
Oracle Linux
DTrace Release Notes

F35833-15
June 2024



Oracle Linux DTrace Release Notes,

F35833-15

Copyright © 2021, 2024, Oracle and/or its affiliates.



Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1   About DTrace

2   Install DTrace

Install DTrace on Oracle Linux 9 2-1

Install DTrace on Oracle Linux 8 2-1

Install DTrace on Oracle Linux 7 2-2

Verify the DTrace Installation 2-2

3   Example DTrace Usage

4   DTrace Changelog

2.0.1-1 (May 6th, 2024) 4-1

2.0.0-1.14 (Mar 5th, 2024) 4-1

2.0.0-1.13.1 (Jun 7th, 2023) 4-3

2.0.0-1.13 (May 26th, 2023) 4-4

2.0.0-1.12 (Feb 27th, 2023) 4-6

2.0.0-1.11 (Nov 9th, 2022) 4-7

2.0.0-1.10 (Apr 26th, 2022) 4-9

2.0.0-1.9 (Dec 8th, 2021) 4-10

2.0.0-1.8 (Oct 15th, 2021) 4-11

2.0.0-1.7 (Sep 9th, 2021) 4-11

2.0.0-1.6 (Jun 18th, 2021) 4-12

2.0.0-1.5.1 (Apr 12th, 2021) 4-14

iii



2.0.0-1.4 (Dec 9th, 2020) 4-15

2.0.0-1.3 (Oct 2nd, 2020) 4-16

2.0.0-1.2 (Aug 6th, 2020) 4-17

2.0.0-1.0 (Apr 24th, 2020) 4-18

2.0.0 (Mar 10th, 2020) 4-20

1.2.1 (Feb 12th, 2019) 4-20

1.2.0 (Dec 13th, 2018) 4-21

1.1.1 (Oct 25th, 2018) 4-21

1.1.0 (Aug 10th, 2018) 4-21

1.0.4 (Aug 10th, 2018) 4-21

1.0.3 (Jul 24th, 2018) 4-22

1.0.2 (May 10th, 2018) 4-22

1.0.1 (Apr 28th, 2018) 4-22

1.0.0 (Mar 27th, 2018) 4-22

0.6.2 (Sep 12th, 2017) 4-23

0.6.1 (Aug 7th, 2017) 4-24

0.6.0 (Apr 3rd, 2017) 4-25

0.5.4 (Nov 8th, 2016) 4-27

0.5.3 (May 25th, 2016) 4-27

0.5.2 (Feb 3rd, 2016) 4-27

0.5.1 (Nov 17th, 2015) 4-28

0.5.0 (Aug 10th, 2015) 4-29

0.4.6 (Jun 30th, 2015) 4-29

0.4.5 (Jun 17th, 2015) 4-30

0.4.4 (Mar 12th, 2015) 4-32

0.4.3 (May 1st, 2014) 4-32

0.4.2 (Dec 20th, 2013) 4-33

0.4.1 (Nov 6th, 2013) 4-33

0.4.0 (Sep 20th, 2013) 4-34

0.3.0 (Sep 14th, 2012) 4-36

0.2.5 (Mar 19th, 2012) 4-38

0.2.4 (Feb 15th, 2012) 4-38

0.2.3 (Feb 10th, 2012) 4-38

0.2.0 (Jan 25th, 2012) 4-38

0.1.0 (Oct 20th, 2011) 4-39

iv



Preface

Oracle Linux: DTrace Release Notes provides information about DTrace v2.0 releases for
Oracle Linux and Unbreakable Enterprise Kernel.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and

v

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab


the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi



1
About DTrace

DTrace is a powerful dynamic tracing tool that's available in Oracle Linux for use with the
Unbreakable Enterprise Kernel (UEK). It has a rich feature set, supports most of the common
probe providers, and is available for x86_64 and aarch64 architectures. DTrace is developed
as an open source project available under the Universal Permissive License (UPL), Version
1.0. You can access source code and more information at https://github.com/oracle/dtrace-
utils.

DTrace v2.0 is a reimplementation of DTrace that uses existing Linux kernel tracing facilities,
like eBPF, which didn't exist when DTrace was first ported to Linux. The new implementation
removes DTrace dependencies on specialized kernel patches.

DTrace v2.0 is available with UEK R6 and later. Previous versions of UEK continue to include
the original DTrace implementation.

DTrace V2.0 on Oracle Linux 8 and Oracle Linux 9 has been reimplemented as a user space
application. It no longer requires the libdtrace-ctf library to run on Oracle Linux 8 or Oracle
Linux 9. The functionality of that library is integrated into the Oracle Linux GNU toolchain. Note
that libdtrace-ctf is still required on Oracle Linux 7.

Functionality is being delivered as it becomes available, starting with a limited set of
capabilities (primarily framework functionality that doesn't offer many user visible features) but
ultimately reaching, and then exceeding, earlier support.

For more information about DTrace, see Oracle Linux: Using DTrace for System Tracing.

1-1

https://github.com/oracle/dtrace-utils
https://github.com/oracle/dtrace-utils
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/


2
Install DTrace

The following instructions provide steps to install DTrace on different Oracle Linux releases
and to verify that the installation was successful.

Install DTrace on Oracle Linux 9
1. If running on an x86 platform, enable the ol9_UEKR7 yum repository for the system.

sudo dnf config-manager --enable ol9_UEKR7

Note:

Oracle releases UEK and DTrace packages in the baseos repository for aarch64
platforms. You don't need to enable any other repositories to access the DTrace
packages for aarch64 platforms.

2. Install the dtrace and package.

sudo dnf install -y dtrace

Install DTrace on Oracle Linux 8
1. If running on an x86 platform, enable either the ol8_UEKR6 or ol8_UEKR7 yum repository for

the system.

For example, run:

sudo dnf config-manager --enable ol8_UEKR7

Note:

Oracle releases UEK and DTrace packages in the baseos repository for aarch64
platforms. You don't need to enable any other repositories to access the DTrace
packages for aarch64 platforms.

2. Install the dtrace package.

sudo dnf install -y dtrace

2-1



Install DTrace on Oracle Linux 7
1. Enable the ol7_UEKR6 yum repository for the system.

For example, if you have yum-utils installed, you can run:

sudo yum-config-manager --enable ol8_UEKR7

2. Install the dtrace and libdtrace-ctf packages.

sudo yum install -y dtrace libdtrace-ctf

Verify the DTrace Installation
Check that DTrace installed to the correct location and verify the DTrace version.

Run ls -lah /usr/sbin/dtrace to verify that the DTrace utility is present:

ls -lah /usr/sbin/dtrace

Run the dtrace -V command to display the version number.

dtrace -V
DTrace 2.0.0 [Pre-Release with limited functionality]
dtrace: Oracle D 2.0

Chapter 2
Install DTrace on Oracle Linux 7

2-2



3
Example DTrace Usage

The following examples illustrate current functionality in DTrace v2.0. Examples assume that
commands are run as root and /usr/sbin is in the PATH.

• List probes:

# dtrace -l
DTrace 2.0.0 [Pre-Release with limited functionality]
ID   PROVIDER    MODULE                     FUNCTION NAME
1     dtrace                                        BEGIN
2     dtrace                                        END
3     dtrace                                        ERROR
4        fbt   vmlinux     trace_initcall_finish_cb entry
5        fbt   vmlinux     trace_initcall_finish_cb return
...         

On this particular system, there were:

– 3 dtrace probes

– 87890 fbt probes (based on kprobes)

– 1262 sdt probes (based on Linux tracepoints)

– 666 syscall probes

• Example script that uses the -S option, to output the compiled D code as an eBPF
program, and that uses the -e option, to exit after compilation:

# dtrace -Sen 'write:entry { trace(1) }'
DTrace 2.0.0 [Pre-Release with limited functionality]

Disassembly of ::write:entry

DIFO 0x46af600 returns D type (integer) (size 8) [record 16 bytes]
INS OFF  OPCODE                  INSTRUCTION
000 000: 62 a 0 fef8 ffffffff    stw  [%fp-264], -1     ! = EPID
001 008: 62 a 0 fefc 00000000    stw  [%fp-260], 0
002 016: 7a a 0 ff00 00000000    stdw [%fp-256], 0
003 024: 7a a 0 ff08 00000000    stdw [%fp-248], 0
004 032: 7a a 0 ff10 00000000    stdw [%f
[...]

• Example script:

# dtrace -n '
syscall::write:*
{       
    this->x = 3;                /* clause-local variables */
    this->y = 8;
    trace(this->x * this->y);

3-1



    trace(&`max_pfn);
}' 

In the example script:

– Probe all write() system call probes simultaneously using a wildcard;

– Probe with recording the address of a kernel identifier (max_pfn) and other data items;

– Associate several probes with a single action.

– Clause-local variables are used.

– The trace() action is used to report output.

Chapter 3

3-2



4
DTrace Changelog

The changelog provided here describes the major features and changes in each release and
also lists any known issues.

2.0.1-1 (May 6th, 2024)
New features:

• Function Boundary Tracing (FBT) probes can now access function arguments using
argv[n] where n is bound by the number of arguments of the function. The data type of
each argument is a generic uint64_t for now.

Internal changes:

• Function Boundary Tracing (FBT) probes are now implemented using the more lightweight
fentry/fexit kernel tracing facility. Fallback to kprobes is provided for kernels that don't
provide fentry/fexit probing using BPF.

Build-time:

• D translators are now included with the DTrace source code, and are installed for all
supported kernel versions. This means that building DTrace no longer requires access to
kernel development headers.

2.0.0-1.14 (Mar 5th, 2024)
Fourteenth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features

• The io provider has been implemented.

• The print() action has been implemented.

• The link_ntop() subroutine has been implemented.

• The cleanpath() subroutine has been implemented.

• The d_path() subroutine has been implemented to always return "<unknown>". This is
needed to ensure that the io and procfs translators compile.

• The -xcpu option has been implemented.

• The -xaggpercpu option has been implemented.

• The -xlockmem option has been improved. The limit is set before retrieving probe info, and
the default behavior is now "unlimited" (meaning most users will not have to worry about
this option).

• The pid provider now supports offset-based probe names.

• Aggregations of stacks are now supported.

4-1



• The retrieval of rawtp argument information has been improved.

• You can now delete an element in an associative array by assigning a literal 0 to it,
regardless of the element datatype.

• The lexer has been improved to support module names that start with a numeral so that
they can be used. For example, 9p`v9fs_remove.

• A basic configure script has been added to help building and packaging in various
distributions.

• USDT probe information maintained by dtprobed is now stored under /run to ensure it can
survive daemon restarts.

• DTrace can now be used for tracing with upstream kernels without requiring any additional
patches, albeit with some limitations.

• The ip provider has been implemented.

• The trunc() action has been implemented.

• The pcap() action has been implemented.

• The inet_ntoa6() subroutine has been implemented.

• The inet_ntop() subroutine has been implemented.

• Support for modules.builtin.ranges data from the kernel has been added. This is the new
way to determine module name association for kernel symbols that are built into the kernel.
Support for kallmodsyms is retained for kernel that don't support modules.builtin.ranges
yet.

• A BTF-to-CTF convertor has been added to support using DTrace with kernels that don't
provide CTF data. Note that BTF is currently more limited than CTF. For example, BTF
doesn't provide datatype information for kernel variables.

Bugfixes

• Drop counter handling is fixed for local-only updates.

• Dedicated space has been introduced for call stacks so that stackdepth and temporary
strings don't overwrite one another.

• dt_tp_event_info() has been corrected so as not to overrun its buffer.

