption and Validation 2-21

ORACLE il

More Information About OpenSSL 2-21
3 Setting Up TLS/SSL With Other Tools

GnuTLS 3-1

NSS 3-2

Java 3-4
4 Managing System Certificates

Using the Trust Command to Manage System Certificates 4-1

Manually Updating Trusted Certificates 4-3

ORACLE"

Preface

Oracle Linux: Managing Certificates and Public Key Infrastructure describes features in Oracle
Linux to manage certificates and public key infrastructure.

Documentation License

The content in this document is licensed under the Creative Commons Attribution—Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a

paragraph, URLSs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and

ORACLE y

https://docs.oracle.com/en/operating-systems/oracle-linux/certmanage/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Preface

the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

ORACLE Vi

About Public Key Infrastructure

This chapter provides a brief overview of the public key cryptography and how it works,
including information about the public key infrastructure, which is used for the general
management of keys on Oracle Linux.

What Is Public Key Cryptography?

ORACLE

Public key cryptography is an encryption technique that's used to enable secure
communications on an insecure public network and also to verify the identity of the entity on
the other end of a network connection. Public key cryptography works by establishing an
asymmetric pair of keys. Data encrypted by one key is decrypted by the other key. One key is
kept private and the other key is made public. Someone decrypting the data using the public
key can be sure that the data was encrypted by someone who has access to the private key.
Similarly, someone encrypting data using the public key can be sure that the data can only be
decrypted by someone who has access to the private key.

Neither key on its own can establish the identity of the sender of the data. To achieve this, a
public key is typically signed to prove that it belongs to the owner of the corresponding private
key. This signing process is performed by a trusted third-party, often called a Certification
Authority (CA). The creator of a public—private key pair sends the public key, along with
relevant identifying information, to the CA in the form of a certificate signing request. The CA
uses its own private key to sign a digital certificate, which contains an encoded version of the
subject's public key, information about the subject and the issuer, the validity period, and
details about the cryptographic algorithms in use. This certificate can be made public or
provided to any party that needs to verify the association between the subject and the public
key.

Clients that trust the CA can also trust the public key stored in the certificate. Verifying the
certificate signature with the CA certificate yields the public key that can then be used to create
a secure communication channel that keeps the data confidential and which can be used to
establish the identity of the originator of data moving through the channel.

For the Internet, many public top-level or root CAs and intermediary CAs exist that are trusted
by a root CA to issue certificates on behalf of entities. An intermediary CA returns a certificate
chain, where each certificate in the chain authenticates the public key of the signer of the
previous certificate in the chain up to and including a root CA.

CA certificates are only used to establish the identity of a public key and the period for which
the public key is considered valid. When the certificate expires, data encrypted using the public
key can still be decrypted by the private key. This means that the private key must be kept safe
forever for communications to always be considered secure. A mechanism also exists within
public key cryptography that can be used to help mitigate against private key compromises.
This mechanism is known as Perfect Forward Secrecy (PFS) and uses a key exchange
algorithm to securely agree on a random and disposable session key that can be used with a
symmetric cipher to encrypt data. The advantage of this approach is that if the session key is
compromised, only the communications in that particular communication session are exposed.
Equally, if the private key is compromised, all the actual communication sessions aren't
automatically exposed either.

1-1

ORACLE

Chapter 1
What Is Public Key Cryptography?

Another added benefit of PFS is that it simplifies the computationally expensive and slow
process of decrypting and validating each piece of information using the asymmetric key pair
and the CA certificate. In reality, the process of decrypting the public key and validating it
against the CA certificate and then using it to decrypt data within a communication session is
only done at the beginning of the session, until PFS is established. The algorithm to create and
share the random session key is typically the Diffie-Hellman key exchange. The session key
then uses a symmetric cipher to perform more rapid encryption and decryption of data through
the rest of the session. The cipher most commonly used for this purpose is AES, which can
take advantage of hardware to make encryption and communication in ciphertext almost as
fast as communicating with plaintext.

The handling of the communication channel and the negotiation where the client and server
side switch from asymmetric to symmetric cryptography are all achieved using the Transport
Layer Security (TLS) or Secure Sockets Layer (SSL) cryptographic protocols.

OpenSSL, GnuTLS, and Network Security Services (NSS) provide open source
implementations of the TLS and SSL protocols. You can also use the keytool command
provided with OpenJDK package to manage Java Keystores, often used by Java-based
applications. If a hierarchy of trust is confined to the organization's intranet, you can use these
implementations to generate a root certificate and set up a CA for that domain. However,
unless you install this self-signed root certificate on each system in the organization, browsers,
LDAP, or IPA authentication, and other software that use certificates would prompt the user
about the potential untrusted relationship.

< Note:

If you do use certificates for a domain that are validated by a root or intermediary-
level CA, you don't need to distribute a root certificate, as the appropriate certificate
is already present on each system.

Typically, TLS/SSL certificates expire after one year. Other certificates, including root
certificates that are distributed with web browsers and which are issued by root and
intermediary CAs, expire after a period of five to 10 years. To avoid having applications display
warnings about out-of-date certificates, plan to replace TLS/SSL certificates before they expire.
For root certificates, you would typically update the software before the certificate expires.

If you request a signed certificate from a CA for which a root certificate or certificate chain that
authenticates the CA's public key doesn't already exist on the system, obtain a trusted root
certificate from the CA. To avoid a potential man-in-the-middle attack, verify the authenticity of
the root certificate before importing it. Check that the certificate's fingerprint matches the
fingerprint that's published by the CA.

About SSL and TLS

Both Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are communications
protocols that ensure secure connections and exchanges between server and client systems.
Both protocols provide encryption and authentication to secure network communications.
However, SSL is an older technology and has been replaced by TLS. The cryptography used
by TLS is more complex, advanced, robust, and secure. Authentication with TLS is faster and
alert messaging is improved.

Despite this change to the underlying protocol, the OpenSSL project retains its name and the
SSL terminology is often used interchangeably to describe TLS functionality. In the context of
secure communications, SSL is now understood as referring to the TLS protocol and TLS

1-2

Chapter 1
Automatic Certificate Management Environment (ACME)

certificates. Any references to SSL in this documentation are intended to be understood in the
context of TLS.

Automatic Certificate Management Environment (ACME)

ORACLE

Automatic Certificate Management Environment (ACME) is a protocol and framework that's
published by the IETF in RFC 8555 and which can be used for the signing and creation of
certificates where domain validation is required.

The protocol uses JSON formatted messages over HTTPS with a CA to handle validation of
domain ownership automatically by having the ACME client perform an action that can only be
done with control of the domain name. For example, the CA could either request the provision
of a DNS record, or could request a specific HTTP resource to be made available on a web
server at the domain name.

After the CA validates that the entity requesting a certificate has ownership of the domain, the
CA can sign the certificate that's sent to it by the ACME client. Typically, the client can
automatically install the certificate at a location that's usable by services running on the
system.

ACME lowers the cost and complexity associated with managing public key infrastructure.
Sometimes, obtaining signed certificates for systems within domains can be free, depending
on the selection of CA. For example, Let's Encrypt, the originator of the ACME protocol,
provides a free and open CA service. Other commercial CAs are also starting to offer free
ACME based certificates.

While the first version of the ACME protocol could be used to create only single domain
certificates, ACME v2 can be used for the creation and signing of certificates with wildcard
domains, such as *.example.com. Therefore, you can use a single certificate across all
subdomains. Note that ACME only validates domains. If you need certificates that require more
validations, you might need signed certificates from an established CA that offers services
beyond ACME.

If you need to create and issue certificates across an infrastructure to use TLS/SSL protected
services, consider using a CA that works with ACME and using an ACME client. ACME can
automatically generate the key pairs and CSR, submit the CSR to a CA for validation, perform
any validation steps for the CA, and obtain the signed certificate and store it somewhere that's
accessible to services and applications. Many clients automatically set periodic cron tasks to
check for certificate expiry and to automatically request a new certificate before the current
certificate expires.

1-3

https://tools.ietf.org/html/rfc8555
https://letsencrypt.org/

Setting Up TLS/SSL With OpenSSL

This chapter describes the OpenSSL tools that are available in Oracle Linux and how to use
them to create Certificate Signing Requests (CSRs), self-signed certificates, and privately
owned CA certificates. Also covered in this chapter are instructions on how to use the
OpenSSL tools to validate and test certificates that are configured for a protocol to confirm that
services are configured correctly.

Features of the Openssl Command

With the openss1 command, which is included in the openssl package, you can perform a
wide range of cryptography functions from the OpenSSL library, including the following:

* Create and managing pairs of private and public keys.

* Perform public key cryptographic operations.

