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Preface

Oracle Linux: Using DTrace for System Tracing describes how to use DTrace, which is a
powerful dynamic tracing tool based on eBPF. Most of the information in this document is
generic and applies to all releases of Oracle Linux from Oracle Linux 8 onward, and for
Unbreakable Enterprise Kernel Release 6 and later.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
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we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.
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1
Get Started With DTrace

Learn how to get started with DTrace, including how to install DTrace on Oracle Linux.

The topics in this section provide guidance on how to perform particular operations with
DTrace and serve as an introduction to installing and using DTrace. By following steps in this
guide, you can get started with DTrace immediately. After you have explored these topics, you
can either review DTrace Concepts to get a better understanding of how DTrace works and
how you can improve the way that you use it, or you can use the various references that are
included to find out more about writing D programs that do what you need them to do.

Install DTrace
The following instructions provide steps to install DTrace on different Oracle Linux releases
and to verify that the installation was successful.

Install DTrace on Oracle Linux 10
1. Enable the yum repository.

If running on an x86 platform, enable the ol10_UEKR8 yum repository for the system.

sudo dnf config-manager --enable ol10_UEKR8

Note:

Oracle releases UEK and DTrace packages in the baseos repository for aarch64
platforms. You don't need to enable any other repositories to access the DTrace
packages for aarch64 platforms.

2. Install DTrace.

Install the dtrace package.

sudo dnf install -y dtrace

Install DTrace on Oracle Linux 9
1. Enable the yum repository.

If running on an x86 platform, enable the ol9_UEKR7 yum repository for the system.

sudo dnf config-manager --enable ol9_UEKR7
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Note:

Oracle releases UEK and DTrace packages in the baseos repository for aarch64
platforms. You don't need to enable any other repositories to access the DTrace
packages for aarch64 platforms.

2. Install DTrace.

Install the dtrace package.

sudo dnf install -y dtrace

Install DTrace on Oracle Linux 8
1. Enable the yum repository.

If running on an x86 platform, enable either the ol8_UEKR6 or ol8_UEKR7 yum repository for
the system.

For example, run:

sudo dnf config-manager --enable ol8_UEKR7

Note:

Oracle releases UEK and DTrace packages in the baseos repository for aarch64
platforms. You don't need to enable any other repositories to access the DTrace
packages for aarch64 platforms.

2. Install DTrace.

Install the dtrace package.

sudo dnf install -y dtrace

Install DTrace on Oracle Linux 7

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and 
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8, Oracle Linux 9, or Oracle Linux 10,
as soon as possible.

1. Enable the ol7_UEKR6 yum repository.

Chapter 1
Install DTrace
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For example, if you have yum-utils installed, run:

sudo yum-config-manager --enable ol7_UEKR6

2. Install DTrace.

Install the dtrace and libdtrace-ctf packages:

sudo yum install -y dtrace libdtrace-ctf

Verify the DTrace Installation
Check that DTrace is installed to the correct location and verify the DTrace version.

1. Confirm DTrace is installed into /usr/sbin/dtrace.

ls -lah /usr/sbin/dtrace

2. Display the DTrace version number.

dtrace -V

The output looks similar to:

dtrace: Oracle D 2.0

List and Enable Probes
DTrace providers publish available probes to DTrace so that you can enable them to perform
functions when they fire. You can use the dtrace command to list all available probes or to
enable a probe.

1. List available probes.

To list all available probes, run:

sudo dtrace -l

Note:

Most uses of DTrace require root privileges. This document assumes that you
run commands with the appropriate privileges. Use the sudo command to
escalate to root user privileges before you run the commands presented in this
document.

The command returns output similar to the following:

DTrace 2.0.0 [Pre-Release with limited functionality]
    ID   PROVIDER            MODULE                          FUNCTION NAME
     1     dtrace                                                     BEGIN
     2     dtrace                                                     END

Chapter 1
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     3     dtrace                                                     ERROR
     4        fbt           vmlinux        __traceiter_initcall_level entry
     5        fbt           vmlinux        __traceiter_initcall_level 
return
     6        fbt           vmlinux        __traceiter_initcall_start entry
     7        fbt           vmlinux        __traceiter_initcall_start 
return
     8        fbt           vmlinux       __traceiter_initcall_finish entry
     9        fbt           vmlinux       __traceiter_initcall_finish 
return
...
144917        sdt               rtc                                   
rtc_set_time
144918        sdt               i2c                                   
i2c_result
144919        sdt               i2c                                   
i2c_reply
144920        sdt               i2c                                   
i2c_read
144921        sdt               i2c                                   
i2c_write
144922        sdt             smbus                                   
smbus_result
144923        sdt             smbus                                   
smbus_reply
144924        sdt             smbus                                   
smbus_read
144925        sdt             smbus                                   
smbus_write
144926        sdt             hwmon                                   
hwmon_attr_show_string
144927        sdt             hwmon                                   
hwmon_attr_store
144928        sdt             hwmon                                   
hwmon_attr_show
144929        sdt           thermal                                   
thermal_zone_trip
144930        sdt           thermal                                   
cdev_update
144931        sdt           thermal                                   
thermal_temperature
144932        sdt            bcache    
...
145763    syscall           vmlinux                            listen entry
145764    syscall           vmlinux                              bind 
return
145765    syscall           vmlinux                              bind entry
145766    syscall           vmlinux                        socketpair 
return
145767    syscall           vmlinux                        socketpair entry
145768    syscall           vmlinux                            socket 
return
145769    syscall           vmlinux                            socket entry

Chapter 1
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Tip:

You can get a unique list of providers available for DTrace by running:

sudo dtrace -l|tail -n +3|awk '{print $2}'|uniq

You can limit the list of probes to a particular provider by using the -P option. You can also
limit to a particular module by using the -m option. For example:

sudo dtrace -l -P sdt
sudo dtrace -l -m thermal

2. Run dtrace -n to enable a named probe using the command line utility.

You can enable any probe matching a name. Although you can specify only the name part
for a probe's full name, using the full name helps to avoid unpredictable behavior:

sudo dtrace -n dtrace:::BEGIN

Output similar to the following is displayed:

dtrace: description 'dtrace:::BEGIN' matched 1 probe
CPU     ID                    FUNCTION:NAME
  2      1                           :BEGIN

The dtrace:::BEGIN probe fires once when you start a new tracing request. Tabulated
output shows the CPU where the probe fired, and the ID, function, and name for the probe.
DTrace continues to run, waiting for other probes to fire. To exit, press Ctrl+C.

3. Enable several probes by chaining them together in a request.

You can construct DTrace requests by using arbitrary numbers of probes and functions.
For example, create a request using two probes by adding the BEGIN and END probes.

Type the following command, and then press Ctrl+C in the shell again, after you see the
line of output for the BEGIN probe:

sudo dtrace -n dtrace:::BEGIN -n dtrace:::END 

The output looks similar to:

dtrace: description 'dtrace:::BEGIN' matched 1 probe
dtrace: description 'dtrace:::END' matched 1 probe
CPU     ID                    FUNCTION:NAME
  0      1                           :BEGIN 
^C
  1      2                             :END

The dtrace:::BEGIN probe fires when the tracing request starts. DTrace waits for further
probes to activate until you press Ctrl+C to exit. The dtrace:::END probe activates once
when tracing completes. The dtrace command reports the probe firing before exiting.

Chapter 1
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4. Enable all probes for a function by using the -f option, or use the -m option to enable all
probes for a module.

You can match and enable probes for functions or for whole modules. For example, to
enable both the entry and return probes for the syscall:vmlinux:socket function, run:

sudo dtrace -f syscall:vmlinux:socket

You can also enable probes for an entire module. For example, to enable all probes for the
sdt:tcp module, run:

sudo dtrace -m sdt:tcp

Create a DTrace Script
Learn how to create a DTrace script to develop understanding of the D Programming
language.

Ensure that DTrace is installed on the system and that you can list and enable probes. See 
Install DTrace and List and Enable Probes.

This tutorial provides successive steps toward developing a DTrace script that you can use on
a system to gather useful information. You can use this tutorial as a framework to create other
scripts for DTrace, in future.

1. In a text editor, create a file named hello.d and write a DTrace clause to fire for the
dtrace:::BEGIN probe.

Enter the following text into the editor:

dtrace:::BEGIN
{
  trace("hello, world");
  exit(0);
}

Save the file.

2. Run the hello.d program by using the dtrace -s command.

sudo dtrace -s hello.d

Output similar to the following is displayed:

dtrace: script 'hello.d' matched 1 probe
CPU     ID                    FUNCTION:NAME
  0      1                           :BEGIN   hello, world    

Note that you didn't have to press Ctrl+C to exit because you specified the exit function
for the BEGIN probe in the program.

3. Open hello.d in the text editor and add an interpreter line to the beginning of the script.

Chapter 1
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Edit the file and add the following line of text to the top of the file:

#!/usr/sbin/dtrace -s

The complete script follows:

#!/usr/sbin/dtrace -s
dtrace:::BEGIN
{
  trace("hello, world");
  exit(0);
}

Save the file.

4. Change the permissions on the hello.d file to make it executable.

Run the chmod command to update the file permissions:

chmod a+rx hello.d

5. Run the new executable script file.

Use the sudo command so that the DTrace script still runs with root privileges so that it
can access all DTrace features:

sudo ./hello.d

Note that by including an interpreter line at the beginning of the program, you can run the
script without even specifying the dtrace command.

6. Change the script to use an external macro variable.

Edit the file to greet a person by name, when you specify a name as an argument to the
script:

#!/usr/sbin/dtrace -s
dtrace:::BEGIN
{
  printf("hello, %s", $$1);
  exit(0);
}

Notice how the trace function is now replaced with the printf() function, which lets you
insert the macro variable $1 into the string by using variable substitution. The $$ syntax is
used when referencing the macro variable, to express it as a string value.

7. Run the script to see how the modification has altered behavior.

Run the script as before, using the command:

sudo ./hello.d

Chapter 1
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An error similar to the following is generated.

dtrace: failed to compile script ./hello.d: line 4: macro argument $$1 is 
not defined

The error is generated because the script now expects you to provide another argument
when you run it. Try to run the script again, this time specifying a name:

sudo ./hello.d bob

The script returns output similar to the following:

dtrace: script './hello.d' matched 1 probe
CPU     ID                    FUNCTION:NAME
  3      1                           :BEGIN hello, bob

8. Change the script to use a pragma statement.

To reduce how verbose the script is and to limit output to only what's functionally returned
by the clause, add a pragma statement to set the runtime quiet option. Edit the script to
add the pragma statement, as follows:

#!/usr/sbin/dtrace -s
 #pragma D option quiet
 dtrace:::BEGIN
 {
   printf("hello, %s", $$1);
   exit(0);
 }

9. Run the script to see how the modification has altered behavior.

Run the script as before, using the command:

sudo ./hello.d sally

The script output is reduced to only what's returned by the printf() function.

10. Change the script to use a predicate to control when to process the clause.

You can use a predicate to control the script so that it only runs when a certain condition is
true. Edit the script to add a predicate line to evaluate whether the string value of the
macro variable is equal to 'bob', as follows:

#!/usr/sbin/dtrace -s
 #pragma D option quiet

 dtrace:::BEGIN
 /$$1=="bob"/
 {
   printf("hello, %s", $$1);
   exit(0);
 }

11. Run the script to see how the modification has altered behavior.

Chapter 1
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Run the script as before, using the command:

sudo ./hello.d sally

The script doesn't exit and you need to press Ctrl+C to force quit the process. This is
because the exit() function is part of the clause that evaluates whether the first argument
of the script is equal to 'bob'. Try running the script again, using bob as the argument.

sudo ./hello.d bob

The script runs as before, illustrating that the predicate is working.

Use Predicates For Control Flow
For runtime safety, one major difference between D and other programming languages such as
C, C++, and the Java programming language is the absence of control-flow constructs such as
if-statements and loops. D program clauses are written as single straight-line statement lists
that trace an optional, fixed amount of data. D does provide the ability to conditionally trace
data and change control flow using logical expressions called predicates. This tutorial shows
how to use predicates to control D programs.

To illustrate predicates at work, you can create a D program that implements a 10-second
countdown timer. When the program runs, it counts down from 10 and then prints a message
and exits. The program uses a variable and predicates to evaluate how much time has passed
and what to print.

1. Design a logical flow for the program.

Consider designing the logical flow for a program before trying to write the program itself.
When the flow is clearly defined, it's possible to transform conditional constructs into
separate clauses and predicates. The logical flow for the program might look as follows:

i = 10
once per second,
  if i is greater than zero
    trace(i--);
  if i is equal to zero
    trace("blastoff!");
    exit(0);

By creating two clauses with the same probe description but different predicates and
functions it's possible to achieve the required logical flow for this program.

2. Write the program code using predicates to decide whether the functions for the specified
probe description are permitted to run or not when the probe fires.

The program source code follows. Copy this code and save it in a file named countdown.d:

dtrace:::BEGIN 
{
  i = 10;
}

profile:::tick-1sec
/i > 0/

Chapter 1
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{
  trace(i--);
}

profile:::tick-1sec
/i == 0/
{
  trace("blastoff!");
  exit(0);
}

3. Run the program.

sudo dtrace -s countdown.d

Output similar to the following is displayed:

dtrace: script 'countdown.d' matched 3 probes
CPU     ID                    FUNCTION:NAME
  0    638                       :tick-1sec        10
  0    638                       :tick-1sec         9
  0    638                       :tick-1sec         8
  0    638                       :tick-1sec         7
  0    638                       :tick-1sec         6
  0    638                       :tick-1sec         5
  0    638                       :tick-1sec         4
  0    638                       :tick-1sec         3
  0    638                       :tick-1sec         2
  0    638                       :tick-1sec         1
  0    638                       :tick-1sec   blastoff!       
#

This tutorial uses the BEGIN probe to initialize a variable integer i to 10 to begin the countdown.
Next, the program uses the tick-1sec probe to implement a timer that fires once every
second. Notice that in countdown.d, the tick-1sec probe description is used in two different
clauses, each with a different predicate and function list. The predicate is a logical expression
surrounded by enclosing slashes // that appears after the probe name and before the braces
{} that surround the clause statement list.

The first predicate tests whether i is greater than zero, indicating that the timer is still running:

profile:::tick-1sec
/i > 0/
{
  trace(i--);
}

The relational operator > means greater than and returns the integer value zero for false and
one for true. If i isn't yet zero, the script traces i and then decrements it by one using the --
operator.

Chapter 1
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The second predicate uses the == operator to return true when i is exactly equal to zero,
indicating that the countdown is complete:

profile:::tick-1sec
/i == 0/
{
  trace("blastoff!");
  exit(0);
}

The second clause uses the trace function on a sequence of characters inside double quotes,
called a string constant, to print a final message when the countdown is complete. The exit
function is then used to end all tracing and to perform any remaining tasks such as consuming
the final data, printing aggregations (as needed), and performing cleanup before returning to
the shell prompt.

Example 1-1    How to use a predicate to monitor system calls for a process ID

You can create a D Program to trace system calls for a process ID, by using a predicate to limit
the default tracing function to match the process ID that you want to trace.

syscall:::entry
/pid == 2860/
{
}

Note that in this example, the built-in variable pid is evaluated to match a particular ID, 2860 in
this example. You could further change this script to take advantage of shell macro variables,
so that it becomes more extensible and can be run for any process ID at runtime. Edit the
script as follows and save it to a file called strace.ds:

#!/usr/sbin/dtrace -s

syscall:::entry
/pid == $1/
{
}

Change the file mode to make it executable:

sudo chmod +x strace.ds

Now you can use this script to monitor all the system calls made by any process on the
system. For example, you could run the script to monitor system calls made by the cron
daemon:

sudo ./strace.ds $(pidof /usr/sbin/crond)

Chapter 1
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2
DTrace Concepts

Explore DTrace at a conceptual level and understand DTrace components and terminology.

The topics in this section are general and can help you to understand what DTrace is and how
it works.

About DTrace
DTrace is a powerful tracing tool that's available in Oracle Linux for use with the Unbreakable
Enterprise Kernel (UEK). DTrace has low overhead and is safe to use on production systems
to analyze what a system is doing in real time.

DTrace lets you examine the behavior of user programs and the OS, to understand how the
system works, to track down performance problems, and to find the causes of aberrant
behavior. DTrace can collect or print stack traces, function arguments, timestamps, and
statistical aggregates by using probes that can be runtime events or source-code locations.

Unlike many tracing tools, DTrace is fully programmable. You can collect data for one event
and store it for use when another event is triggered. You can select what information you want
to gather and how to report it. DTrace programs have a familiar syntax that draws on the C
programming language.

This implementation of DTrace uses existing Linux kernel tracing facilities, such as eBPF,
which didn't exist when DTrace was first ported to Linux. The new implementation removes
DTrace dependencies on specialized kernel patches, but retains syntax compatibility with
earlier implementations of DTrace to deliver a mature tracing tool based on modern
technology. Furthermore, this implementation also maintains functional compatibility with
earlier implementations of DTrace, so that you can perform the same actions using either
version of DTrace.

This implementation is a user space application and is available on:

• Unbreakable Enterprise Kernel 8 (UEK 8) and later kernels on Oracle Linux 10.

• Unbreakable Enterprise Kernel Release 7 (UEK R7) and later kernels on Oracle Linux 9.

• Unbreakable Enterprise Kernel Release 6 (UEK R6) and later kernels on Oracle Linux 8.

DTrace is also available on Unbreakable Enterprise Kernel Release 6 (UEK R6) and later
kernels on Oracle Linux 7, and requires the libdtrace-ctf library to run. The functionality of
the libdtrace-ctf library is integrated into the Oracle Linux GNU tool chain for later Oracle
Linux releases. Oracle Linux 7 is in Extended Support. Migrate applications and data to Oracle
Linux 8, Oracle Linux 9, or Oracle Linux 10, as soon as possible.

DTrace is developed as an open source project available under the Universal Permissive
License (UPL), Version 1.0. You can access source code and more information at https://
github.com/oracle/dtrace-utils.

DTrace Components and Terminology
Learn about the different components and the terms used to describe them within the DTrace
framework.
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DTrace is a framework that dynamically traces data into buffers that are read by the dtrace
command line utility. The dtrace command line utility can run programs that can implement
certain functions by compiling D programs to generate eBPF code that's loaded into the kernel.
In practice, all interaction with DTrace is performed by using the dtrace command line utility.
See Install DTrace for information on how to install the command line utility.

Probes
DTrace works by using probes that identify particular instrumentation in the kernel or within a
user space application, or which can be used to identify interval counters or performance event
counters. Events such as when particular code is run or when a specific counter is
incremented cause a probe to fire and DTrace can perform functions that are bound to the
event in a program or script. For example, a probe can fire when a particular file is opened and
a DTrace program can print information related to the event that can be useful for debugging or
resolving an issue. Equally, at the moment that DTrace starts or ends any tracing activity, the
BEGIN and END probes dedicated to these actions always fire.

You can list all the available probes on a system by typing the following command:

sudo dtrace -l

Output is displayed to show each of the different values that are used to reference a probe
correctly:

   ID   PROVIDER            MODULE                          FUNCTION NAME
    1     dtrace                                                     BEGIN
    2     dtrace                                                     END
    3     dtrace                                                     ERROR
    4    syscall           vmlinux                              read entry
    5    syscall           vmlinux                              read return
    6    syscall           vmlinux                             write entry
    7    syscall           vmlinux                             write return
    ...

See List and Enable Probes for more information on how to list and enable specific probes.