• Compilation of BPF code that uses BPF helpers now uses the bpf_helpers.h header file
from libbpf-dev[] instead of the (deprecated) bpf-helpers.h header file that the gcc BPF
cross provided.

• Because of the need to support DTrace on older kernels, BPF source code files are now
compiled using -mcpu=v3 to ensure that the object code is acceptable to the BPF verifier
in older kernels.

• When a DTrace instance would trigger the END probe to be processed, any and all other
dtrace instances on the system would have their END probe fire as well because the
dtrace provider trampolines weren't validating the tgid of the task triggering the probe.

• The initialization of the cpuinfo BPF map could cause a buffer overrun on systems with
non-sequential online CPU ids.

• On kernels that support preemptive BPF program execution, probe data could get
corrupted. As a temporary fix, concurrent BPF program execution for DTrace probes is
blocked.

• Struct and union member access in alloca()-allocated memory no longer cause a BPF
verifier violation.

Chapter 4
2.0.0-1.14 (Mar 5th, 2024)

4-2



• Bitfield offset calculations have been corrected.

• Disassembler output for endianness conversion instructions has been corrected.

• Bounds checking of array datatypes of size 0 or 1 in the kernel is now skipped because
they are commonly used in the kernel as anchors for dynamically sized arrays.

• Zero constants are now checked at compile time wherever NULL pointer argument
checking is done.

• Uprobes are now created using the offset in the inode rather than based on an absolute
address.

• Building in various forms of kernel builds is now more streamlined.

Internal changes

• Code has been restructured to better support SDT-based providers. While such providers
(lockstat, io, and so on.) used to be based on static probes in the kernel source, they're
now implemented with fbt, rawtp, and even syscall probes. Probe trampolines can become
involved. Changes, notably in cg, better support these providers. Also, the underlying
probes are using rawtp more rather than relying solely on fbt.

• Support for compilation in older environments (esp. older compilers) has been improved.

• There have been several build improvements, especially for cross compilation and to build
with upstream kernels.

• A bunch of code to parse strings has been removed, relying instead on flex for this
support.

• The creation and deletion of USDT probes has moved from dtprobed to dtrace.

• The dtprobed now uses presets for daemon restarting.

• The dependency on waitfd() has been replaced with a mechanism that doesn't depend on
this system call.

Testsuite changes

• Test dependence on tick-* probes has further been reduced. The tick-* probes can behave
poorly on some kernels, depending on how their timers subsystem is configured
(CONFIG*_HZ*). Reducing this dependence has gone on over several releases to improve
the robustness of these tests.

• Fix err.* tests that force XFAIL to report so correctly.

• Skip lockstat testing before 5.10.

• Fix the use of syscall::execve:entry args[], because there are two levels of dereferencing
userspace addresses, requiring two copyin*().

2.0.0-1.13.1 (Jun 7th, 2023)
Thirteenth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

Bugfixes:

• Upgrading DTrace using RPMs now correctly restarts dtprobed.

Chapter 4
2.0.0-1.13.1 (Jun 7th, 2023)

4-3



Testsuite changes:

• Some tests can leave orphaned tracing events registered with the kernel if the tests
timeout and the dtrace process is killed. Such probes are now reported and cleaned up
after each test is run.

2.0.0-1.13 (May 26th, 2023)
Thirteenth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• Full support for is-enabled USDT probes.

• An error will be reported when a tracing script requires more space to store aggregation
data than is available per the aggsize option value.

• An error will be reported when a tracing script requires more space to store dynamic
variables than is available per the dynvarsize option value.

• Support for data drop counters for principal buffers, speculation buffers, aggregations, and
dynamic variables.

• The proc:::signal-clear probe has been implemented.

• The sched provider has been implemented for a limited set of probes (and with some
limitations). Available probes are: dequeue, enqueue, off-cpu, on-cpu (limited trigger
locations), surrender, tick, and wakeup. Note that the cpuinfo argument for dequeue and
enqueue (arg1) is NULL due to system limitations. Future releases will incrementally
expand this provider.

• The lockstat provider has been implemented. All lockstat probes are implemented, but
depending on the runtime kernel configuration, some probe may not trigger in all cases
(particularly for lock operations that are forced to be inlined). Also, kernels prior to 5.10.0
contain a bug that can cause kernel deadlock when a kretprobe is used on spinlock
functions. The lockstat provider is not enabled for such kernels for safety.

• True NULL strings are now supported.

• The uregs built-in variable is now supported on older kernels as well.

• New option 'linknommap' has been added as a workaround for elfutils bugs related to
mmap() usage.

Bugfixes:

• The error message issued by dtprobed to report incorrect helper data size was reporting
the expected and received values backwards.

• USDT probes in programs that live in different fs namespaces are now fully supported.

• When multiple USDT probes were specified, only the first one would get provided properly.

• Properly recognize all forms of the 'char' datatype as equivalent.

• Do not allow iregs to be increased beyond its default value (the number of BPF registers).

• The uaddr handling has been fixed to not trigger a segmentation fault for pid 0.

• Tracepoint argument datatypes that are expressed by the kernel using symbolic array size
specifiers are now handled correctly.

Chapter 4
2.0.0-1.13 (May 26th, 2023)

4-4



• The established behaviour of DTrace when storing data in a speculation has been to abort
clause execution at any statement that would cause a speculation buffer overflow. Code to
perform overflow checks when storing data in a speculation are now generated correctly.

• Some faults were not reporting the PC of the fault location.

• FBT probes are no longer provided for compiler-generated internal symbols. Such symbols
cannot be probed anyway.

• Multiple memory leaks were resolved.

• Integers loaded from an associative array are now promoted to 64 bits.

• Failure to allocate a dynamic variable now reports a dynamic variable drop warning, and
aborts the clause execution.

• DOF parser crash causes were fixed in dtprobed.

• USDT probes in non-PIE executables are now fully supported.

• Multiple programs providing their DOF to dtprobed simultaneously could cause some of
their probes to not get created.

• Support for shared libraries and executables with very large numbers of USDT probes
(500+) has been improved.

Internal changes:

• DOF_VERSION_3 has been added for the new-style USDT is-enabled probe mechanism
that is not compatible with the previous versions.

• Userspace probe scanning was reworked to resolve performance issues.

• The 'cpuinfo' BPF map can now support configurations where CPU ids are not strictly
sequential.

• The GCC BPF support in some gcc/binutils releases did not offer a way to express an
atomic add operation. As a workaround, the DTrace source code provides its own
atomic_add() construct.

• The handling of associative arrays and TLS variables has been consolidated because they
are both implemented using dynamic variables.

Testsuite changes:

• The testsuite can now specify kernel modules that are needed for tests.

• A test has been added to verify whether libctf bug #30264 is present on the system. The
libctf bug breaks offsetof() for members of unnamed structs and unions at non-zero offsets.

• A test has been added to test multiple simultaneous dtrace instances tracing multiple
processes,

• Various tests using tick-* probes without actually requiring them have been reworked using
non-timer based probes for efficiency and stability.

• Test have been added for many dtrace options.

• The testsuite can now support interpreter-style executable .d files using #!dtrace (the
actual pathname for dtrace will be substituted during test execution).

Known problems:

• Programs and shared libraries that make use of is-enabled USDT probes and were built
using a previous version of dtrace will need to be rebuilt for is-enabled probes to work.

Chapter 4
2.0.0-1.13 (May 26th, 2023)

4-5



2.0.0-1.12 (Feb 27th, 2023)
Twelfth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• The bcopy() subroutine no longer enforces that its first argument (source address) can't
be an alloca()'d memory region. While this restriction is documented, it was never
enforced in DTrace and the restriction has no practical reason.

• The clear() and tracemem() actions have been implemented.

• The switchrate and aggrate options have been implemented.

• The cpc and proc providers have been implemented.

• The copyout() and copyoutstr() subroutines have been implemented.

• The uregs[] built-in variable has been implemented.

Bugfixes:

• The maximum strtab size has been increased to SSIZE_MAX.

• Probe argument information is only be retrieved once per probe.

• Handling string values in alloca()'d memory has been fixed.

• The basename(), dirname(), strchr(), strrchr(), inet_ntoa() subroutines have been
updated to fully support using arbitrary address pointers.

• The return value of copyin() is now a valid offset into scratchmem (native representation of
a pointer to alloca()'d memory).

• The arg0 and arg1 probe arguments for profile-* and tick-* probes have been
corrected. (The arg2 argument is still unimplemented.)

• The evaluation order of arguments to bcopy() has been corrected.

• Runtime bounds checking has been implemented for scalar array access.

Internal changes:

• Selection of the correct arch-dependent asm include hierarchy for building the precompiled
BPF function library has been corrected.

• A few potentially unsafe calls to printf-style functions have been fixed.

• The manpage for dtrace has been moved to section 8 (System Management Commands).

• The error handling mechanism between libdtrace and consumer front-ends has been
amended to allow error reporting for non-probing related issues.

• The copyinstr() subroutine has been updated to use the temporary string mechanism.

• The tracking of pointers to alloca()'d memory and pointer to DTrace managed memory
has been improved, and explicit tests for it have been added to the testsuite.

• The code generator uses indirect load instructions for pointers to alloca()'d and DTrace
managed memory for efficiency and to enable the BPF verifier to perform access checks.

Chapter 4
2.0.0-1.12 (Feb 27th, 2023)

4-6



Testsuite changes:

• The copyin*() tests are now more robust with the use of a distinct trigger.

• Various tests have been moved from XFAIL to PASS status to reflect the implementation of
new features and because some bug fixes.

• Various tests were improved.

• Various new tests were added.

Known problems:

• The uregs[] built-in variable isn't supported on kernels before 5.15.

2.0.0-1.11 (Nov 9th, 2022)
Eleventh errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• The args[] built-in variable has been implemented.

• Support loading scalars from kernel space addresses.

• The copyin(), copyinto(), and copyinstr() subroutines have been implemented.

• A -xlockmem option has been added to adjust the kernel locked-memory limit. When
loading BPF maps or programs fails in a way that might indicate that the locked-memory
limit is too low, an error message is printed to suggests using this new option.

• Support for aggregations indexed by a key (tuple) has been added.

• Disassembler annotations have been added for aggregation variables.

• The setopt() action has been implemented. A limited number of options is currently
supported.

• The pid provider has been changed to ignore compiler-generated internal function names.

• The USDT provider has been implemented for basic use cases. Regular, non-is-enabled
probes are supported for executables that are referenced explicitly (by pid) in the probe
script. Argument mapping and wildcard probe specifications are not supported yet.

New dependencies:

• The USDT provider support depends on the availability of libfuse version 2 or 3. At build
time, preference is given to libfuse 3 if available. The build process supports forcing
building against libfuse 2 by passing 'libfuse2=yes' to the make command.

Upgrading:

• The USDT implementation depends on an always-running daemon (dtprobed): the
corresponding systemd dtprobed.service is automatically started in relatively early boot in
non-rescue scenarios, but when DTrace is first installed, or if it is upgraded from a version
before the daemon existed (before 2.0.0-1.11), any probes in programs that were already
running before that point will not appear in DTrace's list of available probes until such
programs are restarted.

Chapter 4
2.0.0-1.11 (Nov 9th, 2022)

4-7



Bugfixes:

• Arguments of sdt-provider probes are now correctly populated using the tracepoint data.

• Argument handling for dtrace:::, fbt:::return, pid:::, and syscall:::return probes has been
cleaned up.

• The dtrace utility is now able to handle multiple args after --.

• The -xcpp, -xctfpath, and -xverbose options have been fixed.

• Some bugs with typecasting and internal integer storage have been fixed.