* Create self-signed certificates.

« Create certificate signing requests (CSRs).

* Create certificate revocation lists (CRLS).

» Convert certificate files between various formats.

e Calculate message digests.

e Encrypt and decrypt files.

* Test client-side and server-side TLS/SSL with HTTP and SMTP servers.
e Verify, encrypt, and sign S/IMIME email.

* Generate and test prime numbers and generate pseudo random data.

About Key Pairs

Describes the elements of a public/private key pair.

As a first step to use any form of public key cryptography, create a public/private key pair. You
can then use the private key to create a Certificate Signing Request (CSR) that contains the
associated a public key. The CSR can be used to obtain a signed certificate from a CA.
Typically, the steps to create a key pair and a CSR or a self-signed certificate, are performed
as a single-step operation when using OpenSSL to generate these files.

The following are the main elements that you need to consider when creating a key pair:

Algorithm

OpenSSL provides the use of RSA and ECDSA key algorithms, with RSA keys being the most
widely used. ECDSA provides much smaller and efficient key sizes than both RSA, along with
corresponding security. ECDSA might be a good choice for performance. However, be aware
that some environments might not recognize ECDSA keys.

ORACLE o1

Chapter 2
Creating Key Pairs

Key Size

The key size checks the complexity of the key for the algorithm, which is specified in bits.
Bigger-sized keys are more secure because they're more complex and harder to decipher.
Bigger-sized keys also come with a performance hit, because each decryption bit requires
more memory and processing to complete. Therefore, selecting a key size is a balance
between security and performance. Key sizes are complex, in that they relate to the
algorithms and ciphers that are being used. In general, when creating RSA keys, a key size is
2048 bits, while ECDSA keys provide similar security using a key size of 256 bits.

Passphrase

When creating a key that's encrypted and protected with a cipher, you're prompted for a
passphrase that can be used to validate that you can use the key. Encrypting a key with a
passphrase is optional but recommended. Using a passphrase with a key can be problematic
when TLS is enabled for a system service, as the service can't be automatically restarted
without user intervention. Often, where certificates are issued for services; for convenience,
they're created without passphrases. If a private key is created without a passphrase, be
aware that anyone who gains access to the private key file can emulate services to perform
man-in-the-middle type snooping. When a key is protected with a passphrase, you can select
a cipher algorithm to use to encrypt the contents of the private key. Many ciphers are available
for this purpose. To obtain a complete list of ciphers, use the openssl list-cipher-
commands command. The AES cipher is commonly used for this purpose and is typically
specified with a key size of 128 or 256 (aes128 or aes256).

Creating Key Pairs

ORACLE

The following instructions show how to create public/private key pairs. In the examples
provided, the creation of a key pair is treated as an atomic operation so that the process can
be described and elements can be called out for better understanding. Often, this step is
incorporated into other commands for efficiency.

¢ Generate an RSA Key

To generate an RSA key, use the openssl genrsa command, for example:

sudo openssl genrsa -out private.key 2048

Generating RSA private key, 2048 bit long modulus

e is 65537 (0x10001)

This command generates an unencrypted key in the local directory, named private.key.
The contents of the key look similar to the following example:

cat private.key

Note that even though the file is called private.key and the file contains some text that
suggests that this is only the private key, the public key is also embedded within this file.

2-2

ORACLE

Chapter 2
Creating Key Pairs

So the single file represents the complete key pair. Thus, obtaining a copy of the public key
is easier because the key is stored on the same file as the private key.

Using a passphrase
To create an encrypted key with a passphrase, run the same command but specify a
cipher to use to encrypt the key with, for example:

sudo openssl genrsa -aes256 -out private.key 2048

Generating RSA private key, 2048 bit long modulus

e is 65537 (0x10001)
Enter pass phrase for private.key:
Verifying - Enter pass phrase for private.key:

In the previous example, the AES cipher is used with a 256 bit key. The command prompts
you to enter a passphrase and verify it. The contents of the key file indicate that the key is
encrypted, as shown in the following example:

cat private.key

Proc-Type: 4,ENCRYPTED
DEK-Info: AES-256-CBC,2417E359B45960CD107A390748945752

key-content

Decrypting a key

If you create an encrypted key file and then decide that you would prefer a file that's not
encrypted or doesn't require a passphrase, you can decrypt it by running the following
command:

sudo openssl rsa -in private.key -out unencrypted.key

Enter pass phrase for private.key:
writing RSA key

You're prompted for the passphrase on the encrypted key, which is stored in private.key,
and the unencrypted version of the same key is written to the file unencrypted. key.

All OpenSSL keys are generated in Privacy Enhanced Mail (PEM) format, which is a plain
text format that encapsulates the content of the key as a base64 encoded string.
Certificates can be encoded by using several different formatting conventions. For more
information about changing the format of a certificate, see Changing Key or Certificate
Format.

Inspect the private key

You can view the contents of a private key as follows:
sudo openssl rsa -text -in private.key

Display the public key

2-3

Chapter 2
Creating Certificate Signing Requests With OpenSSL

Notably, a private key also contains its public key counterpart. This public key component
is used when submitting a CSR or when creating a self-signed certificate. The public key
component can be viewed by using the following command:

sudo openssl rsa -pubout -in private.key

Creating Certificate Signing Requests With OpenSSL

ORACLE

A private key can be used to create a Certificate Signing Request (CSR). A public and private
key can be used to encrypt communications. However, a client must still validate the public
certificate presented for use with encrypted communication as coming from an expected and
trusted source. Without some way to validate the public key, the client can easily succumb to
man-in-the-middle style attacks that would render encryption futile.

To solve this problem, public key infrastructure typically involves third parties, called
Certification Authorities (CAs), that can sign a certificate as authentic for a particular public key.
If the client has a copy of the CA certificate, the client can validate a certificate for a domain,
based on the signature in the certificate. Most systems are installed with some trusted CA
certificates by default. To check the CA certificates that are trusted by the system, use the
following command:

sudo openssl version -d

By default, this directory is /etc/pki/tls and the /etc/pki/tls/certs subdirectory contains
all the trusted certificates.

To obtain a signed certificate from a CA, a CSR must be generated using the public key
component within its associated private key. The CSR is then presented to the CA which can
validate the information in the request and use this information to generate a valid and signed
public certificate. The CSR is associated with a domain name for the host or hosts on which
the certificate is be used. The CA uses this information to create a certificate with a specified
expiry date.

The following example shows the command syntax for interactively creating a CSR from a
private key:

sudo openssl req -new -key private.key -out domain.example.com.csr

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:GB

State or Province Name (full name) []:.

Locality Name (eg, city) [Default City]:London

Organization Name (eg, company) [Default Company Ltd]:Example Ltd
Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:domain.example.com

Email Address []:webmaster@example.com

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:

An optional company name []:

2-4

Chapter 2
Signing Certificates With OpenSSL

Note that the default values can be configured in the /etc/pki/tls/openssl.cnf file. The
Common Name is the most important value in the CSR. This value associates the certificate
request with the hostname and domain name for the host on which the certificate is to be used.
Note that if a client connects to a host that's issued a certificate for a different domain, the
certificate is invalid.

You can generate a CSR and private key at the same time. With the following command, you
can specify values for the different fields in the CSR on the command line:

sudo openssl req -new -nodes '/CN=domain.example.com/O=Example Ltd/C=GB/L=London' \
-newkey rsa:1024 -keyout private.key -out domain.example.com.csr

You can view the information contained in a CSR as follows:

sudo openssl req -in domain.example.com.csr -noout -text

After you have a CSR, you can submit it to a CA. The CA uses the CSR to generate a signed
certificate and then returns the certificate with a certificate chain that can be used to validate
the certificate.

Signing Certificates With OpenSSL

For environments where you don't have control over client systems, always use a recognized,
independent CA to sign certificates. OS and software vendors negotiate with independent CAs
to include CA validation certificates, along with the software that they distribute. Obtaining
validation certificates from major CA providers means that most users don't have to manage
their own trusted CA certificate list. Any browser visiting a website over HTTPS can validate
the site's public certificate by matching the CA signature to the CA certificates that it has in its
own store.

If you have control over client systems, you can either provide the clients with the self-signed
certificate directly, or you can set up private CA certificate to sign all the certificates that are
used within the organization and then distribute the CA certificate to clients. Using the second
approach validates all certificates that are signed within the organization, which results in
tighter control over the security of the certificates within the organization, which can result in
reduced infrastructure costs.