Probes are made available by providers, which group particular kinds of instrumentation
together. If a provider is related to source code, its probes might also include information about
the piece of code that the probe relates to in a module and a function identifier. Therefore, a
probe is identified by a probe description, grouped into four fields:

provider
The name of the DTrace provider that the probe belongs to.

module
If the probe corresponds to a specific program location, the name of the kernel module, library,
or user-space program in which the probe is found. Some probes might be associated with a
module name that isn't tied to a particular source location in cases where they relate to more
abstract tracepoints.

function
If the probe corresponds to a specific program location, the name of the program function in
which the probe is found.
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name
The name that provides some idea of the probe's semantic meaning, such as BEGIN or END.

When referencing a probe, write all four parts of the probe description separated by colons:

provider:module:function:name

Some probes don't have a module or function identifier when they're listed. When providing the
complete probe description for these probes, you must still include the empty fields:

dtrace:::BEGIN

Probes aren't required to have a module and function. The dtrace BEGIN, END and ERROR probes
are good examples of this because these probes don't correspond to any specific instrumented
program function or location. Instead, these probes are used for more abstract concepts, such
as the idea of the end a tracing request. Other probes, such as those made available by the 
Profile Provider or the CPC Provider, also don't include module or function identifiers in their
descriptions.

D Programs
You can bind a set of processing instructions called statements to one or more DTrace probes,
so that when a probe fires, the specified statements are run to perform some required
functionality. The set of enabled probes, the statements, and any conditions that might be
evaluated when the probe fires, can all be collated into a D program.

A program can consist of several probe descriptions that decide which probes can trigger
some functionality within the D program. Probe descriptions are followed by a set of processing
instructions, called a clause, that describes what to do when the selected probe fires.
Conditional expressions, called predicates, can be inserted between the probe descriptions
and the clause to control the conditions under which the actions within the clause are run. For
example, a program might be designed to fire for all system calls and to count these for a
particular application. The program would consist of a probe description for the
syscall:::entry probe, a predicate to limit processing to match either a process ID or the
name of an executable, and a clause that performed the count() function to gather information
about each system call function. The resulting D program might be:

/* Probe descriptions */
syscall:::entry
/* Predicate */
/execname=='date'/
/* Clause */
{
@reads[probefunc]=count();
}

When the script is run it shows each system call that's made by the date command and
provides the count value for each, as follows:

dtrace: description 'syscall:::entry ' matched 344 probes
Wed 22 Feb 11:54:51 GMT 2023

  exit_group                                                        1
  lseek                                                             1
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  mmap                                                              1
  write                                                             1
  openat                                                            2
  read                                                              2
  brk                                                               3
  close                                                             4
  newfstat                                                          4

The program probe description matches all system call functions at the entry point. The
program predicate evaluates a built-in variable, execname, against a string using an operator.
The clause includes an aggregation, @reads, that's used to gather data about the firing probe.
In this case, the aggregation stores a counter that increments every time the probe fires and
the predicate resolves. The counter is implemented by the count() function and stores count
values for each system call probe function. See D Program Syntax Reference for more
information on program structure and syntax.

Aggregations
Aggregations can be used to reduce large bodies of data to smaller, meaningful statistical
metrics. Many common functions that are used to understand a set of data are aggregating
functions. These functions include the following:

• Counting the number of elements in the set.

• Computing the minimum value of the set.

• Computing the maximum value of the set.

• Summing all the elements in the set.

• Creating a histogram of the values in the set, as quantized into certain bins.

Although you could code an application to calculate an aggregation for a set of data, when
many probes are firing concurrently, they can overwrite each other's updates to the
aggregating variable or the calculation can become a serial bottleneck.

DTrace aggregation functions apply to the data as it's traced, so that the dataset doesn't need
to be stored and the aggregation is always available as events occur. In this way, aggregation
functions are more efficient and exact, and avoid overwrites. See Aggregations for more
information.

Speculation
While predicates can be used to filter out uninteresting events, they're only useful if you
already know which events you need to filter. Because DTrace is often used to help debug
particular system behaviors, DTrace includes a set of speculation functions that can be used to
trace data speculatively.

Speculation is used to trace quantities temporarily until particular information is known, at
which case the data can be discarded or committed. By performing speculative tracing you can
trace data until you know whether it's useful. For example, to trace data about events that
might trigger a particular return code or error, you could speculatively trace all events and
discard the trace data if it doesn't match the return code that you're interested in. See 
Speculation for more information.
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Buffers
As DTrace probes fire, the kernel writes data into various buffers that are read by the dtrace
user-space utility, which prints requested data.

The generation of trace data by the kernel and the processing of that data by the dtrace utility
operate asynchronously. The processing of the trace data can be tuned by setting buffer
options and refresh rates. Buffer sizes can be tuned with options such as aggsize, bufsize,
and nspec.

The various options that control buffer sizing and policies are described in DTrace Runtime and
Compile-time Options Reference.

Stability
DTrace is a tracing tool that takes advantage of the probes that are included in code that can
change over time. DTrace and the D compiler include features to dynamically compute and
describe the stability of the D programs that you create. You can use these DTrace stability
features to inform you of the stability attributes of D programs or to produce compile-time
errors when a program has inappropriate interface dependencies.

DTrace provides two types of stability attributes for entities such as built-in variables, functions,
and probes: a stability level and an architectural dependency class. The DTrace stability level
helps you to assess risk when developing scripts and tools that are based on DTrace by
indicating how likely an interface or DTrace entity might change in a future release or patch.
The DTrace dependency class indicates whether an interface is common to all Oracle Linux
platforms and processors or whether it's associated with a particular architecture. The two
types of attributes that are used to describe interfaces can vary independently.

Applications that depend only on stable interfaces are likely to continue to function reliably on
future minor releases and are unlikely to be broken by interim patches. Less stable interfaces
can be used for experimentation, prototyping, tuning, and debugging on the current system.
Use less stable with the understanding that they might change and become incompatible or
even be dropped or replaced with alternatives in future minor releases.

Interfaces can be common to all Oracle Linux platforms and processors or might be associated
with a particular system architecture. Dependency classes help indicate architecture
dependencies and are orthogonal to stability levels. For example, a DTrace interface can be
stable, but only available on x86_64 microprocessors. Or, the interface can be unstable, but
common to all Oracle Linux platforms.

See DTrace Stability Reference for more information about the different stability levels and
dependency classes.
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3
DTrace Command Reference

The dtrace command is a generic front-end utility for the DTrace facility. The command
implements an interface to invoke the D language compiler. The dtrace command can also
retrieve buffered trace data from the DTrace kernel facility and includes a set of basic routines
to format and print traced data.

About the dtrace Command
The dtrace command provides a generic interface to all the essential services that are
provided by the DTrace facility.

The dtrace command includes options to do the following:

• List the set of probes and providers published by DTrace.

• Enable probes directly by using any of the probe description specifiers (provider, module,
function, name).

• Run the D compiler and compile one or more D program files or programs written directly
on the command line.

• Generate program stability reports.

• Change DTrace tracing and buffering behavior and enable extra D compiler features.

You can also use the dtrace command to create D scripts by using the command in a #!
declaration to create an interpreter file. Finally, you can use the -e option to dtrace to compile
D programs and find their properties without enabling any tracing.

dtrace Command Options
The dtrace command accepts the following options:

dtrace [-32 | -64] [-CeFGHhlqSvVwZ] [-b bufsz] [-c cmd] [-D name[=value]] 
     [-I path] [-L path] [-o output] [-p pid] [-s script] [-U name] 
     [-x opt[=val]] [-X a | c | s | t] 
     [-P provider [[predicate] action]] 
     [-m [provider:] module [[predicate] action]] 
     [-f [[provider:] module:] function [[predicate] action]] 
     [-n [[[provider:] module:] function:] name [[predicate] action]] 
     [-i probe-id [[predicate] action]]

where predicate is any D predicate inside slashes // and action is any D statement list
inside braces {}, according to the D language syntax.

The arguments accepted by the -P, -m, -f, -n, and -i options can include an optional D
language predicate inside slashes // and optional D language action statement list inside
braces {}. D program code specified on the command line must be appropriately quoted to
avoid interpretation of metacharacters by the shell.
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The following options are available:

-32 | -64
Sets whether to generate 32-bit or 64-bit D programs and ELF files. This option isn't usually
required as dtrace selects the native data model as the default.

-b bufsz
Set principal trace buffer size (bufsz). The trace buffer size can include any of the size
suffixes k, m, g, or t. If the buffer space can't be allocated, dtrace tries to reduce the buffer
size or exit depending on the setting of the bufresize property.

-c cmd
Run the specified command cmd and exit upon its completion. If more than one -c option is
present on the command line, dtrace exits when all commands have exited, reporting the exit
status for each child process as it ends. The process-ID of the first command is made
available to any D programs specified on the command line or using the -s option through
the $target macro variable.

-C
Run the C preprocessor (cpp) over D programs before compiling them. You can pass options
to the C preprocessor using the -D, -U, -I, and -H options. You can select the degree of C
standard conformance if you use the -X option. For a description of the set of tokens defined
by the D compiler when invoking the C preprocessor, see -X.

-D name[=value]
Define name when invoking cpp (enabled using the -C option). If you specify the equals sign
(=) and optional value, the name is assigned the corresponding value. This option passes the
-D option to each cpp invocation.

-e
Exit after compiling any requests, but before enabling any probes. You can combine this
option with D compiler options. This combination verifies that the programs compile without
executing them and enabling the corresponding instrumentation.

-f [[provider:]module:]function[[predicate]action]]
Specify function name to trace or list (-l option). The corresponding argument can include any
of the probe description forms provider:module:function, module:function, or function.
Unspecified probe description fields are blank and match any probes regardless of the values
in those fields. If no qualifiers other than function are specified in the description, all probes
with the corresponding function are matched. The -f argument can be suffixed with an
optional D probe clause. You can specify more than one -f option on the command line at a
time.

-F
Coalesce trace output by identifying function entry and return. Function entry probe reports
are indented and their output is prefixed with ->. Function return probe reports are unindented
and their output is prefixed with <-. System call entry probe reports are indented and their
output is prefixed with =>. System call return probe reports are unindented and their output is
prefixed with <=.

-G
Generate an ELF file containing an embedded DTrace program. The DTrace probes specified
in the program are saved inside a relocatable ELF object which can be linked into another
program. If the -o option is present, the ELF file is saved using the path name specified as the
argument for this operand. If the -o option isn't present and the DTrace program is contained
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with a file whose name is filename.d, then the ELF file is saved using the name filename.o.
Otherwise the ELF file is saved using the name d.out.

-H
Print the path names of included files when invoking cpp (enabled using the -C option). This
option passes the -H option to each cpp invocation, causing it to display the list of path names,
one for each line, to stderr.

-h
Generate a header file containing macros that correspond to probes in the specified provider
definitions. This option can generate a header file that's included by other source files for later
use with the -G option. If the -o option is present, the header file is saved using the path name
specified as the argument for that option. If the -o option isn't present and the DTrace program
is contained with a file whose name is filename.d, then the header file is saved using the
name filename.h.

-i probe-id [[predicate] action]
Specify probe identifier (probe-id) to trace or list (-l option). You can specify probe IDs using
decimal integers as shown by dtrace -l. The -i argument can be suffixed with an optional D
probe clause. You can specify more than one -i option at a time.

-I path
Add the specified directory path to the search path for #include files when invoking cpp
(enabled using the -C option). This option passes the -I option to each cpp invocation. The
specified path is inserted into the search path ahead of the default directory list.

-l
List probes instead of enabling them. If the -l option is specified, dtrace produces a report of
the probes matching the descriptions provided using the -P, -m, -f, -n, -i, and -s options. If
none of these options are specified, this option lists all probes.

-L
Add the specified directory path to the search path for DTrace libraries. DTrace libraries are
used to contain common definitions that can be used when writing D programs. The specified
path is added after the default library search path. If it exists, a subdirectory of path named
after the minor version of the running kernel (for example, 3.8) is searched immediately before
path. Dependency analysis is performed only within each directory, not across directories.

-m [[provider:] module: [[predicate] action]]
Specify module name to trace or list (-l option). The corresponding argument can include any
of the probe description forms provider:module or module. Unspecified probe description
fields are blank and match any probes regardless of the values in those fields. If no qualifiers
other than module are specified in the description, all probes with a corresponding module are
matched. The -m argument can be suffixed with an optional D probe clause. More than one -m
option can be specified on the command line at a time.

-n [[[provider:] module:] function:] name [[predicate] action]
Specify probe name to trace or list (-l option). The corresponding argument can include any
of the probe description forms provider:module:function:name, module:function:name,
function:name, or name. Unspecified probe description fields are blank and match any probes
regardless of the values in those fields. If no qualifiers other than name are specified in the
description, all probes with a corresponding name are matched. The -n argument can be
suffixed with an optional D probe clause. More than one -n option can be specified on the
command line at a time.
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-o output
Specify the output file for the -G, -h, and -l options, or for the traced data itself. If the -G
option is present and the -s option's argument is of the form filename.d and -o isn't present,
the default output file is filename.o. Otherwise the default output file is d.out.

-p pid
Grab the specified process-ID pid, cache its symbol tables, and exit upon its completion. If
more than one -p option is present on the command line, dtrace exits when all commands
have exited, reporting the exit status for each process as it ends. The first process-ID is made
available to any D programs specified on the command line or using the -s option through
the $target macro variable.

-P provider[[predicate]action]
Specify provider name to trace or list (-l option). The remaining probe description fields
module, function, and name are blank and match any probes regardless of the values in those
fields. The -P argument can be suffixed with an optional D probe clause. You can specify more
than one -P option on the command line at a time.

-q
Set quiet mode. dtrace suppresses messages such as the number of probes matched by the
specified options and D programs and doesn't print column headers, the CPU ID, the probe
ID, or insert newlines into the output. Only data traced and formatted by D program
statements such as trace() and printf() is displayed to stdout.

-s
Compile the specified D program source file. If the -e option is present, the program is
compiled but instrumentation isn't enabled. If the -l option is present, the program is compiled
and the set of probes matched by it, is listed but instrumentation isn't enabled. If none of -e, -
l, or -G are present, the instrumentation specified by the D program is enabled and tracing
begins.

-S
Show D compiler intermediate code. The D compiler produces a report of the intermediate
code generated for each D program to stderr.

-U name
Undefine the specified name when invoking cpp (enabled using the -C option). This option
passes the -U option to each cpp invocation.

-v
Set verbose mode. If the -v option is specified, dtrace produces a program stability report
showing the minimum interface stability and dependency level for the specified D programs.

-V
Report the highest D programming interface for dtrace. The version information is printed to
stdout and the dtrace command exits. When used with -v, also reports information on the
version of the dtrace and associated library.

-w
Permit destructive actions in D programs specified using the -s, -P, -m, -f, -n, or -i options. If
the -w option isn't specified, dtrace doesn't permit the compilation or enabling of a D program
that contains destructive actions.
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-x opt[=val]
Enable or change a DTrace runtime option or D compiler option. Boolean options are enabled
by specifying their name. Options with values are set by separating the option name and value
with an equals sign (=). See DTrace Runtime and Compile-time Options Reference.

-X a | c | s | t
Sets the ISO C conformance settings for the preprocessor. The options are:

• a | c | t: Any of these options sets the conformance to -std=c99. This is the default.

• s: This option sets the conformance to -traditional-cpp.

-Z
Permit probe descriptions that match zero probes. If the -Z option isn't specified, dtrace
reports an error and exits if any probe descriptions specified in D program files (-s option) or
on the command line (-P, -m, -f, -n, or -i options) contain descriptions that don't match any
known probes.

dtrace Command Operands
You can specify zero or more extra arguments on the dtrace command line to define a set of
macro variables, such as $1, $2, and so on, to be used in any D programs that are specified
with the -s option or on the command line.

dtrace Command Exit Status
The following exit values are returned by the dtrace command:

0
Indicates that the specified requests were completed successfully. For D program requests,
the 0 exit status indicates that programs were successfully compiled, probes were successfully
enabled, or an anonymous state was successfully retrieved. The dtrace command returns 0
even if the specified tracing requests meet errors or drops.

1
Indicates that a fatal error occurred. For D program requests, the 1 exit status indicates that
program compilation failed or that the specified request couldn't be satisfied.

2
Indicates that invalid command line options or arguments were specified.
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4
D Program Syntax Reference

This reference describes how to write D programs that can be used with DTrace to enable
probes and perform operations.

Program Structure
A D program consists of a set of clauses that describe the probes to enable, an optional
predicate that controls when to run, and one or more statements that often describe some
functionality to implement when the probe fires.

D programs can also contain declarations of variables and definitions of new types. A probe
clause declaration uses the following structure:

probe descriptions 
/ predicate / 
{
  statements
}

Probe Descriptions
Probe descriptions ideally express the full description for a probe and take the form:

provider:module:function:name

The field descriptors are defined as follows:

provider
The name of the DTrace provider that the probe belongs to.

module
If the probe corresponds to a specific program location, the name of the kernel module,
library, or user-space program in which the probe is found. Some probes might be
associated with a module name that isn't tied to a particular source location in cases
where they relate to more abstract tracepoints.

function
If the probe corresponds to a specific program location, the name of the program function
in which the probe is found.

name
The name that provides some idea of the probe's semantic meaning, such as BEGIN or
END.

DTrace recognizes a form of shorthand when referencing probes. By convention, if you don't
specify all the fields of a probe description, DTrace can match a request to all the probes with
matching values in the parts of the name that you do specify. For example, you can reference
the probe name BEGIN in a script to match any probe with the name field BEGIN, regardless of
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the value of the provider, module, and function fields. For example, you might see a probe
referenced as:

BEGIN

If a probe is referenced in a D program and it doesn't use a full probe description, the fields
are interpreted based on an order of precedence:

• A single component matches the probe name, expressed as:

name

• Two components match the function and probe name, expressed as:

function:name

• Three components match the module, function, and probe name

module:function:name

Although probes can also be referenced by their ID, this value can change over time. The
number of probes on the system doesn't directly correlate to the ID, because new provider
modules can be loaded at any time and some providers also offer the ability to create new
probes on-the-fly. Avoid using the numerical probe ID to reference a probe.
Probe descriptions also support a pattern-matching syntax similar to the shell globbing pattern
matching syntax that's described in the sh(1) manual page. For example, you can use the
asterisk symbol (*) to perform a wildcard match, as in the following description:

sdt:::tcp*

If any fields are blank in the probe description, a wildcard match is performed on that field.
Unless matching several probes intentionally, specifying the full probe description to avoid
unpredictable results is better practice.

Symbol Description

* Matches any string, including the null
string.

? Matches any single character.

[] Matches any one of the characters
inside the square brackets. A pair of
characters separated by - matches any
character between the pair, inclusive. If
the first character after the [ is !, any
character not within the set is matched.

\ Interpret the next character as itself,
without any special meaning.

To successfully match and enable a probe, the complete probe description must match on
every field. A probe description field that isn't a pattern must exactly match the corresponding
field of the probe. Note that a description field that's empty matches any probe.
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Several probes can be included in a comma-separated list. By including several probes in the
description, the same predicate, and function sequences are applied when each probe is
activated.

Predicates
Predicates are expressions that appear between a pair of slashes (//) that are then evaluated
at probe firing time to decide whether the associated functions must be processed. Predicates
are the primary conditional construct that are used for building more complex control flow in a
D program. You can omit the predicate section of the probe clause entirely for any probe so
that the functions are always processed when the probe is activated.
Predicate expressions can use any of the D operators and can include any D data objects
such as variables and constants. The predicate expression must evaluate to a value of integer
or pointer type so that it can be considered as true or false. As with all D expressions, a zero
value is interpreted as false and any non-zero value is interpreted as true.

Statements
Statements are described by a list of expressions or functions that are separated by
semicolons (;) and within braces ({}). An empty set of braces with no statements included
causes the default action to be processed. The Default Action reports the probe activation.

A program can consist of several probe-clause declarations. Clauses run in program order.

