
Oracle Linux
DTrace Reference Guide

E38608-26
September 2022



Oracle Linux DTrace Reference Guide,

E38608-26

Copyright © 2013, 2022, Oracle and/or its affiliates.



Contents

 Preface

Conventions xii

Documentation Accessibility xii

Access to Oracle Support for Accessibility xiii

Diversity and Inclusion xiii

1   About DTrace

Getting Started With DTrace 1-1

Providers and Probes 1-4

2   The D Programming Language

D Program Structure 2-1

Probe Clauses and Declarations 2-1

Probe Descriptions 2-1

Clause Predicates 2-3

Probe Actions 2-3

Order of Execution 2-3

Use of the C Preprocessor 2-3

Compilation and Instrumentation 2-4

Variables and Arithmetic Expressions 2-6

Predicate Examples 2-8

Output Formatting Examples 2-11

Array Overview 2-14

Associative Array Example 2-14

External Symbols and Types 2-15

Types, Operators, and Expressions 2-16

Identifier Names and Keywords 2-17

Data Types and Sizes 2-17

Constants 2-19

Arithmetic Operators 2-20

Relational Operators 2-21

iii



Logical Operators 2-22

Bitwise Operators 2-22

Assignment Operators 2-23

Increment and Decrement Operators 2-24

Conditional Expressions 2-25

Type Conversions 2-25

Operator Precedence 2-26

Variables 2-27

Scalar Variables 2-29

Associative Arrays 2-30

Thread-Local Variables 2-31

Clause-Local Variables 2-33

Built-In Variables 2-35

External Variables 2-38

Pointers and Scalar Arrays 2-38

Pointers and Addresses 2-39

Pointer Safety 2-39

Array Declarations and Storage 2-40

Pointer and Array Relationship 2-41

Pointer Arithmetic 2-42

Generic Pointers 2-43

Multi-Dimensional Arrays 2-43

Pointers to DTrace Objects 2-44

Pointers and Address Spaces 2-44

DTrace Support for Strings 2-45

String Representation 2-45

String Constants 2-45

String Assignment 2-46

String Conversion 2-46

String Comparison 2-47

Structs and Unions 2-48

Structs 2-48

Pointers to Structs 2-50

Unions 2-51

Member Sizes and Offsets 2-51

Bit-Fields 2-51

Type and Constant Definitions 2-52

typedefs 2-52

Enumerations 2-53

Inlines 2-54

iv



Type Namespaces 2-55

3   Aggregations

Aggregation Concepts 3-1

Basic Aggregation Statement 3-2

Aggregation Examples 3-3

Basic Aggregation 3-3

Using Keys 3-4

Using the avg Function 3-5

Using the stddev Function 3-6

Using the quantize Function 3-7

Using the lquantize Function 3-8

Printing Aggregations 3-11

Data Normalization 3-11

Clearing Aggregations 3-14

Truncating Aggregations 3-15

Minimizing Drops 3-16

4   Actions and Subroutines

Action Functions 4-1

Default Action 4-1

Data Recording Actions 4-2

freopen 4-2

ftruncate 4-2

func 4-2

mod 4-2

printa 4-3

printf 4-3

stack 4-3

sym 4-4

trace 4-4

tracemem 4-5

ustack 4-5

uaddr 4-6

usym 4-6

Destructive Actions 4-7

copyout (Process-Destructive) 4-7

copyoutstr (Process-Destructive) 4-7

raise (Process-Destructive) 4-7

v



stop (Process-Destructive) 4-7

system (Process-Destructive) 4-8

chill (Kernel-Destructive) 4-9

panic (Kernel-Destructive) 4-10

Special Actions 4-10

Speculative Actions 4-10

exit 4-10

setopt 4-10

Subroutine Functions 4-11

alloca 4-11

basename 4-11

bcopy 4-11

cleanpath 4-11

copyin 4-12

copyinstr 4-12

copyinto 4-12

d_path 4-12

dirname 4-13

getmajor 4-13

getminor 4-13

htonl 4-13

htonll 4-13

htons 4-13

index 4-13

inet_ntoa 4-14

inet_ntoa6 4-14

inet_ntop 4-14

lltostr 4-14

mutex_owned 4-14

mutex_owner 4-14

mutex_type_adaptive 4-15

mutex_type_spin 4-15

ntohl 4-15

ntohll 4-15

ntohs 4-15

progenyof 4-15

rand 4-15

rindex 4-16

rw_iswriter 4-16

rw_read_held 4-16

rw_write_held 4-16

vi



speculation 4-16

strchr 4-16

strjoin 4-16

strlen 4-17

strrchr 4-17

strstr 4-17

strtok 4-17

substr 4-17

5   Buffers and Buffering

Principal Buffers 5-1

Principal Buffer Policies 5-1

switch Policy 5-1

fill Policy 5-2

fill Policy and END Probes 5-2

ring Policy 5-2

Other Buffers 5-3

Buffer Sizes 5-3

Buffer Resizing Policy 5-4

6   Output Formatting

printf Action 6-1

Conversion Specifications 6-1

Flag Specifiers 6-2

Width and Precision Specifiers 6-3

Size Prefixes 6-3

Conversion Formats 6-4

printa Action 6-7

trace Default Format 6-9

7   Speculative Tracing

About Speculative Tracing 7-1

Speculation Interfaces 7-1

Creating a Speculation 7-2

Using a Speculation 7-2

Committing a Speculation 7-3

Discarding a Speculation 7-3

Example of a Speculation 7-3

vii



Speculation Options and Tuning 7-4

8   dtrace Command Reference

dtrace Command Description 8-1

dtrace Command Options 8-1

dtrace Command Operands 8-5

dtrace Command Exit Status 8-5

9   Scripting

Interpreter Files 9-1

Macro Variables 9-2

Macro Arguments 9-3

Target Process ID 9-5

10  
 

Options and Tunables

Consumer Options 10-1

Modifying Options 10-9

11  
 

DTrace Providers

dtrace Provider 11-1

BEGIN Probe 11-1

END Probe 11-1

ERROR Probe 11-2

dtrace Stability 11-4

profile Provider 11-4

profile-n Probes 11-4

tick-n Probes 11-5

profile Probe Arguments 11-5

profile Probe Creation 11-5

prof Stability 11-6

fbt Provider 11-6

fbt Probes 11-7

fbt Probe Arguments 11-7

fbt Examples 11-7

Module Loading and fbt 11-8

fbt Stability 11-8

syscall Provider 11-9

syscall Probes 11-9

viii



System Call Anachronisms 11-9

Subcoded System Calls 11-9

New System Calls 11-9

Replaced System Calls 11-10

Large File System Calls 11-11

Private System Calls 11-11

syscall Probe Arguments 11-11

syscall Stability 11-11

sdt provider 11-11

Creating sdt Probes 11-12

Declaring Probes 11-12

sdt Probe Arguments 11-13

sdt Stability 11-13

pid Provider 11-13

Naming pid Probes 11-14

pid Probe Arguments 11-15

pid Stability 11-15

proc Provider 11-15

proc Probes 11-15

proc Probe Arguments 11-18

lwpsinfo_t 11-18

psinfo_t 11-20

proc Examples 11-21

exec 11-21

start and exit Probes 11-22

signal-send 11-23

proc Stability 11-23

sched Provider 11-24

sched Probes 11-24

sched Probe Arguments 11-27

cpuinfo_t 11-27

sched Examples 11-28

on-cpu and off-cpu Probes 11-28

enqueue and dequeue Probes 11-31

sleep and wakeup Probes 11-35

preempt and remain-cpu Probes 11-37

tick 11-39

sched Stability 11-40

io Provider 11-41

io Probes 11-41

io Probe Arguments 11-41

ix



bufinfo_t 11-42

devinfo_t 11-45

fileinfo_t 11-46

io Examples 11-47

io Stability 11-49

fasttrap Provider 11-50

fasttrap Probes 11-50

fasttrap Stability 11-50

12  
 

User Process Tracing

copyin and copyinstr Subroutines 12-1

Avoiding Errors 12-2

Eliminating dtrace Interference 12-3

Using the syscall Provider 12-3

ustack Action 12-4

uregs[] Array 12-5

Using the pid Provider 12-7

User Function Boundary Tracing 12-7

Tracing Arbitrary Instructions 12-9

13  
 

Statically Defined Tracing of User Applications

Choosing the Probe Points 13-1

Adding Probes to an Application 13-1

Defining Providers and Probes 13-2

Adding Probes to Application Code 13-2

Testing if a Probe Is Enabled 13-3

Building Applications With Probes 13-3

Using Statically Defined Probes 13-4

14  
 

Statically Defined Tracing of Kernel Modules

Inserting Static Probe Points 14-1

revdev.h Example 14-2

rev_mod.c Example 14-3

rev_dev.c Example 14-3

Building Modules With Static Probes 14-5

Kbuild Example 14-5

Makefile Example 14-5

testrevdev.c Example 14-6

x



Using DTrace to Test Modules With Static Probes 14-7

15  
 

Performance Considerations

Limit Enabled Probes 15-1

Using Aggregations 15-1

Using Cacheable Predicates 15-2

16  
 

DTrace Stability Features

Stability Levels 16-1

Dependency Classes 16-3

Interface Attributes 16-4

Stability Computations and Reports 16-5

Stability Enforcement 16-7

17  
 

Translators

Translator Declarations 17-1

xlate D Operator 17-2

Process Model Translators 17-3

Stable Translations 17-4

18  
 

DTrace Versioning

Versions and Releases 18-1

Versioning Options 18-2

Provider Versioning 18-3

xi



Preface

Oracle Linux: DTrace Reference Guide describes how to use DTrace. The guide also
describes some DTrace providers in detail. Most of the information in this document is
generic and applies to all releases of Oracle Linux 6 and Oracle Linux 7, with support
for the Unbreakable Enterprise Kernel Release 4 (UEK R4) and Unbreakable
Enterprise Kernel Release 5 (UEK R5) kernels. Note that UEK R5 is not supported on
Oracle Linux 6.

Note:

This release of DTrace supports systems that use the x86_64 processor
architecture, but not systems that use 32-bit x86 processors.

DTrace support has also been extended to the 64-bit Arm architecture in this
release. However, note that some providers might not be supported on this
architecture.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis,
or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands
within a paragraph, URLs, code in
examples, text that appears on the screen,
or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle
Accessibility Conformance Report at https://www.oracle.com/corporate/accessibility/
templates/t2-11535.html.

Preface

xii

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html


Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Preface

xiii

https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab


1
About DTrace

DTrace provides dynamic tracing, which is the ability to instrument a running operating
system kernel.

DTrace enables you to associate actions, such as collecting or printing stack traces, function
arguments, timestamps, and statistical aggregates, with probes, which can be runtime events
or source-code locations. The D language is powerful, yet simple. DTrace is dynamic, has
low overhead, and is safe to use on production systems. It enables you to examine the
behavior of user programs and the operating system, to understand how your system works,
to track down performance problems, and to locate the causes of aberrant behavior.

DTrace is a kernel framework that dynamically traces data into buffers that are read by
consumers. On Oracle Linux, you will probably only use one consumer, the dtrace
command-line utility, which contains the D language that grants you full access to the
framework's power.

This guide is largely a reference manual. For information about how to use DTrace and step-
by-step examples, see Oracle Linux: DTrace Tutorial.

Getting Started With DTrace

Note:

Most uses of DTrace require root privileges.

Prior to installing the dtrace_utils package, ensure that you are subscribed to the ULN
channel that corresponds to the UEK kernel that you are running. For example, if you are
running Oracle Linux 7 with UEK R5, the dtrace_utils package is available in the ol7_UEKR5
channel. For more information about subscribing to channels on ULN, see Oracle Linux:
Unbreakable Linux Network User's Guide for Oracle Linux 6 and Oracle Linux 7.

For information about updating your Oracle Linux or UEK release, see the documentation at 
https://docs.oracle.com/en/operating-systems/linux.html.

Install the dtrace-utils package:

# yum install dtrace-utils

If you want to implement a libdtrace consumer:

# yum install dtrace-utils-devel

If you want to develop a DTrace provider:

# yum install dtrace-modules-provider-headers

1-1

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-tutorial/
https://docs.oracle.com/en/operating-systems/oracle-linux/uln-user/
https://docs.oracle.com/en/operating-systems/oracle-linux/uln-user/
https://docs.oracle.com/en/operating-systems/linux.html


To confirm that dtrace is properly installed on your system and that you have all of
the required privileges, use the dtrace -l command. Running this command should
load any of the required kernel modules and the output should indicate any available
probes.

Note:

The dtrace-utils package installs dtrace in /usr/sbin/dtrace. Make
sure your path detects this path instead of the similarly named utility that is
located in /usr/bin/dtrace, which is installed by the systemtap-sdt-devel
package.

A provider is a set of probes with a particular kind of instrumentation.

Note:

To use a provider's probes, the kernel module that supports that provider
must be loaded. Typically, dtrace automatically handles this for you. Upon
first use, it will load the dtrace module and all of the modules that are listed
in /etc/dtrace-modules, which the system administrator can edit.

In some cases, the kernel module that supports the desired provider must be
loaded manually, for example:

# more /etc/dtrace-modules
sdt
systrace
profile
fasttrap
# modprobe sdt
# modprobe systrace
# modprobe profile
# modprobe fasttrap

These required modules are different from the modules, if any, that are
instrumented by the provider's probes and are found in the dtrace -l
output. For example, while the module that is required to support proc
probes is sdt, the module that these probes instrument is vmlinux, as shown
in the following output:

# dtrace -l -P proc
   ID   PROVIDER    MODULE          FUNCTION NAME
  197       proc   vmlinux          _do_fork lwp-create
  198       proc   vmlinux          _do_fork create
  225       proc   vmlinux           do_exit lwp-exit
  226       proc   vmlinux           do_exit exit
  275       proc   vmlinux   do_sigtimedwait signal-clear
...

You dynamically assign actions to be taken at probes, which can be runtime events or
source-code locations. Every probe in DTrace has two names: a unique integer ID,

Chapter 1
Getting Started With DTrace

1-2



which is assigned as the probes are loaded, and a human-readable string name. You can
start learning about DTrace by building some very simple requests that use the probe named
BEGIN. The BEGIN probe fires once each time you start a new tracing request.

Use the dtrace command with the -n option to enable a probe by specifying its name:

# dtrace -n BEGIN
dtrace: description 'BEGIN' matched 1 probe
CPU     ID                    FUNCTION:NAME
  0      1                           :BEGIN 
^C
#

The default output of the previous example displays the following information: the probes that
were matched, column headers, and then one row each time a probe fires. The default per
row is the CPU where the probe fired and information about which probe fired. DTrace
remains paused, waiting for other probes to fire. To exit, press Ctrl-C.

You can construct DTrace requests by using arbitrary numbers of probes and actions. For
example, create a simple request using two probes by adding the END probe to the command
shown in the previous example. The END probe fires once when tracing is completed.

Type the following command, and then press Ctrl-C in your shell again, after you see the line
of output for the BEGIN probe:

# dtrace -n BEGIN -n END 
dtrace: description 'BEGIN' matched 1 probe
dtrace: description 'END' matched 1 probe
CPU     ID                    FUNCTION:NAME
  0      1                           :BEGIN 
^C
  1      2                             :END

Pressing Ctrl-C to exit dtrace triggers the END probe. The dtrace command reports this
probe firing before exiting.

In addition to constructing DTrace experiments on the command line, you can also write
DTrace experiments in text files by using the D programming language.

In a text editor, create a new file named hello.d and type your first D program:

BEGIN
{
  trace("hello, world");
  exit(0);
}

After you save the program, you can run it by using the dtrace -s command, as shown in
the following example:

# dtrace -s hello.d
dtrace: script 'hello.d' matched 1 probe
CPU     ID                    FUNCTION:NAME
  0      1                           :BEGIN   hello, world   
#

The dtrace command printed the same output as the previous example, followed by the
text, ”hello, world”. However, unlike the previous example, you did not have to wait and then

Chapter 1
Getting Started With DTrace

1-3



press Ctrl-C. These changes were the result of the actions that you specified for the
BEGIN probe in hello.d.

To understand what happened, let us explore the structure of your D program in more
detail.

• Each D program consists of a series of clauses, and each clause describes one or
more probes to enable, as well as an optional set of actions to perform when the
probes fires.

• The actions are listed as a series of statements that are enclosed in braces ({})
that follow the probe name. Each statement ends with a semicolon (;).

• The first statement uses the trace() function to indicate that DTrace should
record the specified argument, the string, ”hello, world”, when the BEGIN probe
fires and then print it out.

• The second statement uses the exit() function to indicate that DTrace should
cease tracing and exit the dtrace command.

DTrace provides a set of useful functions such as trace() and exit() for you to call in
your D programs.

To call a function, you specify its name, followed by a parenthesized list of arguments.
See Actions and Subroutines for the complete set of D functions.

If you are familiar with the C programming language, you probably have noticed that
DTrace's D programming language is very similar to C. Indeed, D is derived from a
large subset of C, combined with a special set of functions and variables to help make
tracing easy. These features are described in more detail in subsequent chapters. If
you have written a C program previously, you should be able to immediately transfer
most of your knowledge to building tracing programs in D. If you have never written a
C program, learning D is still relatively easy. By the end of this chapter, you will
understand all of the syntax. First, let us take a step back from language rules and
learn more about how DTrace works. Then, later in this guide, you will learn how to
build more interesting D programs.

Providers and Probes
In the preceding examples, you learned how to use two simple probes named BEGIN
and END. DTrace probes come in sets that are called providers, each of which performs
a particular kind of instrumentation to create probes. When you use DTrace, each
provider is given an opportunity to publish the probes that it can provide to the DTrace
framework. You can then enable and bind your tracing actions to any of the probes
that have been published.

You can list all of the available probes on your system by typing the following
command:

# dtrace -l 
   ID   PROVIDER            MODULE                          FUNCTION NAME
    1     dtrace                                                     BEGIN
    2     dtrace                                                     END
    3     dtrace                                                     ERROR
    4    syscall           vmlinux                              read entry
    5    syscall           vmlinux                              read return
    6    syscall           vmlinux                             write entry

Chapter 1
Providers and Probes

1-4



    7    syscall           vmlinux                             write return
    ...

Note that it might take some time for all of the output to be displayed.

To count all of the probes, type the following command:

# dtrace -l | wc -l
4097

Note that you might observe a different total on your system, as the number of probes can
vary, depending on the following: your operating platform, the software you have installed,
and the provider modules you have loaded. Note also that this output is not the complete list.
As will be described later, some providers offer the ability to create new probes on-the-fly,
based on your tracing requests, which makes the actual number of DTrace probes virtually
unlimited. Notice that each probe has the two names previously mentioned: an integer ID and
a human-readable name. The human-readable name is composed of four parts that are
displayed as separate columns in the dtrace output and are as follows:

provider
A name of the DTrace provider that is publishing this probe.

module
If this probe corresponds to a specific program location, the name of the kernel module,
library, or user-space program in which the probe is located.

function
If this probe corresponds to a specific program location, the name of the program function in
which the probe is located.

name
A name that provides some idea of the probe's semantic meaning, such as BEGIN or END.

When writing the full human-readable name of a probe, write all four parts of the name
separated by colons like this:

provider:module:function:name

Notice that some of the probes in the list do not have a module and function, such as the
BEGIN and END probes that were used previously. Some probes leave these two fields blank
because these probes do not correspond to any specific instrumented program function or
location. Instead, these probes refer to a more abstract concept, such as the idea of the end
of your tracing request.

By convention, if you do not specify all of the fields of a probe name, DTrace matches your
request to all of the probes with matching values in the parts of the name that you do specify.
In other words, when you used the probe name BEGIN in the previous exercise, you were
actually directing DTrace to match any probe with the name field BEGIN, regardless of the
value of the provider, module, and function fields. Because there is only one probe matching
that description, the result is the same. You now know that the true name of the BEGIN probe
is dtrace:::BEGIN, which indicates that this probe is provided by the DTrace framework itself
and is not specific to any function. Therefore, the hello.d program could be written as
follows and would produce the same result:

dtrace:::BEGIN
{
  trace("hello, world");

Chapter 1
Providers and Probes

1-5



  exit(0);
}

Chapter 1
Providers and Probes

1-6



2
The D Programming Language

The D systems programming language enables you to interface with operating system APIs
and with the hardware. This chapter formally describes the overall structure of a D program
and the various features for constructing probe descriptions that match more than one probe.
The chapter also discusses the use of the C preprocessor, cpp, with D programs.

D Program Structure
A D program, also known as a script, consists of a set of clauses that describe the probes to
enable and the predicates and actions to bind to these probes. D programs can also contain
declarations of variables and definitions of new types. See Variables and Type and Constant
Definitions for more details.

Probe Clauses and Declarations
As shown in the examples in this guide thus far, a D program source file consists of one or
more probe clauses that describe the instrumentation to be enabled by DTrace. Each probe
clause uses the following general form:

probe descriptions 
/ predicate / 
{
  action statements
}

Note that the predicate and list of action statements may be omitted. Any directives that are
found outside of probe clauses are referred to as declarations. Declarations may only be
used outside of probe clauses. No declarations are permitted inside of the enclosing braces
({}). Also, declarations may not be interspersed between the elements of the probe clause in
previous example. You can use white space to separate any D program elements and to
indent action statements.

Declarations can be used to declare D variables and external C symbols or to define new
types for use in D. For more details, see Variables and Type and Constant Definitions.
Special D compiler directives, called pragmas, may also appear anywhere in a D program,
including outside of probe clauses. D pragmas are specified on lines beginning with a #
character. For example, D pragmas are used to set DTrace runtime options. See Options and
Tunables for more details.

Probe Descriptions
Every program clause begins with a list of one or more probe descriptions, each taking the
following usual form:

provider:module:function:name
If one or more fields of the probe description are omitted, the specified fields are interpreted
from right to left by the D compiler. For example, the probe description foo:bar would match

2-1



a probe with the function foo and name bar, regardless of the value of the probe's
provider and module fields. Therefore, a probe description is really more accurately
viewed as a pattern that can be used to match one or more probes based on their
names.

You should write your D probe descriptions specifying all four field delimiters so that
you can specify the desired provider on the left-hand side. If you don't specify the
provider, you might obtain unexpected results if multiple providers publish probes with
the same name. Similarly, subsequent versions of DTrace might include new providers
with probes that unintentionally match your partially specified probe descriptions. You
can specify a provider but match any of its probes by leaving any of the module,
function, and name fields blank. For example, the description syscall::: can be used
to match every probe that is published by the DTrace syscall provider.

Probe descriptions also support a pattern-matching syntax similar to the shell globbing
pattern matching syntax that is described in the sh(1) manual page. Before matching
a probe to a description, DTrace scans each description field for the characters *, ?,
and [. If one of these characters appears in a probe description field and is not
preceded by a \, the field is regarded as a pattern. The description pattern must match
the entire corresponding field of a given probe. To successfully match and enable a
probe, the complete probe description must match on every field. A probe description
field that is not a pattern must exactly match the corresponding field of the probe. Note
that a description field that is empty matches any probe.

The special characters in the following table are recognized in probe name patterns.

Table 2-1    Probe Name Pattern Matching Characters

Symbol Description

* Matches any string, including the null
string.

? Matches any single character.

[...] Matches any one of the enclosed
characters. A pair of characters separated
by - matches any character between the
pair, inclusive. If the first character after
the [ is !, any character not enclosed in the
set is matched.

\ Interpret the next character as itself,
without any special meaning.

Pattern match characters can be used in any or all of the four fields of your probe
descriptions. You can also use patterns to list matching probes by them on the
command line by using the dtrace -l command. For example, the dtrace -l -f
kmem_* command lists all of the DTrace probes in functions with names that begin
with the prefix kmem_.

If you want to specify the same predicate and actions for more than one probe
description, or description pattern, you can place the descriptions in a comma-
separated list. For example, the following D program would trace a timestamp each
time probes associated with entry to system calls containing the strings “read” or
“write” fire:

Chapter 2
D Program Structure

2-2



syscall::*read*:entry, syscall::*write*:entry
{
  trace(timestamp);
}

A probe description can also specify a probe by using its integer probe ID, for example, the
following clause could be used to enable probe ID 12345, as reported by dtrace -l -i
12345:

12345
{
  trace(timestamp);
}

Note:

You should always write your D programs using human-readable probe
descriptions. Integer probe IDs are not guaranteed to remain consistent as DTrace
provider kernel modules are loaded and unloaded or following a reboot.

Clause Predicates
Predicates are expressions that are enclosed in a pair of slashes (//) that are then evaluated
at probe firing time to determine whether the associated actions should be executed.
Predicates are the primary conditional construct that are used for building more complex
control flow in a D program. You can omit the predicate section of the probe clause entirely
for any probe. In which case, the actions are always executed when the probe fires.

Predicate expressions can use any of the D operators and can refer to any D data objects
such as variables and constants. The predicate expression must evaluate to a value of
integer or pointer type so that it can be considered as true or false. As with all D expressions,
a zero value is interpreted as false and any non-zero value is interpreted as true.

Probe Actions
Probe actions are described by a list of statements that are separated by semicolons (;) and
enclosed in braces ({}). An empty set of braces with no statements included, leads to the
default actions, which are to print the CPU and the probe.

Order of Execution
The actions for a probe are executed in program order, regardless of whether those actions
are in the same clause or in different clauses.

No other ordering constraints are imposed. It is not uncommon for the output from two distinct
probes to appear interspersed or in an opposite order from which the probes fired. Also,
output might appear misordered if it came from different CPUs.

Use of the C Preprocessor
The C programming language that is used for defining Linux system interfaces includes a
preprocessor that performs a set of initial steps in C program compilation. The C

Chapter 2
D Program Structure

2-3



preprocessor is commonly used to define macro substitutions, where one token in a C
program is replaced with another predefined set of tokens, or to include copies of
system header files. You can use the C preprocessor in conjunction with your D
programs by specifying the dtrace command with the -c option. This option causes
the dtrace command to execute the cpp preprocessor on your program source file
and then pass the results to the D compiler. The C preprocessor is described in more
detail in The C Programming Language by Kernighan and Ritchie, details of which are
referenced in Preface.

The D compiler automatically loads the set of C type descriptions that is associated
with the operating system implementation. However, you can use the preprocessor to
include other type definitions such as the types that are used in your own C programs.
You can also use the preprocessor to perform other tasks such as creating macros
that expand to chunks of D code and other program elements. If you use the
preprocessor with your D program, you may only include files that contain valid D
declarations. The D compiler can correctly interpret C header files that include only
external declarations of types and symbols. However, the D compiler cannot parse C
header files that include additional program elements, such as C function source code,
which produces an appropriate error message.

Compilation and Instrumentation
When you write traditional programs, you often use a compiler to convert your program
from source code into object code that you can execute. When you use the dtrace
command you are invoking the compiler for the D language that was used in a
previous example to write the hello.d program. When your program is compiled, it is
sent into the operating system kernel for execution by DTrace. There, the probes
named in your program are enabled and the corresponding provider performs
whatever instrumentation is required in order to activate them.

All of the instrumentation in DTrace is completely dynamic: probes are enabled
discretely only when you are using them. No instrumented code is present for inactive
probes, so your system does not experience any kind of performance degradation
when you are not using DTrace. After your experiment is complete and the dtrace
command exits, all of the probes that you used are automatically disabled and their
instrumentation is removed, returning your system to its exact original state. No
effective difference exists between a system where DTrace is not active and a system
where the DTrace software is not installed, other than a few megabytes of disk space
that is required for type information and for DTrace itself.

The instrumentation for each probe is performed dynamically on the live, running
operating system or on user processes that you select. The system is not quiesced or
paused in any way and instrumentation code is added only for the probes that you
enable. As a result, the probe effect of using DTrace is limited to exactly what you
direct DTrace to do: no extraneous data is traced and no one, big “tracing switch” is
turned on in the system. All of the DTrace instrumentation is designed to be as efficient
as possible. These features enable you to use DTrace in production to solve real
problems in real time.

The DTrace framework also provides support for an arbitrary number of virtual clients.
You can run as many simultaneous DTrace experiments and commands as you like,
limited only by your system's memory capacity. The commands all operate
independently using the same underlying instrumentation. This same capability also
permits any number of distinct users on the system to take advantage of DTrace
simultaneously: developers, administrators, and service personnel can all work

Chapter 2
Compilation and Instrumentation

2-4



together, or on distinct problems, using DTrace on the same system without interfering with
one another.

Unlike programs that are written in C and C++, and similar to programs that are written in the
Java programming language, DTrace D programs are compiled into a safe, intermediate form
that is used for execution when your probes fire. This intermediate form is validated for safety
when your program is first examined by the DTrace kernel software. The DTrace execution
environment also handles any runtime errors that might occur during your D program's
execution, including dividing by zero, dereferencing invalid memory, and so on, and reports
them to you. As a result, you can never construct an unsafe program that would cause
DTrace to inadvertently damage the operating system kernel or one of the processes running
on your system. These safety features enable you to use DTrace in a production environment
without being concerned about crashing or corrupting your system. If you make a
programming mistake, DTrace reports the error to you and disables your instrumentation,
enabling you to correct the mistake and try again. The DTrace error reporting and debugging
features are described later in this guide.

#unique_21/unique_21_Connect_42_dt_archfig_dlang shows the different components of the
DTrace architecture.

Overview of the DTrace Architecture and Components

Now that you understand how DTrace works, let us return to the tour of the D programming
language and start writing some more interesting programs.

Chapter 2
Compilation and Instrumentation

2-5



Variables and Arithmetic Expressions
Our next example program makes use of the DTrace profile provider to implement a
simple time-based counter. The profile provider is able to create new probes based on
the descriptions found in your D program. If you create a probe named
profile:::tick- n sec for some integer n, the profile provider creates a probe that
fires every n seconds. Type the following source code and save it in a file named
counter.d:

/* 
 * Count off and report the number of seconds elapsed
 */

dtrace:::BEGIN
{ 
  i = 0; 
} 

profile:::tick-1sec
{
  i = i + 1;
  trace(i);
}

dtrace:::END 
{
  trace(i);
}

When executed, the program counts off the number of elapsed seconds until you
press Ctrl-C, and then prints the total at the end:

# dtrace -s counter.d
dtrace: script 'counter.d' matched 3 probes
CPU     ID                    FUNCTION:NAME
  1    638                       :tick-1sec         1
  1    638                       :tick-1sec         2
  1    638                       :tick-1sec         3
  1    638                       :tick-1sec         4
  1    638                       :tick-1sec         5
  1    638                       :tick-1sec         6
  1    638                       :tick-1sec         7
^C
  1    638                       :tick-1sec         8
  0      2                             :END         8

The first three lines of the program are a comment to explain what the program does.
Similar to C, C++, and the Java programming language, the D compiler ignores any
characters between the /* and */ symbols. Comments can be used anywhere in a D
program, including both inside and outside your probe clauses.

The BEGIN probe clause defines a new variable named i and assigns it the integer
value zero using the statement:

i = 0;

Unlike C, C++, and the Java programming language, D variables can be created by
simply using them in a program statement; explicit variable declarations are not

Chapter 2
Variables and Arithmetic Expressions

2-6



required. When a variable is used for the first time in a program, the type of the variable is set
based on the type of its first assignment. Each variable has only one type over the lifetime of
the program, so subsequent references must conform to the same type as the initial
assignment. In counter.d, the variable i is first assigned the integer constant zero, so its
type is set to int. D provides the same basic integer data types as C, including those in the
following table.

Data Type Description

char Character or single byte integer

int Default integer

short Short integer

long Long integer

long long Extended long integer

The sizes of these types are dependent on the operating system kernel's data model,
described in Types, Operators, and Expressions. D also provides built-in friendly names for
signed and unsigned integer types of various fixed sizes, as well as thousands of other types
that are defined by the operating system.

The central part of counter.d is the probe clause that increments the counter i:

profile:::tick-1sec
{
  i = i + 1;
  trace(i);
}

This clause names the probe profile:::tick-1sec, which tells the profile provider to
create a new probe that fires once per second on an available processor. The clause
contains two statements, the first incrementing i, and the second tracing (printing) the new
value of i. All the usual C arithmetic operators are available in D. For the complete list, see 
Types, Operators, and Expressions. The trace function takes any D expression as its
argument, so you could write counter.d more concisely as follows:

profile:::tick-1sec
{
  trace(++i);
}

If you want to explicitly control the type of the variable i, you can surround the desired type in
parentheses when you assign it in order to cast the integer zero to a specific type. For
example, if you wanted to determine the maximum size of a char in D, you could change the
BEGIN clause as follows:

dtrace:::BEGIN
{
  i = (char)0;
}

After running counter.d for a while, you should see the traced value grow and then wrap
around back to zero. If you grow impatient waiting for the value to wrap, try changing the
profile probe name to profile:::tick-100msec to make a counter that increments once
every 100 milliseconds, or 10 times per second.

Chapter 2
Variables and Arithmetic Expressions

2-7



Predicate Examples
For runtime safety, one major difference between D and other programming languages
such as C, C++, and the Java programming language is the absence of control-flow
constructs such as if-statements and loops. D program clauses are written as single
straight-line statement lists that trace an optional, fixed amount of data. D does provide
the ability to conditionally trace data and modify control flow using logical expressions
called predicates. A predicate expression is evaluated at probe firing time prior to
executing any of the statements associated with the corresponding clause. If the
predicate evaluates to true, represented by any non-zero value, the statement list is
executed. If the predicate is false, represented by a zero value, none of the statements
are executed and the probe firing is ignored.

Type the following source code for the next example and save it in a file named
countdown.d:

dtrace:::BEGIN 
{
  i = 10;
}

profile:::tick-1sec
/i > 0/
{
  trace(i--);
}

profile:::tick-1sec
/i == 0/
{
  trace("blastoff!");
  exit(0);
}

This D program implements a 10-second countdown timer using predicates. When
executed, countdown.d counts down from 10 and then prints a message and exits:

# dtrace -s countdown.d
dtrace: script 'countdown.d' matched 3 probes
CPU     ID                    FUNCTION:NAME
  0    638                       :tick-1sec        10
  0    638                       :tick-1sec         9
  0    638                       :tick-1sec         8
  0    638                       :tick-1sec         7
  0    638                       :tick-1sec         6
  0    638                       :tick-1sec         5
  0    638                       :tick-1sec         4
  0    638                       :tick-1sec         3
  0    638                       :tick-1sec         2
  0    638                       :tick-1sec         1
  0    638                       :tick-1sec   blastoff!       
#

This example uses the BEGIN probe to initialize an integer i to 10 to begin the
countdown. Next, as in the previous example, the program uses the tick-1sec probe
to implement a timer that fires once per second. Notice that in countdown.d, the
tick-1sec probe description is used in two different clauses, each with a different

Chapter 2
Predicate Examples

2-8



predicate and action list. The predicate is a logical expression surrounded by enclosing
slashes // that appears after the probe name and before the braces {} that surround the
clause statement list.

The first predicate tests whether i is greater than zero, indicating that the timer is still
running:

profile:::tick-1sec
/i > 0/
{
  trace(i--);
}

The relational operator > means greater than and returns the integer value zero for false and
one for true. All of the C relational operators are supported in D. For the complete list, see 
Types, Operators, and Expressions. If i is not yet zero, the script traces i and then
decrements it by one using the -- operator.

The second predicate uses the == operator to return true when i is exactly equal to zero,
indicating that the countdown is complete:

profile:::tick-1sec
/i == 0/
{
  trace("blastoff!");
  exit(0);
}

Similar to the first example, hello.d, countdown.d uses a sequence of characters enclosed
in double quotes, called a string constant, to print a final message when the countdown is
complete. The exit function is then used to exit dtrace and return to the shell prompt.

If you look back at the structure of countdown.d, you will see that by creating two clauses with
the same probe description but different predicates and actions, we effectively created the
logical flow:

i = 10
once per second,
  if i is greater than zero
    trace(i--);
  if i is equal to zero
    trace("blastoff!");
    exit(0);

When you wish to write complex programs using predicates, try to first visualize your
algorithm in this manner, and then transform each path of your conditional constructs into a
separate clause and predicate.

Now let us combine predicates with a new provider, the syscall provider, and create our first
real D tracing program. The syscall provider permits you to enable probes on entry to or
return from any Oracle Linux system call. The next example uses DTrace to observe every
time your shell performs a read() or write() system call. First, open two windows, one to
use for DTrace and the other containing the shell process that you are going to watch. In the
second window, type the following command to obtain the process ID of this shell:

# echo $$
2860

Chapter 2
Predicate Examples

2-9



Now go back to your first window and type the following D program and save it in a file
named rw.d. As you type in the program, replace the integer constant 2860 with the
process ID of the shell that was printed in response to your echo command.

syscall::read:entry,
syscall::write:entry
/pid == 2860/
{
}

Notice that the body of rw.d's probe clause is left empty because the program is only
intended to trace notification of probe firings and not to trace any additional data. Once
you have typed in rw.d, use dtrace to start your experiment and then go to your
second shell window and type a few commands, pressing return after each command.
As you type, you should see dtrace report probe firings in your first window, similar to
the following example:

# dtrace -s rw.d
dtrace: script 'rw.d' matched 2 probes
CPU     ID                    FUNCTION:NAME
  1      7                      write:entry 
  1      5                       read:entry 
  0      7                      write:entry 
  0      5                       read:entry 
  0      7                      write:entry 
  0      5                       read:entry 
  0      7                      write:entry 
  0      5                       read:entry  
  0      7                      write:entry 
  1      7                      write:entry 
  1      7                      write:entry 
  1      5                       read:entry
...^C

You are now watching your shell perform read() and write() system calls to read a
character from your terminal window and echo back the result. This example includes
many of the concepts described so far and a few new ones as well. First, to instrument
read() and write() in the same manner, the script uses a single probe clause with
multiple probe descriptions by separating the descriptions with commas like this:

syscall::read:entry,
syscall::write:entry

For readability, each probe description appears on its own line. This arrangement is
not strictly required, but it makes for a more readable script. Next the script defines a
predicate that matches only those system calls that are executed by your shell
process:

/pid == 2860/

The predicate uses the predefined DTrace variable pid, which always evaluates to the
process ID associated with the thread that fired the corresponding probe. DTrace
provides many built-in variable definitions for useful things like the process ID. The
following table lists a few DTrace variables you can use to write your first D programs.

Chapter 2
Predicate Examples

2-10



Variable Name Data Type Meaning

errno int Current errno value for
system calls

execname string Name of the current process's
executable file

pid pid_t Process ID of the current
process

tid id_t Thread ID of the current
thread

probeprov string Current probe description's
provider field

probemod string Current probe description's
module field

probefunc string Current probe description's
function field

probename string Current probe description's
name field

Now that you've written a real instrumentation program, try experimenting with it on different
processes running on your system by changing the process ID and the system call probes
that are instrumented. Then, you can make one more simple change and turn rw.d into a
very simple version of a system call tracing tool like strace. An empty probe description field
acts as a wildcard, matching any probe, so change your program to the following new source
code to trace any system call executed by your shell:

syscall:::entry
/pid == 2860/
{
}

Try typing a few commands in the shell such as cd, ls, and date and see what your DTrace
program reports.

Output Formatting Examples
System call tracing is a powerful way to observe the behavior of many user processes. The
following example improves upon the earlier rw.d program by formatting its output so you can
more easily understand the output. Type the following program and save it in a file called
stracerw.d:

syscall::read:entry,
syscall::write:entry
/pid == $1/
{
  printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);
}

syscall::read:return,
syscall::write:return
/pid == $1/
{
  printf("\tt = %d\n", arg1);
}

Chapter 2
Output Formatting Examples

2-11



In this example, the constant 2860 is replaced with the label $1 in each predicate. This
label enables you to specify the process of interest as an argument to the script: $1 is
replaced by the value of the first argument when the script is compiled. To execute
stracerw.d, use the dtrace options -q and -s, followed by the process ID of your
shell as the final argument. The -q option indicates that dtrace should be quiet and
suppress the header line and the CPU and ID columns shown in the preceding
examples. As a result, you only see the output for the data that you explicitly trace.
Type the following command, replacing 2860 with the process ID of a shell process,
and then press return a few times in the specified shell:

# dtrace -q -s stracerw.d 2860
        t = 1
write(2, 0x7fa621b9b000,    1)  t = 1
write(1, 0x7fa621b9c000,   22)  t = 22
write(2, 0x7fa621b9b000,   20)  t = 20
read(0, 0x7fff60f74b8f,    1)   t = 1
write(2, 0x7fa621b9b000,    1)  t = 1
write(1, 0x7fa621b9c000,   22)  t = 22
write(2, 0x7fa621b9b000,   20)  t = 20
read(0, 0x7fff60f74b8f,    1)   t = 1
write(2, 0x7fa621b9b000,    1)  t = 1
write(1, 0x7fa621b9c000,   22)  t = 22
write(2, 0x7fa621b9b000,   20)  t = 20
read(0, 0x7fff60f74b8f,    1)^C
#

Now let us examine your D program and its output in more detail. First, a clause
similar to the earlier program instruments each of the shell's calls to read() and
write(). But for this example, we use a new function, printf, to trace the data and
print it out in a specific format:

syscall::read:entry,
syscall::write:entry
/pid == $1/
{
  printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);
}

The printf function combines the ability to trace data, as if by the trace function used
earlier, with the ability to output the data and other text in a specific format that you
describe. The printf function tells DTrace to trace the data associated with each
argument after the first argument, and then to format the results using the rules
described by the first printf argument, known as a format string.

The format string is a regular string that contains any number of format conversions,
each beginning with the % character, that describe how to format the corresponding
argument. The first conversion in the format string corresponds to the second printf
argument, the second conversion to the third argument, and so on. All of the text
between conversions is printed verbatim. The character following the % conversion
character describes the format to use for the corresponding argument. Here are the
meanings of the three format conversions used in stracerw.d.

Format Conversion Description

%d Print the corresponding value as a decimal
integer

%s Print the corresponding value as a string

Chapter 2
Output Formatting Examples

2-12



Format Conversion Description

%x Print the corresponding value as a
hexadecimal integer

DTrace printf works just like the C printf() library routine or the shell printf utility. If you
have never seen printf before, the formats and options are explained in detail in Output
Formatting. You should read this chapter carefully even if you are already familiar with printf
from another language. In D, printf is provided as a built-in and some new format
conversions are available to you designed specifically for DTrace.

To help you write correct programs, the D compiler validates each printf format string
against its argument list. Try changing probefunc in the clause above to the integer 123. If
you run the modified program, you will see an error message telling you that the string format
conversion %s is not appropriate for use with an integer argument:

# dtrace -q -s stracerw.d
dtrace: failed to compile script stracerw.d: line 5: printf( )
argument #2 is incompatible with conversion #1 prototype:
    conversion: %s
     prototype: char [] or string (or use stringof)
      argument: int
#

To print the name of the read or write system call and its arguments, use the printf
statement:

printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);

to trace the name of the current probe function and the first three integer arguments to the
system call, available in the DTrace variables arg0, arg1, and arg2. For more information
about probe arguments, see Built-In Variables. The first argument to read() and write() is a
file descriptor, printed in decimal. The second argument is a buffer address, formatted as a
hexadecimal value. The final argument is the buffer size, formatted as a decimal value. The
format specifier %4d is used for the third argument to indicate that the value should be printed
using the %d format conversion with a minimum field width of 4 characters. If the integer is
less than 4 characters wide, printf inserts extra blanks to align the output.

To print the result of the system call and complete each line of output, use the following
clause:

syscall::read:return,
syscall::write:return
/pid == $1/
{
  printf("\tt = %d\n", arg1);
}

Notice that the syscall provider also publishes a probe named return for each system call in
addition to entry. The DTrace variable arg1 for the syscall return probes evaluates to the
system call's return value. The return value is formatted as a decimal integer. The character
sequences beginning with backwards slashes in the format string expand to tab (\t) and
newline (\n) respectively. These escape sequences help you print or record characters that
are difficult to type. D supports the same set of escape sequences as C, C++, and the Java
programming language. For a complete list of escape sequences, see Constants.

Chapter 2
Output Formatting Examples

2-13



Array Overview
D permits you to define variables that are integers, as well as other types to represent
strings and composite types called structs and unions. If you are familiar with C
programming, you will be happy to know you can use any type in D that you can in C.
If you are not a C expert, do not worry: the different kinds of data types are all
described in Types, Operators, and Expressions.

D also supports arrays. Linearly indexed scalar arrays, familiar to C programmers, are
discussed in Array Declarations and Storage.

More powerful and commonly used are associative arrays, which are indexed with
tuples. Each associative array has a particular type signature. That is, its tuples all
have the same number of elements, those elements of consistent type and in the
same order, and its values are all of the same type. D associative arrays are described
further in Associative Arrays.

Associative Array Example
For example, the following D statements access an associative array, whose values
must all be type int and whose tuples must all have signature string,int, setting an
element to 456 and then incrementing it to 457:

a["hello", 123] = 456;
a["hello", 123]++;

Now let us use an associative array in a D program. Type the following program and
save it in a file named rwtime.d:

syscall::read:entry,
syscall::write:entry
/pid == $1/
{
  ts[probefunc] = timestamp;
}
syscall::read:return,
syscall::write:return
/pid == $1 && ts[probefunc] != 0/
{
  printf("%d nsecs", timestamp - ts[probefunc]);
}

As with stracerw.d, specify the ID of the shell process when you execute
rwtime.d. If you type a few shell commands, you will see the time elapsed during
each system call. Type in the following command and then press return a few times in
your other shell:

# dtrace -s rwtime.d `/usr/bin/pgrep -n bash`
dtrace: script 'rwtime.d' matched 4 probes
CPU     ID                    FUNCTION:NAME
  0      8                     write:return 51962 nsecs
  0      8                     write:return 45257 nsecs
  0      8                     write:return 40787 nsecs
  1      6                      read:return 925959305 nsecs
  1      8                     write:return 46934 nsecs
  1      8                     write:return 41626 nsecs
  1      8                     write:return 176839 nsecs

Chapter 2
Array Overview

2-14



...
^C
#

To trace the elapsed time for each system call, you must instrument both the entry to and
return from read() and write() and measure the time at each point. Then, on return from a
given system call, you must compute the difference between our first and second timestamp.
You could use separate variables for each system call, but this would make the program
annoying to extend to additional system calls. Instead, it is easier to use an associative array
indexed by the probe function name. The following is the first probe clause:

syscall::read:entry,
syscall::write:entry
/pid == $1/
{
  ts[probefunc] = timestamp;
}

This clause defines an array named ts and assigns the appropriate member the value of the
DTrace variable timestamp. This variable returns the value of an always-incrementing
nanosecond counter. When the entry timestamp is saved, the corresponding return probe
samples timestamp again and reports the difference between the current time and the saved
value:

syscall::read:return,
syscall::write:return
/pid == $1 && ts[probefunc] != 0/
{
  printf("%d nsecs", timestamp - ts[probefunc]);
}

The predicate on the return probe requires that DTrace is tracing the appropriate process and
that the corresponding entry probe has already fired and assigned ts[probefunc] a non-
zero value. This trick eliminates invalid output when DTrace first starts. If your shell is already
waiting in a read() system call for input when you execute dtrace, the read:return probe
fires without a preceding read:entry for this first read() and ts[probefunc] will evaluate to
zero because it has not yet been assigned.

External Symbols and Types
DTrace instrumentation executes inside the Oracle Linux operating system kernel. So, in
addition to accessing special DTrace variables and probe arguments, you can also access
kernel data structures, symbols, and types. These capabilities enable advanced DTrace
users, administrators, service personnel, and driver developers to examine low-level behavior
of the operating system kernel and device drivers. The reading list at the start of this guide
includes books that can help you learn more about Oracle Linux operating system internals.

D uses the back quote character (`) as a special scoping operator for accessing symbols that
are defined in the operating system and not in your D program. For example, the Oracle
Linux kernel contains a C declaration of a system variable named max_pfn. This variable is
declared in C in the kernel source code as follows:

unsigned long max_pfn

To trace the value of this variable in a D program, you can write the following D statement:

trace(`max_pfn);

Chapter 2
External Symbols and Types

2-15



DTrace associates each kernel symbol with the type that is used for the symbol in the
corresponding operating system C code, which provides easy source-based access to
the native operating system data structures.

To use external operating system variables, you will need access to the corresponding
operating system source code.

Kernel symbol names are kept in a separate namespace from D variable and function
identifiers, so you do not need to be concerned about these names conflicting with
your D variables. When you prefix a variable with a back quote, the D compiler
searches the known kernel symbols and uses the list of loaded modules to find a
matching variable definition. Because the Oracle Linux kernel supports dynamically
loaded modules with separate symbol namespaces, the same variable name might be
used more than once in the active operating system kernel. You can resolve these
name conflicts by specifying the name of the kernel module that contains the variable
to be accessed prior to the back quote in the symbol name. For example, you would
refer to the address of the _bar function that is provided by a kernel module named
foo as follows:

foo`_bar

You can apply any of the D operators to external variables, except for those that
modify values, subject to the usual rules for operand types. When required, the D
compiler loads the variable names that correspond to active kernel modules, so you do
not need to declare these variables. You may not apply any operator to an external
variable that modifies its value, such as = or +=. For safety reasons, DTrace prevents
you from damaging or corrupting the state of the software that you are observing.

When you access external variables from a D program, you are accessing the internal
implementation details of another program, such as the operating system kernel or its
device drivers. These implementation details do not form a stable interface upon which
you can rely. Any D programs you write that depend on these details might cease to
work when you next upgrade the corresponding piece of software. For this reason,
external variables are typically used to debug performance or functionality problems by
using DTrace. To learn more about the stability of your D programs, see DTrace
Stability Features.

You have now completed a whirlwind tour of DTrace and have learned many of the
basic DTrace building blocks that are necessary to build larger and more complex D
programs. The remaining portions of this chapter describe the complete set of rules for
D and demonstrate how DTrace can make complex performance measurements and
functional analysis of the system easy. Later, you will learn how to use DTrace to
connect user application behavior to system behavior, which provides you with the
capability to analyze your entire software stack.

Types, Operators, and Expressions
D provides the ability to access and manipulate a variety of data objects: variables and
data structures can be created and modified, data objects that are defined in the
operating system kernel and user processes can be accessed, and integer, floating-
point, and string constants can be declared. D provides a superset of the ANSI C
operators that are used to manipulate objects and create complex expressions. This
section describes the detailed set of rules for types, operators, and expressions.

Chapter 2
Types, Operators, and Expressions

2-16



Identifier Names and Keywords
D identifier names are composed of uppercase and lowercase letters, digits, and
underscores, where the first character must be a letter or underscore. All identifier names
beginning with an underscore (_) are reserved for use by the D system libraries. You should
avoid using these names in your D programs. By convention, D programmers typically use
mixed-case names for variables and all uppercase names for constants.