Creating Self-Signed Certificates for Testing and Development

ORACLE

Self-signed certificates are often created for development and testing purposes. Because
these certificates aren't validated by trusted CAs, trust for these certificates must be configured
manually. If the private key is compromised it can't be revoked but must be manually removed
from the trust allow list. Never use these certificates in production environments. A CA-signed
certificate is always preferable to a self-signed certificate. However, using self-signed
certificates can be less costly and useful for testing and development, without the hassle of
managing private CA or obtaining CA-signed certificates for every test platform.

With the openssl command, you can generate self-signed certificates that can be used
immediately. This command creates a CSR for the private key and then generates an X.509
certificate directly from the CSR, signing the certificate with itself.

For this reason, the command is similar to the command that you would run to create a private
key and CSR, with the exception that you must also specify the period of validity. As a good
practice, only generate a self-signed certificate for the duration needed for testing purposes.
This way, if the private key is compromised, the validity period is limited, and a new certificate
can be generated when the old certificate expires.

2-5

Chapter 2
Signing Certificates With OpenSSL

For example, you would use the following command to create a self-signed X.509 certificate
that's valid for 30 days:

sudo openssl req -new -x509 -days 30 -nodes -newkey rsa:2048 -keyout private.key \
-out public.cert -subj '/C=US/ST=Ca/L=Sunnydale/CN=www.example.com'

The generated private.key file contains the private key and the public.cert file contains the self-
signed certificate. Typically, you name these files with the same value as the Common Name
so that you can track which certificates and keys apply to which host and domain name.

Note that you can set the -newkey value to suit custom algorithm and key size requirements. In
this example, the algorithm is set to RSA and the key size is set at 2048 bits.

You can copy the self-signed certificate file to the trusted certificate store for any client system
and the client system validates the certificate as a match whenever it makes a connection to
the host that serves it.

You can also use the keytool command to generate self-signed certificates, but this
command's primary purpose is to install and manage JSSE (Java Secure Socket Extension)
digital certificates for use with Java applications. See Java for more information.

Creating a Private Certification Authority

By creating a private Certification Authority (CA), you can process CSRs for all the certificates
within the organization. You're also capable of managing the Certificate Revocation List (CRL),
which client systems can use to detect whether a certificate is still valid or if it has been
revoked.

This approach is better than using self-signed certificates because you can control revocation.
However, the CA certificate must still be distributed to all the client systems that need to
validate public certificates within the organization.

Create the CA Root

ORACLE

The CA Root is the fundamental certificate for a CA and isn't often used to sign server or client
certificates. The CA Root is typically used to sign one or more intermediary certificates to grant
them power to sign other certificates. This model means that if a CA Intermediary private key is
compromised, the CA Intermediary can be added to a certificate revocation list and all the
certificates that are signed by the Intermediary are automatically invalidated.

This model helps to protect the integrity of the entire public key infrastructure. Without a CA
Root there's no public key infrastructure, as the CA Root is used to create the chain of trust
that validates all certificates in the hierarchy. We recommend that the CA Root is created and
maintained on a system that's fully isolated with minimal or no network access and no direct
access to the Internet. The security measures that are implemented around the CA Root are
critical to the security of the entire public key infrastructure. If the CA Root private key is
compromised, every certificate that's ever signed by the entire chain might also be
compromised.

To create a CA Root for the organization, you must create a root key pair according to a
defined configuration that OpenSSL can use to manage the CA configuration and the database
of metadata for issued certificates.

Several steps are involved in creating the CA Root, which are described in the following
procedures and examples.

2-6

Chapter 2
Signing Certificates With OpenSSL

Create a CA Directory Structure

All certificates and metadata that are managed by the CA Root are stored in a specific
directory structure within some preconfigured files. Create the structure according to specific
requirements, but follow these general steps:

1. Create a directory to store all the CA-related data:

sudo mkdir /etc/pki/ca

You can store this directory anywhere on the system. However, it contains sensitive data,
so ensure that it's stored somewhere with restricted access.

2. Change to the CA directory to perform all remaining steps in this procedure:
sudo cd /etc/pki/ca

3. Create the required sub directories.

Create directories to contain the following: CA certificates, CA database content,
Certificate Revocation List, all newly issued certificates, and the private keys:

sudo mkdir certs db crl newcerts private

4. Secure the private keys.

Protect the private keys to ensure that access to the directory where these are stored is
limited to the current user:

sudo chmod 700 private
5. Create the files for the CA database:
sudo touch db/index.txt

sudo openssl rand -hex 16 > db/serial
sudo echo 1001 |sudo tee db/crlnumber

Create a CA Root Configuration File

ORACLE

Create the CA Root configuration in the directory where all the CA related content is stored.
For example, create a file in /etc/pki/ca/ca-root.conf and populate it with the following
content:

[default]

name = root-ca

domain suffix = example.com

aia url = http://$name.S$domain suffix/$name.crt
crl url = http://$name.S$domain suffix/$name.crl
ocsp_url = http://ocsp.$name.$domain suffix:9080
default ca = ca_default

name_opt = utf8,esc ctrl,multiline, lname,align
[ca_dn]

countryName = "AU"

organizationName = "Example Org"

2-7

ORACLE

Chapter 2
Signing Certificates With OpenSSL

commonName = "Root CA"

[ca default]

home = .

database = Shome/db/index.txt
serial = Shome/db/serial
crlnumber = Shome/db/crlnumber
certificate = Shome/$name.crt
private key = Shome/private/$name.key
RANDFILE = Shome/private/random
new certs dir = Shome/certs

unique subject = no

copy extensions = none

default days = 3650

default crl days = 30

default md = sha256

policy = policy strict

[policy strict]
The root CA should only sign intermediary certificates that match.
See the POLICY FORMAT section of 'man ca’.

countryName = match
stateOrProvinceName = optional
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[policy loose]
Allow the intermediary CA to sign a more diverse range of certificates.
See the POLICY FORMAT section of the ‘ca’ manual page.

countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]

Standard Req options

default bits = 4096

encrypt key = yes

default md = sha256

utfs = yes

string mask = utf8only

prompt = no

distinguished name = ca_dn

req extensions = ca_ext

[ca ext]

Extensions for a the CA root ('man x509v3 config’).
basicConstraints = critical,CA:true
keyUsage = critical,keyCertSign,cRLSign
subjectKeyIdentifier = hash

2-8

ORACLE

Chapter 2
Signing Certificates With OpenSSL

[intermediary ext]

Extensions for an intermediary CA.

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer
basicConstraints = critical, CA:true, pathlen:0

keyUsage = critical, digitalSignature, cRLSign, keyCertSign

[server ext]

Extensions for server certificates.

basicConstraints = CA:FALSE

nsCertType = server

nsComment = "OpenSSL Generated Server Certificate"
subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid,issuer:always

keyUsage = critical, digitalSignature, keyEncipherment
extendedKeyUsage = serverAuth

[client ext]

Extensions for client certificates.

basicConstraints = CA:FALSE

nsCertType = client, email

nsComment = "OpenSSL Generated Client Certificate"
subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid, issuer

keyUsage = critical, nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = clientAuth, emailProtection

[crl ext]
Extension for CRLs.
authorityKeyIdentifier=keyid:always

[ocsp]

Extension for OCSP signing certificates.
basicConstraints = CA:FALSE
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid, issuer
keyUsage = critical, digitalSignature
extendedKeyUsage = critical, OCSPSigning

The previous example shows a configuration that contains many optional entries that can help
when performing different operations with OpenSSL. Most importantly, the configuration
defines the extensions that can be applied to different certificate types to validate the types of
operations the are valid for the certificate. This configuration also defines different policies that
can be applied when signing certificates. For example, you can use a strict policy to ensure
that a particular metadata is specified; and, that it matches the CA values within a CSR, if the
certificate is to be signed. This policy is important for generating intermediary CA certificates. A
less restrictive policy can be applied for other certificates that are signed, either by the CA Root
or any intermediary.

The following are descriptions of the various sections within this configuration file:

[default]

The default section defines some basic configuration information such as URLs where
information such as the root certificate and the published revocation list for this CA might be
published. Note that the name and domain suffix entries here are used as variables to help

2-9

ORACLE

Chapter 2
Signing Certificates With OpenSSL

construct some of these URLs and are also used to name and reference key files and
certificates. You might want to use the system hostname and the system domain for these
values. This configuration entry also references the location of the default CA configuration
entry at ca_default.

[ca_dn]

This section defines some default values for certificates that are generated for this CA's
distinguished name. These values are written into the CSR and the self-signed certificate
that's generated from it for the CA Root certificate.