• The libproc search of rtld_global has been improved for glibc changes.

• In procfs.d, projid_t was renamed to resolve a conflict with the kernel.

• In the parser, support has been added for slices of typedefs.

• String comparison involving non-DTrace pointers has been fixed.

• The value of the execname built-in variable is now correctly recognized as a non-DTrace
pointer.

Internal changes:

• The code generator is able to adapt to BPF-helper-function availability differences between
runtime kernels.

• Read-only blocks of zeros for initializing BPF maps have been consolidated.

• Tuples are now constructed with their component values at predictable offsets based on
their datatype rather than their value..

• Support for the BPF dt_bpf_map_next_key() helper to iterate over the keys in a BPF map
has been added.

• Support for multiple copies of aggregation data (DT_AGG_NUM_COPIES) is no longer
needed and has been removed.

• Support for creating a map (array or hash) of maps has been added, including functions to
perform lookups and updates of inner maps.

• The storage of aggregation data has been modified to make use of an array of BPF hash
maps, indexed by CPU id. As a result, aggregation data for each CPU is stored in its own
BPF hash map and can be modified without affecting the data for other CPUs.

• Error reporting for BPF program load, map creation, CTF, and dlib load has been cleaned
up.

• Some code has been refactored and some obsolete code removed.

Testsuite changes:

• Add support for '-e' in test options.

• Tests that are expected to fail have improved xfail messages.

• Support has been added for more stringent, @@nosort checking.

• Problems with "unstable" tests are report as XFAIL.

• Tests that fire many times (historically using tick-n) are more robust.

• Various tests have been moved from XFAIL to PASS status to reflect the implementation of
new features and in view of some bug fixes.

• Various tests were improved.

Chapter 4
2.0.0-1.11 (Nov 9th, 2022)

4-8



Known problems:

• On some aarch64 systems the copyin(), copyinstr(), and copyinto() subroutines may report
a fault due to limitations in the BPF implementation at the kernel level. This problem seems
to be related to specific CPU features.

2.0.0-1.10 (Apr 26th, 2022)
Tenth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• The trace() action supports array, struct, and union values.

• The execname built-in variables is now implemented.

• The inet_ntoa() subroutine has been implemented.

• The progenyof() subroutine has been implemented.

• The getmajor() and getminor() subroutines have been implemented.

• The mutex_owned(), mutex_owner(), mutex_type_adaptive(), mutex_type_spin(),
rw_read_held(), rw_write_held(), and rw_iswriter() have been implemented.

• The alloca() and bcopy() subroutines have been implemented.

• Associative arrays have been implemented. They are supported for both global and TLS
variables.

• Disassembler annotations have been added for associative arrays, register spills, and
string constants.

• The translators have been updated to support up to kernel series 5.16.

• Faults will now report the PC (program counter) where the fault is reported.

Bugfixes:

• Register allocation leaks were fixed.

• NULL pointer verification has been optimized to avoid checking the same pointer more
than once.

• NULL pointers handling in ternary conditionals are now supported.

• Casting of pointers to integers has been fixed.

• Negative (immediate) values in signed conditionals are now printed correctly.

• Disassembler annotations for TLS variables have been corrected.

• The DIFO strtab handling has been reworked to fix multiple bugs.

Internal changes:

• The strlen() subroutine is now implemented using the bpf_probe_read_str() BPF helper.

• Strings are no longer stored using a length prefix.

• BPF functions that are implemented in C or assembly code are no longer statically listed in
the DTrace source code. Their existence is determined at runtime when the dlibs are
loaded.

Chapter 4
2.0.0-1.10 (Apr 26th, 2022)

4-9



• All load-time constants are now handled by the relocation mechanism.

• New function dt_dis_insn() can be used by developers to disassemble a single instruction..

• The implementation of pre and post arithmetic has been optimized.

• Relocation support for the 'add immediate' instructions has been added.

• The substr() subroutine has been optimized to reduce register pressure.

Testsuite changes:

• Various tests have been moved from XFAIL to PASS status in response to the
implementation of new features and in view of some bug fixes.

• Various tests were improved.

2.0.0-1.9 (Dec 8th, 2021)
Ninth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• The rand() subroutine has been implemented.

• The ftruncate() subroutine has been implemented.

• The basename() and dirname() subroutines have been implemented.

• Thread-local storage (TLS) variables have been implemented. For now, only non-indexed
variables are supported.

• The strtok() subroutine has been implemented.

Obsolete features:

• The ctf_module_dump tool has been removed. It is no longer needed.

Bugfixes:

• The substr() and strjoin() subroutines now correctly store the result string length in the
string length prefix.

Internal changes:

• The temporary string (tstring) support in the code generator has been improved to provide
better development level diagnostics.

• The lifecycle handling of temporary strings has been updated to handle assignments and
ternary expressions correctly.

• The substr() and strjoin() subroutines have been reworked to provide a much more
optimized implementation.

• More efficient code is new generated for storing a string value in the trace output buffer.

• Improvements were made to the generic hashtable (htab) in libdtrace,

Testsuite changes:

• A results post-processor was added to various tests to work around CTF error message
differences between libdtrace-ctf and libctf.

Chapter 4
2.0.0-1.9 (Dec 8th, 2021)

4-10



Known problems:

• Complex nested expressions may cause the code generator to run our of usable registers.
This is a known problem with the register lifecycle tracking.

2.0.0-1.8 (Oct 15th, 2021)
Eighth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• The htonl(), htonll(), htons(), ntohl(), ntohll(), and ntohs() subroutines have been
implemented.

• String comparison has been implemented.

• The strchr(), strrchr(), index(), rindex(), strstr(), and lltostr() subroutines have been
implemented.

• Support has been added to be able to resolve symbols in compressed kernel modules.

• Speculative tracing has been implemented. Full support for the speculate(), commit(), and
discard() actions is available, as is support for the speculaton() subroutine.

• It is now possible to run dtrace under valgrind.

Bugfixes:

• Symbol resolution for loadable modules was broken. This has been corrected.

Internal changes:

• Support has been added for the endianness conversion BPF instruction.

• All uses of perf_event_open() now specify the PERF_FLAG_FD_CLOEXEC flag.

Known problems:

• String sizes greater than 128 characters may pose problems with some string operations
due to BPF verifier limitations.

2.0.0-1.7 (Sep 9th, 2021)
Seventh errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• Argumsnts passed for SDT probes can now be retrieved using the arg0 through arg9
builtin variables.

• A -xbpflog option has been added to request the BPF verifier log to be generated and
displayed regardles sf the outcome of trying to load BPF programs. The option can also be
set with a D option pragma.

• The strjoin() subroutine has been implemented.

• The substr() subroutine has been implemented.

Chapter 4
2.0.0-1.8 (Oct 15th, 2021)

4-11



Bugfixes:

• Trampoline generation has been corrected to ensure that the correct probe context is set
during code generation.

• The type alignment handling code used to determine the alilgnment size for a given
datatype was treating enums as integers, which is incorrect. Proper alignment
determination is now done, avoiding libctf-related failures.

• The handling of ERROR probe invocations within the BEGIN probe execution has been
fixed.

• The size of string data in the trace output buffer has been corrected to acocunt for the 2-
byte length prefix and the terminating NUL byte.

• The data size for value copy operations has been corrected. It was determined solely on
the data size of the source data, even if the destination was smaller. It now uses the lesser
of the two sizes.

Internal changes:

• Provider implemenations now use standard functions to clear oe copy the CPU register
state at the time a probe fires.

• New macros set_upper_bound() and set_lower_bound() are available for use in C-to-BPF
source code. They are used to provide hints about value and range boundaries for the BPF
verifier.

• Precopiled BPF code can now use the STRSZ BPF symbol to represent the maximum
string size.

• The precompiled dt_memcpy() function has been replaced with a call to the
bpf_probe_read() BPF helper function.

• Support has been added for the compilation of BPF assembler source files (.S) into object
files (.o). This feature makes uses of the GCC BPF cross compiler.

• The generic scratch memory area is now accessible through a pointer to its base address.
This pointer can be found in dctx->mem. The stack trace implementation has been
updated to make use of this area. This scratch memory area is also used to provide
temporary string space to be used in string manipulation functions.

• The length prefix for strings has been changed from a variable-length integer to a 2-byte
fixed width integer. This was made necessay due to BPF verifier limitations. This is an
interim solution while a more permanent reworking of the string handling code is dveloped.

2.0.0-1.6 (Jun 18th, 2021)
Sixth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• Instruction offsets are printed as 4 digit values to accommodate the larger size of BPF
programs used to implement probe programs.

• String constants can be used as values in D clauses, and variables can hold string values.
Built-in variables that hold string data can be assigned to variables and they can be used
as values in expressions and as action arguments.

• The trace() action supports strings.

Chapter 4
2.0.0-1.6 (Jun 18th, 2021)

4-12



• The strlen() subroutine has been implemented.

• The following built-in variables are now supported: probeprov, probemod, probefunc,
probename, caller, stackdepth, ucaller, ustackdepth, errno, and walltimestamp.

• The following actions have been implemented: stack(), ustack(), umod(), usym(), and
uaddr().

Bugfixes:

• The storage size was not always set correctly for global and local variables causing data
corruption. When variables are not declared explicitly, their datatype may not be known
until their first use. The storage size is now always set based on the explicit or discovered
datatype of the variable.

• Built-in variables are implemented as global variables within a specific variable ID range.
Their value is not stored in the global variable storage area and they therefore do not have
a storage offset. The variable listing in the disassembly output was printing -1 as offset.
The offset will no longer be printed for built-in variables.

• A memory leak related to the ERROR probe has been fixed.

• Relocations of 64-bit data items were being truncated to the lower 32 bits. This has been
fixed.

• Storing data in an aggregation was considered a data recording action. This resulted in
probe firings being reported by the consumer for clauses that do not actually store data in
the probe output buffer. This behaviour was not intended. Aggregation data generation is
no longer a data recording action.

Internal changes:

• Global and local variables are now stored more efficiently by taking into account their size
and alignment requirements.

• Probe descriptions (id, provider name, module name, function name, and probe name) are
now stored in the 'probes' BPF map. The values are offsets into the string constant table.

• The string constant table is loaded into the 'strtab' BPF map as the value of the singleton
element with key 0.

• String hash value calculations have been unified into a single function that is called from all
code that needs it.

• Variable length integer support has been added. It will primarily be used to store the length
of strings inline with the character stream.

• The memory copy function (implemented as pre-compiled C code, compiled to BPF) has
been optimized and has been made more robust.

Testsuite changes:

• Various tests have been moved from XFAIL to to PASS status in response to the
implementation of new features and in view of some bug fixes.

• Various tests were improved.

Known problems:

• The assignment of values of a datatype that is larger than 256 bytes does not currently
work due to limitations in the memory copy implementation.

• While the DTrace option to set a specific maximum string size is accepted by the command
line tool, settings beyond 256 bytes do not work correctly.

Chapter 4
2.0.0-1.6 (Jun 18th, 2021)

4-13



• The -Z option (allowing clauses that do not match any available probe) does not allow for
registering a clause to be enabled at a later time when the probe becomes available.

2.0.0-1.5.1 (Apr 12th, 2021)
Fifth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• The pid provider has been implemented, enabling function boundary tracing at the
userspace level (in shared libraries and executables). Future development will augment
the functionality provided here with arbitrary instruction tracing at the userspace level.

• The ERROR probe (dtrace provider) is implemented. Some error conditions such as
division by zero or NULL pointer dereferencing are explicitly checked in the BPF program
because they constitute fatal failures in BPF program execution.