D language keywords are special identifiers that are reserved for use in the programming
language syntax itself. These names are always specified in lowercase and must not be used
for the names of D variables. The following table lists the keywords that are reserved for use
by the D language.

Table 2-2    D Keywords

auto* do* if* register* string+ unsigned
break* double import*+ restrict* stringof+ void
case* else* inline return* struct volatile
char enum int self+ switch* while*
const extern long short this+ xlate+
continue* float offsetof+ signed translator+
counter*+ for* probe*+ sizeof typedef
default* goto* provider*+ static* union

D reserves for use as keywords a superset of the ANSI C keywords. The keywords reserved
for future use by the D language are marked with “*”. The D compiler produces a syntax error
if you attempt to use a keyword that is reserved for future use. The keywords that are defined
by D but not defined by ANSI C are marked with “+”. D provides the complete set of types
and operators found in ANSI C. The major difference in D programming is the absence of
control-flow constructs. Note that keywords associated with control-flow in ANSI C are
reserved for future use in D.

Data Types and Sizes
D provides fundamental data types for integers and floating-point constants. Arithmetic may
only be performed on integers in D programs. Floating-point constants may be used to
initialize data structures, but floating-point arithmetic is not permitted in D. In Oracle Linux, D
provides a 64-bit data model for use in writing programs. However, a 32-bit data model is not
supported. The data model used when executing your program is the native data model that
is associated with the active operating system kernel, which must also be 64-bit.

The names of the integer types and their sizes in the 64-bit data model are shown in the
following table. Integers are always represented in twos-complement form in the native byte-
encoding order of your system.

Chapter 2
Types, Operators, and Expressions

2-17



Table 2-3    D Integer Data Types

Type Name 64-bit Size

char 1 byte

short 2 bytes

int 4 bytes

long 8 bytes

long long 8 bytes

Integer types can be prefixed with the signed or unsigned qualifier. If no sign qualifier
is present, it is assumed that the type is signed. The D compiler also provides the type
aliases that are listed in the following table.

Table 2-4    D Integer Type Aliases

Type Name Description

int8_t 1-byte signed integer

int16_t 2-byte signed integer

int32_t 4-byte signed integer

int64_t 8-byte signed integer

intptr_t Signed integer of size equal to a pointer

uint8_t 1-byte unsigned integer

uint16_t 2-byte unsigned integer

uint32_t 4-byte unsigned integer

uint64_t 8-byte unsigned integer

uintptr_t Unsigned integer of size equal to a pointer

These type aliases are equivalent to using the name of the corresponding base type
listed in the previous table and are appropriately defined for each data model. For
example, the uint8_t type name is an alias for the type unsigned char. See Type and
Constant Definitions for information about how to define your own type aliases for use
in D programs.

Note:

The predefined type aliases cannot be used in files that are included by the
preprocessor.

D provides floating-point types for compatibility with ANSI C declarations and types.
Floating-point operators are not supported in D, but floating-point data objects can be
traced and formatted with the printf function. You can use the floating-point types
that are listed in the following table.

Chapter 2
Types, Operators, and Expressions

2-18



Table 2-5    D Floating-Point Data Types

Type Name 64-bit Size

float 4 bytes

double 8 bytes

long double 16 bytes

D also provides the special type string to represent ASCII strings. Strings are discussed in
more detail in DTrace Support for Strings.

Constants
Integer constants can be written in decimal (12345), octal (012345), or hexadecimal (0x12345)
format. Octal (base 8) constants must be prefixed with a leading zero. Hexadecimal (base 16)
constants must be prefixed with either 0x or 0X. Integer constants are assigned the smallest
type among int, long, and long long that can represent their value. If the value is negative,
the signed version of the type is used. If the value is positive and too large to fit in the signed
type representation, the unsigned type representation is used. You can apply one of the
suffixes listed in the following table to any integer constant to explicitly specify its D type.

Suffix D type

u or U unsigned version of the type selected by the
compiler

l or L long
ul or UL unsigned long
ll or LL long long
ull or ULL unsigned long long

Floating-point constants are always written in decimal format and must contain either a
decimal point (12.345), an exponent (123e45), or both ( 123.34e-5). Floating-point constants
are assigned the type double by default. You can apply one of the suffixes listed in the
following table to any floating-point constant to explicitly specify its D type.

Suffix D type

f or F float
l or L long double

Character constants are written as a single character or escape sequence that is enclosed in
a pair of single quotes ('a'). Character constants are assigned the int type rather than char
and are equivalent to an integer constant with a value that is determined by that character's
value in the ASCII character set. See the ascii(7) manual page for a list of characters and
their values. You can also use any of the special escape sequences that are listed in the
following table in your character constants. D supports the same escape sequences as those
found in ANSI C.

Chapter 2
Types, Operators, and Expressions

2-19



Table 2-6    Character Escape Sequences

Escape Sequence Represents Escape Sequence Represents

\a alert \\ backslash

\b backspace \? question mark

\f form feed \' single quote

\n newline \" double quote

\r carriage return \0oo octal value 0oo

\t horizontal tab \xhh hexadecimal value
0xhh

\v vertical tab \0 null character

You can include more than one character specifier inside single quotes to create
integers with individual bytes that are initialized according to the corresponding
character specifiers. The bytes are read left-to-right from your character constant and
assigned to the resulting integer in the order corresponding to the native endianness of
your operating environment. Up to eight character specifiers can be included in a
single character constant.

Strings constants of any length can be composed by enclosing them in a pair of
double quotes ("hello"). A string constant may not contain a literal newline character.
To create strings containing newlines, use the \n escape sequence instead of a literal
newline. String constants can contain any of the special character escape sequences
that are shown for character constants previously. Similar to ANSI C, strings are
represented as arrays of characters terminated by a null character (\0) that is implicitly
added to each string constant you declare. String constants are assigned the special D
type string. The D compiler provides a set of special features for comparing and
tracing character arrays that are declared as strings. See DTrace Support for Strings
for more information.

Arithmetic Operators
D provides the binary arithmetic operators that are described in the following table for
use in your programs. These operators all have the same meaning for integers that
they do in ANSI C.

Table 2-7    Binary Arithmetic Operators

Operator Description

+ Integer addition

- Integer subtraction

* Integer multiplication

/ Integer division

% Integer modulus

Arithmetic in D may only be performed on integer operands or on pointers. See 
Pointers and Scalar Arrays. Arithmetic may not be performed on floating-point

Chapter 2
Types, Operators, and Expressions

2-20



operands in D programs. The DTrace execution environment does not take any action on
integer overflow or underflow. You must specifically check for these conditions in situations
where overflow and underflow can occur.

However, the DTrace execution environment does automatically check for and report division
by zero errors resulting from improper use of the / and % operators. If a D program executes
an invalid division operation, DTrace automatically disables the affected instrumentation and
reports the error. Errors that are detected by DTrace have no effect on other DTrace users or
on the operating system kernel. You therefore do not need to be concerned about causing
any damage if your D program inadvertently contains one of these errors.

In addition to these binary operators, the + and - operators can also be used as unary
operators as well, and these operators have higher precedence than any of the binary
arithmetic operators. The order of precedence and associativity properties for all of the D
operators is presented in Table 2-12. You can control precedence by grouping expressions in
parentheses (()).

Relational Operators
D provides the binary relational operators that are described in the following table for use in
your programs. These operators all have the same meaning that they do in ANSI C.

Table 2-8    D Relational Operators

Operator Description

< Left-hand operand is less than right-operand

<= Left-hand operand is less than or equal to
right-hand operand

> Left-hand operand is greater than right-hand
operand

>= Left-hand operand is greater than or equal to
right-hand operand

== Left-hand operand is equal to right-hand
operand

!= Left-hand operand is not equal to right-hand
operand

Relational operators are most frequently used to write D predicates. Each operator evaluates
to a value of type int, which is equal to one if the condition is true, or zero if it is false.

Relational operators can be applied to pairs of integers, pointers, or strings. If pointers are
compared, the result is equivalent to an integer comparison of the two pointers interpreted as
unsigned integers. If strings are compared, the result is determined as if by performing a
strcmp() on the two operands. The following table shows some example D string
comparisons and their results.

D string comparison Result

"coffee" < "espresso" Returns 1 (true)

"coffee" == "coffee" Returns 1 (true)

"coffee"" >= "mocha" Returns 0 (false)

Chapter 2
Types, Operators, and Expressions

2-21



Relational operators can also be used to compare a data object associated with an
enumeration type with any of the enumerator tags defined by the enumeration.
Enumerations are a facility for creating named integer constants and are described in
more detail in Type and Constant Definitions.

Logical Operators
D provides the binary logical operators that are listed in the following table for use in
your programs. The first two operators are equivalent to the corresponding ANSI C
operators.

Table 2-9    D Logical Operators

Operator Description

&& Logical AND: true if both operands are true

|| Logical OR: true if one or both operands are
true

^^ Logical XOR: true if exactly one operand is
true

Logical operators are most frequently used in writing D predicates. The logical AND
operator performs the following short-circuit evaluation: if the left-hand operand is
false, the right-hand expression is not evaluated. The logical OR operator also performs
the following short-circuit evaluation: if the left-hand operand is true, the right-hand
expression is not evaluated. The logical XOR operator does not short-circuit. Both
expression operands are always evaluated.

In addition to the binary logical operators, the unary ! operator can be used to perform
a logical negation of a single operand: it converts a zero operand into a one and a
non-zero operand into a zero. By convention, D programmers use ! when working with
integers that are meant to represent boolean values and == 0 when working with non-
boolean integers, although the expressions are equivalent.

The logical operators may be applied to operands of integer or pointer types. The
logical operators interpret pointer operands as unsigned integer values. As with all
logical and relational operators in D, operands are true if they have a non-zero integer
value and false if they have a zero integer value.

Bitwise Operators
D provides the binary operators that are listed in the following table for manipulating
individual bits inside of integer operands. These operators all have the same meaning
as in ANSI C.

Table 2-10    D Bitwise Operators

Operator Description

& Bitwise AND
| Bitwise OR
^ Bitwise XOR

Chapter 2
Types, Operators, and Expressions

2-22



Table 2-10    (Cont.) D Bitwise Operators

Operator Description

<< Shift the left-hand operand left by the
number of bits specified by the right-hand
operand

>> Shift the left-hand operand right by the
number of bits specified by the right-hand
operand

The binary & operator is used to clear bits from an integer operand. The binary | operator is
used to set bits in an integer operand. The binary ^ operator returns one in each bit position,
exactly where one of the corresponding operand bits is set.

The shift operators are used to move bits left or right in a given integer operand. Shifting left
fills empty bit positions on the right-hand side of the result with zeroes. Shifting right using an
unsigned integer operand fills empty bit positions on the left-hand side of the result with
zeroes. Shifting right using a signed integer operand fills empty bit positions on the left-hand
side with the value of the sign bit, also known as an arithmetic shift operation.

Shifting an integer value by a negative number of bits or by a number of bits larger than the
number of bits in the left-hand operand itself produces an undefined result. The D compiler
produces an error message if the compiler can detect this condition when you compile your D
program.

In addition to the binary logical operators, the unary ~ operator may be used to perform a
bitwise negation of a single operand: it converts each zero bit in the operand into a one bit,
and each one bit in the operand into a zero bit.

Assignment Operators
D provides the binary assignment operators that are listed in the folloiwng table for modifying
D variables. You can only modify D variables and arrays. Kernel data objects and constants
may not be modified using the D assignment operators. The assignment operators have the
same meaning as they do in ANSI C.

Table 2-11    D Assignment Operators

Operator Description

= Set the left-hand operand equal to the right-
hand expression value.

+= Increment the left-hand operand by the right-
hand expression value

-= Decrement the left-hand operand by the right-
hand expression value.

*= Multiply the left-hand operand by the right-
hand expression value.

/= Divide the left-hand operand by the right-hand
expression value.

%= Modulo the left-hand operand by the right-
hand expression value.

Chapter 2
Types, Operators, and Expressions

2-23



Table 2-11    (Cont.) D Assignment Operators

Operator Description

|= Bitwise OR the left-hand operand with the
right-hand expression value.

&= Bitwise AND the left-hand operand with the
right-hand expression value.

^= Bitwise XOR the left-hand operand with the
right-hand expression value.

<<= Shift the left-hand operand left by the number
of bits specified by the right-hand expression
value.

>>= Shift the left-hand operand right by the
number of bits specified by the right-hand
expression value.

Aside from the assignment operator =, the other assignment operators are provided as
shorthand for using the = operator with one of the other operators that were described
earlier. For example, the expression x = x + 1 is equivalent to the expression x += 1,
except that the expression x is evaluated one time. These assignment operators
adhere to the same rules for operand types as the binary forms described earlier.

The result of any assignment operator is an expression equal to the new value of the
left-hand expression. You can use the assignment operators or any of the operators
described thus far in combination to form expressions of arbitrary complexity. You can
use parentheses () to group terms in complex expressions.

Increment and Decrement Operators
D provides the special unary ++ and -- operators for incrementing and decrementing
pointers and integers. These operators have the same meaning as they do in ANSI C.
These operators can only be applied to variables and they may be applied either
before or after the variable name. If the operator appears before the variable name,
the variable is first modified and then the resulting expression is equal to the new
value of the variable. For example, the following two code fragments produce identical
results:

x += 1; y = x;

y = ++x;

If the operator appears after the variable name, then the variable is modified after its
current value is returned for use in the expression. For example, the following two
code fragments produce identical results:

y = x; x -= 1;

y = x--;

You can use the increment and decrement operators to create new variables without
declaring them. If a variable declaration is omitted and the increment or decrement
operator is applied to a variable, the variable is implicitly declared to be of type
int64_t.

Chapter 2
Types, Operators, and Expressions

2-24



The increment and decrement operators can be applied to integer or pointer variables. When
applied to integer variables, the operators increment or decrement the corresponding value
by one. When applied to pointer variables, the operators increment or decrement the pointer
address by the size of the data type that is referenced by the pointer. Pointers and pointer
arithmetic in D are discussed in Pointers and Scalar Arrays.

Conditional Expressions
Although D does not provide support for if-then-else constructs, it does provide support for
simple conditional expressions by using the ? and : operators. These operators enable a
triplet of expressions to be associated, where the first expression is used to conditionally
evaluate one of the other two.

For example, the following D statement could be used to set a variable x to one of two
strings, depending on the value of i:

x = i == 0 ? "zero" : "non-zero";

In the previous example, the expression i == 0 is first evaluated to determine whether it is
true or false. If the expression is true, the second expression is evaluated and its value is
returned. If the expression is false, the third expression is evaluated and its value is returned.

As with any D operator, you can use multiple ?: operators in a single expression to create
more complex expressions. For example, the following expression would take a char variable
c containing one of the characters 0-9, a-f, or A-F, and return the value of this character
when interpreted as a digit in a hexadecimal (base 16) integer:

hexval = (c >= '0' && c <= '9') ? c - '0' : (c >= 'a' && c <= 'f') ? c + 10 - 'a' : c 
+ 10 - 'A';

To be evaluated for its truth value, the first expression that is used with ?: must be a pointer
or integer. The second and third expressions can be of any compatible types. You may not
construct a conditional expression where, for example, one path returns a string and another
path returns an integer. The second and third expressions also may not invoke a tracing
function such as trace or printf. If you want to conditionally trace data, use a predicate
instead. See Predicate Examples for more information.

Type Conversions
When expressions are constructed by using operands of different but compatible types, type
conversions are performed to determine the type of the resulting expression. The D rules for
type conversions are the same as the arithmetic conversion rules for integers in ANSI C.
These rules are sometimes referred to as the usual arithmetic conversions.

A simple way to describe the conversion rules is as follows: each integer type is ranked in the
order char, short, int, long, long long, with the corresponding unsigned types assigned a
rank higher than its signed equivalent, but below the next integer type. When you construct
an expression using two integer operands such as x + y and the operands are of different
integer types, the operand type with the highest rank is used as the result type.

If a conversion is required, the operand with the lower rank is first promoted to the type of the
higher rank. Promotion does not actually change the value of the operand: it simply extends
the value to a larger container according to its sign. If an unsigned operand is promoted, the
unused high-order bits of the resulting integer are filled with zeroes. If a signed operand is
promoted, the unused high-order bits are filled by performing sign extension. If a signed type

Chapter 2
Types, Operators, and Expressions

2-25



is converted to an unsigned type, the signed type is first sign-extended and then
assigned the new, unsigned type that is determined by the conversion.

Integers and other types can also be explicitly cast from one type to another. In D,
pointers and integers can be cast to any integer or pointer types, but not to other
types. Rules for casting and promoting strings and character arrays are discussed in 
DTrace Support for Strings.

An integer or pointer cast is formed using an expression such as the following:

y = (int)x;

In this example, the destination type is enclosed in parentheses and used to prefix the
source expression. Integers are cast to types of higher rank by performing promotion.
Integers are cast to types of lower rank by zeroing the excess high-order bits of the
integer.

Because D does not permit floating-point arithmetic, no floating-point operand
conversion or casting is permitted and no rules for implicit floating-point conversion are
defined.

Operator Precedence
Table 2-12 lists the D rules for operator precedence and associativity. These rules are
somewhat complex, but they are necessary to provide precise compatibility with the
ANSI C operator precedence rules. The following entries in the following table are in
order from highest precedence to lowest precedence.

Table 2-12    D Operator Precedence and Associativity

Operators Associativity

() [] -> . Left to right

! ~ ++ -- + - * & (type) sizeof
stringof offsetof xlate

Right to left

* / % Left to right

+ - Left to right

<< >> Left to right

< <= > >= Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

^^ Left to right

|| Left to right

?: Right to left

= += -= *= /= %= &= ^= ?= <<= >>= Right to left

Chapter 2
Types, Operators, and Expressions

2-26



Table 2-12    (Cont.) D Operator Precedence and Associativity

Operators Associativity

, Left to right

Several operators listed in the previous table that have not been discussed yet. These
operators are described in subsequent chapters. The following table lists several
miscellaneous operators that are provided by the D language.

Operators Description For More Information

sizeof Computes the size of an object. Structs and Unions

offsetof Computes the offset of a type
member.

Structs and Unions

stringof Converts the operand to a
string.

DTrace Support for Strings

xlate Translates a data type. Translators

unary & Computes the address of an
object.

Pointers and Scalar Arrays

unary * Dereferences a pointer to an
object.

Pointers and Scalar Arrays

-> and . Accesses a member of a
structure or union type.

Structs and Unions

The comma (,) operator that is listed in the table is for compatibility with the ANSI C comma
operator. It can be used to evaluate a set of expressions in left-to-right order and return the
value of the right most expression. This operator is provided strictly for compatibility with C
and should generally not be used.

The () entry listed in the table of operator precedence represents a function call. For
examples of calls to functions, such as printf and trace, see Output Formatting. A comma
is also used in D to list arguments to functions and to form lists of associative array keys.
Note that this comma is not the same as the comma operator and does not guarantee left-to-
right evaluation. The D compiler provides no guarantee regarding the order of evaluation of
arguments to a function or keys to an associative array. Note that you should be careful of
using expressions with interacting side-effects, such as the pair of expressions i and i++, in
these contexts.

The [] entry listed in the table of operator precedence represents an array or associative
array reference. Examples of associative arrays are presented in Associative Arrays. A
special kind of associative array, called an aggregation, is described in Aggregations. The []
operator can also be used to index into fixed-size C arrays as well. See Pointers and Scalar
Arrays.

Variables
D provides two basic types of variables for use in your tracing programs: scalar variables and
associative arrays. An aggregation is a special kind of array variable. See Aggregations for
more information about aggregations.

To understand the scope of variables, consider the following figure.

Chapter 2
Variables

2-27



Scope of Variables

In the figure, system execution is illustrated, showing elapsed time along the horizontal
axis and thread number along the vertical axis. D probes fire at different times on
different threads, and each time a probe fires, the D script is run. Any D variable would
have one of the scopes that are described in the following table.

Scope Syntax Initial Value Thread-safe? Description

global myname 0 No Any probe that
fires on any
thread accesses
the same
instance of the
variable.

Thread-local self->myname 0 Yes Any probe that
fires on a thread
accesses the
thread-specific
instance of the
variable.

Clause-local this->myname Not defined Yes Any probe that
fires accesses an
instance of the
variable specific
to that
particular firing
of the probe.

Chapter 2
Variables

2-28



Note:

Note the following additional information:

• Scalar variables and associative arrays have a global scope and are not multi-
processor safe (MP-safe). Because the value of such variables can be changed
by more than one processor, there is a chance that a variable can become
corrupted if more than one probe modifies it.

• Aggregations are MP-safe even though they have a global scope because
independent copies are updated locally before a final aggregation produces the
global result.

Scalar Variables
Scalar variables are used to represent individual, fixed-size data objects, such as integers
and pointers. Scalar variables can also be used for fixed-size objects that are composed of
one or more primitive or composite types. D provides the ability to create arrays of objects, as
well as composite structures. DTrace also represents strings as fixed-size scalars by
permitting them to grow to a predefined maximum length. Control over string length in your D
program is discussed further in DTrace Support for Strings.

Scalar variables are created automatically the first time you assign a value to a previously
undefined identifier in your D program. For example, to create a scalar variable named x of
type int, you can simply assign it a value of type int in any probe clause, for example:

BEGIN
{
  x = 123;
}

Scalar variables that are created in this manner are global variables: each one is defined
once and is visible in every clause of your D program. Any time that you reference the x
identifier, you are referring to a single storage location associated with this variable.

Unlike ANSI C, D does not require explicit variable declarations. If you do want to declare a
global variable and assign its name and type explicitly before using it, you can place a
declaration outside of the probe clauses in your program, as shown in the following example:

int x; /* declare an integer x for later use */
BEGIN
{
  x = 123;
  ...
}

Explicit variable declarations are not necessary in most D programs, but sometimes are
useful when you want to carefully control your variable types or when you want to begin your
program with a set of declarations and comments documenting your program's variables and
their meanings.

Unlike ANSI C declarations, D variable declarations may not assign initial values. You must
use a BEGIN probe clause to assign any initial values. All global variable storage is filled with
zeroes by DTrace before you first reference the variable.

Chapter 2
Variables

2-29



The D language definition places no limit on the size and number of D variables. Limits
are defined by the DTrace implementation and by the memory that is available on your
system. The D compiler enforces any of the limitations that can be applied at the time
you compile your program. See Options and Tunables for more about how to tune
options related to program limits.

Associative Arrays
Associative arrays are used to represent collections of data elements that can be
retrieved by specifying a name, which is called a key. D associative array keys are
formed by a list of scalar expression values, called a tuple. You can think of the array
tuple as an imaginary parameter list to a function that is called to retrieve the
corresponding array value when you reference the array. Each D associative array has
a fixed key signature consisting of a fixed number of tuple elements, where each
element has a given, fixed type. You can define different key signatures for each array
in your D program.

Associative arrays differ from normal, fixed-size arrays in that they have no predefined
limit on the number of elements: the elements can be indexed by any tuple, as
opposed to just using integers as keys, and the elements are not stored in
preallocated, consecutive storage locations. Associative arrays are useful in situations
where you would use a hash table or other simple dictionary data structure in a C, C+
+, or Java language program. Associative arrays provide the ability to create a
dynamic history of events and state captured in your D program, which you can use to
create more complex control flows.

To define an associative array, you write an assignment expression of the following
form:

name [ key ] = expression ;

where name is any valid D identifier and key is a comma-separated list of one or more
expressions.

For example, the following statement defines an associative array a with key signature
[ int, string ] and stores the integer value 456 in a location named by the tuple
[123, "hello"]:

a[123, "hello"] = 456;

The type of each object that is contained in the array is also fixed for all elements in a
given array. Because it was first assigned by using the integer 456, every subsequent
value that is stored in the array will also be of type int. You can use any of the
assignment operators that are defined in Types, Operators, and Expressions to modify
associative array elements, subject to the operand rules defined for each operator.
The D compiler produces an appropriate error message if you attempt an incompatible
assignment. You can use any type with an associative array key or value that can be
used with a scalar variable.

You can reference an associative array by using any tuple that is compatible with the
array key signature. The rules for tuple compatibility are similar to those for function
calls and variable assignments. That is, the tuple must be of the same length and each
type in the list of actual parameters and must be compatible with the corresponding
type in the formal key signature. For example, for an associative array x that is defined
as follows:

x[123ull] = 0;

Chapter 2
Variables

2-30



The key signature is of type unsigned long long and the values are of type int. This array
can also be referenced by using the expression x['a'] because the tuple consisting of the
character constant 'a', of type int and length one, is compatible with the key signature
unsigned long long, according to the arithmetic conversion rules. These rules are described
in Type Conversions.

If you need to explicitly declare a D associative array before using it, you can create a
declaration of the array name and key signature outside of the probe clauses in your program
source code, for example:

int x[unsigned long long, char];
BEGIN
{
  x[123ull, 'a'] = 456;
}

Storage is allocated only for array elements with a nonzero value.

Note:

When an associative array is defined, references to any tuple of a compatible key
signature are permitted, even if the tuple in question has not been previously
assigned. Accessing an unassigned associative array element is defined to return a
zero-filled object. A consequence of this definition is that underlying storage is not
allocated for an associative array element until a non-zero value is assigned to that
element. Conversely, assigning an associative array element to zero causes DTrace
to deallocate the underlying storage.

This behavior is important because the dynamic variable space out of which
associative array elements are allocated is finite; if it is exhausted when an
allocation is attempted, the allocation fails and an error message indicating a
dynamic variable drop is generated. Always assign zero to associative array
elements that are no longer in use. See Options and Tunables for information about
techniques that you can use to eliminate dynamic variable drops.

Thread-Local Variables
DTrace provides the ability to declare variable storage that is local to each operating system
thread, as opposed to the global variables demonstrated earlier in this chapter. Thread-local
variables are useful in situations where you want to enable a probe and mark every thread
that fires the probe with some tag or other data. Creating a program to solve this problem is
easy in D because thread-local variables share a common name in your D code, but refer to
separate data storage that is associated with each thread.

Thread-local variables are referenced by applying the -> operator to the special identifier
self, for example:

syscall::read:entry
{
  self->read = 1;
}

This D fragment example enables the probe on the read() system call and associates a
thread-local variable named read with each thread that fires the probe. Similar to global

Chapter 2
Variables

2-31



variables, thread-local variables are created automatically on their first assignment and
assume the type that is used on the right-hand side of the first assignment statement,
which is int in this example.

Each time the self->read variable is referenced in your D program, the data object
that is referenced is the one associated with the operating system thread that was
executing when the corresponding DTrace probe fired. You can think of a thread-local
variable as an associative array that is implicitly indexed by a tuple that describes the
thread's identity in the system. A thread's identity is unique over the lifetime of the
system: if the thread exits and the same operating system data structure is used to
create a new thread, this thread does not reuse the same DTrace thread-local storage
identity.

When you have defined a thread-local variable, you can reference it for any thread in
the system, even if the variable in question has not been previously assigned for that
particular thread. If a thread's copy of the thread-local variable has not yet been
assigned, the data storage for the copy is defined to be filled with zeroes. As with
associative array elements, underlying storage is not allocated for a thread-local
variable until a non-zero value is assigned to it. Also, as with associative array
elements, assigning zero to a thread-local variable causes DTrace to deallocate the
underlying storage. Always assign zero to thread-local variables that are no longer in
use. For other techniques to fine-tune the dynamic variable space from which thread-
local variables are allocated, see Options and Tunables.

Thread-local variables of any type can be defined in your D program, including
associative arrays. The following are some example thread-local variable definitions:

self->x = 123; /* integer value */

self->s = "hello"; /* string value */

self->a[123, 'a'] = 456; /* associative array */

Like any D variable, you do not need to explicitly declare thread-local variables prior to
using them. If you want to create a declaration anyway, you can place one outside of
your program clauses by pre-pending the keyword self, for example:

self int x; /* declare int x as a thread-local variable */ 
syscall::read:entry
{
  self->x = 123;
}

Thread-local variables are kept in a separate namespace from global variables so that
you can reuse names. Remember that x and self->x are not the same variable if you
overload names in your program.

The following example shows how to use thread-local variables. In an editor, type the
following program and save it in a file named rtime.d:

syscall::read:entry
{
  self->t = timestamp;
}

syscall::read:return
/self->t != 0/
{
  printf("%d/%d spent %d nsecs in read()\n", pid, tid, timestamp - self->t);

Chapter 2
Variables

2-32



  /* 
   * We are done with this thread-local variable; assign zero to it
   * to allow the DTrace runtime to reclaim the underlying storage.
   */ 
  self->t = 0;
}

Next, in your shell, start the program running. Wait a few seconds and you should begin to
see some output. If no output appears, try running a few commands:

# dtrace -q -s rtime.d
3987/3987 spent 12786263 nsecs in read()
2183/2183 spent 13410 nsecs in read()
2183/2183 spent 12850 nsecs in read()
2183/2183 spent 10057 nsecs in read()
3583/3583 spent 14527 nsecs in read()
3583/3583 spent 12571 nsecs in read()
3583/3583 spent 9778 nsecs in read()
3583/3583 spent 9498 nsecs in read()
3583/3583 spent 9778 nsecs in read()
2183/2183 spent 13968 nsecs in read()
2183/2183 spent 72076 nsecs in read()
...
^C
#

The rtime.d program uses a thread-local variable that is named to capture a timestamp on
entry to read() by any thread. Then, in the return clause, the program prints the amount of
time spent in read() by subtracting self->t from the current timestamp. The built-in D
variables pid and tid report the process ID and thread ID of the thread that is performing the
read(). Because self->t is no longer needed after this information is reported, it is then
assigned 0 to enable DTrace to reuse the underlying storage that is associated with t for the
current thread.

Typically, you see many lines of output without doing anything because server processes and
daemons are executing read() all the time behind the scenes. Try changing the second
clause of rtime.d to use the execname variable to print out the name of the process
performing a read(), for example:

printf("%s/%d spent %d nsecs in read()\n", execname, tid, timestamp - self->t);

If you find a process that is of particular interest, add a predicate to learn more about its
read() behavior, as shown in the following example:

syscall::read:entry
/execname == "Xorg"/
{
  self->t = timestamp;
}

Clause-Local Variables
The value of a D variable can be accessed whenever a probe fires. Variables describes how
variables could have a different scope. For a global variable, the same instance of the
variable is accessed from every thread. For thread-local, the instance of the variable is
thread-specific.

Chapter 2
Variables

2-33



Meanwhile, for a clause-local variable, the instance of the variable is specific to that
particular firing of the probe. Clause-local is the narrowest scope. When a probe fires
on a CPU, the D script is executed in program order. Each clause-local variable is
instantiated with an undefined value the first time it is used in the script. The same
instance of the variable is used in all clauses until the D script has completed
execution for that particular firing of the probe.

Clause-local variables can be referenced and assigned by prefixing with this->:

BEGIN
{
  this->secs = timestamp / 1000000000;
  ...
}

If you want to declare a clause-local variable explicitly before using it, you can do so
by using the this keyword:

this int x;  /* an integer clause-local variable */
this char c; /* a character clause-local variable */

BEGIN
{
  this->x = 123;
  this->c = 'D';
}

Note that if your program contains multiple clauses for a single probe, any clause-local
variables remain intact as the clauses are executed, as shown in the following
example. Type the following source code and save it in a file named clause.d:

int me;       /* an integer global variable */
this int foo; /* an integer clause-local variable */

tick-1sec
{ 
  /*
   * Set foo to be 10 if and only if this is the first clause executed.
   */
  this->foo = (me % 3 == 0) ? 10 : this->foo;
  printf("Clause 1 is number %d; foo is %d\n", me++ % 3, this->foo++);
}

tick-1sec
{
  /*
   * Set foo to be 20 if and only if this is the first clause executed.
   */
  this->foo = (me % 3 == 0) ? 20 : this->foo;
  printf("Clause 2 is number %d; foo is %d\n", me++ % 3, this->foo++);
}

tick-1sec
{
  /*
   * Set foo to be 30 if and only if this is the first clause executed.
   */
  this->foo = (me % 3 == 0) ? 30 : this->foo;
  printf("Clause 3 is number %d; foo is %d\n", me++ % 3, this->foo++);
}

Chapter 2
Variables

2-34



Because the clauses are always executed in program order, and because clause-local
variables are persistent across different clauses that are enabling the same probe, running
the preceding program always produces the same output:

# dtrace -q -s clause.d
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12
^C

While clause-local variables are persistent across clauses that are enabling the same probe,
their values are undefined in the first clause executed for a given probe. Be sure to assign
each clause-local variable an appropriate value before using it or your program might have
unexpected results.

Clause-local variables can be defined using any scalar variable type, but associative arrays
may not be defined using clause-local scope. The scope of clause-local variables only
applies to the corresponding variable data, not to the name and type identity defined for the
variable. When a clause-local variable is defined, this name and type signature can be used
in any subsequent D program clause.

You can use clause-local variables to accumulate intermediate results of calculations or as
temporary copies of other variables. Access to a clause-local variable is much faster than
access to an associative array. Therefore, if you need to reference an associative array value
multiple times in the same D program clause, it is more efficient to copy it into a clause-local
variable first and then reference the local variable repeatedly.

Built-In Variables
The following table provides a complete list of built-in D variables. All of these variables are
scalar global variables.

Table 2-13    DTrace Built-In Variables

Variable Description

args[] The typed arguments, if any, to the current
probe. The args[] array is accessed using an
integer index, but each element is defined to
be the type corresponding to the given probe
argument. For information about any typed
arguments, use dtrace -l with the verbose
option -v and check Argument Types.

int64_t arg0, ..., arg9 The first ten input arguments to a probe,
represented as raw 64-bit integers. Values are
meaningful only for arguments defined for the
current probe.

Chapter 2
Variables

2-35



Table 2-13    (Cont.) DTrace Built-In Variables

Variable Description

uintptr_t caller The program counter location of the current
kernel thread at the time the probe fired.

chipid_t chip The CPU chip identifier for the current
physical chip.

processorid_t cpu The CPU identifier for the current CPU. See 
sched Provider for more information.

cpuinfo_t *curcpu The CPU information for the current CPU. See 
sched Provider.

lwpsinfo_t *curlwpsinfo The process state of the current thread. See 
proc Provider.

psinfo_t *curpsinfo The process state of the process associated
with the current thread. See proc Provider.

task_struct *curthread Is a vmlinux data type, for which members can
be found by searching for "task_struct" on the
Internet.

string cwd The name of the current working directory of
the process associated with the current thread.

uint_t epid The enabled probe ID (EPID) for the current
probe. This integer uniquely identifies a
particular probe that is enabled with a specific
predicate and set of actions.

int errno The error value returned by the last system
call executed by this thread.

string execname The name that was passed to execve() to
execute the current process.

fileinfo_t fds[] The files that the current process has opened
in an fileinfo_t array, indexed by file
descriptor number. See fileinfo_t.

Note:

You must load the
sdt kernel module
for fds[] to be
available.

gid_t gid The real group ID of the current process.

uint_t id The probe ID for the current probe. This ID is
the system-wide unique identifier for the
probe, as published by DTrace and listed in the
output of dtrace -l.

Chapter 2
Variables

2-36



Table 2-13    (Cont.) DTrace Built-In Variables

Variable Description

uint_t ipl The interrupt priority level (IPL) on the
current CPU at probe firing time.

Note:

This value is non-
zero if interrupts
are firing and zero
otherwise. The
non-zero value
depends on
whether
preemption is
active, as well as
other factors, and
can vary between
kernel releases and
kernel
configurations.

lgrp_id_t lgrp The latency group ID for the latency group of
which the current CPU is a member. This value
is always zero.

pid_t pid The process ID of the current process.

pid_t ppid The parent process ID of the current process.

string probefunc The function name portion of the current
probe's description.

string probemod The module name portion of the current
probe's description.

string probename The name portion of the current probe's
description.

string probeprov The provider name portion of the current
probe's description.

psetid_t pset The processor set ID for the processor set
containing the current CPU. This value is
always zero.

string root The name of the root directory of the process
that is associated with the current thread.

uint_t stackdepth The current thread's stack frame depth at
probe firing time.

id_t tid The task ID of the current thread.

uint64_t timestamp The current value of a nanosecond timestamp
counter. This counter increments from an
arbitrary point in the past and should only be
used for relative computations.

Chapter 2
Variables

2-37



Table 2-13    (Cont.) DTrace Built-In Variables

Variable Description

uintptr_t ucaller The program counter location of the current
user thread at the time the probe fired.

uid_t uid The real user ID of the current process.

uint64_t uregs[] The current thread's saved user-mode register
values at probe firing time. Use of the uregs[]
array is discussed in uregs[] Array.

uint64_t vtimestamp The current value of a nanosecond timestamp
counter that is virtualized to the amount of
time that the current thread has been running
on a CPU, minus the time spent in DTrace
predicates and actions. This counter
increments from an arbitrary point in the past
and should only be used for relative time
computations.

int64_t walltimestamp The current number of nanoseconds since
00:00 Universal Coordinated Time, January 1,
1970.

Functions that are built into the D language such as trace are discussed in Actions
and Subroutines.

External Variables
The D language uses the back quote character (`) as a special scoping operator for
accessing variables that are defined in the operating system and not in your D
program. For more information, see External Symbols and Types.

Pointers and Scalar Arrays
Pointers are memory addresses of data objects in the operating system kernel or in
the address space of a user process. D provides the ability to create and manipulate
pointers and store them in variables and associative arrays. This section describes the
D syntax for pointers, operators that can be applied to create or access pointers, and
the relationship between pointers and fixed-size scalar arrays. Also discussed are
issues relating to the use of pointers in different address spaces.

Note:

If you are an experienced C or C++ programmer, you can skim most of this
section as the D pointer syntax is the same as the corresponding ANSI C
syntax. Howevver, you should read Pointers and Addresses and Pointers to
DTrace Objects, as these sections describe features and issues that are
specific to DTrace.

Chapter 2
Pointers and Scalar Arrays

2-38



Pointers and Addresses
The Linux operating system uses a technique called virtual memory to provide each user
process with its own virtual view of the memory resources on your system. A virtual view of
memory resources is referred to as an address space. An address space associates a range
of address values, either [0 ... 0xffffffff] for a 32-bit address space or [0 ...
0xffffffffffffffff] for a 64-bit address space, with a set of translations that the operating
system and hardware use to convert each virtual address to a corresponding physical
memory location. Pointers in D are data objects that store an integer virtual address value
and associate it with a D type that describes the format of the data stored at the
corresponding memory location.

You can explicitly declare a D variable to be of pointer type by first specifying the type of the
referenced data and then appending an asterisk (*) to the type name. Doing so indicates you
want to declare a pointer type, as shown in the following statement:

int *p;

This statement declares a D global variable named p that is a pointer to an integer. The
declaration means that p is a 64-bit integer with a value that is the address of another integer
located somewhere in memory. Because the compiled form of your D code is executed at
probe firing time inside the operating system kernel itself, D pointers are typically pointers
associated with the kernel's address space. You can use the arch command to determine
the number of bits that are used for pointers by the active operating system kernel.

If you want to create a pointer to a data object inside of the kernel, you can compute its
address by using the & operator. For example, the operating system kernel source code
declares an unsigned long max_pfn variable. You could trace the address of this variable by
tracing the result of applying the & operator to the name of that object in D:

trace(&`max_pfn);

The * operator can be used to refer to the object addressed by the pointer, and acts as the
inverse of the & operator. For example, the following two D code fragments are equivalent in
meaning:

q = &`max_pfn; trace(*q);

trace(`max_pfn); 

In this example, the first fragment creates a D global variable pointer q. Because the max_pfn
object is of type unsigned long, the type of &`max_pfn is unsigned long * (that is, pointer to
unsigned long), implicitly setting the type of q. Tracing the value of *qfollows the pointer
back to the data object max_pfn. This fragment is therefore the same as the second fragment,
which directly traces the value of the data object by using its name.

Pointer Safety
If you are a C or C++ programmer, you might be a bit apprehensive after reading the previous
section because you know that misuse of pointers in your programs can cause your
programs to crash. DTrace, however, is a robust, safe environment for executing your D
programs. Take note that these types of mistakes cannot cause program crashes. You might
write a buggy D program, but invalid D pointer accesses do not cause DTrace or the
operating system kernel to fail or crash in any way. Instead, the DTrace software detects any

Chapter 2
Pointers and Scalar Arrays

2-39



invalid pointer accesses, disables your instrumentation, and reports the problem back
to you for debugging.

If you have previously programmed in the Java programming language, you are
probably aware that the Java language does not support pointers for precisely the
same reasons of safety. Pointers are needed in D because they are an intrinsic part of
the operating system's implementation in C, but DTrace implements the same kind of
safety mechanisms that are found in the Java programming language to prevent
buggy programs from damaging themselves or each other. DTrace's error reporting is
similar to the runtime environment for the Java programming language that detects a
programming error and reports an exception.

To observe DTrace's error handling and reporting, you could write a deliberately bad D
program using pointers. For example, in an editor, type the following D program and
save it in a file named badptr.d:

BEGIN
{
  x = (int *)NULL;
  y = *x;
  trace(y);
}

The badptr.d program creates a D pointer named x that is a pointer to int. The
program assigns this pointer the special invalid pointer value NULL, which is a built-in
alias for address 0. By convention, address 0 is always defined as invalid so that NULL
can be used as a sentinel value in C and D programs. The program uses a cast
expression to convert NULL to be a pointer to an integer. The program then
dereferences the pointer by using the expression *x, assigns the result to another
variable y, and then attempts to trace y. When the D program is executed, DTrace
detects an invalid pointer access when the statement y = *x is executed and reports
the following error:

# dtrace -s badptr.d
dtrace: script 'badptr.d' matched 1 probe
dtrace: error on enabled probe ID 1 (ID 1: dtrace:::BEGIN):
invalid address (0x0) in action #2 at DIF offset 4
^C
#

Notice that the D program moves past the error and continues to execute; the system
and all observed processes remain unperturbed. You can also add an ERROR probe to
your script to handle D errors. For details about the DTrace error mechanism, see 
ERROR Probe.

Array Declarations and Storage
In addition to the dynamic associative arrays that are described in Variables, D
supports scalar arrays. Scalar arrays are a fixed-length group of consecutive memory
locations that each store a value of the same type. Scalar arrays are accessed by
referring to each location with an integer, starting from zero. Scalar arrays correspond
directly in concept and syntax with arrays in C and C++. Scalar arrays are not used as
frequently in D as associative arrays and their more advanced counterparts
aggregations. You might, however, need to use scalar arrays to access existing
operating system array data structures that are declared in C. Aggregations are
described in Aggregations.

Chapter 2
Pointers and Scalar Arrays

2-40



A D scalar array of 5 integers is declared by using the type int and suffixing the declaration
with the number of elements in square brackets, for example:

int a[5];

#unique_30/unique_30_Connect_42_dt_arrayfig_dlang shows a visual representation of the
array storage:

Scalar Array Representation

The D expression a[0] refers to the first array element, a[1] refers to the second, and so on.
From a syntactic perspective, scalar arrays and associative arrays are very similar. You can
declare an associative array of integers referenced by an integer key as follows:

int a[int];

You can also reference this array using the expression a[0]. But, from a storage and
implementation perspective, the two arrays are very different. The static array a consists of
five consecutive memory locations numbered from zero, and the index refers to an offset in
the storage that is allocated for the array. On the other hand, an associative array has no
predefined size and does not store elements in consecutive memory locations. In addition,
associative array keys have no relationship to the corresponding value storage location. You
can access associative array elements a[0] and a[-5] and only two words of storage are
allocated by DTrace, and these might or might not be consecutive. Associative array keys are
abstract names for the corresponding values and have no relationship to the value storage
locations.

If you create an array using an initial assignment and use a single integer expression as the
array index , for example, a[0] = 2, the D compiler always creates a new associative array,
even though in this expression a could also be interpreted as an assignment to a scalar array.
Scalar arrays must be predeclared in this situation so that the D compiler can recognize the
definition of the array size and infer that the array is a scalar array.

Pointer and Array Relationship
Pointers and scalar arrays have a special relationship in D, just as they do in ANSI C. A
scalar array is represented by a variable that is associated with the address of its first storage
location. A pointer is also the address of a storage location with a defined type. Thus, D
permits the use of the array [] index notation with both pointer variables and array variables.
For example, the following two D fragments are equivalent in meaning:

p = &a[0]; trace(p[2]);

trace(a[2]); 

In the first fragment, the pointer p is assigned to the address of the first element in scalar
array a by applying the & operator to the expression a[0]. The expression p[2] traces the
value of the third array element (index 2). Because p now contains the same address
associated with a, this expression yields the same value as a[2], shown in the second
fragment. One consequence of this equivalence is that C and D permit you to access any
index of any pointer or array. Array bounds checking is not performed for you by the compiler

Chapter 2
Pointers and Scalar Arrays

2-41



or the DTrace runtime environment. If you access memory beyond the end of a scalar
array's predefined size, you either get an unexpected result or DTrace reports an
invalid address error, as shown in the previous example. As always, you cannot
damage DTrace itself or your operating system, but you do need to debug your D
program.

The difference between pointers and arrays is that a pointer variable refers to a
separate piece of storage that contains the integer address of some other storage.
Whereas, an array variable names the array storage itself, not the location of an
integer that in turn contains the location of the array. #unique_63/
unique_63_Connect_42_dt_arrptrfig_dlang illustrates this difference.

Pointer and Array Storage

This difference is manifested in the D syntax if you attempt to assign pointers and
scalar arrays. If x and y are pointer variables, the expression x = y is legal; it copies
the pointer address in y to the storage location that is named by x. If x and y are scalar
array variables, the expression x = y is not legal. Arrays may not be assigned as a
whole in D. However, an array variable or symbol name can be used in any context
where a pointer is permitted. If p is a pointer and a is a scalar array, the statement p =
a is permitted. This statement is equivalent to the statement p = &a[0].

Pointer Arithmetic
Because pointers are just integers that are used as addresses of other objects in
memory, D provides a set of features for performing arithmetic on pointers. However,
pointer arithmetic is not identical to integer arithmetic. Pointer arithmetic implicitly
adjusts the underlying address by multiplying or dividing the operands by the size of
the type referenced by the pointer.

The following D fragment illustrates this property:

int *x;

BEGIN
{
  trace(x);
  trace(x + 1);
  trace(x + 2);
}

This fragment creates an integer pointer x and then traces its value, its value
incremented by one, and its value incremented by two. If you create and execute this
program, DTrace reports the integer values 0, 4, and 8.

Since x is a pointer to an int (size 4 bytes), incrementing x adds 4 to the underlying
pointer value. This property is useful when using pointers to refer to consecutive

Chapter 2
Pointers and Scalar Arrays

2-42



storage locations such as arrays. For example, if x was assigned to the address of an array a,
similar to what is shown in #unique_63/unique_63_Connect_42_dt_arrptrfig_dlang, the
expression x + 1 would be equivalent to the expression &a[1]. Similarly, the expression *(x
+ 1) would refer to the value a[1]. Pointer arithmetic is implemented by the D compiler
whenever a pointer value is incremented by using the +, ++, or =+ operators. Pointer
arithmetic is also applied as follows; when an integer is subtracted from a pointer on the left-
hand side, when a pointer is subtracted from another pointer, or when the -- operator is
applied to a pointer.

For example, the following D program would trace the result 2:

int *x, *y;
int a[5];

BEGIN
{
  x = &a[0];
  y = &a[2];
  trace(y - x);
}

Generic Pointers
Sometimes it is useful to represent or manipulate a generic pointer address in a D program
without specifying the type of data referred to by the pointer. Generic pointers can be
specified by using the type void *, where the keyword void represents the absence of
specific type information, or by using the built-in type alias uintptr_t, which is aliased to an
unsigned integer type of size that is appropriate for a pointer in the current data model. You
may not apply pointer arithmetic to an object of type void *, and these pointers cannot be
dereferenced without casting them to another type first. You can cast a pointer to the
uintptr_t type when you need to perform integer arithmetic on the pointer value.

Pointers to void can be used in any context where a pointer to another data type is required,
such as an associative array tuple expression or the right-hand side of an assignment
statement. Similarly, a pointer to any data type can be used in a context where a pointer to
void is required. To use a pointer to a non-void type in place of another non-void pointer
type, an explicit cast is required. You must always use explicit casts to convert pointers to
integer types, such as uintptr_t, or to convert these integers back to the appropriate pointer
type.

Multi-Dimensional Arrays
Multi-dimensional scalar arrays are used infrequently in D, but are provided for compatibility
with ANSI C and are for observing and accessing operating system data structures that are
created by using this capability in C. A multi-dimensional array is declared as a consecutive
series of scalar array sizes enclosed in square brackets [] following the base type. For
example, to declare a fixed-size, two-dimensional rectangular array of integers of dimensions
that is 12 rows by 34 columns, you would write the following declaration:

int a[12][34];

A multi-dimensional scalar array is accessed by using similar notation. For example, to
access the value stored at row 0 and column 1, you would write the D expression as follows:

a[0][1]

Chapter 2
Pointers and Scalar Arrays

2-43



Storage locations for multi-dimensional scalar array values are computed by
multiplying the row number by the total number of columns declared and then adding
the column number.

Be careful not to confuse the multi-dimensional array syntax with the D syntax for
associative array accesses, that is, a[0][1], is not the same as a[0,1]). If you use an
incompatible tuple with an associative array or attempt an associative array access of
a scalar array, the D compiler reports an appropriate error message and refuses to
compile your program.

Pointers to DTrace Objects
The D compiler prohibits you from using the & operator to obtain pointers to DTrace
objects such as associative arrays, built-in functions, and variables. You are prohibited
from obtaining the address of these variables so that the DTrace runtime environment
is free to relocate them as needed between probe firings . In this way, DTrace can
more efficiently manage the memory required for your programs. If you create
composite structures, it is possible to construct expressions that do retrieve the kernel
address of your DTrace object storage. You should avoid creating such expressions in
your D programs. If you need to use such an expression, do not rely on the address
being the same across probe firings.

In ANSI C, pointers can also be used to perform indirect function calls or to perform
assignments, such as placing an expression using the unary * dereference operator
on the left-hand side of an assignment operator. In D, these types of expressions using
pointers are not permitted. You may only assign values directly to D variables by
specifying their name or by applying the array index operator [] to a D scalar or
associative array. You may only call functions that are defined by the DTrace
environment by name, as specified in Actions and Subroutines. Indirect function calls
using pointers are not permitted in D.

Pointers and Address Spaces
A pointer is an address that provides a translation within some virtual address space to
a piece of physical memory. DTrace executes your D programs within the address
space of the operating system kernel itself. The Linux system manages many address
spaces: one for the operating system kernel and one for each user process. Because
each address space provides the illusion that it can access all of the memory on the
system, the same virtual address pointer value can be reused across address spaces,
but translate to different physical memory. Therefore, when writing D programs that
use pointers, you must be aware of the address space corresponding to the pointers
you intend to use.