[ca_default]

This section provides the configuration that controls the entire CA. This information provided
maps the directories that were created for this CA to the configuration so that OpenSSL can
correctly update files and store certificates and keys in the correct places. This section also
defines some default values such as how many days a certificate is valid for and how many
days the certificate revocation list is valid. Because this configuration is for a root CA, the
number of days that the certificate is valid for can be set to 10 years, because a change to the
root CA would mean that all later certificates in the infrastructure would also need to be
reissued. You can view all the configuration file options in the caA (1) manual pages.

[policy_strict]

This section describes a strict policy that must be followed when signing some certificates,
such as the intermediary CA certificates. The policy defines rules around the metadata within
the certificate. For example, rules that the country name and organizational name match the
CA certificate. Other fields are optional, but a common name must be supplied.

[policy_loose]

This section is used for other certificates that are signed by this CA and its intermediaries,
where a less restrictive policy is allowed. This policy entry makes most fields optional and only
requires that the common name is supplied.

[req]

This section is used one time to create the CA certificate request and defines the default
options to use when the certificate request is generated, for example, a key length of 4096 bits
for the root CA. Another option points to the CA distinguished name that references the ca dn
section of this configuration file for obtaining the default values to use within the certificate
request.

[ca_ext]

This extensions section defines those operations for which a certificate is valid. For the root
CA, this certificate must be valid to sign all the intermediary CA certificates and effectively has
full rights. For more information about extensions, see the x509v3 CONFIG (5) manual page.

[intermediary_ext]

This section is separate extension configuration for certificates that are signed as intermediary
CAs. This certificate has the same rights as the root CA, but is unable to sign certificates for
further intermediary CAs, controlled with the pathlen: 0 within the certificate's
basicConstraints option.

[server_ext]

This section includes typical extension options for server-side certificates, which are often
used for services such as HTTPS and server-side mail services, and so on. These certificates
are issued for validation and encryption purposes, they don't have signing rights. The
configuration entry can be referenced when signing a certificate for this purpose.

2-10

Chapter 2
Signing Certificates With OpenSSL

[client_ext]

This section includes client-side certificates, which are often used for remote authentication,
where a user may provide a certificate to validate and authenticate access to a system. These
certificates also have specific extensions that control usage. This configuration entry can be
used when signing a certificate for client side certificates to ensure that the correct extensions
are applied to the certificate.

[crl_ext]
This extension is automatically applied when creating a CRL, but this extension is provided for
completeness. See Manage a Certificate Revocation List

[ocsp]
The Online Certificate Status Protocol (OCSP) is a different approach to CRLs. An OCSP

server can be set up to handle requests by client software to obtain the status of a certificate
from a resource that's referenced in a signed certificate. Special extensions exist for this
purpose. The ocsp (1) manual page can provide more information. See also Configure and
Run an OCSP Server.

Create and Verify the CA Root Key Pair

ORACLE

This task shows how to create a private key and a certificate signing request for the CA root
using the configuration values specified in the ca-root.conf file and save the private key to
private/root-ca.key.

Because this is the most valuable key in the entire infrastructure, ensure that you use a lengthy
and suitable passphrase to protect it:

sudo openssl req -new -config ca-root.conf -out root-ca.csr -keyout private/root-ca.key

Then, create a self-signed certificate by using the CSR and the ca-root.conf file. Take care to
specify that the certificate must use the extensions defined in the ca_ext section of the
configuration.

sudo openssl ca -selfsign -config ca-root.conf -in root-ca.csr -out root-ca.crt -
extensions ca_ext

Using configuration from ca-root.conf
Enter pass phrase for ./private/root-ca.key:
Check that the request matches the signature
Signature ok
Certificate Details:
Certificate:
Data:
Version: 3 (0x2)
Serial Number:
8f:75:11:1a:8e:33:02:d1:09:a8:bf:07:9c:67:c8:3e

Issuer:
countryName = AU
organizationName = Example Org
commonName = Root CA
Validity

Not Before: Oct 29 12:23:04 2019 GMT
Not After : Oct 26 12:23:04 2029 GMT

Subject:
countryName = AU
organizationName = Example Org
commonName = Root CA

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public-Key: (4096 bit)

2-11

ORACLE

Modulus
00
90
2d:
83:
36:
cf:
0f:
ed
d2
bf:
ca:
2e:
21:
a7
24
dg:
8e:
49:
ag:
29:
08
97
54:
77
54:
90
28:
c4d
17
ac:
5e:
73
ac:
aa:
91

:b9:
:34:

78
£7

3d:
9e:
ab:
:5e:
:3f:
9e:
4a:
el:
9b:
:3f:
:e8:
87:
8e:
6d:
ad:
db:
:52:
:b8

63

:b9:
86:
140
fe:
rac:
:5e:
86:
2f:
:79:
21:
6a:
143

Exponent:

X509v3 extensions:

41:d6:10:36:d4:12:d3:
f6:fb:3e:99:10:33:al:
:c3:3c:3£:40:69:37:fc:
:ae:2b:19:03:a7:e8:ch6:
f6:da:59:58:cc:18:18:
15:a7:29:fe:dc:4f:7b:
3e:38:7c:e7:c7:d3:5e:
2c:8a:8e:11:83:de:6b:
06:3d:53:a6:4b:ab6:e3:

19:d7:60:4b:c5:06:48

31:79:bc:7b:5a:25:90:
88:a0:73:1f:82:d3:63:
c3:14:4d:3e:90:19:33:
05:d1:64:56:5f:43:62:
1c:d5:03:36:86:ce:%e:
62:00:82:4d:14:de:a3:
5f:63:¢c3:93:5a:e2:09:
c2:7e:6c:3a:50:3b:bf:

b2:1c:4c:13:bf:fd:b8

£3:26:50:3d:2b:9b:83:
84:f2:6d:33:4b:1f:e0:
:3d:74:9a:64:d0:£7:22:
:7c:10:0a:82:2f:84:3f:
db:af:02:6d:09:36:7e:
el:be:f0:e1:54:13:dd:
:af:£6:38:47:d3:00:0c:
02:74:eb:28:15:11:ca:
b9:bl:c7:cc:2a:2a:db:
a7:7d:08:53:e2:a4:69:

2a:f2:00:80:ea:07:30

£5:d5:28:09:39:04:23:
a0:8a:12:25:27:ee:£5:
98:8f:34:25:a5:7a:42:
5e:54:50:5e:ad:c4d: fe:

93
65537 (0x10001)

X509v3 Basic Constraints: critical

CA:TRUE

X509v3 Key Usage: critical
Certificate Sign, CRL Sign
X509v3 Subject Key Identifier:

3C:D9:C3:56:BD:C0:45:83:C8:2B:C7:0F:96:30:CF:2A:55:23:B5:9D
Certificate is to be certified until Oct 26 12:23:04 2029 GMT (3650 days)

Sign the certificate? [y/n]:y

5d:
1d:
de:
de:
3e:
0b:

34

cd:
c6:
red:
fc:
3e:
be:
65:
76:

60

60:
c5:
cel:
49:

90

7d:
56:
63:
63:
ba:
da:
6e:
ca:
:ch:
25:
ce:
5c:
cT:

54:
59:
88:
43:
93:
re2:
5c:
f6:
5d:
d2:
67:
9b:
5b:
cT:
:21:
16:
dé:

04

28

da:
Oa:
66:
a’l:
fd:
6b:

14

fc:
9a:
:al:
93:

a0

:29:
77

20

40
b8
24

60:

44
94

cb:
89:

52

54:
74
20:
:b8:
bb:
rea:
22

61
a8

fc:
:cf:
£5:
53:
6a:
86:
eb6:
1f:
:c8:
ca:

97

bl

60:
3c:
:cl:
03:
c9:
f0:

b4

12

d2

1 out of 1 certificate requests certified, commit? [y/nly
Write out database with 1 new entries

Data Base Updated

fc:

11

lc:
rec:
79:
9a:
:d0:
rec:
ral2:
4f:
:al:
:20:
e5:
4.
:dc:
183
06:
65:
46:
:c2:
rec:
93:
8a:
:ab:
8e:
cc:
0f:
8e:
fl:
12:
35:
:c0:
5d:
:c0:

11

2b:
fd:
4b:
8c:
2c:

79
£8

54:

f1l
88

c7

bd:
c9:
8e:

de

47:

03

55

4b:
1f:
To:

74

le:

d5
27
64
£7

Chapter 2

Signing Certificates With OpenSSL

el:
:37:
07:
60:
:5b:
97:
f2:
9c:
fb:
47:
:73:
:be:
9f:
:e3:
:f5:
:da:
:46:
21:
6C:
94:
(ff:
68:
:76:
6d:
124
df:
bd:
02:
:5b:
66:
:c0:
:31:
:39:
:c9:

You're prompted for the private key passphrase to continue. After being shown the values of

the certificate, you're prompted to sign the certificate. After signing the certificate, you can

commit it to the CA database. The database files are updated to track this certificate within the

public key infrastructure.