A program can be stored on the file system and can be run by the DTrace utility. You can
transform a program into an executable script by prepending the file with an interpreter
directive that calls the dtrace command along with any required options, as a single
argument, to run the program. See the sh(1) manual page for more information on adding the
interpreter line to the beginning of a script. The interpreter directive might look as follows:

#!/usr/sbin/dtrace -qs

A script can also include D pragma directives to set runtime and compiler options. See DTrace
Runtime and Compile-time Options Reference for more information on including this
information in a script.

Types, Operators, and Expressions
D provides the ability to access and manipulate various data objects: variables and data
structures can be created and changed, data objects that are defined in the OS kernel and
user processes can be accessed, and integer, floating-point, and string constants can be
declared. D provides a superset of the ANSI C operators that are used to manipulate objects
and create complex expressions. This section describes the detailed set of rules for types,
operators, and expressions.

Identifier Names and Keywords
D identifier names are composed of uppercase and lowercase letters, digits, and underscores,
where the first character must be a letter or underscore. All identifier names beginning with an
underscore (_) are reserved for use by the D system libraries. Avoid using these names in D
programs. By convention, D programmers typically use mixed-case names for variables and all
uppercase names for constants.

D language keywords are special identifiers that are reserved for use in the programming
language syntax itself. These names are always specified in lowercase and must not be used
for the names of D variables. The following table lists the keywords that are reserved for use
by the D language.
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Table 4-2    D Keywords

auto* do* if* register* string+ unsigned
break* double import*+ restrict* stringof+ void
case* else* inline return* struct volatile
char enum int self+ switch* while*
const extern long short this+ xlate+
continue* float offsetof+ signed translator+
counter*+ for* probe*+ sizeof typedef
default* goto* provider*+ static* union

D reserves for use as keywords a superset of the ANSI C keywords. The keywords reserved
for future use by the D language are marked with *. The D compiler produces a syntax error if
you try to use a keyword that's reserved for future use. The keywords that are defined by D but
not defined by ANSI C are marked with +. D provides the complete set of types and operators
found in ANSI C. The major difference in D programming is the absence of control-flow
constructs. Note that keywords associated with control-flow in ANSI C are reserved for future
use in D.

Data Types and Sizes
D provides fundamental data types for integers and floating-point constants. Arithmetic can
only be performed on integers in D programs. Floating-point constants can be used to initialize
data structures, but floating-point arithmetic isn't permitted in D. D provides a 64-bit data model
for use in writing programs.

The names of the integer types and their sizes in the 64-bit data model are shown in the
following table. Integers are always represented in twos-complement form in the native byte-
encoding order of a system.

Table 4-3    D Integer Data Types

Type Name 64-bit Size

char 1 byte

short 2 bytes

int 4 bytes

long 8 bytes

long long 8 bytes

Integer types, including char, can be prefixed with the signed or unsigned qualifier. Integers
are implicitly signed unless the unsigned qualifier isn't specified. The D compiler also provides
the type aliases that are listed in the following table.
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Table 4-4    D Integer Type Aliases

Type Name Description

int8_t 1-byte signed integer

int16_t 2-byte signed integer

int32_t 4-byte signed integer

int64_t 8-byte signed integer

intptr_t Signed integer of size equal to a pointer

uint8_t 1-byte unsigned integer

uint16_t 2-byte unsigned integer

uint32_t 4-byte unsigned integer

uint64_t 8-byte unsigned integer

uintptr_t Unsigned integer of size equal to a pointer

These type aliases are equivalent to using the name of the corresponding base type listed in
the previous table and are appropriately defined for each data model. For example, the
uint8_t type name is an alias for the type unsigned char.

Note:

The predefined type aliases can't be used in files that are included by the
preprocessor.

D provides floating-point types for compatibility with ANSI C declarations and types. Floating-
point operators aren't available in D, but floating-point data objects can be traced and
formatted with the printf function. You can use the floating-point types that are listed in the
following table.

Table 4-5    D Floating-Point Data Types

Type Name 64-bit Size

float 4 bytes

double 8 bytes

long double 16 bytes

D also provides the special type string to represent ASCII strings. Strings are discussed in
more detail in DTrace String Processing.

Constants
Integer constants can be written in decimal (12345), octal (012345), or hexadecimal (0x12345)
format. Octal (base 8) constants must be prefixed with a leading zero. Hexadecimal (base 16)
constants must be prefixed with either 0x or 0X. Integer constants are assigned the smallest
type among int, long, and long long that can represent their value. If the value is negative,
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the signed version of the type is used. If the value is positive and too large to fit in the signed
type representation, the unsigned type representation is used. You can apply one of the
suffixes listed in the following table to any integer constant to explicitly specify its D type.

Suffix D type

u or U unsigned version of the type selected by the
compiler

l or L long
ul or UL unsigned long
ll or LL long long
ull or ULL unsigned long long

Floating-point constants are always written in decimal format and must contain either a decimal
point (12.345), an exponent (123e45), or both ( 123.34e-5). Floating-point constants are
assigned the type double by default. You can apply one of the suffixes listed in the following
table to any floating-point constant to explicitly specify its D type.

Suffix D type

f or F float
l or L long double

Character constants are written as a single character or escape sequence that's inside a pair
of single quotes ('a'). Character constants are assigned the int type rather than char and are
equivalent to an integer constant with a value that's determined by that character's value in the
ASCII character set. See the ascii(7) manual page for a list of characters and their values.
You can also use any of the special escape sequences that are listed in the following table. D
uses the same escape sequences as those found in ANSI C.

Table 4-6    Character Escape Sequences

Escape Sequence Represents Escape Sequence Represents

\a alert \\ backslash

\b backspace \? question mark

\f form feed \' single quote

\n newline \" double quote

\r carriage return \0oo octal value 0oo

\t horizontal tab \xhh hexadecimal value
0xhh

\v vertical tab \0 null character

You can include more than one character specifier inside single quotes to create integers with
individual bytes that are initialized according to the corresponding character specifiers. The
bytes are read left-to-right from a character constant and assigned to the resulting integer in
the order corresponding to the native endianness of the operating environment. Up to eight
character specifiers can be included in a single character constant.

Strings constants of any length can be composed by enclosing them in a pair of double quotes
("hello"). A string constant can't contain a literal newline character. To create strings
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containing newlines, use the \n escape sequence instead of a literal newline. String constants
can contain any of the special character escape sequences that are shown for character
constants before. Similar to ANSI C, strings are represented as arrays of characters that end
with a null character (\0) that's implicitly added to each string constant you declare. String
constants are assigned the special D type string. The D compiler provides a set of special
features for comparing and tracing character arrays that are declared as strings.

Arithmetic Operators
Binary arithmetic operators are described in the following table. These operators all have the
same meaning for integers that they do in ANSI C.

Table 4-7    Binary Arithmetic Operators

Operator Description

+ Integer addition

- Integer subtraction

* Integer multiplication

/ Integer division

% Integer modulus

Arithmetic in D can only be performed on integer operands or on pointers. Arithmetic can't be
performed on floating-point operands in D programs. The DTrace execution environment
doesn't take any action on integer overflow or underflow. You must check for these conditions
in situations where overflow and underflow can occur.

However, the DTrace execution environment does automatically check for and report division
by zero errors resulting from improper use of the / and % operators. If a D program contains an
invalid division operation that's detectable at compile time, a compile error is returned and the
compilation fails. If the invalid division operation takes place at run time, processing of the
current clause is quit, and the ERROR probe is activated. If the D program has no clause for the
ERROR probe, the error is printed and tracing continues. Otherwise, the actions in the clause
assigned to the ERROR probe are processed. Errors that are detected by DTrace have no effect
on other DTrace users or on the OS kernel. You therefore don't need to be concerned about
causing any damage if a D program inadvertently contains one of these errors.

In addition to these binary operators, the + and - operators can also be used as unary
operators, and these operators have higher precedence than any of the binary arithmetic
operators. The order of precedence and associativity properties for all D operators is presented
in Operator Precedence. You can control precedence by grouping expressions in parentheses
(()).

Relational Operators
Binary relational operators are described in the following table. These operators all have the
same meaning that they do in ANSI C.

Table 4-8    D Relational Operators

Operator Description

< Left-hand operand is less than right-operand
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Table 4-8    (Cont.) D Relational Operators

Operator Description

<= Left-hand operand is less than or equal to right-
hand operand

> Left-hand operand is greater than right-hand
operand

>= Left-hand operand is greater than or equal to
right-hand operand

== Left-hand operand is equal to right-hand
operand

!= Left-hand operand isn't equal to right-hand
operand

Relational operators are most often used to write D predicates. Each operator evaluates to a
value of type int, which is equal to one if the condition is true, or zero if it's false.

Relational operators can be applied to pairs of integers, pointers, or strings. If pointers are
compared, the result is equivalent to an integer comparison of the two pointers interpreted as
unsigned integers. If strings are compared, the result is determined as if by performing a
strcmp() on the two operands. The following table shows some example D string comparisons
and their results.

D string comparison Result

"coffee" < "espresso" Returns 1 (true)

"coffee" == "coffee" Returns 1 (true)

"coffee"" >= "mocha" Returns 0 (false)

Relational operators can also be used to compare a data object associated with an
enumeration type with any of the enumerator tags defined by the enumeration.

Logical Operators
Binary logical operators are listed in the following table. The first two operators are equivalent
to the corresponding ANSI C operators.

Table 4-9    D Logical Operators

Operator Description

&& Logical AND: true if both operands are true

|| Logical OR: true if one or both operands are
true

^^ Logical XOR: true if exactly one operand is true

Logical operators are most often used in writing D predicates. The logical AND operator
performs the following short-circuit evaluation: if the left-hand operand is false, the right-hand
expression isn't evaluated. The logical OR operator also performs the following short-circuit
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evaluation: if the left-hand operand is true, the right-hand expression isn't evaluated. The
logical XOR operator doesn't short-circuit. Both expression operands are always evaluated.

In addition to the binary logical operators, the unary ! operator can be used to perform a logical
negation of a single operand: it converts a zero operand into a one and a non-zero operand
into a zero. By convention, D programmers use ! when working with integers that are meant to
represent Boolean values and == 0 when working with non-Boolean integers, although the
expressions are equivalent.

The logical operators can be applied to operands of integer or pointer types. The logical
operators interpret pointer operands as unsigned integer values. As with all logical and
relational operators in D, operands are true if they have a non-zero integer value and false if
they have a zero integer value.

Bitwise Operators
D provides the bitwise operators that are listed in the following table for manipulating individual
bits inside integer operands. These operators all have the same meaning as in ANSI C.

Table 4-10    D Bitwise Operators

Operator Description

~ Unary operator that can be used to perform a
bitwise negation of a single operand: it
converts each zero bit in the operand into a one
bit, and each one bit in the operand into a zero
bit

& Bitwise AND
| Bitwise OR
^ Bitwise XOR
<< Shift the left-hand operand left by the number

of bits specified by the right-hand operand

>> Shift the left-hand operand right by the number
of bits specified by the right-hand operand

The shift operators are used to move bits left or right in a particular integer operand. Shifting
left fills empty bit positions on the right-hand side of the result with zeroes. Shifting right using
an unsigned integer operand fills empty bit positions on the left-hand side of the result with
zeroes. Shifting right using a signed integer operand fills empty bit positions on the left-hand
side with the value of the sign bit, also known as an arithmetic shift operation.

Shifting an integer value by a negative number of bits or by a number of bits larger than the
number of bits in the left-hand operand itself produces an undefined result. The D compiler
produces an error message if the compiler can detect this condition when you compile the D
program.

Assignment Operators
Binary assignment operators are listed in the following table. You can only modify D variables
and arrays. Kernel data objects and constants can not be modified using the D assignment
operators. The assignment operators have the same meaning as they do in ANSI C.
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Table 4-11    D Assignment Operators

Operator Description

= Set the left-hand operand equal to the right-
hand expression value.

+= Increment the left-hand operand by the right-
hand expression value

-= Decrement the left-hand operand by the right-
hand expression value.

*= Multiply the left-hand operand by the right-
hand expression value.

/= Divide the left-hand operand by the right-hand
expression value.

%= Modulo the left-hand operand by the right-
hand expression value.

|= Bitwise OR the left-hand operand with the
right-hand expression value.

&= Bitwise AND the left-hand operand with the
right-hand expression value.

^= Bitwise XOR the left-hand operand with the
right-hand expression value.

<<= Shift the left-hand operand left by the number
of bits specified by the right-hand expression
value.

>>= Shift the left-hand operand right by the number
of bits specified by the right-hand expression
value.

Aside from the assignment operator =, the other assignment operators are provided as
shorthand for using the = operator with one of the other operators that were described earlier.
For example, the expression x = x + 1 is equivalent to the expression x += 1. These
assignment operators adhere to the same rules for operand types as the binary forms
described earlier.

The result of any assignment operator is an expression equal to the new value of the left-hand
expression. You can use the assignment operators or any of the operators described thus far in
combination to form expressions of arbitrary complexity. You can use parentheses () to group
terms in complex expressions.

Increment and Decrement Operators
D provides the special unary ++ and -- operators for incrementing and decrementing pointers
and integers. These operators have the same meaning as they do in ANSI C. These operators
can be applied to variables and to the individual elements of a struct, union, or array. The
operators can be applied either before or after the variable name. If the operator appears
before the variable name, the variable is first changed and then the resulting expression is
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equal to the new value of the variable. For example, the following two code fragments produce
identical results:

x += 1; y = x;

y = ++x;

If the operator appears after the variable name, then the variable is changed after its current
value is returned for use in the expression. For example, the following two code fragments
produce identical results:

y = x; x -= 1;

y = x--;

You can use the increment and decrement operators to create new variables without declaring
them. If a variable declaration is omitted and the increment or decrement operator is applied to
a variable, the variable is implicitly declared to be of type int64_t.

To use the increment and decrement operators on elements of an array or struct, place the
operator after or before the full reference to the element:

int foo[5];
struct { int a; } bar;

bar.a++;
foo[1]++;
--foo[1];

The increment and decrement operators can be applied to integer or pointer variables. When
applied to integer variables, the operators increment, or decrement the corresponding value by
one. When applied to pointer variables, the operators increment, or decrement the pointer
address by the size of the data type that's referenced by the pointer.

Conditional Expressions
D doesn't provide the facility to use if-then-else constructs. Instead, conditional expressions,
by using the ternary operator (?:), can be used to approximate some of this functionality. The
ternary operator associates a triplet of expressions, where the first expression is used to
conditionally evaluate one of the other two.

For example, the following D statement could be used to set a variable x to one of two strings,
depending on the value of i:

x = i == 0 ? "zero" : "non-zero";

In the previous example, the expression i == 0 is first evaluated to determine whether it's true
or false. If the expression is true, the second expression is evaluated and its value is returned.
If the expression is false, the third expression is evaluated and its value is returned.

As with any D operator, you can use several ?: operators in a single expression to create more
complex expressions. For example, the following expression would take a char variable c
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containing one of the characters 0-9, a-f, or A-F, and return the value of this character when
interpreted as a digit in a hexadecimal (base 16) integer:

hexval = (c >= '0' && c <= '9') ? c - '0' : (c >= 'a' && c <= 'f') ? c + 10 - 
'a' : c + 10 - 'A';

To be evaluated for its truth value, the first expression that's used with ?: must be a pointer or
integer. The second and third expressions can be of any compatible types. You can't construct
a conditional expression where, for example, one path returns a string and another path
returns an integer. The second and third expressions must be true expressions that have a
value. Therefore, data reporting functions can't be used in these expressions because those
functions don't return a value. To conditionally trace data, use a predicate instead.

Type Conversions
When expressions are constructed by using operands of different but compatible types, type
conversions are performed to determine the type of the resulting expression. The D rules for
type conversions are the same as the arithmetic conversion rules for integers in ANSI C.
These rules are sometimes referred to as the usual arithmetic conversions.

Each integer type is ranked in the order char, short, int, long, long long, with the
corresponding unsigned types assigned a rank higher than its signed equivalent, but below the
next integer type. When you construct an expression using two integer operands such as x +
y and the operands are of different integer types, the operand type with the highest rank is
used as the result type.

If a conversion is required, the operand with the lower rank is first promoted to the type of the
higher rank. Promotion doesn't change the value of the operand: it only extends the value to a
larger container according to its sign. If an unsigned operand is promoted, the unused high-
order bits of the resulting integer are filled with zeroes. If a signed operand is promoted, the
unused high-order bits are filled by performing sign extension. If a signed type is converted to
an unsigned type, the signed type is first sign-extended and then assigned the new, unsigned
type that's determined by the conversion.

Integers and other types can also be explicitly cast from one type to another. Pointers and
integers can be cast to any integer or pointer types, but not to other types.

An integer or pointer cast is formed using an expression such as the following:

y = (int)x;

In this example, the destination type is within parentheses and used to prefix the source
expression. Integers are cast to types of higher rank by performing promotion. Integers are
cast to types of lower rank by zeroing the excess high-order bits of the integer.

Because D doesn't include floating-point arithmetic, no floating-point operand conversion or
casting is permitted and no rules for implicit floating-point conversion are defined.

Operator Precedence
D includes complex rules for operator precedence and associativity. The rules provide precise
compatibility with the ANSI C operator precedence rules. The entries in the following table are
in order from highest precedence to lowest precedence.

Chapter 4
Types, Operators, and Expressions

4-12



Table 4-12    D Operator Precedence and Associativity

Operators Associativity

() [] -> . Left to right

! ~ ++ -- + - * & (type) sizeof
stringof offsetof xlate

Right to left
(Note that these are the unary operators)

* / % Left to right

+ - Left to right

<< >> Left to right

< <= > >= Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

^^ Left to right

|| Left to right

?: Right to left

= += -= *= /= %= &= ^= ?= <<= >>= Right to left

, Left to right

The comma (,) operator that's listed in the table is for compatibility with the ANSI C comma
operator. It can be used to evaluate a set of expressions in left-to-right order and return the
value of the right most expression. This operator is provided for compatibility with C and usage
isn't recommended.

The () entry listed in the table of operator precedence represents a function call. A comma is
also used in D to list arguments to functions and to form lists of associative array keys. Note
that this comma isn't the same as the comma operator and doesn't guarantee left-to-right
evaluation. The D compiler provides no guarantee regarding the order of evaluation of
arguments to a function or keys to an associative array. Be careful of using expressions with
interacting side-effects, such as the pair of expressions i and i++, in these contexts.

The [] entry listed in the table of operator precedence represents an array or associative array
reference. Note that aggregations are also treated as associative arrays. The [] operator can
also be used to index into fixed-size C arrays.

The following table provides further explanation for the function of several miscellaneous
operators that are provided by the D language.

Operators Description

sizeof Computes the size of an object.

offsetof Computes the offset of a type member.

stringof Converts the operand to a string.

xlate Translates a data type.
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Operators Description

unary & Computes the address of an object.

unary * Dereferences a pointer to an object.

-> and . Accesses a member of a structure or union
type.

Type and Constant Definitions
This section describes how to declare type aliases and named constants in D. It also discusses
D type and namespace management for program and OS types and identifiers.

typedefs
The typedef keyword is used to declare an identifier as an alias for an existing type. The
typedef declaration is used outside of probe clauses in the following form:

typedef existing-type new-type ;

where existing-type is any type declaration and new-type is an identifier to be used as the alias
for this type. For example, the D compiler uses the following declaration internally to create the
uint8_t type alias:

typedef unsigned char uint8_t;

You can use type aliases anywhere that a normal type can be used, such as the type of a
variable or associative array value or tuple member. You can also combine typedef with more
elaborate declarations such as the definition of a new struct, as shown in the following
example:

typedef struct foo {
  int x;
  int y;
} foo_t;

In the previous example, struct foo is defined using the same type as its alias, foo_t. Linux
C system headers often use the suffix _t to denote a typedef alias.