For example, if you use the syscall provider to instrument entry to a system call that
takes a pointer to an integer or array of integers as an argument, for example, pipe(),
it would not be valid to dereference that pointer or array using the * or [] operators
because the address in question is an address in the address space of the user
process that performed the system call. Applying the * or [] operators to this address
in D would result in kernel address space access, which would result in an invalid
address error or in returning unexpected data to your D program, depending on
whether the address happened to match a valid kernel address.

To access user-process memory from a DTrace probe, you must apply one of the
copyin, copyinstr, or copyinto functions that are described in Actions and
Subroutines to the user address space pointer. To avoid confusion, take care when

Chapter 2
Pointers and Scalar Arrays

2-44



writing your D programs to name and comment variables storing user addresses
appropriately. You can also store user addresses as uintptr_t so that you do not
accidentally compile D code that dereferences them. Techniques for using DTrace on user
processes are described in User Process Tracing.

DTrace Support for Strings
DTrace provides support for tracing and manipulating strings. This section describes the
complete set of D language features for declaring and manipulating strings. Unlike ANSI C,
strings in D have their own built-in type and operator support to enable you to easily and
unambiguously use them in your tracing programs.

String Representation
In DTrace, strings are represented as an array of characters terminated by a null byte (that is,
a byte whose value is zero, usually written as '\0'). The visible part of the string is of
variable length, depending on the location of the null byte, but DTrace stores each string in a
fixed-size array so that each probe traces a consistent amount of data. Strings cannot exceed
the length of the predefined string limit. However, the limit can be modified in your D program
or on the dtrace command line by tuning the strsize option. See Options and Tunables for
more information about tunable DTrace options. The default string limit is 256 bytes.

The D language provides an explicit string type rather than using the type char * to refer to
strings. The string type is equivalent to char *, in that it is the address of a sequence of
characters, but the D compiler and D functions such as trace provide enhanced capabilities
when applied to expressions of type string. For example, the string type removes the
ambiguity of type char * when you need to trace the actual bytes of a string.

In the following D statement, if s is of type char *, DTrace traces the value of the pointer s,
which means it traces an integer address value:

trace(s);

In the following D statement, by the definition of the * operator, the D compiler dereferences
the pointer s and traces the single character at that location:

trace(*s);

These behaviors enable you to manipulate character pointers that refer to either single
characters, or to arrays of byte-sized integers that are not strings and do not end with a null
byte.

In the next D statement, if s is of type string, the string type indicates to the D compiler that
you want DTrace to trace a null terminated string of characters whose address is stored in the
variable s:

trace(s);

You can also perform lexical comparison of expressions of type string. See String
Comparison.

String Constants
String constants are enclosed in pairs of double quotes ("") and are automatically assigned
the type string by the D compiler. You can define string constants of any length, limited only

Chapter 2
DTrace Support for Strings

2-45



by the amount of memory DTrace is permitted to consume on your system. The
terminating null byte (\0) is added automatically by the D compiler to any string
constants that you declare. The size of a string constant object is the number of bytes
associated with the string, plus one additional byte for the terminating null byte.

A string constant may not contain a literal newline character. To create strings
containing newlines, use the \n escape sequence instead of a literal newline. String
constants can also contain any of the special character escape sequences that are
defined for character constants. See Table 2-6.

String Assignment
Unlike the assignment of char * variables, strings are copied by value and not by
reference. The string assignment operator = copies the actual bytes of the string from
the source operand up to and including the null byte to the variable on the left-hand
side, which must be of type string. You can create a new string variable by assigning
it an expression of type string.

For example, the D statement:

s = "hello";

would create a new variable s of type string and copy the six bytes of the string
"hello" into it (five printable characters, plus the null byte). String assignment is
analogous to the C library function strcpy(), with the exception that if the source
string exceeds the limit of the storage of the destination string, the resulting string is
automatically truncated by a null byte at this limit.

You can also assign to a string variable an expression of a type that is compatible with
strings. In this case, the D compiler automatically promotes the source expression to
the string type and performs a string assignment. The D compiler permits any
expression of type char * or of type char[n], that is, a scalar array of char of any
size, to be promoted to a string.

String Conversion
Expressions of other types can be explicitly converted to type string by using a cast
expression or by applying the special stringof operator, which are equivalent in the
following meaning:

s = (string) expression;

s = stringof (expression);

The expression is interpreted as an address to the string.

The stringof operator binds very tightly to the operand on its right-hand side.
Typically, parentheses are used to surround the expression for clarity. Although, they
are not strictly necessary.

Any expression that is a scalar type, such as a pointer or integer, or a scalar array
address may be converted to string. Expressions of other types such as void may not
be converted to string. If you erroneously convert an invalid address to a string, the
DTrace safety features prevents you from damaging the system or DTrace, but you
might end up tracing a sequence of undecipherable characters.

Chapter 2
DTrace Support for Strings

2-46



String Comparison
D overloads the binary relational operators and permits them to be used for string
comparisons, as well as integer comparisons. The relational operators perform string
comparison whenever both operands are of type string or when one operand is of type
string and the other operand can be promoted to type string. See String Assignment for a
detailed description. See also Table 2-14, which lists the relational operators that can be used
to compare strings.

Table 2-14    D Relational Operators for Strings

Operator Description

< Left-hand operand is less than right-operand.

<= Left-hand operand is less than or equal to
right-hand operand.

> Left-hand operand is greater than right-hand
operand.

>= Left-hand operand is greater than or equal to
right-hand operand.

== Left-hand operand is equal to right-hand
operand.

!= Left-hand operand is not equal to right-hand
operand.

As with integers, each operator evaluates to a value of type int, which is equal to one if the
condition is true or zero if it is false.

The relational operators compare the two input strings byte-by-byte, similarly to the C library
routine strcmp(). Each byte is compared by using its corresponding integer value in the
ASCII character set until a null byte is read or the maximum string length is reached. See the
ascii(7) manual page for more information. Some example D string comparisons and their
results are shown in the following table.

D string comparison Result

"coffee" < "espresso" Returns 1 (true)

"coffee" == "coffee" Returns 1 (true)

"coffee"" >= "mocha" Returns 0 (false)

Note:

Seemingly identical Unicode strings might compare as being different if one or the
other of the strings is not normalized.

Chapter 2
DTrace Support for Strings

2-47



Structs and Unions
Collections of related variables can be grouped together into composite data objects
called structs and unions. You define these objects in D by creating new type
definitions for them. You can use your new types for any D variables, including
associative array values. This section explores the syntax and semantics for creating
and manipulating these composite types and the D operators that interact with them.

Structs
The D keyword struct, short for structure, is used to introduce a new type that is
composed of a group of other types. The new struct type can be used as the type for
D variables and arrays, enabling you to define groups of related variables under a
single name. D structs are the same as the corresponding construct in C and C++. If
you have programmed in the Java programming language previously, think of a D
struct as a class that contains only data members and no methods.

Suppose you want to create a more sophisticated system call tracing program in D
that records a number of things about each read() and write() system call that is
executed by your shell, for example, the elapsed time, number of calls, and the largest
byte count passed as an argument.

You could write a D clause to record these properties in three separate associative
arrays, as shown in the following example:

int maxbytes[string]; /* declare maxbytes */ 
syscall::read:entry, syscall::write:entry
/pid == 12345/
{
  ts[probefunc] = timestamp;
  calls[probefunc]++;
  maxbytes[probefunc] = arg2 > maxbytes[probefunc] ?
        arg2 : maxbytes[probefunc];
}

This clause, however, is inefficient because DTrace must create three separate
associative arrays and store separate copies of the identical tuple values
corresponding to probefunc for each one. Instead, you can conserve space and make
your program easier to read and maintain by using a struct.

First, declare a new struct type at the top of the D program source file:

struct callinfo {
  uint64_t ts;       /* timestamp of last syscall entry */
  uint64_t elapsed;  /* total elapsed time in nanoseconds */
  uint64_t calls;    /* number of calls made */
  size_t maxbytes;   /* maximum byte count argument */
};

The struct keyword is followed by an optional identifier that is used to refer back to
the new type, which is now known as struct callinfo. The struct members are then
enclosed in a set of braces {} and the entire declaration is terminated by a semicolon
(;). Each struct member is defined by using the same syntax as a D variable
declaration, with the type of the member listed first followed by an identifier naming the
member and another semicolon (;).

Chapter 2
Structs and Unions

2-48



The struct declaration simply defines the new type. It does not create any variables or
allocate any storage in DTrace. When declared, you can use struct callinfo as a type
throughout the remainder of your D program. Each variable of type struct callinfo stores a
copy of the four variables that are described by our structure template. The members are
arranged in memory in order, according to the member list, with padding space introduced
between members, as required for data object alignment purposes.

You can use the member identifier names to access the individual member values using the
“.” operator by writing an expression of the following form:

      variable-name.member-name
    

The following example is an improved program that uses the new structure type. In a text
editor, type the following D program and save it in a file named rwinfo.d:

struct callinfo {
  uint64_t ts; /* timestamp of last syscall entry */
  uint64_t elapsed; /* total elapsed time in nanoseconds */
  uint64_t calls; /* number of calls made */
  size_t maxbytes; /* maximum byte count argument */
};

struct callinfo i[string]; /* declare i as an associative array */

syscall::read:entry, syscall::write:entry
/pid == $1/
{
  i[probefunc].ts = timestamp;
  i[probefunc].calls++;
  i[probefunc].maxbytes = arg2 > i[probefunc].maxbytes ?
        arg2 : i[probefunc].maxbytes;
}

syscall::read:return, syscall::write:return
/i[probefunc].ts != 0 && pid == $1/
{
  i[probefunc].elapsed += timestamp - i[probefunc].ts;
}

END
{
  printf("       calls max bytes elapsed nsecs\n");
  printf("------ ----- --------- -------------\n");
  printf("  read %5d %9d %d\n",
  i["read"].calls, i["read"].maxbytes, i["read"].elapsed);
  printf(" write %5d %9d %d\n",
  i["write"].calls, i["write"].maxbytes, i["write"].elapsed);
}

When you have typed the program, run the dtrace -q -s rwinfo.d command,
specifying one of your shell processes. Then, type a few commands in your shell. When you
have finished typing the shell commands, type Ctrl-C to fire the END probe and print the
results:

# dtrace -q -s rwinfo.d `pgrep -n bash`
 ^C
       calls max bytes elapsed nsecs
------ ----- --------- -------------

Chapter 2
Structs and Unions

2-49



  read    25      1024 8775036488
 write    33        22 1859173

Pointers to Structs
Referring to structs by using pointers is very common in C and D. You can use the
operator -> to access struct members through a pointer. If struct s has a member m,
and you have a pointer to this struct named sp, where sp is a variable of type struct s
*, you can either use the * operator to first dereference the sp pointer to access the
member:

struct s *sp;
(*sp).m

Or, you can use the -> operator as shorthand for this notation. The following two D
fragments are equivalent if sp is a pointer to a struct:

(*sp).m 
sp->m

DTrace provides several built-in variables that are pointers to structs. For example, the
pointer curpsinfo refers to struct psinfo and its content provides a snapshot of
information about the state of the process associated with the thread that fired the
current probe. The following table lists a few example expressions that use curpsinfo,
including their types and their meanings.

Example Expression Type Meaning

curpsinfo->pr_pid pid_t Current process ID

curpsinfo->pr_fname char [] Executable file name

curpsinfo->pr_psargs char [] Initial command-line
arguments

For more information, see psinfo_t.

The next example uses the pr_fname member to identify a process of interest. In an
editor, type the following script and save it in a file named procfs.d:

syscall::write:entry
/ curpsinfo->pr_fname == "date" /
{
  printf("%s run by UID %d\n", curpsinfo->pr_psargs, curpsinfo->pr_uid);
}

This clause uses the expression curpsinfo->pr_fname to access and match the
command name so that the script selects the correct write() requests before tracing
the arguments. Notice that by using operator == with a left-hand argument that is an
array of char and a right-hand argument that is a string, the D compiler infers that the
left-hand argument should be promoted to a string and a string comparison should be
performed. Type the command dtrace -q -s procs.d in one shell and then type
the date command several times in another shell. The output that is displayed by
DTrace is similar to the following:

# dtrace -q -s procfs.d 
date  run by UID 500
/bin/date  run by UID 500

Chapter 2
Structs and Unions

2-50



date -R  run by UID 500
...
^C
#

Complex data structures are used frequently in C programs, so the ability to describe and
reference structs from D also provides a powerful capability for observing the inner workings
of the Oracle Linux operating system kernel and its system interfaces.

Unions
Unions are another kind of composite type that is supported by ANSI C and D and are closely
related to structs. A union is a composite type where a set of members of different types are
defined and the member objects all occupy the same region of storage. A union is therefore
an object of variant type, where only one member is valid at any given time, depending on
how the union has been assigned. Typically, some other variable or piece of state is used to
indicate which union member is currently valid. The size of a union is the size of its largest
member. The memory alignment that is used for the union is the maximum alignment
required by the union members.

Member Sizes and Offsets
You can determine the size in bytes of any D type or expression, including a struct or union,
by using the sizeof operator. The sizeof operator can be applied either to an expression or
to the name of a type surrounded by parentheses, as illustrated in the following two
examples:

sizeof expression 
sizeof (type-name)

For example, the expression sizeof (uint64_t) would return the value 8, and the
expression sizeof (callinfo.ts) would also return 8, if inserted into the source code of the
previous example program. The formal return type of the sizeof operator is the type alias
size_t, which is defined as an unsigned integer that is the same size as a pointer in the
current data model and is used to represent byte counts. When the sizeof operator is
applied to an expression, the expression is validated by the D compiler, but the resulting
object size is computed at compile time and no code for the expression is generated. You can
use sizeof anywhere an integer constant is required.

You can use the companion operator offsetof to determine the offset in bytes of a struct or
union member from the start of the storage that is associated with any object of the struct or
union type. The offsetof operator is used in an expression of the following form:

offsetof (type-name, member-name)

Here, type-name is the name of any struct or union type or type alias, and member-name is
the identifier naming a member of that struct or union. Similar to sizeof, offsetof returns a
size_t and you can use it anywhere in a D program that an integer constant can be used.

Bit-Fields
D also permits the definition of integer struct and union members of arbitrary numbers of bits,
known as bit-fields. A bit-field is declared by specifying a signed or unsigned integer base
type, a member name, and a suffix indicating the number of bits to be assigned for the field,
as shown in the following example:

Chapter 2
Structs and Unions

2-51



struct s 
{
  int a : 1;
  int b : 3;
  int c : 12;
};

The bit-field width is an integer constant that is separated from the member name by a
trailing colon. The bit-field width must be positive and must be of a number of bits not
larger than the width of the corresponding integer base type. Bit-fields that are larger
than 64 bits may not be declared in D. D bit-fields provide compatibility with and
access to the corresponding ANSI C capability. Bit-fields are typically used in
situations when memory storage is at a premium or when a struct layout must match a
hardware register layout.

A bit-field is a compiler construct that automates the layout of an integer and a set of
masks to extract the member values. The same result can be achieved by simply
defining the masks yourself and using the & operator. The C and D compilers attempt
to pack bits as efficiently as possible, but they are free to do so in any order or fashion
they desire. Therefore, bit-fields are not guaranteed to produce identical bit layouts
across differing compilers or architectures. If you require stable bit layout, you should
construct the bit masks yourself and extract the values by using the & operator.

A bit-field member is accessed by simply specifying its name in combination with the
“.” or -> operators, like any other struct or union member. The bit-field is automatically
promoted to the next largest integer type for use in any expressions. Because bit-field
storage cannot be aligned on a byte boundary or be a round number of bytes in size,
you may not apply the sizeof or offsetof operators to a bit-field member. The D
compiler also prohibits you from taking the address of a bit-field member by using the
& operator.

Type and Constant Definitions
This section describes how to declare type aliases and named constants in D. It also
discusses D type and namespace management for program and operating system
types and identifiers.

typedefs
The typedef keyword is used to declare an identifier as an alias for an existing type.
Like all D type declarations, typedef is used outside of probe clauses in a declaration
of the following form:

typedef existing-type new-type ;

where existing-type is any type declaration and new-type is an identifier to be used as
the alias for this type. For example, the D compiler uses the following declaration
internally to create the uint8_t type alias:

typedef unsigned char uint8_t;

You can use type aliases anywhere that a normal type can be used, such as the type
of a variable or associative array value or tuple member. You can also combine
typedef with more elaborate declarations such as the definition of a new struct, as
shown in the following example:

Chapter 2
Type and Constant Definitions

2-52



typedef struct foo {
  int x;
  int y;
} foo_t;

In the previous example, struct foo is defined using the same type as its alias, foo_t. Linux
C system headers often use the suffix _t to denote a typedef alias.

Enumerations
Defining symbolic names for constants in a program eases readability and simplifies the
process of maintaining the program in the future. One method is to define an enumeration,
which associates a set of integers with a set of identifiers called enumerators that the
compiler recognizes and replaces with the corresponding integer value. An enumeration is
defined by using a declaration such as the following:

enum colors {
  RED,
  GREEN,
  BLUE
};

The first enumerator in the enumeration, RED, is assigned the value zero and each
subsequent identifier is assigned the next integer value.

You can also specify an explicit integer value for any enumerator by suffixing it with an equal
sign and an integer constant, as shown in the following example:

enum colors {
  RED = 7,
  GREEN = 9,
  BLUE
};

The enumerator BLUE is assigned the value 10 by the compiler because it has no value
specified and the previous enumerator is set to 9. When an enumeration is defined, the
enumerators can be used anywhere in a D program that an integer constant is used. In
addition, the enumeration enum colors is also defined as a type that is equivalent to an int.
The D compiler allows a variable of enum type to be used anywhere an int can be used and
will allow any integer value to be assigned to a variable of enum type. You can also omit the
enum name in the declaration, if the type name is not needed.

Enumerators are visible in all subsequent clauses and declarations in your program.
Therefore, you cannot define the same enumerator identifier in more than one enumeration.
However, you can define more than one enumerator with the same value in either the same
or different enumerations. You may also assign integers that have no corresponding
enumerator to a variable of the enumeration type.

The D enumeration syntax is the same as the corresponding syntax in ANSI C. D also
provides access to enumerations that are defined in the operating system kernel and its
loadable modules. Note that these enumerators are not globally visible in your D program.
Kernel enumerators are only visible if you specify one as an argument in a comparison with
an object of the corresponding enumeration type. This feature protects your D programs
against inadvertent identifier name conflicts, with the large collection of enumerations that are
defined in the operating system kernel.

The following example D program displays information about I/O requests. The program uses
the enumerators B_READ and B_WRITE to differentiate between read and write operations:

Chapter 2
Type and Constant Definitions

2-53



io:::done,
io:::start,
io:::wait-done,
io:::wait-start
{
    printf("%8s %10s: %d %16s (%s size %d @ sect %d)\n",
        args[1]->dev_statname, probename,  
        timestamp, execname,  
    args[0]->b_flags & B_READ ? "R" : 
    args[0]->b_flags & B_WRITE ? "W" : "?",
    args[0]->b_bcount, args[0]->b_blkno);
}

Inlines
D named constants can also be defined by using inline directives, which provide a
more general means of creating identifiers that are replaced by predefined values or
expressions during compilation. Inline directives are a more powerful form of lexical
replacement than the #define directive provided by the C preprocessor because the
replacement is assigned an actual type and is performed by using the compiled syntax
tree and not simply a set of lexical tokens. An inline directive is specified by using a
declaration of the following form:

inline type name = expression;

where type is a type declaration of an existing type, name is any valid D identifier that
is not previously defined as an inline or global variable, and expression is any valid D
expression. After the inline directive is processed, the D compiler substitutes the
compiled form of expression for each subsequent instance of name in the program
source.

For example, the following D program would trace the string "hello" and integer value
123:

inline string hello = "hello";
inline int number = 100 + 23;

BEGIN
{
  trace(hello);
  trace(number);
}

An inline name can be used anywhere a global variable of the corresponding type is
used. If the inline expression can be evaluated to an integer or string constant at
compile time, then the inline name can also be used in contexts that require constant
expressions, such as scalar array dimensions.

The inline expression is validated for syntax errors as part of evaluating the directive.
The expression result type must be compatible with the type that is defined by the
inline, according to the same rules used for the D assignment operator (=). An inline
expression may not reference the inline identifier itself: recursive definitions are not
permitted.

The DTrace software packages install a number of D source files in the system
directory /usr/lib64/dtrace/installed-version , which contain inline directives that
you can use in your D programs.

Chapter 2
Type and Constant Definitions

2-54



For example, the signal.d library includes directives of the following form:

inline int SIGHUP = 1;
inline int SIGINT = 2;
inline int SIGQUIT = 3;
...

These inline definitions provide you with access to the current set of Oracle Linux signal
names, as described in the sigaction(2) manual page. Similarly, the errno.d library
contains inline directives for the C errno constants that are described in the errno(3) manual
page.

By default, the D compiler includes all of the provided D library files automatically so that you
can use these definitions in any D program.

Type Namespaces
In traditional languages such as ANSI C, type visibility is determined by whether a type is
nested inside of a function or other declaration. Types declared at the outer scope of a C
program are associated with a single global namespace and are visible throughout the entire
program. Types that are defined in C header files are typically included in this outer scope.
Unlike these languages, D provides access to types from multiple outer scopes.

D is a language that facilitates dynamic observability across multiple layers of a software
stack, including the operating system kernel, an associated set of loadable kernel modules,
and user processes that are running on the system. A single D program can instantiate
probes to gather data from multiple kernel modules or other software entities that are
compiled into independent binary objects. Therefore, more than one data type of the same
name, perhaps with different definitions, might be present in the universe of types that are
available to DTrace and the D compiler. To manage this situation, the D compiler associates
each type with a namespace, which is identified by the containing program object. Types from
a particular program object can be accessed by specifying the object name and the back
quote (`) scoping operator in any type name.

For example, for a kernel module named foo that contains the following C type declaration:

typedef struct bar {
  int x;
} bar_t;

The types struct bar and bar_t could be accessed from D using the following type names:

struct foo`bar
foo`bar_t

The back quote operator can be used in any context where a type name is appropriate,
including when specifying the type for D variable declarations or cast expressions in D probe
clauses.

The D compiler also provides two special, built-in type namespaces that use the names C
and D, respectively. The C type namespace is initially populated with the standard ANSI C
intrinsic types, such as int. In addition, type definitions that are acquired by using the C
preprocessor (cpp), by running the dtrace -C command, are processed by and added to
the C scope. As a result, you can include C header files containing type declarations that are
already visible in another type namespace without causing a compilation error.

The D type namespace is initially populated with the D type intrinsics, such as int and
string, as well as the built-in D type aliases, such as uint64_t. Any new type declarations

Chapter 2
Type and Constant Definitions

2-55



that appear in the D program source are automatically added to the D type
namespace. If you create a complex type such as a struct in a D program consisting
of member types from other namespaces, the member types are copied into the D
namespace by the declaration.

When the D compiler encounters a type declaration that does not specify an explicit
namespace using the back quote operator, the compiler searches the set of active
type namespaces to find a match by using the specified type name. The C namespace
is always searched first, followed by the D namespace. If the type name is not found in
either the C or D namespace, the type namespaces of the active kernel modules are
searched in load address order, which does not guarantee any ordering properties
among the loadable modules. To avoid type name conflicts with other kernel modules,
you should use the scoping operator when accessing types that are defined in
loadable kernel modules.

The D compiler uses the compressed ANSI C debugging information that is provided
with the core Linux kernel modules to automatically access the types that are
associated with the operating system source code, without the need to access the
corresponding C include files. Note that this symbolic debugging information might not
be available for all kernel modules on your system. The D compiler reports an error if
you attempt to access a type within the namespace of a module that lacks the
compressed C debugging information that is intended for use with DTrace.

Chapter 2
Type and Constant Definitions

2-56



3
Aggregations

When instrumenting the system to answer performance-related questions, it is useful to
consider how data can be aggregated to answer a specific question, rather than thinking in
terms of data gathered by individual probes. For example, if you want to know the number of
system calls by user ID, you would not necessarily care about the datum collected at each
system call. In this cae, you simply want to see a table of user IDs and system calls.
Historically, you would answer this question by gathering data at each system call and post-
processing the data using a tool like awk or perl. Whereas, in DTrace, the aggregating of
data is a first-class operation. This chapter describes the DTrace facilities for manipulating
aggregations.

Aggregation Concepts
An aggregating function is one that has the following property:

func(func(x0) U func(x1) U ... U func(xn)) = func(x0 U x1 U ... U xn)

where xn is a set of arbitrary data, which is to say, applying an aggregating function to
subsets of the whole and then applying it again to the results yields the same result as
applying it to the whole itself. For example, consider the SUM function, which yields the
summation of a given data set. If the raw data consists of {2, 1, 2, 5, 4, 3, 6, 4, 2}, the result
of applying SUM to the entire set is {29}. Similarly, the result of applying SUM to the subset
consisting of the first three elements is {5}, the result of applying SUM to the set consisting of
the subsequent three elements is {12}, and the result of applying SUM to the remaining three
elements is also {12}. SUM is an aggregating function because applying it to the set of these
results, {5, 12, 12}, yields the same result, {29}, as though applying SUM to the original data.

Not all functions are aggregating functions. An example of a non-aggregating function is the
MEDIAN function. This function determines the median element of the set. The median is
defined to be that element of a set for which as many elements in the set are greater than the
element, as those that are less than it. The MEDIAN is derived by sorting the set and selecting
the middle element. Returning to the original raw data, if MEDIAN is applied to the set
consisting of the first three elements, the result is {2}. The sorted set is {1, 2, 2}; {2} is the set
consisting of the middle element. Likewise, applying MEDIAN to the next three elements yields
{4} and applying MEDIAN to the final three elements yields {4}. Thus, applying MEDIAN to each
of the subsets yields the set {2, 4, 4}. Applying MEDIAN to this set yields the result {4}. Note
that sorting the original set yields {1, 2, 2, 2, 3, 4, 4, 5, 6}. Thus, applying MEDIAN to this set
yields {3}. Because these results do not match, MEDIAN is not an aggregating function. Nor is
MODE, the most common element of a set.

Many common functions that are used to understand a set of data are aggregating functions.
These functions include the following:

• Counting the number of elements in the set.

• Computing the minimum value of the set.

• Computing the maximum value of the set.

• Summing all of the elements in the set.

3-1



• Histogramming the values in the set, as quantized into certain bins.

Moreover, some functions, which strictly speaking are not aggregating functions
themselves, can nonetheless be constructed as such. For example, average
(arithmetic mean) can be constructed by aggregating the count of the number of
elements in the set and the sum of all elements in the set, reporting the ratio of the two
aggregates as the final result. Another important example is standard deviation.

Applying aggregating functions to data as it is traced has a number of advantages,
including the following:

• The entire data set need not be stored. Whenever a new element is to be added to
the set, the aggregating function is calculated, given the set consisting of the
current intermediate result and the new element. When the new result is
calculated, the new element can be discarded. This process reduces the amount
of storage that is required by a factor of the number of data points, which is often
quite large.

• Data collection does not induce pathological scalability problems. Aggregating
functions enable intermediate results to be kept per-CPU instead of in a shared
data structure. DTrace then applies the aggregating function to the set consisting
of the per-CPU intermediate results to produce the final system-wide result.

Basic Aggregation Statement
DTrace stores the results of aggregating functions in objects called aggregations. In D,
the syntax for an aggregation is as follows:

@name[ keys ] = aggfunc( args );

The aggregation name is a D identifier that is prefixed with the special character @. All
aggregations that are named in your D programs are global variables. There are no
thread-local or clause-local aggregations. The aggregation names are kept in an
identifier namespace that is separate from other D global variables. If you reuse
names, remember that a and @a are not the same variable. The special aggregation
name @ can be used to name an anonymous aggregation in simple D programs. The D
compiler treats this name as an alias for the aggregation name @_.

Aggregations are indexed with keys, where keys are a comma-separated list of D
expressions, similar to the tuples of expressions used for associative arrays. Keys can
also be actions with non-void return values, such as stack, func, sym, mod, ustack,
uaddr, and usym.

The aggfunc is one of the DTrace aggregating functions, and args is a comma-
separated list of arguments that is appropriate to that function. The DTrace
aggregating functions are described in the following table. Most aggregating functions
take just a single argument that represents the new datum.

Table 3-1    DTrace Aggregating Functions

Function Name Arguments Result

count None Number of times called.

sum Scalar expression Total value of the specified
expressions.

Chapter 3
Basic Aggregation Statement

3-2



Table 3-1    (Cont.) DTrace Aggregating Functions

Function Name Arguments Result

avg Scalar expression Arithmetic average of the
specified expressions.

min Scalar expression Smallest value among the
specified expressions.

max Scalar expression Largest value among the
specified expressions.

stddev Scalar expression Standard deviation of the
specified expressions.

quantize Scalar expression [,
increment]

Power-of-two frequency
distribution (histogram) of
the values of the specified
expressions. An optional
increment (weight) can be
specified.

lquantize Scalar expression, lower
bound, upper bound [, step
value [, increment]]

Lnear frequency
distribution of the values of
the specified expressions,
sized by the specified range.
Note that the default step
value is 1.

llquantize Scalar expression, base,
lower exponent, upper
exponent, number of steps
per order of magnitude [,
increment]

Log-linear frequency
distribution. The
logarithmic base is
specified, along with lower
and upper exponents and
the number of steps per
order of magnitude.

Aggregation Examples
The following is a series of examples that illustrate aggregations.

Basic Aggregation
To count the number of write() system calls in the system, you could use an informative
string as a key and the count aggregating function and save it to file named writes.d:

syscall::write:entry
{
  @counts["write system calls"] = count();
}

The dtrace command prints aggregation results by default when the process terminates,
either as the result of an explicit END action or when you press Ctrl-C. The following example
shows the result of running this command, waiting a few seconds, and then pressing Ctrl-C:

# dtrace -s writes.d
dtrace: script './writes.d' matched 1 probe
^C

Chapter 3
Aggregation Examples

3-3



write system calls                               179
#

Using Keys
You can count system calls per process name by specifying the execname variable as
the key to an aggregation and saving it in a file named writesbycmd.d:

syscall::write:entry
{
  @counts[execname] = count();
}

The following example output shows the result of running this command, waiting a few
seconds, and then pressing Ctrl-C:

# dtrace -s writesbycmd.d
dtrace: script 'writesbycmd.d' matched 1 probe
^C
  dirname                                                           1
  dtrace                                                            1
  gnome-panel                                                       1
  mozilla-xremote                                                   1
  ps                                                                1
  avahi-daemon                                                      2
  basename                                                          2
  gconfd-2                                                          2
  java                                                              2
  pickup                                                            2
  qmgr                                                              2
  sed                                                               2
  dbus-daemon                                                       3
  rtkit-daemon                                                      3
  uname                                                             3
  w                                                                 5
  bash                                                              9
  cat                                                               9
  gnome-session                                                     9
  Xorg                                                             21
  firefox                                                         149
  gnome-terminal                                                 9421
#

Alternatively, you might want to further examine writes that are organized by both
executable name and file descriptor. The file descriptor is the first argument to
write(). The following example uses a key that is a tuple, which consists of both
execname and arg0:

syscall::write:entry
{
  @counts[execname, arg0] = count();
}

Running this command results in a table with both executable name and file descriptor,
as shown in the following example:

# dtrace -s writesbycmdfd.d
dtrace: script 'writesbycmdfd.d' matched 1 probe
^C

Chapter 3
Aggregation Examples

3-4



  basename                                                  1        1
  dbus-daemon                                              70        1
  dircolors                                                 1        1
  dtrace                                                    1        1
  gnome-panel                                              35        1
  gnome-terminal                                           16        1
  gnome-terminal                                           18        1
  init                                                      4        1
  ps                                                        1        1
  pulseaudio                                               20        1
  tput                                                      1        1
  Xorg                                                      2        2
#

A limited set of actions can be used as aggregation keys. Consider the following use of the
mod() and stack() actions:

profile-10
{
  @hotmod[mod(arg0)] = count();
  @hotstack[stack()] = count();
}

Here, the hotmod aggregation counts probe firings by module, using the profile probe's arg0
to determine the kernel program counter. The hotstack aggregation counts probe firings by
stack. The aggregation output reveals which modules and kernel call stacks are the hottest.

Using the avg Function
The following example displays the average time spent in the write() system call, organized
by process name. This example uses the avg aggregating function, specifying the expression
to average as the argument. The example averages the wall clock time spent in the system
call and is saved in a file named writetime.d:

syscall::write:entry
{
  self->ts = timestamp;
}

syscall::write:return
/self->ts/
{
  @time[execname] = avg(timestamp - self->ts);
  self->ts = 0;
}

The following output shows the result of running this command, waiting a few seconds, and
then pressing Ctrl-C:

# dtrace -s writetime.d 
dtrace: script 'writetime.d' matched 2 probes
^C

  gnome-session                                                  8260
  udisks-part-id                                                 9279
  gnome-terminal                                                 9378
  mozilla-xremote                                               10061
  abrt-handle-eve                                               13414
  vgdisplay                                                     13459

Chapter 3
Aggregation Examples

3-5



  avahi-daemon                                                  14043
  vgscan                                                        14190
  uptime                                                        14533
  lsof                                                          14903
  ip                                                            15075
  date                                                          15371
  ...
  ps                                                            91792
  sestatus                                                      98374
  pstree                                                       102566
  sysctl                                                       175427
  iptables                                                     192835
  udisks-daemon                                                250405
  python                                                       282544
  dbus-daemon                                                  491069
  lsblk                                                        582138
  Xorg                                                        2337328
  gconfd-2                                                   17880523
  cat                                                        59752284
#

Using the stddev Function
Meanwhile, you can use the stddev aggregating function to characterize the
distribution of data points. The following example shows the average and standard
deviation of the time that it takes to exec processes. Save it in a file named stddev.d:

syscall::execve:entry
{
 self->ts = timestamp;
}

syscall::execve:return
/ self->ts /
{
  t = timestamp - self->ts;
  @execavg[probefunc] = avg(t);
  @execsd[probefunc] = stddev(t);
  self->ts = 0;
}

END
{
  printf("AVERAGE:");
  printa(@execavg);
  printf("\nSTDDEV:");
  printa(@execsd);
}

The sample output is as follows:

# dtrace -q -s stddev.d
^C
AVERAGE:
  execve                                                       253839

STDDEV:
  execve                                                       260226

Chapter 3
Aggregation Examples

3-6



Note:

The standard deviation is approximated as √((Σ(x2)/N)-(Σx/N)2), which is an
imprecise approximation, but should suffice for most purposes to which DTrace is
put.

Using the quantize Function
The average and standard deviation can be useful for crude characterization, but often do not
provide sufficient detail to understand the distribution of data points. To understand the
distribution in further detail, use the quantize aggregating function, as shown in the following
example, which is saved in a file named wrquantize.d:

syscall::write:entry
{
  self->ts = timestamp;
}

syscall::write:return
/self->ts/
{
  @time[execname] = quantize(timestamp - self->ts);
  self->ts = 0;
}

Because each line of output becomes a frequency distribution diagram, the output of this
script is substantially longer than previous scripts. The following example shows a selection
of sample output:

# dtrace -s wrquantize.d 
dtrace: script 'wrquantize.d' matched 2 probes
^C
...
  bash                                              
           value  ------------- Distribution ------------- count    
            8192 |                                         0        
           16384 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@         4        
           32768 |                                         0        
           65536 |                                         0        
          131072 |@@@@@@@@                                 1        
          262144 |                                         0        

  gnome-terminal                                    
           value  ------------- Distribution ------------- count    
            4096 |                                         0        
            8192 |@@@@@@@@@@@@@                            5        
           16384 |@@@@@@@@@@@@@                            5        
           32768 |@@@@@@@@@@@                              4        
           65536 |@@@                                      1        
          131072 |                                         0        

  Xorg                                              
           value  ------------- Distribution ------------- count    
            2048 |                                         0        
            4096 |@@@@@@@                                  4        
            8192 |@@@@@@@@@@@@@                            8        

Chapter 3
Aggregation Examples

3-7



           16384 |@@@@@@@@@@@@                             7        
           32768 |@@@                                      2        
           65536 |@@                                       1        
          131072 |                                         0        
          262144 |                                         0        
          524288 |                                         0        
         1048576 |                                         0        
         2097152 |@@@                                      2        
         4194304 |                                         0        

  firefox                                           
           value  ------------- Distribution ------------- count    
            2048 |                                         0        
            4096 |@@@                                      22       
            8192 |@@@@@@@@@@@                              90       
           16384 |@@@@@@@@@@@@@                            107      
           32768 |@@@@@@@@@                                72       
           65536 |@@@                                      28       
          131072 |                                         3        
          262144 |                                         0        
          524288 |                                         1        
         1048576 |                                         1        
         2097152 |                                         0

The rows for the frequency distribution are always power-of-two values. Each row
indicates a count of the number of elements that are greater than or equal to the
corresponding value, but less than the next larger row's value. For example, the
previous output shows that firefox had 107 writes, taking between 16,384
nanoseconds and 32,767 nanoseconds, inclusive.

The previous example shows the distribution of numbers of write times. You might also
be interested in knowing which write times are contributing to the overall run time the
most. You can optionally use the increment argument with the quantize function for
this purpose. Note that the default value is 1, but this argument can be a D expression,
as well as have negative values.

The following example shows a modified script:

 syscall::write:entry
{
  self->ts = timestamp;
}

syscall::write:return
/self->ts/
{
  self->delta = timestamp - self->ts;
  @time[execname] = quantize(self->delta, self->delta);
  self->ts = 0;
}

Using the lquantize Function
While quantize is useful for getting quick insight into data, you might want to examine
a distribution across linear values instead. To display a linear value distribution, use
the lquantize aggregating function. The lquantize function takes three arguments in
addition to a D expression: a lower bound, an upper bound, and an optional step. Note
that the default step value is 1.

Chapter 3
Aggregation Examples

3-8



For example, if you wanted to look at the distribution of writes by file descriptor, a power-of-
two quantization would not be effective. Instead, as shown in the following example, you
could use a linear quantization with a small range, which is saved in a file named
wrlquantize.d:

syscall::write:entry
{
  @fds[execname] = lquantize(arg0, 0, 100, 1);
}

Note that you could also omit the last argument because 1 is the default step value.

Running this script for several seconds yields a large amount of information. The following
example shows a selection of the typical output:

# dtrace -s wrlquantize.d
dtrace: script 'wrlquantize.d' matched 1 probe
^C
 ...
  gnome-session                                     
           value  ------------- Distribution ------------- count    
              25 |                                         0        
              26 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 9        
              27 |                                         0        

  gnome-terminal                                    
           value  ------------- Distribution ------------- count    
              15 |                                         0        
              16 |@@                                       1        
              17 |                                         0        
              18 |                                         0        
              19 |                                         0        
              20 |                                         0        
              21 |@@@@@@@@                                 4        
              22 |@@                                       1        
              23 |@@                                       1        
              24 |                                         0        
              25 |                                         0        
              26 |                                         0        
              27 |                                         0        
              28 |                                         0        
              29 |@@@@@@@@@@@@@                            6        
              30 |@@@@@@@@@@@@@                            6        
              31 |                                         0        
 ...

You can also use the lquantize aggregating function to aggregate on time, starting with
some point of time in the past. This technique enables you to observe a change in behavior
over time.

The following example displays the change in system call behavior over the lifetime of a
process that is executing the date command. Save it in a file named dateprof.d:

syscall::execve:return
/execname == "date"/
{
  self->start = timestamp;
}

syscall:::entry
/self->start/

Chapter 3
Aggregation Examples

3-9



{
  /*
   * We linearly quantize on the current virtual time minus our
   * process’s start time. We divide by 1000 to yield microseconds
   * rather than nanoseconds. The range runs from 0 to 10 milliseconds
   * in steps of 100 microseconds; we expect that no date(1) process
   * will take longer than 10 milliseconds to complete.
   */
  @a["system calls over time"] =
  lquantize((timestamp - self->start) / 1000, 0, 10000, 100);
}

syscall::exit:entry
/self->start/
{
  self->start = 0;
}

This script provides greater insight into system call behavior when many date
processes are being executed. To see this result, run sh -c 'while true; do
date >/dev/null; done' in one window, while executing the D script in another
window. The script produces a profile of the system call behavior of the date
command that is similar to the following:

# dtrace -s dateprof.d 
dtrace: script 'dateprof.d' matched 298 probes
^C

  system calls over time                            
           value  ------------- Distribution ------------- count    
             < 0 |                                         0        
               0 |@@                                       23428    
             100 |@@@@@                                    56263    
             200 |@@@@@                                    61271    
             300 |@@@@@                                    58132    
             400 |@@@@@                                    54617    
             500 |@@@@                                     45545    
             600 |@@                                       26049    
             700 |@@@                                      38859    
             800 |@@@@                                     51569    
             900 |@@@@                                     42553    
            1000 |@                                        11339    
            1100 |                                         4020     
            1200 |                                         2236     
            1300 |                                         1264     
            1400 |                                         812      
            1500 |                                         706      
            1600 |                                         764      
            1700 |                                         586      
            1800 |                                         266      
            1900 |                                         155      
            2000 |                                         118      
            2100 |                                         86       
            2200 |                                         93       
            2300 |                                         66       
            2400 |                                         32       
            2500 |                                         32       
            2600 |                                         18       
            2700 |                                         23       
            2800 |                                         26       

Chapter 3
Aggregation Examples

3-10



            2900 |                                         30       
            3000 |                                         26       
            3100 |                                         1        
            3200 |                                         7        
            3300 |                                         9        
            3400 |                                         3        
            3500 |                                         5        
            3600 |                                         1        
            3700 |                                         6        
            3800 |                                         8        
            3900 |                                         8        
            4000 |                                         8        
            4100 |                                         1        
            4200 |                                         1        
            4300 |                                         6        
            4400 |                                         0

The previous output provides a rough idea of the different phases of the date command, with
respect to the services that are required of the kernel. To better understand these phases,
you might want to understand which system calls are being called and when they are called.
In this case, you could change the D script to aggregate on the probefunc variable instead of
a constant string.

The log-linear llquantize aggregating function combines the capabilities of both the log and
linear functions. While the simple quantize function uses base 2 logarithms, with
llquantize, you specify the base, as well as the minimum and maximum exponents. Further,
each logarithmic range is subdivided linearly with a number of steps, as specified.

Printing Aggregations
By default, multiple aggregations are displayed in the order in which they are introduced in
the D program. You can override this behavior by using the printa function to print the
aggregations. The printa function also enables you to precisely format the aggregation data
by using a format string, as described in Output Formatting.

If an aggregation is not formatted with a printa statement in your D program, the dtrace
command snapshots the aggregation data and prints the results after tracing has completed,
using the default aggregation format. If a given aggregation is formatted with a printa
statement, the default behavior is disabled. You can achieve equivalent results by adding the
printa(@aggregation-name) statement to an END probe clause in your program. The default
output format for the avg, count, min, max, and sum aggregating functions displays an integer
decimal value corresponding to the aggregated value for each tuple. The default output
format for the quantize, lquantize, and llquantize aggregating functions displays an ASCII
table with the results. Aggregation tuples are printed as though trace had been applied to
each tuple element.

Data Normalization
When aggregating data over some period of time, you might want to normalize the data, with
respect to some constant factor. This technique enables you to compare disjointed data more
easily. For example, when aggregating system calls, you might want to output system calls as
a per-second rate instead of as an absolute value over the course of the run. The DTrace
normalize action enables you to normalize data in this way. The parameters to normalize
are an aggregation and a normalization factor. The output of the aggregation shows each
value divided by the normalization factor.

Chapter 3
Printing Aggregations

3-11



The following example shows how to aggregate data by system call:

#pragma D option quiet

BEGIN
{
  /*
   * Get the start time, in nanoseconds.
   */
  start = timestamp;
}

syscall:::entry
{
  @func[execname] = count();
}

END
{
  /*
   * Normalize the aggregation based on the number of seconds we have
   * been running. (There are 1,000,000,000 nanoseconds in one second.)
   */
  normalize(@func, (timestamp - start) / 1000000000);
}

Running the previous script for a brief period of time results in the following output:

# dtrace -s normalize.d
^C
  memballoon                                                        1
  udisks-daemon                                                     1
  vmstats                                                           1
  rtkit-daemon                                                      2
  automount                                                         2
  gnome-panel                                                       3
  gnome-settings-                                                   5
  NetworkManager                                                    6
  gvfs-afc-volume                                                   6
  metacity                                                          6
  qpidd                                                             9
  hald-addon-inpu                                                  14
  gnome-terminal                                                   19
  Xorg                                                             35
  VBoxClient                                                       52
  X11-NOTIFY                                                      104
  java                                                            143
  dtrace                                                          309
  sh                                                            36467
  date                                                          68142

The normalize action sets the normalization factor for the specified aggregation, but
this action does not modify the underlying data. The denormalize action takes only an
aggregation. Adding the denormalize action to the preceding example returns both raw
system call counts and per-second rates. Type the following source code and save it in
a file named denorm.d:

#pragma D option quiet

BEGIN
{

Chapter 3
Data Normalization

3-12



  start = timestamp;
}

syscall:::entry
{
  @func[execname] = count();
}

END
{
  this->seconds = (timestamp - start) / 1000000000;
  printf("Ran for %d seconds.\n", this->seconds);
  printf("Per-second rate:\n");
  normalize(@func, this->seconds);
  printa(@func);
  printf("\nRaw counts:\n");
  denormalize(@func);
  printa(@func);
}

Running the previous script for a brief period of time produces output similar to the following:

# dtrace -s denorm.d
^C
Ran for 7 seconds.
Per-second rate:

  audispd                                                           0
  auditd                                                            0
  memballoon                                                        0
  rtkit-daemon                                                      0
  timesync                                                          1
  gnome-power-man                                                   1
  vmstats                                                           1
  automount                                                         2
  udisks-daemon                                                     2
  gnome-panel                                                       2
  metacity                                                          2
  gnome-settings-                                                   3
  qpidd                                                             4
  clock-applet                                                      4
  gvfs-afc-volume                                                   5
  crond                                                             6
  gnome-terminal                                                    7
  vminfo                                                           15
  hald-addon-inpu                                                  32
  VBoxClient                                                       45
  Xorg                                                             63
  X11-NOTIFY                                                       90
  java                                                            126
  dtrace                                                          315
  sh                                                            31430
  date                                                          58724

Raw counts:

  audispd                                                           1
  auditd                                                            4
  memballoon                                                        4
  rtkit-daemon                                                      6
  timesync                                                          8

Chapter 3
Data Normalization

3-13



  gnome-power-man                                                   9
  vmstats                                                          12
  automount                                                        16
  udisks-daemon                                                    16
  gnome-panel                                                      20
  metacity                                                         20
  gnome-settings-                                                  22
  qpidd                                                            28
  clock-applet                                                     34
  gvfs-afc-volume                                                  40
  crond                                                            42
  gnome-terminal                                                   54
  vminfo                                                          105
  hald-addon-inpu                                                 225
  VBoxClient                                                      318
  Xorg                                                            444
  X11-NOTIFY                                                      634
  java                                                            883
  dtrace                                                         2207
  sh                                                           220016
  date                                                         411073

Aggregations can also be renormalized. If normalize is called more than once for the
same aggregation, the normalization factor is the factor specified in the most recent
call. The following example displays only the per-second system call rates of the top
ten system-calling applications in a ten-second period. Type the following source code
and save it in a file named truncagg.d:

#pragma D option quiet

BEGIN
{
  start = timestamp;
}

syscall:::entry
{
  @func[execname] = count();
}

tick-10sec
{
  normalize(@func, (timestamp - start) / 1000000000);
  printa(@func);
}

Clearing Aggregations
When using DTrace to build simple monitoring scripts, you can periodically clear the
values in an aggregation by using the clear function. This function takes an
aggregation as its only parameter. The clear function clears only the aggregation's
values, while the aggregation's keys are retained. Therefore, the presence of a key in
an aggregation that has an associated value of zero indicates that the key had a non-
zero value that was subsequently set to zero as part of a clear. To discard both an
aggregation's values and its keys, use the trunc function. See Truncating
Aggregations.

Chapter 3
Clearing Aggregations

3-14



The following example uses clear to show the system call rate only for the most recent ten-
second period:

#pragma D option quiet

BEGIN
{
  last = timestamp;
}

syscall:::entry
{
  @func[execname] = count();
}

tick-10sec
{
  normalize(@func, (timestamp - last) / 1000000000);
  printa(@func);
  clear(@func);
  last = timestamp;
}

Truncating Aggregations
When looking at aggregation results, you often care only about the top several results. The
keys and values that are associated with anything other than the highest values are not of
interest. You might also choose to discard an entire aggregation result, removing both the
keys and values. The DTrace trunc function is used in both of these situations.

The parameters to trunc are an aggregation and an optional truncation value. Without the
truncation value, trunc discards both the aggregation values and the aggregation keys for
the entire aggregation. When a truncation value n is present, trunc discards the aggregation
values and keys, except for those values and keys that are associated with the highest n
values. That is to say, trunc(@foo, 10) truncates the aggregation named foo after the top
ten values, where trunc(@foo) discards the entire aggregation. The entire aggregation is
also discarded if 0 is specified as the truncation value.

To see the bottom n values instead of the top n values, specify a negative truncation value to
trunc. For example, trunc(@foo, -10) truncates the aggregation named foo after the
bottom ten values.

The following example displays only the per-second system call rates of the top ten system-
calling applications in a ten-second period:

#pragma D option quiet

BEGIN
{
  last = timestamp;
}

syscall:::entry
{
  @func[execname] = count();
}

tick-10sec
{

Chapter 3
Truncating Aggregations

3-15



  trunc(@func, 10);
  normalize(@func, (timestamp - last) / 1000000000);
  printa(@func);
  clear(@func);
  last = timestamp;
}

The following example shows the output from running the previous script on a lightly
loaded system:

# dtrace -s truncagg.d 

  dbus-daemon                                                       0
  NetworkManager                                                    1
  gmain                                                             1
  systemd-logind                                                    1
  sendmail                                                          1
  systemd                                                           1
  httpd                                                             2
  tuned                                                             5
  dtrace                                                           44

  rpcbind                                                           0
  dbus-daemon                                                       0
  gmain                                                             0
  sshd                                                              1
  systemd-logind                                                    1
  sendmail                                                          1
  systemd                                                           1
  httpd                                                             2
  tuned                                                             5
  dtrace                                                           41

  dbus-daemon                                                       0
  gmain                                                             1
  sshd                                                              1
  systemd-logind                                                    1
  sendmail                                                          1
  systemd                                                           1
  httpd                                                             2
  tuned                                                             5
  automount                                                         7
  dtrace                                                           41
^C

#

Minimizing Drops
Because DTrace buffers some aggregation data in the kernel, space might not be
available when a new key is added to an aggregation. In this case, the data is
dropped, the counter is incremented, and dtrace generates a message indicating an
aggregation drop. You should note that this situation rarely occurs because DTrace
keeps state information consisting of the aggregation's key and intermediate results at
user level, where space can grow dynamically. In the unlikely event that an
aggregation drop occurs, you can increase the aggregation buffer size by using the
aggsize option, which reduces the likelihood of drops.