You can view the db/index.txt file to see the CA root certificate entry:

sudo cat db/index.txt

2-12

Chapter 2
Signing Certificates With OpenSSL

\ 291026122304z 8F75111A8E33B2D109A8BF079C67C83E unknown /C=AU/O=Example Org/
CN=Root CA

The values that are displayed on each line within the database index include:

e Status (v for valid, Rr for revoked, E for expired).

e Expiry date in YYMMDDHHMMSSZ format.

* Revocation date or empty if not revoked (in this example output, the field is empty).
* Hexadecimal serial number.

* File location or unknown, if not known.

e Distinguished name.

Create an Intermediary CA

The next step in creating the infrastructure is to create an intermediary CA that can process all

the server and client certificates. This is important because if the intermediary CA private key is
compromised, the root CA can revoke its certificate and invalidate any other certificate that has
been issued by that intermediary.

We recommend that the intermediary CA is hosted on a different server with wider access as it
handles most certificate requests. The intermediary CA is an exact model of the root CA, with
the exception that its own certificate is signed by the root CA and is configured with the
appropriate extensions to process signing requests.

Create a CA Directory Structure

On the intermediary CA host, perform the same operations that you performed to create the
root CA directory structure, but name the parent directory appropriately so that it's clear that
the configuration is for an intermediary, for example:

sudo mkdir /etc/pki/ca-intermediary

sudo cd /etc/pki/ca-intermediary/

sudo mkdir certs db crl newcerts private
sudo chmod 700 private

sudo touch db/index.txt

sudo openssl rand -hex 16 > db/serial
sudo echo 1001 |sudo tee db/crlnumber

Create the Intermediary CA Configuration

ORACLE

The intermediary CA configuration is almost identical to the configuration that you created for
the CA root, with a few modifications that make it specific to the intermediary. Modifications are
indicated in bold text in the following example:

[default]

name = sub-ca

domain suffix = example.com

aia url = http://$name.$domain suffix/$name.crt
crl url = http://$name.$domain suffix/$name.crl
ocsp_url = http://ocsp.$name.$domain suffix:9080
default ca = ca_default

name_opt = utf8,esc_ctrl,multiline, Iname,align
[ca dn]

countryName = "AU"

2-13

ORACLE

organizationName
commonName

[ca default]
home

database

serial
crlnumber
certificate
private key
RANDFILE

new certs dir
unique subject
copy_extensions
default days
default crl days
default md
policy

[policy strict]

"Example Org"
"Intermediary CA"

Shome/db/index.txt

Shome/db/serial

Shome/db/crlnumber

Shome/$name.crt

$home/private/$name.key
Shome/private/random

Shome/certs
no

none

3650

30

sha256

policy strict

Chapter 2
Signing Certificates With OpenSSL

The root CA should only sign intermediary certificates that match.

See the POLICY FORMAT

countryName

stateOrProvinceName

organizationName

organizationalUnitName

commonName
emailAddress

[policy loose]

se

ction of "man ca’.

match
optional
match
optional
supplied
optional

Allow the intermediary CA to sign a more diverse range of certificates.

See the POLICY FORMAT

countryName

stateOrProvinceName

localityName
organizationName

organizationalUnitName

commonName
emailAddress

[req]

Standard Req options

default bits
encrypt key

default md
utf8

string mask
prompt

distinguished name

req extensions

[ca_ext]

se

Extensions for a the CA

basicConstraints
keyUsage

subjectKeyIdentifier

[intermediary ext]

ction of the ‘ca’
optional
optional
optional
optional
optional
supplied
optional

4096

yes

sha256

yes

utf8only

no

ca_dn
intermediary ext

root ('man x509v3_

critical,CA:true

manual page.

config’).

critical,keyCertSign, cRLSign

hash

Extensions for an intermediary CA.
subjectKeyIdentifier = hash

authorityKeyIdentifier
critical, CA:true, pathlen:0

basicConstraints

keyid:always,issuer

2-14

Chapter 2
Signing Certificates With OpenSSL

keyUsage = critical, digitalSignature, cRLSign, keyCertSign

[server ext]

Extensions for server certificates.

basicConstraints = CA:FALSE

nsCertType = server

nsComment = "OpenSSL Generated Server Certificate"
subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid, issuer:always

keyUsage = critical, digitalSignature, keyEncipherment
extendedKeyUsage = serverAuth

[client ext]

Extensions for client certificates.

basicConstraints = CA:FALSE

nsCertType = client, email

nsComment = "OpenSSL Generated Client Certificate"
subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid, issuer

keyUsage = critical, nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = clientAuth, emailProtection

[crl ext]
Extension for CRLs.
authorityKeyIdentifier=keyid:always

[ocsp]

Extension for OCSP signing certificates.
basicConstraints = CA:FALSE
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid, issuer
keyUsage = critical, digitalSignature
extendedKeyUsage = critical, OCSPSigning

Note that in the intermediary ext section, the line containing authorityKeyIdentifier has
been commented out because the intermediary doesn't have the issuer certificate available.
The intermediary is unaware of the certificate issuer until the certificate is signed. If you try to
create the CSR while this line is still included in the configuration, it fails.

Save the configuration file as intermediary.conf.

Create a CSR for the Intermediary CA

Create a CSR for the intermediary certificate:

sudo openssl req -new -config intermediary.conf -out sub-ca.csr -keyout private/sub-
ca.key

This certificate is also a signing certificate, so it's important to protect it with a passphrase to
help prevent its unauthorized use and maintain the security of the infrastructure. Enter the
passphrase when prompted.

Create a Signed Certificate for the Intermediary CA

ORACLE

Copy the sub-ca.csr that you generated in the previous step to the /etc/pki/ca directory on
the system where the root CA is hosted. On the root CA host, run the following commands to
generate a signed certificate from the CSR and apply the intermediary signing extension:

sudo cd /etc/pki/ca
sudo openssl ca -config ca-root.conf -in sub-ca.csr -out newcerts/sub-ca.crt \
-extensions intermediary ext

2-15

Chapter 2
Signing Certificates With OpenSSL

You're prompted for the root CA passphrase, then presented with the certificate content and
prompted to sign it. Check that the certificate contents make sense before you sign it. You can
see that the certificate is issued by the Root CA and contains the Intermediary CA in the
Subject. You can also see that the correct extensions are applied to the certificate.

After the certificate is signed, you're prompted to update the database.

The newly signed certificate is created as newcerts/sub-ca.crt.

Create a Certificate Chain File

Because no systems are aware of the root CA certificate, we recommend creating a certificate
chain that includes the public certificate for the root CA with the newly created intermediary CA
certificate. In this way, hosts only need a copy of the chained certificate to validate any
certificates that are issued by the intermediary CA. To create the certificate chain, join the two
public certificates by running the following command on the root CA host:

sudo cat root-ca.crt newcerts/sub-ca.crt > newcerts/chained-sub-ca.crt
sudo chmod 444 newcerts/chained-sub-ca.crt

Copy the newcerts/sub-ca.crt and newcerts/chained-sub-ca.crt certificate back to the /
root/ca-intermediary/ directory on the intermediary CA host. You can now use this
certificate to process server and client CSRs and to generate CRLs.

When you return a signed certificate for a specific CSR, include the chained-sub-ca.crt
certificate so that it can be installed on the host where the certificate is used and distributed to
any client that needs to validate the signed certificate.

Process CSRs and Sign Certificates

ORACLE

As systems generate CSRs using the process that's described in Creating Certificate Signing
Requests With OpenSSL, they must submit them to a CA to be signed.

All later CSR processing for server and client-side certificates should be performed by an
intermediary CA that's configured within the environment or by an external third-party CA.

To process a CSR, copy it to the /root/ca-intermediary directory on the intermediary CA host
and then use the openssl ca command to sign it with the appropriate extension
configuration.

For example, to sign a server-side certificate for a CSR named www. example.com.csr, run the
following command:

sudo openssl ca -config intermediary.conf -extensions server ext -days 375 \
-in www.example.com.csr -out newcerts/www.example.com.crt

Note that we specify the number of days for which the certificate is valid. For a server-side
certificate, the number of days should be limited to a value much less than a CA certificate's
validity. It's important to select the correct extensions to apply to the certificate. These
extensions map to definitions that are within the configuration file.

You're prompted for the intermediary CA key passphrase and then prompted to sign the
certificate and update the database.

Return the certificate, along with the chained CA certificate, so that these can be distributed to
validate the certificate.