Enumerations
Defining symbolic names for constants in a program eases readability and simplifies the
process of maintaining the program in the future. One method is to define an enumeration,
which associates a set of integers with a set of identifiers called enumerators that the compiler
recognizes and replaces with the corresponding integer value. An enumeration is defined by
using a declaration such as the following:

enum colors {
  RED,
  GREEN,
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  BLUE
};

The first enumerator in the enumeration, RED, is assigned the value zero and each subsequent
identifier is assigned the next integer value.

You can also specify an explicit integer value for any enumerator by suffixing it with an equal
sign and an integer constant, as shown in the following example:

enum colors {
  RED = 7,
  GREEN = 9,
  BLUE
};

The enumerator BLUE is assigned the value 10 by the compiler because it has no value
specified and the previous enumerator is set to 9. When an enumeration is defined, the
enumerators can be used anywhere in a D program that an integer constant is used. In
addition, the enumeration enum colors is also defined as a type that's equivalent to an int.
The D compiler permits a variable of enum type to be used anywhere an int can be used and
permits any integer value to be assigned to a variable of enum type. You can also omit the enum
name in the declaration, if the type name isn't needed.

Enumerators are visible in all the following clauses and declarations in a program. Therefore,
you can't define the same enumerator identifier in more than one enumeration. However, you
can define more than one enumerator with the same value in either the same or different
enumerations. You can also assign integers that have no corresponding enumerator to a
variable of the enumeration type.

The D enumeration syntax is the same as the corresponding syntax in ANSI C. D also provides
access to enumerations that are defined in the OS kernel and its loadable modules. Note that
these enumerators aren't globally visible in a D program. Kernel enumerators are only visible if
you specify one as an argument in a comparison with an object of the corresponding
enumeration type. This feature protects D programs against inadvertent identifier name
conflicts, with the large collection of enumerations that are defined in the OS kernel.

Inlines
D named constants can also be defined by using inline directives, which provide a more
general means of creating identifiers that are replaced by predefined values or expressions
during compilation. Inline directives are a more powerful form of lexical replacement than the
#define directive provided by the C preprocessor because the replacement is assigned an
actual type and is performed by using the compiled syntax tree and not a set of lexical tokens.
An inline directive is specified by using a declaration of the following form:

inline type name = expression;

where type is a type declaration of an existing type, name is any valid D identifier that isn't
previously defined as an inline or global variable, and expression is any valid D expression.
After the inline directive is processed, the D compiler substitutes the compiled form of
expression for each subsequent instance of name in the program source.
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For example, the following D program would trace the string "hello" and integer value 123:

inline string hello = "hello";
inline int number = 100 + 23;

BEGIN
{
  trace(hello);
  trace(number);
}

An inline name can be used anywhere a global variable of the corresponding type is used. If
the inline expression can be evaluated to an integer or string constant at compile time, then the
inline name can also be used in contexts that require constant expressions, such as scalar
array dimensions.

The inline expression is validated for syntax errors as part of evaluating the directive. The
expression result type must be compatible with the type that's defined by the inline, according
to the same rules used for the D assignment operator (=). An inline expression can't reference
the inline identifier itself: recursive definitions aren't permitted.

The DTrace software packages install several D source files in the system directory /usr/
lib64/dtrace/installed-version, which contain inline directives that you can use in D
programs.

For example, the signal.d library includes directives of the following form:

inline int SIGHUP = 1;
inline int SIGINT = 2;
inline int SIGQUIT = 3;
...

These inline definitions provide you with access to the current set of Oracle Linux signal
names, as described in the sigaction(2) manual page. Similarly, the errno.d library contains
inline directives for the C errno constants that are described in the errno(3) manual page.

By default, the D compiler includes all the provided D library files automatically so that you can
use these definitions in any D program.

Type Namespaces
In traditional languages such as ANSI C, type visibility is determined by whether a type is
nested inside a function or other declaration. Types declared at the outer scope of a C program
are associated with a single global namespace and are visible throughout the entire program.
Types that are defined in C header files are typically included in this outer scope. Unlike these
languages, D provides access to types from several outer scopes.

D is a language that provides dynamic observability across different layers of a software stack,
including the OS kernel, an associated set of loadable kernel modules, and user processes
that are running on the system. A single D program can instantiate probes to gather data from
several kernel modules or other software entities that are compiled into independent binary
objects. Therefore, more than one data type of the same name, sometimes with different
definitions, might be present in the universe of types that are available to DTrace and the D
compiler. To manage this situation, the D compiler associates each type with a namespace,
which is identified by the containing program object. Types from a particular kernel level object,
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such as the main kernel or a kernel module, can be accessed by specifying the object name
and the back quote (`) scoping operator in any type name.

For a kernel module named foo that contains the following C type declaration:

typedef struct bar {
  int x;
} bar_t;

The types struct bar and bar_t could be accessed from D using the following type names:

struct foo`bar
foo`bar_t

For example, the kernel includes a task_struct that's described in include/linux/sched.h.
The definition of this struct depends on kernel configuration at build. You can find out
information about the struct, such as its size, by referencing it as follows:

sizeof(struct vmlinux`task_struct)

The back quote operator can be used in any context where a type name is appropriate,
including when specifying the type for D variable declarations or cast expressions in D probe
clauses.

The D compiler also provides two special, built-in type namespaces that use the names C and
D. The C type namespace is initially populated with the standard ANSI C intrinsic types, such
as int. In addition, type definitions that are acquired by using the C preprocessor (cpp), by
running the dtrace -C command, are processed by, and added to the C scope. So, you can
include C header files containing type declarations that are already visible in another type
namespace without causing a compilation error.

The D type namespace is initially populated with the D type intrinsics, such as int and string,
and the built-in D type aliases, such as uint64_t. Any new type declarations that appear in the
D program source are automatically added to the D type namespace. If you create a complex
type such as a struct in a D program consisting of member types from other namespaces, the
member types are copied into the D namespace by the declaration.

When the D compiler encounters a type declaration that doesn't specify an explicit namespace
using the back quote operator, the compiler searches the set of active type namespaces to find
a match by using the specified type name. The C namespace is always searched first, followed
by the D namespace. If the type name isn't found in either the C or D namespace, the type
namespaces of the active kernel modules are searched in load address order, which doesn't
guarantee any ordering properties among the loadable modules. To avoid type name conflicts
with other kernel modules, use the scoping operator when accessing types that are defined in
loadable kernel modules.

The D compiler uses the compressed ANSI C debugging information that's provided with the
core Linux kernel modules to access the types that are associated with the OS source code,
without the need to access the corresponding C include files. Note that this symbolic
debugging information might not be available for all kernel modules on the system. The D
compiler reports an error if you try to access a type within the namespace of a module that
lacks the compressed C debugging information that's intended for use with DTrace.
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Variables
D provides several variable types: scalar variables, associative arrays, scalar arrays, and
multidimensional scalar arrays. Variables can be created by declaring them explicitly, but are
most often created implicitly on first use. Variables can be restricted to clause or thread scope
to avoid name conflicts and to control the lifetime of a variable explicitly.

Scalar Variables
Scalar variables are used to represent individual, fixed-size data objects, such as integers and
pointers. Scalar variables can also be used for fixed-size objects that are composed of one or
more primitive or composite types. D provides the ability to create arrays of objects and
composite structures. DTrace also represents strings as fixed-size scalars by permitting them
to grow to a predefined maximum length.
To create a scalar variable, you can write an assignment expression of the following form:

name = expression ;

where name is any valid D identifier and expression is any value or expression that the
variable contains.
DTrace includes several built-in scalar variables that can be referenced within D programs.
The values of these variables are automatically populated by DTrace. See DTrace Built-in
Variable Reference for a complete list of these variables.

Associative Arrays
Associative arrays are used to represent collections of data elements that can be retrieved by
specifying a key. Associative arrays differ from normal, fixed-size arrays in that they have no
predefined limit on the number of elements and can use any expression as a key.
Furthermore, elements in an associative array aren't stored in consecutive storage locations.
To create an associative array, you can write an assignment expression of the following form:

name [ key ] = expression ;

Where name is any valid D identifier, key is a comma-separated list of one or more
expressions, often as string values, and expression is the value that's contained by the array
for the specified key.
The type of each object that's contained in the array is also fixed for all elements in the array.
You can use any of the assignment operators that are defined in Types, Operators, and
Expressions to change associative array elements, subject to the operand rules defined for
each operator. The D compiler produces an appropriate error message if you try an
incompatible assignment. You can use any type with an associative array key or value that
can be used with a scalar variable.
You can reference values in an associative array by specifying the array name and the
appropriate key.
You can delete an element in an associative array by assigning a literal 0 to it, regardless of
the element datatype. When you delete elements in an array, the storage that's used for that
element is deallocated and made available to the system for use.

Scalar Arrays
Scalar arrays are a fixed-length group of consecutive memory locations that each store a
value of the same type. Scalar arrays are accessed by referring to each location with an
integer, starting from zero. Scalar arrays aren't used as often in D as associative arrays.

Chapter 4
Variables

4-18



A D scalar array of 5 integers is declared by using the type int and suffixing the declaration
with the number of elements in square brackets, for example:

int s[5];

The D expression s[0] refers to the first array element, s[1] refers to the second, and so on.
DTrace performs bounds checking on the indexes of scalar arrays at compile time to help
catch bad index references early.

Note:

Scalar arrays and associative arrays are syntactically similar. You can declare an
associative array of integers referenced by an integer key as follows:

int a[int];

You can also reference this array using the expression a[0], but from a storage and
implementation perspective, the two arrays are different. The scalar array s consists
of five consecutive memory locations numbered from zero, and the index refers to
an offset in the storage that's allocated for the array. However, the associative array
a has no predefined size and doesn't store elements in consecutive memory
locations. In addition, associative array keys have no relationship to the
corresponding value storage location. You can access associative array elements
a[0] and a[-5] and only two words of storage are allocated by DTrace.
Furthermore, these elements don't have to be consecutive. Associative array keys
are abstract names for the corresponding values and have no relationship to the
value storage locations.
If you create an array using an initial assignment and use a single integer expression
as the array index , for example, a[0] = 2, the D compiler always creates a new
associative array, even though in this expression a could also be interpreted as an
assignment to a scalar array. Scalar arrays must be predeclared in this situation so
that the D compiler can recognize the definition of the array size and infer that the
array is a scalar array.

Multidimensional Scalar Arrays
Multidimensional scalar arrays are used infrequently in D, but are provided for compatibility
with ANSI C and are for observing and accessing OS data structures that are created by using
this capability in C. A multidimensional array is declared as a consecutive series of scalar
array sizes within square brackets [] following the base type. For example, to declare a fixed-
size, two-dimensional array of integers of dimensions that's 12 rows by 34 columns, you would
write the following declaration:

int s[12][34];

A multidimensional scalar array is accessed by using similar notation. For example, to access
the value stored at row 0 and column 1, you would write the D expression as follows:

s[0][1]
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Storage locations for multidimensional scalar array values are computed by multiplying the
row number by the total number of columns declared and then adding the column number.
Be careful not to confuse the multidimensional array syntax with the D syntax for associative
array accesses, that's, s[0][1], isn't the same as s[0,1]). If you use an incompatible key
expression with an associative array or try an associative array access of a scalar array, the D
compiler reports an appropriate error message and refuses to compile the program.

Variable Scope
Variable scoping is used to define where variable names are valid within a program and to
avoid variable naming collisions. By using scoped variables you can control the availability of
the variable instance to the whole program, a particular thread, or a specific clause.

The following table lists and describes the three primary variable scopes that are available.
Note that external variables provide a fourth scope that falls outside of the control of the D
program.

Scope Syntax Initial Value Thread-safe? Description

global myname 0 No Any probe that
fires on any
thread accesses
the same instance
of the variable.

Thread-local self->myname 0 Yes Any probe that
fires on a thread
accesses the
thread-specific
instance of the
variable.

Clause-local this->myname Not defined Yes Any probe that
fires accesses an
instance of the
variable specific
to that particular
firing of the
probe.

Note:

Note the following information:

• Scalar variables and associative arrays have a global scope and aren't multi-
processor safe (MP-safe). Because the value of such variables can be changed
by more than one processor, a variable can become corrupted if more than one
probe changes it.

• Aggregations are MP-safe even though they have a global scope because
independent copies are updated locally before a final aggregation produces the
global result.

Global Variables

Global variables are used to declare variable storage that's persistent across the entire D
program. Global variables provide the broadest scope.
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Global variables of any type can be defined in a D program, including associative arrays. The
following are some example global variable definitions:

x = 123; /* integer value */
s = "hello"; /* string value */
a[123, 'a'] = 456; /* associative array */

Global variables are created automatically on their first assignment and use the type
appropriate for the right side of the first assignment statement. Except for scalar arrays, you
don't need to explicitly declare global variables before using them. To create a declaration
anyway, you must place it outside of program clauses, for example:

int x; /* declare int x as a global variable */
int x[unsigned long long, char];
syscall::read:entry
{
  x = 123;
  a[123, 'a'] = 456;
}

D variable declarations can't assign initial values. You can use a BEGIN probe clause to assign
any initial values. All global variable storage is filled with zeroes by DTrace before you first
reference the variable.

Thread-Local Variables

Thread-local variables are used to declare variable storage that's local to each OS thread.
Thread-local variables are useful in situations where you want to enable a probe and mark
every thread that fires the probe with some tag or other data.

Thread-local variables are referenced by applying the -> operator to the special identifier self,
for example:

syscall::read:entry
{
  self->read = 1;
}

This D fragment example enables the probe on the read() system call and associates a
thread-local variable named read with each thread that fires the probe. Similar to global
variables, thread-local variables are created automatically on their first assignment and
assume the type that's used on the right-hand side of the first assignment statement, which is
int in this example.

Each time the self->read variable is referenced in the D program, the data object that's
referenced is the one associated with the OS thread that was executing when the
corresponding DTrace probe fired. You can think of a thread-local variable as an associative
array that's implicitly indexed by a tuple that describes the thread's identity in the system. A
thread's identity is unique over the lifetime of the system: if the thread exits and the same OS
data structure is used to create a thread, this thread doesn't reuse the same DTrace thread-
local storage identity.

When you have defined a thread-local variable, you can reference it for any thread in the
system, even if the variable in question hasn't been previously assigned for that particular
thread. If a thread's copy of the thread-local variable hasn't yet been assigned, the data
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storage for the copy is defined to be filled with zeroes. As with associative array elements,
underlying storage isn't allocated for a thread-local variable until a non-zero value is assigned
to it. Also, as with associative array elements, assigning zero to a thread-local variable causes
DTrace to deallocate the underlying storage. Always assign zero to thread-local variables that
are no longer in use.

Thread-local variables of any type can be defined in a D program, including associative arrays.
The following are some example thread-local variable definitions:

self->x = 123; /* integer value */
self->s = "hello"; /* string value */
self->a[123, 'a'] = 456; /* associative array */

You don't need to explicitly declare thread-local variables before using them. To create a
declaration anyway, you must place it outside of program clauses by prepending the keyword
self, for example:

self int x; /* declare int x as a thread-local variable */ 
syscall::read:entry
{
  self->x = 123;
}

Thread-local variables are kept in a separate namespace from global variables so that you can
reuse names. Remember that x and self->x aren't the same variable if you overload names in
a program.

Clause-Local Variables

Clause-local variable are used to restrict the storage of a variable to the particular firing of a
probe. Clause-local is the narrowest scope. When a probe fires on a CPU, the D script is run in
program order. Each clause-local variable is instantiated with an undefined value the first time
it is used in the script. The same instance of the variable is used in all clauses until the D script
has completed running for that particular firing of the probe.

Clause-local variables can be referenced and assigned by prefixing with this->:

BEGIN
{
  this->secs = timestamp / 1000000000;
  ...
}

To declare a clause-local variable explicitly before using it, you can do so by using the this
keyword:

this int x;  /* an integer clause-local variable */
this char c; /* a character clause-local variable */

BEGIN
{
  this->x = 123;
  this->c = 'D';
}
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Note that if a program contains several clauses for a single probe, any clause-local variables
remain intact as the clauses are run sequentially and clause-local variables are persistent
across different clauses that are enabling the same probe. While clause-local variables are
persistent across clauses that are enabling the same probe, their values are undefined in the
first clause processed for a specified probe. To avoid unexpected results, assign each clause-
local variable an appropriate value before using it.

Clause-local variables can be defined using any scalar variable type, but associative arrays
can't be defined using clause-local scope. The scope of clause-local variables only applies to
the corresponding variable data, not to the name and type identity defined for the variable.
When a clause-local variable is defined, this name and type signature can be used in any later
D program clause.

You can use clause-local variables to accumulate intermediate results of calculations or as
temporary copies of other variables. Access to a clause-local variable is much faster than
access to an associative array. Therefore, if you need to reference an associative array value
several times in the same D program clause, it's more efficient to copy it into a clause-local
variable first and then reference the local variable repeatedly.

External Variables

The D language uses the back quote character (`) as a special scoping operator for accessing
symbols or variables that are defined in the OS, outside of the D program itself.

DTrace instrumentation runs inside the Oracle Linux OS kernel. So, in addition to accessing
special DTrace variables and probe arguments, you can also access kernel data structures,
symbols, and types. These capabilities enable advanced DTrace users, administrators, service
personnel, and driver developers to examine low-level behavior of the OS kernel and device
drivers.

For example, the Oracle Linux kernel contains a C declaration of a system variable named
max_pfn. This variable is declared in C in the kernel source code as follows:

unsigned long max_pfn

To trace the value of this variable in a D program, you can write the following D statement:

trace(`max_pfn);

DTrace associates each kernel symbol with the type that's used for the symbol in the
corresponding OS C code, which provides source-based access to the local OS data
structures.

Kernel symbol names are kept in a separate namespace from D variable and function
identifiers, so you don't need to be concerned about these names conflicting with other D
variables. When you prefix a variable with a back quote, the D compiler searches the known
kernel symbols and uses the list of loaded modules to find a matching variable definition.
Because the Oracle Linux kernel can dynamically load modules with separate symbol
namespaces, the same variable name might be used more than once in the active OS kernel.
You can resolve these name conflicts by specifying the name of the kernel module that
contains the variable to be accessed before the back quote in the symbol name. For example,
you would refer to the address of the _bar function that's provided by a kernel module named
foo as follows:

foo`_bar
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You can apply any of the D operators to external variables, except for those that modify values,
subject to the usual rules for operand types. When required, the D compiler loads the variable
names that correspond to active kernel modules, so you don't need to declare these variables.
You can't apply any operator to an external variable that modifies its value, such as = or +=. For
safety reasons, DTrace prevents you from damaging or corrupting the state of the software that
you're observing.

When you access external variables from a D program, you're accessing the internal
implementation details of another program, such as the OS kernel or its device drivers. These
implementation details don't form a stable interface upon which you can rely. Any D programs
you write that depend on these details might not work when you next upgrade the
corresponding piece of software. For this reason, external variables are typically used to debug
performance or functionality problems by using DTrace.

Pointers
Pointers are memory addresses of data objects and reference memory used by the OS, by the
user program, or by the D script. Pointers in D are data objects that store an integer virtual
address value and associate it with a D type that describes the format of the data stored at the
corresponding memory location.

You can explicitly declare a D variable to be of pointer type by first specifying the type of the
referenced data and then appending an asterisk (*) to the type name. Doing so indicates you
want to declare a pointer type, as shown in the following statement:

int *p;

The statement declares a D global variable named p that's a pointer to an integer. The
declaration means that p is a 64-bit integer with a value that's the address of another integer
located somewhere in memory. Because the compiled form of the D code is run at probe firing
time inside the kernel itself, D pointers are typically pointers associated with the kernel's
address space.