Chapter 3
Minimizing Drops

3-16



You can also use this option to minimize the memory footprint of DTrace. As with any size
option, aggsize can be specified with any size suffix. The resizing policy of this buffer is
dictated by the bufresize option. For more information about buffering, see Buffers and
Buffering.

An alternative method to eliminate aggregation drops is to increase the rate at which
aggregation data is consumed at the user level. This rate defaults to once per second, and
may be explicitly tuned with the aggrate option. As with any rate option, aggrate can be
specified with any time suffix, but defaults to rate-per-second. For more information about the
aggsize option, see Options and Tunables.

Chapter 3
Minimizing Drops

3-17



4
Actions and Subroutines

You use D function calls such as trace and printf to invoke two different kinds of services
that are provided by DTrace: actions and subroutines. Actions trace data or modify a state
that is external to DTrace, while subroutines affect only the internal DTrace state.

This chapter defines DTrace actions and subroutines and also describes their syntax and
semantics.

Action Functions
Action functions enable your DTrace programs to interact with the system outside of DTrace.
The most common actions record data to a DTrace buffer. Other actions are available, such
as stopping the current process, raising a specific signal on the current process, and ceasing
tracing altogether. Some of these actions are destructive, in that they change the system,
albeit in a well-defined way. These actions may only be used if destructive actions have been
explicitly enabled. By default, data recording actions record data to the principal buffer. For
more information about the principal buffer and buffer policies, see Buffers and Buffering.

Default Action
A clause can contain any number of actions and variable manipulations. If a clause is left
empty, the default action is taken. The default action is to trace the enabled probe identifier
(EPID) to the principal buffer. For more information about epid, see Built-In Variables. From
the EPID, the dtrace command outputs the following information: CPU, probe ID, probe
function, and probe name.

The default action facilitates a simple use of the dtrace command. For example, running the
following command enables all of the probes in the vmlinux module with the default action:

# dtrace -m vmlinux

The preceding command might produce output similar to the following:

# dtrace -m vmlinux
dtrace: description 'vmlinux' matched 35 probes
CPU     ID                    FUNCTION:NAME
  0     42                 __schedule:sleep 
  0     34             dequeue_task:dequeue 
  0     40               __schedule:off-cpu 
  0     23        finish_task_switch:on-cpu 
  0     24             enqueue_task:enqueue 
  0     41               __schedule:preempt 
  0     40               __schedule:off-cpu 
  0     23        finish_task_switch:on-cpu 
  0     11        update_process_times:tick 
  0     42                 __schedule:sleep 
  0     34             dequeue_task:dequeue 
  0     40               __schedule:off-cpu 
  0     23        finish_task_switch:on-cpu 
  0     24             enqueue_task:enqueue 

4-1



  0     41               __schedule:preempt 
  0     40               __schedule:off-cpu 
  0     23        finish_task_switch:on-cpu 
  0     11        update_process_times:tick 
  0     12            try_to_wake_up:wakeup 
  0     42                 __schedule:sleep 
...

Data Recording Actions
Data recording actions are the core DTrace actions. Each of these actions records
data to the principal buffer by default, but each action can also be used to record data
to speculative buffers. See Buffers and Buffering and Speculative Tracing for more
details on the principal buffer and speculative buffers.

The following descriptions refer only to the directed buffer, indicating that data is
recorded either to the principal buffer or to a speculative buffer if the action follows a
speculate.

freopen
void freopen(string format, ...)

The freopen action changes the file that is associated with stdout to the file that is
specified by the arguments in printf fashion.

If the "" string is used, the output is again restored to stdout.

Caution:

The freopen action is not only data-recording but also destructive, because
you can use it to overwrite arbitrary files.

ftruncate
void ftruncate(void)

The ftruncate action truncates the output stream on stdout.

func
_symaddr func(uintptr_t address)

The func action prints the symbol that corresponds to a specified kernel-space
address. For example, func((uintptr_t) (&vmlinux`max_pfn)) causes
vmlinux`max_pfn to be printed. The func action is an alias for sym.

mod
_symaddr mod(uintptr_t address)

Chapter 4
Action Functions

4-2



The mod action prints the name of the module that corresponds to a specified kernel-space
address. For example, mod((uintptr_t) (&vmlinux`max_pfn)) prints vmlinux.

printa
void printa(aggregation)
void printa(string format, aggregation)

The printa action enables you to display and format aggregations. See Aggregations for
more details. If format is not specified, printa traces only a directive to the DTrace consumer
for which the specified aggregation should be processed and is displayed using the default
format. If format is specified, the aggregation is formatted. See printa Action for a detailed
description of the printa format string.

When printa traces only a directive that the aggregation should be processed by the DTrace
consumer, it does not process the aggregation in the kernel. Therefore, the time between the
tracing of the printa directive and the actual processing of the directive depends on factors
that affect buffer processing, which include the following: the aggregation rate, the buffering
policy (and if the buffering policy is switching), and the rate at which buffers are switched.
See Aggregations and Buffers and Buffering for detailed descriptions.

printf
void printf(string format, ...)

Like trace, the printf action traces D expressions, but printf enables elaborate printf-
style formatting. The parameters consist of a format string, followed by a variable number of
arguments. By default, the arguments are traced to the directed buffer. The arguments are
later formatted for output by the dtrace command, according to the specified format string,
for example:

printf("execname is %s; priority is %d", execname, curlwpsinfo->pr_pri);

For more information, see printf Action.

stack
stack stack(int nframes)
stack stack(void)

The stack action records a kernel stack trace to the directed buffer. The kernel stack is
nframes in depth. If nframes is not specified, the number of stack frames recorded is the
number that is specified by the stackframes option. The dtrace command reports frames,
either up to the root frame or until the nframes limit has been reached, whichever comes first:

# dtrace -n gettimeofday:entry'{stack()}'
dtrace: description 'gettimeofday:entry' matched 1 probe
CPU     ID                    FUNCTION:NAME
  0    196               gettimeofday:entry 
              vmlinux`pollwake
              vmlinux`dtrace_stacktrace+0x30
              vmlinux`__brk_limit+0x1e1832d7
              vmlinux`__brk_limit+0x1e1913a1
              vmlinux`pollwake
              vmlinux`do_gettimeofday+0x1a
              vmlinux`ktime_get_ts+0xad
              vmlinux`systrace_syscall+0xde

Chapter 4
Action Functions

4-3



              vmlinux`audit_syscall_entry+0x1d7
              vmlinux`system_call_fastpath+0x16

  0    196               gettimeofday:entry 
              vmlinux`dtrace_stacktrace+0x30
              vmlinux`__brk_limit+0x1e1832d7
              vmlinux`__brk_limit+0x1e1913a1
              vmlinux`security_file_permission+0x8b
              vmlinux`systrace_syscall+0xde
              vmlinux`audit_syscall_entry+0x1d7
              vmlinux`system_call_fastpath+0x16

...

The stack action, having a non-void return value, can also be used as the key to an
aggregation, for example:

# dtrace -n execve:entry'{@[stack()] = count()}'
dtrace: description 'execve:entry' matched 1 probe
^C

              vmlinux`dtrace_stacktrace+0x30
              vmlinux`__brk_limit+0x1e1832d7
              vmlinux`__brk_limit+0x1e1913a1
              vmlinux`dtrace_execve+0xcd
              vmlinux`audit_syscall_entry+0x1d7
              vmlinux`dtrace_stub_execve+0x6c
                2

              vmlinux`dtrace_stacktrace+0x30
              vmlinux`__brk_limit+0x1e1832d7
              vmlinux`__brk_limit+0x1e1913a1
              vmlinux`do_sigaction+0x13a
              vmlinux`dtrace_execve+0xcd
              vmlinux`audit_syscall_entry+0x1d7
              vmlinux`dtrace_stub_execve+0x6c
               13

...

sym
_symaddr sym(uintptr_t address)

The sym action prints the symbol that corresponds to a specified kernel-space address.
For example, sym((uintptr_t) (&vmlinux`max_pfn)) causes vmlinux`max_pfn to be
printed. The sym action is an alias for func.

trace
void trace(expression)

The trace action is the most basic action. This action takes a D expression as its
argument and then traces the result to the directed buffer. The following statements
are examples of trace actions:

trace(execname);
trace(curlwpsinfo->pr_pri);

Chapter 4
Action Functions

4-4



trace(timestamp / 1000);
trace(‘lbolt);
trace("somehow managed to get here");

If the trace action is used on a buffer, the output format depends on the data type. If the
dtrace command determines that the data is like an ASCII string, it prints it as text and
terminates the output with a null character (0). When dtrace decides that the data is most
likely binary, it prints it in hexadecimal format, for example:

0      342                      write:entry
             0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f  0123456789abcdef
         0: c0 de 09 c2 4a e8 27 54 dc f8 9f f1 9a 20 4b d1  ....J.’T..... K.
        10: 9c 7a 7a 85 1b 03 0a fb 3a 81 8a 1b 25 35 b3 9a  .zz.....:...%5..
        20: f1 7d e6 2b 66 6d 1c 11 f8 eb 40 7f 65 9a 25 f8  .}.+fm....@.e.%.
        30: c8 68 87 b2 6f 48 a2 a5 f3 a2 1f 46 ab 3d f9 d2  .h..oH.....F.=..
        40: 3d b8 4c c0 41 3c f7 3c cd 18 ad 0d 0d d3 1a 90  =.L.A<.<........

You can force the trace action to always use the binary format by specifying the rawbytes
option.

tracemem
void tracemem(address, size_t nbytes)
void tracemem(address, size_t nbytes, size_t dbytes)

The tracemem action takes a D expression as its first argument, address, and a constant as
its second argument, nbytes. The tracemem action copies the memory from the address
specified by address into the directed buffer for the length specified by nbytes. If only two
arguments are provided, dtrace dumps the entire contents of the buffer.

In the second format, the tracemem action takes an additional, third argument, dbytes, which
is a D expression that is computed dynamically. The result is used to limit the number of
bytes that are displayed. If the result is less than zero or greater than nbytes, the result is
ignored and tracemem behaves as though it is called by using the two-argument form.
Otherwise, dtrace dumps only the dbytes bytes of the directed buffer.

ustack

Note:

If you want to perform symbol lookup in a stripped executable, you must specify the
--export-dynamic option when linking the program. This option causes the
linker to add all symbols to the dynamic symbol table, which is the set of symbols
that is visible from dynamic objects at run time. If you use gcc to link the objects,
specify the option as -Wl,--export-dynamic to pass the correct option to the
linker.

Note also that f you want to look up symbols in shared libraries or unstripped
executables, the --export-dynamic option is not required.

DTrace supports the use of the ustack action with both 32-bit and 64-bit binaries, for
example:

Chapter 4
Action Functions

4-5



stack ustack(int nframes, int strsize) 
stack ustack(int nframes)
stack ustack(void)

The ustack action records a user stack trace to the directed buffer. The user stack is
nframes in depth. If nframes is not specified, the number of stack frames that is
recorded is the number specified by the ustackframes option. While ustack is able to
determine the address of the calling frames when the probe fires, the stack frames are
not translated into symbols until the ustack action is processed at user level by the
DTrace consumer. If strsize is specified and is non-zero, ustack allocates the specified
amount of string space and then uses it to perform address-to-symbol translation
directly from the kernel. Such direct user symbol translation is used only with
stacktrace helpers that support this usage with DTrace. If such frames cannot be
translated, the frames appear only as hexadecimal addresses.

The following example traces a stack with no address-to-symbol translation:

# dtrace -n syscall::write:entry'/pid == $target/{ustack(); exit(0)}' -c 
"./mytestprog -v"
dtrace: description 'syscall::write:entry' matched 1 probe
mytestprog (Version 1.0)
CPU     ID                    FUNCTION:NAME
  2      6                      write:entry 
              mytestprog`printver+0x2f
              mytestprog`0x401338
              mytestprog`main+0xc7
              mytestprog`0x401338
              libc.so.6`__libc_start_main+0xfd
              mytestprog`main
              mytestprog`0x400ad0
              mytestprog`__libc_csu_init
              mytestprog`0x400ad0
              mytestprog`0x400af9

The ustack symbol translation occurs after the stack data is recorded. Therefore, the
corresponding user process might exit before symbol translation can be performed,
making stack frame translation impossible. If the user process exits before symbol
translation is performed, dtrace outputs a warning message, followed by the
hexadecimal stack frames.

uaddr
DTrace supports the use of the uaddr action with both 32-bit and 64-bit binaries.

_usymaddr uaddr(uintptr_t address)

The uaddr action prints the symbol for a specified address, including hexadecimal
offset, which enables the same symbol resolution that ustack provides.

usym
DTrace supports the use of the usym action with both 32-bit and 64-bit binaries.

_usymaddr usym(uintptr_t address)

The usym action prints the symbol for a specified address, which is analogous to how
uaddr works, but without the hexadecimal offsets.

Chapter 4
Action Functions

4-6



Destructive Actions
Some DTrace actions are destructive, in that they change the state of the system in some
well-defined way. Destructive actions may not be used unless they have been explicitly
enabled. When using dtrace, you enable destructive actions by using the -w option. If you
attempt to perform destructive actions without explicitly enabling them, dtrace fails with a
message similar to the following:

dtrace: failed to enable 'syscall': destructive actions not allowed

Process-destructive actions are destructive only to a particular process. Whereas, kernel-
destructive actions are destructive to the entire system. Therefore, these actions must be
used extremely carefully, as such actions affect every process on the system and any other
system, implicitly or explicitly, depending upon the affected system's network services.

The following information pertains to both process-destructive and kernel-destructive actions.

copyout (Process-Destructive)
void copyout(void *buf, uintptr_t addr, size_t nbytes)

The copyout action copies nbytes from the buffer that is specified by buf to the address that
is specified by addr, in the address space of the process that associated with the current
thread. If the user-space address does not correspond to a valid, faulted-in page in the
current address space, an error is generated.

copyoutstr (Process-Destructive)
void copyoutstr(string str, uintptr_t addr, size_t maxlen)

The copyoutstr action copies the string tha tis specified by str to the address that is specified
by addr in the address space of the process associated with the current thread. If the user-
space address does not correspond to a valid, faulted-in page in the current address space,
an error is generated. Note that the string length is limited to the value that is set by the
strsize option. See Options and Tunables.

raise (Process-Destructive)
void raise(int signal)

The raise action sends the specified signal to the currently running process. This action is
similar to using the kill command to send a signal to a process. The raise action can be
used to send a signal at a precise point in the execution of a process.

stop (Process-Destructive)
void stop(void)

The stop action forces the process that is firing the enabled probe to stop when it next leaves
the kernel, as if stopped by a proc action. The stop action can be used to stop a process at
any DTrace probe point. This action can be used to capture a program in a particular state
that would be difficult to achieve with a simple breakpoint and then attach a traditional
debugger such as gdb to the process. You can also use the gcore utility to save the state of
a stopped process in a core file for later analysis.

Chapter 4
Action Functions

4-7



system (Process-Destructive)
void system(string program, ...)

The system action causes the specified program to be executed as though given to the
shell as input. The program string can contain any of the printf or printa format
conversions. Arguments that match the format conversions must be specified. See 
Output Formatting for details on valid format conversions.

The following example runs the date command once per second:

# dtrace -wqn tick-1sec'{system("date")}'
Tue Oct 16 10:21:34 BST 2012
Tue Oct 16 10:21:35 BST 2012
Tue Oct 16 10:21:36 BST 2012
^C
#

The following example shows a more elaborate use of the action by using printf
conversions in the program string, along with traditional filtering tools such as pipes.
Type the following source code and save it in a file named whosend.d:

#pragma D option destructive
#pragma D option quiet

proc:::signal-send
/args[2] == SIGINT/
{
  printf("SIGINT sent to %s by ", args[1]->pr_fname);
  system("getent passwd %d | cut -d: -f5", uid);
}

Running the previous script results in output similar to the following:

# dtrace -s whosend.d
SIGINT sent to top by root
SIGINT sent to bash by root
SIGINT sent to bash by A Nother
^C
SIGINT sent to dtrace by root

The execution of the specified command does not occur in the context of the firing
probe. Rather, it occurs when the buffer containing the details of the system action are
processed at user level. How and when this processing occurs depends on the
buffering policy, as described in Buffers and Buffering. With the default buffering policy,
the buffer processing rate is specified by the switchrate option.

You can see the delay that is inherent in system if you explicitly tune the switchrate
higher than its one-second default, as shown in the following example. Save it in a file
named time.d:

#pragma D option quiet
#pragma D option destructive
#pragma D option switchrate=5sec

tick-1sec
/n++ < 5/
{

Chapter 4
Action Functions

4-8



  printf("walltime : %Y\n", walltimestamp);
  printf("date : ");
  system("date");
  printf("\n");
}

tick-1sec
/n == 5/
{
  exit(0);
}

Running the previous script results in output similar to the following:

# dtrace -s time.d
walltime : 2012 Oct 16 10:26:07
date : Tue Oct 16 10:26:11 BST 2012

walltime : 2012 Oct 16 10:26:08
date : Tue Oct 16 10:26:11 BST 2012

walltime : 2012 Oct 16 10:26:09
date : Tue Oct 16 10:26:11 BST 2012

walltime : 2012 Oct 16 10:26:10
date : Tue Oct 16 10:26:11 BST 2012

walltime : 2012 Oct 16 10:26:11
date : Tue Oct 16 10:26:11 BST 2012

In the previous output, notice that the walltime values differ, but the date values are
identical. This result reflects the fact that the execution of the date command occurred when
the buffer was processed, not when the system action was recorded.

chill (Kernel-Destructive)
void chill(int nanoseconds)

The chill action causes DTrace to spin for the specified number of nanoseconds. This
action is primarily useful for exploring problems that might be timing related. For example,
you can use this action to open race condition windows or bring periodic events into or out of
phase with one another. Because interrupts are disabled while in DTrace probe context, any
use of the chill action results in an interrupt, scheduling, or dispatch latency. Therefore,
chill can cause unexpected systemic effects and therefore should not be used
indiscriminately. Because system activity relies on periodic interrupt handling, DTrace refuses
to execute the chill action for more than 500 milliseconds out of each one-second interval
on any given CPU. If the maximum chill interval is exceeded, DTrace reports an illegal
operation error:

# dtrace -w -n syscall::openat:entry'{chill(500000001)}'
dtrace: allowing destructive actions
dtrace: description 'syscall::openat:entry' matched 1 probe 
dtrace: 57 errors
CPU     ID                    FUNCTION:NAME 
dtrace: error on enabled probe ID 1 (ID 14: syscall::openat:entry): \
illegal operation in action #1

Chapter 4
Action Functions

4-9



This limit is enforced even if the time is spread across multiple calls to chill or
multiple DTrace consumers of a single probe. For example, the same error would be
generated by running the following command:

# dtrace -w -n syscall::openat:entry'{chill(250000000); 
chill(250000001);}'

panic (Kernel-Destructive)
void panic(void)

When triggered, the panic action causes a kernel panic. This action should be used to
force a system crash dump at a time of interest. You can use this action along with ring
buffering to understand a problem. For more information, see Buffers and Buffering .
When the panic action is used, a panic message appears denoting the probe that is
causing the panic. rsyslogd also emits a message upon reboot. The message buffer
of the crash dump contains the probe and event control block (ECB) that is
responsible for the panic action.

Special Actions
The following are special actions that are not data recording actions or destructive
actions.

Speculative Actions
The actions associated with speculative tracing are speculate, commit, and discard.
These actions are described in more detail in Speculative Tracing.

exit
void exit(int status)

The exit action is used to immediately stop tracing and inform the DTrace consumer
that it should do the following: cease tracing, perform any final processing, and call
exit() with the specified status value. Because exit returns a status to user level, it is
considered a data recording action, However, unlike other data storing actions, exit
cannot be speculatively traced. The exit action causes the DTrace consumer to exit
regardless of buffer policy. Note that because exit is a data recording action, it can be
dropped.

When exit is called, only those DTrace actions that are already in progress on other
CPUs are completed. No new actions occur on any CPU. The only exception to this
rule is the processing of the END probe, which is called after the DTrace consumer has
processed the exit action, and indicates that tracing should stop.

setopt
void setopt(const char *opt_name)
void setopt(const char *opt_name, const char *opt_value)

The setopt action enables you to specify a DTrace option dynamically, for example:

Chapter 4
Action Functions

4-10



setopt("quiet");
setopt("bufsize", "50m");
setopt("aggrate", "2hz");

Subroutine Functions
Subroutine functions differ from actions because they generally only affect the internal
DTrace state. Therefore, no destructive subroutines exist. Also, subroutines never trace data
into buffers. Many subroutines have analogs in the application programming interfaces. See
the Section 3 manual pages for more details.

A number of these subroutines require temporary buffers, which persist only for duration of
the clause. Pre-allocated scratch memory is used for such buffers.

alloca
void *alloca(size_t size)

The alloca function allocates size bytes out of scratch memory, and returns a pointer to the
allocated memory. The returned pointer is guaranteed to have 8–byte alignment. Scratch
memory is only valid for the duration of a clause. Memory that is allocated with alloca is
deallocated when the clause completes. If insufficient scratch memory is available, no
memory is allocated and an error is generated.

basename
string basename(char *str)

The basename function creates a string that consists of a copy of the specified string, but
excludes any prefix that ends in /, such as a directory path. The returned string is allocated
out of scratch memory, and is therefore valid only for the duration of the clause. If insufficient
scratch memory is available, basename does not execute and an error is generated.

bcopy
void bcopy(void *src, void *dest, size_t size)

The bcopy function copies size bytes from the memory that is pointed to by src to the memory
that is pointed to by dest. All of the source memory must lie outside of scratch memory, and
all of the destination memory must lie within it. If these conditions are not met, no copying
takes place and an error is generated.

cleanpath
string cleanpath(char *str)

The cleanpath function creates a string consisting of a copy of the path indicated by str, but
with certain redundant elements eliminated. In particular, /./ elements in the path are
removed, and /../ elements are collapsed. The collapsing of /../ elements in the path
occurs without regard to symbolic links. Therefore, it is possible that cleanpath could take a
valid path and return a shorter, invalid path.

For example, if str were “/foo/../bar” and /foo were a symbolic link to /net/foo/export,
cleanpath would return the string “/bar”, even though bar might only exist in /net/foo and

Chapter 4
Subroutine Functions

4-11



not in /. This limitation is due to the fact that cleanpath is called in the context of a
firing probe, where full symbolic link resolution of arbitrary names is not possible. The
returned string is allocated out of scratch memory and is therefore valid only for the
duration of the clause. If insufficient scratch memory is available, cleanpath does not
execute and an error is generated.

copyin
void *copyin(uintptr_t addr, size_t size)

The copyin function copies the specified size in bytes from the specified user address
(addr) into a DTrace scratch buffer and returns the address of this buffer. The user
address is interpreted as an address in the space of the process that is associated
with the current thread. The resulting buffer pointer is guaranteed to have 8-byte
alignment. The address in question must correspond to a faulted-in page in the current
process. If the address does not correspond to a faulted-in page, or if insufficient
scratch memory is available, NULL is returned and an error is generated.

copyinstr
string copyinstr(uintptr_t addr)
string copyinstr(uintptr_t addr, size_t maxlen)

The copyinstr function copies a null-terminated C string from the specified user
address (addr) into a DTrace scratch buffer and returns the address of this buffer. The
user address is interpreted as an address in the space of the process that is
associated with the current thread. The maxlen parameter, if specified, sets a limit on
the number of bytes past addr that are examined (the resulting string is always null-
terminated). The resulting string's length is limited to the value set by the strsize
option. See Options and Tunables for details. As with the copyin function, the
specified address must correspond to a faulted-in page in the current process. If the
address does not correspond to a faulted-in page, or if insufficient scratch memory is
available, NULL is returned and an error is generated.

copyinto
void copyinto(uintptr_t addr, size_t size, void *dest)

The copyinto function copies the specified size in bytes from the specified user
address (addr) into the DTrace scratch buffer that is specified by dest. The user
address is interpreted as an address in the space of the process that is associated
with the current thread. The address in question must correspond to a faulted-in page
in the current process. If the address does not correspond to a faulted-in page, or if
any of the destination memory lies outside of scratch memory, no copying takes place
and an error is generated.

d_path
string d_path(struct path *ptr)

The d_path function creates a string containing the absolute pathname of the struct
path that is pointed to by ptr. The returned string is allocated out of scratch memory

Chapter 4
Subroutine Functions

4-12



and is therefore valid only for the duration of the clause. If insufficient scratch memory is
available, d_path does not execute and an error is generated.

dirname
string dirname(char *str)

The dirname function creates a string that consists of all but the last level of the pathname
that is specified by str. The returned string is allocated out of scratch memory and is therefore
valid only for the duration of the clause. If insufficient scratch memory is available, dirname
does not execute and an error is generated.

getmajor
dev_t getmajor(dev_t dev)

The getmajor function returns the major device number for the device that is specified by
dev.

getminor
dev_t getminor(dev_t dev)

The getminor function returns the minor device number for the device that is specified by
dev.

htonl
uint32_t htonl(uint32_t hostlong)

The htonl function converts hostlong from host-byte order to network-byte order.

htonll
uint64_t htonll(uint64_t hostlonglong)

The htonll function converts hostlonglong from host-byte order to network-byte order.

htons
uint16_t htons(uint16_t hostshort)

The htons function converts hostshort from host-byte order to network-byte order.

index
int index(const char *s, const char *subs)
int index(const char *s, const char *subs, int start)

The index function locates the position of the first occurrence of the substring (subs) in the s
string, starting at the optional position start. If the specified value of start is less than 0, it is
implicitly set to 0. If s is an empty string, index returns 0. If no match is found for subs in s,
index returns 1.

Chapter 4
Subroutine Functions

4-13



inet_ntoa
string inet_ntoa(ipaddr_t *addr)

The inet_ntoa function takes a pointer addr to an IPv4 address and returns it as a
dotted, quad decimal string. The returned string is allocated out of scratch memory
and is therefore valid only for the duration of the clause. If insufficient scratch memory
is available, inet_ntoa does not execute and an error is generated.

inet_ntoa6
string inet_ntoa6(in6_addr_t *addr)

The inet_ntoa6 function takes a pointer addr to an IPv6 address and returns it as an
RFC 1884 convention 2 string, with lowercase hexadecimal digits. The returned string
is allocated out of scratch memory and is therefore valid only for the duration of the
clause. If insufficient scratch memory is available, inet_ntoa6 does not execute and
an error is generated.

inet_ntop
string inet_ntop(int af, void *addr)

The inet_ntop function takes a pointer addr to an IP address and returns a string
version that depends on the provided address family. Supported address families are
AF_INET and AF_INET6, both of which are defined for use in D programs. The returned
string is allocated out of scratch memory and is therefore valid only for the duration of
the clause. If insufficient scratch memory is available, inet_ntop does not execute and
an error is generated.

lltostr
string lltostr(int64_t longlong)

The lltostr function converts longlong to a string. The returned string is allocated out
of scratch memory and is therefore valid only for the duration of the clause. If
insufficient scratch memory is available, lltostr does not execute and an error is
generated.

mutex_owned
int mutex_owned(kmutex_t *mutex)

The mutex_owned function returns non-zero if the calling thread currently holds the
specified kernel mutex, or zero otherwise.

mutex_owner
kthread_t *mutex_owner(kmutex_t *mutex)

Chapter 4
Subroutine Functions

4-14



The mutex_owner function returns the thread pointer of the current owner of the specified
adaptive kernel mutex. mutex_owner returns NULL if the specified adaptive mutex is currently
unowned or if the specified mutex is a spin mutex.

mutex_type_adaptive
int mutex_type_adaptive(kmutex_t *mutex)

All mutexes in the Oracle Linux kernel are adaptive, so the mutex_type_adaptive function
always returns 1.

mutex_type_spin
int mutex_type_spin(kmutex_t *mutex)

All mutexes in the Oracle Linux kernel are adaptive, so the mutex_type_spin function always
returns 0.

ntohl
uint32_t ntohl(uint32_t netlong)

The ntohl function converts netlong from network-byte order to host-byte order.

ntohll
uint64_t ntohll(uint64_t netlonglong)

The ntohll function converts netlonglong from network-byte order to host-byte order.

ntohs
uint16_t ntohs(uint16_t netshort)

The ntohs function converts netshort from network-byte order to host-byte order.

progenyof
int progenyof(pid_t pid)

The progenyof function returns non-zero if the calling process (the process associated with
the thread that is currently triggering the matched probe) is among the progeny of the
specified process ID pid.

rand
int rand(void)

The rand function returns a pseudo-random integer. Because the number that is returned is a
weak pseudo-random number, it therefore should not be used for any cryptographic
application.

Chapter 4
Subroutine Functions

4-15



rindex
int rindex(const char *s, const char *subs)
int rindex(const char *s, const char *subs, int start)

The rindex function locates the position of the last occurrence of the substring subs in
the string s, starting at the optional position, start. If the specified value of start is less
than 0, it is implicitly set to 0. If s is an empty string, rindex returns 0. If no match is
found for subs in s, rindex returns -1.

rw_iswriter
int rw_iswriter(krwlock_t *rwlock)

The rw_iswriter function returns non-zero if the specified reader-writer lock (rwlock)
is either held or desired by a writer. If the lock is held only by readers and no writer is
blocked, or if the lock is not held at all, rw_iswriter returns zero.

rw_read_held
int rw_read_held(krwlock_t *rwlock)

The rw_read_held function returns non-zero if the specified reader-writer lock (rwlock)
is currently held by a reader. If the lock is held only by writers or is not held at all,
rw_read_held returns zero.

rw_write_held
int rw_write_held(krwlock_t *rwlock)

The rw_write_held function returns non-zero if the specified reader-writer lock
(rwlock) is currently held by a writer. If the lock is held only by readers or is not held at
all, rw_write_held returns zero.

speculation
int speculation(void)

The speculation function reserves a speculative trace buffer for use with speculate
and returns an identifier for this buffer. See Speculative Tracing for details.

strchr
string strchr(const char *s, char c)

The strchr function returns a pointer to the first occurrence of the character c in the
string s. If no match is found, strstr returns 0. Note that this function does not work
with wide characters or multi-byte characters.

strjoin
string strjoin(char *str1, char *str2)

Chapter 4
Subroutine Functions

4-16



The strjoin functon creates a string that consists of str1 concatenated with str2. The
returned string is allocated out of scratch memory and is therefore valid only for the duration
of the clause. If insufficient scratch memory is available, strjoin does not execute and an
error is generated.

strlen
size_t strlen(string str)

The strlen function returns the length of the specified string str in bytes, excluding the
terminating null byte.

strrchr
string strrchr(const char *s, char c)

The strrchr function returns a pointer to the last occurrence of the character c in the string s.
If no match is found, strrstr returns 0. This function does not work with wide characters or
multi-byte characters.

strstr
string strstr(const char *s, const char *subs)

The strstr function returns a pointer to the first occurrence of the substring subs in the string
s. If s is an empty string, strstr returns a pointer to an empty string. If no match is found,
strstr returns 0.

strtok
string strtok(const char *str, const char *delim)

The strtok function parses a string into a sequence of tokens by using delim as the
delimiting string . When you initially call strtok, specify the string to be parsed in str. In each
subsequent call to obtain the next token, specify str as NULL. You can specify a different
delimiter for each call. The internal pointer that strtok uses to traverse str is only valid within
multiple enablings of the same probe, meaning it behaves like an implicit clause-local
variable. The strtok function returns NULL if there are no more tokens.

substr
string substr(const char *s, int index)
string substr(const char *s, int index, int length)

The substr function returns the substring of the s, string, starting at the index position. If
length is specified, substr limits the substring to that length.

Chapter 4
Subroutine Functions

4-17



5
Buffers and Buffering

Data buffering and management is an essential service that is provided by the DTrace
framework for it clients, for example, the dtrace command. This chapter explores data
buffering in detail and describes options that you can use to change DTrace's buffer
management policies.

Principal Buffers
By default, the principal buffer is present in every DTrace invocation and is the buffer to which
tracing actions record their data. These actions include the following: printa, printf, stack,
trace, and tracemem.

The principal buffers are always allocated on a per-CPU basis. This policy is not tunable, but
you can restrict tracing and buffer allocation to a single CPU by using the cpu option.

Principal Buffer Policies
DTrace permits tracing in highly constrained contexts in the kernel. In particular, DTrace
permits tracing in contexts in which kernel software might not reliably allocate memory. One
consequence of this flexibility of context is that there always exists a possibility that DTrace
might attempt to trace data when there is no space available. DTrace must have a policy to
deal with such situations as they arise. However, you might choose to tune the policy based
on the needs of a given experiment. Sometimes the appropriate policy might be to discard
the new data. Other times, it might be desirable to reuse the space containing the oldest
recorded data to enable the tracing of new data. Most often, the desired policy is to minimize
the likelihood of running out of available space in the first place. To accommodate these
varying demands, DTrace supports several different buffer policies. This support is
implemented with the bufpolicy option and can be set on a per-consumer basis. See 
Options and Tunables for more details.

switch Policy
By default, the principal buffer has a switch buffer policy. Under this policy, per-CPU buffers
are allocated in pairs, where one buffer is active and the other buffer is inactive. When a
DTrace consumer attempts to read a buffer, the kernel first switches the inactive and active
buffers. Buffer switching is done in such a manner that there is no window in which tracing
data can be lost. When the buffers are switched, the newly inactive buffer is copied out to the
DTrace consumer. This policy assures that the consumer always sees a self-consistent
buffer. Note that a buffer is never simultaneously traced to and copied out. This technique
also avoids introducing a window of time in which tracing is paused or otherwise prevented.
The rate at which the buffer is switched and read out is controlled by the consumer with the
switchrate option. As with any rate option, switchrate can be specified with the any time
suffix, but defaults to rate-per-second. For more information about switchrate and other
options, see Options and Tunables.

Under the switch policy, if a given enabled probe would trace more data than there is space
available in the active principal buffer, the data is dropped and a per-CPU drop count is

5-1



incremented. In the event of one or more drops, dtrace displays a message similar to
the following:

dtrace: 11 drops on CPU 0

If a given record is larger than the total buffer size, the record is dropped, regardless of
buffer policy. You can reduce or eliminate drops, either by increasing the size of the
principal buffer with the bufsize option, or by increasing the switching rate with the
switchrate option.

Under the switch policy, scratch memory for DTrace subroutines is allocated out of the
active buffer.

fill Policy
For some problems, you might want to use a single, in-kernel buffer. While this
approach can be implemented with the switch policy and appropriate D constructs by
incrementing a variable in D and predicating an exit action appropriately, such an
implementation does not eliminate the possibility of drops. To request a single, large
in-kernel buffer and continue tracing until one or more of the per-CPU buffers has
filled, use the fill buffer policy. Under this policy, tracing continues until an enabled
probe attempts to trace more data than can fit in the remaining principal buffer space.
When insufficient space remains, the buffer is marked as filled and the consumer is
notified that at least one of its per-CPU buffers is filled. When dtrace detects a single
filled buffer, tracing is stopped, all buffers are processed, and dtrace exits. No further
data is traced to a filled buffer even if the data would fit in the buffer.

To use the fill policy, set the bufpolicy option to fill. For example, the following
command traces every system call entry into a per-CPU 2 KB buffer with the buffer
policy set to fill:

# dtrace -n syscall:::entry -b 2k -x bufpolicy=fill

fill Policy and END Probes
END probes usually do not fire until tracing has been explicitly stopped by the DTrace
consumer. END probes are guaranteed to fire only on one CPU, but the CPU on which
the probe fires is undefined. With fill buffers, tracing is explicitly stopped when at
least one of the per-CPU principal buffers has been marked as filled. If the fill policy
is selected, the END probe might fire on a CPU that has a filled buffer. To accommodate
END tracing in fill buffers, DTrace calculates the amount of space that is potentially
consumed by END probes and subtracts this space from the size of the principal buffer.
If the net size is negative, DTrace does not start and dtrace outputs the following
error message:

dtrace: END enablings exceed size of principal buffer

The reservation mechanism ensures that a full buffer always has sufficient space for
any END probes.

ring Policy
The DTrace ring buffer policy assists with tracing the events leading up to a failure. If
reproducing the failure takes hours or days, you might want to keep only the most

Chapter 5
Principal Buffer Policies

5-2



recent data. When a principal buffer has filled, tracing wraps around to the first entry,
overwriting older tracing data. You establish the ring buffer by specifying bufpolicy=ring as
follows:

# dtrace -s foo.d -x bufpolicy=ring

When used to create a ring buffer, dtrace does not display any output until the process is
terminated. At that time, the ring buffer is consumed and processed. The dtrace command
processes each ring buffer in CPU order. Within a CPU's buffer, trace records are displayed
in order from oldest to youngest. Just as with the switch buffering policy, no ordering exists
between records from different CPUs. If such an ordering is required, you should trace the
timestamp variable as part of your tracing request.

The following example demonstrates the use of a #pragma option directive to enable ring
buffering:

#pragma D option bufpolicy=ring
#pragma D option bufsize=16k

syscall:::entry
/execname == $1/
{
  trace(timestamp);
}

syscall::exit:entry
{
  exit(0);
}

Other Buffers
Principal buffers exist in every DTrace enabling. Beyond principal buffers, some DTrace
consumers might have additional in-kernel data buffers, such as an aggregation buffer, and
one or more speculative buffers. See Aggregations and Speculative Tracing for more details.

Buffer Sizes
The size of each buffer can be tuned on a per-consumer basis. Separate options are
provided to tune each buffer size, as shown in the following table.

Buffer Size Option

Aggregation aggsize
Principal bufsize
Speculative specsize

Each of these options is set with a value that denotes the size. As with any size option, the
value might have an optional size suffix. See Options and Tunables for more details.

For example, you would set the buffer size to 10 megabytes on the dtrace command line as
follows:

# dtrace -P syscall -x bufsize=10m

Chapter 5
Other Buffers

5-3



Alternatively, you can use the -b option with the dtrace command:

# dtrace -P syscall -b 10m

Finally, you can set bufsize by using a pragma, for example:

#pragma D option bufsize=10m

The buffer size that you select denotes the size of the buffer on each CPU. Moreover,
for the switch buffer policy, bufsize denotes the size of each buffer on each CPU. The
default buffer size is four megabytes.

Buffer Resizing Policy
Occasionally, the system might not have adequate free kernel memory to allocate a
buffer of the desired size, either because not enough memory is available or because
the DTrace consumer has exceeded one of the tunable limits that are described in 
Options and Tunables. You can configure the policy for buffer allocation failure by
using the bufresize option, which defaults to auto. Under the auto buffer resize
policy, the size of a buffer is halved until a successful allocation occurs. dtrace
generates a message if a buffer, as allocated, is smaller than the requested size, as
shown in the following example:

# dtrace -P syscall -b 4g
dtrace: description 'syscall' matched 430 probes
dtrace: buffer size lowered to 128m ...

Or, a message similar to the following is generated:

# dtrace -P syscall'{@a[probefunc] = count()}' -x aggsize=1g
dtrace: description 'syscall' matched 430 probes
dtrace: aggregation size lowered to 128m ...

Alternatively, you can require manual intervention after buffer allocation failure by
setting bufresize to manual. Under this policy, an allocation failure prevents DTrace
from starting:

# dtrace -P syscall -x bufsize=1g -x bufresize=manual
dtrace: description 'syscall' matched 430 probes
dtrace: could not enable tracing: Not enough space
#

The buffer resizing policy for all buffers (principal, speculative and aggregation) is
dictated by the bufresize option.

Chapter 5
Buffer Resizing Policy

5-4



6
Output Formatting

DTrace provides the built-in printf and printaformatting functions, which you can use from
your D programs to format output. The D compiler provides features that are not found in the
C library's printf() routine, so be sure to read this chapter even if you are already familiar
with printf.

This chapter also discusses the formatting behavior of the trace function and the default
output format that is used by the dtrace command to display aggregations.

printf Action
The printf action combines the ability to trace data, as if by the trace function, but with the
ability to output the data and other text in a specific format that you describe. The printf
function directs DTrace to trace the data associated with each argument after the first
argument and then format the results using the rules described by the first printf argument,
known as a format string. The format string is a regular string that contains any number of
format conversions, each beginning with a % character, that describe how to format the
corresponding argument. The first conversion in the format string corresponds to the second
printf argument, the second conversion to the third argument, and so on. All of the text
between conversions is printed verbatim. The character following the % conversion character
describes the format to use for the corresponding argument.

Unlike the C library's printf() function, DTrace's printf function is a built-in function that is
recognized by the D compiler. The D compiler provides several useful services for the DTrace
printf function that are not found in printf(), including the following:

• The D compiler compares the arguments to the conversions in the format string. If an
argument's type is incompatible with the format conversion, the D compiler provides an
error message explaining the problem.

• The D compiler does not require the use of size prefixes with printf format conversions.
The C printf routine requires that you indicate the size of arguments by adding prefixes
such as %ld for long, or %lld for long long. The D compiler is aware of the size and type
of your arguments, so these prefixes are not required in your D printf statements.

• DTrace provides additional format characters that are useful for debugging and
observability. For example, the %a format conversion can be used to print a pointer as a
symbol name and offset.

To implement these features, you must specify the format string in the DTrace printf
function as a string constant in your D program. Format strings cannot be dynamic variables
of type string.

Conversion Specifications
Each conversion specification in the format string is introduced by the % character, after which
the following information appears in sequence:

6-1



• Zero or more flags (in any order), that modify the meaning of the conversion
specification, as described in Flag Specifiers.

• An optional minimum field width. If the converted value has fewer bytes than the
field width, the value is padded with spaces on the left, by default, or on the right, if
the left-adjustment flag (-) is specified. The field width can also be specified as an
asterisk (*), in which case the field width is set dynamically, based on the value of
an additional argument of type int.

• An optional precision specifier that indicates the following:

– The minimum number of digits to appear for the d, i, o, u, x, and X conversions
— the field is padded with leading zeroes—the number of digits to appear after
the radix character for the e, E, and f conversions.

– The maximum number of significant digits for the g and G conversions.

– Or the maximum number of bytes to be printed from a string by the s
conversion.

The precision specifier takes the form of a period (.), followed by either an asterisk
(*), as described in Width and Precision Specifiers, or a decimal digit string.

• An optional sequence of size prefixes that indicate the size of the corresponding
argument. Size prefixes are not required in D, but are provided for compatibility
with the C printf() function.

• A conversion specifier that indicates the type of conversion to be applied to the
argument.

The C printf() function also supports conversion specifications of the form %n$,
where n is a decimal integer. Note that the DTrace printf function does not support
this type of conversion specification.

Flag Specifiers
The printf conversion flags are enabled by specifying one or more of the following
characters, which can appear in any order, as described in the following table.

Flag Specifier Description

' The integer portion of the result of a
decimal conversion (%d, %f, %g, %G, %i, or
%u) is formatted with thousands of
grouping characters by using the non-
monetary grouping character. Some
locales, including the POSIX C locale, do not
provide non-monetary grouping characters
for use with this flag. (The relevant locale is
the locale in which dtrace is running.)

- The result of the conversion is left-justified
within the field. The conversion is right-
justified if this flag is not specified.

+ The result of signed conversion always
begins with a sign (+ or -). If this flag is not
specified, the conversion begins with a sign
only when a negative value is converted.

Chapter 6
printf Action

6-2



Flag Specifier Description

space If the first character of a signed conversion
is not a sign or if a signed conversion
results in no characters, a space is placed
before the result. If the space and + flags
both appear, the space flag is ignored.

# The value is converted to an alternate form
if an alternate form is defined for the
selected conversion. The alternate formats
for conversions are described along with
the corresponding conversion.

0 For d, e, E, f, g, G, i, o, u, x, and X
conversions, leading zeroes (following any
indication of sign or base) are used to pad
the field width and no space padding is
performed. If the 0 and - flags both appear,
the 0 flag is ignored. For d, i, o, u, x and X
conversions, if a precision is specified, the
0 flag is ignored. If the 0 and ' flags both
appear, the grouping characters are
inserted before the zero padding.

Width and Precision Specifiers
The minimum field width can be specified as a decimal-digit string following any flag specifier,
in which case the field width is set to the specified number of columns. The field width can
also be specified as asterisk (*) in which case an additional argument of type int is accessed
to determine the field width.

For example, to print an integer x in a field width determined by the value of the int variable
w, you would write the following D statement:

printf("%*d", w, x);

The field width can also be specified with a ? character to indicate that the field width should
be set based on the number of characters required to format an address (in hexadecimal) in
the data model of the operating system kernel. The width is set to 8, if the kernel is using the
32-bit data model, or to 16, if the kernel is using the 64-bit data model. The precision for the
conversion can be specified as a decimal digit string following a period (.), or by an asterisk
(*) following a period. If an asterisk is used to specify the precision, an additional argument of
type int before the conversion argument provides the precision. If both width and precision
are specified as asterisks, the order of arguments to printf for the conversion should appear
in the following order: width, precision, value.

Size Prefixes
Size prefixes are required in ANSI C programs that use printf() to indicate the size and
type of the conversion argument. The D compiler performs this processing for your printf
calls automatically, so size prefixes are not required. Although size prefixes are provided for
C compatibility, their use is explicitly discouraged in D programs because they bind your code
to a particular data model when using derived types.

Chapter 6
printf Action

6-3



For example, if a typedef is redefined to different integer base types depending on the
data model, it is not possible to use a single C conversion that works in both data
models without explicitly knowing the two underlying types and including a cast
expression or defining multiple format strings. The D compiler solves this problem
automatically by enabling you to omit size prefixes and automatically determining the
argument size.

Size prefixes can be placed just prior to the format conversion name and after any
flags, widths, and precision specifiers and are as follows:

• An optional h specifies that a following d, i, o, u, x, or X conversion applies to a
short or unsigned short.

• An optional l specifies that a following d, i, o, u, x, or X conversion applies to a
long or unsigned long.

• An optional ll specifies that a following d, i, o, u, x, or X conversion applies to a
long long or unsigned long long.

• An optional L specifies that a following e, E, f, g, or G conversion applies to a long
double.

• An optional l specifies that a following c conversion applies to a wint_t argument,
and that a following s conversion character applies to a pointer to a wchar_t
argument.

Conversion Formats
Each conversion character sequence results in fetching zero or more arguments. If
insufficient arguments are provided for the format string, if the format string is
exhausted and arguments remain, or if an undefined conversion format is specified,
then the D compiler issues an appropriate error message. The following table
describes the conversion character sequences.

Conversion Characters Description

a The pointer or uintptr_t argument is
printed as a kernel symbol name in the
form module'symbol-name, plus an
optional hexadecimal byte offset. If the
value does not fall within the range that is
defined by a known kernel symbol, the
value is printed as a hexadecimal integer.

A Identical to %a, but is used for user
symbols.

c The char, short, or int argument is
printed as an ASCII character.

C The char, short, or int argument is
printed as an ASCII character if the
character is a printable ASCII character. If
the character is not a printable character, it
is printed by using the corresponding
escape sequence, as shown in Table 2-6.

Chapter 6
printf Action

6-4



Conversion Characters Description

d The char, int, long, long long, or short
argument is printed as a decimal (base 10)
integer. If the argument is signed, it is
printed as a signed value. If the argument
is unsigned, it is printed as an unsigned
value. This conversion has the same
meaning as i.

e, E The double, float, or long double
argument is converted to the style
[-]d.ddde[+-]dd , where there is one
digit before the radix character and the
number of digits that follow is equal to the
precision. The radix character is non-zero
if the argument is non-zero. If the precision
is not specified, the default precision value
is 6. If the precision is 0 and the # flag is not
specified, no radix character appears. The E
conversion format produces a number
with E introducing the exponent, instead of
e. The exponent always contains at least
two digits. The value is rounded up to the
appropriate number of digits.

f The double, float, or long double
argument is converted to the style
[-]ddd.ddd , where the number of digits
after the radix character is equal to the
precision specification. If the precision is
not specified, the default precision value is
6. If the precision is 0 and the # flag is not
specified, no radix character appears. If a
radix character appears, at least one digit
appears before it. The value is rounded up
to the appropriate number of digits.

g, G The double, float, or long double
argument is printed in the style f or e (or
in style E in the case of a G conversion
character), with the precision specifying
the number of significant digits. If an
explicit precision is 0, it is taken as 1. The
style that is used depends on the value
converted: style e (or E) is used only if the
exponent resulting from the conversion is
less than -4, or greater than or equal to the
precision. Trailing zeroes are removed
from the fractional part of the result. A
radix character appears only if it is
followed by a digit. If the # flag is specified,
trailing zeroes are not removed from the
result.

Chapter 6
printf Action

6-5



Conversion Characters Description

i The char, int, long, long long, or short
argument is printed as a decimal (base 10)
integer. If the argument is signed, it is
printed as a signed value. If the argument
is unsigned, it is printed as an unsigned
value. This conversion has the same
meaning as d.

k The stack argument is printed as if by a
call to trace() and handles kernel-level
stacks. This argument is valid only with
printa because stack cannot be called
from a D expression, as a D program
context is required.

o The char, int, long, long long, and short
argument is printed as an unsigned octal
(base 8) integer. Arguments that are
signed or unsigned may be used with this
conversion. If the # flag is specified, the
precision of the result is increased to force
the first digit of the result to be a zero, if
necessary.

p The pointer or uintptr_t argument is
printed as a hexadecimal (base 16) integer.
D accepts pointer arguments of any type. If
the # flag is specified, a non-zero result has
0x prepended to it.

s The argument must be an array of char or
a string. Bytes from the array or string
are read up to a terminating null character
or the end of the data and interpreted and
printed as ASCII characters. If the precision
is not specified, it is taken to be infinite so
that all characters up to the first null
character are printed. If the precision is
specified, only the portion of the character
array that is displayed in the
corresponding number of screen columns
is printed. If an argument of type char * is
to be formatted, it should be cast to string
or prefixed with the D stringof operator
to indicate that DTrace should trace the
bytes of the string and format them.

S The argument must be an array of char or
string. The argument is processed as if by
the %s conversion, but any ASCII characters
that are not printable are replaced by the
corresponding escape sequence, as
described in Table 2-6.