• Normalization aggregation actions have been implemented: normalize(), and
denormalize().

• Support has been added for global and local variables of size greater than 8 bytes and
accessing variables by reference, including allowing struct assignment statements, for
sizes up to 256 bytes. Future work will allow larger value sizes.

• A -xbpflogsize=N option has been added to specify the maximum size of the BPF verifier
output log. This log is generated when a BPF program cannot to be loaded into the kernel.
The option can also be set with a D option pragma.

• The -xdisasm=N support for the -S option has been improved. The list of available
disassembly listings has been updated. The value of <N> is the sum of any number of the
following available listings:

– 1 = After compilation and assembly of a clause function.

– 2 = After constructing a probe program.

– 4 = After linking dependencies into a probe program.

– 8 = After all processing, prior to loading a probe program.

Packaging changes:

• Sample scripts have been added for building DTrace on Ubuntu.

Bugfixes:

• Various aggregations bug fixes: resetting aggregations, formatted printa(), not printing
aggregations with no data (using per-aggregation latches), etc.

• Bit-field operations have been fixed in a manner that preserves legacy behavior (aligning
each bit field to the size of the next largest integer type).

Internal changes:

• The implementation of kernel tracepoint based providers has been reworked for greater
consistency and to accommodate the needs of the new pid provider implementation. The
pid provider also provides a sample for implementing providers that expose probes that do
not map one-to-one to kernel probes.

Chapter 4
2.0.0-1.5.1 (Apr 12th, 2021)

4-14



• There is now a mechanism to turn off dual-copy aggregation code. We anticipate using
that mechanism when we migrate to newer kernels, but for the time being it is simply using
up excessive BPF map space.

• The eventfd mechanism is used as a replacement for the condition variable that used to
signal that one or more processes terminated. This means that process termination
notifications are processed together with trace buffer data notifications. The dtrace_sleep()
function has been deprecated.

• The source code was refactored for greater stylistic consistency, and a style guide
(CODING-STYLE) was added.

• A standard implementation for *_add and _del htab functions was introduced.

• Jump-target relocation for generated BPF code was fixed to handle unlabeled BPF_NOP
instructions.

• Handle translators with definitions that vary in more than two kernel releases.

• The get_gvar() and set_gvar() pre-compiled BPF functions have been removed.

Testsuite changes:

• New tests have been added or XFAIL annotations revised for new features.

• A probe to test/unittest/pragma/*libdep* tests has been added to eliminate their reliance on
undefined behavior with regards to what library dependencies mean in the absence of any
probes.

• There are improvements in aggregation tests.

• Some disassembly tests have been added.

Known problems:

• Some architecture (like aarch64) set aside a hardcoded amount of memory for JIT
compiled BPF programs. Each program or sub-program takes up a whole number of pages
in memory. If the kernel has been configured with a large pagesize (16k or even 64k), the
reserved amount of memory may not be sufficient to support a larger amount of probes to
be used at the same time.

Note that the reserved memory is system-wide so concurrent DTrace tracing sessions will
consume memory from the same limited pool of pages.

There is no known workaround for this at the current time.

2.0.0-1.4 (Dec 9th, 2020)
Fourth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• Aggregations have been implemented. For now, only non-indexed aggregations are
supported, e.g. @, @a, @foo, but not @[1], @a["foo"].

• All aggregation functions have been implemented: avg(), count(), llquantize(), lquantize(),
max(), min(), quantize(), stddev(), and sum().

• Argument checking for aggregation functions has been improved.

• The printa() action has been implemented for standard aggregations.

Chapter 4
2.0.0-1.4 (Dec 9th, 2020)

4-15



Bugfixes:

• Bitwise negation has been corrected.

• Reporting for quantize() has been corrected. No data was being reported when all values
mapped to the last bin.

• END clauses are now executed correctly when the consumer triggers tracing to stop.

Internal changes:

• Aggregations now accumulate data in per-CPU kernel buffers (in a BPF map) and the
consumer retrieves a snapshot of all CPU buffers as needed. This means that the only
aggregation happening at the consumer level constitutes aggregating the values across all
CPUs.

• Macros have been added to support manual generation of BPF code. Each BPF instruction
used to take two C statements: the instruction was defined and then appended to a list.
Use of the new macros eliminates hundreds of such lines and makes the C code look
much more like the BPF it is generating.

• Restore the error message "%s %s( ) may not be called from a D expression (D program
context required)", which had been disabled during development.

• Remove the obsolete dt_bpf_builtins.h header file.

• Replace dtrace_aggvarid_t by dtrace_aggid_t and DTRACEAGG_* with DT_AGG_*.

Compilation fixes:

• Pre-compiled BPF functions are now correctly loaded even if they have no relocations.

Testsuite changes:

• Comments, typos, and naming have been cleaned up.

• New tests have been added or XFAIL annotations revised for new features.

2.0.0-1.3 (Oct 2nd, 2020)
Third errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• The freopen() action has been implemented for numeric values.

• The system() action has been implemented for numeric values.

• Two additional built-in variables are now available: id and ppid.

• Annotations in the DTrace disassembler have been improved for readability.

Bugfixes:

• The BEGIN and END probe semantics have been corrected to match the documented
behaviour. BEGIN will always be the first probe executed, and END will always be the last
probe executed. Corrections have also been made to the exit() action in terms of how it
interacts with the BEGIN and END probe, and the trace data consumer.

• The behaviour of the default action vs non-data producing actions has been corrected.

Chapter 4
2.0.0-1.3 (Oct 2nd, 2020)

4-16



• The implementation of the signed divide and modulo operations has been corrected in
view of BPF not providing instructions for them.

• The code generated for post-decrement expressions has been corrected.

• A bug fix for a theoretical buffer overflow issue was merged from the 1.2 version of DTrace
because the same code exists in this version.

Internal changes:

• Type casting has been optimized to only perform shift operations when needed. The
implementation has also been improved to not require an extra register.

Compilation fixes:

• The procfs.d D library makes use of datatypes that are defined in the sched.d D library, but
it was missing an explicit dependency on sched.d.

• The yylineno variable was declared in two places, causing a conflict with newer compilers.
The primary declaration is now in dt_lex.c and dt_cc.c now has an extern declaration for
the variable.

• Distributions place architecture specific include files in different locations. The build system
will try different known locations, using the first one that seems valid.

• Some newer compilers do not accept 'const' for the r_debug_offsets and link_map_offsets
arrays in the source code generated by mkoffsets.sh.

• Various changes were applied to the source code to resolve compiler warnings that were
triggered during compilation.

Testsuite changes:

• A bug fix for the bogus-ioctl testsuite trigger executable was merged from the 1.2 version
of DTrace because the same improper use of the open() library function occurs in this
version.

• Some testsuite scripts were using local variables (this->n) in places where thread-local
variables (self->n) were needed.

• Various testsuite cases have been updated to be more robust.

2.0.0-1.2 (Aug 6th, 2020)
Second errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• The profile provider has been implemented. Both profile-n and tick-n probes are supported,
for probes with default fire rates and user-specified rates/intervals.

• The trace() action has been updated to provide more consistent output based on the
datatype of its argument (signed vs unsigned, and width).

• The printf() action has been implemented for numeric values.

• The raise() action has been implemented.

• Clauses can now be specified with one or more probe specifications, and each probe
specification can contain wildcards.

• Listing probes based on wildcard probe specifications has been implemented.

Chapter 4
2.0.0-1.2 (Aug 6th, 2020)

4-17



• It is now possible to specify the same probe for multiple clauses.

• Various built-in variables are available: arg0 through arg9 (for probes that provide
arguments), curcpu curthread, epid, gid, pid, tid, uid, and timestamp.

• Expected test outcomes are continually being updated to reflect increasing functionality.

• The locked-memory limit is raised automatically if it is too small, since BPF has relied on a
higher limit.

Bugfixes:

• Various memory management issues such as memory leak and unsafe memory access
operations were fixed.

• A register allocation leak in predicate handling was fixed.

• The 'timestamp' built-in variable should yield the same value every time it is used within a
specific clause. The cached value should not leak into the next clause execution.

• Interrupting dtrace using Ctrl-C or sending a signal could leave uprobes and/or kprobes
behind. We now ensure that the interrupt handler is set up early enough to be able to
provide proper cleanup.

• There were cases where integer values between INT32_MAX and UINT32_MAX were not
processed correctly.

• The fallback support for /proc/kallsyms did not handle the lack of symbol sizes correctly,
making it impossible to map an address to a kernel symbol.

• int8_t is now always signed, even on platforms where char is unsigned.

Internal changes:

• The optional predicate for a clause is now compiled as an inline conditional at the
beginning of the clause execution.

• The machine state used during clause execution was allocated on the stack in previous
releases. This worked fine when BPF code was executed using the kernel interpreter, but
when the JIT BPF engine was used it would result in stack overruns. Now, the machine
state is stores in a BPF map value to free up stack space.

• The creation of uprobes and kprobes as underlying probing mechanism has been deferred
until tracing is actually about to start. This means that listing probes (-l) no longer results in
uprobes and/or kprobes being created on the system without being used.

• A significant (but largely invisible) change has been implemented in the D compiler and
runtime environment. The compilation of a clause will now merely generate a BPF function.
When probe execution is being set up, all probes that are to be part of the tracing session
are collected and for each probe a list of associated clauses is created. Finally, when
tracing is to commence, a trampoline BPF program is assembled for each probe. Each of
the trampoline BPF programs will include calls to the clauses associated with the probe.
When the final program for each probe is linked, references to compiled clauses and
precompiled BPF utility functions are resolved. At this point, the BPF program for each
probe is loaded into the kernel and attached to its probe.

2.0.0-1.0 (Apr 24th, 2020)
First errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

Chapter 4
2.0.0-1.0 (Apr 24th, 2020)

4-18



New features:

• BEGIN and END probes are functional. They are implemented using uprobes on trigger
functions in libdtrace. The current implementation does not yet satisfy all documented
semantics for these special probes. E.g. It is possible for a probe to be reported prior to the
BEGIN probe.

• The exit(n) action has been implemented. It terminates probing and will result in dtrace
reporting the given return value <n> as its return code.

• The flow-indent option -F has been implemented. Some of the heuristics present in DTrace
1.x are not available in this version - further code analysis is ongoing to determine whether
they are necessary.

New options:

• -xdisasm=n: Specify which disassembler listings to generate when the -S option is
supplied. The value for <n> is the sum of any of the following:

– 1 = After compilation and assembly of a program.

– 2 = After linking in precompiled BPF functions (dependencies).

– 4 = After final relocation processing (final program).

Bugfixes:

• Various memory management issues such as memory leak and unsafe memory access
operations were fixed.

• Using local variables in D clauses could cause the compiler to generate instruction
sequences where a load instruction for a local variable occurred before a store took place
to that variable. The BPF verifier rejects such sequences. We now ensure that we do not
load from stack locations that were never initialized.

• The code generated for the post-increment operation resulted in the new value to be used
as value of the expression. The value of the expression is now the old value.

• Various issues were resolved concerning register use in the compiler. We are now using
proper register spilling techniques to free up a sufficient amount of general purpose
registers.

• FBT return probes were not created correctly if an entry probe also existed for the same
function. Both were getting attached to the same probe (either entry or return, depending
on which was created first).

Internal changes:

• Various helper functions have been implemented in C code that is compiled to BPF code
using the GCC BPF cross compiler. These are available as an ELF object for linking with
the dynamically generated code that the DTrace compiler produces. When D code has
been compiled into BPF code, we resolve any references to precompiled BPF functions
against this ELF object and add any functions used (and their dependencies) to the
compiled program.