To create a pointer to a data object inside the kernel, you can compute its address by using the
& operator. For example, the kernel source code declares an unsigned long max_pfn variable.
You could trace the address of this variable by tracing the result of applying the & operator to
the name of that object in D:

trace(&`max_pfn);

The * operator can be used to specify the object addressed by the pointer, and acts as the
inverse of the & operator. For example, the following two D code fragments are equivalent in
meaning:

q = &`max_pfn; trace(*q);

trace(`max_pfn); 

In this example, the first fragment creates a D global variable pointer q. Because the max_pfn
object is of type unsigned long, the type of &`max_pfn is unsigned long *, a pointer to
unsigned long. The type of q is implicit in the declaration. Tracing the value of *q follows the
pointer back to the data object max_pfn. This fragment is therefore the same as the second
fragment, which directly traces the value of the data object by using its name.

Chapter 4
Pointers

4-24



Pointer Safety
DTrace is a robust, safe environment for running D programs. You might write a buggy D
program, but invalid D pointer accesses don't cause DTrace or the OS kernel to fail or crash in
any way. Instead, the DTrace software detects any invalid pointer accesses, and returns a
BADADDR fault; the current clause execution quits, an ERROR probe fires, and tracing continues
unless the program called exit for the ERROR probe.

Pointers are required in D because they're an intrinsic part of the OS's implementation in C, but
DTrace implements the same kind of safety mechanisms that are found in the Java
programming language to prevent buggy programs from affecting themselves or each other.
DTrace's error reporting is similar to the runtime environment for the Java programming
language that detects a programming error and reports an exception.

To observe DTrace's error handling and reporting, you could write a deliberately bad D
program using pointers. For example, in an editor, type the following D program and save it in
a file named badptr.d:

BEGIN
{
  x = (int *)NULL;
  y = *x;
  trace(y);
}

The badptr.d program uses a cast expression to convert NULL to be a pointer to an integer.
The program then dereferences the pointer by using the expression *x, assigns the result to
another variable y, and then tries to trace y. When the D program is run, DTrace detects an
invalid pointer access when the statement y = *x is processed and reports the following error:

dtrace: script '/tmp/badptr.d' matched 1 probe
dtrace: error on enabled probe ID 2 (ID 1: dtrace:::BEGIN): invalid address 
(0x0) in action #1 at BPF pc 156

Notice that the D program moves past the error and continues to run; the system and all
observed processes remain unperturbed. You can also add an ERROR probe to any script to
handle D errors. For details about the DTrace error mechanism, see ERROR Probe.

Pointer and Array Relationship
A scalar array is represented by a variable that's associated with the address of its first storage
location. A pointer is also the address of a storage location with a defined type. Thus, D
permits the use of the array [] index notation with both pointer variables and array variables.
For example, the following two D fragments are equivalent in meaning:

p = &a[0]; trace(p[2]);

trace(a[2]); 

In the first fragment, the pointer p is assigned to the address of the first element in scalar array
a by applying the & operator to the expression a[0]. The expression p[2] traces the value of
the third array element (index 2). Because p now contains the same address associated with a,
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this expression yields the same value as a[2], shown in the second fragment. One
consequence of this equivalence is that D permits you to access any index of any pointer or
array. If you access memory beyond the end of a scalar array's predefined size, you either get
an unexpected result or DTrace reports an invalid address error.

The difference between pointers and arrays is that a pointer variable refers to a separate piece
of storage that contains the integer address of some other storage; whereas, an array variable
names the array storage itself, not the location of an integer that in turn contains the location of
the array.

This difference is manifested in the D syntax if you try to assign pointers and scalar arrays. If x
and y are pointer variables, the expression x = y is legal; it copies the pointer address in y to
the storage location that's named by x. If x and y are scalar array variables, the expression x =
y isn't legal. Arrays can't be assigned as a whole in D. If p is a pointer and a is a scalar array,
the statement p = a is permitted. This statement is equivalent to the statement p = &a[0].

Pointer Arithmetic
As in C, pointer arithmetic in D isn't identical to integer arithmetic. Pointer arithmetic implicitly
adjusts the underlying address by multiplying or dividing the operands by the size of the type
referenced by the pointer.

The following D fragment illustrates this property:

int *x;

BEGIN
{
  trace(x);
  trace(x + 1);
  trace(x + 2);
}

This fragment creates an integer pointer x and then traces its value, its value incremented by
one, and its value incremented by two. If you create and run this program, DTrace reports the
integer values 0, 4, and 8.

Because x is a pointer to an int (size 4 bytes), incrementing x adds 4 to the underlying pointer
value. This property is useful when using pointers to reference consecutive storage locations
such as arrays. For example, if x was assigned to the address of an array a, the expression x
+ 1 would be equivalent to the expression &a[1]. Similarly, the expression *(x + 1) would
reference the value a[1]. Pointer arithmetic is implemented by the D compiler whenever a
pointer value is incremented by using the +, ++, or =+ operators. Pointer arithmetic is also
applied as follows; when an integer is subtracted from a pointer on the left-hand side, when a
pointer is subtracted from another pointer, or when the -- operator is applied to a pointer.

For example, the following D program would trace the result 2:

int *x, *y;
int a[5];

BEGIN
{
  x = &a[0];
  y = &a[2];
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  trace(y - x);
}

Generic Pointers
Sometimes it's useful to represent or manipulate a generic pointer address in a D program
without specifying the type of data referred to by the pointer. Generic pointers can be specified
by using the type void *, where the keyword void represents the absence of specific type
information, or by using the built-in type alias uintptr_t, which is aliased to an unsigned
integer type of size that's appropriate for a pointer in the current data model. You can't apply
pointer arithmetic to an object of type void *, and these pointers can't be dereferenced without
casting them to another type first. You can cast a pointer to the uintptr_t type when you need
to perform integer arithmetic on the pointer value.

Pointers to void can be used in any context where a pointer to another data type is required,
such as an associative array tuple expression or the right-hand side of an assignment
statement. Similarly, a pointer to any data type can be used in a context where a pointer to
void is required. To use a pointer to a non-void type in place of another non-void pointer type,
an explicit cast is required. You must always use explicit casts to convert pointers to integer
types, such as uintptr_t, or to convert these integers back to the appropriate pointer type.

Pointers to DTrace Objects
The D compiler prohibits you from using the & operator to obtain pointers to DTrace objects
such as associative arrays, built-in functions, and variables. You're prohibited from obtaining
the address of these variables so that the DTrace runtime environment is free to relocate them
as needed between probe firings . In this way, DTrace can more efficiently manage the
memory required for programs. If you create composite structures, it's possible to construct
expressions that retrieve the kernel address of DTrace object storage. Avoid creating such
expressions in D programs. If you need to use such an expression, don't rely on the address
being the same across probe firings.

Pointers and Address Spaces
A pointer is an address that provides a translation within some virtual address space to a piece
of physical memory. DTrace runs D programs within the address space of the OS kernel itself.
The Linux system manages many address spaces: one for the OS kernel itself, and one for
each user process. Because each address space provides the illusion that it can access all the
memory on the system, the same virtual address pointer value can be reused across address
spaces, but translate to different physical memory. Therefore, when writing D programs that
use pointers, you must be aware of the address space corresponding to the pointers you
intend to use.

For example, if you use the syscall provider to instrument entry to a system call that takes a
pointer to an integer or array of integers as an argument, such as, pipe(), it would not be valid
to dereference that pointer or array using the * or [] operators because the address in
question is an address in the address space of the user process that performed the system
call. Applying the * or [] operators to this address in D would result in kernel address space
access, which would result in an invalid address error or in returning unexpected data to the D
program, depending on whether the address happened to match a valid kernel address.

To access user-process memory from a DTrace probe, you must apply one of the copyin, 
copyinstr, or copyinto functions. To avoid confusion, take care when writing D programs to name
and comment variables storing user addresses appropriately. You can also store user
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addresses as uintptr_t so that you don't accidentally compile D code that dereferences
them..

Structs and Unions
Collections of related variables can be grouped together into composite data objects called
structs and unions. You define these objects in D by creating new type definitions for them. You
can use any new types for any D variables, including associative array values. This section
explores the syntax and semantics for creating and manipulating these composite types and
the D operators that interact with them.

Structs
The D keyword struct, short for structure, is used to introduce a new type that's composed of
a group of other types. The new struct type can be used as the type for D variables and
arrays, enabling you to define groups of related variables under a single name. D structs are
the same as the corresponding construct in C and C++. If you have programmed in the Java
programming language, think of a D struct as a class that contains only data members and no
methods.

Suppose you want to create a more sophisticated system call tracing program in D that records
several things about each read() and write() system call that's run for an application, for
example, the elapsed time, number of calls, and the largest byte count passed as an
argument.

You could write a D clause to record these properties in four separate associative arrays, as
shown in the following example:

int ts[string];       /* declare ts */
int calls[string];    /* declare calls */
int elapsed [string];  /* declare elapsed */
int maxbytes[string]; /* declare maxbytes */ 

syscall::read:entry, syscall::write:entry
/pid == $target/
{
  ts[probefunc] = timestamp;
  calls[probefunc]++;
  maxbytes[probefunc] = arg2 > maxbytes[probefunc] ?
        arg2 : maxbytes[probefunc];
}

syscall::read:return, syscall::write:return
/ts[probefunc] != 0 && pid == $target/
{
  elapsed[probefunc] += timestamp - ts[probefunc];
}

END
{
  printf("       calls max bytes elapsed nsecs\n");
  printf("------ ----- --------- -------------\n");
  printf("  read %5d %9d %d\n",
  calls["read"], maxbytes["read"], elapsed["read"]);
  printf(" write %5d %9d %d\n",
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  calls["write"], maxbytes["write"], elapsed["write"]);
}

You can make the program easier to read and maintain by using a struct. A struct provides a
logical grouping pf data items that belong together. It also saves storage space because all
data items can be stored with a single key.

First, declare a new struct type at the top of the D program source file:

struct callinfo {
  uint64_t ts;       /* timestamp of last syscall entry */
  uint64_t elapsed;  /* total elapsed time in nanoseconds */
  uint64_t calls;    /* number of calls made */
  size_t maxbytes;   /* maximum byte count argument */
};

The struct keyword is followed by an optional identifier that's used to refer back to the new
type, which is now known as struct callinfo. The struct members are then within a set of
braces {} and the entire declaration ends with a semicolon (;). Each struct member is defined
by using the same syntax as a D variable declaration, with the type of the member listed first
followed by an identifier naming the member and another semicolon (;).

The struct declaration defines the new type. It doesn't create any variables or allocate any
storage in DTrace. When declared, you can use struct callinfo as a type throughout the
remainder of the D program. Each variable of type struct callinfo stores a copy of the four
variables that are described by our structure template. The members are arranged in memory
in order, according to the member list, with padding space introduced between members, as
required for data object alignment purposes.

You can use the member identifier names to access the individual member values using the “.”
operator by writing an expression of the following form:

        variable-name.member-name      

The following example is an improved program that uses the new structure type. In a text
editor, type the following D program and save it in a file named rwinfo.d:

struct callinfo {
  uint64_t ts; /* timestamp of last syscall entry */
  uint64_t elapsed; /* total elapsed time in nanoseconds */
  uint64_t calls; /* number of calls made */
  size_t maxbytes; /* maximum byte count argument */
};

struct callinfo i[string]; /* declare i as an associative array */

syscall::read:entry, syscall::write:entry
/pid == $target/
{
  i[probefunc].ts = timestamp;
  i[probefunc].calls++;
  i[probefunc].maxbytes = arg2 > i[probefunc].maxbytes ?
        arg2 : i[probefunc].maxbytes;
}
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syscall::read:return, syscall::write:return
/i[probefunc].ts != 0 && pid == $target/
{
  i[probefunc].elapsed += timestamp - i[probefunc].ts;
}

END
{
  printf("       calls max bytes elapsed nsecs\n");
  printf("------ ----- --------- -------------\n");
  printf("  read %5d %9d %d\n",
  i["read"].calls, i["read"].maxbytes, i["read"].elapsed);
  printf(" write %5d %9d %d\n",
  i["write"].calls, i["write"].maxbytes, i["write"].elapsed);
}

Run the program to return the results for a command. For example run the sudo dtrace -q
-s rwinfo.d -c /bin/date command.

sudo dtrace -q -s rwinfo.d -c date

The date program runs and is traced until it exits and fires the END probe which prints the
results:

 ...
       calls max bytes elapsed nsecs 
------ ----- --------- ------------- 
 read     2       4096         10689 
 write    1         29          9817

Pointers to Structs
Referring to structs by using pointers is common in C and D. You can use the operator -> to
access struct members through a pointer. If struct s has a member m, and you have a pointer
to this struct named sp, where sp is a variable of type struct s *, you can either use the *
operator to first dereference the sp pointer to access the member:

struct s *sp;
(*sp).m

Or, you can use the -> operator to achieve the same thing:

struct s *sp; 
sp->m

DTrace provides several built-in variables that are pointers to structs. For example, the pointer
curpsinfo refers to struct psinfo and its content provides a snapshot of information about
the state of the process associated with the thread that fired the current probe. The following
table lists a few example expressions that use curpsinfo, including their types and their
meanings.
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Example Expression Type Meaning

curpsinfo->pr_pid pid_t Current process ID

curpsinfo->pr_fname char [] Executable file name

curpsinfo->pr_psargs char [] Initial command line
arguments

The next example uses the pr_fname member to identify a process of interest. In an editor,
type the following script and save it in a file named procfs.d:

syscall::write:entry
/ curpsinfo->pr_fname == "date" /
{
  printf("%s run by UID %d\n", curpsinfo->pr_psargs, curpsinfo->pr_uid);
}

This clause uses the expression curpsinfo->pr_fname to access and match the command
name so that the script selects the correct write() requests before tracing the arguments.
Notice that by using operator == with a left-hand argument that's an array of char and a right-
hand argument that's a string, the D compiler infers that the left-hand argument can be
promoted to a string and a string comparison is performed. Type the command dtrace -q -
s procs.d in one shell and then run several variations of the date command in another
shell.

sudo dtrace -q -s procfs.d 

The output that's displayed by DTrace might be similar to the following, indicating that
curpsinfo->pr_psargs can show how the command is invoked and also any arguments that
are included with the command:

date  run by UID 500
/bin/date  run by UID 500
date -R  run by UID 500
...
^C

Complex data structures are used often in C programs, so the ability to describe and reference
structs from D also provides a powerful capability for observing the inner workings of the
Oracle Linux OS kernel and its system interfaces.

Unions
Unions are another kind of composite type available in ANSI C and D and are related to
structs. A union is a composite type where a set of members of different types are defined and
the member objects all occupy the same region of storage. A union is therefore an object of
variant type, where only one member is valid at any particular time, depending on how the
union has been assigned. Typically, some other variable, or piece of state is used to indicate
which union member is currently valid. The size of a union is the size of its largest member.
The memory alignment that's used for the union is the maximum alignment required by the
union members.
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Member Sizes and Offsets
You can determine the size in bytes of any D type or expression, including a struct or union,
by using the sizeof operator. The sizeof operator can be applied either to an expression or to
the name of a type surrounded by parentheses, as illustrated in the following two examples:

sizeof expression 
sizeof (type-name)

For example, the expression sizeof (uint64_t) would return the value 8, and the expression
sizeof (callinfo.ts) would also return 8, if inserted into the source code of the previous
example program. The formal return type of the sizeof operator is the type alias size_t, which
is defined as an unsigned integer that's the same size as a pointer in the current data model
and is used to represent byte counts. When the sizeof operator is applied to an expression,
the expression is validated by the D compiler, but the resulting object size is computed at
compile time and no code for the expression is generated. You can use sizeof anywhere an
integer constant is required.

You can use the companion operator offsetof to determine the offset in bytes of a struct or
union member from the start of the storage that's associated with any object of the struct or
union type. The offsetof operator is used in an expression of the following form:

offsetof (type-name, member-name)

Here, type-name is the name of any struct or union type or type alias, and member-name is
the identifier naming a member of that struct or union. Similar to sizeof, offsetof returns a
size_t and you can use it anywhere in a D program that an integer constant can be used.

Bit-Fields
D also permits the definition of integer struct and union members of arbitrary numbers of bits,
known as bit-fields. A bit-field is declared by specifying a signed or unsigned integer base type,
a member name, and a suffix indicating the number of bits to be assigned for the field, as
shown in the following example:

struct s 
{
  int a : 1;
  int b : 3;
  int c : 12;
};

The bit-field width is an integer constant that's separated from the member name by a trailing
colon. The bit-field width must be positive and must be of a number of bits not larger than the
width of the corresponding integer base type. Bit-fields that are larger than 64 bits can't be
declared in D. D bit-fields provide compatibility with and access to the corresponding ANSI C
capability. Bit-fields are typically used in situations when memory storage is at a premium or
when a struct layout must match a hardware register layout.

A bit-field is a compiler construct that automates the layout of an integer and a set of masks to
extract the member values. The same result can be achieved by defining the masks yourself
and using the & operator. The C and D compilers try to pack bits as efficiently as possible, but
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they're free to do so in any order or fashion. Therefore, bit-fields aren't guaranteed to produce
identical bit layouts across differing compilers or architectures. If you require stable bit layout,
construct the bit masks yourself and extract the values by using the & operator.

A bit-field member is accessed by specifying its name with the “.” or -> operators, similar to
any other struct or union member. The bit-field is automatically promoted to the next largest
integer type for use in any expressions. Because bit-field storage can't be aligned on a byte
boundary or be a round number of bytes in size, you can't apply the sizeof or offsetof
operators to a bit-field member. The D compiler also prohibits you from taking the address of a
bit-field member by using the & operator.

DTrace String Processing
DTrace provides facilities for tracing and manipulating strings. This section describes the
complete set of D language features for declaring and manipulating strings. Unlike ANSI C,
strings in D have their own built-in type and operator support to enable you to easily and
unambiguously use them in tracing programs.

String Representation
In DTrace, strings are represented as an array of characters ending in a null byte, which is a
byte with a value of zero, usually written as '\0'. The visible part of the string is of variable
length, depending on the location of the null byte, but DTrace stores each string in a fixed-size
array so that each probe traces a consistent amount of data. Strings cannot exceed the length
of the predefined string limit. However, the limit can be modified in your D program or on the
dtrace command line by tuning the strsize option. The default string limit is 256 bytes.

The D language provides an explicit string type rather than using the type char * to refer to
strings. The string type is equivalent to char *, in that it's the address of a sequence of
characters, but the D compiler and D functions such as trace provide enhanced capabilities
when applied to expressions of type string. For example, the string type removes the ambiguity
of type char * when you need to trace the actual bytes of a string.

In the following D statement, if s is of type char *, DTrace traces the value of the pointer s,
which means it traces an integer address value:

trace(s);

In the following D statement, by the definition of the * operator, the D compiler dereferences
the pointer s and traces the single character at that location:

trace(*s);

These behaviors enable you to manipulate character pointers that refer to either single
characters, or to arrays of byte-sized integers that aren't strings and don't end with a null byte.

In the next D statement, if s is of type string, the string type indicates to the D compiler that
you want DTrace to trace a null terminated string of characters whose address is stored in the
variable s:

trace(s);

You can also perform lexical comparison of expressions of type string. See String Comparison.
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String Constants
String constants are enclosed in pairs of double quotes ("") and are automatically assigned the
type string by the D compiler. You can define string constants of any length, limited only by
the amount of memory DTrace is permitted to consume on the system and by whatever limit
you have set for the strsize DTrace runtime option. The terminating null byte (\0) is added
automatically by the D compiler to any string constants that you declare. The size of a string
constant object is the number of bytes associated with the string, plus one additional byte for
the terminating null byte.

A string constant can't contain a literal newline character. To create strings containing newlines,
use the \n escape sequence instead of a literal newline. String constants can also contain any
of the special character escape sequences that are defined for character constants.