2-16

Chapter 2
Signing Certificates With OpenSSL

Manage a Certificate Revocation List

The certificate revocation list is used to identify certificates that have been issued by a signing
CA and revoked. The list also tracks the reason that a certificate was revoked.

Generate the CRL

On each CA host, you should create an empty CRL that can be updated as you need to revoke
certificates. For example, on an intermediary CA, you would use the following command:

sudo cd /etc/pki/ca-intermediary
sudo openssl ca -config intermediary.conf -gencrl -out crl/sub-ca.crl

Note that the CRL should be published to the URL that's defined in the configuration file to
track certificates that are revoked by the CA. You should configure a web service to serve the
sub-ca.crl, if possible.

You can check the contents of a CRL as follows:

sudo openssl crl -in crl/sub-ca.crl -noout -text

If the CRL was just created, it's empty. A new CRL should be created periodically, based on
the configuration value that's set in the CA configuration file for default crl days. By default,
it's set for every 30 days.

Revoke a Certificate

ORACLE

Every signed certificate contains the serial number that's issued by the signing CA. You can
view this serial number within a certificate as follows:

sudo openssl x509 -serial -noout -in server.crt

This serial number identifies the certificate within the CA signing database and can also be
used to identify the certificate stored by the CA that signed it so that the CA can revoke it.

On the CA where the certificate was issued, you can find the certificate with the matching serial
number in the certs directory. For example, on an intermediary host, for a certificate with serial
number 8F75111A8E33B2D109A8BF079C67C83F, it would be as follows:

sudo cd /etc/pki/ca-intermediary
sudo ls certs/8F75111A8E33B2D109A8BF079C67C83F*

certs/8F75111A8E33B2D109A8BF079C67C83F . pem

You can also check the details for the certificate in the CA database:

sudo grep 8F75111A8E33B2D109A8BF079C67C83F db/index.txt

To revoke this certificate, the signing CA must issue the following command:

sudo openssl ca -config intermediary.conf -revoke certs/
8F75111A8E33B2D109A8BF079C67C83F.pem \
-crl reason keyCompromise

Note that you should specify the reason for revoking the certificate, as this reason is used in
the certificate revocation list. Options include the following: unspecified, keyCompromise,

2-17

Chapter 2
Signing Certificates With OpenSSL

CACompromise, affiliationChanged, superseded, cessationOfOperation, certificateHold,
and removeFromCRL. For more information, see the Ca (1) manual page.

When a certificate is revoked, the CA database is updated to reflect this change and the status
is set to R for the certificate that's listed in the db/index. txt file.

The database file is used to generate the CRL each time it's created. Good practice is to
generate a new CRL as soon as you revoke a certificate. In this way, this list is kept current.
See Generate the CRL for more information.

Configure and Run an OCSP Server

ORACLE

The Online Certificate Status Protocol (OCSP) provides an alternative to CRLs and includes its
own publishing mechanism. OpenSSL includes an option to run as an OCSP server that can
respond to OCSP queries.

Note that OCSP is preferred over CRLs. Usually, it's a good idea to ensure that an OCSP
server is running for the CA, especially if the OCSP URL appears in the configuration, as this
URL is included in each certificate that's signed by the CA. Any client software can confirm the
revocation status of a certificate by querying the OCSP server.

For any CA, create a key and CSR for the OCSP server:

sudo openssl req -new -newkey rsa:2048 -subj "/C=AU/O=Example Org/CN=0CSP Responder" \
-keyout private/ocsp.key -out ocsp.csr

Create a signed certificate from the ocsp.csr CSR file:

sudo openssl ca -config intermediary.conf -extensions ocsp -days 187 -in ocsp.csr \
-out newcerts/ocsp.crt

Because the OCSP cetrtificate is responsible for handling revocation, it can't be revoked.
Therefore, it's good practice to set the validity period on the certificate to a manageable, but
relatively short period. In this example, the validity period has been set to 187 days, which
means that it needs to be refreshed every 6 months.

To run an OCSP server on the current CA, you can use the tool provided within OpenSSL. For
example, you could use the following command:

sudo openssl ocsp -port 9080 -index db/index.txt -rsigner newcerts/ocsp.crt \
-rkey private/ocsp.key -CA sub-ca.crt -text

Note that the command specifies the CA db/index. txt file directly, which means that as
certificates are revoked, the OCSP server becomes aware of them automatically. When you
run the command, you're prompted for the OCSP key passphrase. The server continues to run
until you end the process or escape by using a control sequence such as ctrl-cC.

You can test the service by checking the ocsp.crt file. Use the openss1 command as follows
to run an OCSP query:

sudo openssl ocsp -issuer sub-ca.crt -CAfile chained-sub-ca.crt -cert newcerts/ocsp.crt \
-url http://127.0.0.1:9080

Response verify OK
newcerts/ocsp.crt: good
This Update: Oct 30 15:48:11 2019 GMT

The response in the previous example indicates whether the verification has succeeded and

provides a status of good if the certificate hasn't been revoked. A status of revoked is returned
if it has been revoked.

2-18

Chapter 2
Debugging and Testing Certificates With OpenSSL

Debugging and Testing Certificates With OpenSSL

The following are some examples show how to use OpenSSL commands to work with existing
certificates to debug and test the infrastructure. The examples provided here aren't
comprehensive and are intended to supplement the existing OpenSSL manual pages.

Examining Certificates

Display the information contained in an X.509 certificate:

sudo openssl x509 -text -noout -in server.crt

Display the SHAL1 fingerprint of a certificate:

sudo openssl x509 -shal -noout -fingerprint -in server.crt
Display the serial number of a signed certificate:

sudo openssl x509 -serial -noout -in server.crt

Check That a Private Key Matches a Certificate

The modulus and public exponent parts of the key and certificate must match. These values
are often long and difficult to check. The easiest way to compare the modulus in the key and
certificate is to create a SHA256 hash of each and compare those instead, for example:

sudo openssl x509 -noout -modulus -in server.crt | openssl sha256
sudo openssl rsa -noout -modulus -in server.key | openssl sha256

You can also check the modulus in a CSR to see if it matches a key or certificate, as follows:

sudo openssl reqg -noout -modulus -in server.csr | openssl sha256

Changing Key or Certificate Format

ORACLE

Convert a root certificate to a form that can be published on a website for downloading by
a browser:

sudo openssl x509 -in cert.pem -out rootcert.crt

Convert a base64 encoded certificate (also referred to as PEM or RFC 1421) to binary
DER format:

sudo openssl x509 -in cert.pem -outform der -out certificate.der

Convert the base64 encoded certificates for an entity and its CA to a single PKCS7 format
certificate:

sudo openssl crl2pkcs7 -nocrl -certfile entCert.cer -certfile CACert.cer -
out certificate.p7b

2-19

Chapter 2
Debugging and Testing Certificates With OpenSSL

Check Certificate Consistency and Validity

Verify a certificate including the signing authority, signing chain, and period of validity:

sudo openssl verify cert.pem

Decrypting Keys and Adding or Removing Passphrases

If you create an encrypted key file and decide that the file isn't encrypted or doesn't require
a passphrase, you can decrypt it by using the following command:

sudo openssl rsa -in private.key -out unencrypted.key

Enter pass phrase for private.key:
writing RSA key

You're prompted for the passphrase on the encrypted key, which is stored in private.key,
and the unencrypted version of the same key is written to the unencrypted.key file.

To encrypt an unencrypted key and add a passphrase to protect it, run the following
command:

sudo openssl rsa -aesZ256 -in unencrypted.key -out private.key

In this previous example, the AES cipher is used with a 256 bit key. The command prompts
you to enter a passphrase and to verify it. The new encrypted key file is written to
private.key.

Note:

You can add or remove a passphrase from the private key at any time without
affecting its public key counterpart. Adding a passphrase protects the private key
from use by an unauthorized or malicious user, but comes with an added
inconvenience, in that services that use the private key always require manual
intervention to start or restart. If you remove the passphrase from a key, ensure
that it's stored with strict permissions and that it's not copied to systems that don't
require it.

Using OpenSSL to Test SSL/TLS Configured Services

ORACLE

Test a self-signed certificate by configuring a server that listens on port 443:

sudo openssl s server -accept 443 -cert cert.pem -key prikey.pem -www

Test the client side of a connection. This command returns information about the
connection including the certificate. After the connection is established, you can manually

input HTTP requests or commands directly at the prompt.

sudo openssl s client -connect server:443 -CAfile cert.pem

2-20

Chapter 2
Using OpenSSL for File Encryption and Validation

» Extract a certificate from a server:

sudo echo | openssl s client -connect server:443 2>/dev/null | \
sed -ne '/BEGIN CERT/,/END CERT/p' |sudo tee svrcert.pem

Using OpenSSL for File Encryption and Validation

You can also use OpenSSL to encrypt or decrypt any file type and to create digests that can be
signed and used to validate the contents and the origin of a file. The following are some
examples of how you might use the openssl command.