• Various tests in the testsuite make use of the -xerrtags and -xdroptags options in dtrace to
include specific error and drop tags in the error output. The testsuite engine did not enforce
validation of these tags. Tests that specify a tag in their name err.<tag>.* and drp.<tag>.*)
will now trigger validation that the specified tag is mentioned in the error output that dtrace
produces.

Chapter 4
2.0.0-1.0 (Apr 24th, 2020)

4-19



• Dynamically created system level probes (kprobes and uprobes are now grouped under a
tracepoint group named dt_<pid>_<prv>[_<prb>] where <pid> is the PID of the dtrace
process, <prv> the name of the probe provider, and <prb> the probe name. The _<prb>
optional suffix is used for FBT probes to separate entry probes from return probes.

2.0.0 (Mar 10th, 2020)
First release of the standalone userspace implementation.

This is a pre-release with limited functionality.

Working components:

• The entire D language, with the exception of aggregations. Valid D clauses are compiled
into equivalent BPF programs.

• The vast majority of the DTrace core functionality has been implemented, providing a
nearly complete compiler implementation (including predicates), provider API, probe
management, and Linux tracing integration.

• Support for pre-compiled BPF function libraries has been added. This is used to implement
various D language constructs (global and TLS variable access, string manipulation, ...)
and D subroutines. This feature makes use of the BPF support in GCC and binutils as
cross compilation tools. The BPF functions are compiled at DTrace build time, so there is
no runtime dependency on the cross compilation tools.

• Support has been added for reporting BPF verifier output. When compiled D scripts are
loaded as BPF program into the kernel, the BPF verifier performs a static code analysis to
ensure safety of the program. When this analysis fails, output is generated and DTrace will
report this output to the user.

• Function Boundary Tracing (FBT) probes with functions grouped by module (regardless of
whether the module is compiled in or loadable) if the kernel provides this information in /
proc/kallsyms (or /proc/kallmodsyms).

• Syscall entry and return probes (systrace provider), with support for typed probe
arguments.

• Statically Defined Tracing (SDT) probes based on Linux tracepoints, with support for typed
probe arguments.

• The trace data buffer management code has been reworked to work with the perf event
ring buffers that are used by BPF to record tracing data.

• The DTrace testsuite has been updated to reflect what tests are expected to pass with the
current state of development for DTrace v2. Various tests were also improved to be more
robust and to be more focused on what they are meant to be testing.

1.2.1 (Feb 12th, 2019)
Bugfixes:

• Fix a bug causing DTrace to fail to terminate if a process was grabbed using -c, then died
while traced with ustack(), usym() or umod() or by the pid or usdt providers.

Compilation fixes:

• Compile on glibc 2.28, which moves makedev() out of <sys/types.h>.

• Improvements to the testsuite in the presence of recent versions of GNU Awk.

Chapter 4
2.0.0 (Mar 10th, 2020)

4-20



1.2.0 (Dec 13th, 2018)
New features:

• New action pcap(struct sk_buff *, proto) where proto is one of the PCAP_* constants
from /usr/lib64/dtrace/*/pcap.d. If tshark is installed, this produces formatted packet traces;
if it is not, raw memory dumps are produced, as with tracemem(). If freopen() is used to
redirect DTrace output to a file, the raw packets are written there.

• Translator changes for the 4.19 kernel (also works with 4.20pre up to -6).

Bugfixes:

• Fix a variety of small memory leaks.

• Improvements to the testsuite.

Build-time:

• Improve the generation of signal.d: work better with newer glibc versions.

1.1.1 (Oct 25th, 2018)
Only testsuite changes.

1.1.0 (Aug 10th, 2018)
New features:

• Translator changes for the 4.15 kernel. (Kernels up to 4.18 work too.)

New options:

• -xctfpath: Specify the name of a CTF archive to use with the running kernel, for when it
cannot be found in the usual place under $(-xmodpath)/kernel/vmlinux.ctfa.

Bugfixes:

• Fix a variety of small memory leaks and use-of-uninitialized-data bugs.

• Clean up compiler warnings.

Library interface changes:

• Add more DTRACE_PROBE definitions to sdt.h, for SystemTap compatibility.

1.0.4 (Aug 10th, 2018)
Bugfixes:

• No longer crash when attempting to trace ourselves.

• More fixes for crashes of both DTrace and the traced process when DTrace terminates at
the wrong instant.

Chapter 4
1.2.0 (Dec 13th, 2018)

4-21



1.0.3 (Jul 24th, 2018)
Bugfixes:

• No longer crash or deadlock when -c/-p processes terminate at the wrong time.

• No longer deadlock when -c/-p processes create new threads.

• Stop the disassembler coredumping.

1.0.2 (May 10th, 2018)
Bugfixes:

• Mark an erroneously-failing test on ARM as passing.

1.0.1 (Apr 28th, 2018)
New features:

• Both USDT and pid providers are supported on ARM64.

Bugfixes:

• The -c option works on ARM64 now, as does the -x evaltime option.

• Improvements to the testsuite and testsuite runner.

1.0.0 (Mar 27th, 2018)
New architectures:

• ARM64 support.

New features:

• Compile-time array bounds checking. Dereferencing arrays beyond their declared bound is
now a compile-time error. To dereference an array regardless, use casts, e.g. ((char
*)curlwpsinfo->pr_name)[32].

• Translator support for kernels 4.12 -- 4.14.

• Added initial pid provider support for userspace tracing.

• Redesigned build system now allows change in translators in 4.14.y versions of kernels.
When porting to the new kernel, it is no longer required to add the new kernel version to
the list of define_for_kernel macros (unless a change is truly required).

Bugfixes:

• Addresses are normalized properly by mod(), so use of mod() in aggregates works better
now.

• DTrace will no longer consider symbols in built-in modules or the core kernel to be in the
wrong module: its idea of symbol addresses, sizes, and their mapping to names is better in
general, particularly with respect to symbols that overlap, symbols whose names are
duplicates, and weak symbols.

Chapter 4
1.0.3 (Jul 24th, 2018)

4-22



• An interface problem has been fixed that can cause DTrace consumers to dereference
freed memory when victim processes grabbed via ustack(), umod(), usym() or dtrace -c or
-p exec(). This requires changes to certain users of libdtrace, and relinking: see "Library
interface changes" below.

• The ip provider's ipv6_tclass and ipv6_flow fields were wrong on little- endian machines.

• Fix rare assertion failures at exit.

• dtrace -S now disassembles all actions in statements containing more than one, rather
than disassembling only the first.

• A new symbol at address zero introduced by the KPTI changes is eliminated from symbol
resolution.

• Improvements to the testsuite and testsuite runner.

Library interface changes:

• The dtrace_proc_*() functions have changed the type they take to an opaque handle,
struct dtrace_proc. There is a new function dtrace_proc_getpid() to get the PID from this
opaque handle. dtrace_proc_grab() has been renamed to dtrace_proc_grab_pid(). See
INCOMPATIBILITIES.

The library soname has been bumped to libdtrace.so.1 correspondingly. All consumers
must relink, but consumers not using the dtrace_proc_*() APIs need no code changes. All
places where code changes are needed elicit a compile-time error, so it should be easy to
see what needs changing.

Testsuite changes:

• Tagging added via a new @@tag in test files: testing with specific tags can be requested
via TEST_TAGS='a !b' in the environment and --tag/--no-tag arguments to runtest.sh. The
intersection of all tags is run, so in the example above, only tests tagged with 'a' and not
tagged with 'b' would be run. You can specify tags that apply by default in the test/
tags.default file, and tags that apply on only one architecture in test/tags.$arch.default.

0.6.2 (Sep 12th, 2017)
Packaging changes:

• The DTrace headers in /usr/include/linux/dtrace were formerly provided by the dtrace-
modules-shared-headers package. They are now pulled in from the kernel-uek-devel
package in /usr/src/kernels at dtrace-utils package build time and shipped out into the
dtrace-utils-devel package.

• libdtrace-ctf 0.7 or above is now required.

• CTF type information can now be provided in an archive located at /lib/modules/$(uname -
r)/kernel/vmlinux.ctfa, cutting startup time when all types referenced are found in the kernel
tree rather than in out-of-tree modules.

New features:

• A new llquantize() aggregation, providing log/linear results. Syntax: llquantize(expression,
log base, lower exponent, upper exponent, step, [increment])

• The tracemem() action has gained a third argument, the number of bytes to trace: unlike
the second argument, which must be a constant, the third argument can be an arbitrary D
expression, which can be used to limit a larger second argument to a suitable value. This
brings it into parity with tracemem() on Solaris.

Chapter 4
0.6.2 (Sep 12th, 2017)

4-23



• The lockstat provider is implemented.

Bugfixes:

• dtrace_sync() is drastically faster: setup and teardown of large numbers of probes without
latency problems and watchdog timer firings is now much more practical.

• The error message given when D argument counts were wrong was itself often wrong or
confusing.

• Fixed a segfault at shutdown time if grabbed processes die at precisely the wrong time.

• Structure and union members in the kernel with the same name as D keywords can now
be referenced: mostly, this means you can get at members named 'self'.

• lquantize() no longer truncates its value to 32 bits.

• dtrace_update() now merges module address ranges better.

• Fix some places where sleeping inside RCU read critical sections or atomic context could
happen (module provide, profile/tick providers, and more general probe and state setup/
teardown code).

• After one release without it, the walltimestamp variable reports useful values again.

• One place where failure to allocate memory (for ECBs) could crash the kernel has been
fixed.

Build-time:

• A new 'make ctf' target in the kernel tree, for generating the vmlinux.ctfa archive mentioned
above: it is no longer linked into in-tree modules. The old CONFIG_DT_DISABLE_CTF
option is thus removed, as is the ctf.ko module.

• You can no longer build CTF as root.

• Kernel CTF type generation now understands the DWARF generated by GCC 6; one more
problem with representation of bitfields is fixed; and one sort of painfully manually-
maintained type-related blocklist is now automated away.

• Some unused variable warnings in the io provider are squashed.

0.6.1 (Aug 7th, 2017)
Licensing changes:

• Userspace is now licensed under the Universal Permissive License (UPL) v1.0. The kernel
module is now GPLv2, and is shipped in the same package as other in-tree kernel
modules.

/usr/lib64/dtrace/load_dtrace_modules no longer tries to yum install anything (but will still
modprobe modules listed in /etc/dtrace-modules).

New features:

• A new link_ntop() subroutine is provided, which is like inet_ntop() except it returns a
human-readable string describing the link-layer address. Ethernet and InfiniBand are
currently supported.

• A default set of modules is now provided in /etc/dtrace-modules. The file was supported
since 0.4.5, but no /etc/dtrace-modules was shipped by default.

• The TCP and UDP providers are implemented, with associated translators.

Chapter 4
0.6.1 (Aug 7th, 2017)

4-24



• The IO provider has been completely rewritten and is dramatically improved, with support
for most local filesystems and explicit support for XFS and NFS.

Bugfixes:

• Do not require sdt.ko to be loaded before allowing the use of the 'cpu' variable.

• Passing an object file through dtrace -G no longer corrupts it on SPARC64, echoing a
similar bugfix made to x86 long ago.

• Improve tracking of process state on SPARC64 a bit.

• Bitfields in kernel types are now better-supported, though some bitfields still do not work,
notably those crossing machine word boundaries.

• dtrace_print_lquantize() no longer normalizes the name of the lowest bucket, only the
bucket contents (as intended).

• jstack() was fetching data from the wrong offset, leading to garbage output at the start of
the stack dump.