String Assignment
Unlike the assignment of char * variables, strings are copied by value and not by reference.
The string assignment operator = copies the actual bytes of the string from the source operand
up to and including the null byte to the variable on the left-hand side, which must be of type
string.

You can use a declaration to create a string variable:

string s;

Or you can create a string variable by assigning it an expression of type string.

For example, the D statement:

s = "hello";

creates a variable s of type string and copies the six bytes of the string "hello" into it (five
printable characters, plus the null byte).

String assignment is analogous to the C library function strcpy(), with the exception that if the
source string exceeds the limit of the storage of the destination string, the resulting string is
automatically truncated by a null byte at this limit.

You can also assign to a string variable an expression of a type that's compatible with strings.
In this case, the D compiler automatically promotes the source expression to the string type
and performs a string assignment. The D compiler permits any expression of type char * or of
type char[n], a scalar array of char of any size, to be promoted to a string.

String Conversion
Expressions of other types can be explicitly converted to type string by using a cast
expression or by applying the special stringof operator, which are equivalent in the following
meaning:

s = (string) expression;
s = stringof (expression);

The expression is interpreted as an address to the string.
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The stringof operator binds very tightly to the operand on its right-hand side. You can
optionally surround the expression by using parentheses, for clarity.

Scalar type expressions, such as a pointer or integer, or a scalar array address can be
converted to strings, in that the scalar is interpreted as an address to a char type. Expressions
of other types such as void may not be converted to string. If you erroneously convert an
invalid address to a string, the DTrace safety features prevents you from damaging the system
or DTrace, but you might end up tracing a sequence of undecipherable characters.

String Comparison
D overloads the binary relational operators and permits them to be used for string
comparisons, as well as integer comparisons. The relational operators perform string
comparison whenever both operands are of type string or when one operand is of type
string and the other operand can be promoted to type string. See String Assignment for a
detailed description. See also Table 4-13, which lists the relational operators that can be used
to compare strings.

Table 4-13    D Relational Operators for Strings

Operator Description

< Left-hand operand is less than right-operand.

<= Left-hand operand is less than or equal to right-
hand operand.

> Left-hand operand is greater than right-hand
operand.

>= Left-hand operand is greater than or equal to
right-hand operand.

== Left-hand operand is equal to right-hand
operand.

!= Left-hand operand is not equal to right-hand
operand.

As with integers, each operator evaluates to a value of type int, which is equal to one if the
condition is true or zero if it is false.

The relational operators compare the two input strings byte-by-byte, similarly to the C library
routine strcmp(). Each byte is compared by using its corresponding integer value in the ASCII
character set until a null byte is read or the maximum string length is reached. See the
ascii(7) manual page for more information. Some example D string comparisons and their
results are shown in the following table.

D string comparison Result

"coffee" < "espresso" Returns 1 (true)

"coffee" == "coffee" Returns 1 (true)

"coffee"" >= "mocha" Returns 0 (false)
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Note:

Identical Unicode strings might compare as being different if one or the other of the
strings isn't normalized.

Aggregations
Aggregations enable you to accumulate data for statistical analysis. The aggregation is
calculated at runtime, so that post-processing isn't required and processing is highly efficient
and accurate. Aggregations function similarly to associative arrays, but are populated by
aggregating functions. In D, the syntax for an aggregation is as follows:

@name[ keys ] = aggfunc( args );

The aggregation name is a D identifier that's prefixed with the special character @. All
aggregations that are named in D programs are global variables. Aggregations can't have
thread-local or clause-local scope. The aggregation names are kept in an identifier namespace
that's separate from other D global variables. If you reuse names, remember that a and @a are
not the same variable. The special aggregation name @ can be used to name an anonymous
aggregation in D programs. The D compiler treats this name as an alias for the aggregation
name @_.

Aggregations can be regular or indexed. Indexed aggregations use keys, where keys are a
comma-separated list of D expressions, similar to the tuples of expressions used for
associative arrays. Regular aggregations are treated similarly to indexed aggregations, but
don't use keys for indexing.

The aggfunc is one of the DTrace aggregating functions, and args is a comma-separated list of
arguments appropriate to that function. Most aggregating functions take a single argument that
represents the new datum.

Aggregation Functions

The following functions are aggregating functions that can be used in a program to collect data
and present it in a meaningful way.

• avg: Stores the arithmetic average of the specified expressions in an aggregation.

• count: Stores an incremented count value in an aggregation.

• max: Stores the largest value among the specified expressions in an aggregation.

• min: Stores the smallest value among the specified expressions in an aggregation.

• sum: Stores the total value of the specified expression in an aggregation.

• stddev: Stores the standard deviation of the specified expressions in an aggregation.

• quantize: Stores a power-of-two frequency distribution of the values of the specified
expressions in an aggregation. An optional increment can be specified.

• lquantize: Stores the linear frequency distribution of the values of the specified expressions,
sized by the specified range, in an aggregation.

• llquantize: Stores the log-linear frequency distribution in an aggregation.
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Printing Aggregations

By default, several aggregations are displayed in the order in which they're introduced in the D
program. You can override this behavior by using the printa function to print the aggregations.
The printa function also lets you precisely format the aggregation data by using a format
string.

If an aggregation isn't formatted with a printa statement in a D program, the dtrace
command snapshots the aggregation data and prints the results after tracing has completed,
using the default aggregation format. If an aggregation is formatted with a printa statement,
the default behavior is disabled. You can achieve the same results by adding the
printa(@aggregation-name) statement to an END probe clause in a program.

The default output format for the avg, count, min, max, stddev, and sum aggregating functions
displays an integer decimal value corresponding to the aggregated value for each tuple. The
default output format for the quantize, lquantize, and llquantize aggregating functions
displays an ASCII histogram with the results. Aggregation tuples are printed as though trace
had been applied to each tuple element.

Data Normalization

When aggregating data over some period, you might want to normalize the data based on
some constant factor. This technique lets you compare disjointed data more easily. For
example, when aggregating system calls, you might want to output system calls as a per-
second rate instead of as an absolute value over the course of the run. The DTrace normalize
function lets you normalize data in this way. The parameters to normalize are an aggregation
and a normalization factor. The output of the aggregation shows each value divided by the
normalization factor.

Speculation
DTrace includes a speculative tracing facility that can be used to tentatively trace data at one
or more probe locations. You can then decide to commit the data to the principal buffer at
another probe location. You can use speculation to trace data that only contains the output
that's of interest; no extra processing is required and the DTrace overhead is minimized.

Speculation is achieved by:

• Setting up a temporary speculation buffer

• Instructing one or more clauses to trace to the speculation buffer

• Committing the data in the speculation buffer to the primary buffer; or discarding the
speculation buffer.

You can decide to commit or discard speculation data when certain conditions are met, by
using the appropriate functions within a clause. By using speculation, you can trace data for a
set of probes until a condition is met and then either dispose of the data if it isn't useful, or keep
it.

The following table describes DTrace speculation functions.

Chapter 4
Speculation

4-37



Table 4-14    DTrace Speculation Functions

Function Args Description

speculation None Returns an identifier for a new
speculative buffer.

speculate ID Denotes that the remainder of
the clause must be traced to
the speculative buffer specified
by ID.

commit ID Commits the speculative buffer
that's associated with ID.

discard ID Discards the speculative buffer
that's associated with ID.

Example 4-1    How to use speculation

The following example illustrates how to use speculation. All speculation functions must be
used together for speculation to work correctly.

The speculation is created for the syscall::open:entry probe and the ID for the speculation is
attached to a thread-local variable. The first argument of the open() system call is traced to the
speculation buffer by using the printf function.

Three more clauses are included for the syscall::open:return probe. In the first of these
clauses, the errno is traced to the speculative buffer. The predicate for the second of the
clauses filters for a non-zero errno value and commits the speculation buffer. The predicate of
the third of the clauses filters for a zero errno value and discards the speculation buffer.

The output of the program is returned for the primary data buffer, so the program effectively
returns the file name and error number when an open() system call fails. If the call doesn't fail,
the information that was traced into the speculation buffer is discarded.

syscall::open:entry
{
  /*
   * The call to speculation() creates a new speculation. If this fails,
   * dtrace will generate an error message indicating the reason for
   * the failed speculation(), but subsequent speculative tracing will be
   * silently discarded.
   */
  self->spec = speculation();
  speculate(self->spec);

  /*
   * Because this printf() follows the speculate(), it is being
   * speculatively traced; it will only appear in the primary data buffer if 
the
   * speculation is subsequently committed.
   */
  printf("%s", copyinstr(arg0));
}

syscall::open:return
/self->spec/
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{
  /*
   * Trace the errno value into the speculation buffer.
   */
  speculate(self->spec);
  trace(errno);
}

syscall::open:return
/self->spec && errno != 0/
{
  /*
   * If errno is non-zero, commit the speculation.
   */
  commit(self->spec);
  self->spec = 0;
}

syscall::open:return
/self->spec && errno == 0/
{
  /*
   * If errno is not set, discard the speculation.
   */
  discard(self->spec);
  self->spec = 0;
}

Chapter 4
Speculation

4-39



5
DTrace Runtime and Compile-time Options
Reference

DTrace uses reasonable default values and flexible default policies for runtime configuration.
Tuning mechanisms in the form of DTrace compiler or runtime option can change the default
behavior of the dtrace utility. You can find more information about the dtrace utility and
various command line options in the dtrace(8) manual page.

Options that can be specified when running the dtrace utility can be categorized into three
types:

• Compile-time Options: affect the compilation process but might also affect runtime
behavior.

• Runtime Options: affect the runtime behavior of DTrace but which are often set at compile
time.

• Dynamic Runtime Options: affect the runtime behavior of DTrace but which can be
changed while tracing, by using the setopt function.

Setting DTrace Compile-time and Runtime Options
You can tune DTrace by setting or enabling a selection of runtime or compiler options. You can
set options by either using the -x command line switch when running the dtrace command, or
by specifying pragma lines in D programs. If an option takes a value, follow the option name
with an equal sign (=) and the option value.

Value Suffixes

Use the following optional suffixes for values that denote size or time:

• k or K: kilobytes

• m or M: megabytes

• g or G: gigabytes

• t or T: terabytes

• ns or nsec: nanoseconds

• us or usec: microseconds

• ms or msec: milliseconds

• s or sec: seconds

• m or min: minutes

• h or hour: hours

• d or day: days

• hz: number per second
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Example 5-1    Enabling Options Using the DTrace Utility

The dtrace command accepts option settings on the command line by using the -x switch,
for example:

sudo dtrace -x nspec=4 -x bufsize=2g \
-x switchrate=10hz -x aggrate=100us -x bufresize=manual

Example 5-2    DTrace Pragma Lines To Enable Options in a D Program

You can set options in a D program by using #pragma D followed by the string option and the
option name and value. The following are examples of valid option settings:

#pragma D option nspec=4
#pragma D option bufsize=2g
#pragma D option switchrate=10hz
#pragma D option aggrate=100us
#pragma D option bufresize=manual

Compile-time Options
Compile-time options can control how DTrace programs are compiled into eBPF code that's
loaded into kernel space.

aggpercpu
Compile-time option that reports aggregations as usual and on a per-cpu basis. Per-cpu
aggregations can also be seen by adding cpu as an aggregation key

amin=<string>
Compile-time option that sets the stability attribute minimum.

argref
Compile-time option that disables the requirement to use all macro arguments.

core
Compile-time option that enables core dumping by dtrace.

cpp
Compile-time option that enables cpp to preprocess the input file.

cppargs
Compile-time option that specifies and extra arguments to pass to cpp (when using -C).

cpphdrs
Compile-time option that specifies the -H option to cpp to print the name of each header file
used.

cpppath=<string>
Compile-time option that specifies the path name of cpp.

ctfpath
Compile-time option that can specify the path of vmlinux.ctfa.
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ctypes=<string>
Compile-time option that specifies Compact Type Format (CTF) definitions of all C types used
in a program at the end of a D compilation run.

debug
Compile-time option that enables DTrace debugging mode. This option is the same as setting
the environment variable DTRACE_DEBUG.

debugassert
Compile-time option that can enable specific debug modes [UNTESTED].

defaultargs
Compile-time option that allows references to unspecified macro arguments. Use 0 as the
value for an unspecified argument.

define=<string>
Compile-time option that specifies a macro name and optional value in the form name[=value].
This option is the same as running dtrace -D.

disasm
Compile-time option to specify requested disassembler listings (when using -S).

droptags
Compile-time option that specifies that drop tags are used.

dtypes=<string>
Compile-time option that specifies CTF definitions of all D types that are used in a program at
the end of a D compilation run.

empty
Compile-time option that permits compilation of empty D source files.

errtags
Compile-time option that prefixes default error message with error tags.

evaltime=[exec|main|postinit|preinit]
Compile-time option that controls when DTrace starts tracing a new process. For dynamically
linked binaries, tracing starts:

• exec: After exec().

• preinit: After initialization of the dynamic linker to load the binary.

• postinit: After constructor execution. Default value.

• main: Before main() starts. Same as postinit.

For statically linked binaries, preinit is equivalent to exec.
For stripped, statically linked binaries, postinit and main are equivalent to preinit.

incdir=<string>
Compile-time option that adds an #include directory to the preprocessor search path. This
option is the same as running dtrace -I.

iregs=<scalar>
Compile-time option that sets the size of the DTrace Intermediate Format (DIF) integer register
set. The default value is 8.
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kdefs
Compile-time option that prevents unresolved kernel symbols.

knodefs
Compile-time option that permits unresolved kernel symbols.

late=[dynamic|static]
Compile-time option that specifies whether to permit references to dynamic translators:

• dynamic: Allow references to dynamic translators.

• static: Require translators to be statically defined.

lazyload=<true|false>
Compile-time option that specifies lazy loading for the DTrace Object Format (DOF) rather
than active loading.

ldpath=<string>
Compile-time option that specifies the path of the dynamic linker loader (ld).

libdir=<string>
Compile-time option that adds a library directory to the library search path.

linkmode=[dynamic|kernel|static]
Compile-time option that specifies the symbol linking mode used by the assembler when
processing external symbol references:

• dynamic: All symbols are treated as dynamic.

• kernel: Kernel symbols are treated as static and user symbols are treated as dynamic.

• static: All symbols are treated as static.

linknommap
Compile-time option to disable use of MMAP-based libelf support when linking USDT objects.

linktype=[dof|elf]
Compile-time option that specifies the output file type:

• dof: Produce a standalone DOF file.

• elf: Produce an ELF file that contains DOF.

modpath=<string>
Compile-time option that specifies the module path. The default path is /lib/modules/
version.

nolibs
Compile-time option that prevents processing D system libraries.

pgmax=<scalar>
Compile-time option that sets a limit on the number of threads that DTrace can grab for
tracing. The default value is 8.

preallocate=<scalar>
Compile-time option that sets the amount of memory to preallocate.

procfspath=<string>
Compile-time option that sets the path to the procfs file system. The default path is /proc.
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pspec
Compile-time option that enables interpretation of ambiguous specifiers as probe names.

stdc=[a|c|s|t]
Compile-time option that specifies ISO C conformance settings for the preprocessor when
invoking cpp with the -C option.
The a, c, and t settings include the-std=gnu99 option (conformance with 1999 C standard
including GNU extensions).
The s setting includes the -traditional-cpp option (conformance with K&R C).

strip
Compile-time option that strips non-loadable sections from the program.

syslibdir=<string>
Compile-time option that sets the path name of system libraries.

tree=<scalar>
Compile-time option that sets the value of the DTrace tree dump bitmap.

tregs=<scalar>
Compile-time option that sets the size of the DIF tuple register set. The default value is 8.

udefs
Compile-time option that prevents unresolved user symbols.

undef=<string>
Compile-time option that undefines a symbol when invoking the preprocessor. This option is
the same as running dtrace -U.

unodefs
Compile-time option that permits unresolved user symbols.

useruid
Compile-time option to use first UID that isn't in the system range .

verbose
Compile-time option that enables DIF verbose mode, which shows each compiled DIF object
(DIFO).

version=<string>
Compile-time option that requests a specific version of the DTrace library.

zdefs
Compile-time option that permits probe definitions that match zero probes.

Runtime Options
Runtime options can control how the DTrace utility behaves.

aggsize=<size>
Runtime option that sets the buffer size for aggregation.

bpflog=<size>
Runtime option that forces reporting of the BPF verifier log (even if verification was
successful).
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bpflogsize
Runtime option that sets the maximum size of the BPF verifier log.

bufsize=<size>
Runtime option that sets the principal buffer size. The default buffer size is set to 4 MB. This
option is the same as running dtrace -b.

cleanrate=<time>
Runtime option that sets the cleaning rate.

cpu=<scalar>
Runtime option that restricts tracing to a particular CPU.

destructive
Runtime option that permits destructive functions to run. This option is the same as running
dtrace -w.

dynvarsize=<size>
Runtime option that sets dynamic variable space size.

lockmem
Runtime option that sets the locked pages limit. This is set to unlimited by default.

maxframes=<scalar>
Runtime option that sets the maximum number of stack frames reported by the kernel.

noresolve
Runtime option that disables automatic resolving of userspace symbols.

nspec=<scalar>
Runtime option that sets the number of speculations.

pcapsize=<size>
Runtime option that sets the maximum packet data capture size.

scratchsize=<size>
Runtime option that sets the maximum DTrace scratch memory size. Some functions in
DTrace require that scratch memory, is made available. For example, when you allocate
memory in a program by using the alloca() function, scratch memory is used for this
purpose. Scratch memory is only valid while a clause is being processed and is released
when the clause has finished being processed. If there isn't enough scratch memory, a
function in a DTrace script can return an error and any remaining processing of the clause
might fail. The default value is 256 bytes.

specsize=<size>
Runtime option that sets the speculation buffer size.

stackframes=<scalar>
Runtime option that sets the number of stack frames. The default value is 20.

statusrate=<time>
Runtime option that sets the rate of status checking.

strsize=<size>
Runtime option that sets the string size. The default value is 256.

ustackframes=<scalar>
Runtime option that sets the number of user-land stack frames. The default value is 100.
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Dynamic Runtime Options
Dynamic runtime options are specific to D programs themselves and are likely to change
depending on program functionality and requirements.

aggrate=<time>
Dynamic runtime option that sets the amount of time between aggregation readings.

aggsortkey=<true|false>
Dynamic runtime option that sorts aggregations by key.

aggsortkeypos=<scalar>
Dynamic runtime option that sets the position, or number, of the aggregation key on which to
sort.

aggsortpos=<scalar>
Dynamic runtime option that sets the position, or number, of the aggregation variable on which
to sort

aggsortrev=<true|false>
Dynamic runtime option that sorts aggregations in reverse order.

flowindent
Dynamic runtime option that controls indentation.
Indent function entry and prefix with ->.
Unindent function return and prefix with <-.
Indent system call entry and prefix with =>.
Unindent system call return and prefix with <=.
This option is the same as running dtrace -F.

quiet
Dynamic runtime option that restricts output to explicitly traced data. This option is the same
as running dtrace -q.

quietresize
Dynamic runtime option that suppresses buffer-resize messages.

rawbytes
Dynamic runtime option that prints trace output in hexadecimal.

stackindent=<scalar>
Dynamic runtime option that sets the number of white space characters to use when indenting
stack and ustack output. The default value is 14.

switchrate=<time>
Dynamic runtime option that sets the rate at which the buffer is read. You can increase the
rate to help prevent data drops, or consider increasing the size of the principal buffer with the
bufsize option.
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6
DTrace Stability Reference

DTrace provides a mechanism to track the stability of interfaces and their architecture
dependencies. This reference provides detail on how attributes are stored and described and
their values.