Chapter 6
printf Action

6-6



Conversion Characters Description

u The char, int, long, long long, or short
argument is printed as an unsigned
decimal (base 10) integer. Arguments that
are signed or unsigned can be used with
this conversion. The result is always
formatted as unsigned.

wc The int argument is converted to a wide
character (wchar_t) and the resulting wide
character is printed.

ws The argument must be an array of
wchar_t. Bytes from the array are read up
to a terminating null character or the end
of the data and interpreted and printed as
wide characters. If the precision is not
specified, it is taken to be infinite, so all
wide characters up to the first null
character are printed. If the precision is
specified, only that portion of the wide
character array that is displayed in the
corresponding number of screen columns
is printed.

x, X The char, int, long, long long, or short
argument is printed as an unsigned
hexadecimal (base 16) integer. Arguments
that are signed or unsigned may be used
with this conversion. If the x form of the
conversion is used, the letter digits abcdef
are used. If the X form of the conversion is
used, the letter digits ABCDEF are used. If
the # flag is specified, a non-zero result has
0x (for %x) or 0X (for %X) that is prepended
to it.

Y The uint64_t argument is interpreted to
be the number of nanoseconds, since 00:00
Universal Coordinated Time, January 1,
1970, and is printed in the following
format: "%Y %a %b %e %T %Z". The current
number of nanoseconds since 00:00 UTC,
January 1, 1970 is available as the
walltimestamp variable.

% Print a literal % character. No argument is
converted. The entire conversion
specification must be %%.

printa Action
The printa action enables you to format the results of aggregations in a D program. The
function is invoked by using one of following two forms:

printa(@aggregation-name); 
printa(format-string, @aggregation-name);

Chapter 6
printa Action

6-7



If the first form of the function is used, the dtrace command takes a consistent
snapshot of the aggregation data and produces output that is equivalent to the default
output format used for aggregations. See Aggregations. If the second form of the
function is used, the dtrace command takes a consistent snapshot of the aggregation
data and produces output according to the conversions that are specified in the format
string, according to the following rules:

• The format conversions must match the tuple signature that is used to create the
aggregation. Each tuple element can only appear once. For example, if you
aggregate a count by using the following D statements:

@a["hello", 123] = count(); 
@a["goodbye", 456] = count();

Then, you add the D statement printa(format-string, @a) to a probe clause,
dtrace takes a snapshot of the aggregation data and produces output as though
you entered these statements:

printf(format-string, "hello", 123); 
printf(format-string, "goodbye", 456);

Then, continue similarly on for each tuple defined in the aggregation.

• Unlike printf, the format string that you use for printa does not need to include
all elements of the tuple: you can have a tuple of length 3 and only one format
conversion. Therefore, you can omit any tuple keys from your printa output by
changing your aggregation declaration to move the keys you want to omit to the
end of the tuple and then omit any corresponding conversion specifiers for them in
the printa format string.

• The aggregation result is included in the output by using the additional @ format
flag character, which is only valid when used with printa. The @ flag can be
combined with any appropriate format conversion specifier. Also, the flag can
appear more than once in a format string so that your tuple result can appear
anywhere in the output, as well as appear more than once. The set of conversion
specifiers that can be used with each aggregating function are implied by the
aggregating function's result type. The aggregation result types are listed in the
following table.

Aggregation Result Type

avg uint64_t
count uint64_t
llquantize int64_t
lquantize int64_t
max uint64_t
min uint64_t
quantize int64_t
sum uint64_t

For example, to format the results of avg, you can apply the %d, %i, %o, %u, or %x format
conversions. The quantize, lquantize, and llquantize functions format their results
as an ASCII table rather than as a single value.

Chapter 6
printa Action

6-8



The following D program shows an example of printa using the profile provider to sample
the value of caller, then formatting the results as a simple table. Type the following source
code and save it in a file named printa.d:

profile:::tick-1000
{
  @myagg[caller] = count();
}

END
{
  printa("%@8u %a\n", @myagg);
}

If you use the dtrace command to execute this program, wait a few seconds, then press
Ctrl-C. You should see output similar to the following:

# dtrace -qs printa.d
                  ^C
       1 vmlinux`do_syscall_64+0x2f
       1 vmlinux`___bpf_prog_run+0x528
       1 vmlinux`page_frag_free+0x3e
       1 vmlinux`__legitimize_mnt
       1 vmlinux`seq_printf+0x1b
       1 vmlinux`selinux_sb_show_options+0x39
       1 vmlinux`strchr+0x1f
       1 ip6_tables`ip6t_do_table+0xbb
       2 vmlinux`__raw_callee_save___pv_queued_spin_unlock+0x10
      14 libata`__dta_ata_sff_pio_task_1036+0x9e
   12975 vmlinux`native_safe_halt+0x6

trace Default Format
If you use trace rather than printf to capture data, the dtrace command formats the
results by using a default output format. If the data is 1, 2, 4, or 8 bytes in size, the result is
formatted as a decimal integer value. If the data is any other size, and is a sequence of
printable characters if interpreted as a sequence of bytes, it is printed as an ASCII string. If
the data is any other size, and is not a sequence of printable characters, it is printed as a
series of byte values that is formatted as hexadecimal integers.

Chapter 6
trace Default Format

6-9



7
Speculative Tracing

This chapter describes how to use the DTrace facility for speculative tracing, which includes
the ability to tentatively trace data and then later decide whether to commit the data to a
tracing buffer or discard it.

About Speculative Tracing
In DTrace, the primary mechanism for filtering out uninteresting events is the predicate
mechanism, which is described in more detail in D Program Structure. Predicates are useful
when you know whether a probe event is of interest at the time that it fires. For example, if
you are only interested in activity that is associated with a certain process or a certain file
descriptor, you know when the probe fires if it is associated with the process or file descriptor
of interest. Note that in other situations, you might not know whether a given probe event is of
interest until some time after the probe fires.

Take the example of a system call that is occasionally failing with a common error code such
as EIO or EINVAL. In this instance, you might want to examine the code path leading to the
error condition. To capture the code path, you could enable every probe, but only if the failing
call can be isolated in such a way that a meaningful predicate can be constructed. If the
failures are sporadic or non-deterministic, you would be forced to trace all of the events that
might be interesting, then later post-process the data to filter out the events that were not
associated with the failing code path. In this case, even though the number of interesting
events might be reasonably small, the number of events that must be traced is very large,
making post-processing difficult.

In such situations, you can use speculative tracing facility to tentatively trace data at one or
more probe locations. You can then decide to commit the data to the principal buffer at
another probe location. The result is that your trace data only contains the output that is of
interest; no post-processing is required and the DTrace overhead is minimized.

Speculation Interfaces
The following table describes DTrace speculation functions.

Table 7-1    DTrace Speculation Functions

Function Args Description

speculation None Returns an identifier for a new
speculative buffer.

speculate ID Denotes that the remainder of
the clause should be traced to
the speculative buffer
specified by ID.

commit ID Commits the speculative
buffer that is associated with
ID.

7-1



Table 7-1    (Cont.) DTrace Speculation Functions

Function Args Description

discard ID Discards the speculative buffer
that is associated with ID.

Creating a Speculation
The speculation function allocates a speculative buffer and returns a speculation
identifier. The speculation identifier should be used in subsequent calls to the
speculate function. Speculative buffers are a finite resource. If no speculative buffer is
available when speculation is called, an ID of zero is returned and a corresponding
DTrace error counter is incremented. An ID of zero is always invalid, but it can be
passed to the speculate, commit and discard functions. If a call to speculation fails,
dtrace generates a message similar to the following:

dtrace: 2 failed speculations (no speculative buffer space available)

The number of speculative buffers defaults to one but can be optionally tuned higher.
See Speculation Options and Tuning.

Using a Speculation
To use a speculation, an identifier that is returned from speculation must be passed
to the speculate function in a clause prior to any data-recording actions. All
subsequent data-recording actions in a clause containing a speculate are
speculatively traced. The D compiler generates a compile-time error if a call to
speculate follows data-recording actions in a D probe clause. Therefore, clauses
might contain speculative tracing or non-speculative tracing requests, but not both.

Aggregating actions, destructive actions, and the exit action may never be
speculative. Any attempt to take one of these actions in a clause containing a
speculate results in a compile-time error. Also, a speculate may not follow a
speculate. Only one speculation is permitted per clause. A clause that contains only a
speculate speculatively traces the default action, which is defined to trace only the
enabled probe ID. See Actions and Subroutines for a description of the default action.

Typically, you assign the result of speculation to a thread-local variable and then use
that variable as a subsequent predicate to other probes, as well as an argument to
speculate, as shown in the following example:

syscall::openat:entry
{
  self->spec = speculation();
}

syscall:::
/self->spec/
{
  speculate(self->spec);
  printf("this is speculative");
}

Chapter 7
Creating a Speculation

7-2



Committing a Speculation
You commit speculations by using the commit function. When a speculative buffer is
committed, its data is copied into the principal buffer. If there is more data in the specified
speculative buffer than there is available space in the principal buffer, no data is copied and
the drop count for the buffer is incremented. If the buffer has been speculatively traced on
more than one CPU, the speculative data on the committing CPU is copied immediately,
while speculative data on other CPUs is copied some time after the commit. Thus, some time
might elapse between a commit that begins on one CPU, while the data is being copied from
speculative buffers to principal buffers on all CPUs. This length of time is guaranteed to be no
longer than the time dictated by the cleaning rate. See Speculation Options and Tuning.

A committing speculative buffer is not made available to subsequent speculation calls until
each per-CPU speculative buffer has been completely copied into its corresponding per-CPU
principal buffer. Similarly, subsequent calls to speculate to the committing buffer are silently
discarded, and subsequent calls to commit or discard silently fail. Finally, a clause containing
a commit cannot contain a data recording action. However, a clause can contain multiple
commit calls to commit disjoint buffers.

Discarding a Speculation
You discard speculations by using the discard function. When a speculative buffer is
discarded, its contents are also discarded. If the speculation has only been active on the CPU
calling discard, the buffer is immediately available for subsequent calls to speculation. If the
speculation has been active on more than one CPU, the discarded buffer will be available for
subsequent speculation some time after the call to discard. The length of time between a
discard on one CPU and the buffer being made available for subsequent speculations is
guaranteed to be no longer than the time that is dictated by the cleaning rate. If, at the time
speculation is called, no buffer is available because all speculative buffers are currently
being discarded or committed, dtrace generates a message similar to the following:

dtrace: 905 failed speculations (available buffer(s) still busy)

You can reduce the likelihood of all buffers being unavailable by tuning the number of
speculation buffers or the cleaning rate. See Speculation Options and Tuning.

Example of a Speculation
One potential use for speculations is to highlight a particular code path. The following
example shows the entire code path under the open() system call when the call fails. Type
the following source code and save it in a file named specopen.d:

#!/usr/sbin/dtrace -Fs

syscall::open:entry
{
  /*
   * The call to speculation() creates a new speculation. If this fails,
   * dtrace will generate an error message indicating the reason for
   * the failed speculation(), but subsequent speculative tracing will be
   * silently discarded.
   */
  self->spec = speculation();

Chapter 7
Committing a Speculation

7-3



  speculate(self->spec);

  /*
   * Because this printf() follows the speculate(), it is being
   * speculatively traced; it will only appear in the data buffer if the
   * speculation is subsequently committed.
   */
  printf("%s", copyinstr(arg0));
}

syscall::open:return
/self->spec/
{
  /*
   * To balance the output with the -F option, we want to be sure that
   * every entry has a matching return. Because we speculated the
   * open entry above, we want to also speculate the open return.
   * This is also a convenient time to trace the errno value.
   */
  speculate(self->spec);
  trace(errno);
}

syscall::open:return
/self->spec && errno != 0/
{
  /*
   * If errno is non-zero, we want to commit the speculation.
   */
  commit(self->spec);
  self->spec = 0;
}

syscall::open:return
/self->spec && errno == 0/
{
  /*
   * If errno is not set, we discard the speculation.
   */
  discard(self->spec);
  self->spec = 0;
}

Running the previous script produces output similar to the following:

# ./specopen.d
dtrace: script ’./specopen.d’ matched 4 probes
CPU FUNCTION
  1  => open                                  /var/ld/ld.config
  1  <= open                                          2
  1  => open                                  /images/UnorderedList16.gif
  1  <= open                                          4
...

Speculation Options and Tuning
If a speculative buffer is full when a speculative tracing action is attempted, no data is
stored in the buffer and a drop count is incremented. In this situation, dtrace
generates a message similar to the following:

Chapter 7
Speculation Options and Tuning

7-4



dtrace: 38 speculative drops

Speculative drops do not prevent the full speculative buffer from being copied into the
principal buffer when it is committed. Similarly, speculative drops can occur even if drops
were experienced on a speculative buffer that were ultimately discarded. Speculative drops
can be reduced by increasing the speculative buffer size, which is tuned by using the
specsize option. The specsize option can be specified with any size suffix. The resizing
policy of this buffer is dictated by the bufresize option.

Speculative buffers might be unavailable when speculation is called. If buffers that have not
yet been committed or discards exist, dtrace generates a message similar to the following:

dtrace: 1 failed speculation (no speculative buffer available)

You can reduce the likelihood of failed speculations of this nature by increasing the number of
speculative buffers by specifying the nspec option. The value of nspec defaults to 1.

Also, speculation can fail if all speculative buffers are busy. In this case, an error message
similar to the following is displayed:

dtrace: 1 failed speculation (available buffer(s) still busy)

This error message indicates that speculation was called after commit was called for a
speculative buffer, but before that buffer was actually committed on all CPUs. You can reduce
the likelihood of failed speculations of this nature by increasing the rate at which CPUs are
cleaned by using the cleanrate option. The value of cleanrate defaults to 101.

Chapter 7
Speculation Options and Tuning

7-5



8
dtrace Command Reference

The dtrace command is a generic front-end utility for the DTrace facility. The command
implements a simple interface to invoke the D language compiler. The dtrace command
also has the ability to retrieve buffered trace data from the DTrace kernel facility and a
includes a set of basic routines to format and print traced data. This chapter provides a
complete reference for the dtrace command.

dtrace Command Description
The dtrace command provides a generic interface to all of the essential services that are
provided by the DTrace facility, including options to do the following:

• List the set of probes and providers currently published by DTrace.

• Enable probes directly by using any of the probe description specifiers (provider, module,
function, name).

• Run the D compiler and compile one or more D program files or programs written directly
on the command line.

• Generate program stability reports. See DTrace Stability Features.

• Modify DTrace tracing and buffering behavior and enable additional D compiler features.
See Options and Tunables.

You can also use the dtrace command to create D scripts by using the command in a #!
declaration to create an interpreter file. See Scripting. Finally, you can use the -e option to
dtrace to compile D programs and determine their properties without actually enabling any
tracing.

dtrace Command Options
The dtrace command accepts the following options:

dtrace [-CeFGhHlqSvVwZ]
[-b bufsz] [-c command] [-D name[=value]] [-I pathname] [-L pathname]
[-o pathname] [-p PID] [-s source_pathname]
[-U name] [-x option[=value]] [-X a|c|s|t]
[-P provider[[predicate]action]]
[-m [[provider:]module[[predicate]action]]]
[-f [[provider:]module:]function[[predicate]action]]
[-n [[[provider:]module:]function:]name[[predicate]action]]
[-i probe-id[[predicate]action]]

where predicate is any D predicate enclosed in slashes // and action is any D statement list
enclosed in braces {}, according to the D language syntax.

If D program code is provided as an argument to the -P, -m, -f, -n, or -i options, this text
must be appropriately quoted to avoid interpretation by the shell.

The options are as follows:

8-1



-b bufsize
Set the principal trace buffer size, which can include any of the size suffixes k
(kilobyte), m (megabyte), g (gigabyte), or t (terabyte).
If the buffer space cannot be allocated, dtrace
attempts to reduce the buffer size or exits, depending on the setting of
the bufresize property.

-c command
Run the specified command and exit upon its completion. If you specify more
than one -c option, dtrace exits when all of the commands have exited, and then
reports the exit status for each child process as it terminates. The dtrace command
makes the process ID of the first command available
to D programs as the $target macro variable.

-C
Run the C preprocessor (cpp) on D programs before compiling them. You can pass
options to the C preprocessor by using the -D, -H, -I, and -U options. Use the -X
option to select the degree of conformance with the C standard.

-D name[=value]
Define the specified macro name and optional value when invoking cpp with the -C
option. You can specify the -D option to the command multiple times.

-e
Exit after compiling any requests and before enabling any probes. You can combine
this option with the -D option to verify that your D
programs compile without executing them or enabling the
corresponding instrumentation.

-f [[provider:]module:] function [[predicate]action]
Specify a function  (optionally specifying the provider and module) that you want
to trace or list. You can append an optional D-probe clause. You can specify the -f
option multiple times to the command.

-F
Reduce trace output by combining the output for function and system call entry and
return points. The dtrace command indents entry probe reports and leaves
return probe reports unindented. The command prefixes the output from function entry
probe reports with -> and the output from function return probe reports with <-. The
dtrace command prefixes the output from system call entry probe reports with =>
and the output from system call return probe reports with <=.

-G
Generate an ELF file that contains an embedded D program. The command saves
the DTrace probes that are specified in the program by using a relocatable ELF
object that can be linked with another program. If you specify the -o option, dtrace
saves the  ELF file to the specified path name. If you do not specify the -o option,
the ELF file is assigned the same name as the source file for the D program, except
with a .o extension rather than the .s extension. Otherwise, the ELF file is saved with
the name d.out.

-h
Create a header file based on probe definitions in the file that is specified as the
argument to the -s option. If you specify the -o option, the command

Chapter 8
dtrace Command Options

8-2



saves the header file to the specified path name. If you do not specify the -o option,
the header file is assigned the same name as the source file for the D program, except with
a .h extension rather than a .d extension. You should amend the source file of the program
to be traced so that it includes this header file.

-H
Print the path names of included files on stderr when you invoke cpp with the -C option.

-i probe_ID [[predicate]action]
Specify a probe identifier that you want to trace or list. You must specify the probe ID as
a decimal integer, as displayed by dtrace -l. You can append an optional D-probe clause.
You can specify the -i option multiple times to the command.

-I pathname
Add the specified directory path to the search path for #include files when you invoke cpp
with the -C option. The specified directory is inserted at the head of the default directory list.

-l
List probes instead of enabling them. The dtrace command filters the list of probes based
on the arguments to the -f, -i, -m, -n, -P, and -s options. If no options are specified, the
command lists all of the probes.

-L pathname
Add the specified directory path to the end of the library search path. Use this option to
specify the path to DTrace libraries, which contain common definitions for D programs.

-m [[provider:]module [[predicate]action]]
Specify a module that you want to trace or list. You can optionally specify the provider. You
can append an optional D-probe clause. You can specify the -m option multiple times to
the command.

-n [[[provider:]module:] function:]name [[predicate]action]
Specify a probe name that you want to trace or list. You can append an optional D-
probe clause. You can optionally specify the provider, module, and function. You can specify
the -n option multiple times to the command.

-o pathname
Specify the output file for the -G and -l options, or for traced data.

-p PID
Grab a process by specifying its process ID, cache its symbol tables, and exit
upon its completion. If you specify more than one -p option,  dtrace exits when all of the
processes have exited. In addition, the command reports the exit status for each
process as it terminates. The dtrace command makes the first process ID that is specified
available to D programs  as the macro variable $target.

-P provider['D-probe_clause']
Specify a provider that you want to trace or list. You can append an optional D-probe clause.
You can specify the -P option multiple times to the command.

-q
Set quiet mode. The dtrace command suppresses informational messages,
column headers, CPU ID, probe ID, and additional newlines. Only the data that
is traced and formatted by the printa(), printf(), and trace() D program

Chapter 8
dtrace Command Options

8-3



statements is displayed on stdout. This option is equivalent to specifying #pragma D
option quiet in a D program.

-s source_pathname
Specify the name of a D program source file to be compiled by the dtrace
command, as follows:

• If you specify the -h option, dtrace creates a header file using the probe
definitions in the file.

• If you specify the -G option, dtrace generates a relocatable ELF
object that can be linked with another program.

• If you specify the -e option, dtrace compiles the program, but does not
enable any instrumentation.

• If you specify the -l option, dtrace compiles the program and lists the set of
matching probes, but it does not enable any instrumentation.

• If you do not specify an option, dtrace enables the instrumentation that is
specified by the D program and begins tracing.

-S
Show the D compiler intermediate code. The D compiler writes a
report of the intermediate code that was generated for each D program to stderr.

-U name
Undefine the specified name when invoking cpp with the -C option. You can specify
the -U option multiple times to the command.

-v
Set verbose mode. The dtrace command produces a
program stability report showing the minimum interface stability and dependency level
for any specified D programs.

-V
Write the highest D programming interface version that is supported by
dtrace to stdout.
The combination -vV adds other version information, such as the version of the user-
space binaries from the dtrace-utils package.

-w
Permit destructive actions by D programs. Note that if you do not specify this
option, the command does not compile or enable a D program that
contains destructive actions. This option is equivalent to specifying #pragma D option
destructive in a D program.

-x option[=value]
Enable or modify a DTrace runtime option or D compiler option.

-X a|c|t
Include the option -std=gnu99 (conformance with 1999 C standard including GNU
extensions) when invoking cpp with the -C option.

-Xs
Include the option -traditional-cpp (conformance with K&R C) when
invoking cpp with the -C option.

Chapter 8
dtrace Command Options

8-4



Regardless of the -X mode, the following additional C preprocessor definitions are always
specified and valid in all modes:

• __linux
• __unix
• __SVR4
• __`uname -s` (for example, __Linux)

• __SUNW_D=1
• __SUNW_D_64
• __SUNW_D_VERSION=0xMMmmmuuu

where MM is the Major release value in hexadecimal, mmm is the Minor release value in
hexadecimal, and uuu is the Micro release value in hexadecimal. See DTrace Versioning
for more information about DTrace versioning.

-Z
Permit probe descriptions that do not match any probes. If you do not specify this option, the
dtrace command reports an error and exits if a probe description
does not match a known probe.

dtrace Command Operands
You can specify zero or more additional arguments on the dtrace command line to define a
set of macro variables, such as $1, $2, and so on, to be used in any D programs that are
specified with the -s option or on the command line. The use of macro variables is described
further in Scripting.

dtrace Command Exit Status
The following exit values are returned by the dtrace command:

0
Indicates that the specified requests were completed successfully. For D program requests,
the 0 exit status indicates that programs were successfully compiled, probes were
successfully enabled, or an anonymous state was successfully retrieved. The dtrace
command returns 0 even if the specified tracing requests encountered errors or drops.

1
Indicates that a fatal error occurred. For D program requests, the 1 exit status indicates that
program compilation failed or that the specified request could not be satisfied.

2
Indicates that invalid command-line options or arguments were specified.

Chapter 8
dtrace Command Operands

8-5



9
Scripting

You can use the dtrace command to create interpreter files from D programs, which are
similar to shell scripts that can be installed as reusable interactive DTrace tools. The D
compiler and the dtrace command provide a set of macro variables that are expanded by
the D compiler to make it easy to create DTrace scripts. This chapter provides a reference for
the macro variable facility and tips for creating persistent scripts.

Interpreter Files
Similar to your shell and utilities such as awk and perl, you can use the dtrace command
to create executable interpreter files.

An interpreter file begins with a line of the following form:

#!pathname [arg]

where pathname is the path of the interpreter and arg is a single, optional argument. When
an interpreter file is executed, the system invokes the specified interpreter. If arg was
specified in the interpreter file, it is passed as an argument to the interpreter. The path to the
interpreter file and any additional arguments that were specified when it was executed are
then appended to the interpreter argument list. Therefore, you always need to create DTrace
interpreter files with at least the following arguments:

#!/usr/sbin/dtrace -s

When your interpreter file is executed, the argument to the -s option is the pathname of the
interpreter file. The dtrace command then reads, compiles, and executes this file as if you
had typed the following command in your shell:

# dtrace -s interpreter-file

The following example shows how you would create and execute a dtrace interpreter file.
First, type the following D source code and save it in a file named interp.d:

#!/usr/sbin/dtrace -s
BEGIN
{
  trace("hello");
  exit(0);
}

Then, make the interp.d file executable and execute it as follows:

# chmod a+rx interp.d
# ./interp.d
dtrace: script './interp.d' matched 1 probe
CPU     ID                    FUNCTION:NAME
  0      1                           :BEGIN   hello                            
#

9-1



Remember that the #! directive must comprise the first two characters of your file with
no intervening or preceding white space. The D compiler automatically ignores this line
when it processes the interpreter file.

The dtrace command uses getopt() to process command-line options so that you
can combine multiple options in your single interpreter argument. For example, to add
the -q option to the previous example you could change the interpreter directive to the
following:

#!/usr/sbin/dtrace -qs

Note:

If you specify multiple options, the -s option must always end the list of
options so that the next argument, the interpreter file name, is correctly
processed as the argument to the -s option.

If you need to specify more than one option that requires an argument in your
interpreter file, use the #pragma D option directive to set your options. Several
dtrace command-line options have #pragma equivalents that you can use. See 
Options and Tunables.

Macro Variables
The D compiler defines a set of built-in macro variables that you can use when writing
D programs or interpreter files. Macro variables are identifiers that are prefixed with a
dollar sign ($) and are expanded once by the D compiler when processing your input
file. The following table describes the macro variables that the D compiler provides.

Table 9-1    D Macro Variables

Name Description Reference

$[0-9]+ Macro arguments Macro Arguments

$egid Effective group ID See the getegid(2) manual
page.

$euid Effective user ID See the geteuid(2) manual
page.

$gid Real group ID See the getgid(2) manual
page.

$pid Process ID See the getpid(2) manual
page.

$pgid Process group ID See the getpgid(2) manual
page.

$ppid Parent process ID See the getppid(2) manual
page.

$sid Session ID See the getsid(2) manual
page.

Chapter 9
Macro Variables

9-2



Table 9-1    (Cont.) D Macro Variables

Name Description Reference

$target Target process ID Target Process ID

$uid Real user ID See the getuid(2) manual
page

With the exception of the $[0-9]+ macro arguments and the $target macro variable, all of
the macro variables expand to integers that correspond to system attributes, such as the
process ID and the user ID. The variables expand to the attribute value associated with the
current dtrace process or whatever process is running the D compiler.

Using macro variables in interpreter files enables you to create persistent D programs that
you do not need to edit every time you want to use them. For example, to count all system
calls, except those that are executed by the dtrace command, you would use the following
D program clause containing $pid:

syscall:::entry
/pid != $pid/
{
  @calls = count();
}

This clause always produces the desired result, even though each invocation of the dtrace
command has a different process ID. Macro variables can be used in a D program anywhere
that an integer, identifier, or string can be used.

Macro variables are expanded only one time when the input file is parsed, not recursively.

Except in probe descriptions, each macro variable is expanded to form a separate input token
and cannot be concatenated with other text to yield a single token.

For example, if $pid expands to the value 456, the D code in the following example would
expand to the two adjacent tokens 123 and 456, resulting in a syntax error, rather than the
single integer token 123456:

123$pid

However, in probe descriptions, macro variables are expanded and concatenated with
adjacent text. For example, the following clause uses the DTrace pid provider to instrument
the dtrace command:

# dtrace -c ./a.out -n 'pid$target:libc.so::entry'

Macro variables are only expanded one time within each probe description field and they may
not contain probe description delimiters (:).

Macro Arguments
The D compiler also provides a set of macro variables corresponding to any additional
argument operands that are specified as part of the dtrace command invocation. These
macro arguments are accessed by using the built-in names $0, for the name of the D
program file or dtrace command, $1, for the first additional operand, $2 for the second
operand, and so on. If you use the -s option, $0 expands to the value of the name of the

Chapter 9
Macro Arguments

9-3



input file that is used with this option. For D programs that are specified on the
command line, $0 expands to the value of argv[0], which is used to execute the
dtrace command itself.

Macro arguments can expand to integers, identifiers, or strings, depending on the form
of the corresponding text. As with all macro variables, macro arguments can be used
anywhere integer, identifier, and string tokens can be used in a D program.

All of the following examples could form valid D expressions assuming appropriate
macro argument values:

execname == $1  /* with a string macro argument */

x += $1         /* with an integer macro argument */

trace(x->$1)    /* with an identifier macro argument */

Macro arguments can be used to create DTrace interpreter files that act like real Linux
commands and use information that is specified by a user or by another tool to modify
their behavior.

For example, the following D interpreter file traces write() system calls that are
executed by a particular process ID and saved in a file named tracewrite:

#!/usr/sbin/dtrace -s 
syscall::write:entry
/pid == $1/
{
}

If you make this interpreter file executable, you can specify the value of $1 by using an
additional command-line argument to your interpreter file, for example:

# chmod a+rx ./tracewrite
# ./tracewrite 12345

The resulting command invocation counts each write() system call that is executed
by the process ID 12345.

If your D program references a macro argument that is not provided on the command
line, an appropriate error message is printed and your program fails to compile, as
shown in the following example:

# ./tracewrite
dtrace: failed to compile script ./tracewrite: line 4: 
  macro argument $1 is not defined

D programs can reference unspecified macro arguments if you set the defaultargs
option. If defaultargs is set, unspecified arguments have the value 0. See Options
and Tunables for more information about D compiler options. The D compiler also
produces an error message if additional arguments that are not referenced by your D
program are specified on the command line.

The macro argument values must match the form of an integer, identifier, or string. If
the argument does not match any of these forms, the D compiler reports an
appropriate error message. When specifying string macro arguments to a DTrace
interpreter file, you should surround the argument in an extra pair of single quotes to
avoid interpretation of the double quotes and string contents by your shell:

# ./foo '"a string argument"'

Chapter 9
Macro Arguments

9-4



If you want your D macro arguments to be interpreted as string tokens, even if they match the
form of an integer or identifier, prefix the macro variable or argument name with two leading
dollar signs, for example, $$1, which forces the D compiler to interpret the argument value as
if it were a string surrounded by double quotes. All of the usual D string escape sequences,
per Table 2-6, are expanded inside of any string macro arguments, regardless of whether
they are referenced by using the $arg or $$arg form of the macro. If the defaultargs option
is set, unspecified arguments that are referenced with the $$arg form have the value of the
empty string ("").

Target Process ID
Use the $target macro variable to create scripts to be applied to the user process of interest
that you specify with the -p option or that you create by using the dtrace command with the
-c option. The D programs that you specify on the command line or by using the -s option
are compiled after processes are created or grabbed, and the $target variable expands to
the integer process ID of the first such process.

For example, you could use the following D script to determine the distribution of system calls
that are executed by a particular subject process. Save it in a file named syscall.d:

syscall:::entry
/pid == $target/
{
  @[probefunc] = count();
}

To determine the number of system calls executed by the date command, save the script in
the file named syscall.d, then run the following command:

# dtrace -s syscall.d -c date
dtrace: script 'syscall.d' matched 296 probes
Tue Oct 16 15:12:07 BST 2012

  access                                                            1
  arch_prctl                                                        1
  clock_gettime                                                     1
  exit_group                                                        1
  getrlimit                                                         1
  lseek                                                             1
  rt_sigprocmask                                                    1
  set_robust_list                                                   1
  set_tid_address                                                   1
  write                                                             1
  futex                                                             2
  rt_sigaction                                                      2
  brk                                                               3
  munmap                                                            3
  read                                                              5
  open                                                              6
  mprotect                                                          7
  close                                                             8
  newfstat                                                          8
  mmap                                                             16

Chapter 9
Target Process ID

9-5



10
Options and Tunables

To enable customization, DTrace affords its consumers several important degrees of
freedom. To minimize the likelihood of requiring specific tuning, DTrace is implemented with
reasonable default values and flexible default policies, but situations might arise that require
tuning the behavior of DTrace on a consumer-by-consumer basis. This chapter describes
DTrace options and tunables and the interfaces that you can use to modify them.

Consumer Options
DTrace is tuned by setting or enabling options. The available options for tuning DTrace are
described in the following table. For some options, a corresponding dtrace command-line
option is also provided.

Table 10-1    DTrace Consumer Options

Option Name Type Value Description

aggpercpu Compile-time Aggregate per CPU.
See Aggregations.

aggrate Dynamic runtime time Rate of aggregation
reading.
See Aggregations.

aggsize Runtime size Aggregation buffer
size/
See Aggregations.

aggsortkey Dynamic runtime false or true Sort aggregations by
key.
See Aggregations.

aggsortkeypos Dynamic runtime scalar Number of the
aggregation key on
which to sort.
See Aggregations.

aggsortpos Dynamic runtime scalar Number of the
aggregation variable
on which to sort
See Aggregations.

aggsortrev Dynamic runtime false or true Sort aggregations in
reverse order.
See Aggregations.

amin Compile-time string Stability attribute
minimum.
See Stability
Enforcement

10-1



Table 10-1    (Cont.) DTrace Consumer Options

Option Name Type Value Description

argref Compile-time Do not require all
macro arguments to
be used.

bufpolicy Runtime fill, ring, or switch Buffer policy.
See Buffers and
Buffering .

bufresize Runtime auto or manual Buffer resizing policy.
See Buffers and
Buffering .

bufsize Runtime size Principal buffer size
(equivalent to the
dtrace -b).

See Buffers and
Buffering .

cleanrate Runtime time Cleaning rate.
See Speculative Tracing.

core Compile-time Enable core dumping
by dtrace.

cpp Compile-time Use cpp to pre-process
the input file.

cpphdrs Compile-time Specify the -H option
to cpp to print the
name of each header
file that is used.

cpppath Compile-time string Specify the path name
of cpp.

cpu Runtime scalar CPU on which to
enable tracing.
See Buffers and
Buffering.

ctypes Compile-time string Write out Compact
Type Format (CTF)
definitions of all C
types used in a
program at the end of
a D compilation run.

debug Compile-time Enable DTrace
debugging mode
(equivalent to setting
the environment
variable
DTRACE_DEBUG).

Chapter 10
Consumer Options

10-2



Table 10-1    (Cont.) DTrace Consumer Options

Option Name Type Value Description

defaultargs Compile-time Allow references to
unspecified macro
arguments. Use 0 as
the value for an
unspecified argument.
See Scripting.

define Compile-time string Define a macro name
and optional value in
the form
name[=value].
(equivalent to dtrace
-D).

destructive Runtime Allow destructive
actions (equivalent to
dtrace -w).

See Actions and
Subroutines.

droptags Compile-time Specifies that drop
tags are used.

dtypes Compile-time string Write out CTF
definitions of all D
types that are used in
a program at the end
of a D compilation
run.

dynvarsize Runtime size Dynamic variable
space size.
See Variables.

empty Compile-time Permit compilation of
empty D source files.

errtags Compile-time Prefix default error
message with error
tags.

Chapter 10
Consumer Options

10-3



Table 10-1    (Cont.) DTrace Consumer Options

Option Name Type Value Description

evaltime Compile-time exec, main, postinit,
or preinit

Control when DTrace
starts tracing a new
process. For
dynamically linked
binaries, tracing
starts:

exec
After exec().

preinit
After initialization of
the dynamic linker to
load the binary.

postinit (default)
After constructor
execution.

main
Before main() starts.
Same as postinit.

For statically linked
binaries, preinit is
equivalent to exec.

For stripped, statically
linked binaries,
postinit and main
are equivalent to
preinit.

flowindent Dynamic runtime Indent function entry
and prefix with ->.

Unindent function
return and prefix with
<-.

Indent system call
entry and prefix with
=>.

Unindent system call
return and prefix with
<=.

Equivalent to dtrace
-F.

See dtrace Command
Reference.

Chapter 10
Consumer Options

10-4



Table 10-1    (Cont.) DTrace Consumer Options

Option Name Type Value Description

incdir Compile-time string Add a #include
directory to the
preprocessor search
path (equivalent to
dtrace -I).

iregs Compile-time scalar Size of the DTrace
Intermediate Format
(DIF) integer register
set. The default value
is 8.

kdefs Compile-time Do not permit
unresolved kernel
symbols.

knodefs Compile-time Permit unresolved
kernel symbols.

late Compile-time dynamic or static Specify whether
references to dynamic
translators are
permitted:

dynamic
Allow references to
dynamic translators.

static
Require translators to
be statically defined.

lazyload Compile-time false or true Specify that the
DTrace Object Format
(DOF) should be lazily
loaded rather than
actively loaded.

ldpath Compile-time string Specify the path of the
dynamic linker loader
(ld).

libdir Compile-time string Add a library
directory to the library
search path.

Chapter 10
Consumer Options

10-5



Table 10-1    (Cont.) DTrace Consumer Options

Option Name Type Value Description

linkmode Compile-time dynamic, kernel, or
static

Specify the symbol
linking mode that is
used by the assembler
when processing
external symbol
references:

dynamic
All symbols are
treated as dynamic.

kernel
Kernel symbols are
treated as static and
user symbols are
treated as dynamic.

static
All symbols are
treated as static.

linktype Compile-time dof or elf Specify the output file
type:

dof
Produce a standalone
DOF file.

elf
Produce an ELF file
that contains DOF.

modpath Compile-time string Module path. The
default path is /lib/
modules/ version.

nolibs Compile-time Do not process D
system libraries.

nspec Runtime scalar Number of
speculations.
See Speculative Tracing.

pgmax Compile-time scalar Limit on the number
of threads that DTrace
can grab for tracing.
The default value is 8.

preallocate Compile-time scalar Amount of memory to
preallocate.

procfspath Compile-time string Path to the procfs file
system. The default
path is /proc.

Chapter 10
Consumer Options

10-6



Table 10-1    (Cont.) DTrace Consumer Options

Option Name Type Value Description

pspec Compile-time Interpret ambiguous
specifiers as probe
names.

quiet Dynamic runtime Output only explicitly
traced data
(equivalent to dtrace
-q).

See dtrace Command
Reference.

quietresize Dynamic runtime Suppress buffer-resize
messages.
See Buffers and
Buffering.

rawbytes Dynamic runtime Always print trace
output in
hexadecimal.
See Actions and
Subroutines.

specsize Runtime size Speculation buffer
size.
See Speculative Tracing.

stackframes Runtime scalar Number of stack
frames.
See Actions and
Subroutines.

stackindent Dynamic runtime scalar Number of white
space characters to
use when indenting
stack and ustack
output.
See Actions and
Subroutines.

statusrate Runtime time Rate of status
checking.

Chapter 10
Consumer Options

10-7



Table 10-1    (Cont.) DTrace Consumer Options

Option Name Type Value Description

stdc Compile-time a, c, s, or t Specify ISO C
conformance settings
for the preprocessor
when
invoking cpp with the 
-C option.

The a, c, and t settings
include the-
std=gnu99 option
(conformance with
1999 C standard
including GNU
extensions).
The s setting includes
the -traditional-
cpp option
(conformance with
K&R C).

strip Compile-time Strip non-loadable
sections from the
program.

strsize Runtime size String size.
See DTrace Support for
Strings.

switchrate Dynamic runtime time Rate of buffer
switching.
See Buffers and
Buffering .

syslibdir Compile-time string Path name of system
libraries.

tree Compile-time scalar Value of the DTrace
tree dump bitmap.

tregs Compile-time scalar Size of the DIF tuple
register set. The
default value is 8.

udefs Compile-time Do not permit
unresolved user
symbols.

undef Compile-time string Undefine a symbol
when invoking the
preprocessor.
Equivalent to dtrace
-U.

unodefs Compile-time Permit unresolved
user symbols.

Chapter 10
Consumer Options

10-8



Table 10-1    (Cont.) DTrace Consumer Options

Option Name Type Value Description

ustackframes Runtime scalar Number of user-land
stack frames.
See Actions and
Subroutines.

verbose Compile-time DIF verbose mode,
which shows each
compiled DIF object
(DIFO).

version Compile-time string Request a specific
version of the native
DTrace library.

zdefs Compile-time Permit probe
definitions that match
zero probes.

Values that denote sizes can be given an optional suffix of k, m, g, or t to denote kilobytes,
megabytes, gigabytes, and terabytes, respectively. Values that denote times can be given an
optional suffix of ns, us, ms, s or hz to denote nanoseconds, microseconds, milliseconds,
seconds, and number per second, respectively.

Modifying Options
You can set options in a D script by using #pragma D followed by the string option and the
option name. If the option takes a value, the option name should be followed by an equal sign
(=) and the option value. The following are examples of valid option settings:

#pragma D option nspec=4

#pragma D option bufsize=2g

#pragma D option switchrate=10hz

#pragma D option aggrate=100us

#pragma D option bufresize=manual

The dtrace command also accepts option settings on the command line as an argument to
the -x option, for example:

# dtrace -x nspec=4 -x bufsize=2g \
-x switchrate=10hz -x aggrate=100us -x bufresize=manual

If an invalid option is specified, dtrace indicates that the option name is invalid and exits, as
shown in the following example:

# dtrace -x wombats=25
dtrace: failed to set option -x wombats: Invalid option name

Similarly, if a value is not valid for the given option, dtrace indicates that the value is invalid,
as shown here:

Chapter 10
Modifying Options

10-9



# dtrace -x bufsize=100wombats
dtrace: failed to set option -x bufsize: Invalid value for specified option

If an option is set more than once, subsequent settings overwrite earlier settings.
Some options can only be set. The presence of such an option sets it, and you cannot
subsequently unset it.

Chapter 10
Modifying Options

10-10



11
DTrace Providers

This chapter describes some of the existing DTrace providers. Note that the list of providers
discussed in this chapter is not exhaustive. To display the providers that are available on your
system, use the dtrace -l command. Detailed information about translators for important
data structures can be found in /usr/lib64/dtrace/version/*.d files.

dtrace Provider
The dtrace provider includes several probes that are related to DTrace itself. You can use
these probes to initialize state before tracing begins, process state after tracing has
completed, and to handle unexpected execution errors in other probes.

BEGIN Probe
The BEGIN probe fires before any other probe. No other probe fires until all BEGIN clauses
have completed. This probe can be used to initialize any state that is needed in other probes.
The following example shows how to use the BEGIN probe to initialize an associative array to
map between mmap() protection bits and a textual representation:

BEGIN
{
  prot[0] = "---";
  prot[1] = "r--";
  prot[2] = "-w-";
  prot[3] = "rw-";
  prot[4] = "--x";
  prot[5] = "r-x";
  prot[6] = "-wx";
  prot[7] = "rwx";
}

syscall::mmap:entry
{
  printf("mmap with prot = %s", prot[arg2 & 0x7]);
}

The BEGIN probe fires in an unspecified context, which means the output of stack or ustack,
and the value of context-specific variables such as execname, are all arbitrary. These values
should not be relied upon or interpreted to infer any meaningful information. No arguments
are defined for the BEGIN probe.

END Probe
The END probe fires after all other probes. This probe will not fire until all other probe clauses
have completed. This probe can be used to process state that has been gathered or to format
the output. The printa action is therefore often used in the END probe. The BEGIN and END
probes can be used together to measure the total time that is spent tracing, for example:

11-1



BEGIN
{
  start = timestamp;
}

/*
 * ... other tracing actions...
 */

END
{
  printf("total time: %d secs", (timestamp - start) / 1000000000);
}

See Data Normalization and printa Action for other common uses of the END probe.

As with the BEGIN probe, no arguments are defined for the END probe. The context in
which the END probe fires is arbitrary and should not be depended upon.

When tracing with the bufpolicy option set to fill, adequate space is reserved to
accommodate any records that are traced in the END probe. See fill Policy and END
Probes for details.

Note:

The exit action causes tracing to stop and the END probe to fire. However,
there is some delay between the invocation of the exit action and when the
END probe fires. During this delay, no probes will fire. After a probe invokes
the exit action, the END probe is not fired until the DTrace consumer
determines that exit has been called and stops tracing. The rate at which
the exit status is checked can be set by using statusrate option. For more
information, see Options and Tunables.

ERROR Probe
The ERROR probe fires when a runtime error occurs during the execution of a clause for
a DTrace probe. As shown in the following example, if a clause attempts to
dereference a NULL pointer, the ERROR probe fires. Save it in a file named error.d:

BEGIN
{
  *(char *)NULL;
}

ERROR
{
  printf("Hit an error!");
}

When you run this program, output similar to the following is displayed:

# dtrace -s error.d 
dtrace: script 'error.d' matched 2 probes
CPU     ID                    FUNCTION:NAME
  1      3                           :ERROR Hit an error!

Chapter 11
dtrace Provider

11-2



dtrace: error on enabled probe ID 1 (ID 1: dtrace:::BEGIN):
invalid address (0x0) in action #1 at DIF offset 16
^C

The previous output indicates that the ERROR probe fired and that dtrace reported the error.
dtrace has its own enabling of the ERROR probe so that it can report errors. Using the ERROR
probe, you can create your own custom error handling.

The arguments to the ERROR probe are described in the following table.

Argument Description

arg1 The enabled probe identifier (EPID) of the
probe that caused the error.

arg2 The index of the action that caused the fault.

arg3 The DIF offset into the action or -1 if not
applicable.

arg4 The fault type.

arg5 Value that is particular to the fault type.

The following table describes the various fault types that can be specified in arg4 and the
values that arg5 can take for each fault type.

arg4 Value Description arg5 Meaning

DTRACEFLT_UNKNOWN Unknown fault type None

DTRACEFLT_BADADDR Access to unmapped or invalid
address

Address accessed

DTRACEFLT_BADALIGN Unaligned memory access Address accessed

DTRACEFLT_ILLOP Illegal or invalid operation None

DTRACEFLT_DIVZERO Integer divide by zero None

DTRACEFLT_NOSCRATCH Insufficient scratch memory to
satisfy scratch allocation

None

DTRACEFLT_KPRIV Attempt to access a kernel
address or property without
sufficient privileges

Address accessed or 0 if not
applicable

DTRACEFLT_UPRIV Attempt to access a user
address or property without
sufficient privileges

Address accessed or 0 if not
applicable

DTRACEFLT_TUPOFLOW DTrace internal parameter
stack overflow

None

DTRACEFLT_BADSTACK Invalid user process stack Address of invalid stack
pointer

If the actions that are taken in the ERROR probe cause an error, that error is silently dropped.
The ERROR probe is not recursively invoked.

Chapter 11
dtrace Provider

11-3



dtrace Stability
The dtrace provider uses DTrace's stability mechanism to describe its stabilities.
These values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Stable Stable Common

Module Private Private Unknown

Function Private Private Unknown

Name Stable Stable Common

Arguments Stable Stable Common

For more information about the stability mechanism, see DTrace Stability Features.

profile Provider
The profile provider includes probes that are associated with an interrupt that fires at
some regular, specified time interval. Such probes are not associated with any
particular point of execution, but rather with the asynchronous interrupt event. You can
use these probes to sample some aspect of the system state and then use the
samples to infer system behavior. If the sampling rate is high or the sampling time is
long, an accurate inference is possible. Using DTrace actions, you can use the
profile provider to sample practically any aspect of the system. For example, you
could sample the state of the current thread, the state of the CPU, or the current
machine instruction.

profile-n Probes
The profile-n probes fire at a fixed interval, at a high-interrupt level on all active
CPUs. The units of n default to a frequency that is expressed as a rate of firing per
second, but the value can also have an optional suffix , as shown in Table 11-1, which
specifies either a time interval or a frequency. The following table describes valid time
suffixes for a tick- n probe.

Table 11-1    Valid Time Suffixes

Suffix Time Units

nsec or ns nanoseconds

usec or us microseconds

msec or ms milliseconds

sec or s seconds

min or m minutes

hour or h hours

day or d days

Chapter 11
profile Provider

11-4



Table 11-1    (Cont.) Valid Time Suffixes

Suffix Time Units

hz hertz (frequency expressed as rate per
second)

tick-n Probes
The tick-n probes fire at fixed intervals, at a high interrupt level on only one CPU per
interval. Unlike profile-n probes, which fire on every CPU, tick-n probes fire on only one
CPU per interval and the CPU on which they fire can change over time. The units of n default
to a frequency expressed as a rate of firing per second, but the value can also have an
optional time suffix as shown in Table 11-1, which specifies either a time interval or a
frequency.

The tick-n probes have several uses, such as providing some periodic output or taking a
periodic action.

Note:

By default, the highest supported tick frequency is 5000 Hz (tick-5000).

profile Probe Arguments
The following table describes the arguments for the profile probes.

Table 11-2    profile Probe Arguments

Probe arg0 arg1 arg2
profile-n pc upc nsecs
tick-n pc upc —

The arguments are as follows:

• pc: kernel program counter

• upc: user-space program counter

• nsecs: elapsed number of nanoseconds

profile Probe Creation
Unlike other providers, the profile provider creates probes dynamically on an as-needed
basis. Thus, the desired probe might not appear in a listing of all probes, for example, when
using the dtrace -l -P profile command, but the probe is created when it is explicitly
enabled.

Chapter 11
profile Provider

11-5



A time interval that is too short causes the machine to continuously field time-based
interrupts and denies service on the machine. The profile provider silently refuses to
create a probe that would result in an interval of less than two hundred microseconds.

prof Stability
The profile provider uses DTrace's stability mechanism to describe its stabilities.
These stability values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Unstable Unstable Unknown

Function Private Private Unknown

Name Evolving Evolving Common

Arguments Evolving Evolving Common

For more information, see DTrace Stability Features.

fbt Provider
The fbt (Function Boundary Tracing) provider includes probes that are associated
with the entry to and return from most functions in the Oracle Linux kernel. Therefore,
there could well be tens of thousands of fbt probes.

To confirm that the fbt provider is available on your processor's architecture, you
should be able to load the module that provides fbt instrumentation and successfully
list several probes. Note that this process could take several seconds due to the large
number of such probes. For example, consider the following command, which is
executed as root:

# dtrace -l -P fbt | wc -l
dtrace: failed to match fbt:::: No probe matches description
1
# modprobe fbt
# dtrace -l -P fbt | wc -l
88958

In the previous example, the first dtrace command automatically loads modules that
are listed in /etc/dtrace-modules, but also confirms that fbt was not among them.
After fbt is loaded manually, many fbt probes appear. For more information, see 
Module Loading and fbt.

Like other DTrace providers, Function Boundary Tracing (FBT) has no probe effect
when not explicitly enabled. When enabled, FBT only induces a probe effect in probed
functions. While the FBT implementation is highly specific to the instruction set
architecture, FBT has been implemented on both x86 and 64-bit Arm platforms. For
each instruction set, there are a small number of leaf functions that do not call other
functions and are highly optimized by the compiler, which cannot be instrumented by
FBT. Probes for these functions are not present in DTrace.

An effective use of FBT probes requires knowledge of the operating system
implementation. It is therefore recommended that you use FBT only when developing
kernel software or when other providers are not sufficient. You can use other DTrace

Chapter 11
fbt Provider

11-6



providers such as syscall, sched, proc, and io to answer most system analysis questions
without requiring operating system implementation knowledge.

fbt Probes
FBT provides a probe at the entry and return of most functions in the kernel, named entry
and return, respectively. All FBT probes have a function name and module name.

fbt Probe Arguments
The arguments to entry probes are the same as the arguments to the corresponding
operating system kernel function. These arguments can be accessed as int64_t values by
using the arg0, arg1, arg2, ... variables.