• Reading of unaligned data from high addresses in traced processes was failing. In practice
only SPARC has any data at addresses high enough to cause this, and most of the
accesses done are aligned: but the machinery that adjusts to changes in glibc's internal
data structures was broken, leading to failures to look up symbols after certain glibc
upgrades.

• dtrace -C and -G now search for cpp and ld along the PATH rather than defaulting
to /usr/bin/cpp and /usr/bin/ld, fixing failures with compilers in non-default locations, like the
Software Collections devtoolset packages.

• dtrace-utils-devel now requires elfutils-libelf-devel. (This dependency was always present
in practice but was mistakenly omitted until now.)

0.6.0 (Apr 3rd, 2017)
Kernel release:

4.1.12-97.el6uek

New features:

• Function boundary tracing (FBT) is supported for entry probes to most functions in the core
kernel. The current implementation does not support retrieval of function arguments or
return probes (except for some limited support on x86_64). These features are currently
under development.

• The ip provider is implemented, supporting ip:::send, ip:::receive, ip:::drop-in and ip:::drop-
out, with parameters compatible with other implementations and appropriate translators.
IPv4 and IPv6 are both supported.

• Userspace tracepoints (USDT) now work on SPARC for both 64- and 32-bit processes.

• The types and translators used by SDT probes are now acquired from the
DTRACE_PROBE macros in the kernel source. New probe argument types and
translations are picked up automatically without needing to change the module at all. perf-
event probe argument types are acquired in the same way.

• The DTRACE_PROBEn() macros used for SDT probes have been supplanted by a new
DTRACE_PROBE() macro which works exactly the same except that you don't need to
count the arguments any more and misuses (args with no types, etc) are diagnosed even
when CONFIG_DTRACE is disabled. Much the same has been done for USDT, except

Chapter 4
0.6.0 (Apr 3rd, 2017)

4-25



that the old numbered USDT macros remain available for code that must be compiled with
compilers that don't support __VA_ARGS__ comma elision (such as GCC when in c89/
strict-ANSI mode). This involves a new, installed, internal header, /usr/include/sys/
sdt_internal.h.

• is-enabled probes are now supported for SDT: these are expressions which always return
false unless the specified probe is enabled, generally used directly in if statements, and
can be used to suppress collection of expensive data only needed for probes until the
probes that use them are enabled:

if (DTRACE_PROBE_ENABLED(probename)) /* expensive stuff */

Per-provider wrappers for DTRACE_PROBE_ENABLED() can be used, as with
DTRACE_PROBE() itself.

• dtrace consumers (including dtrace(1)) can now grab themselves via -p, though symbol
resolution is degraded when they do so because they cannot stop themselves. (Previously,
such grabs were suppressed but the code to do so was buggy and caused dtrace not to
terminate if dtrace was asked to do a self-grab in conjunction with a -c of some other
process, even once the other process had terminated.)

• D translators for the ip provider are now available.

Bugfixes:

• Due to a logic error in preemption handling, it was possible that code was being executed
under the assumption that preemption was disabled when in fact it was not.

• Probe processing (probe context) is not re-entrant, yet probes firing as a result of
processing another probe would cause re-entry into the processing core, with often horrible
effects. The processing core has been modified to block any re-entry attempt except for
ERROR probe processing. That is a deliberate (and acceptable) exception in the DTrace
design.

• The fast path implementation for obtaining the value of the D 'caller' variable for sparc64
has been corrected.

• The implementation of the D 'stack' action has been made more robust, making sure that
memory access faults are not fatal.

• The implementation of the D 'ustack' action has been reworked completely to improve
stability and accuracy.

• The number of stack frames to skip has been adjusted to changes in the implementation of
various providers, ensuring that DTrace related frames are skipped as they should. This
makes the D 'stack' action and the D 'caller' variable values correct.

• The implementation of the D 'stackdepth' variable could cause memory writes beyond the
end of the DTrace probe scratch buffer.

• Numerous dtrace -c/-p and USDT fixes on SPARC systems, with symptoms varying from a
hanging dtrace and child process to a dtrace that runs out of file descriptors.

• Fix memory and fd leaks when a process monitored with -c or -p exec()s frequently.

Changes to user-visible internals:

• DTrace now uses /proc/$pid/map_files, where available.

• The implementation of the D 'ustack' action has been moved into the kernel proper. This
change was motivated by the need to access page table structures directly using a lock-
free mechanism.

Chapter 4
0.6.0 (Apr 3rd, 2017)

4-26



• Probe processing will be bypassed when the system is entering panic mode, This ensures
that DTrace will not cause panic related output to be disrupted.

• dtrace -S now dumps the offset of DIF as well as the instruction counter, allowing you to
more easily match up DIF disassembly with errors from the kernel.

• Predicate DIF is disassembled in dtrace -S output.

0.5.4 (Nov 8th, 2016)
Workarounds:

• Work around a bug in elfutils causing massive corruption of object files when dtrace -G is
used.

0.5.3 (May 25th, 2016)
Kernel release:

4.1.12-43.el6uek

New features:

• It is now possible to have perf-events presented as DTrace SDT probes. This feature is
turned on by default in the kernel. The probes will appear with the same names as the
perf-events and are grouped under the new 'perf' SDT provider.

In its current implementation, the perf-events DTrace probes do not offer argument type
information as is seen with standard DTrace SDT probes.

Bugfixes:

• On sparc64, it was possible to crash the system by unloading and reloading the sdt
DTrace multi-provider module due to the handling of memory that is set aside for SDT
probe trampolines. This bug has been fixed.

Crash fixes:

• When dtrace(1) exited at the same instant as a process it had grabbed (e.g. for ustack())
terminated, it could deadlock or crash with an assertion failure or a segmentation fault.

0.5.2 (Feb 3rd, 2016)
Kernel release:

4.1.12-33.el6uek

Crash fixes:

• Programs containing USDT probes can crash at startup or dlopen() time if shared libraries
are mapped into the top half of the address space. This never happens on x86-64 but is
common on SPARC64: dtrace -G should be rerun on programs on such platforms that
contain USDT probes, to link in the fixed ELF constructor.

Chapter 4
0.5.4 (Nov 8th, 2016)

4-27



Performance improvements:

• dtrace(1) no longer wastes time in a CPU-heavy busywaiting loop: previously, the sleeping
code was mistakenly picking a time in the past to sleep to roughly half the time

Bugfixes:

• dtrace -c and -p now work on SPARC64.

• When both entry and return probes were enabled for a system call, upon disabling the first,
the function pointer in the system call table got reset to its default value even though the
2nd probe might still be active. This could cause race conditions in the state of the system
call probing.

• Access to the SPARC64 R_L7 register was consistently failing due to an off-by-one bug.

• It was possible to read past the beginning of the stack for a user process. The mechanism
for reading stack slots also got updated to increase efficiency, consistency and reliability
across architectures.

• While reading the stack of a userspace process, the stack bias was not being applied for
architectures that need it, causing an abundance of essentially invalid values to pollute the
result.

0.5.1 (Nov 17th, 2015)
Kernel release:

4.1.12-24.el6uek

Bugfixes:

• When copyout() or copyoutstr() is used in a D script, safety checks are now enforced to
protect against unprivileged memory accesses.

• The DTrace modules package no longer prevents automated kernel RPM removal when
the install limit is reached.

• It is now possible to access the envp and argv arrays in the psinfo for a task using
copyin(). This is the convention across DTrace-capable systems.

Performance improvements:

• dtrace(1) and libdtrace(1) startup speed is improved, both by avoiding a filesystem walk by
using the modules.order file to locate available kernel modules, and by avoiding loading all
kernel modules to resolve possible types when unqualified probe names that cannot
possibly be C identifiers are seen (like 'tick-1sec'). When the disk cache is cold these
changes speed up startup by on the order of 2x.

Changes to user-visible internals:

• The DTRACE_DEBUG debugging option could intermingle debugging output in limited
ways when multiple threads were emitting debugging at once.

Chapter 4
0.5.1 (Nov 17th, 2015)

4-28



0.5.0 (Aug 10th, 2015)
Kernel release:

4.1.4-4.el6uek

New architectures:

• Linux on SPARC64 is supported with the following providers: dtrace, profile, syscall, and
SDT. Userspace tracing doesn't work yet.

• The uid / gid handling has been updated to accommodate namespace support at the
kernel level (kuid and kgid). All uid / gid values reported by D subroutines (or obtained from
structures) are evaluated based on the initial user namespace.

New options:

• -xuseruid: On non-systemd systems (such as OL6), specify the user ID of the first non-
system user. (The default will normally be appropriate.) Processes with uids below this,
and which appear to truly be daemons, are only ptrace()d if explicitly specified via dtrace -p
or -c.

• -xsysslice: On systemd systems (such as OL7), specify the name of the system slice. (The
default will almost always be appropriate.) Processes in this slice or the root slice are
considered crucial system daemons and only ptrace()d if explicitly specified, as above.

The systemd/non-systemd determination is made dynamically, so you can switch init
systems freely and everything should still work.

Changes to user-visible internals:

• Translator support for the UEK4 4.1 kernel.

• Accessing kernel memory under NOFAULT protection now implies NOPF (no page fault)
as well. Previously, NOPF was an option that could be set in addition to NOFAULT.

• Debugging output has been improved (to be enabled at compile time).

• The datatype formerly known as sdt_instr_t has been renamed asm_instr_t. The rationale
behind this change is that it will be used in code beyond the SDT provider and therefore a
more generic name is appropriate.

Bugfixes:

• Symbol resolution in non-ptraceable processes is improved.

• dtrace -p with an invalid PID now produces a sensible error message.

0.4.6 (Jun 30th, 2015)
New dependencies:

• dtrace-utils-devel now always pulls in the corresponding version of dtrace-utils, rather than
being satisfied with whatever version is installed. [Introduced in DTrace 0.3.0.]

• The DTrace kernel header package was renamed dtrace-modules-shared-headers in
dtrace-modules 0.4.4; dtrace-utils now follows this renaming.

Chapter 4
0.5.0 (Aug 10th, 2015)

4-29



New options:

• dtrace -vV now reports information on the released version of dtrace, as well as the
internal version-control ID of dtrace(1) and libdtrace(1). (The last two should always be the
same unless the installation is faulty.)

Bugfixes:

• Processes that receive SIGTRAP in normal operation now work even when being dtraced
for a ustack(), etc. Previously, the SIGTRAP would be ignored. [Introduced -- intentionally
-- in DTrace 0.4.5, though this case would have misbehaved in other ways since 0.4.0.]

• DTrace no longer loses track of processes that exec() while DTrace is looking at their
dynamic linker state.

• DTrace no longer leaves breakpoints lying around in fork()ed processes, but properly
detaches from them and removes its breakpoints.

• DTrace no longer considers that it knows the state of the symbol table of processes it has
since stopped monitoring.

• DTrace no longer crashes multithreaded processes that do dlopen() / dlclose(). [All
introduced in DTrace 0.4.0.]

Library interface changes:

• Including <dtrace.h> used to fail because of the absence of a Solaris-specific header we
did not ship. That header is no longer called for.

Changes to user-visible internals:

• DTrace now loads D libraries (with translators, etc) from directories with a name that
depends upon the running kernel, so can support multiple kernels with the same
userspace package.

Known problems:

• Multithreaded processes under u{stack,sym,addr,mod}() which do dlopen() in threads other
than the first may not have accurate symbol resolution for symbols introduced by such
dlopen()s.