* Encrypt a file by using PBKDF2:
openssl aes-256-cbc -e -salt -pbkdf2 -iter 10000 -in file -out file.enc
e Decrypt a file encrypted using PBKDF2:
openssl aes-256-cbc -d -salt -pbkdf2 -iter 10000 -in file.enc -out file.dec
e Create a SHA256 digest of a file:
sudo openssl dgst -sha256 file
* Sign the SHA256 file digest using the private key stored in the file prikey.pem:
sudo openssl dgst -sha256 -sign prikey.pem -out file.sha256 file
e Verify the signed file digest using the public key stored in the file pubkey.pem:

sudo openssl dgst -sha256 -verify pubkey.pem -signature file.sha256 file

More Information About OpenSSL

ORACLE

For more information about OpenSSL, see the openssl (1), ciphers (1), dgst (1), enc (1),
req(l), s _client(l), s server(l), verify(1), and x509 (1) manual pages

2-21

Setting Up TLS/SSL With Other Tools

GnuTLS

ORACLE

This chapter describes some other tools available for setting up TLS/SSL that you might
consider.

Several factors can influence the choice of tool. For example, some tools are more light weight
than others, or some are targeted to specific environments, such as the keytool for Java. Some
not only cover certificates infrastructure management but also include other features, APIs,
and libraries for developing applications that enable various other secure network protocols
and security standards. Although this book doesn't provide details about such features, you
can find more information about them in corresponding manual pages and documentation from
open source projects.

This chapter describes the certtool GnuTLS certificate tool available in Oracle Linux and how
to use it to create certificate signing requests, self-signed certificates, and privately owned CA
certificates. GnuTLS is a library that provides implementations of the SSL, TLS, and DTLS
protocols, along with related technologies, to secure communications. It includes an application
programming interface (API) written in C language to access the secure communications
protocols and APIs to parse and write structures such as X.509, PKCS #12, and OpenPGP.

To use certtool, install the gnutls-utils package, available from the Application Stream
repository:

sudo dnf install gnutls-utils

The following examples show how to use the certtool command to create certificate signing
requests, self-signed certificates, and privately owned CA certificates.

* To generate a private key, run the following command, replacing private key file with
the name of the private key file:

sudo certtool --generate-privkey --outfile private key file

» To generate a CSR, run the following command, replacing csr file with the name of the
CSRfile:

sudo certtool --generate-request --load-privkey private key file --outfile
csr file

* To generate a self-signed certificate, run the following command:

sudo certtool --generate-self-signed --load-privkey private key file --
outfile self signed certificate file

For more information, see the certtool (1) manual page and the GnuTLS open source project
at https://www.gnutls.org/.

3-1

https://www.gnutls.org/

NSS

ORACLE

Chapter 3
NSS

This chapter describes the certutil Network Security Service (NSS) certificate tool available
in Oracle Linux and how to use it to create Certificate Signing Requests (CSRs), self-signed
certificates, and privately owned CA certificates with NSS database files which store
certificates and private keys for applications.

NSS is a set of libraries designed to enable cross-platform development of security-enabled
client and server applications. Applications built with NSS work with SSL v2 and v3, TLS,
PKCS #5, PKCS #7, PKCS #11, PKCS #12, SIMIME, X.509 v3 certificates, and other security
standards.

Before you can use certutil to manage certificates, CSRs, and keys, you must have access
to the NSS database files. You can use the legacy security databases files (cert8.db for
certificates, key3.db for keys, and secmod. db for PKCS #11 module information) or the new
SQLite database files (cert9.db for certificates, key4.db for keys, and pkcs11.txt for PKCS
#11 modules). This section provides examples from the new database files.

You can also use the related pk12util command to export and import certificates and keys
from a PKCS #12 file to an NSS database or the reverse.

To use certutil and pkl2util, install the nss-tools package available in the Application
Stream repository:

sudo dnf install nss-tools

The following examples show how to use the certutil and pkl2util commands.

» To create an NSS database, run the following command, where database directory is
the home directory where you want to create the cert9.db, key4.db, and pkcsll.txt NSS
database files:

certutil -N -d database directory

For example the following creates the database in a folder called nssdb in the user's
home directory:

certutil -N -d $HOME/nssdb
e To generate a self-signed certificate, run the following command:

certutil -d database directory -S -s subject -n nickname -x -t trust args -
o file

In this example:

— =S Indicates that you want to create an individual certificate and add it to a certificate
database.

— -s Indicates that you want to specify a distinguished name where subject uses the
distinguished name format defined in https://www.rfc-editor.org/rfc/rfc1485.html.

— -n Indicates that you want to specify a nickname where nickname is the nickname for
the entity you're creating.

3-2

https://www.rfc-editor.org/rfc/rfc1485.html

ORACLE

Chapter 3
NSS

— -x Indicates you want to generate the signature for a certificate being created or added
to a database, rather than obtaining a signature from a separate CA.

— -t Indicates you want to add trust arguments where trust_args are the trust attributes
that you want to apply to the certificate. Each certificate has three trust categories,
expressed in the order SSL, email, object signing for each trust setting. In each
category position, use none, any, or all the attribute codes. Valid codes are:

* p-Valid peer

* P - Trusted peer (includes p)

* ¢ -Valid CA

* C - Trusted CA (includes c)

* T - Trusted CA for client authentication (SSL server only)

For example, the following command creates a self-signed certificate for the
wwwl.example.com common name with the nickname example test. The trust attributes

are C (Trusted CA) for each category.

certutil -d $HOME/nssdb/ -S -s 'CN=wwwl.example.com, O=Example
Organization, L=Ottawa, C=CA' -n example test -x -t C,C,C

To add existing certificates or certificates generated elsewhere, run the following
command:

certutil -A -n nickname -t trust args -d database directory -i input-file

Where:
— -AIndicates that you want to add a certificate to a certificate database.

— -1 Indicates that you want to provide an input file, such as a certificate file, for
example, a PEM file.

For example:

certutil -A -n "CN=My SSL Certificate" -t C,C,C -d SHOME/nssdb/ -i $HOME/
tls-ca-bundle.pem

To list all certificates, run the following command:

certutil -L -d database directory

For example:

certutil -L -d $HOME/nssdb/

Certificate Nickname Trust
Attributes

SSL,S/
MIME, JAR/XPI

example test Cu,Cu,Cu
CN=My SSL Certificate c,c,C

3-3

Java

ORACLE

Chapter 3
Java

When listing certificates, the trust tags might include the u flag indicating that a private key
is associated with the certificate.

To delete a certificate from the database, run the following command:

certutil -D -d database directory -n nickname

In the previous example, -D indicates that you want to delete a specific certificate from the
database.

To list all keys, run the following command:

certutil certutil -K -d database directory

For example:

certutil -K -d $HOME/nssdb/

certutil: Checking token "NSS Certificate DB" in slot "NSS User Private
Key and Certificate Services"

Enter Password or Pin for "NSS Certificate DB":

< 0> rsa 35f4555£329¢1490b3570c9d36elec56£2329£08 NSS Certificate
DB:example test
< 1> rsa 303936d2003522e9293b75db3dc48£77¢c1871767 NSS Certificate

DB:example test2
To show a public key in PEM format, run the following command:

certutil -L -d database directory -a -n nickname

For example:

certutil -L -d $HOME/nssdb/ -a -n example test

To export a certificate and key into a single PKCS #12 file, run the following command:
pkl2util -o certs.pl2 -n example test -d sql:database directory

To change a certificate, use the -M option. For example, the following changes the trust
arguments from ¢, ¢, C to p, P, P for the example test certificate:

$ certutil -d database directory -M -t "P,P,P" -n example test

For more information, see the certutil (1) and pk12util (1) manual pages and the NSS open
source project at https://firefox-source-docs.mozilla.org/security/nss/index.html.

Most Java applications use the keystore that's supplied with JDK to store cryptographic keys,
X.509 certificate chain information, and trusted certificates. The default JDK keystore in Oracle

3-4

https://firefox-source-docs.mozilla.org/security/nss/index.html

ORACLE

Chapter 3
Java

Linux is the /etc/pki/java/cacerts file. You can use the keytool command to generate,
install, and manage certificates in the Java keystore.

The following examples show how you might use the keytool command.