If the function has a return value, the return value is stored in arg1 of the return probe. If a
function does not have a return value, arg1 is not defined.

While a given function only has a single point of entry, it might have many different points
where it returns to its caller. FBT collects a function's multiple return sites into a single return
probe. If you want to know the exact return path, you can examine the return probe arg0
value, which indicates the offset in bytes of the returning instruction in the function text.

fbt Examples
You can easily use the fbt provider to explore the kernel's implementation. The following
example script records the first gettimeofday call from any clock process and then follows
the subsequent code path through the kernel. Type the following D source code and save it in
a file named xgettimeofday.d:

/*
 * To make the output more readable, indent every function entry
 * and unindent every function return.  This is done by setting the
 * "flowindent" option.
 */
#pragma D option flowindent

syscall::gettimeofday:entry
/execname == "clock" && guard++ == 0/
{
        self->traceme = 1;
        printf("start");
}

fbt:::
/self->traceme/
{}

syscall::gettimeofday:return
/self->traceme/
{
        self->traceme = 0;
        exit(0);
}

Running this script results in output that is similar to the following:

Chapter 11
fbt Provider

11-7



# dtrace -s ./xgettimeofday.d
dtrace: script './xgettimeofday.d' matched 92115 probes
CPU FUNCTION
  0  => gettimeofday                          start
  0    -> SyS_gettimeofday
  0      -> getnstimeofday64
  0        -> __getnstimeofday64
  0        <- __getnstimeofday64
  0      <- getnstimeofday64
  0      -> _copy_to_user
  0      <- _copy_to_user
  0    <- SyS_gettimeofday
  0  <= gettimeofday

The previous output shows the internal kernel functions that are called when the
gettimeofday system call is made.

Module Loading and fbt
While the Oracle Linux kernel can dynamically load and unload kernel modules, for
fbt probes, the fbt kernel module must be loaded to support the instrumentation. For
more information about loading kernel modules, see the note in Getting Started With
DTrace. If fbt is not listed in /etc/dtrace-modules, or if the dtrace -l command
lists no fbt probes, use the following command:

# modprobe fbt

Conversely, you can unload the fbt instrumentation with the following command:

# modprobe -r fbt

When the fbt module is loaded, FBT automatically provides probes to instrument all
other loaded modules, including any new modules that are dynamically loaded. If a
loaded module has no enabled FBT probes, the module might be unloaded and the
corresponding probes are destroyed as the module is unloaded. If a loaded module
has enabled FBT probes, the module is considered busy and cannot be unloaded.

fbt Stability
The fbt provider uses DTrace's stability mechanism to describe its stabilities. These
stability values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Private Private ISA

Name Evolving Evolving Common

Arguments Private Private ISA

For more information, see DTrace Stability Features.

Chapter 11
fbt Provider

11-8



syscall Provider
The syscall provider makes available a probe at the entry to and return from every system
call in the system. Because system calls are the primary interface between user-level
applications and the operating system kernel, the syscall provider can offer tremendous
insight into application behavior with respect to the system.

syscall Probes
syscall provides a pair of probes for each system call: an entry probe that fires before the
system call is entered, and a return probe that fires after the system call has completed, but
before control has been transferred back to user-level. For all syscall probes, the function
name is set as the name of the instrumented system call.

Often, the system call names that are provided by syscall correspond to names in the
Section 2 manual pages. However, some syscall provider probes do not directly correspond
to any documented system call. Some common reasons for this discrepancy are described in
the following sections.

System Call Anachronisms
In some cases, the name of the system call, as provided by the syscall provider, might be a
reflection of an ancient implementation detail.

Subcoded System Calls
Some system calls might be implemented as sub operations of another system call. For
example, socketcall(), is the common kernel entry point for the socket system calls.

New System Calls
Oracle Linux implements at-suffixed system interfaces as individual system calls, for
example:

• faccessat()
• fchmodat()
• fchownat()
• fstatat64()
• futimensat()
• linkat()
• mkdirat()
• mknodat()
• name_to_handle_at()
• newfstatat()
• open_by_handle_at()
• openat()

Chapter 11
syscall Provider

11-9



• readlinkat()
• renameat()
• symlinkat()
• unlinkat()
• utimensat()
These system calls implement a superset of the functionality of their old non-at-
suffixed counterparts. They take an additional first argument that is either an open
directory file descriptor. In which case, the operation on a relative pathname is taken
relative to the specified directory, or is the reserved value AT_FDCWD, in which case the
operation takes place relative to the current working directory.

Replaced System Calls
In Oracle Linux, the following older system calls have been replaced and are not called
by the newer glibc interfaces. These legacy interfaces remain, but are
reimplemented, not as system calls in their own right, but as calls to the newer system
calls. The following table lists the legacy call and its new call equivalent.

Legacy System Call New System Call

access(p, m) faccessat(AT_FDCWD, p, m, 0)
chmod(p, m) fchmodat(AT_FDCWD, p, m, 0)
chown(p, u, g) fchownat(AT_FDCWD, p, u, g, 0)
creat(p, m) openat(AT_FDCWD, p, O_WRONLY|

O_CREAT|O_TRUNC, m)
fchmod(fd, m) fchmodat(fd, NULL, m, 0)
fchown(fd, u, g) fchownat(fd, NULL, u, g, 0)
fstat(fd, s) fstatat(fd, NULL, s, 0)
lchown(p, u, g) fchownat(AT_FDCWD, p, u, g,

AT_SYMLINK_NOFOLLOW)
link(p1, p2) linkat(AT_FDCWD, p1, AT_FDCWD, p2,

0)
lstat(p, s) fstatat(AT_FDCWD, p, s,

AT_SYMLINK_NOFOLLOW)
mkdir(p, m) mkdirat(AT_FDCWD, p, m)
mknod(p, m, d) mknodat(AT_FDCWD, p, m, d)
open(p, o, m) openat(AT_FDCWD, p, o, m)
readlink(p, b, s) readlinkat(AT_FDCWD, p, b, s)
rename(p1, p2) renameat(AT_FDCWD, p1, AT_FDCWD, p2)
rmdir(p) unlinkat(AT_FDCWD, p, AT_REMOVEDIR)
stat(p, s) fstatat(AT_FDCWD, p, s, 0)
symlink(p1, p2) symlinkat(p1, AT_FDCWD, p2)
unlink(p) unlinkat(AT_FDCWD, p, 0)

Chapter 11
syscall Provider

11-10



Large File System Calls
A 32-bit program that supports large files that exceed two gigabytes in size must be able to
process 64-bit file offsets. Because large files require the use of large offsets, large files are
manipulated through a parallel set of system interfaces. The following table lists some of the
syscall probes for the large file system call interfaces.

Table 11-3    syscall Large File Probes

Large File syscall Probe System Call

getdents64 getdents()
pread64 * pread()
pwrite64 * pwrite()

Private System Calls
Some system calls are private implementation details of Oracle Linux subsystems that span
the user-kernel boundary.

syscall Probe Arguments
For entry probes, the arguments, arg0 ... argn , are arguments to the system call. For return
probes, both arg0 and arg1 contain the return value. A non-zero value in the D variable errno
indicates a system call failure.

syscall Stability
The syscall provider uses DTrace's stability mechanism to describe its stabilities. These
stability values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Private Private Instruction set
architecture (ISA)

Name Evolving Evolving Common

Arguments Private Private ISA

For more information about the stability mechanism, see DTrace Stability Features.

sdt provider
The Statically Defined Tracing (SDT) provider (sdt) creates probes at sites that a software
programmer has formally designated. The SDT mechanism enables programmers to
consciously choose locations of interest to users of DTrace and to convey some semantic
knowledge about each location through the probe name.

Chapter 11
sdt provider

11-11



Importantly, SDT can act as a metaprovider by registering probes so that they appear
to come from other providers, such as io, proc, and sched, which do not have
dedicated modules of their own. Thus, the SDT provider is chiefly of interest only to
developers of new providers. Most users will access SDT only indirectly by using other
providers.

Note:

Because the sdt probes that are defined for the Oracle Linux kernel are
likely to change over time, they are not listed here. Both the name stability
and the data stability of the probes are Private, which reflects the kernel's
implementation and should not be interpreted as a commitment to preserve
these interfaces. For more information, see DTrace Stability Features.

Creating sdt Probes
If you are a device driver developer, you might be interested in creating your own sdt
probes for your Oracle Linux driver. The disabled probe effect of SDT is essentially the
cost of several no-operation machine instructions. You are therefore encouraged to
add sdt probes to your device drivers as needed. Unless these probes negatively
affect performance, you can leave them in your shipping code. See Statically Defined
Tracing of Kernel Modules.

DTrace also provides a mechanism for application developers to define user-space
static probes. See Statically Defined Tracing of User Applications.

Declaring Probes
The sdt probes are declared by using the DTRACE_PROBE macro from <linux/sdt.h>.

The module name and function name of an SDT-based probe correspond to the kernel
module and function of the probe, respectively. DTrace includes the kernel module
name and function name as part of the tuple identifying a probe, so you do not need to
include this information in the probe name to prevent name space collisions. Use the
dtrace -l -m module command to list the probes that your driver module has
installed and the full names that are seen by DTrace users.

The name of the probe depends on the name that is provided in the DTRACE_PROBE
macro. If the name does not contain two consecutive underscores (__), the name of
the probe is as written in the macro. If the name contains two consecutive
underscores, the probe name converts the consecutive underscores to a single dash
(-). For example, if a DTRACE_PROBE macro specifies transaction__start, the SDT
probe is named transaction-start. This substitution enables C code to provide
macro names that are not valid C identifiers without specifying a string.

SDT can also act as a metaprovider by registering probes so that they appear to come
from other providers, such as io, proc, and sched, which do not have dedicated
modules of their own. For example, kernel/exit.c contains calls to the DTRACE_PROC
macro, which are defined as follows in <linux/sdt.h>:

# define DTRACE_PROC(name) \
         DTRACE_PROBE(__proc_##name);

Chapter 11
sdt provider

11-12



Probes that use such macros appear to come from a provider other than sdt. The leading
double underscore, provider name, and trailing underscore in the name argument are used to
match the provider and are not included in the probe name. Note that the functionality for
creating probes for providers other than those that are hard-coded into DTrace is not
currently available.

sdt Probe Arguments
The arguments for each sdt probe are the arguments that are specified in the kernel source
code in the corresponding DTRACE_PROBE macro reference. When declaring your sdt probes,
you can minimize their disabled probe effect by not dereferencing pointers and by not loading
from global variables in the probe arguments. Both pointer dereferencing and global variable
loading may be done safely in D actions that enable probes, so DTrace users can request
these actions only when they are needed.

sdt Stability
The sdt provider uses DTrace's stability mechanism to describe its stabilities. These values
are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Private Private ISA

Arguments Private Private ISA

For more information about the stability mechanism, refer to DTrace Stability Features.

pid Provider
The pid provider enables tracing of any user process, as specified by its pid.

The pid provider enables tracing function entry and return in user programs just like the fbt
provider provides that capability for the kernel. Note that most of the examples in this guide
that use the fbt provider to trace kernel function calls can be modified slightly to apply to
user processes.

The pid provider also enables tracing of any instruction, as specified by an absolute address
or function offset.

The pid provider has no probe effect when probes are not enabled. When probes are
enabled, the probes only induce probe effect on those processes that are traced.

Chapter 11
pid Provider

11-13



Note:

When the compiler inlines a function, the pid provider's probe does not fire.
Use one of the following methods to compile a particular C function so that it
will not be inlined.

• Sun Studio: #pragma no_inline (funcname[, funcname])
• gcc: funcname __attribute__ ((noinline))
Consult your compiler documentation for updates.

Naming pid Probes
The pid provider actually defines a class of providers. Each process can potentially
have its own associated pid provider. For example, a process with ID 123, would be
traced by using the pid123 provider.

The module portion of the probe description refers to an object loaded in the
corresponding process's address space. To see which objects will be loaded for
my_exec or are loaded for process ID 123, use the following commands:

# ldd my_exec
...
# pldd 123
123:  /tmp/my_exec
linux-vdso.so.1
/lib64/libc.so.6
/lib64/ld-linux-x86-64.so.2p

In the probe description, you name the object by the name of the file, not by its full
path name. You can also omit the .6 or so.6 suffix. All of the following examples name
the same probe:

pid123:libc.so.6:strcpy:entry
pid123:libc.so:strcpy:entry
pid123:libc:strcpy:entry

The first example is the actual name of the probe. The other examples are convenient
aliases that are replaced with the full load object name internally.

For the load object of the executable, you can use the a.out alias. The following two
probe descriptions name the same probe:

pid123:my_exec:main:return
pid123:a.out:main:return

The function field of the probe description names a function in the module. A user
application binary might have several names for the same function. For example,
__gnu_get_libc_version might be an alternate name for the function
gnu_get_libc_version in libc.so.6. DTrace chooses one canonical name for such a
function and uses that name internally.

The following example illustrates how DTrace internally remaps module and function
names to a canonical form:

Chapter 11
pid Provider

11-14



# dtrace -q -n 'pid123:libc:__gnu_get_libc_version:
    { printf("%s\n%s\n", probemod, probefunc)}'
libc.so.6
gnu_get_libc_version

For examples of how to use the pid provider effectively, see User Process Tracing.

pid Probe Arguments
An entry probe fires when the traced function is invoked. The arguments to entry probes are
the values of the arguments to the traced function.

A return probe fires when the traced function returns or makes a tail call to another function.
The arg1 probe argument holds the function return value.

An offset probe fires whenever execution reaches the instruction at the specified offset in the
function. For example, to trace the instruction at the address 4 bytes into function main, you
can use pid123:a.out:main:4. The arguments for offset probes are undefined. The uregs[]
array will help you when examining the process state at these probe sites. See uregs[] Array.

pid Stability
The pid provider uses DTrace's stability mechanism to describe its stabilities. These values
are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private Unknown

For more information about the stability mechanism, see DTrace Stability Features.

proc Provider
The proc provider makes available the probes that pertain to the following activities: process
creation and termination, LWP creation and termination, execution of new program images,
and signal sending and handling.

proc Probes
The probes for the proc provider are listed in the following table.

Chapter 11
proc Provider

11-15



Table 11-4    proc Probes

Probe Description

create Fires when a process (or process thread) is
created using fork() or vfork(), which
both invoke clone(). The psinfo_t
corresponding to the new child process is
pointed to by args[0].

exec Fires whenever a process loads a new
process image using a variant of the
execve() system call. The exec probe fires
before the process image is loaded. Process
variables like execname and curpsinfo
therefore contain the process state before
the image is loaded. Some time after the
exec probe fires, either the exec-failure
or exec-success probe subsequently fires
in the same thread. The path of the new
process image is pointed to by args[0].

exec-failure Fires when an exec() variant has failed.
The exec-failure probe fires only after
the exec probe has fired in the same
thread. The errno value is provided in
args[0].

exec-success Fires when an exec() variant has
succeeded. Like the exec-failure probe,
the exec-success probe fires only after
the exec probe has fired in the same
thread. By the time that the exec-success
probe fires, process variables like
execname and curpsinfo contain the
process state after the new process image
has been loaded.

exit Fires when the current process is exiting.
The reason for exit, which is expressed as
one of the SIGCHLD <asm-generic/
signal.h> codes, is contained in args[0].

lwp-create Fires when a process thread is created, the
latter typically as a result of
pthread_create(). The lwpsinfo_t
corresponding to the new thread is pointed
to by args[0]. The psinfo_t of the process
that created the thread is pointed to by
args[1].

lwp-exit Fires when a process or process thread is
exiting, due either to a signal or to an
explicit call to exit or pthread_exit().

Chapter 11
proc Provider

11-16



Table 11-4    (Cont.) proc Probes

Probe Description

lwp-start Fires within the context of a newly created
process or process thread. The lwp-start
probe fires before any user-level
instructions are executed. If the thread is
the first created for the process, the start
probe fires, followed by lwp-start.

signal-clear Probes that fires when a pending signal is
cleared because the target thread was
waiting for the signal in sigwait(),
sigwaitinfo(), or sigtimedwait().
Under these conditions, the pending signal
is cleared and the signal number is
returned to the caller. The signal number is
in args[0]. signal-clear fires in the
context of the formerly waiting thread.

signal-discard Fires when a signal is sent to a single-
threaded process and the signal is both
unblocked and ignored by the process.
Under these conditions, the signal is
discarded on generation. The lwpsinfo_t
and psinfo_t of the target process and
thread are in args[0] and args[1],
respectively. The signal number is in
args[2].

signal-handle Fires immediately before a thread handles
a signal. The signal-handle probe fires in
the context of the thread that will handle
the signal. The signal number is in
args[0]. A pointer to the siginfo_t
structure that corresponds to the signal is
in args[1]. The address of the signal
handler in the process is in args[2].

signal-send Fires when a signal is sent to a process or
to a thread created by a process. The
signal-send probe fires in the context of
the sending process or thread. The
lwpsinfo_t and psinfo_t of the receiving
process and thread are in args[0] and
args[1], respectively. The signal number is
in args[2]. signal-send is always followed
by signal-handle or signal-clear in the
receiving process and thread.

start Fires in the context of a newly created
process. The start probe fires before any
user-level instructions are executed in the
process.

Chapter 11
proc Provider

11-17



Note:

In Linux, there is no fundamental difference between a process and a thread
that a process creates. The threads of a process are set up so that they can
share resources, but each thread has its own entry in the process table with
its own process ID.

proc Probe Arguments
The following table lists the argument types for the proc probes. See Table 11-4 for a
description of the arguments.

Table 11-5    proc Probe Arguments

Probe args[0] args[1] args[2]
create psinfo_t * — —

exec char * — —

exec-failure int — —

exec-success — — —

exit int — —

lwp-create lwpsinfo_t * psinfo_t * —

lwp-exit — — —

lwp-start — — —

signal-clear int — —

signal-discard lwpsinfo_t * psinfo_t * int
signal-handle int siginfo_t * void (*)(void)
signal-send lwpsinfo_t * psinfo_t * int
start — — —

lwpsinfo_t
Several proc probes have arguments of type lwpsinfo_t. Detailed information about
this data structure can be found in /usr/lib64/dtrace/version/procfs.d. The
definition of the lwpsinfo_t structure, as available to DTrace consumers, is as follows:

typedef struct lwpsinfo {
  int pr_flag;                /* flags */
  id_t pr_lwpid;              /* thread id */
  uintptr_t pr_addr;          /* internal address of thread */
  uintptr_t pr_wchan;         /* wait addr for sleeping lwp (NULL on Linux) */
  char pr_stype;              /* sync event type (0 on Linux) */
  char pr_state;              /* numeric thread state */
  char pr_sname;              /* printable character for pr_state */
  int pr_pri;                 /* priority, high value = high priority */
  char pr_name[PRCLSZ];       /* scheduling class name */

Chapter 11
proc Provider

11-18



  processorid_t pr_onpro;     /* processor which last ran this thread */
} lwpsinfo_t;

Note:

Lightweight processes do not exist in Linux. Rather, in Oracle Linux, processes and
threads are represented by process descriptors of type struct task_struct in the
task list. DTrace translates the members of lwpsinfo_t from the task_struct for
the Oracle Linux process.

The pr_flag is set to 1 if the thread is stopped. Otherwise, it is set to 0.

In Oracle Linux, the pr_stype field is unsupported, and hence is always 0.

The following table describes the values that pr_state can take, as well as the corresponding
character values for pr_sname.

Table 11-6    pr_state Values

pr_state Value pr_sname Value Description

SRUN (2) R The thread is runnable or is
currently running on a CPU.
The sched:::enqueue probe
fires immediately before a
thread's state is transitioned to
SRUN. The sched:::on-cpu
probe will fire a short time
after the thread starts to run.
The equivalent Oracle Linux
task state is TASK_RUNNING.

SSLEEP (1) S The thread is sleeping. The
sched:::sleep probe will fire
immediately before a thread's
state is transitioned to SSLEEP.

The equivalent Oracle Linux
task state is
TASK_INTERRUPTABLE or
TASK_UNINTERRUPTABLE.

SSTOP (4) T The thread is stopped, either
due to an explicit proc
directive or some other
stopping mechanism.
The equivalent Oracle Linux
task state is __TASK_STOPPED
or __TASK_TRACED.

Chapter 11
proc Provider

11-19



Table 11-6    (Cont.) pr_state Values

pr_state Value pr_sname Value Description

SWAIT (7) W The thread is waiting on wait
queue. The sched:::cpucaps-
sleep probe will fire
immediately before the
thread's state transitions to
SWAIT.

The equivalent Oracle Linux
task state is TASK_WAKEKILL or
TASK_WAKING.

SZOMB (3) Z The thread is a zombie.
The equivalent Oracle Linux
task state is EXIT_ZOMBIE,
EXIT_DEAD, or TASK_DEAD.

psinfo_t
Several proc probes have an argument of type psinfo_t. Detailed information about
this data structure can be found in /usr/lib64/dtrace/version/procfs.d. The
definition of the psinfo_t structure, as available to DTrace consumers, is as follows:

typedef struct psinfo {
        int pr_nlwp;                    /* not supported */
        pid_t pr_pid;                   /* unique process id */
        pid_t pr_ppid;                  /* process id of parent */
        pid_t pr_pgid;                  /* pid of process group leader */
        pid_t pr_sid;                   /* session id */
        uid_t pr_uid;                   /* real user id */
        uid_t pr_euid;                  /* effective user id */
        uid_t pr_gid;                   /* real group id */
        uid_t pr_egid;                  /* effective group id */
        uintptr_t pr_addr;              /* address of process */
        size_t pr_size;                 /* not supported */
        size_t pr_rssize;               /* not supported */
        struct tty_struct *pr_ttydev;   /* controlling tty (or -1) */
        ushort_t pr_pctcpu;             /* not supported */
        ushort_t pr_pctmem;             /* not supported */
        timestruc_t pr_start;           /* not supported */
        timestruc_t pr_time;            /* not supported */
        timestruc_t pr_ctime;           /* not supported */
        char pr_fname[16];              /* name of exec'ed file */
        char pr_psargs[80];             /* initial chars of arg list */
        int pr_wstat;                   /* not supported */
        int pr_argc;                    /* initial argument count */
        uintptr_t pr_argv;              /* address of initial arg vector */
        uintptr_t pr_envp;              /* address of initial env vector */
        char pr_dmodel;                 /* data model */
        taskid_t pr_taskid;             /* not supported */
        projid_t pr_projid;             /* not supported */
        int pr_nzomb;                   /* not supported */
        poolid_t pr_poolid;             /* not supported */
        zoneid_t pr_zoneid;             /* not supported */
        id_t pr_contract;               /* not supported */

Chapter 11
proc Provider

11-20



        lwpsinfo_t pr_lwp;              /* not supported */
} psinfo_t;

Note:

Lightweight processes do not exist in Linux. In Oracle Linux, processes and threads
are represented by process descriptors of type struct task_struct in the task list.
DTrace translates the members of psinfo_t from the task_struct for the Oracle
Linux process.

pr_dmodel is set to either PR_MODEL_ILP32, denoting a 32–bit process, or PR_MODEL_LP64,
denoting a 64–bit process.

proc Examples
The following examples illustrate the use of the probes that are published by the proc
provider.

exec
The following example shows how you can use the exec probe to easily determine which
programs are being executed, and by whom. Type the following D source code and save it in
a file named whoexec.d:

#pragma D option quiet

proc:::exec
{
  self->parent = execname;
}

proc:::exec-success
/self->parent != NULL/
{
  @[self->parent, execname] = count();
  self->parent = NULL;
}

proc:::exec-failure
/self->parent != NULL/
{
  self->parent = NULL;
}

END
{
  printf("%-20s %-20s %s\n", "WHO", "WHAT", "COUNT");
  printa("%-20s %-20s %@d\n", @);
}

Running the example script for a short period of time results in output similar to the following:

# dtrace -s ./whoexec.d
^C
WHO                  WHAT                 COUNT

Chapter 11
proc Provider

11-21



abrtd                abrt-handle-eve      1
firefox              basename             1
firefox              mkdir                1
firefox              mozilla-plugin-      1
firefox              mozilla-xremote      1
firefox              run-mozilla.sh       1
firefox              uname                1
gnome-panel          firefox              1
kworker/u:1          modprobe             1
modprobe             modprobe.ksplic      1
mozilla-plugin-      plugin-config        1
mozilla-plugin-      uname                1
nice                 sosreport            1
run-mozilla.sh       basename             1
run-mozilla.sh       dirname              1
run-mozilla.sh       firefox              1
run-mozilla.sh       uname                1
sh                   abrt-action-sav      1
sh                   blkid                1
sh                   brctl                1
sh                   cut                  1
...

start and exit Probes
If you want to know how long programs are running, from creation to termination, you
can enable the start and exit probes, as shown in the following example. Save it in a
file named progtime.d:

proc:::start
{
  self->start = timestamp;
}

proc:::exit
/self->start/
{
  @[execname] = quantize(timestamp - self->start);
  self->start = 0;
}

Running the example script on a build server for several seconds results in output
similar to the following:

# dtrace -s ./progtime.d
dtrace: script ’./progtime.d’ matched 2 probes
^C
...
cc
          value  ------------- Distribution ------------- count
       33554432 |                                         0
       67108864 |@@@                                      3
      134217728 |@                                        1
      268435456 |                                         0
      536870912 |@@@@                                     4
     1073741824 |@@@@@@@@@@@@@@                           13
     2147483648 |@@@@@@@@@@@@                             11
     4294967296 |@@@                                      3
     8589934592 |                                         0

Chapter 11
proc Provider

11-22



sh
          value  ------------- Distribution ------------- count
         262144 |                                         0
         524288 |@                                        5
        1048576 |@@@@@@@                                  29
        2097152 |                                         0
        4194304 |                                         0
        8388608 |@@@                                      12
       16777216 |@@                                       9
       33554432 |@@                                       9
       67108864 |@@                                       8
      134217728 |@                                        7
      268435456 |@@@@@                                    20
      536870912 |@@@@@@                                   26
     1073741824 |@@@                                      14
     2147483648 |@@                                       11
     4294967296 |                                         3
     8589934592 |                                         1
    17179869184 |                                         0
...

signal-send
The following example shows how you can use the signal-send probe to determine the
sending and receiving of process associated with any signal. Type the following D source
code and save it in a file named sig.d:

#pragma D option quiet

proc:::signal-send
{
  @[execname, stringof(args[1]->pr_fname), args[2]] = count();
}

END
{
  printf("%20s %20s %12s %s\n",
      "SENDER", "RECIPIENT", "SIG", "COUNT");
  printa("%20s %20s %12d %@d\n", @);
}

Running this script results in output similar to the following:

# dtrace -s sig.d
^C
              SENDER            RECIPIENT          SIG COUNT
         gnome-panel                 Xorg           29 1
         kworker/0:2               dtrace            2 1
                Xorg                 Xorg           29 3
                java                 Xorg           29 6
             firefox                 Xorg           29 14
         kworker/0:0                 Xorg           29 1135

proc Stability
The proc provider uses DTrace's stability mechanism to describe its stabilities. These values
are listed in the following table.

Chapter 11
proc Provider

11-23



Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

For more information about the stability mechanism, see DTrace Stability Features.

sched Provider
The sched provider makes available probes that are related to CPU scheduling.
Because CPUs are the one resource that all threads must consume, the sched
provider is very useful for understanding systemic behavior. For example, using the
sched provider, you can understand when and why threads sleep, run, change priority,
or wake other threads.

sched Probes
The following table describes the probes for the sched provider.

Table 11-7    sched Probes

Probe Description

change-pri Fires whenever a thread's priority is about
to be changed. The lwpsinfo_t of the
thread is pointed to by args[0]. The
thread's current priority is in the pr_pri
field of this structure. The psinfo_t of the
process containing the thread is pointed to
by args[1]. The thread's new priority is
contained in args[2].

dequeue Fires immediately before a runnable
thread is dequeued from a run queue. The
lwpsinfo_t of the thread being dequeued
is pointed to by args[0]. The psinfo_t of
the process containing the thread is
pointed to by args[1]. The cpuinfo_t of
the CPU from which the thread is being
dequeued is pointed to by args[2]. If the
thread is being dequeued from a run queue
that is not associated with a particular CPU,
the cpu_id member of this structure will
be -1.

Chapter 11
sched Provider

11-24



Table 11-7    (Cont.) sched Probes

Probe Description

enqueue Fires immediately before a runnable
thread is enqueued to a run queue. The
lwpsinfo_t of the thread being enqueued
is pointed to by args[0]. The psinfo_t of
the process containing the thread is
pointed to by args[1]. The cpuinfo_t of
the CPU to which the thread is being
enqueued is pointed to by args[2]. If the
thread is being enqueued from a run
queue that is not associated with a
particular CPU, the cpu_id member of this
structure will be -1. The value in args[3] is
a boolean indicating whether the thread
will be enqueued to the front of the run
queue. The value is non-zero if the thread
will be enqueued at the front of the run
queue, and zero if the thread will be
enqueued at the back of the run queue.

off-cpu Fires when the current CPU is about to end
execution of a thread. The curcpu variable
indicates the current CPU. The
curlwpsinfo variable indicates the thread
that is ending execution. The lwpsinfo_t
of the thread that the current CPU will next
execute is pointed to by args[0]. The
psinfo_t of the process containing the
next thread is pointed to by args[1].

on-cpu Fires when a CPU has just begun execution
of a thread. The curcpu variable indicates
the current CPU. The curlwpsinfo variable
indicates the thread that is beginning
execution. The curpsinfo variable
describes the process containing the
current thread.

preempt Fires immediately before the current
thread is preempted. After this probe fires,
the current thread will select a thread to
run and the off-cpu probe will fire for the
current thread. In some cases, a thread on
one CPU will be preempted, but the
preempting thread will run on another
CPU in the meantime. In this situation, the
preempt probe will fire, but the dispatcher
will be unable to find a higher priority
thread to run and the remain-cpu probe
will fire instead of the off-cpu probe.

Chapter 11
sched Provider

11-25



Table 11-7    (Cont.) sched Probes

Probe Description

remain-cpu Fires when a scheduling decision has been
made, but the dispatcher has elected to
continue to run the current thread. The
curcpu variable indicates the current CPU.
The curlwpsinfo variable indicates the
thread that is beginning execution. The
curpsinfo variable describes the process
containing the current thread.

sleep Fires immediately before the current
thread sleeps on a synchronization object.
The type of the synchronization object is
contained in the pr_stype member of the
lwpsinfo_t pointed to by curlwpsinfo.
The address of the synchronization object
is contained in the pr_wchan member of
the lwpsinfo_t pointed to by
curlwpsinfo. The meaning of this address
is a private implementation detail, but the
address value may be treated as a token
unique to the synchronization object.

surrender Fires when a CPU has been instructed by
another CPU to make a scheduling decision
— often because a higher-priority thread
has become runnable. The lwpsinfo_t of
the current thread is pointed to by
args[0]. The psinfo_t of the process
containing the thread is pointed to by
args[1].

tick Fires as a part of clock tick-based
accounting. In clock tick-based accounting,
CPU accounting is performed by examining
which threads and processes are running
when a fixed-interval interrupt fires. The
lwpsinfo_t that corresponds to the thread
that is being assigned CPU time is pointed
to by args[0]. The psinfo_t that
corresponds to the process that contains
the thread is pointed to by args[1].

Chapter 11
sched Provider

11-26



Table 11-7    (Cont.) sched Probes

Probe Description

wakeup Fires immediately before the current
thread wakes a thread sleeping on a
synchronization object. The lwpsinfo_t of
the sleeping thread is pointed to by
args[0]. The psinfo_t of the process
containing the sleeping thread is pointed to
by args[1]. The type of the
synchronization object is contained in the
pr_stype member of the lwpsinfo_t of
the sleeping thread. The address of the
synchronization object is contained in the
pr_wchan member of the lwpsinfo_t of
the sleeping thread. The meaning of this
address is a private implementation detail,
but the address value may be treated as a
token unique to the synchronization object.

sched Probe Arguments
The following table describes the argument types for the sched probes. See Table 11-7 for
descriptions of the arguments.

Table 11-8    sched Probe Arguments

Probe args[0] args[1] args[2] args[3]
change-pri lwpsinfo_t * psinfo_t * int —

dequeue lwpsinfo_t * psinfo_t * cpuinfo_t * —

enqueue lwpsinfo_t * psinfo_t * cpuinfo_t * int
off-cpu lwpsinfo_t * psinfo_t * — —

on-cpu — — — —

preempt — — — —

remain-cpu — — — —

sleep — — — —

surrender lwpsinfo_t * psinfo_t * — —

tick lwpsinfo_t * psinfo_t * — —

wakeup lwpsinfo_t * psinfo_t * — —

cpuinfo_t
The cpuinfo_t structure defines a CPU. Per the information in Table 11-8, arguments to both
the enqueue and dequeue probes include a pointer to a cpuinfo_t. Additionally, the
cpuinfo_t that corresponds to the current CPU is pointed to by the curcpu variable.

The definition of the cpuinfo_t structure is as follows:

Chapter 11
sched Provider

11-27



typedef struct cpuinfo {
  processorid_t cpu_id;      /* CPU identifier */
  psetid_t cpu_pset;         /* not supported */
  chipid_t cpu_chip;         /* chip identifier */
  lgrp_id_t cpu_lgrp;        /* not supported */
  cpuinfo_arch_t *cpu_info;  /* CPU information */
} cpuinfo_t;

cpu_id: Is the processor identifier.

cpu_chip: Is the identifier of the physical chip. Physical chips can contain several CPU
cores.

cpu_info: Is a pointer to the cpuinfo_arch_t structure that is associated with the
CPU.

sched Examples
The following examples show the use of sched probes.

on-cpu and off-cpu Probes
One common question that you might want answered is which CPUs are running
threads and for how long? The following example shows how you can use the on-cpu
and off-cpu probes to easily answer this question on a system-wide basis. Type the
following D source code and save it in a file named where.d:

sched:::on-cpu
{
  self->ts = timestamp;
}

sched:::off-cpu
/self->ts/
{
  @[cpu] = quantize(timestamp - self->ts);
  self->ts = 0;
}

Running the previous script results in output that is similar to the following:

# dtrace -s ./where.d
dtrace: script ’./where.d’ matched 2 probes
^C
        0
          value  ------------- Distribution ------------- count
           2048 |                                         0
           4096 |@@                                       37
           8192 |@@@@@@@@@@@@@                            212
          16384 |@                                        30
          32768 |                                         10
          65536 |@                                        17
         131072 |                                         12
         262144 |                                         9
         524288 |                                         6
        1048576 |                                         5
        2097152 |                                         1
        4194304 |                                         3
        8388608 |@@@@                                     75

Chapter 11
sched Provider

11-28



       16777216 |@@@@@@@@@@@@                             201
       33554432 |                                         6
       67108864 |                                         0

        1
          value  ------------- Distribution ------------- count
           2048 |                                         0
           4096 |@                                        6
           8192 |@@@@                                     23
          16384 |@@@                                      18
          32768 |@@@@                                     22
          65536 |@@@@                                     22
         131072 |@                                        7
         262144 |                                         5
         524288 |                                         2
        1048576 |                                         3
        2097152 |@                                        9
        4194304 |                                         4
        8388608 |@@@                                      18
       16777216 |@@@                                      19
       33554432 |@@@                                      16
       67108864 |@@@@                                     21
      134217728 |@@                                       14
      268435456 |                                         0

The previous output shows that on CPU 1 threads tend to run for less than 131072
nanoseconds (on order of 100 microseconds) at a stretch, or for 8388608 to 134217728
nanoseconds (approximately 10 to 100 milliseconds). A noticeable gap between the two
clusters of data is shown in the histogram. You also might be interested in knowing which
CPUs are running a particular process.

You can also use the on-cpu and off-cpu probes for answering this question. The following
script displays which CPUs run a specified application over a period of ten seconds. Save it
in a file named whererun.d.:

#pragma D option quiet
dtrace:::BEGIN
{
  start = timestamp;
}

sched:::on-cpu
/execname == $$1/
{
  self->ts = timestamp;
}

sched:::off-cpu
/self->ts/
{
  @[cpu] = sum(timestamp - self->ts);
  self->ts = 0;
}

profile:::tick-1sec
/++x >= 10/
{
  exit(0);
}

dtrace:::END

Chapter 11
sched Provider

11-29



{
  printf("CPU distribution over %d seconds:\n\n",
    (timestamp - start) / 1000000000);
  printf("CPU microseconds\n--- ------------\n");
  normalize(@, 1000);
  printa("%3d %@d\n", @);
}

Running the previous script on a large mail server and specifying the IMAP daemon
results in output that is similar to the following:

# dtrace -s ./whererun.d imapd
CPU distribution of imapd over 10 seconds:

CPU microseconds
--- ------------
 15 10102
 12 16377
 21 25317
 19 25504
 17 35653
 13 41539
 14 46669
 20 57753
 22 70088
 16 115860
 23 127775
 18 160517

Oracle Linux takes into account the amount of time that a thread has been sleeping
when selecting a CPU on which to run the thread, as a thread that has been sleeping
for less time tends not to migrate. Use the off-cpu and on-cpu probes to observe this
behavior. Type the following source code and save it in a file named howlong.d:

sched:::off-cpu
/curlwpsinfo->pr_state == SSLEEP/
{
 self->cpu = cpu;
 self->ts = timestamp;
}

sched:::on-cpu
/self->ts/
{
 @[self->cpu == cpu ?
   "sleep time, no CPU migration" : "sleep time, CPU migration"] =
   lquantize((timestamp - self->ts) / 1000000, 0, 500, 25);
 self->ts = 0;
 self->cpu = 0;
}

Running the previous script for approximately 30 seconds results in output that is
similar to the following:

# dtrace -s ./howlong.d
dtrace: script ’./howlong.d’ matched 2 probes
^C
 sleep time, CPU migration
          value  ------------- Distribution ------------- count
            < 0 |                                         0
              0 |@@@@@@@                                  6838

Chapter 11
sched Provider

11-30



             25 |@@@@@                                    4714
             50 |@@@                                      3108
             75 |@                                        1304
            100 |@                                        1557
            125 |@                                        1425
            150 |                                         894
            175 |@                                        1526
            200 |@@                                       2010
            225 |@@                                       1933
            250 |@@                                       1982
            275 |@@                                       2051
            300 |@@                                       2021
            325 |@                                        1708
            350 |@                                        1113
            375 |                                         502
            400 |                                         220
            425 |                                         106
            450 |                                         54
            475 |                                         40
         >= 500 |@                                        1716

 sleep time, no CPU migration
          value  ------------- Distribution ------------- count
            < 0 |                                         0
              0 |@@@@@@@@@@@@                             58413
             25 |@@@                                      14793
             50 |@@                                       10050
             75 |                                         3858
            100 |@                                        6242
            125 |@                                        6555
            150 |                                         3980
            175 |@                                        5987
            200 |@                                        9024
            225 |@                                        9070
            250 |@@                                       10745
            275 |@@                                       11898
            300 |@@                                       11704
            325 |@@                                       10846
            350 |@                                        6962
            375 |                                         3292
            400 |                                         1713
            425 |                                         585
            450 |                                         201
            475 |                                         96
         >= 500 |                                         3946

The previous output reveals that there are many more occurrences of non-migration than
migration. Also, when sleep times are longer, migrations are more likely. The distributions are
noticeably different in the sub-100 millisecond range, but look very similar as the sleep times
get longer. This result would seem to indicate that sleep time is not factored into the
scheduling decision when a certain threshold is exceeded.

enqueue and dequeue Probes
You might want to know on which CPUs processes and threads are waiting to run. You can
use the enqueue probe along with the dequeue probe to answer this question. Type the
following source code and save it in a file named qtime.d:

sched:::enqueue
{

Chapter 11
sched Provider

11-31



  a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id] =
  timestamp;
}

sched:::dequeue
/a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id]/
{
  @[args[2]->cpu_id] = quantize(timestamp -
    a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id]);
  a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id] = 0;
}

Running the previous script for several seconds results in output that is similar to the
following:

# dtrace -s qtime.d 
dtrace: script 'qtime.d' matched 16 probes
^C

        1
           value  ------------- Distribution ------------- count    
            8192 |                                         0        
           16384 |                                         1        
           32768 |@                                        47       
           65536 |@@@@@@@                                  365      
          131072 |@@@@@@@@@@@@                             572      
          262144 |@@@@@@@@@@@@                             570      
          524288 |@@@@@@@                                  354      
         1048576 |@                                        57       
         2097152 |                                         7        
         4194304 |                                         1        
         8388608 |                                         1        
        16777216 |                                         0        

        0
           value  ------------- Distribution ------------- count    
            8192 |                                         0        
           16384 |                                         6        
           32768 |@                                        49       
           65536 |@@@@@                                    261      
          131072 |@@@@@@@@@@@@@                            753      
          262144 |@@@@@@@@@@@@                             704      
          524288 |@@@@@@@@                                 455      
         1048576 |@                                        74       
         2097152 |                                         9        
         4194304 |                                         2        
         8388608 |                                         0

Rather than looking at wait times, you might want to examine the length of the run
queue over time. Using the enqueue and dequeue probes, you can set up an
associative array to track the queue length. Type the following source code and save it
in a file named qlen.d:

sched:::enqueue
{
  this->len = qlen[args[2]->cpu_id]++;
  @[args[2]->cpu_id] = lquantize(this->len, 0, 100);
}

sched:::dequeue
/qlen[args[2]->cpu_id]/

Chapter 11
sched Provider

11-32



{
  qlen[args[2]->cpu_id]--;
}

Running the previous script on a largely idle dual-core processor system for approximately 30
seconds results in output that is similar to the following:

# dtrace -s qlen.d 
dtrace: script 'qlen.d' matched 16 probes
^C

        1
           value  ------------- Distribution ------------- count    
             < 0 |                                         0        
               0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@        8124     
               1 |@@@@@@                                   1558     
               2 |@                                        160      
               3 |                                         51       
               4 |                                         24       
               5 |                                         13       
               6 |                                         11       
               7 |                                         9        
               8 |                                         6        
               9 |                                         0        

        0
           value  ------------- Distribution ------------- count    
             < 0 |                                         0        
               0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@           8569     
               1 |@@@@@@@@@                                2429     
               2 |@                                        292      
               3 |                                         25       
               4 |                                         8        
               5 |                                         5        
               6 |                                         4        
               7 |                                         4        
               8 |                                         1        
               9 |                                         0

The output is roughly what you would expect for an idle system: the majority of the time that a
runnable thread is enqueued, the run queues were very short (three or fewer threads in
length). However, given that the system was largely idle, the exceptional data points at the
bottom of each table might be unexpected. For example, why were the run queues as long as
8 runnable threads? To explore this question further, you could write a D script that displays
the contents of the run queue when the length of the run queue is long. This problem is
complicated because D enablings cannot iterate over data structures, and therefore cannot
simply iterate over the entire run queue. Even if D enablings could do so, you should avoid
dependencies on the kernel's internal data structures.

For this type of script, you would enable the enqueue and dequeue probes and then use both
speculations and associative arrays. Whenever a thread is enqueued, the script increments
the length of the queue and records the timestamp in an associative array keyed by the
thread. You cannot use a thread-local variable in this case because a thread might be
enqueued by another thread. The script then checks to see if the queue length exceeds the
maximum, and if so, the script starts a new speculation, and records the timestamp and the
new maximum. Then, when a thread is dequeued, the script compares the enqueue
timestamp to the timestamp of the longest length: if the thread was enqueued before the
timestamp of the longest length, the thread was in the queue when the longest length was
recorded. In this case, the script speculatively traces the thread's information. When the

Chapter 11
sched Provider

11-33



kernel dequeues the last thread that was enqueued at the timestamp of the longest
length, the script commits the speculation data. Type the following source code and
save it in a file named whoqueue.d:

#pragma D option quiet
#pragma D option nspec=4
#pragma D option specsize=100k

int maxlen;
int spec[int];
sched:::enqueue
{
  this->len = ++qlen[this->cpu = args[2]->cpu_id];
  in[args[0]->pr_addr] = timestamp;
}

sched:::enqueue
/this->len > maxlen && spec[this->cpu]/
{
  /*
   * There is already a speculation for this CPU. We just set a new
   * record, so we’ll discard the old one.
   */
  discard(spec[this->cpu]);
}

sched:::enqueue
/this->len > maxlen/
{
  /*
   * We have a winner. Set the new maximum length and set the timestamp
   * of the longest length.
   */
  maxlen = this->len;
  longtime[this->cpu] = timestamp;
  /*
   * Now start a new speculation, and speculatively trace the length.
   */
  this->spec = spec[this->cpu] = speculation();
  speculate(this->spec);
  printf("Run queue of length %d:\n", this->len);
}

sched:::dequeue
/(this->in = in[args[0]->pr_addr]) &&
  this->in <= longtime[this->cpu = args[2]->cpu_id]/
{
  speculate(spec[this->cpu]);
  printf(" %d/%d (%s)\n",
    args[1]->pr_pid, args[0]->pr_lwpid,
    stringof(args[1]->pr_fname));
}

sched:::dequeue
/qlen[args[2]->cpu_id]/
{
  in[args[0]->pr_addr] = 0;
  this->len = --qlen[args[2]->cpu_id];
}

sched:::dequeue

Chapter 11
sched Provider

11-34



/this->len == 0 && spec[this->cpu]/
{
  /*
   * We just processed the last thread that was enqueued at the time
   * of longest length; commit the speculation, which by now contains
   * each thread that was enqueued when the queue was longest.
   */
  commit(spec[this->cpu]);
  spec[this->cpu] = 0;
}

Running the previous script on the same system results in output that is similar to the
following:

# dtrace -s whoqueue.d
Run queue of length 1:
 2850/2850 (java)
Run queue of length 2:
 4034/4034 (kworker/0:1)
 16/16 (sync_supers)
Run queue of length 3:
 10/10 (ksoftirqd/1)
 1710/1710 (hald-addon-inpu)
 25350/25350 (dtrace)
Run queue of length 4:
 2852/2852 (java)
 2850/2850 (java)
 1710/1710 (hald-addon-inpu)
 2099/2099 (Xorg)
Run queue of length 5:
 3149/3149 (notification-da)
 2417/2417 (gnome-settings-)
 2437/2437 (gnome-panel)
 2461/2461 (wnck-applet)
 2432/2432 (metacity)
Run queue of length 9:
 3685/3685 (firefox)
 3149/3149 (notification-da)
 2417/2417 (gnome-settings-)
 2437/2437 (gnome-panel)
 2852/2852 (java)
 2452/2452 (nautilus)
 2461/2461 (wnck-applet)
 2432/2432 (metacity)
 2749/2749 (gnome-terminal)
^C

sleep and wakeup Probes
The following example shows how you might use the wakeup probe to determine what is
waking a particular process, and when, over a given period. Type the following source code
and save it in a file named gterm.d:

#pragma D option quiet

dtrace:::BEGIN
{
  start = timestamp;
}

Chapter 11
sched Provider

11-35



sched:::wakeup
/stringof(args[1]->pr_fname) == "gnome-terminal"/
{
  @[execname] = lquantize((timestamp - start) / 1000000000, 0, 10);
}

profile:::tick-1sec
/++x == 10/
{
  exit(0);
}

The output from running this script is as follows:

# dtrace -s gterm.d

  Xorg                                              
           value  ------------- Distribution ------------- count    
             < 0 |                                         0        
               0 |@@@@@@@@@@@@@@@                          69       
               1 |@@@@@@@@                                 35       
               2 |@@@@@@@@@                                42       
               3 |                                         2        
               4 |                                         0        
               5 |                                         0        
               6 |                                         0        
               7 |@@@@                                     16       
               8 |                                         0        
               9 |@@@                                      15       
           >= 10 |                                         0  

This output shows that the X server is waking the gnome-terminal process as you
interact with the system.

Additionally, you could use the sleep probe with the wakeup probe to understand which
applications are blocking on other applications, and for how long. Type the following
source code and save it in a file named whofor.d:

#pragma D option quiet
sched:::sleep
{
  bedtime[curlwpsinfo->pr_addr] = timestamp;
}

sched:::wakeup
/bedtime[args[0]->pr_addr]/
{
  @[stringof(args[1]->pr_fname), execname] =
    quantize(timestamp - bedtime[args[0]->pr_addr]);
  bedtime[args[0]->pr_addr] = 0;
}

END
{
  printa("%s sleeping on %s:\n%@d\n", @);
}

The tail of the output from running the previous example script on a desktop system for
several seconds is similar to the following:

Chapter 11
sched Provider

11-36



# dtrace -s whofor.d
                        ^C
...
Xorg sleeping on metacity:

           value  ------------- Distribution ------------- count    
           65536 |                                         0        
          131072 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 2        
          262144 |                                         0        

gnome-power-man sleeping on Xorg:

           value  ------------- Distribution ------------- count    
          131072 |                                         0        
          262144 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1        
          524288 |                                         0
...

preempt and remain-cpu Probes
Because Oracle Linux is a preemptive system, higher priority threads preempt lower priority
threads. Preemption can induce a significant latency bubble in the lower priority thread.
Therefore, you might want to know which threads are being preempted by other threads.