0.4.5 (Jun 17th, 2015)
Kernel release:

3.8.13-87.el6uek

New features:

• Provider modules are now automatically loaded from /etc/dtrace-modules when DTrace
initializes for the first time, at the same time as dtrace.ko. (Providers that do not come from
the dtrace-modules package are not automatically 'yum install'ed.)

• It is now possible to use USDT probes in 32-bit applications on 64-bit hosts.

Chapter 4
0.4.5 (Jun 17th, 2015)

4-30



Bugfixes:

• Fixed a (minor) memory leak problem with the help tracing facility in DTrace. Upon loading
the dtrace.ko module, a buffer (by default 64K) was being allocated, and it was never
released.

• Stack backtraces are more accurate as a result of various fixes to adjust the number of
frames to skip for specific probes.

• Datatypes have been adjusted to be more carefully specified after a detailed audit in
preparation for supporting architectures other than x86_64.

• The stack depth was being determined by requesting a backtrace to be written into a
temporary buffer that was being allocated (vmalloc), which posed significant problems
when probes were executing in a context that does not support memory allocations. The
buffer is now obtained from the scratch area of memory that DTrace provides for probe
processing.

• It was possible to cause a system crash by passing an invalid pointer to d_path(). Due to
its implementation, it is not possible to depend on safe memory accesses to avoid this.
Instead, the pointer passed as argument must be validated prior to calling d_path() in the
kernel.

• Fix intermittent dtrace crash on failure of initial grabs or creations of processes (via dtrace -
p or -c, or via ustack(), usym(), uaddr(), or umod()).

• Fix dtrace -S DIF subr names. [Introduced in DTrace 0.4.0.]

• DTrace can now reliably monitor processes that undergo exec() and processes that are hit
by stopping signals and later resumed. (Previously, it would sometimes lose track of the
victim process, sometimes kill it with a SIGTRAP, and sometimes crash itself.) Numerous
other subtle bugs and deadlocks in this area have been fixed as a side-effect.

• Fix a sign-extension bug in breakpoint-instruction poking which could cause the monitored
process to crash. [Introduced in DTrace 0.4.0.]

• DTrace is now more resilient against changes to glibc: many places where non-ABI-
guaranteed internals of glibc are relied upon now dynamically search for the correct field
offsets, so are resilient against new fields appearing in glibc's internal structures, and
against fields changing size.

Library interface changes:

• The dtrace_proc_*() functions have changed the type they take (it is now a small structure
passed by value). See INCOMPATIBILITIES.

There are still no binary-compatibility guarantees for libdtrace consumers.

Changes to user-visible internals:

• The code has been restructured to facilitate supporting architectures other than x86_64 in
future releases.

• The d_path() D subroutine requires its argument to be a pointer to a path struct that
corresponds to a file that is known to the current task (see bugfixes below).

Known problems:

• Processes under u{stack,sym,addr,mod}() cannot receive SIGTRAP.

• Multithreaded processes under u{stack,sym,addr,mod}() which do dlopen() in threads other
than the first may crash.

Chapter 4
0.4.5 (Jun 17th, 2015)

4-31



0.4.4 (Mar 12th, 2015)
Kernel release:

3.8.13-69.el6uek

New options:

• -xcppargs: Additional arguments to pass to the preprocessor when run over D scripts by
DTrace.

Bugfixes:

• The DOF ELF object generated by dtrace -G no longer requires an executable stack.

• Renamed the dtrace-modules-headers package to dtrace-modules-shared-headers to
work around problems in Yum where a symbol has had both versioned and unversioned
provides over time.

0.4.3 (May 1st, 2014)
Kernel release:

3.8.13-33.el6uek

New features:

• Timer based profile-* probes (profile provider). These probes use the omni-present cyclic
support in the UEK3 kernel (3.8.13-32 and later) to fire probes at a specific frequency/
interval on every active CPU.

Bugfixes:

• Several memory-allocation, underrun and overrun bugs in process handling were fixed.
With sufficient ingenuity these may be exploitable by local users who can craft and run
unusual ELF executables and arrange for dtrace to attach to them.

• The pid and ppid variables were being reported based on the kernel task PID, which is not
the same as the userspace concept of a PID (for threaded applications). We now pass
(more correctly) the thread group id (tgid).

• Since userspace doesn't know about thread kernel level) pids, we are now also passing
the tgid in the result of ustack, usym, etc... We pass the tgid in the first slot, and the
(kernel) pid in the second slot.

• Major reworking of the dtrace_getufpstack() implementation to handle locking, stack
detection, and potential page fault while accessing the stack of a task.

Known problems:

• As a result of earlier code changes to ensure that all memory allocation requests are
checked for failures, the test for auto-resize behaviour of the principal buffer allocations
results in the dtrace utility aborting processing rather than continuing operation with the
reduced buffer size. This is overall a non-harmful regression that will be addressed in a
future release.

Chapter 4
0.4.4 (Mar 12th, 2015)

4-32



0.4.2 (Dec 20th, 2013)
Kernel release:

3.8.13-22.el6uek

New features:

• SDT probe points in kernel modules are now supported.

• The 'vtimestamp' D variable has been implemented.

Bugfixes:

• Kill -9'ing a running dtrace will no longer leave breakpoints outstanding in processes with
no controlling terminal that were grabbed as a side effect of ustack(), usym(), uaddr() or
umod); as a side effect, symbol resolution will be less accurate for such processes.
Grabbing a process with no controlling terminal via dtrace -p restores full symbol resolution
accuracy for these processes, at the cost of dropping breakpoints in them again.
Processes with a controlling terminal are still treated as in prior releases.

• ustack(), usym(), uaddr() and umod() of multithreaded processes no longer crashes the
system, oopses the kernel, hangs the process being probed, crashes dtrace(1) itself, or
runs dtrace or the system as a whole out of filehandles.

• Interrupting dtrace with a SIGINT while monitored processes are dying simultaneously now
consistently stops it rather than hanging forever.

• dtrace's symbol-resolution paths are armoured against various problems which could occur
when processes died while lookups were underway.

• pid and ppid are now correctly derived for multithreaded processes, pointing to the POSIX
pid and parent respectively rather than the thread and thread group leader.

• Resolving kernel symbols located at the start of modules will no longer cause dtrace
userspace to dereference uninitialized memory as a pointer.

0.4.1 (Nov 6th, 2013)
Kernel release:

3.8.13-16.2.1.el6uek

New features:

• DTrace now automatically modprobes for dtrace.ko if needed, and yum installs it if it is not
found on the system. Provider modules are not automatically modprobed, but running (for
example) dtrace -l is now a good way to make sure that the modules are present on the
system so you can modprobe them.

• It is no longer permissible to have non-unique provider names within the context of a
userspace process. I.e. it is not permissible for the main executable and a loaded shared
library, or two loaded shared libraries, to list the same provider name in their DOF sections.

• A new cyclic implementation has been included in the UEK3 kernel, replacing the more
error prone former version. The modules code has been updated to use that new
implementation.

Chapter 4
0.4.2 (Dec 20th, 2013)

4-33



• New development tools showUSDT (for dumping of DOF sections) and ctf_module_dump
(for dumping of CTF in kernel modules). (The former tool is an example only, and is
installed in the documentation directory.)

Bugfixes:

• A lexer bug was fixed which caused spurious errors if D scripts contained a pragma or
comment at intervals of 8192 characters, and prevented the use of scripts >16KiB entirely.
[Introduced in the original Linux port]

• A variety of memory leaks and uninitialized memory reads are fixed.

• A bug whereby breakpoints could be left outstanding in a process if dtrace was interrupted
with an ordinary SIGINT at just the wrong instant is fixed. [Introduced in DTrace 0.4.0.]

• The visibility of .SUNW_dof sections was wrong. [Introduced in DTrace 0.4.0.]

• Fix devinfo_t's dev_statname and dev_pathname for cases where the device does not
have partitions. [Introduced in DTrace 0.4.0.]

• drti.o, which contributes a constructor to programs and shared libraries that contain DOF,
now has lower overhead when DTrace is not running, emits its errors to stdout, not stderr,
and opens its files with O_CLOEXEC. [Introduced in DTrace 0.4.0.]

• Lock ordering problems that were inherited from the original code are fixed.

• Userspace stack memory accesses are now performed in a safe manner.

• A race condition between speculative tracing buffer cleaning and destroying consumer
state has been resolved.

• A memory leak related to consumer state has been fixed.

• A provider reference counter calculation problem was resolved.

• The 'errno' D variable now holds the correct value during syscall:::return probe action
execution, i.e. 0 if the syscall completed without an error, and a valid error code if the
syscall failed.

0.4.0 (Sep 20th, 2013)
Kernel release:

3.8.13-16.el6uek

New features:

• Support for meta-providers, such as fasttrap (used for userspace tracing). A meta-provider
implements a framework to instantiate providers dynamically (on demand).

• Userspace Statically Defined Tracing (USDT) provides support for SDT-alike probes in
userspace executable and libraries. Two types of probes are available: regular SDT-alike
probes, and is-enabled probes. A new header file (sys/sdt.h) is installed in support of
USDT.

• The fasttrap provider has been implemented, although it is currently only supporting USDT
probes.

• Symbol lookup now works: stack() and ustack() now print symbols, as does &. ustack() can
look up symbols in libraries loaded with dlopen() and dlmopen() as well as via
DT_NEEDED. Symbol lookup of global symbols in userspace processes respects symbol
interposition and all other symbol-ordering trickery. Some of the machinery involved in this
only works with programs running against specific versions of the GNU C Library. (It will

Chapter 4
0.4.0 (Sep 20th, 2013)

4-34



always work with the version of glibc shipped with OEL, and falls back to a simpler
approach which does not support symbol interposition or dlmopen() if it appears an
incompatible glibc is in use).

This depends on new machinery in the kernel, notably waitfd()s and
PTRACE_GETMAPFD, so will not work with earlier DTrace kernels.

• -xevaltime={preinit, postinit, main} now work, with a few caveats:

– postinit (the default) is equivalent to main.

– On statically linked binaries, preinit is equivalent to exec, and may not skip ld.so
initialization (which can happen after main() on such binaries).

– On stripped, statically linked binaries, postinit and main are equivalent to preinit,
because we cannot look up the 'main' symbol when there is no symbol table.

• DTrace options can now be set from environment variables named DTRACE_OPT_*.
Example:

export DTRACE_OPT_INCDIR=/usr/lib64/dtrace:/usr/include/sys

Changes to user-visible internals:

• The ELF section in which CTF data is stored has changed from .dtrace_ctf to .ctf.

• The storage representation of internal kernel symbols is improved, saving DTrace memory
usage at startup by a megabyte or so.

• The libdtrace public API header now names its arguments. A few other libdtrace functions
have changed prototype: see INCOMPATIBILITIES.

• Two undocumented libproc environment variables from Solaris are removed, because the
code whose behaviour they adjusted no longer exists: _LIBPROC_INCORE_ELF and
_LIBPROC_NO_QSORT.

• New low-overhead debugging machinery. Exporting DTRACE_DEBUG=signal in the
environment will emit debugging output only when DTrace is hit by a SIGUSR1, avoiding
all printf() locking overhead until then. This uses a ring buffer to stop debugging output, by
default 100Mb in size, changeable via the DTRACE_DEBUG_BUF_SIZE variable (which
takes a size in megabytes).

• What was previously defined as a meta-provider (see 0.2.0 below) is in fact better defined
as a multi-provider, i.e. a provider framework that handles multiple providers that
essentially share (the majority of) a single implementation, such as SDT where probes are
grouped together into providers even though they are all provided by the same provider
(sdt).