List the contents of the keystore, /etc/pki/java/cacerts:

sudo keytool -list [-v] -keystore /etc/pki/java/cacerts

The default keystore password is changeit. Change this password as soon as possible. If
specified, the verbose option -v displays detailed information.

Change the password for a keystore, for example, /etc/pki/java/cacerts:

sudo keytool -storepasswd -keystore /etc/pki/java/cacerts

Create a keystore (keystore.jks).
When creating a keystore you can:
— Manage public and private key pairs and certificates from entities that you trust.

— Generate a public and private key pair by using the RSA algorithm and a key length of
3072 bits.

— Create a self-signed certificate that includes the public key and the specified
distinguished name information.

sudo keytool -genkeypair -alias engineering -keyalg RSA -keysize 3072 \
-dname "CN=www.unserdom.com, OU=Eng, O=Unser Dom Corp, C=US, ST=Ca,
L=Sunnydale" \

-keypass pkpassword -keystore keystore.jks \

-storepass storepassword -validity 100

In the command, pkpassword is the private key password and storepassword is the
keystore password. In this example, the certificate is valid for 100 days and is associated
with the private key in a keystore entry that has the alias engineering.

Display the contents of a certificate file in a human-readable form:

sudo keytool -printcert [-v] -file cert.cer

If specified, the verbose option -v displays detailed information.

Generate a CSR in the file carequest . csr for submission to a CA:

sudo keytool -certreq -file carequest.csr

The CA signs and returns a certificate or a certificate chain that authenticates the public
key.

Import the root certificate or certificate chain for the CA from the ACME . cer file into the
keystore.jks keystore and assign it the alias acmeca:

sudo keytool -importcert -alias acmeca [-trustcacerts] -file ACME.cer \
-keystore keystore.jks -storepass storepassword

3-5

ORACLE

Chapter 3
Java

If specified, the -trustcacerts option instructs keytool to add the certificate only if it can
validate the chain of trust against the existing root CA certificates in the cacerts keystore.
Or, you can use the keytool -printcert command to check that the certificate's
fingerprint matches the fingerprint that the CA publishes.

Import the signed certificate for the organization after you have received it from the CA:

sudo keytool -importcert -v -trustcacerts -alias acmeca -file ACMEdom.cer \
-keystore keystore.jks -storepass storepassword

In this example, the file containing the certificate is ACMEdom. cer. The -alias option
specifies the entry for the first entity in the CA's root certificate chain. The signed certificate
is added to the front of the chain and becomes the entity that's addressed by the alias
name.

Delete the certificate with the alias aliasname from the keystore. jks keystore:

sudo keytool -delete -alias aliasname -keystore keystore.jks -storepass
storepassword

Export the certificate with the alias aliasname as a binary PKCS7 format file, which
includes both the certificate chain and the issued certificate:

sudo keytool -exportcert -noprompt -alias aliasname -file output.p7b \
-keystore keystore.jks -storepass storepassword

Export the certificate with the alias aliasname as a base64 encoded text file (also referred
to as PEM or RFC 1421).

sudo keytool -exportcert -noprompt -rfc -alias aliasname -file output.pem \
-keystore keystore.jks -storepass storepassword

For a certificate chain, the file includes only the first certificate in the chain, which
authenticates the public key of the aliased entity.

For more information, see the keytool (1) manual page.

3-6

Managing System Certificates

In Oracle Linux releases earlier than 10, certificates that are trusted system-wide are stored in
the /etc/pki/ca-trust/ and /usr/share/pki/ca-trust-source/ directories.

In Oracle Linux release 10, certificates that are trusted system-wide are stored as .pemn files in
the /etc/pki/ca-trust/extracted directory.

¢ Note:

If you're using Oracle Linux release 10 and any applications, scripts, or
configurations refer directly to files in /etc/pki/tls/certs, change them to use
the new path.

For example, if the old path is:

/etc/pki/tls/certs/ca-bundle.crt

You must now use:

/etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem

Typically, the CA certificates of major third-party CAs are included within the system-wide trust
store to enable applications to work correctly. By storing trusted certificates in a central
location, a wide range of applications can use these trusted certificates to validate and
authenticate certificate chains. For example, when an application needs to validate a
certificate, it uses the certificates within the system-wide trust to confirm whether the certificate
either matches a trusted certificate, or is signed by one.

A certificate, such as a CA certificate, that's stored on a system as a trusted certificate is often
referred to as a trust anchor. This distinguishes the certificate from one for which trust is
derived, typically by walking through a certificate chain until a trust anchor is found. You can
add any public certificate to the system trust as a trust anchor so that it can be validated
immediately.

Commonly trusted third-party CA certificates are selected by the Mozilla Foundation and are
included in the ca-certificates package. These certificates are installed into the system trust
store as anchors for general use.

Using the Trust Command to Manage System Certificates

ORACLE

The trust command can simplify system certificate management. This command is available
in the pl1-kit-trust package and is installed by default on most Oracle Linux systems.

See the trust (1) manual page for more information.

4-1

ORACLE

Chapter 4
Using the Trust Command to Manage System Certificates

Listing Certificates in the System Trust

To list all trusted certificates, run the following command:

trust list

Output similar to the following is displayed:

pkcs11:1d=%37%7TF%$3E%3E%99%71%60%CA%24%D4%91%13%79%D0%74%29%B4%A8%24%D8; type=ce
rt

type: certificate

label: A-CERT ADVANCED

trust: anchor

category: authority

pkcs11:1d=%4B%3C%8C%1D%85%E9%6F%AD; type=cert
type: certificate
label: A-Trust-Qual-01
trust: anchor
category: authority

Note that each certificate in the system trust is allocated a pkcs1l:1id value that can be used to
identify a particular certificate for other trust operations.

Adding a Certificate as a Trust Anchor

To add a certificate to the system trust anchors, run the following command:

sudo trust anchor /path/to/public.cert

Substitute /path/to/public.cert with the path to the certificate file that you want to add to
the system trust.

When you run this command, the certificate is added to the /etc/pki/ca-trust/source/
directory and the system trust is refreshed. The certificate is immediately trusted as an anchor.

Typically, you only add certificates from providers that you trust and which aren't already
available in the system trust. You can also add self-signed certificates that you might generate
for demonstration purposes or for internal or developer tooling.

Removing a Certificate From the System Trust Anchors

To remove a certificate from the system trust anchors, run the following command:

sudo trust anchor --remove pkcsll:id=<ID>

Use the matching pkcs11:id value to provide the <ID> of the certificate that you want to
remove. Or, if you have a copy of the certificate available, you can specify its location as
follows:

sudo trust anchor --remove /path/to/public.cert

The system trust store is updated immediately.

4-2

Chapter 4
Manually Updating Trusted Certificates

Manually Updating Trusted Certificates

ORACLE

You can manually add a certificate to the system trust store by copying the certificate to either
the /usr/share/pki/ca-trust-source/anchors/ or /etc/pki/ca-trust/source/
anchors/ directories. You must run the update-ca-trust command to refresh the system
trust store after you make manual updates to these directories.

For example:

sudo cp /path/to/public.cert /etc/pki/ca-trust/source/anchors
sudo update-ca-trust

See the update-ca-trust (8) manual page for more information.

4-3

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About Public Key Infrastructure
	What Is Public Key Cryptography?
	Automatic Certificate Management Environment (ACME)

	2 Setting Up TLS/SSL With OpenSSL
	About Key Pairs
	Creating Key Pairs
	Creating Certificate Signing Requests With OpenSSL
	Signing Certificates With OpenSSL
	Creating Self-Signed Certificates for Testing and Development
	Creating a Private Certification Authority
	Create the CA Root
	Create a CA Directory Structure
	Create a CA Root Configuration File
	Create and Verify the CA Root Key Pair

	Create an Intermediary CA
	Create a CA Directory Structure
	Create the Intermediary CA Configuration
	Create a CSR for the Intermediary CA
	Create a Signed Certificate for the Intermediary CA
	Create a Certificate Chain File

	Process CSRs and Sign Certificates
	Manage a Certificate Revocation List
	Generate the CRL
	Revoke a Certificate

	Configure and Run an OCSP Server

	Debugging and Testing Certificates With OpenSSL
	Examining Certificates
	Check That a Private Key Matches a Certificate
	Changing Key or Certificate Format
	Check Certificate Consistency and Validity
	Decrypting Keys and Adding or Removing Passphrases
	Using OpenSSL to Test SSL/TLS Configured Services

	Using OpenSSL for File Encryption and Validation
	More Information About OpenSSL

	3 Setting Up TLS/SSL With Other Tools
	GnuTLS
	NSS
	Java

	4 Managing System Certificates
	Using the Trust Command to Manage System Certificates
	Manually Updating Trusted Certificates