The following example shows how you would use the preempt and remain-cpu probes to
display this information. Type the following source code and save it in a file named
whopreempt.d:

#pragma D option quiet

sched:::preempt
{
  self->preempt = 1;
}

sched:::remain-cpu
/self->preempt/
{
  self->preempt = 0;
}

sched:::off-cpu
/self->preempt/
{
  /*
   * If we were told to preempt ourselves, see who we ended up giving
   * the CPU to.
   */
  @[stringof(args[1]->pr_fname), args[0]->pr_pri, execname,
    curlwpsinfo->pr_pri] = count();
  self->preempt = 0;
}

END
{
  printf("%30s %3s %30s %3s %5s\n", "PREEMPTOR", "PRI",
    "PREEMPTED", "PRI", "#");
  printa("%30s %3d %30s %3d %5@d\n", @);
}

Chapter 11
sched Provider

11-37



Running the previous script on a desktop system for several seconds results in output
that is similar to the following:

# dtrace -s whopreempt.d
^C
                     PREEMPTOR PRI                      PREEMPTED PRI     #
                       firefox 120                    kworker/0:0 120     1
                   gnome-panel 120                        swapper 120     1
                   gnome-panel 120                    wnck-applet 120     1
                   jbd2/dm-0-8 120                        swapper 120     1
                    khugepaged 139                    kworker/0:0 120     1
                   ksoftirqd/1 120                    kworker/0:0 120     1
                   kworker/0:0 120                 gnome-terminal 120     1
                   kworker/0:2 120                           Xorg 120     1
                   kworker/0:2 120                           java 120     1
                   kworker/1:0 120                           Xorg 120     1
                      nautilus 120                           Xorg 120     1
                  rtkit-daemon   0                   rtkit-daemon 120     1
                  rtkit-daemon 120                        swapper 120     1
                    watchdog/0   0                        swapper 120     1
                    watchdog/1   0                    kworker/0:0 120     1
                   wnck-applet 120                           Xorg 120     1
                   wnck-applet 120                        swapper 120     1
                     automount 120                    kworker/0:0 120     2
               gnome-power-man 120                    kworker/0:0 120     2
                   kworker/0:0 120                        swapper 120     2
                   kworker/1:0 120                         dtrace 120     2
                      metacity 120                    kworker/0:0 120     2
               notification-da 120                        swapper 120     2
                 udisks-daemon 120                    kworker/0:0 120     2
                     automount 120                        swapper 120     3
                   gnome-panel 120                           Xorg 120     3
               gnome-settings- 120                           Xorg 120     3
               gnome-settings- 120                        swapper 120     3
                gnome-terminal 120                        swapper 120     3
                          java 120                    kworker/0:0 120     3
                   ksoftirqd/0 120                        swapper 120     3
                   kworker/0:2 120                        swapper 120     3
                      metacity 120                           Xorg 120     3
                      nautilus 120                    kworker/0:0 120     3
                         qpidd 120                        swapper 120     3
                      metacity 120                        swapper 120     4
               gvfs-afc-volume 120                        swapper 120     5
                          java 120                           Xorg 120     5
               notification-da 120                           Xorg 120     5
               notification-da 120                    kworker/0:0 120     5
                          Xorg 120                    kworker/0:0 120     6
                   wnck-applet 120                    kworker/0:0 120    10
                   VBoxService 120                        swapper 120    13
                        dtrace 120                        swapper 120    14
                   kworker/1:0 120                    kworker/0:0 120    16
                        dtrace 120                    kworker/0:0 120    20
                          Xorg 120                        swapper 120    90
               hald-addon-inpu 120                        swapper 120   100
                          java 120                        swapper 120   108
                gnome-terminal 120                    kworker/0:0 120   110

Chapter 11
sched Provider

11-38



tick
If NOHZ is set to off, Oracle Linux uses tick-based CPU accounting, where a system clock
interrupt fires at a fixed interval and attributes CPU utilization to the processes that are
running at the time of the tick. The following example shows how you would use the tick
probe to observe this attribution.

# dtrace -n sched:::tick'{ @[stringof(args[1]->pr_fname)] = count() }'
dtrace: description 'sched:::tick' matched 1 probe
^C

  VBoxService                                                       1
  gpk-update-icon                                                   1
  hald-addon-inpu                                                   1
  jbd2/dm-0-8                                                       1
  automount                                                         2
  gnome-session                                                     2
  hald                                                              2
  gnome-power-man                                                   3
  ksoftirqd/0                                                       3
  kworker/0:2                                                       3
  notification-da                                                   4
  devkit-power-da                                                   6
  nautilus                                                          9
  dbus-daemon                                                      11
  gnome-panel                                                      11
  gnome-settings-                                                  11
  dtrace                                                           19
  khugepaged                                                       22
  metacity                                                         27
  kworker/0:0                                                      41
  swapper                                                          56
  firefox                                                          58
  wnck-applet                                                      61
  gnome-terminal                                                   67
  java                                                             84
  Xorg                                                            227

One deficiency of tick-based accounting is that the system clock that performs accounting is
often also responsible for dispatching any time-related scheduling activity. As a result, if a
thread is to perform some amount of work every clock tick (that is, every 10 milliseconds), the
system either over-accounts or under-accounts for the thread, depending on whether the
accounting is done before or after time-related dispatching scheduling activity. If accounting is
performed before time-related dispatching, the system under-accounts for threads running at
a regular interval. If such threads run for less than the clock tick interval, they can effectively
hide behind the clock tick.

The following example examines whether a system has any such threads. Type the following
source code and save it in a file named tick.d:

sched:::tick,
sched:::enqueue
{
  @[probename] = lquantize((timestamp / 1000000) % 10, 0, 10);
}

The output of the example script is two distributions of the millisecond offset within a ten
millisecond interval, one for the tick probe and another for enqueue:

Chapter 11
sched Provider

11-39



# dtrace -s tick.d
dtrace: script 'tick.d' matched 9 probes
^C

  tick                                              
           value  ------------- Distribution ------------- count    
             < 0 |                                         0        
               0 |@@@@@                                    29       
               1 |@@@@@@@@@@@@@@@@@@@                      106      
               2 |@@@@@                                    27       
               3 |@                                        7        
               4 |@@                                       10       
               5 |@@                                       12       
               6 |@                                        4        
               7 |@                                        8        
               8 |@@                                       9        
               9 |@@@                                      17       
           >= 10 |                                         0        

  enqueue                                           
           value  ------------- Distribution ------------- count    
             < 0 |                                         0        
               0 |@@@@                                     82       
               1 |@@@@                                     86       
               2 |@@@@                                     76       
               3 |@@@                                      65       
               4 |@@@@@                                    101      
               5 |@@@@                                     79       
               6 |@@@@                                     75       
               7 |@@@@                                     76       
               8 |@@@@                                     89       
               9 |@@@@                                     75       
           >= 10 |                                         0 

The output histogram named tick shows that the clock tick is firing at a 1 millisecond
offset. In this example, the output for enqueue is evenly spread across the ten
millisecond interval and no spike is visible at 1 millisecond, so it appears that the
threads are being not being scheduled on a time basis.

sched Stability
The sched provider uses DTrace's stability mechanism to describe its stabilities. These
values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

For more information about the stability mechanism, see DTrace Stability Features.

Chapter 11
sched Provider

11-40



io Provider
The io provider makes available probes that relate to data input and output. The io provider
enables quick exploration of behavior that is observed through I/O monitoring tools such as
iostat. For example, you can use the io provider to understand I/O by device, I/O type, I/O
size, process, or application name .

io Probes
The following table describes the probes for the io provider.

Table 11-9    io Probes

Probe Description

start Fires when an I/O request is about to be made
either to a peripheral device or to an NFS
server.

done Fires after an I/O request has been fulfilled.
The done probe fires after the I/O completes,
but before completion processing has been
performed on the buffer. As a result B_DONE is
not set in b_flags at the time the done probe
fires.

wait-start Fires immediately before a thread begins to
wait pending completion of a given I/O
request. Some time after the wait-start
probe fires, the wait-done probe fires in the
same thread.

wait-done Fires when a thread finishes waiting for the
completion of a given I/O request. The wait-
done probe fires only after the wait-start
probe has fired in the same thread.

The io probes fire for all I/O requests to peripheral devices, and for all file read and file write
requests to an NFS server. Requests for metadata from an NFS server, for example, do not
trigger io probes due to a readdir() request.

io Probe Arguments
The following table describes the arguments for the io probes.

Table 11-10    io Probe Arguments

Argument Type Description

args[0] bufinfo_t * The bufinfo_t for the
corresponding I/O request.

args[1] devinfo_t * The devinfo_t for the device
for the corresponding I/O
request.

Chapter 11
io Provider

11-41



Table 11-10    (Cont.) io Probe Arguments

Argument Type Description

args[2] fileinfo_t * The fileinfo_t for the file for
the corresponding I/O request.

Note:

DTrace does not currently support the use of fileinfo_t with io probes. In
Oracle Linux, no information is readily accessible at the level where the io
probes fire about the file where an I/O request originated.

bufinfo_t
The bufinfo_t structure is the abstraction that describes an I/O request. The buffer
that corresponds to an I/O request is pointed to by args[0] in the start, done, wait-
start, and wait-done probes. Detailed information about this data structure can be
found in /usr/lib64/dtrace/version/io.d. The definition of bufinfo_t is as follows:

typedef struct bufinfo {
  int b_flags;         /* flags */
  size_t b_bcount;     /* number of bytes */
  caddr_t b_addr;      /* buffer address */
  uint64_t b_blkno;    /* expanded block # on device */
  uint64_t b_lblkno;   /* logical block # on device */
  size_t b_resid;      /* not supported */
  size_t b_bufsize;    /* size of allocated buffer */
  caddr_t b_iodone;    /* I/O completion routine */
  int b_error;         /* not supported */
  dev_t b_edev;        /* extended device */
} bufinfo_t;

Note:

DTrace translates the members of bufinfo_t from the buffer_head or bio
for the Oracle Linux I/O request structure, depending on the kernel version.

b_flags indicates the state of the I/O buffer, and consists of a bitwise-or of different
state values. The following table describes the values for the supported states.

Chapter 11
io Provider

11-42



Table 11-11    b_flags Values

b_flags Value Description

B_ASYNC 0x000400 Indicates that the I/O request
is asynchronous and is not
waited upon. The wait-start
and wait-done probes do not
fire for asynchronous I/O
requests.

No

te:

So
me
I/O
s
dir
ect
ed
to
be
asy
nc
hro
no
us
mi
ght
not
set
B_
AS
YN
C.
Th
e
asy
nc
hro
no
us
I/O
sub
sys
te
m
cou
ld
im
ple
me
nt
the

Chapter 11
io Provider

11-43



Table 11-11    (Cont.) b_flags Values

b_flags Value Description

asy
nc
hro
no
us
req
ues
t
by
ha
vin
g a
sep
ara
te
wo
rke
r
thr
ea
d
per
for
m
a
syn
chr
on
ous
I/O
op
era
tio
n.

B_PAGEIO 0x000010 Indicates that the buffer is
being used in a paged I/O
request.

B_PHYS 0x000020 Indicates that the buffer is
being used for physical (direct)
I/O to a user data area.

B_READ 0x000040 Indicates that data is to be
read from the peripheral
device into main memory.

B_WRITE 0x000100 Indicates that the data is to be
transferred from main
memory to the peripheral
device.

b_bcount: Is the number of bytes to be transferred as part of the I/O request.

Chapter 11
io Provider

11-44



b_addr: Is the virtual address of the I/O request, when known.

b_blkno: Identifies which block on the device is to be accessed.

b_lblkno: Identifies which logical block on the device is to be accessed. The mapping from a
logical block to a physical block (such as the cylinder, track, and so on) is defined by the
device.

b_bufsize: Contains the size of the allocated buffer.

b_iodone: Identifies a specific routine in the kernel that is called when the I/O is complete.

b_edev: Contains the major and minor device numbers of the device accessed. You can use
the D subroutines getmajor and getminor to extract the major and minor device numbers
from the b_edev field.

devinfo_t
The devinfo_t structure provides information about a device. The devinfo_t structure that
corresponds to the destination device of an I/O is pointed to by args[1] in the start, done,
wait-start, and wait-done probes. Detailed information about this data structure can be
found in /usr/lib64/dtrace/version/io.d. The definition of devinfo_t is as follows:

typedef struct devinfo {
  int dev_major;           /* major number */
  int dev_minor;           /* minor number */
  int dev_instance;        /* not supported */
  string dev_name;         /* name of device */
  string dev_statname;     /* name of device + instance/minor */
  string dev_pathname;     /* pathname of device */
} devinfo_t;

Note:

DTrace translates the members of devinfo_t from the buffer_head for the Oracle
Linux I/O request structure.

dev_major: Is the major number of the device.

dev_minor: Is the minor number of the device.

dev_name: Is the name of the device driver that manages the device.

dev_statname: Is the name of the device as reported by iostat. This field is provided so
that aberrant iostat output can be quickly correlated to actual I/O activity.

dev_pathname: Is the full path of the device. The path that is specified by dev_pathname
includes components expressing the device node, the instance number, and the minor node.
However, note that all three of these elements are not necessarily expressed in the statistics
name. For some devices, the statistics name consists of the device name and the instance
number. For other devices, the name consists of the device name and the number of the
minor node. As a result, two devices that have the same dev_statname migh differ in their
dev_pathname.

Chapter 11
io Provider

11-45



fileinfo_t

Note:

DTrace does not currently support the use of fileinfo_t with the args[2]
argument of the io probes. You can use the fileinfo_t structure to obtain
information about a process's open files by using the fds[] array. See Built-
In Variables.

The fileinfo_t structure provides information about a file. args[2] in the start,
done, wait-start, and wait-done probes points to the file to which an I/O request
corresponds. The presence of file information is contingent upon the file system
providing this information when dispatching I/O requests. Some file systems,
especially third-party file systems, might not provide this information. Also, I/O
requests might emanate from a file system for which no file information exists. For
example, any I/O from or to file system metadata is not associated with any one file.
Finally, some highly optimized file systems might aggregate I/O from disjoint files into a
single I/O request. In this case, the file system might provide the file information either
for the file that represents the majority of the I/O or for the file that represents some of
the I/O. Alternatively, the file system might provide no file information at all in this case.

Detailed information about this data structure can be found in /usr/lib64/dtrace/
version/io.d. The definition of fileinfo_t is as follows:

typedef struct fileinfo {
  string fi_name;           /* name (basename of fi_pathname) */
  string fi_dirname;        /* directory (dirname of fi_pathname) */
  string fi_pathname;       /* full pathname */
  loff_t fi_offset;         /* offset within file */
  string fi_fs;             /* file system */
  string fi_mount;          /* not supported */
  int fi_oflags;            /* open() flags for file descriptor */
} fileinfo_t;

The fi_name field contains the name of the file but does not include any directory
components. If no file information is associated with an I/O, the fi_name field is set to
the string <none>. In some rare cases, the pathname that is associated with a file might
be unknown. In this case, the fi_name field is set to the string <unknown>.

The fi_dirname field contains only the directory component of the file name. As with
fi_name, this string can be set to <none>, if no file information is present, or <unknown>
if the pathname that is associated with the file is not known.

The fi_pathname field contains the full pathname to the file. As with fi_name, this
string can be set to <none>, if no file information is present, or <unknown> if the
pathname that is associated with the file is not known.

The fi_offset field contains the offset within the file , or -1, if either file information is
not present or if the offset is otherwise unspecified by the file system.

The fi_fs field contains the name of the file system type, or <none>, if no information
is present.

Chapter 11
io Provider

11-46



The fi_oflags field contains the flags that were specified when opening the file.

io Examples
'The following example script displays information for every I/O as it is issued. Type the
following source code and save it in a file named iosnoop.d.

#pragma D option quiet

BEGIN
{
  printf("%10s %2s\n", "DEVICE", "RW");
}

io:::start
{
  printf("%10s %2s\n", args[1]->dev_statname,
  args[0]->b_flags & B_READ ? "R" : "W");
}

The output from this script is similar to the following:

# dtrace -s ./iosnoop.d
    DEVICE RW
     dm-00  R
     dm-00  R
     dm-00  R
     dm-00  R
     dm-00  R
     dm-00  R
...

You can make the example script slightly more sophisticated by using an associative array to
track the time (in milliseconds) spent on each I/O, as shown in the following example:

#pragma D option quiet

BEGIN
{
  printf("%10s %2s %7s\n", "DEVICE", "RW", "MS");
}

io:::start
{
  start[args[0]->b_edev, args[0]->b_blkno] = timestamp;
}

io:::done
/start[args[0]->b_edev, args[0]->b_blkno]/
{
  this->elapsed = timestamp - start[args[0]->b_edev, args[0]->b_blkno];
  printf("%10s %2s %3d.%03d\n", args[1]->dev_statname,
  args[0]->b_flags & B_READ ? "R" : "W",
  this->elapsed / 10000000, (this->elapsed / 1000) % 1000);
  start[args[0]->b_edev, args[0]->b_blkno] = 0;
}

The modified script adds a MS (milliseconds) column to the output.

Chapter 11
io Provider

11-47



You can aggregate on device, application, process ID and bytes transferred, then save
it in a file named whoio.d, as shown in the following example:

#pragma D option quiet

io:::start
{
  @[args[1]->dev_statname, execname, pid] = sum(args[0]->b_bcount);
}

END
{
  printf("%10s %20s %10s %15s\n", "DEVICE", "APP", "PID", "BYTES");
  printa("%10s %20s %10d %15@d\n", @);
}

Running this script for a few seconds results in output that is similar to the following:

# dtrace -s whoio.d
                     ^C
    DEVICE                  APP        PID           BYTES
     dm-00               evince      14759           16384
     dm-00          flush-252:0       1367           45056
     dm-00                 bash      14758          131072
     dm-00       gvfsd-metadata       2787          135168
     dm-00               evince      14758          139264
     dm-00               evince      14338          151552
     dm-00          jbd2/dm-0-8        390          356352

If you are copying data from one device to another, you might want to know if one of
the devices acts as a limiter on the copy. To answer this question, you need to know
the effective throughput of each device, rather than the number of bytes per second
that each device is transferring. For exampe, you can determine throughput by using
the following script and saving it in a file named copy.d:

#pragma D option quiet

io:::start
{
  start[args[0]->b_edev, args[0]->b_blkno] = timestamp;
}

io:::done
/start[args[0]->b_edev, args[0]->b_blkno]/
{
  /*
   * We want to get an idea of our throughput to this device in KB/sec.
   * What we have, however, is nanoseconds and bytes. That is we want
   * to calculate:
   *
   * bytes / 1024
   * ------------------------
   * nanoseconds / 1000000000
   *
   * But we cannot calculate this using integer arithmetic without losing
   * precision (the denominator, for one, is between 0 and 1 for nearly
   * all I/Os). So we restate the fraction, and cancel:
   *
   * bytes       1000000000      bytes       976562
   * --------- * ------------- = --------- * -------------
   * 1024        nanoseconds     1           nanoseconds

Chapter 11
io Provider

11-48



   *
   * This is easy to calculate using integer arithmetic.
   */
  this->elapsed = timestamp - start[args[0]->b_edev, args[0]->b_blkno];
  @[args[1]->dev_statname, args[1]->dev_pathname] =
    quantize((args[0]->b_bcount * 976562) / this->elapsed);
  start[args[0]->b_edev, args[0]->b_blkno] = 0;
}

END
{
  printa(" %s (%s)\n%@d\n", @);
}

Running the previous script for several seconds while copying data from a hard disk to a USB
drive yields the following output:

# dtrace -s copy.d
^C
sdc1 (/dev/sdc1)

           value  ------------- Distribution ------------- count    
              32 |                                         0
              64 |                                         3
             128 |                                         1
             256 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@  2257
             512 |                                         1
            1024 |                                         0       

 dm-00 (/dev/dm-00)

           value  ------------- Distribution ------------- count    
             128 |                                         0
             256 |                                         1
             512 |                                         0
            1024 |                                         2
            2048 |                                         0
            4096 |                                         2
            8192 |@@@@@@@@@@@@@@@@@@                       172
           16384 |@@@@@                                    52
           32768 |@@@@@@@@@@@                              108
           65536 |@@@                                      34
          131072 |                                         0     

The previous output shows that the USB drive (sdc1) is clearly the limiting device. The
throughput of sdc1 is between 256K/sec and 512K/sec, while dm-00 delivered I/O at
anywhere from 8 MB/second to over 64 MB/second.

io Stability
The io provider uses DTrace's stability mechanism to describe its stabilities. These values
are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Chapter 11
io Provider

11-49



Element Name Stability Data Stability Dependency Class

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

For more information about the stability mechanism, see DTrace Stability Features

fasttrap Provider
The fasttrap provider performs dynamic instrumentation of arbitrary instructions in
user-space threads. Unlike most other DTrace providers, the fasttrap provider is not
designed for tracing system activity. Rather, this provider is intended as a way for
DTrace consumers to inject information into the DTrace framework by activating the
fasttrap probe.

For more information about enabling statically defined probes in user-space programs,
see Statically Defined Tracing of User Applications.

fasttrap Probes
The fasttrap provider makes available a single probe that fires whenever a user-level
process makes a certain DTrace call into the kernel. The DTrace call to activate the
probe is not available

fasttrap Stability
The fasttrap provider uses DTrace's stability mechanism to describe its stabilities.
These values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private Unknown

For more information about the stability mechanism, see DTrace Stability Features.

Chapter 11
fasttrap Provider

11-50



12
User Process Tracing

DTrace is a powerful tool for understanding the behavior of user processes. DTrace can be
invaluable when debugging and analyzing performance problems, or for simply
understanding the behavior of a complex application. This chapter focuses on the DTrace
facilities that are relevant to tracing user process activity and provides examples that illustrate
their use.

copyin and copyinstr Subroutines
DTrace's interaction with processes is slightly different than most traditional debuggers and
observability tools. Many such tools appear to execute within the scope of the process,
allowing users dereference pointers to program variables directly. Rather than appearing to
execute within or as part of the process itself, DTrace probes execute in the Oracle Linux
kernel. To access process data, a probe uses the copyin or copyinstr subroutines to copy
user process data into the address space of the kernel.

For example, consider the following write() system call:

ssize_t write(int fd, const void *buf, size_t nbytes);

The following D program illustrates an incorrect attempt to print the contents of a string that is
passed to the write() system call:

syscall::write:entry
{
  printf("%s", stringof(arg1)); /* incorrect use of arg1 */
}

If you attempt to run this script, DTrace produces error messages similar to the following:

dtrace: error on enabled probe ID 1 (ID 37: syscall::write:entry): \
invalid address (0x10038a000) in action #1

The arg1 variable, which contains the value of the buf parameter, is an address that refers to
memory in the process executing the system call. To read the string at that address, use the
copyinstr subroutine and record its result with the printf action, for example:

syscall::write:entry
{
  printf("%s", copyinstr(arg1)); /* correct use of arg1 */
}

In the previous script, the output shows all of the strings that are being passed to the write()
system call. Occasionally, however, you might see irregular output similar to the following:

 0         37                     write:entry mada&^%**&

The copyinstr subroutine acts on an input argument, which is the user address of a null-
terminated ASCII string, but buffers that are passed to the write() system call might refer to
binary data rather than ASCII strings or to ASCII strings that do not include a terminating null

12-1



byte. To print only as much of the string as the caller intended, use the two parameter
version of the copyinstr subroutine, which includes the size of the targeted string
buffer:

syscall::write:entry { printf("%s", copyinstr(arg1, arg2)); }

Alternatively, you can use the copyin subroutine, which takes an address and size, for
example:

syscall::write:entry
{
  printf("%s", stringof(copyin(arg1, arg2)));
}

Note that the stringof operator is necessary so that DTrace properly converts the
user data that is retrieved by copyin to a string. The use of stringof is not necessary
with the copyinstr subroutine because it always returns the type string.

Avoiding Errors
The copyin and copyinstr subroutines cannot read from user addresses that have
not yet been touched, so even a valid address could cause an error if the page
containing that address has not yet been faulted in by being accessed. Consider the
following example:

# dtrace -n syscall::open:entry'{ trace(copyinstr(arg0)); }'
dtrace: description 'syscall::open:entry' matched 1 probe
CPU     ID                    FUNCTION:NAME
  1      8                       open:entry   /dev/sr0                         
  1      8                       open:entry   /var/run/utmp                    
  1      8                       open:entry   /dev/sr0
dtrace: error on enabled probe ID 2 (ID 8: syscall::open:entry): \
invalid address (0x9af1b) in action #1 at DIF offset 52

In the example output, the application was functioning properly, and the address in
arg0 was valid, but it referred to a page that had not yet been accessed by the
corresponding process. To resolve this issue, you would need to wait for the kernel or
an application to use the data before tracing it.

For example, you might wait until the system call returns to apply copyinstr, as shown
here:

# dtrace -n syscall::open:entry'{ self->file = arg0; }' \
  -n syscall::open:return'{ trace(copyinstr(self->file)); self->file = 
0; }'
dtrace: description 'syscall::open:entry' matched 1 probe
dtrace: description 'syscall::open:return' matched 1 probe
CPU     ID                    FUNCTION:NAME
  0      9                      open:return   /dev/sr0                         
  1      9                      open:return   /usr/lib64/gconv/gconv-
modules.cache
  0      9                      open:return   /dev/sr0                         
  0      9                      open:return   public/pickup                    
  1      9                      open:return   maildrop                         
  1      9                      open:return   /dev/sr0                         
  1      9                      open:return   /dev/sr0                         
  1      9                      open:return   /var/run/utmp
...

Chapter 12
copyin and copyinstr Subroutines

12-2



Eliminating dtrace Interference
If you trace every call to the write() system call, it causes a cascade of output because each
call causes the dtrace command to call write() as it displays the output, and so on. This
feedback loop is a good example of how the dtrace command can interfere with the desired
data. To prevent this type of unwanted data from being traced, use a simple predicate like the
one that is shown in the following example and save it in a file named stringof.d:

syscall::write:entry
/pid != $pid/
{
  printf("%s", stringof(copyin(arg1, arg2)));
}

In the previous example, the $pid macro variable expands to the process identifier of the
process that enabled the probes. The pid variable contains the process identifier of the
process whose thread was running on the CPU where the probe was fired. Therefore, the
predicate /pid != $pid/ ensures that the script does not trace any events related to itself.

Using the syscall Provider
The syscall provider enables you to trace every system call entry and return. System calls
can be a good starting point for understanding the behavior of a process, especially if the
process seems to be spending a large amount of time executing or blocked in the kernel, as
shown in the output of commands such as ps and top.

For example, consider a process with a process ID of 31337 that is consuming a large
amount of system time. One possible explanation for this behavior is that the process is
executing a large number of system calls. You can specify a simple D program on the
command line to see which system calls are happening most often:

# dtrace -n syscall:::entry'/pid == 31337/{ @syscalls[probefunc] = count(); }'
dtrace: description ’syscall:::entry’ matched 215 probes
^C

  kill                                                              1
  clone                                                             4
  pipe                                                              4
  setpgid                                                           4
  rt_sigreturn                                                      6
  sendmsg                                                           7
  socket                                                            7
  access                                                            8
  getegid                                                           8
  geteuid                                                           8
  getgid                                                            8
  getuid                                                            8
  wait4                                                            12
  close                                                            15
  read                                                             23
  newstat                                                          25
  write                                                            42
  ioctl                                                            65
  rt_sigaction                                                    168
  rt_sigprocmask                                                  198
  write                                                          1092

Chapter 12
Eliminating dtrace Interference

12-3



The previous report shows the system calls that are being called most often, which in
this case, is the write() system call.

You can use the syscall provider to further examine the source of all of the write()
system calls, for example:

# dtrace -n syscall::write:entry'/pid == 31337/{ @writes = 
quantize(arg2); }'
dtrace: description ’syscall::write:entry’ matched 1 probe
^C

          value  ------------- Distribution ------------- count
              0 |                                         0
              1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@   1037
              2 |@                                        3
              4 |                                         0
              8 |                                         0
             16 |                                         0
             32 |@                                        3
             64 |                                         0
            128 |                                         0
            256 |                                         0
            512 |                                         0
           1024 |@                                        5

The previous output shows that the process is executing many write() system calls
with a relatively small amount of data. The ratio could be the source of the
performance problem for this particular process. This example illustrates a general
methodology for investigating system call behavior.

ustack Action

Note:

If you want to perform symbol lookup in a stripped executable, you must
specify the --export-dynamic option when linking the program. This
option causes the linker to add all symbols to the dynamic symbol table (the
set of symbols that are visible from dynamic objects at run time). If you use
gcc to link the objects, specify the option as -Wl,--export-dynamic to
pass the correct option to the linker.

If you want to look up symbols in shared libraries or unstripped executables,
the --export-dynamic option is not required.

Tracing a process thread's stack when a particular probe is activated is often useful for
examining a problem in more detail. The ustack action traces the user thread's stack.
For example, if a process that opens many files occasionally fails in the open() system
call, you can use the ustack action to discover the code path that executes the failed
open. Type the following source code and save it in a file named badopen.d:

syscall::open:entry
/pid == $1/
{
  self->path = copyinstr(arg0);

Chapter 12
ustack Action

12-4



}

syscall::open:return
/self->path != NULL && errno != 0/
{
  printf("open for '%s' failed", self->path);
  ustack();
}

This script also illustrates the use of the $1 macro variable, which takes the value of the first
operand that is specified on the dtrace command line:

# dtrace -s ./badopen.d 3430
dtrace: script './badopen.d' matched 2 probes
CPU     ID                    FUNCTION:NAME
  1    489                    openat:return open for '/usr/lib/foo' failed
              libc.so.6`sleep+0xe0
              ld-linux-x86-64.so.2`do_lookup_x+0x847
              libc.so.6`0x3cb8003630
              libc.so.6`0x3cb8003c48
              libc.so.6`0x3cb800e2c8
              libc.so.6`0x3cb8003c48
              looper`0x400612
              libc.so.6`getenv+0x2a
              looper`0x4003c8
              looper`0x4009b0
              libc.so.6`0x3cb800e2c8
              looper`0x4009b0
              looper`doOpenLoop+0x33
              looper`0x400e9c
              looper`main+0x5f
              looper`0x400ea9
              libc.so.6`__libc_start_main+0xfd
              looper`main
              looper`0x4009b0
              looper`__libc_csu_init

The ustack action records program counter (PC) values for the stack and the dtrace
command resolves the PC values to symbol names by looking though the process's symbol
tables. If dtrace cannot resolve the PC value to a symbol, it prints out the value as a
hexadecimal integer.

If a process exits or is killed before the ustack data is formatted for output, dtrace might be
unable to convert the PC values in the stack trace to symbol names and the command
displays them as hexadecimal integers.

uregs[] Array
The uregs[] array enables you to access individual user registers. See Table 12-1, which
lists the index constants into the uregs[] array for each supported architecture.

The following table lists the index constants into the uregs[] array for each supported
architecture.

Chapter 12
uregs[] Array

12-5



Table 12-1    x86 uregs[] Constants

Constant Register Architecture

R_PC program counter register x86, AMD64

R_SP stack pointer register x86, AMD64

R_R0 first return code x86, AMD64

R_R1 second return code x86, AMD64

R_CS %cs x86, AMD64

R_GS %gs x86, AMD64

R_ES %es x86, AMD64

R_DS %ds x86, AMD64

R_EDI %ed x86, AMD64

R_ESI %es x86, AMD64

R_EBP %ebp x86, AMD64

R_EAX %eax x86, AMD64

R_ESP %esp x86, AMD64

R_EAX %eax x86, AMD64

R_EBX %ebx x86, AMD64

R_ECX %ecx x86, AMD64

R_EDX %edx x86, AMD64

R_TRAPNO %trapno x86, AMD64

R_ERR %err x86, AMD64

R_EIP %eip x86, AMD64

R_CS %cs x86, AMD64

R_EFL %efl x86, AMD64

R_UESP %uesp x86, AMD64

R_SS %ss x86, AMD64

R_RSP %rsp AMD64

R_RFL %rfl AMD64

R_RIP %rip AMD64

R_RAX %rax AMD64

R_RCX %rcx AMD64

R_RDX %rdx AMD64

R_RBP %rbp AMD64

R_RSI %rsi AMD64

R_RDI %rdi AMD64

R_R8 %r8 AMD64

Chapter 12
uregs[] Array

12-6



Table 12-1    (Cont.) x86 uregs[] Constants

Constant Register Architecture

R_R9 %r9 AMD64

R_R10 %r10 AMD64

R_R11 %r11 AMD64

R_R12 %r12 AMD64

R_R13 %r13 AMD64

R_R14 %r14 AMD64

R_R15 %r15 AMD64

Using the pid Provider
The pid provider enables you to trace any instruction in a process. Unlike most other
providers, pid probes are created on demand, based on the probe descriptions that are
found in your D programs. As a result, no pid probes are listed in the output of the dtrace -
l command until you enable them.

User Function Boundary Tracing
The simplest mode of operation for the pid provider is to provide function boundary tracing in
user space. The following example program traces all of the function entries and returns that
are made from a single function. The $1 macro variable, the first operand on the command
line, is the process ID for the process to trace. The $2 macro variable, the second operand on
the command line, is the name of the function from which to trace all function calls. Type the
following source code and save it in a file named userfunc.d:

#!/usr/sbin/dtrace -s
#pragma D option flowindent

pid$1::$2:entry
{
  self->trace = 1;
}

pid$1:::entry,
pid$1:::return
/self->trace/
{
}

pid$1::$2:return
/self->trace/
{
  self->trace = 0;
}

Type the previous example script and save it in a file named userfunc.d, then use the chmod
command to make the file executable. This script produces output with more details on the
principal buffer:

Chapter 12
Using the pid Provider

12-7



# ./userfunc.d 123 execute
dtrace: script ’./userfunc.d’ matched 11594 probes
  0  -> execute
  0    -> execute
  0      -> Dfix
  0      <- Dfix
  0      -> s_strsave
  0        -> malloc
  0        <- malloc
  0      <- s_strsave
  0      -> set
  0        -> malloc
  0        <- malloc
  0      <- set
  0      -> set1
  0        -> tglob
  0        <- tglob
  0      <- set1
  0      -> setq
  0        -> s_strcmp
  0        <- s_strcmp
...

The pid provider can only be used on processes that are already running. You can use
the $target macro variable (see Scripting) and the dtrace command with the -c and
-p options to create and grab processes of interest and instrument them by using
DTrace.

For example, you can use the following D script to determine the distribution of
function calls that are made to libc by a particular subject process. Type the following
source code and save it in a file named libc.d:

pid$target:libc.so::entry
{
  @[probefunc] = count();
}

To determine the distribution of such calls that are made by the date command, save
the script in a file named libc.d and run the following command:

# dtrace -s libc.d -c date
dtrace: script ’libc.d’ matched 2476 probes
Fri Jul 30 14:08:54 PDT 2004
dtrace: pid 109196 has exited

  pthread_rwlock_unlock                         1
  _fflush_u                                     1
  rwlock_lock                                   1
  rw_write_held                                 1
  strftime                                      1
  _close                                        1
  _read                                         1
  __open                                        1
  _open                                         1
  strstr                                        1
  load_zoneinfo                                 1
...
  _ti_bind_guard                               47
  _ti_bind_clear                               94

Chapter 12
Using the pid Provider

12-8



Tracing Arbitrary Instructions
You can use the pid provider to trace any instruction in any user function. Upon demand, the
pid provider creates a probe for every instruction in a function. The name of each probe is
the offset of its corresponding instruction in the function and is expressed as a hexadecimal
integer. For example, to enable a probe that is associated with the instruction at offset 0x1c in
the function foo of the module bar.so in the process with PID 123, you would use the
following command:

# dtrace -n pid123:bar.so:foo:1c

To enable all of the probes in the function foo, including the probe for each instruction, you
would use the following command:

# dtrace -n pid123:bar.so:foo:

Using the previous command demonstrates an extremely powerful technique for debugging
and analyzing user applications. Infrequent errors can be difficult to debug because they can
be difficult to reproduce. Often, you can identify a problem after the failure has occurred,
which is too late to reconstruct the code path.

The following example demonstrates how to combine the pid provider with speculative
tracing to solve this problem by tracing every instruction in a function. See Speculative
Tracing for a description.

Type the following source code and save it in a file named errorpath.d:

pid$1::$2:entry
{
  self->spec = speculation();
  speculate(self->spec);
  printf("%x %x %x %x %x", arg0, arg1, arg2, arg3, arg4);
}

pid$1::$2:
/self->spec/
{
  speculate(self->spec);
}

pid$1::$2:return
/self->spec && arg1 == 0/
{
  discard(self->spec);
  self->spec = 0;
}

pid$1::$2:return
/self->spec && arg1 != 0/
{
  commit(self->spec);
  self->spec = 0;
}

Executing the errorpath.d script results in output similar to the following:

# ./errorpath.d 123 _chdir
dtrace: script ’./errorpath.d’ matched 19 probes

Chapter 12
Using the pid Provider

12-9



CPU    ID                     FUNCTION:NAME
  0 25253                      _chdir:entry 81e08 6d140 ffbfcb20 656c73 0
  0 25253                      _chdir:entry
  0 25269                      _chdir:0
  0 25270                      _chdir:4
  0 25271                      _chdir:8
  0 25272                      _chdir:c
  0 25273                      _chdir:10
  0 25274                      _chdir:14
  0 25275                      _chdir:18
  0 25276                      _chdir:1c
  0 25277                      _chdir:20
  0 25278                      _chdir:24
  0 25279                      _chdir:28
  0 25280                      _chdir:2c
  0 25268                      _chdir:return

Chapter 12
Using the pid Provider

12-10



13
Statically Defined Tracing of User Applications

DTrace provides a facility for user application developers to define customized probes in
application code to augment the capabilities of the pid provider. These static probes impose
little to no overhead when disabled and are dynamically enabled like all other DTrace probes.
You can use static probes to describe application semantics to users of DTrace without
exposing or requiring implementation knowledge of your applications. This chapter describes
how to define static probes in user applications and how to use DTrace to enable such
probes in user processes.

Note:

DTrace supports statically defined tracing of user applications for both 32-bit and
64-bit binaries.

For information about using static probes with kernel modules, see Statically Defined Tracing
of Kernel Modules.

Choosing the Probe Points
DTrace enables developers to embed static probe points in application code, including both
complete applications and shared libraries. You can enable these probes wherever the
application or library is running, either in development or production. You should define
probes that have a semantic meaning that is readily understood by your DTrace user
community. For example, you could define query-receive and query-respond probes for a
web server that correspond to a client that is submitting a request and the web server that is
responding to the request. These example probes are easily understood by most DTrace
users and correspond to the highest level abstractions for the application, rather than lower-
level implementation details. DTrace users can use these probes to understand the time
distribution of requests. If your query-receive probe presented the URL request strings as
an argument, a DTrace user could determine which requests were generating the most disk
I/O by combining this probe with the io provider.

You should also consider the stability of the abstractions you describe when choosing probe
names and locations. For example, will the probe persist in future releases of the application
even if the implementation changes? Does the probe make sense on all system architectures
or is it specific to a particular instruction set? This chapter discusses how these decisions can
guide your static tracing definitions.

Adding Probes to an Application
DTrace probes for libraries and executables are defined in an ELF section in the
corresponding application binary. The following topics are discussed in more detail in this
section: defining probes, adding probes to your application source code, and augmenting
your application's build process to include the DTrace probe definitions.

13-1



Defining Providers and Probes
You define DTrace probes in a .d source file, which is then used when compiling and
linking your application. First, select an appropriate name for your user application
provider. The provider name that you choose is appended with the process identifier
for each process that is executing your application code. For example, if you chose the
provider name myserv for a web server that was executing as process ID 1203, the
DTrace provider name that corresponds to this process would be myserv1203. In a .d
source file, you would add a provider definition similar to the one that is shown the
following example:

provider myserv
{
  ...
};

Next, add a definition for each probe and the corresponding arguments. The following
example defines the two probes that are discussed in Choosing the Probe Points. The
first probe has two arguments, both of type char *. The second probe has no
arguments. The D compiler converts two consecutive underscores (__) to a dash (-) in
the probe name:

provider myserv
{
  probe query__receive(char *, char *);
  probe query__respond();
};

You can add stability attributes to your provider definition so that consumers of your
probes understand the likelihood of change in future versions of your application. See 
DTrace Stability Features for more information on DTrace stability attributes.

The following example illustrates how stability attributes are defined:

#pragma D attributes Evolving/Evolving/Common provider myserv provider
#pragma D attributes Private/Private/Unknown provider myserv module
#pragma D attributes Private/Private/Unknown provider myserv function
#pragma D attributes Evolving/Evolving/Common provider myserv name
#pragma D attributes Evolving/Evolving/Common provider myserv args

provider myserv
{
  probe query__receive(char *, char *);
  probe query__respond();
};

Adding Probes to Application Code
After you have defined your probes in a .d file, you then need to augment your source
code to indicate the locations that should trigger your probes. Consider the following
example C application source code:

void main_look(void)
{
  ...
  query = wait_for_new_query();
  process_query(query);

Chapter 13
Adding Probes to an Application

13-2



  ...
}

To add probes to an application, use the -h option to the dtrace command, which generates
a header file based on the probe definitions. For example, the following command generates
the header file myserv.h, which contains macro definitions corresponding to the probe
definitions in myserv.d:

# dtrace -h -s myserv.d

This method is recommended, as the coding is easier to implement and understand. The
method is also compatible with both C and C++. In addition, because the generated macros
depend on the types that you define in the provider definition, the compiler can perform type
checking on them.

For example, you can add a probe site by using the MYSERV_QUERY_RECEIVE macro that
dtrace -h defines in myserv.h:

#include "myserv.h"
...
void main_look(void)
{
  ...
  query = wait_for_new_query();
  MYSERV_QUERY_RECEIVE(query->clientname, query->msg);
  process_query(query);
  ...
}

In the previous example, the name of the macro encodes both the provider name and the
probe name.

Testing if a Probe Is Enabled
The computational overhead of a DTrace probe is usually equivalent to a few no-op
instructions. However, setting up probe arguments can be expensive, particularly in the case
of dynamic languages, where the code has to determine the name of a class or the method at
runtime.

In addition to the probe macro, the dtrace -h command creates an is-enabled probe macro
for each probe that you specify in the provider definition. To ensure that your program
computes the arguments to a DTrace probe only when required, you can use the is-enabled
probe test to verify whether the probe is currently enabled, for example:

if (MYSERV_QUERY_RECEIVE_ENABLED())
  MYSERV_QUERY_RECEIVE(query->clientname, query->msg);

If the probe arguments are computationally expensive to calculate, the slight overhead that is
incurred by performing the is-enabled probe test is more than offset when the probe is not
enabled.

Building Applications With Probes
You must augment the build process for your application to include the DTrace provider and
probe definitions. A typical build process takes each source file and compiles it to create a
corresponding object file. The compiled object files are then linked to each other to create the
finished application binary, as shown in the following example:

Chapter 13
Adding Probes to an Application

13-3



src1.o: src1.c
    gcc -c src1.c

src2.o: src2.c
    gcc -c src2.c

myserv: src1.o src2.o
    gcc -o myserv src1.o src2.o

If you included DTrace probe definitions in your application, you need to add
appropriate Makefile rules to your build process to execute the dtrace command.

The dtrace command post-processes the object files that are created by the
preceding compiler commands and generates the object file myserv.o from myserv.d
and the other object files. The -G option is used to link provider and probe definitions
with a user application.

The -Wl,--export-dynamic link options to gcc are required to support symbol
lookup in a stripped executable at runtime, for example, by running ustack().

If you inserted probes in the source code by using the macros that were defined in a
header file created by dtrace -h, you need to include that command in the Makefile:

myserv.h: myserv.d
    dtrace -h -s myserv.d

src1.o: src1.c myserv.h
    gcc -c src1.c

src2.o: src2.c myserv.h
    gcc -c src2.c

myserv.o: myserv.d src1.o src2.o
    dtrace -G -s myserv.d src1.o src2.o

myserv: myserv.o
    gcc -Wl,--export-dynamic,--strip-all -o myserv myserv.o src1.o src2.o

The rules in the Makefile take into account the dependency of the header file on the
probe definition.

Using Statically Defined Probes
The DTrace helper device (/dev/dtrace/helper) enables a user-space application
that contains USDT probes to send probe provider information to DTrace.

If the program that is to be traced is run by a user other than root, change the mode of
the DTrace helper device to allow the user to record tracing information:

# chmod 666 /dev/dtrace/helper

Alternatively, if the acl package is installed on your system, you can use an ACL rule
to limit access to a specific user, as shown in the following example:

# setfacl -m u:guest:rw /dev/dtrace/helper
# ls -l /dev/dtrace
total 0
crw-rw----  1 root root 10, 16 Sep 26 10:38 dtrace
crw-rw----+ 1 root root 10, 17 Sep 26 10:38 helper

Chapter 13
Adding Probes to an Application

13-4



drwxr-xr-x  2 root root     80 Sep 26 10:38 provider
# getfacl /dev/dtrace/helper
getfacl: Removing leading '/' from absolute path names
# file: dev/dtrace/helper
# owner: root
# group: root
user::rw-
user:guest:rw-
group::rw-
mask::rw-
other::---

Note:

You must change the mode on the device before the user runs the program.

The full name of a probe in a user application takes the usual provider PID : module :
function : name form, where:

provider
Is the name of the provider, as defined in the provider definition file.

PID
Is the process ID of the running executable.

module
Is the name of the executable.

function
Is the name of the function where the probe is located.

name
Is the name of the probe, as defined in the provider definition file with any two consecutive
underscores (__) replaced by a dash (-).

For example, for a myserv process with a PID of 1173, the full name of the query-receive
probe would be myserv1173:myserv:main_look:query-receive.

The following simple example shows how to invoke a traced process from dtrace:

# dtrace -c ./myserv -qs /dev/stdin <<EOF
                     $target:::query-receive
    {
      printf("%s:%s:%s:%s %s %s\n", probeprov, probemod, probefunc, probename,
                                    stringof(args[0]), stringof(args[1]));
    }
  $target:::query-respond
    {
      printf("%s:%s:%s:%s\n", probeprov, probemod, probefunc, probename);
    }
EOF

myserv1173:myserv:main_look:query-receive foo1 msg1
myserv1173:myserv:process_query:query-respond
myserv1173:myserv:main_look:query-receive bar2 msg1

Chapter 13
Adding Probes to an Application

13-5



myserv1173:myserv:process_query:query-respond
...

Note:

For the query-receive probe, stringof() is used to cast args[0] and
args[1] to type string. Otherwise, a DTrace compilation error similar to the
following is displayed:

dtrace: failed to compile script /dev/stdin: line 7:
printf( ) argument #5 is incompatible with conversion #4 prototype:
    conversion: %s
     prototype: char [] or string (or use stringof)
      argument: char *

If the probe arguments were defined as type string instead of char * in the
probe definition file, a compilation warning similar to the following would be
displayed:

In file included from src1.c:5:
myserv.h:39: warning: parameter names (without types) in function 
declaration

In this case, casting the probe arguments to the type string would no longer
be required.

The following script illustrates the complete process of instrumenting, compiling and
tracing a simple user-space program. Save it in a file named testscript:

#!/bin/bash

# Define the probes
cat > prov.d <<EOF
provider myprog
{
  probe dbquery__entry(char *);
  probe dbquery__result(int);
};
EOF

# Create the C program
cat > test.c <<EOF
#include <stdio.h>
#include "prov.h"

int
main(void)
{
        char *query = "select value from table where name = 'foo'";
        /* If the dbquery-entry probe is enabled, trigger it */
        if (MYPROG_DBQUERY_ENTRY_ENABLED())
                MYPROG_DBQUERY_ENTRY(query);
        /* Pretend to run query and obtain result */
        sleep(1);
        int result = 42;
        /* If the dbquery-result probe is enabled, trigger it */
        if (MYPROG_DBQUERY_RESULT_ENABLED())

Chapter 13
Adding Probes to an Application

13-6



                MYPROG_DBQUERY_RESULT(result);
        return (0);
}
EOF

test.o: test.c prov.h
  gcc -c test.c

prov.o: prov.d test.o
  dtrace -G -s prov.d test.o

test: prov.o
  gcc -o test prov.o test.o
EOF

# Make the executable
make test

# Trace the program
dtrace -c ./test -qs /dev/stdin <<EOF
myprog\$target:::dbquery-entry
{
        self->ts = timestamp;
        printf("Query = %s\n", stringof(args[0]));
}

myprog\$target:::dbquery-result
{
        printf("Query time = %d microseconds; Result = %d\n",
            (timestamp - self->ts) / 1000, args[0]);
}
EOF

The output from running this script shows the compilation steps, as well as the results of
tracing the program:

# chmod +x testscript
# ./testscript
dtrace -h -s prov.d
gcc -c test.c
dtrace -G -s prov.d test.o
gcc -o test prov.o test.o
Query = select value from table where name = 'foo'
Query time = 1000481 microseconds; Result = 42

Chapter 13
Adding Probes to an Application

13-7



14
Statically Defined Tracing of Kernel Modules

DTrace provides a facility for developers to define customized probes in kernel modules.
These static probes appear as additional probes of the sdt provider and impose little to no
overhead if the sdt module is not loaded. For example, for x86_64, the overhead is a single-
byte NOP, followed by a 4-byte NOP. This chapter provides a full example of how to define
and use static probes in a kernel module.

The general principles for naming probes and choosing insertion points are the same for
kernel modules as they are for user-space applications. You should define probes that have a
semantic meaning that is readily understood by your DTrace user community. Typically, you
might name probes for the routine in which you place them and their position in that routine.
For example, if your probes provide information about data values on entry to or return from a
routine named foo, you might name them foo-entry and foo-return. The data values that
are returned by such probes could present the routine as a black box, rather than return
intermediate values from the internal implementation of the module. To gather data from
deeper within a module, you might insert additional probes with names such as foo-stage1
or foo-post-hardware-init.

In one respect, using static probes with kernel modules can be simpler than for user-space
applications. You do not need to modify the build files unless you want to conditionally
compile a module to include the probes. Inserting the probes in the source code is slightly
more complex, as you cannot use the dtrace -h command to generate the probe macros.
However, using a DTRACE_PROBE macro to insert a probe is a relatively simple change to make
to the source code.

You can insert sdt static probes in any Oracle Linux kernel module for which you have the
source files and the necessary build infrastructure, but note that DTrace supports statically
defined tracing of 64-bit kernel modules only.

For more information about the sdt provider, see sdt provider.

For an introduction to the concepts of statically defined tracing as applied to user-space
applications, see Statically Defined Tracing of User Applications.

Inserting Static Probe Points
You can embed static probes within the source code for which you want to capture the
current state of a module and its data.

The following example pseudo character device driver consists of three source files:

revdev.h
Is the header file for the module.

rev_mod.c
Defines the module's properties and its init and exit routines.

14-1



rev_dev.c
Defines the driver's open, read, release, unlocked_ioctl, and write routines. The
static probes are inserted in the read, unlocked_ioctl, and write routines, although
probes could also be inserted in the other routines, if required.

revdev.h Example
The module header file revdev.h must be prepared, as indicated in bold font in the
following example, by adding lines to include linux/sdt.h and to define probe
macros.

#include <asm/uaccess.h>
#include <linux/cdev.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/sdt.h>

#define DEVICE "revdev"

#define REVDEV_IOCTL_ENTRY_PROBE(name, file, cmd, arg) \
         DTRACE_PROBE3(ioctl__##name, struct file *, file, \
                       unsigned int, cmd, unsigned long, arg)
#define REVDEV_IOCTL_RETURN_PROBE(name, str) \
        DTRACE_PROBE1(ioctl__##name, struct char *, str)
#define REVDEV_READ_ENTRY_PROBE(name,fp,buf) \
        DTRACE_PROBE2(read__##name, file *, fp, char *, buf)
#define REVDEV_READ_RETURN_PROBE(name,buf,n) \
        DTRACE_PROBE2(read__##name, char *, buf, size_t, n)
#define REVDEV_WRITE_ENTRY_PROBE(name,fp,buf,n) \
        DTRACE_PROBE3(write__##name, file *, fp, char *, buf, size_t, n)
#define REVDEV_WRITE_RETURN_PROBE(name,buf,n) \
        DTRACE_PROBE2(write__##name, char *, buf, size_t, n)

The DTRACE_PROBE macros that are defined in /lib/modules/`uname -r`/build/
include/linux/sdt.h support from zero to eight arguments.