• The DTrace header files in the kernel proper, the kernel modules, and the userspace utility
have been restructured to avoid duplication and to offer a more consistent and clean
design. This also offers better support for custom consumers or other DTrace-related
utilities.

• The systrace provider has been updated to account for changes in the Linux kernel
(between 2.6.39 and 3.8.13).

Bugfixes:

• It is now possible to get the correct value for the ERR registers.

• The ustack() and jstack() actions were not passing the PID correctly as the first element in
the result array.

• The ustack() action implementation has been replaced.

Chapter 4
0.4.0 (Sep 20th, 2013)

4-35



• Several obscure locking problems have been resolved.

• Correct handling of arg5 through arg9.

• The -h and -G command-line options work.

• Negative values passed to DTrace options that take only positive integers are correctly
diagnosed as errors again.

Known problems:

• Presently, kill -9'ing a running dtrace can leave breakpoints outstanding in other processes,
which may sooner or later kill them. This will be fixed in due course (by avoiding the use of
breakpoints in more cases).

0.3.0 (Sep 14th, 2012)
Kernel release:

2.6.39-201.0.1.el6uek

New features:

• CTF support. This exposes all kernel types declared at the global scope to DTrace scripts
(even those private to single files). All global kernel variables not declared static are also
available to the ` operator as external variables.

The module for kernel-wide symbols is known as vmlinux, but genunix can still be used as
a name for it to aid script portability.

Kernel modules from a compatible kernel must be visible to DTrace for this feature to work,
as must the kernel-provided file /proc/kallmodsyms. DTrace will work with no kernel
modules, with no visible /proc, or with a kernel whose modules do not contain type
information, but no kernel types or variables will be available. (See -xprocfspath and -
xmodpath below.)

• The curcpu builtin variable has been implemented as a DIF builtin variable on Linux,
providing a pointer to the CPU info structure for the CPU that is currently active.

• A new DIF subroutine has been implemented: d_path(). This subroutine takes a pointer to
a path structure as argument, and returns a string representing the full pathname for that
path.

• The raise() action has been implemented. This action allows a D script to raise a signal in
the current task.

• The io provider probes has been implemented. It provides the following SDT probes: start,
wait-start, wait-done, and done.

• The proc provider has been implemented. It provides the following SDT probes: create,
exec, exec-failure, exit, lwp-create, lwp-exit, lwp-start, signal-clear, signal-discard, signal-
handle, signal-send, start.

• The sched provider has been implemented. It provides the following SDT probes: change-
pri, dequeue, enqueue, off-cpu, on-cpu, preempt, remain-cpu, sleep, surrender, tick,
wakeup.

• Argument mappings have been provided for io, proc, and sched provider probes. This
information is used by userspace consumers.

Chapter 4
0.3.0 (Sep 14th, 2012)

4-36



New dependencies:

• DTrace now depends on libdtrace-ctf, a modified, GPLed port of the Solaris libctf type-
storage library. Despite its name it cannot read Solaris CTF files: the file formats are
incompatible.

New options:

• -xprocfspath: if set, specifies the path to /proc. May be useful in chroots, though glibc and
other things may break if /proc is moved to another location.

• -xmodpath: if set, specifies the path to kernel modules, rather than looking in /lib/modules/$
(uname -r).

Options removed:

• The undocumented -xlinkmode=primary option is removed: it never worked in DTrace for
Linux in any case.

Bugfixes:

• The -c and -p command-line options work.

• Lexer bugs causing aggressive and unnecessary reading of modules are fixed. As a result,
when used with typo-free scripts, DTrace now starts much faster than ever it did on Solaris
(often taking half the time or less). You may find a few error messages have changed error
text (though not error tag) as a result of this bugfix and the following one.

• The SDT provider now describes its argument types to DTrace userspace.

• The types of many DTrace actions and variables are fixed to correspond to the Linux
reality.

• The set of available error numbers in errno.d is more complete.

• DTrace libraries are installed to /usr/lib64 now, not /usr/lib.

• Users of dtrace -C can now include <sys/dtrace.h> without incident.

• Various DIF builtin variables that were providing a hardcoded value based on the init task
whenever a probe was executing in interrupt context are now providing the actual value
from the current task. In Linux, there is always a valid task structure available as 'current'.

• The numbering of the registers for the x86_64 architecture has been updated to match the
order of registers pushed onto the stack.

• It is now possible to get the correct value for the DS, ES, FS, and GS registers.

• SDT probes are now correctly cleaned up when the SDT meta-provider module is
unloaded from the system.

• The rw_read_held() DIF subroutine will now verify whether it can safely access the passed
in argument based on the correct argument datatype.

Changes to user-visible internals:

• A new file /proc/kallmodsyms now exists, like /proc/kallsyms but giving object sizes and
listing the module each kernel object would be part of were it built as a module, even if it is
currently built in.

• A new module dtrace_ctf.ko is pulled in whenever dtrace.ko is loaded. It is a container for
type information.

• The undocumented -B buffer-inspection command-line option no longer crashes DTrace.

Chapter 4
0.3.0 (Sep 14th, 2012)

4-37



• The invalid operand trap logic previously provided to support SDT probes has been made
more generic to support any probes that wish to utilize this facility.

• The DTrace core module now depends on the core kernel CTF data-module, to ensure
that when DTrace modules are loaded on the system, CTF data for the kernel will be
available also.

0.2.5 (Mar 19th, 2012)
Userspace release only.

New features:

• libdtrace is now a shared library, just as on OpenSolaris, with a very similar API. No API or
ABI compatibility guarantees are made regarding this library, at present.

0.2.4 (Feb 15th, 2012)
Kernel release:

2.6.39-101.0.1.el6uek

Bugfixes:

• Provider modules now use a reference counter to determine whether any of their probes
are currently enabled. Whenever the reference counter has a value greater than zero, the
provider module is referenced to ensure that it cannot be unloaded. Once the counter
drops down to zero, the reference on the module is released. This prevents providers from
being unloaded while some of their probes are still in use (which would typically lead to a
kernel panic).

0.2.3 (Feb 10th, 2012)
Kernel release:

2.6.39-101.0.1.el6uek

Internal changes:

• The DTrace core has been updated to support 28 DTrace option settings, to account for
the 'quietresize' option that was added to the userspace dtrace consumer utility.

Bugfixes:

• Various assertions in the DTrace core implementation incorrectly used mutex_is_locked()
where the test was meant to determine whether the current task holds the mutex. This has
been corrected.

0.2.0 (Jan 25th, 2012)
Kernel release:

2.6.39-101.0.1.el6uek

Chapter 4
0.2.5 (Mar 19th, 2012)

4-38



This release brings DTrace for Linux to the 2.6.39 kernel, as an upgrade from the previous
release based on 2.6.32.

New features:

• The DTrace core and provider API now support meta-providers, a framework that provides
multiple providers using a common implementation.

• The Statically Defined Tracing (SDT) provider is implemented, providing in-kernel static
probes. Some of the proc provider is implemented using this facility.

Bugfixes:

• Syscall tracing of stub-based syscalls (such as fork, clone, exit, and sigreturn) now works.

• Invalid memory accesses inside D scripts no longer cause oopses or panics.

• Memory exhaustion inside D scripts no longer emits spurious oopses.

• Several crash fixes.

• Fixes to arithmetic inside aggregations, fixing quantize().

• Improvements to the installed headers.

Internal changes:

• The minimal cyclic implementation has been removed from the DTrace modules because it
is now provided by an equivalent GPL implementation in the core kernel.

• CPU core information is now maintained at the core kernel level.

• Kernel and module code can now perform safe memory accesses by setting a flag in the
CPU core information structure. If a memory access results in a Page Fault or General
Protection Fault, the failure will be noted as a CPU fault, and execution will continue rather
than causing a kernel panic.

• Functionality that depends on walking the stack (determining stack depth, or collecting a
backtrace) is now provided by a GPL implementation in the core kernel.

• In the interest of consistency, a pseudo kernel module structure is created at the core
kernel level, representing the main kernel image. This module structure makes it possible
to represent all kernel-level objects equally. This structure provides a list of SDT probe
locations in the core kernel.

0.1.0 (Oct 20th, 2011)
First release.

Working components:

• the entire D language, with the exception of parts that depend on symbol lookup or CTF

• The vast majority of the DTrace core functionality has been implemented, providing a
nearly complete DIF/DOF implementation (including predicates, aggregates, and
speculative tracing support), provider API, ioctl interface for userspace consumers, and
direct probe invocation.

• BEGIN, END, and ERROR probes (dtrace provider).

• Syscall entry and return probes (systrace provider), with the exception of the clone probe,
which is disabled

• the profile provider (timer-based tick-* probes, no arbitrary-precision profile timers).

Chapter 4
0.1.0 (Oct 20th, 2011)

4-39



• kernel stack tracebacks, but ustack() prints addresses only, no symbols

Major components not yet present include all the other providers, including sdt usdt.

Chapter 4
0.1.0 (Oct 20th, 2011)

4-40


	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About DTrace
	2 Install DTrace
	Install DTrace on Oracle Linux 9
	Install DTrace on Oracle Linux 8
	Install DTrace on Oracle Linux 7
	Verify the DTrace Installation

	3 Example DTrace Usage
	4 DTrace Changelog
	2.0.1-1 (May 6th, 2024)
	2.0.0-1.14 (Mar 5th, 2024)
	2.0.0-1.13.1 (Jun 7th, 2023)
	2.0.0-1.13 (May 26th, 2023)
	2.0.0-1.12 (Feb 27th, 2023)
	2.0.0-1.11 (Nov 9th, 2022)
	2.0.0-1.10 (Apr 26th, 2022)
	2.0.0-1.9 (Dec 8th, 2021)
	2.0.0-1.8 (Oct 15th, 2021)
	2.0.0-1.7 (Sep 9th, 2021)
	2.0.0-1.6 (Jun 18th, 2021)
	2.0.0-1.5.1 (Apr 12th, 2021)
	2.0.0-1.4 (Dec 9th, 2020)
	2.0.0-1.3 (Oct 2nd, 2020)
	2.0.0-1.2 (Aug 6th, 2020)
	2.0.0-1.0 (Apr 24th, 2020)
	2.0.0 (Mar 10th, 2020)
	1.2.1 (Feb 12th, 2019)
	1.2.0 (Dec 13th, 2018)
	1.1.1 (Oct 25th, 2018)
	1.1.0 (Aug 10th, 2018)
	1.0.4 (Aug 10th, 2018)
	1.0.3 (Jul 24th, 2018)
	1.0.2 (May 10th, 2018)
	1.0.1 (Apr 28th, 2018)
	1.0.0 (Mar 27th, 2018)
	0.6.2 (Sep 12th, 2017)
	0.6.1 (Aug 7th, 2017)
	0.6.0 (Apr 3rd, 2017)
	0.5.4 (Nov 8th, 2016)
	0.5.3 (May 25th, 2016)
	0.5.2 (Feb 3rd, 2016)
	0.5.1 (Nov 17th, 2015)
	0.5.0 (Aug 10th, 2015)
	0.4.6 (Jun 30th, 2015)
	0.4.5 (Jun 17th, 2015)
	0.4.4 (Mar 12th, 2015)
	0.4.3 (May 1st, 2014)
	0.4.2 (Dec 20th, 2013)
	0.4.1 (Nov 6th, 2013)
	0.4.0 (Sep 20th, 2013)
	0.3.0 (Sep 14th, 2012)
	0.2.5 (Mar 19th, 2012)
	0.2.4 (Feb 15th, 2012)
	0.2.3 (Feb 10th, 2012)
	0.2.0 (Jan 25th, 2012)
	0.1.0 (Oct 20th, 2011)