DTrace Interface Stability Attributes

DTrace describes interfaces by using a triplet of attributes consisting of two stability levels and
one dependency class. By convention, the interface attributes are written in the following order
and are separated by slashes:

name_stability / data_stability / dependency_class

The name stability of an interface describes the stability level that's associated with its name,
as it appears in a D program or on the dtrace command line. For example, the execname D
variable is a Stable name.

The data stability of an interface is distinct from the stability that's associated with the interface
name. This stability level describes the commitment to maintain the data formats that are used
by the interface and any associated data semantics.

The dependency class of an interface is distinct from its name and data stability and describes
whether the interface is specific to the current operating platform or microprocessor.

DTrace and the D compiler track the stability attributes for all the following DTrace interface
entities: providers, probe descriptions, D variables, D functions, types, and program
statements.

Stability attributes are computed by selecting the minimum stability level and class from the
corresponding values for each interface attributes triplet.

The DTrace utility can report on the calculated stability of a D program when run with the -v
option. Use the -e option to prevent DTrace from running the program and to restrict output to
only provide the report. For example, you can run:

sudo dtrace -ev -s myscript.d

Output similar to the following is displayed:

Stability attributes for description dtrace:::BEGIN:

    Minimum Probe Description Attributes
        Identifier Names: Stable
        Data Semantics:   Stable
        Dependency Class: Common

    Minimum Statement Attributes
        Identifier Names: Stable
        Data Semantics:   Private
        Dependency Class: Common
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dtrace:::BEGIN

    Probe Description Attributes
        Identifier Names: Stable
        Data Semantics:   Stable
        Dependency Class: Common

    Argument Attributes
        Identifier Names: Stable
        Data Semantics:   Stable
        Dependency Class: Common

    Argument Types
        None

You can use the -x amin=_attributes_ option with the dtrace command to force the D
compiler to produce an error whenever any attributes computation results in a triplet of
attributes less than the minimum values that you specify on the command line. Note that
attributes are specified with three labels that are delimited /, according to the standard notation
to describe stability. For example:

sudo dtrace -x amin=Evolving/Evolving/Common -s myscript.d

Stability attributes are computed for a probe description by taking the minimum stability
attributes of all the specified probe description fields, according to the attributes that are
published by the provider. DTrace providers export a stability attributes triplet for each of the
four description fields for all the probes published by that provider. Therefore, a provider's
name can have a greater stability than the individual probes that it exports. For simplicity, most
providers use a single set of attributes for all the individual module function name values they
publish. Providers also specify attributes for the args[] array because the stability of any probe
arguments varies by provider.

If the provider field isn't specified in a probe description, then the description is assigned the
Unstable/Unstable/Common stability attributes because the description might end up matching
probes of providers that don't yet exist when used on a future Oracle Linux release. As such,
Oracle doesn't provide guarantees about the future stability and behavior of the program.
Always explicitly specify the provider when writing D program clauses. In addition, any probe
description fields that contain pattern matching characters or macro variables, such as $1, are
treated as unspecified because these description patterns might expand to match providers or
probes to be released in future versions of DTrace and Oracle Linux.

Stability Levels

Stability levels describe the stability of software entities and DTrace interfaces. DTrace stability
levels indicate how likely D programs and layered tools are to require corresponding changes
when you upgrade or change the software stack.

Stability Value Description

Internal The interface is private to DTrace and
represents an implementation detail of DTrace.
Internal interfaces might change in minor or
micro releases.
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Stability Value Description

Private The interface is private to Oracle and
represents an interface developed for use by
other Oracle products that aren't yet publicly
documented for use by customers and ISVs
(independent software vendors). Private
interfaces might change in minor or micro
releases.

Obsolete The interface is available in the current release
but is scheduled to be removed, most likely in a
future minor release. The D compiler might
produce warning messages if you try to use an
Obsolete interface.

External The interface is controlled by an entity other
than Oracle. Oracle makes no claims regarding
either source or binary compatibility for
External interfaces between any two releases.
Applications based on these interfaces might
not work in future releases, including patches
that contain External interfaces.

Unstable The interface provides developers early access
to new or changing technology or to an
implementation artifact that's essential for
observing or debugging system behavior for
which a more stable solution is expected in the
future. Oracle makes no claims about either
source or binary compatibility for Unstable
interfaces from one minor release to another.

Evolving The interface might eventually become
Standard or Stable but is still in transition.
When non-upward, compatible changes
become necessary, they occur in minor and
major releases. These changes are avoided in
micro releases whenever possible. If such a
change is necessary, it's documented in the
release notes for the affected release. Also,
when feasible, migration aids are provided for
binary compatibility and continued D program
development.

Stable The interface is a mature interface.

Standard The interface complies with an industry
standard. The corresponding documentation
for the interface describes the standard to
which the interface conforms. Standards are
typically controlled by a standards
development organization. Changes can be
made to the interface in accordance with
approved changes to the standard. This
stability level can also apply to interfaces that
have been adopted (without a formal standard)
by an industry convention. Availability is
provided for only the specified versions of a
standard; availability in later versions isn't
guaranteed.
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Dependency Classes

Dependency classes are used to describe architectural dependencies for interfaces in DTrace.

Dependency Class Description

Unknown The interface has an unknown set of
architectural dependencies. DTrace doesn't
necessarily know the architectural
dependencies of all entities, such as the data
types defined in the OS implementation. The
Unknown label is typically applied to interfaces
of very low stability for which dependencies
can't be computed. The interface might not be
available when using DTrace on any
architecture other than what you're currently
using.

CPU The interface is specific to the CPU model of the
current system. Interfaces with CPU model
dependencies might not be available on other
CPU implementations, even if those CPUs
export the same instruction set architecture
(ISA).

Platform The interface is specific to the hardware
platform for the current system. A platform
typically associates a set of system components
and architectural characteristics. To display the
current platform name, use the uname -i
command. The interface might not be available
on other hardware platforms.

Group The interface is specific to the hardware
platform group for the current system. A
platform group typically associates a set of
platforms with related characteristics together
under a single name. To display the current
platform group name, use the uname -m
command. The interface is available on other
platforms in the platform group, but it might
not be available on hardware platforms that
aren't members of the group.

ISA The interface is specific to the ISA that's
available for the microprocessors on the
current system. The ISA describes a
specification for software that can be run on
the microprocessor, including details such as
assembly language instructions and registers.

Common The interface is common to all Oracle Linux
platforms, regardless of the underlying
hardware. DTrace programs and layered
applications that depend only on Common
interfaces can be run and deployed on other
Oracle Linux platforms with the same Oracle
Linux and DTrace revisions. Most DTrace
interfaces are Common, so you can use them
wherever you use Oracle Linux.
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7
DTrace Built-in Variable Reference

DTrace includes a set of built-in scalar variables that can be used in D programs or scripts.

Macro Variables
Macro variables are variables that are populated at runtime and identify information about the
running dtrace process or the process running the compiler.

The D compiler defines a set of built-in macro variables that you can use when writing D
programs or interpreter files. Macro variables are identifiers that are prefixed with a dollar sign
($) and are expanded once by the D compiler when processing an input file or script. The
following table describes the macro variables that the D compiler provides.

Table 7-1    D Macro Variables

Name Description Reference

$[0-9]+ Macro arguments See Macro Arguments

$egid Effective group ID See the getegid(2) manual
page.

$euid Effective user ID See the geteuid(2) manual
page.

$gid Real group ID See the getgid(2) manual
page.

$pid Process ID See the getpid(2) manual
page.

$pgid Process group ID See the getpgid(2) manual
page.

$ppid Parent process ID See the getppid(2) manual
page.

$sid Session ID See the getsid(2) manual
page.

$target Target process ID See Target Process ID

$uid Real user ID See the getuid(2) manual
page

The variables expand to the attribute value associated with the current dtrace process or
whatever process is running the D compiler. All the macro variables expand to integers that
correspond to system attributes, such as the process ID and the user ID, except the $[0-9]+
macro arguments and the $target macro variable.

Using macro variables in interpreter files lets you create persistent D programs that you don't
need to edit every time you want to use them. For example, to count all system calls, except
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those that are run by the dtrace command, use the following D program clause
containing $pid:

syscall:::entry
/pid != $pid/
{
  @calls = count();
}

This clause always behaves as expected, even though each invocation of the dtrace
command has a different process ID. Macro variables can be used in a D program anywhere
that an integer, identifier, or string can be used.

Macro variables are expanded only one time when the input file or script is parsed, not
recursively.

Except in probe descriptions, each macro variable is expanded to form a separate input token
and can't be concatenated with other text to yield a single token.

For example, if $pid expands to the value 456, the D code in the following example would
expand to the two adjacent tokens 123 and 456, resulting in a syntax error, rather than the
single integer token 123456:

123$pid

However, in probe descriptions, macro variables are expanded and concatenated with adjacent
text.

Macro variables are only expanded one time within each probe description field and they can't
contain probe description delimiters (:).

Macro Arguments

The D compiler also provides a set of macro variables corresponding to any more argument
operands that are specified as part of the dtrace command invocation. These macro
arguments are accessed by using the built-in names $0, for the name of the D program file or
dtrace command, $1, for the first extra operand, $2 for the second operand, and so on. If you
use the -s option, $0 expands to the value of the name of the input file that's used with this
option. For D programs that are specified on the command line, $0 expands to the value of
argv[0], which is used to run the dtrace command itself.

Macro arguments can expand to integers, identifiers, or strings, depending on the form of the
corresponding text. As with all macro variables, macro arguments can be used anywhere
integer, identifier, and string tokens can be used in a D program.

All the following examples could form valid D expressions assuming appropriate macro
argument values:

execname == $1  /* with a string macro argument */

x += $1         /* with an integer macro argument */

trace(x->$1)    /* with an identifier macro argument */
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Macro arguments can be used to create DTrace interpreter files that run as normal Linux
commands and use information that's specified by a user or by another tool to change their
behavior.

For example, the following D interpreter file traces write() system calls that are run by a
particular process ID and saved in a file named tracewrite:

#!/usr/sbin/dtrace -s 
syscall::write:entry
/pid == $1/
{
}

If you make this interpreter file executable, you can specify the value of $1 by using an extra
command line argument after the interpreter file, for example:

sudo chmod a+rx ./tracewrite
sudo ./tracewrite 12345

The resulting command invocation counts each write() system call that's made by the
process ID 12345.

If a D program references a macro argument that isn't provided on the command line, an
appropriate error message is printed and the program fails to compile, as shown in the
following example output:

dtrace: failed to compile script ./tracewrite: line 4: 
  macro argument $1 is not defined

D programs can reference unspecified macro arguments if you set the defaultargs option. If
defaultargs is set, unspecified arguments have the value 0. See DTrace Runtime and
Compile-time Options Reference for more information about D compiler options. The D
compiler also produces an error message if other arguments that aren't referenced by the D
program are specified on the command line.

The macro argument values must match the form of an integer, identifier, or string. If the
argument doesn't match any of these forms, the D compiler reports an appropriate error
message. When specifying string macro arguments to a DTrace interpreter file, surround the
argument in an extra pair of single quotes to avoid interpretation of the double quotes and
string contents by the shell:

sudo ./foo '"a string argument"'

If you want D macro arguments to be interpreted as string tokens, even if they match the form
of an integer or identifier, prefix the macro variable or argument name with two leading dollar
signs, for example, $$1, which forces the D compiler to interpret the argument value as if it
were a string surrounded by double quotes. All the usual D string escape sequences, per 
Table 4-6, are expanded inside any string macro arguments, regardless of whether they're
referenced by using the $arg or $$arg form of the macro. If the defaultargs option is set,
unspecified arguments that are referenced with the $$arg form have the value of the empty
string ("").
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Target Process ID

Use the $target macro variable to create scripts to be applied to the user process of interest
that you specify with the -p option or that you create by using the dtrace command with the -
c option. The D programs that you specify on the command line or by using the -s option are
compiled after processes are created or grabbed, and the $target variable expands to the
integer process ID of the first such process.

For example, you could use the following D script to find the distribution of system calls that
are made by a particular subject process. Save it in a file named syscall.d:

syscall:::entry
/pid == $target/
{
  @[probefunc] = count();
}

To find the number of system calls made by the date command, save the script in the file
named syscall.d, then run the following command:

sudo dtrace -s syscall.d -c date

args[]
The typed and mapped arguments, if any, to the current probe. The args[] array is accessed
using an integer index. Use dtrace -l -v and check Argument Types for the type of each
argument of each probe. For example, consider the system call prlimit(). The prototype on
its man page (man -s 2 prlimit) is consistent with its DTrace probe listing (dtrace -lvn
'syscall:vmlinux:prlimit*:entry' | grep args). Specifically, argument 2, if non NULL,
points to a struct rlimit with the requested resource limit, which can be traced with:

syscall:vmlinux:prlimit*:entry
/args[2] != NULL/
{
    printf("request limit %d for resource %d\n", args[2]->rlim_cur, args[1]);
}

arg0, …, arg9
int64_t arg0, ..., arg9

The built-in variables arg0, arg1 and so on, are the first ten input arguments to a probe,
untyped and unmapped, represented as 64-bit integers. Values are meaningful only for
arguments defined for the current probe. For example, the command dtrace -lvn
'rawfbt:vmlinux:ksys_write:entry indicates that the probe has no typed arguments. Yet we
know that kernel function ksys_write() has an arg1 that points to a buffer that's to be written.
It might be accessed using:

rawfbt:vmlinux:ksys_write:entry
/pid == $target/
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{
    printf("%s\n", stringof(arg1));
}

caller
uintptr_t caller

The built-in variable caller references the program counter location of the current kernel
thread at the time the probe fired.

curcpu
cpuinfo_t * curcpu

The built-in variable curcpu references the current physical CPU.

curthread
vmlinux`struct task_struct * curthread

The built-in variable curthread references a vmlinux data type, for which members can be
found by searching for "task_struct" on the Internet.

epid
uint_t epid

The built-in variable epid references the enabled probe ID (EPID) for the current probe. This
integer uniquely identifies a particular probe that's enabled with a specific predicate and set of
functions.

errno
int errno

The built-in variable errno references the error value returned by the last system call run by
this thread.

execname
string execname

The built-in variable execname references the name that was passed to execve() to run the
current process.
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fds
fileinfo_t fds[]

The built-in variable fds[] is an array which has the files the current process has opened in
a fileinfo_t array, indexed by file descriptor number. See fileinfo_t.

gid
gid_t gid

The built-in variable gid references the real group ID of the current process.

id
uint_t id

The built-in variable id references the probe ID for the current probe. This ID is the system-
wide unique identifier for the probe, as published by DTrace and listed in the output of dtrace
-l.

ipl
uint_t ipl

The built-in variable ipl references the interrupt priority level (IPL) on the current CPU at probe
firing time.

Note:

This value is non-zero if interrupts are firing and zero otherwise. The non-zero value
depends on whether preemption is active, and other factors, and can vary between
kernel releases and kernel configurations.

pid
pid_t pid

The built-in variable pid references the process ID of the current process.
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ppid
pid_t ppid

The built-in variable ppid references the parent process ID of the current process.

probefunc
string probefunc

The built-in variable probefunc references the function name part of the current probe's
description.

probemod
string probemod

The built-in variable probemod references the module name part of the current probe's
description.

probename
string probename

The built-in variable probename references the name part of the current probe's description.

probeprov
string probeprov

The built-in variable probeprov references the provider name part of the current probe's
description.

stackdepth
uint32_t stackdepth

The built-in variable stackdepth references the current thread's stack frame depth at probe
firing time.
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tid
id_t tid

The built-in variable tid references the thread ID of the current thread.

timestamp
uint64_t timestamp

The built-in variable timestamp references the current value of a nanosecond timestamp
counter. This counter increments from an arbitrary point in the past. Therefore, only use the
timestamp counter for relative computations.

ucaller
uint64_t ucaller

The built-in variable ucaller references the program counter location of the current user
thread at the time the probe fired.

uid
uid_t uid

The built-in variable uid references the real user ID of the current process.

uregs
uint64_t uregs[]

The current thread's saved user-mode register values at probe firing time.

ustackdepth
uint32_t ustackdepth

The built-in variable ustackdepth references the user thread's stack frame depth at probe firing
time.

vtimestamp
uint64_t vtimestamp
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The built-in variable vtimestamp references the current value of a nanosecond timestamp
counter that's virtualized to the amount of time that the current thread has been running on a
CPU, minus the time spent in DTrace predicates and functions. This counter increments from
an arbitrary point in the past. Therefore, only use the vtimestamp counter for relative time
computations.

walltimestamp
int64_t walltimestamp

The built-in variable walltimestamp references the current number of nanoseconds since
00:00 Universal Coordinated Time, January 1, 1970.
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8
DTrace Function Reference

You use D function calls to invoke different kinds of services that DTrace provides.

Functions can be grouped according to their general use case and might appear in more than
one grouping:

Data Recording Functions
Data recording functions record data to a DTrace buffer. These are the most common
functions and the default DTrace function belongs to this category. By default, data recording
functions record data to the principal buffer, but can also be directed to record data into a
speculative buffer.
Data recording functions include:

• Default Action: The default action applies when DTrace encounters an empty clause for a
probe. The default action is to trace the enabled probe identifier (EPID).

• printa: Displays and controls the formatting of an aggregation

• printf: Displays and controls the formatting of a string.

• trace: Traces the result of an expression to the directed buffer.

• tracemem: Copies the specified number of bytes of data from an address in memory to the
current buffer.

Aggregation Functions
Aggregation functions provide calculated information about sets of DTrace data stored in
aggregations.
The following functions are aggregation functions:

• avg: Stores the arithmetic average of the specified expressions in an aggregation.

• count: Stores an incremented count value in an aggregation.

• max: Stores the largest value among the specified expressions in an aggregation.

• min: Stores the smallest value among the specified expressions in an aggregation.

• sum: Stores the total value of the specified expression in an aggregation.

• stddev: Stores the standard deviation of the specified expressions in an aggregation.

• quantize: Stores a power-of-two frequency distribution of the values of the specified
expressions in an aggregation. An optional increment can be specified.

• lquantize: Stores the linear frequency distribution of the values of the specified expressions,
sized by the specified range, in an aggregation.

• llquantize: Stores the log-linear frequency distribution in an aggregation.

The following functions aren't aggregating functions but work on aggregations:

• clear: Clears the values from an aggregation while retaining aggregation keys.

• denormalize: Removes the normalization that's applied to a specified aggregation.
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• normalize: Divides an aggregation value by a specified normalization factor.

• printa: Displays and controls the formatting of an aggregation

Speculation Functions
Speculation functions create or operate on speculative buffers. Speculation is used to trace
quantities into speculation buffers that can either be committed to the primary buffer or
discarded at a later point, when other important information is known.
The following functions are speculation functions:

• speculation: Creates a speculative trace buffer and returns its ID.

• speculate: A special function that causes DTrace to switch to using a speculation buffer
identified by the specified ID for the remainder of a clause.

• commit: Commits the speculative buffer, specified by ID, to the principal buffer.

• discard: Discards a speculative buffer specified by the provided speculation ID.

String Manipulation Functions
String manipulation functions are typical in most programming languages and are used to
perform common functional operations on strings. Many functions have analogs in the system
library calls described in section 3 of the Oracle Linux manual pages. You can often find out
more about these functions by examining the corresponding manual page. For example:

man 3 strchr

Several of these functions require temporary buffers, which persist only for duration of the
clause. Preallocated scratch memory is used for such buffers.
The following string manipulation functions are available:

• index: Finds the first occurrence of a substring within a string.

• rindex: Finds the last occurrence of a specific substring within a string.

• lltostr: Converts an unsigned 64-bit integer to a string.

• strchr: Returns a substring that begins at the first matching occurrence of a specified
character in a string.

• strjoin: Concatenates two specified strings and returns the resulting string.

• strlen: Returns the length of a string in bytes.