You can define your own macros for the inserted probes, as shown in the preceding
example. Unlike user-space static probes, you cannot use the dtrace -h command
to create a header file that includes suitable probe definitions. You do not need to
create a provider definition file for the probes.

The probes are named according to the first argument of the DTRACE_PROBE macro.
The suffix N in the macro name DTRACE_PROBEN refers the number of arguments that
are passed to the probe. The first argument to the probe macro is the probe name. As
described in Declaring Probes, two consecutive underscores are converted to a single
dash. The remaining macro arguments are pairs of arguments that define the DTrace
argn variables that are assigned when the probe fires. Each pair of arguments defines
the variable type and a variable name, for example:

#define REVDEV_WRITE_ENTRY_PROBE(name, fp, buf, n) \
        DTRACE_PROBE3(write__##name, file *, fp, char *, buf, size_t, n)

Chapter 14
Inserting Static Probe Points

14-2



The values of fp, buf, and n are made available by the arg0, arg1, and arg2 variables in
DTrace when the probe fires.

The provider, module, and function elements of the complete probe are named for sdt, the
driver module name (without the .ko), and the driver routine.

The probes inherit the stability attributes of the sdt provider.

rev_mod.c Example
No changes are made in the following example, which does not insert any probes in the
module's init and exit routines. Note that there is no restriction on inserting probes in these
routines.

#include "revdev.h"

MODULE_AUTHOR("DTrace Example");
MODULE_DESCRIPTION("Using DTrace SDT probes with a device driver");
MODULE_VERSION("v1.0");
MODULE_LICENSE("GPL");

extern const struct file_operations revdev_fops;

static struct miscdevice revdev = {
    .minor = 0,
    .name = DEVICE,
    .fops = &revdev_fops,
};

DEFINE_MUTEX(revdev_mutex);

static int revdev_entry(void){ /* Register device */
    int retval;
    retval = misc_register(&revdev);
    if (retval < 0) {
        printk(KERN_ERR "revdev: Could not register device");
        return retval;
    }
    mutex_init(&revdev_mutex);
    return 0;
}

static void revdev_exit(void){
    misc_deregister(&revdev);
}

/* Define module init and exit calls */
module_init(revdev_entry);
module_exit(revdev_exit);

rev_dev.c Example
No existing lines of code are modified in this example. Only line insertions are required for the
entry and return probes in each of the read, unlocked_ioctl, and write routines.

The changes in this example appear in bold font.

#include "revdev.h"

Chapter 14
Inserting Static Probe Points

14-3



static struct device_buffer {
    char data[80];
} devbuf;

static char *oddeven[] = { "Even", "Odd" };

extern struct mutex revdev_mutex;

static long revdev_ioctl(struct file *file, unsigned int cmd,
                         unsigned long arg) {
    char *cp;
    REVDEV_IOCTL_ENTRY_PROBE(entry, file, cmd, arg);
    cp = oddeven[arg%2];
    REVDEV_IOCTL_RETURN_PROBE(return, cp);
    return -EAGAIN;
}

static int revdev_open(struct inode *inode, struct file *fp){
    if (!mutex_trylock(&revdev_mutex)){
        printk(KERN_INFO "revdev: Device already in use");
        return -EBUSY;
    }
    return 0;
}

static void revstr(char *s) { /* After Kernighan and Ritchie */
    int i, j, t;
    for (i = 0, j = strlen(s)-1; i < j; i++, j--)
        t = s[i], s[i] = s[j], s[j] = t;
}

static ssize_t revdev_read(struct file *fp, char* buf, size_t n, loff_t *o){
    int retval;
    REVDEV_READ_ENTRY_PROBE(entry, fp, devbuf.data);
    revstr(devbuf.data);
    n = strlen(devbuf.data);
    retval = copy_to_user(buf, devbuf.data, n);
    REVDEV_READ_RETURN_PROBE(return, buf, n);
    if (retval != 0) return -EINVAL;
    return 0;
}

static ssize_t revdev_write(struct file *fp, const char* buf, size_t n, loff_t 
*o){
    int retval;
    REVDEV_WRITE_ENTRY_PROBE(entry, fp, buf, n);
    retval = copy_from_user(devbuf.data, buf, n);
    devbuf.data[n-retval] = '\0';
    REVDEV_WRITE_RETURN_PROBE(return, devbuf.data, n);
    if (retval != 0) return -EINVAL;
    return 0;
}

static int revdev_close(struct inode *inode, struct file *fp){
    mutex_unlock(&revdev_mutex);
    return 0;
}

const struct file_operations revdev_fops = {
    .owner = THIS_MODULE,
    .read = revdev_read,

Chapter 14
Inserting Static Probe Points

14-4



    .write = revdev_write,
    .unlocked_ioctl = revdev_ioctl,
    .open = revdev_open,
    .release = revdev_close,
};

Building Modules With Static Probes

Note:

The following example requires that you link the module against a UEK version that
supports the DTrace modules, which can be either UEK R5 or UEK R4 for Oracle
Linux 7 or UEK R4 for Oracle Linux 6.

A bug in the current implementation means that a module containing SDT probes
must be built from two or more source files.

The following Kbuild and Makefile are used to build the example pseudo driver module
revdev.ko and a test program named testrevdev.

Kbuild Example
bj-m            += revdev.o

revdev-y        := rev_dev.o rev_mod.o

Makefile Example

Note:

All of the command lines in the Makefile, such as those beginning with gcc in the
following example, must start with tabs.

KERNEL_DIR = /lib/modules/`uname -r`/build

modules:: testrevdev

install:: modules_install

testrevdev: testrevdev.c
  gcc -o testrevdev testrevdev.c

%::
        $(MAKE) -C $(KERNEL_DIR) M=`pwd` $@

The source file for testrevdev is testrevdev.c.

Chapter 14
Building Modules With Static Probes

14-5



testrevdev.c Example
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define DEVICE_FILE "/dev/revdev"

int main() {
    char buf[81];
    int i, fd, n;

    if ((fd = open(DEVICE_FILE, O_RDWR)) != 0) {
        perror("open");
        exit(1);
    }

    i=0;
    while (1) {
        (i++)%20;
        printf("Write: ");
        scanf(" %80[^\n]", buf);
        n = strlen(buf);
    if (!strncmp(buf, "exit", 4))
            break;
    else if (!strncmp(buf, "ioctl", 5))
            ioctl(fd,128,i);
        else {
            write(fd, buf, n);
            read(fd, buf, n);
            buf[n]='\0';
            printf(" Read: %s\n", buf);
        }
    }

    close(fd);
    exit(0);
}

When run, testrevdev reads a string that you enter, writes the string to the revdev
device, and then reads the reversed string from the device.

If the input string begins with ioctl, the program calls ioctl on the open file
descriptor, which invokes the device's unlocked_ioctl routine. An input string that
begins with exit terminates the program.

To build the module and test program, use the make command:

# make
make -C /lib/modules/`uname -r`/build M=`pwd` modules
make[1]: Entering directory `/usr/src/kernels/4.1.12-version.el6uek.x86_64'
  CC [M]  /root/revdev/rev_dev.o
  CC [M]  /root/revdev/rev_mod.o
  SDTSTB  /root/revdev/revdev.sdtstub.S
  AS [M]  /root/revdev/revdev.sdtstub.o
  LD [M]  /root/revdev/revdev.o
  Building modules, stage 2.
  MODPOST 1 modules
  SDTINF  /root/revdev/revdev.sdtinfo.c

Chapter 14
Building Modules With Static Probes

14-6



  CC      /root/revdev/revdev.mod.o
  CTF
  LD [M]  /root/revdev/revdev.ko
make[1]: Leaving directory `/usr/src/kernels/4.1.12-version.el6uek.x86_64'

Using DTrace to Test Modules With Static Probes
You can use DTrace to display information when one of the embedded static probes in a
module fires.

To test the example module revdev.ko:

1. Set up a udev rule to create the /dev/revdev device file:

# echo "KERNEL==\"revdev\", MODE=\"0660\"" > /etc/udev/rules.d/10-
revdev.rules

2. Load the revdev.ko module:

# insmod revdev.ko

You can use dtrace to test that the probes are now available:

# dtrace -l -m revdev
   ID   PROVIDER            MODULE                          FUNCTION NAME
    4        sdt            revdev                      revdev_ioctl ioctl-return
    5        sdt            revdev                      revdev_ioctl ioctl-entry
    6        sdt            revdev                      revdev_write write-return
    7        sdt            revdev                      revdev_write write-entry
    8        sdt            revdev                       revdev_read read-return
    9        sdt            revdev                       revdev_read read-entry

3. Enter the following DTrace script (traceflow):

#!/usr/sbin/dtrace -qs
#pragma D option nspec=10

self int indent;

syscall:::entry
/execname == "testrevdev"/
{
  self->specflag = 0;
  self->spec = speculation();
  self->indent += 2;
  speculate(self->spec);
}

syscall:::entry
/self->spec/
{
  speculate(self->spec);
  printf("%*s ", self->indent, "->");
  printf("%s() entry\n",probefunc);
  self->indent += 2;
}

syscall:::return
/self->spec/
{
  speculate(self->spec);

Chapter 14
Using DTrace to Test Modules With Static Probes

14-7



  self->indent -= 2;
  printf("%*s ", self->indent, "<-");
  printf("%s() return\n",probefunc);
}

syscall:::return
/self->spec && self->specflag == 0/
{
  discard(self->spec);
  self->indent -= 2;
  self->spec = 0;
}

syscall:::return
/self->spec && self->specflag == 1/
{
  commit(self->spec);
  self->indent -= 2;
  self->spec = 0;
}

sdt:revdev::ioctl-entry
/self->spec/
{
  speculate(self->spec);
  self->specflag = 1;
  printf("%*s ", self->indent, "=>");
  printf("%s() entry file: %s cmd: %d arg: %d\n",
         probefunc, d_path(&(((struct file *)arg0)->f_path)), arg1, arg2);
}

sdt:revdev::ioctl-return
/self->spec/
{
  speculate(self->spec);
  printf("%*s ", self->indent, "<=");
  printf("%s() return cpstr: %s\n", probefunc, stringof((char*)arg0));
}

sdt:revdev::read-entry
/self->spec/
{
  speculate(self->spec);
  self->specflag = 1;
  printf("%*s ", self->indent, "=>");
  printf("%s() entry file: %s devbuf: %s\n",
         probefunc, d_path(&(((struct file *)arg0)->f_path)),
         stringof((char *)arg1));
}

sdt:revdev::read-return
/self->spec/
{
  speculate(self->spec);
  printf("%*s ", self->indent, "<=");
  printf("%s() return string: %s len: %d\n",
         probefunc, stringof((char *)arg0), arg1);
}

sdt:revdev::write-entry
/self->spec/

Chapter 14
Using DTrace to Test Modules With Static Probes

14-8



{
  speculate(self->spec);
  self->specflag = 1;
  printf("%*s ", self->indent, "=>");
  printf("%s() entry file: %s string: %s len: %d\n",
         probefunc, d_path(&(((struct file *)arg0)->f_path)),
         stringof((char *)arg1), arg2);
}

sdt:revdev::write-return
/self->spec/
{
  speculate(self->spec);
  printf("%*s ", self->indent, "<=");
  printf("%s() return string: %s len: %d\n",
         probefunc, stringof((char *)arg0), arg1);
}

When one of the inserted probes fires, traceflow displays information about data
values in the module by using the probe argument variables (arg0, arg1, arg2,...).

Note:

Argument variables that return pointer types, such as file * and char *, must
be explicitly cast.

The script uses d_path and stringof to create printable file paths and strings. For
example, (struct file *)arg0 casts the value of arg0 to a file pointer (struct file *).
The f_path member of the struct file contains the path structure (struct path) for a
file. As d_path takes a path pointer (struct path *) as its argument, the & operator is
used to return a pointer to the struct path.

See d_path and String Conversion for more information.

4. Make traceflow executable:

# chmod +x traceflow
5. In one window, run traceflow:

# ./traceflow
6. In another window, run testrevdev and enter input, for example:

# ./testrevdev
Write: hello
 Read: olleh
Write: world
 Read: dlrow
Write: ioctl
Write: ioctl
Write: exit

In the window that traceflow is running, you should see output similar to the following ,
as DTrace responds to the probes in revdev.ko that are firing:

# ./traceflow 
-> write() entry

Chapter 14
Using DTrace to Test Modules With Static Probes

14-9



  => revdev_write() entry file: /dev/revdev string: hello len: 5
  <= revdev_write() return string: hello len: 5
<- write() return
-> read() entry
  => revdev_read() entry file: /dev/revdev devbuf: hello
  <= revdev_read() return string: olleh len: 5
<- read() return
-> write() entry
  => revdev_write() entry file: /dev/revdev string: world len: 5
  <= revdev_write() return string: world len: 5
<- write() return
-> read() entry
  => revdev_read() entry file: /dev/revdev devbuf: world
  <= revdev_read() return string: dlrow len: 5
<- read() return
-> ioctl() entry
  => revdev_ioctl() entry file: /dev/revdev cmd: 128 arg: 3
  <= revdev_ioctl() return cpstr: Odd
<- ioctl() return
-> ioctl() entry
  => revdev_ioctl() entry file: /dev/revdev cmd: 128 arg: 4
  <= revdev_ioctl() return cpstr: Even
<- ioctl() return

Chapter 14
Using DTrace to Test Modules With Static Probes

14-10



15
Performance Considerations

DTrace creates additional work in the system. Therefore, enabling DTrace always affects
system performance in some way. Often, this effect is negligible, but it can become
substantial if many probes with significant enablings are enabled. This chapter describes
some techniques for minimizing the performance effect of DTrace.

Limit Enabled Probes
Dynamic instrumentation techniques enable DTrace to provide unparalleled tracing coverage
of the kernel and arbitrary user processes. While this coverage provides revolutionary new
insight into system behavior, it also can cause enormous probe effect. If tens of thousands or
hundreds of thousands of probes are enabled, the effect on the system can easily be
substantial. Therefore, you should only enable as many probes as you need to solve a
problem. For example, you should not enable all syscall probes if a more concise enabling
can answer your question. Your question might require that you concentrate on a specific
module of interest or a specific function.

Caution:

When using the pid provider, be especially careful. Because the pid provider can
instrument every instruction, you could enable millions of probes in an application
and therefore slow the target process to a crawl.

You can also use DTrace in situations where large numbers of probes must be enabled to
answer a question. Enabling a large number of probes might slow down the system
significantly, but it never induces fatal failure on the system. You should therefore not hesitate
to enable many probes, if so required.

Using Aggregations
As discussed in Aggregations, DTrace aggregations provide a scalable way to aggregate
data. Associative arrays might appear to offer functionality that is similar to aggregations, but
because general-purpose variables are global by nature, associative arrays cannot offer the
linear scalability of aggregations. Therefore, the preference is to use aggregations over
associative arrays whenever possible. For example, the following D program uses an
associative array to aggregate data:

syscall:::entry
{
  totals[execname]++;
}

syscall::rexit:entry
{
  printf("%40s %d\n", execname, totals[execname]);

15-1



  totals[execname] = 0;
}

Whereas, the following D program is preferred, as it uses an aggregation to achieve
the same result:

syscall:::entry
{
  @totals[execname] = count();
}

END
{
  printa("%40s %@d\n", @totals);
}

Using Cacheable Predicates
You use DTrace predicates to filter unwanted data from the experiment by tracing data
only if a specified condition is found to be true. When enabling many probes, you
generally use predicates of a form that identifies a specific thread, or threads of
interest, such as /self->traceme/ or /pid == 12345/. Although many of these
predicates evaluate to a false value for most threads in most probes, the evaluation
itself can become costly when done for many thousands of probes. To reduce this
cost, DTrace caches the evaluation of a predicate if it includes only thread-local
variables, such as /self->traceme/, or for immutable variables, such as /pid ==
12345/. The cost of evaluating a cached predicate is much less than the cost of
evaluating a non-cached predicate, especially if the predicate involves thread-local
variables, string comparisons, or other relatively costly operations. While predicate
caching is transparent to the user, it does require some guidelines for constructing
optimal predicates. Some guidelines for constructing optimal predicates are outlined in
the following table.

Cacheable Uncacheable

self->mumble mumblecurthread
mumblepid
tid

execname curpsinfo->pr_fname
((struct task_struct *)curthread)-
>comm

pid curpsinfo->pr_pid
((struct task_struct *)curthread)-
>pid

tid curlwpsinfo->pr_lwpid
((struct task_struct *)curthread)-
>pid

curthread curthread->any_member
curlwpsinfo->any_member
curpsinfo->any_member

Chapter 15
Using Cacheable Predicates

15-2



The following example uses an associative array in the predicate and is not cacheable:

syscall::read:entry
{
  follow[pid, tid] = 1;
}

lockstat:::
/follow[pid, tid]/
{}

syscall::read:return
/follow[pid, tid]/
{
  follow[pid, tid] = 0;
}

Using a cacheable, thread-local variable, per the following example, is preferable:

syscall::read:entry
{
  self->follow = 1;
}

lockstat:::
/self->follow/
{}

syscall::read:return
/self->follow/
{
  self->follow = 0;
}

For a predicate to be cacheable, it must consist exclusively of cacheable expressions. All of
the following predicates all cacheable:

/execname == "myprogram"/

/execname == $$1/

/pid == 12345/

/pid == $1/

/self->traceme == 1/

The following examples, which use global variables, are not cacheable:

/execname == one_to_watch/

/traceme[execname]/

/pid == pid_i_care_about/

/self->traceme == my_global/

Chapter 15
Using Cacheable Predicates

15-3



16
DTrace Stability Features

Developers are provided with early access to new technologies, as well as observability tools
that enable them peer into the internal implementation details of user and kernel software.
Unfortunately, new technologies and internal implementation details are prone to changes
because interfaces and implementations evolve and mature when software is upgraded or
patched.

Application and interface stability levels are documented using a set of labels to help set user
expectations for the kinds of changes that might occur in different types of future releases. No
individual stability attribute appropriately describes the arbitrary set of entities and services
that can be accessed from a D program. Therefore, DTrace and the D compiler include
features to dynamically compute and describe the stability levels of the D programs that you
create.

This chapter discusses the DTrace features for determining program stability to help you
design stable D programs. You can use these DTrace stability features to inform you of the
stability attributes of your D programs or to produce compile-time errors when your program
has undesirable interface dependencies.

Stability Levels
DTrace provides two types of stability attributes for entities like built-in variables, functions
and probes: a stability level and an architectural dependency class. The DTrace stability level
assists you in making risk assessments when developing scripts and tools that are based on
DTrace by indicating how likely it is for an interface or DTrace entity to change in a future
release or patch. The DTrace dependency class indicates whether an interface is common to
all Oracle Linux platforms and processors or whether it is associated with a particular
architecture. The two types of attributes that are used to describe interfaces can vary
independently.

The stability values that are used by DTrace are described in the following table and are
listed in order, from the lowest stability to the highest stability. Applications that depend only
on Stable interfaces should reliably continue to function on future minor releases and will not
be broken by interim patches. The less stable interfaces allow for experimentation,
prototyping, tuning, and debugging on your current system. These less stable interfaces
should be used with the understanding that they might change and become incompatible or
even be dropped or replaced with alternatives in future minor releases.

DTrace stability values also help you understand the stability of the software entities that you
are observing, in addition to the stability of the DTrace interfaces themselves. Therefore,
DTrace stability values also indicate how likely your D programs and layered tools are to
require corresponding changes when you upgrade or change the software stack that you are
observing.

16-1



Stability Value Description

Internal The interface is private to DTrace and
represents an implementation detail of
DTrace. Internal interfaces might change in
minor or micro releases.

Private The interface is private to Oracle and
represents an interface developed for use
by other Oracle products that are not yet
publicly documented for use by customers
and ISVs (independent software vendors).
Private interfaces might change in minor
or micro releases.

Obsolete The interface is supported in the current
release but is scheduled to be removed,
most likely in a future minor release. The D
compiler might produce warning messages
if you attempt to use an Obsolete interface.

External The interface is controlled by an entity
other than Oracle. Oracle makes no claims
regarding either source or binary
compatibility for External interfaces
between any two releases. Applications
based on these interfaces might not work
in future releases, including patches that
contain External interfaces.

Unstable The interface provides developers early
access to new or rapidly changing
technology or to an implementation
artifact that is essential for observing or
debugging system behavior for which a
more stable solution is anticipated in the
future. Oracle makes no claims about
either source or binary compatibility for
Unstable interfaces from one minor release
to another.

Evolving The interface might eventually become
Standard or Stable but is still in transition.
When non-upward, compatible changes
become necessary, they occur in minor and
major releases. These changes will be
avoided in micro releases whenever
possible. If such a change is necessary, it
will be documented in the release notes for
the affected release. Also, when feasible,
migration aids are provided for binary
compatibility and continued D program
development.

Stable The interface is a mature interface.

Chapter 16
Stability Levels

16-2



Stability Value Description

Standard The interface complies with an industry
standard. The corresponding
documentation for the interface describes
the standard to which the interface
conforms. Standards are typically
controlled by a standards development
organization. Changes can be made to the
interface in accordance with approved
changes to the standard. This stability level
can also apply to interfaces that have been
adopted (without a formal standard) by an
industry convention. Support is provided
for only the specified versions of a
standard; support for later versions is not
guaranteed.

Dependency Classes
Because Oracle Linux and DTrace support a variety of operating platforms and processors,
DTrace also labels interfaces with a dependency class, which indicates whether an interface
is common to all Oracle Linux platforms and processors or whether the interface is
associated with a particular system architecture. The dependency class is orthogonal to the
stability levels previously described in this document. For example, a DTrace interface can be
Stable, but only supported on x86_64 microprocessors. Or, the interface can be Unstable, but
common to all Oracle Linux platforms. The DTrace dependency classes are described in the
following table and listed in order, from least common (most specific to a particular
architecture), to most common (common to all architectures).

Dependency Class Description

Unknown The interface has an unknown set of
architectural dependencies. DTrace does not
necessarily know the architectural
dependencies of all entities, such as the data
types defined in the operating system
implementation. The Unknown label is
typically applied to interfaces of very low
stability for which dependencies cannot be
computed. The interface might not be
available when using DTrace on any
architecture other than what you are currently
using.

CPU The interface is specific to the CPU model of
the current system. Interfaces with CPU model
dependencies might not be available on other
CPU implementations, even if those CPUs
export the same instruction set architecture
(ISA).

Chapter 16
Dependency Classes

16-3



Dependency Class Description

Platform The interface is specific to the hardware
platform for the current system. A platform
typically associates a set of system components
and architectural characteristics. To display
the current platform name, use the uname -i
command. The interface might not be
available on other hardware platforms.

Group The interface is specific to the hardware
platform group for the current system. A
platform group typically associates a set of
platforms with related characteristics together
under a single name. To display the current
platform group name, use the uname -m
command. The interface is available on other
platforms in the platform group, but it might
not be available on hardware platforms that
are not members of the group.

ISA The interface is specific to the ISA that is
supported by the microprocessors on the
current system. The ISA describes a
specification for software that can be executed
on the microprocessor, including details such
as assembly language instructions and
registers. To display the native instruction sets
that are supported by the system, use the
isainfo command. The interface might not
be supported on systems that do not export
any of the same instruction sets.

Common The interface is common to all Oracle Linux
platforms, regardless of the underlying
hardware. DTrace programs and layered
applications that depend only on Common
interfaces can be executed and deployed on
other Oracle Linux platforms with the same
Oracle Linux and DTrace revisions. The
majority of DTrace interfaces are Common, so
you can use them wherever you use Oracle
Linux.

Interface Attributes
DTrace describes interfaces by using a triplet of attributes consisting of two stability
levels and one dependency class. By convention, the interface attributes are written in
the following order and are separated by slashes:

                  name_stability / data_stability / dependency_class

The name stability of an interface describes the stability level that is associated with its
name, as it appears in your D program or on the dtrace command line. For example,
the execname D variable is a Stable name.

Chapter 16
Interface Attributes

16-4



The data stability of an interface is distinct from the stability that is associated with the
interface name. This stability level describes the commitment to maintain the data formats
that are used by the interface and any associated data semantics.

The dependency class of an interface is distinct from its name and data stability and
describes whether the interface is specific to the current operating platform or
microprocessor.

DTrace and the D compiler track the stability attributes for all of the following DTrace interface
entities: providers, probe descriptions, D variables, D functions, types, and program
statements. These interface entities are described later in this chapter. Note that all three
values can vary independently. For example, the curthread D variable has Stable/Private/
Common attributes: the variable name is Stable and is Common to all Oracle Linux platforms.
Note that this variable provides access to a Private data format that is an artifact of the
Oracle Linux kernel implementation. Most D variables are provided with Stable/Stable/
Common attributes, as are the variables you define.

Stability Computations and Reports
The D compiler performs stability computations for each of the probe descriptions and action
statements in your D programs. You can use the dtrace command with the -v option to
display a report of your program's stability, as shown in the follow example that uses a
program written on the command line:

# dtrace -v -n dtrace:::BEGIN'{exit(0);}'
dtrace: description 'dtrace:::BEGIN' matched 1 probe

Stability attributes for description dtrace:::BEGIN:

    Minimum Probe Description Attributes
        Identifier Names: Stable
        Data Semantics:   Stable
        Dependency Class: Common

    Minimum Statement Attributes
        Identifier Names: Stable
        Data Semantics:   Stable
        Dependency Class: Common

CPU     ID                    FUNCTION:NAME
  0      1                           :BEGIN 

You can also choose to combine the -v option with the -e option, which directs the dtrace
command to compile, but not execute your D program, so that you can determine program
stability without enabling any probes and executing your program, as shown in the following
stability report:

# dtrace -ev -n dtrace:::BEGIN'{trace(curthread->parent);}'

Stability data for description dtrace:::BEGIN:

    Minimum probe description attributes
        Identifier Names: Evolving
        Data Semantics: Evolving
        Dependency Class: Common

    Minimum probe statement attributes
        Identifier Names: Stable

Chapter 16
Stability Computations and Reports

16-5



        Data Semantics: Private
        Dependency Class: Common

In this example, notice that in the new program, the D curthread variable is
referenced. This variable has a Stable name, but Private data semantics: if you look at
it, you are accessing Private implementation details of the kernel. This status is now
reflected in the program's stability report. Stability attributes in the program report are
computed by selecting the minimum stability level and class from the corresponding
values for each interface attributes triplet.

Stability attributes are computed for a probe description by taking the minimum
stability attributes of all of the specified probe description fields, according to the
attributes that are published by the provider. The attributes of the available DTrace
providers are shown in the section corresponding to each provider. DTrace providers
export a stability attributes triplet for each of the four description fields for all of the
probes published by that provider. Therefore, a provider's name can have a greater
stability than the individual probes that it exports. For simplicity, most providers use a
single set of attributes for all of the individual module function name values they
publish. Providers also specify attributes for the args[] array because the stability of
any probe arguments varies by provider.

If the provider field is not specified in a probe description, then the description is
assigned the Unstable/Unstable/Common stability attributes because the description
might end up matching probes of providers that do not yet exist when used on a future
Oracle Linux release. As such, Oracle does not provide guarantees about the future
stability and behavior of this program. You should always explicitly specify the provider
when writing your D program clauses. In addition, any probe description fields that
contain pattern matching characters or macro variables, such as $1, are treated as
unspecified because these description patterns might expand to match providers or
probes to be released in future versions of DTrace and Oracle Linux. For more details
on pattern matching characters and macro variables, see D Program Structureand 
Scripting.

Stability attributes are computed for most D language statements by taking the
minimum stability and class of the entities in the statement. The D language entities
and their stability attributes are listed in the following table.

Entity Attributes

D built-in variable curthread Stable/Private/Common

D user-defined variable x Stable/Stable/Common

For example, if you write the following D program statement, the resulting attributes of
the statement are Stable/Private/Common and the minimum attributes are associated
with the curthread and x operands:

x += curthread->prio;

The stability of an expression is computed by taking the minimum stability attributes of
each of the operands.

Any D variables that you define in your program are automatically assigned the Stable/
Stable/Common attributes. In addition, the D language grammar and D operators are
implicitly assigned these three attributes. References to kernel symbols by using the
back quote (`) operator are always assigned the Private/Private/Unknown attributes
because they reflect implementation artifacts. Types that you define in your D program

Chapter 16
Stability Computations and Reports

16-6



source code, specifically those that are associated with the C and D type namespace, are
assigned the Stable/Stable/Common attributes. Types that are defined in the operating
system implementation and provided by other type namespaces are assigned the Private/
Private/Unknown attributes. The D type cast operator yields an expression with stability
attributes that are the minimum of the input expression's attributes and the attributes of the
cast output type.

If you use the C preprocessor to include C system header files, these types are associated
with the C type namespace and are assigned the Stable/Stable/Common attributes, as the D
compiler automatically assumes you are taking responsibility for these declarations. It is
therefore possible to be misled about your program's stability if you use the C preprocessor to
include a header file containing implementation artifacts. You should always consult the
documentation corresponding to the header files that you are including so that you can
determine the correct stability levels.

Stability Enforcement
When developing a DTrace script or layered tool, you might want to identify the specific
source of stability issues or ensure that your program has a desired set of stability attributes.
You can use the -x amin=_attributes_ option with the dtrace command to force the D
compiler to produce an error whenever any attributes computation results in a triplet of
attributes less than the minimum values that you specify on the command line.

The following example demonstrates the use of the -x amin option using a snippet of D
program source. Note that attributes are specified with three labels that are delimited /, in the
usual order:

# dtrace -x amin=Evolving/Evolving/Common \
  -ev -n dtrace:::BEGIN’{trace(curthread->parent);}’
dtrace: invalid probe specifier dtrace:::BEGIN{trace(curthread->parent);}: \
    in action list: attributes for scalar curthread (Stable/Private/Common) \
    are less than predefined minimum

Chapter 16
Stability Enforcement

16-7



17
Translators

DTrace Stability Features describes how DTrace computes and reports program stability
attributes. Ideally, you should construct your DTrace programs by consuming only Stable or
Evolving interfaces. Unfortunately, when debugging a low-level problem or measuring system
performance, you might need to enable probes that are associated with internal operating
system routines, such as functions in the kernel, rather than probes that are associated with
more stable interfaces, such as system calls. The available data at probe locations deep
within the software stack is often a collection of implementation artifacts rather than more
stable data structures, such as those associated with Oracle Linux system call interfaces. To
assist you with writing stable D programs, DTrace provides a facility for translating
implementation artifacts into stable data structures that are accessible from your D program
statements.

Translator Declarations
A translator is a collection of D assignment statements provided by the supplier of an
interface. Translators can be used to translate an input expression into an object of the
struct type. To understand the need for using translators, consider as an example the ANSI
C standard library routines that are defined in stdio.h. These routines operate on a data
structure named FILE, which contains implementation artifacts that are abstracted away from
C programmers. A standard technique for creating a data structure abstraction is to provide
only a forward declaration of a data structure in public header files, while keeping the
corresponding struct definition in a separate and private header file.

If you are writing a C program and want to know the file descriptor corresponding to a FILE
struct, use the fileno() function to obtain the descriptor rather than dereferencing a
member of the FILE struct directly. The Oracle Linux header files enforce this rule by
defining FILE as an opaque forward declaration tag so that it cannot be dereferenced directly
by C programs that include <stdio.h>.

Inside the /lib/libc.so.6 library, consider the following hypothetical example where fileno
is implemented in C, noting that a real-life implementation would not be at all similar to this
example:

int
fileno(FILE *fp)
{
  struct file_impl *ip = (struct file_impl *)fp;
 
  return (ip->fd);
}

In the example, the hypothetical fileno takes a FILE pointer as an argument and casts it to a
pointer that corresponds to the internal libc structure, struct file_impl, then returns the
value of the fd member of the implementation structure.

Unfortunately, observability software like DTrace requires the ability to peer inside the
implementation in order to provide useful results. DTrace cannot call arbitrary C functions that
are defined in Oracle Linux libraries or in the kernel. You could declare a copy of struct

17-1



file_impl in your D program to instrument the routines that are declared in stdio.h,
but then your D program would rely on Private implementation artifacts of the library
that might break in a future micro or minor release, or even in a patch. Ideally, you
want to provide a construct for use in D programs that is bound to the implementation
of the library and is updated accordingly, yet still provides an additional layer of
abstraction associated with greater stability.

A new translator is created by using a declaration of the following form:

translator output-type < input-type
                  input-identifier > {
  member-name = expression ;
  member-name = expression ;
  ...
};

The output-type names a struct that will be the result type for the translation. The
input-type specifies the type of the input expression, is surrounded in angle brackets
<>, and followed by an input-identifier that can be used in the translator expressions as
an alias for the input expression. The body of the translator is surrounded in braces {}
and terminated with a semicolon (;), and consists of a list of member-names and
identifiers that correspond to translation expressions. Each member declaration must
name a unique member of the output-type and must be assigned an expression of a
type that is compatible with the member type, according to the rules for the D
assignment (=) operator.

For example, you could define a struct of stable information about stdio files based
on some of the available libc interfaces:

struct file_info {
  int file_fd;   /* file descriptor from fileno() */
  int file_eof;  /* eof flag from feof() */
};

Then, you could define a hypothetical D translator from FILE to file_info:

translator struct file_info < FILE *F > {
  file_fd = ((struct file_impl *)F)->fd;
  file_eof = ((struct file_impl *)F)->eof;
};

In this hypothetical translator, the input expression is of type FILE * and is assigned
the input-identifier F. The identifier F can then be used in the translator member
expressions as a variable of type FILE * that is only visible within the body of the
translator declaration. To determine the value of the output file_fd member, the
translator performs a cast and dereference similar to the hypothetical implementation
of fileno() shown in the previous example. A similar translation is performed to
obtain the value of the EOF indicator.

xlate D Operator
The xlate D operator is used to perform a translation from an input expression to one
of the defined translation output structures. The xlate operator is used in an
expression of the following form:

xlate <output-type> ( input-expression )

Chapter 17
xlate D Operator

17-2



For example, to invoke the hypothetical translator for FILE structs that are defined
previously and access the file_fd member, you would write the expression as follows:

xlate <struct file_info *>(f)->file_fd;

where f is a D variable of type FILE *. The xlate expression itself is assigned the type that
is defined by the output-type. When a translator is defined, it can be used to translate input
expressions to either the translator output struct type or to a pointer to that struct.

If you translate an input expression to a struct, you can either dereference a particular
member of the output immediately by using the “.” operator, or you can assign the entire
translated struct to another D variable to make a copy of the values of all the members. If
you dereference a single member, the D compiler only generates code that corresponds to
the expression for that member. You may not apply the & operator to a translated struct to
obtain its address, as the data object itself does not exist until it is copied or one of its
members is referenced.

If you translate an input expression to a pointer to a struct, you can either dereference a
particular member of the output immediately by using the -> operator, or you can dereference
the pointer by using the unary * operator. In the latter case, the result behaves as though you
translated the expression to a struct. If you dereference a single member, the D compiler
only generates code corresponding to the expression for that member. You may not assign a
translated pointer to another D variable, as the data object does not exist until it is copied or
one of its members is referenced, and therefore cannot be addressed.

A translator declaration may omit expressions for one or more members of the output type. If
an xlate expression is used to access a member for which no translation expression is
defined, the D compiler produces an appropriate error message and aborts the program
compilation. If the entire output type is copied by means of a structure assignment, any
members for which no translation expressions are defined are filled with zeroes.

To find a matching translator for an xlate operation, the D compiler examines the set of
available translators in the following order:

• The compiler checks for a translation from the exact input expression type to the exact
output type.

• The compiler resolves the input and output types by following any typedef aliases to the
underlying type names, and then checks for a translation from the resolved input type to
the resolved output type.

• The compiler checks for a translation from a compatible input type to the resolved output
type. The compiler uses the same rules as those used for determining compatibility of
function call arguments with function prototypes in order to determine if an input
expression type is compatible with a translator's input type.

If no matching translator can be found according to these rules, the D compiler produces an
appropriate error message and the program compilation fails.

Process Model Translators
The DTrace library file, /usr/lib64/dtrace/version/procfs.d, provides a set of translators
for use in your D programs to translate from the operating system kernel implementation
structure for a process descriptor (struct task_struct), to the stable structures, psinfo and
lwpsinfo. These structures define useful Stable information about processes and threads,
such as the process ID, process priority, command name, initial arguments, and other data
that is displayed by the ps command. The following table describes procfs.d translators.

Chapter 17
Process Model Translators

17-3



Table 17-1    procfs.d Translators

Input Type Input Type Attributes Output Type Output Type
Attributes

struct
task_struct *

Private/Private/
Common

psinfo_t * Stable/Stable/
Common

struct
task_struct *

Private/Private/
Common

lwpsinfo_t * Stable/Stable/
Common

Stable Translations
Although a translator provides the ability to convert information into a stable data
structure, it does not necessarily resolve all stability issues that can arise in translating
data. For example, if the input expression for an xlate operation references Unstable
data, the resulting D program is also Unstable because program stability is always
computed as the minimum stability of the accumulated D program statements and
expressions. Therefore, it is sometimes necessary to define a specific stable input
expression for a translator to permit stable programs to be constructed. To facilitate
such stable translations, you can use the D inline mechanism.

The DTrace procfs.d library provides the curlwpsinfo and curpsinfo variables,
which were previously described as stable translations. For example, the curpsinfo
and curlwpsinfo variables are actually inline and declared as follows:

inline psinfo_t *curpsinfo = xlate <psinfo_t *> (curthread);
#pragma D attributes Stable/Stable/Common curpsinfo

inline lwpsinfo_t *curlwpsinfo = xlate <lwpsinfo_t *> (curthread);
#pragma D attributes Stable/Stable/Common curlwpsinfo

The curpsinfo and curlwpsinfo are both defined as inline translations from the
curthread variable, a pointer to the kernel's Private data structure representing a
process descriptor, to the Stable lwpsinfo_t type. The D compiler processes this
library file and caches the inline declarations, making curpsinfo and curlwpsinfo
appear as any other D variable. The #pragma statement following the declaration is
used to explicitly reset the attributes of the curpsinfo and curlwpsinfo identifiers to
Stable/Stable/Common, masking the reference to curthread in the inline expressions.

Chapter 17
Stable Translations

17-4



18
DTrace Versioning

In the chapter, DTrace Stability Features, the DTrace features for determining the stability
attributes of D programs that you create are described. When you have created a D program
with the appropriate stability attributes, you might also choose to bind this program to a
particular version of the D programming interface.

The D interface version is a label that is applied to a particular set of types, variables,
functions, constants, and translators that are made available to you by the D compiler. If you
specify a binding to a specific version of the D programming interface, you ensure that you
can recompile your program on future versions of DTrace without encountering conflicts
between program identifiers that you define, as well as identifiers that are defined in future
versions of the D programming interface. You should establish version bindings for any D
programs that you want to install as persistent scripts or use in layered tools. See Scripting
for more information about using DTrace scripts.

Note:

DTrace versioning in Oracle Linux is not currently interoperable with DTrace
versioning on other operating system platforms.

Versions and Releases
The D compiler labels sets of types, variables, functions, constants, and translators that
correspond to a particular software release by using a version string. A version string is a
period-delimited sequence of decimal integers that takes one of the following forms:

x
Major release

x.y
Minor release

x.y.z
Micro release

Version comparisons are made by comparing the integers from left to right. If the leftmost
integers are not equal, the string with the greater integer is the greater, and therefore more
recent version. If the leftmost integers are equal, the comparison proceeds to the next
integer, in order, from left to right, to determine the result. All unspecified integers in a version
string are interpreted as having the value zero during a version comparison.

The DTrace version strings correspond to the standard nomenclature for interface versions. A
change in the D programming interface is accompanied by a new version string. The
following table summarizes the version strings that are used by DTrace and the likely
significance of the corresponding DTrace software release.

18-1



Table 18-1    DTrace Release Versions

Release Version Significance

Major x.0 A Major release is likely to
contain major feature
additions; adhere to
different, possibly
incompatible Standard
revisions; and though
unlikely, could change, drop,
or replace Standard or
Stable interfaces (see DTrace
Stability Features). The initial
version of the D
programming interface is
labeled as version 1.0.

Minor x.y Compared to an x.0 or
earlier version (where y is
not equal to zero), a new
Minor release is likely to
contain minor feature
additions, compatible
Standard and Stable
interfaces, possibly
incompatible Evolving
interfaces, or likely
incompatible Unstable
interfaces. These changes
may include new built-in D
types, variables, functions,
constants, and translators.
In addition, a Minor release
may remove support for
interfaces previously
labeled as Obsolete (see 
DTrace Stability Features).

Micro x.y.z Micro releases are intended
to be interface compatible
with the previous release
(where z is not equal to
zero), but are likely to
include bug fixes,
performance
enhancements, and support
for additional hardware.

In general, each new version of the D programming interface provides a superset of
the capabilities that are offered by the previous version, with the exception of any
obsolete interfaces that have been removed.

Versioning Options
By default, any D programs that you compile by using the dtrace -s command or
that you specify by using the dtrace -P, -m, -f, -n, or -i command options, are
bound to the most recent D programming interface version offered by the D compiler.

Chapter 18
Versioning Options

18-2



You can determine the current D programming interface version by using the -V option:

# dtrace -V
dtrace: Sun D 1.6.4

Note:

Specifying the -Vv combination displays other version information, such as the
version of the user-space binaries from the dtrace-utils package.

# dtrace -Vv
dtrace: Sun D 1.6.4
This is DTrace 1.0.4.
dtrace(1) version-control ID: 364a014be59b349d6222991d651d38422f170e7e
libdtrace version-control ID: 364a014be59b349d6222991d651d38422f170e7e

If you want to establish a binding to a specific version of the D programming interface, you
can set the version option to an appropriate version string. Similar to other DTrace options
that are described in Options and Tunables, you can set the version option as follows:

# dtrace -x version=1.6 -n 'BEGIN{trace("hello");}'

Alternatively, you can use the #pragma D option syntax to set the option in your D program
source file, for example:

#pragma D option version=1.6

BEGIN
{
  trace("hello");
}

If you use the #pragma D option syntax to request a version binding, you must place this
directive at the top of your D program file, prior to any other declarations and probe clauses.
If the version binding argument is not a valid version string or refers to a version that is not
offered by the D compiler, an appropriate error message is produced and compilation fails.
You can also use the version binding facility to cause the execution of a D script on an older
version of DTrace to fail with an obvious error message.

Before compiling your program declarations and clauses, the D compiler loads the set of D
types, functions, constants, and translators for the appropriate interface version into the
compiler namespaces. Therefore, any version binding options that you specify simply control
the set of identifiers, types, and translators that are visible to your program, in addition to the
variables, types, and translators that your program defines. Version binding prevents the D
compiler from loading newer interfaces that might define identifiers or translators that conflict
with declarations in your program source code and would therefore cause a compilation error.
See Identifier Names and Keywords for tips on selecting identifier names that are unlikely to
conflict with interfaces offered by future versions of DTrace.

Provider Versioning
Unlike interfaces that are offered by the D compiler, interfaces that are offered by DTrace
providers, that is, probes and probe arguments, are not affected by or associated with the D
programming interface or the version binding options previously described. The available

Chapter 18
Provider Versioning

18-3



provider interfaces are established as part of loading your compiled instrumentation
into the DTrace software in the operating system kernel. These interfaces vary,
depending on the following: your instruction set architecture, operating platform,
processor, the software that is installed on your Oracle Linux system, and your current
security privileges. The D compiler and DTrace runtime examine the probes that are
described in your D program clauses and report appropriate error messages whenever
probes requested by your D program are not available. These features are orthogonal
to the D programming interface version because DTrace providers do not export
interfaces that can conflict with definitions in your D programs, which means you can
only enable probes in D; you cannot define them. Also, probe names are kept in a
separate namespace from other D program identifiers.

Use the dtrace -l command, optionally adding the -v option, to explore the set of
providers and probes that are available on your Oracle Linux system. See DTrace
Providers for more information about common providers and probes.

Chapter 18
Provider Versioning

18-4


	Contents
	Preface
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About DTrace
	Getting Started With DTrace
	Providers and Probes

	2 The D Programming Language
	D Program Structure
	Probe Clauses and Declarations
	Probe Descriptions
	Clause Predicates
	Probe Actions
	Order of Execution
	Use of the C Preprocessor

	Compilation and Instrumentation
	Variables and Arithmetic Expressions
	Predicate Examples
	Output Formatting Examples
	Array Overview
	Associative Array Example

	External Symbols and Types
	Types, Operators, and Expressions
	Identifier Names and Keywords
	Data Types and Sizes
	Constants
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Increment and Decrement Operators
	Conditional Expressions
	Type Conversions
	Operator Precedence

	Variables
	Scalar Variables
	Associative Arrays
	Thread-Local Variables
	Clause-Local Variables
	Built-In Variables
	External Variables

	Pointers and Scalar Arrays
	Pointers and Addresses
	Pointer Safety
	Array Declarations and Storage
	Pointer and Array Relationship
	Pointer Arithmetic
	Generic Pointers
	Multi-Dimensional Arrays
	Pointers to DTrace Objects
	Pointers and Address Spaces

	DTrace Support for Strings
	String Representation
	String Constants
	String Assignment
	String Conversion
	String Comparison

	Structs and Unions
	Structs
	Pointers to Structs
	Unions
	Member Sizes and Offsets
	Bit-Fields

	Type and Constant Definitions
	typedefs
	Enumerations
	Inlines
	Type Namespaces


	3 Aggregations
	Aggregation Concepts
	Basic Aggregation Statement
	Aggregation Examples
	Basic Aggregation
	Using Keys
	Using the avg Function
	Using the stddev Function
	Using the quantize Function
	Using the lquantize Function

	Printing Aggregations
	Data Normalization
	Clearing Aggregations
	Truncating Aggregations
	Minimizing Drops

	4 Actions and Subroutines
	Action Functions
	Default Action
	Data Recording Actions
	freopen
	ftruncate
	func
	mod
	printa
	printf
	stack
	sym
	trace
	tracemem
	ustack
	uaddr
	usym

	Destructive Actions
	copyout (Process-Destructive)
	copyoutstr (Process-Destructive)
	raise (Process-Destructive)
	stop (Process-Destructive)
	system (Process-Destructive)
	chill (Kernel-Destructive)
	panic (Kernel-Destructive)

	Special Actions
	Speculative Actions
	exit
	setopt


	Subroutine Functions
	alloca
	basename
	bcopy
	cleanpath
	copyin
	copyinstr
	copyinto
	d_path
	dirname
	getmajor
	getminor
	htonl
	htonll
	htons
	index
	inet_ntoa
	inet_ntoa6
	inet_ntop
	lltostr
	mutex_owned
	mutex_owner
	mutex_type_adaptive
	mutex_type_spin
	ntohl
	ntohll
	ntohs
	progenyof
	rand
	rindex
	rw_iswriter
	rw_read_held
	rw_write_held
	speculation
	strchr
	strjoin
	strlen
	strrchr
	strstr
	strtok
	substr


	5 Buffers and Buffering
	Principal Buffers
	Principal Buffer Policies
	switch Policy
	fill Policy
	fill Policy and END Probes
	ring Policy

	Other Buffers
	Buffer Sizes
	Buffer Resizing Policy

	6 Output Formatting
	printf Action
	Conversion Specifications
	Flag Specifiers
	Width and Precision Specifiers
	Size Prefixes
	Conversion Formats

	printa Action
	trace Default Format

	7 Speculative Tracing
	About Speculative Tracing
	Speculation Interfaces
	Creating a Speculation
	Using a Speculation
	Committing a Speculation
	Discarding a Speculation
	Example of a Speculation
	Speculation Options and Tuning

	8 dtrace Command Reference
	dtrace Command Description
	dtrace Command Options
	dtrace Command Operands
	dtrace Command Exit Status

	9 Scripting
	Interpreter Files
	Macro Variables
	Macro Arguments
	Target Process ID

	10 Options and Tunables
	Consumer Options
	Modifying Options

	11 DTrace Providers
	dtrace Provider
	BEGIN Probe
	END Probe
	ERROR Probe
	dtrace Stability

	profile Provider
	profile-n Probes
	tick-n Probes
	profile Probe Arguments
	profile Probe Creation
	prof Stability

	fbt Provider
	fbt Probes
	fbt Probe Arguments
	fbt Examples
	Module Loading and fbt
	fbt Stability

	syscall Provider
	syscall Probes
	System Call Anachronisms
	Subcoded System Calls
	New System Calls
	Replaced System Calls
	Large File System Calls
	Private System Calls

	syscall Probe Arguments
	syscall Stability

	sdt provider
	Creating sdt Probes
	Declaring Probes
	sdt Probe Arguments

	sdt Stability

	pid Provider
	Naming pid Probes
	pid Probe Arguments
	pid Stability

	proc Provider
	proc Probes
	proc Probe Arguments
	lwpsinfo_t
	psinfo_t

	proc Examples
	exec
	start and exit Probes
	signal-send

	proc Stability

	sched Provider
	sched Probes
	sched Probe Arguments
	cpuinfo_t

	sched Examples
	on-cpu and off-cpu Probes
	enqueue and dequeue Probes
	sleep and wakeup Probes
	preempt and remain-cpu Probes
	tick

	sched Stability

	io Provider
	io Probes
	io Probe Arguments
	bufinfo_t
	devinfo_t
	fileinfo_t

	io Examples
	io Stability

	fasttrap Provider
	fasttrap Probes
	fasttrap Stability


	12 User Process Tracing
	copyin and copyinstr Subroutines
	Avoiding Errors

	Eliminating dtrace Interference
	Using the syscall Provider
	ustack Action
	uregs[] Array
	Using the pid Provider
	User Function Boundary Tracing
	Tracing Arbitrary Instructions


	13 Statically Defined Tracing of User Applications
	Choosing the Probe Points
	Adding Probes to an Application
	Defining Providers and Probes
	Adding Probes to Application Code
	Testing if a Probe Is Enabled
	Building Applications With Probes
	Using Statically Defined Probes


	14 Statically Defined Tracing of Kernel Modules
	Inserting Static Probe Points
	revdev.h Example
	rev_mod.c Example
	rev_dev.c Example

	Building Modules With Static Probes
	Kbuild Example
	Makefile Example
	testrevdev.c Example

	Using DTrace to Test Modules With Static Probes

	15 Performance Considerations
	Limit Enabled Probes
	Using Aggregations
	Using Cacheable Predicates

	16 DTrace Stability Features
	Stability Levels
	Dependency Classes
	Interface Attributes
	Stability Computations and Reports
	Stability Enforcement

	17 Translators
	Translator Declarations
	xlate D Operator
	Process Model Translators
	Stable Translations

	18 DTrace Versioning
	Versions and Releases
	Versioning Options
	Provider Versioning