• strrchr: Returns a substring that begins at the last matching occurrence of a specified
character in a string.

• strstr: Returns a substring starting at first occurrence of a specified substring within a
string.

• strtok: Parse a string into a sequence of tokens using a specified delimiter.

• substr: Returns the substring from a string at a specified index position.

File Path Manipulation Functions
Similar to string manipulation functions, file path manipulation functions act on file paths or can
provide the path name for a specified pointer. Some of these functions have analogs in the
system library calls described in section 3 of the Oracle Linux manual pages.

• basename: Returns a string excluding any prefix ending in /.
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• dirname: Returns the path up to the last level of a specified string.

Integer Conversion Functions
Similar to string manipulation functions, DTrace includes several integer conversion functions
that can convert integers between host byte order and network byte order. These functions
have analogs in the system library calls described in section 3 of the Oracle Linux manual
pages.
The following integer conversion functions are available:

• htonl: Converts an unsigned 32-bit long integer from host byte order to network byte order.

• htonll: Converts an unsigned 64-bit long integer from host byte order to network byte order.

• htons: Converts a short 16-bit unsigned integer from host byte order to network byte order.

• ntohl: Converts a 32-bit long integer from network byte order to host byte order.

• ntohll: Converts a 64-bit long integer from network byte order to host byte order.

• ntohs: Converts a short 16-bit integer from network byte order to host byte order.

Copying Functions
Copying functions are functions that relate to copying information between memory addresses
and DTrace buffers. Some of these functions are also considered process destructive
functions because they change data in memory for a running process. Destructive functions
must be explicitly enabled in DTrace.

• alloca: Allocates memory and returns a pointer.

• bcopy: Copies a specified size in bytes from a specified source address outside of scratch
memory to a destination address inside scratch memory.

• copyin: Copies the specified size from the user address to a DTrace buffer and returns the
address of the buffer.

• copyinstr: Copies a null-terminated C string from the specified user address to a DTrace
buffer and returns the address of the buffer.

• copyinto: Copies the specified size in bytes from the specified user address into the DTrace
scratch buffer and returns the buffer address.

• copyout: Copies the specified size from the specified DTrace buffer to the specified user
space address.

• copyoutstr: Copies a specified string to a specified user space address.

Lock Analysis Functions
Lock analysis functions are used to check mutexes and file locks.
The following lock analysis functions are available:

• mutex_owned: Checks whether a thread holds the specified kernel mutex.

• mutex_owner: Returns the thread pointer to the current owner of the specified kernel mutex.

• mutex_type_adaptive: Returns a non zero value if a specified kernel mutex is adaptive.

• mutex_type_spin: Returns a non zero value if a specified kernel mutex is a spin mutex.

• rw_iswriter: Checks whether a writer is holding or waiting for the specified reader-writer
lock.

• rw_read_held: Checks whether the specified reader-writer lock is held by a reader.
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• rw_write_held: Checks whether the specified reader-writer lock is held by a writer.

Symbolic Names and Stack Analysis Functions
DTrace includes functions that either record stack traces to the buffer or which can print
symbols and module names for pointers to addresses in user space or kernel space can be
helpful for debugging processes.
The following functions return information about stack and addresses:

• stack: Records a stack trace to the buffer.

• func: Prints the symbol for a specified kernel space address. An alias for sym.

• mod: Prints the module name that corresponds to a specified kernel space address.

• sym: Prints the symbol for a specified kernel space address. An alias for func.

• ustack: Records a user stack trace to the directed buffer.

• uaddr: Prints the symbol for a specified address.

• ufunc: Prints the symbol for a specified user space address. An alias for usym.

• umod: Prints the module name that corresponds to a specified user space address.

• usym: Prints the symbol for a specified address. An alias for ufunc.

General System Functions
DTrace includes several functions to obtain information from the system or which are
generalized for different use cases. Functions in this category include:

• getmajor: Returns the major device number for a specified device.

• getminor: Returns the minor device number for a specified device

• inet_ntoa: Returns a dotted, quad decimal string for a pointer to an IPv4 address.

• progenyof: Checks whether a calling process is in the progeny of a specified process ID.

• rand: Returns a pseudo random integer.

Destructive Functions
DTrace is designed to run code safely. By using destructive functions, you must explicitly
enable them to relax the constraints that protect a system from actions that are run from
DTrace.
Destructive functions can change a process or the entire system in some defined manner.
These include functions such as stopping the current process, raising a specific signal on the
current process or even spawning another system process. You can only use these functions
if the facility to use destructive functions is explicitly enabled. When using the dtrace utility, you
can enable destructive functions by using the -w command line option.
If you try to use destructive functions without explicitly enabling them, dtrace fails with a
message similar to the following:

dtrace: failed to enable 'syscall': destructive functions not allowed

These functions must be used with caution, as such functions can affect every process on the
system and any other system, implicitly or explicitly, depending upon the affected system's
network services.

• copyout: Copies the specified size from the specified DTrace buffer to the specified user
space address.
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• copyoutstr: Copies a specified string to a specified user space address.

• freopen: Changes the file associated with stdout to a specified file.

• ftruncate: Truncates the output stream on stdout.

• raise: Sends a specified signal to the running process.

• system: Causes a specified program to be run on the system as if within a shell.

Special Functions
DTrace also includes functions that change DTrace behavior such as exiting tracing altogether
or changing DTrace runtime options.

• exit: Stops all tracing and exits to return an exit value.

• setopt: Dynamically sets DTrace compiler or runtime options.

Default Action
The default action applies when DTrace encounters an empty clause for a probe. The default
action is to trace the enabled probe identifier (EPID).

The default action copies trace data from the EPID to the principal buffer. The following
information is returned: CPU, probe ID, probe function, and probe name.

The default action provides the most direct use of the dtrace command. For example,
running the following command enables all the probes in the vmlinux module with the default
action:

sudo dtrace -m vmlinux

Output similar to the following is displayed:

dtrace: description 'vmlinux' matched 35 probes
CPU     ID                    FUNCTION:NAME
  0     42                 __schedule:sleep 
  0     34             dequeue_task:dequeue 
  0     40               __schedule:off-cpu 
  0     23        finish_task_switch:on-cpu 
  0     24             enqueue_task:enqueue 
  0     41               __schedule:preempt 
...

Unimplemented Functions
DTrace implementations have varied in functionality, and some functions aren't relevant to
Oracle Linux and might never be implemented. The following functions aren't currently
implemented:

• breakpoint
• chill
• dpath
• ddi_pathname
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• inet_ntoa6
• inet_ntop
• msgdsize
• msgsize
• panic
• pcap
• stop
• trunc

alloca
Allocates memory and returns a pointer.

void alloca(size_t size)

The alloca function allocates size bytes out of scratch memory, and returns a pointer to the
allocated memory. The returned pointer is guaranteed to have 8–byte alignment. Scratch
memory is only valid during the processing of a clause. Memory that's allocated with alloca is
deallocated when processing of the clause completes. If insufficient scratch memory is
available, no memory is allocated and an error is generated.

Example 8-1    How to use alloca to assign a string to an allocated memory region and
then to read it out again by using the pointer

BEGIN
{
        x = (string *)alloca(sizeof(string) + 1);
        *x = "abc";
        trace(*x);
        exit(0);
}

avg
Stores the arithmetic average of the specified expressions in an aggregation.

void avg(expr)

The avg function is an aggregation function to return the arithmetic average for a specified D
expression.

Example 8-2    How to use avg to display the average time that processes spend in the
system write call

The example stores the timestamp for the syscall::write:entry probe fires and then
subtracts this value from the timestamp when the syscall::write:return fires. The average
time is calculated based on the time difference between the two probes and stored in an
aggregation so that it can be updated for each process that runs. When the program exits, the
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aggregated average timestamp value is displayed for each process identified by the built-in
variable execname.

syscall::write:entry
{
  self->ts = timestamp;
}

syscall::write:return
/self->ts/
{
  @time[execname] = avg(timestamp - self->ts);
  self->ts = 0;
}

Output similar to the following is displayed when the program exits:

 gnome-session                                                  8260
  udisks-part-id                                                 9279
  gnome-terminal                                                 9378
  lsof                                                          14903
  ip                                                            15075
  date                                                          15371
  ...
  ps                                                            91792
  sestatus                                                      98374
  pstree                                                       102566
  udisks-daemon                                                250405
  gconfd-2                                                   17880523
  cat                                                        59752284

basename
Returns a string excluding any prefix ending in /.

string basename(const char *str)

The basename function creates a string that consists of a copy of the specified string, str, but
excludes any prefix that ends in /, such as a directory path. The returned string is allocated out
of scratch memory, and is therefore valid only during the processing of the clause. If insufficient
scratch memory is available, basename doesn't run and an error is generated.

Example 8-3    How to use basename to return the last element of a path in a string

BEGIN
{
        printf("%s\n", basename("/foo/bar/baz"));
        printf("%s\n", basename("/foo/bar///baz/"));
        printf("%s\n", basename("/foo/bar/baz/"));
        printf("%s\n", basename("/foo/bar/baz//"));
}

Each of these statements renders the output: baz.
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bcopy
Copies a specified size in bytes from a specified source address outside of scratch memory to
a destination address inside scratch memory.

void bcopy(void src, void dest, size_t size)

The bcopy function copies size bytes from the memory that's pointed to by src to the memory
that's pointed to by dest. The source memory mustn't be in user space, and the destination
memory must be within DTrace scratch memory.

Example 8-4    How to use bcopy to copy data from one memory location to another

In this example, the bcopy function is used to copy 14 characters from the `linux_banner
pointer into a separate memory pointer, s, that's allocated 14 bytes of memory. The printf line
prints a string of the value in stored in the pointer, s. The string that's printed is the same as the
first 14 characters stored in `linux_banner.

 BEGIN
 {
         s = (char *)alloca(14);
         bcopy(`linux_banner, &s[0], 13);
         printf("%s\n", stringof(s));
         exit(0);
 }

clear
Clears the values from an aggregation while retaining aggregation keys.

void clear(@ aggr)

The clear function takes an aggregation as its only parameter. The clear function clears only
the aggregation's values, while the aggregation's keys are retained. If the key is referenced
after the clear function is run, it has a zero value.

Example 8-5    How to use clear to show the system call rate only for the most recent
ten-second period

The clear function is used inside the tick-10sec probe to clear the counter values inside the
@func aggregation.

#pragma D option quiet

BEGIN
{
  last = timestamp;
}

syscall:::entry
{
  @func[execname] = count();
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}

tick-10sec
{
  normalize(@func, (timestamp - last) / 1000000000);
  printa(@func);
  clear(@func);
  last = timestamp;
}

cleanpath
Creates a copy of a path without redundant elements.

string cleanpath(char *str)

The cleanpath function creates a string consisting of a copy of the path indicated by str, but
with certain redundant elements eliminated. In particular, /./ elements in the path are
removed, and /../ elements are collapsed. The collapsing of /../ elements in the path occurs
without regard to symbolic links. Therefore, it's possible that cleanpath could take a valid path
and return a shorter, invalid path.

For example, if str were /foo/../bar and /foo were a symbolic link to /net/foo/export,
cleanpath would return the string /bar, even though bar might only exist in /net/foo and not
in /. This limitation is because cleanpath is called in the context of a firing probe, where full
symbolic link resolution of arbitrary names isn't possible. The returned string is allocated out of
scratch memory and is therefore valid only during the clause. If insufficient scratch memory is
available, cleanpath doesn't execute and an error is generated.

commit
Commits the speculative buffer, specified by ID, to the principal buffer.

void commit(int id)

The commit function is a special function that copies data from a speculative buffer, identified
by the provided id, into the principal buffer. If more data exists in the specified speculative
buffer than the available space in the principal buffer, no data is copied and the drop count for
the buffer is incremented.

If the buffer has been speculatively traced on more than one CPU, the speculative data on the
committing CPU is copied immediately, while speculative data on other CPUs is copied some
time later. Thus, some time might elapse between a commit that begins on one CPU, while the
data is copied from speculative buffers to principal buffers on all CPUs. This length of time is
guaranteed to be no longer than the time dictated by the cleaning rate.

Further calls to the speculative buffer while a commit is active are handled as follows:

• speculation: the speculative buffer isn't available until each per-CPU speculative buffer
has been copied into the corresponding per-CPU principal buffer.

• speculate, commit, or discard: calls are discarded or fail.
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A clause containing a commit can't contain a data recording function. However, a clause can
contain several commit calls to commit disjoint buffers.

Example 8-6    How to use speculation

The following example illustrates how to use speculation. All speculation functions must be
used together for speculation to work correctly.

The speculation is created for the syscall::open:entry probe and the ID for the speculation is
attached to a thread-local variable. The first argument of the open() system call is traced to the
speculation buffer by using the printf function.

Three more clauses are included for the syscall::open:return probe. In the first of these
clauses, the errno is traced to the speculative buffer. The predicate for the second of the
clauses filters for a non-zero errno value and commits the speculation buffer. The predicate of
the third of the clauses filters for a zero errno value and discards the speculation buffer.

The output of the program is returned for the primary data buffer, so the program effectively
returns the file name and error number when an open() system call fails. If the call doesn't fail,
the information that was traced into the speculation buffer is discarded.

syscall::open:entry
{
  /*
   * The call to speculation() creates a new speculation. If this fails,
   * dtrace will generate an error message indicating the reason for
   * the failed speculation(), but subsequent speculative tracing will be
   * silently discarded.
   */
  self->spec = speculation();
  speculate(self->spec);

  /*
   * Because this printf() follows the speculate(), it is being
   * speculatively traced; it will only appear in the primary data buffer if 
the
   * speculation is subsequently committed.
   */
  printf("%s", copyinstr(arg0));
}

syscall::open:return
/self->spec/
{
  /*
   * Trace the errno value into the speculation buffer.
   */
  speculate(self->spec);
  trace(errno);
}

syscall::open:return
/self->spec && errno != 0/
{
  /*
   * If errno is non-zero, commit the speculation.
   */
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  commit(self->spec);
  self->spec = 0;
}

syscall::open:return
/self->spec && errno == 0/
{
  /*
   * If errno is not set, discard the speculation.
   */
  discard(self->spec);
  self->spec = 0;
}

copyin
Copies the specified size from the user address to a DTrace buffer and returns the address of
the buffer.

void copyin(uintptr_t addr, size_t size)

The copyin function copies the specified size in bytes from the specified user address, addr,
into a DTrace scratch buffer and returns the address of this buffer. The user address is
interpreted as an address in the space of the process that's associated with the current thread.
The resulting buffer pointer is guaranteed to have 8-byte alignment. The address in question
must correspond to a faulted-in page in the current process. If the address doesn't correspond
to a faulted-in page, or if insufficient scratch memory is available, NULL is returned, and an
error is generated.

Example 8-7    How to use copyin to copy data from a system write call into the DTrace
buffer

In this example, a probe is set for the entry point on write system calls. A predicate is set to
filter for when the process execname matches the bash application. The copyin function is
used to copy the first argument, arg1, and second argument, arg2, of the write call to a string
which is printed by printf. This script prints the argument for the system write calls when
somebody uses the bash application.

syscall::write:entry
/execname=="bash"/
{
    printf("%s", stringof(copyin(arg1,arg2)));
}

copyinstr
Copies a null-terminated C string from the specified user address to a DTrace buffer and
returns the address of the buffer.

string copyinstr(uintptr_t addr [, size_t size])
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The copyinstr function copies a null-terminated C string from the specified user address into a
DTrace scratch buffer and returns the address of this buffer. The user address is interpreted as
an address in the space of the process that's associated with the current thread. An optional
maximum length parameter sets a limit on the number of bytes that are examined beyond the
address. The resulting string is always null-terminated and the string's length is limited to the
value set by the compiler and runtime strsize option. As with the copyin function, the specified
address must correspond to a faulted-in page in the current process. If the address doesn't
correspond to a faulted-in page, or if insufficient scratch memory is available, NULL is returned,
and an error is generated.

Example 8-8    How to use copyinstr to copy a string from an address space for a
process to the DTrace buffer

In this example, a probe is set for the entry point on write system calls. A predicate is set to
filter for when the process execname matches the passwd application. The copyinstr function
is used to copy the first argument, arg1, of the write call to a string which is printed by printf.
This script prints the arguments for the system write calls when somebody uses the passwd
application to reset a password.

syscall::write:entry
/execname=="passwd"/
{
    printf("%s", copyinstr(arg1));
}

copyinto
Copies the specified size in bytes from the specified user address into the DTrace scratch
buffer and returns the buffer address.

void copyinto(uintptr_t addr, size_t size, void dest)

The copyinto function copies the specified size in bytes, size, from the specified user address,
addr, into the specified DTrace scratch buffer, dest. The user address is interpreted as an
address in the space of the process that's associated with the current thread. The address in
question must correspond to a faulted-in page in the current process. If the address doesn't
correspond to a faulted-in page, or if any of the destination memory lies outside of scratch
memory, no copying takes place and an error is generated.

Example 8-9    How to use copyinto to copy data from a system write call into an
allocated memory buffer

In this example, a probe is set for the entry point on write system calls. A predicate is set to
filter for when the process execname matches the podman application. The copyinto function is
used to copy 32 bytes of the first argument, arg1, of the write call into a pointer to an allocated
memory buffer of 32 bytes, ptr. The script prints the a string representation of ptr when the
podman application makes a system write call.

syscall::write:entry
/execname=="podman"/
{
        ptr = (char *)alloca(32);
        copyinto(arg1, 32, ptr);
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        printf("'%s'", stringof(ptr));
}

copyout
Copies the specified size from the specified DTrace buffer to the specified user space address.

void copyout(void *src, uintptr_t addr, size_t size)

The copyout function is a destrructive function that copies the specified number of bytes from a
specified DTrace buffer to a specified user space address. The user space address is in the
address space of the process that associated with the current thread. If the user space
address doesn't correspond to a valid, faulted-in page in the current address space, an error is
generated.

Example 8-10    How to use copyout to copy data from a DTrace buffer to a specified
user space address

The example shows how to use copyout to write a string value, DTrace, into the user space
address for a write system call when a user runs the ls command. If you run this script,
whenever anybody runs the ls command on the system, the string DTrace replaces the first 5
bytes returned by the command.

#pragma D option destructive
syscall::write:entry
/execname == "ls"/
{
    copyout("DTrace", arg1, 5);
}

copyoutstr
Copies a specified string to a specified user space address.

void copyoutstr(char * string, uintptr_t addr, size_t size)

The copyoutstr function is a destructive function that copies the specified string, string, to a
specified address, addr, in the address space of the process associated with the current
thread. A third argument, size, is used to control the length of the string. If the user space
address doesn't correspond to a valid, faulted-in page in the current address space, an error is
generated. Note that the string length is also limited to the value that's set by the compiler and
runtime strsize option. If size exceeds the value strsize option, then the string length is
limited to the value specified by the strsize option.

Example 8-11    How to use copyoutstr to copy a string to a specified user space
address

In this example, the syscall::newuname:entry and syscall::newuname:return probes are
used. The entry probe is used to populate a user space address with the first argument used in
the entry probe. The return probe writes the string "DTraceHost" into the address of the first

Chapter 8
copyout

8-13



argument. When any process makes the newuname system call, the hostname part of the call is
rewritten.

#pragma D option destructive

syscall::newuname:entry 
{ 
  self->a = arg0; 
}

syscall::newuname:return 
{
 copyoutstr("DtraceHost", self->a+65, 128);
}

When you run this script and then run the uname -a command, output similar to the following
is displayed:

Linux DtraceHost 5.15.0-7.86.6.1.el8uek.x86_64 #2 SMP ... GNU/Linux

count
Stores an incremented count value in an aggregation.

void count()

The count function is an aggregation function that takes no arguments and returns the value
for the number of times that it has been called.

Example 8-12    How to use count to display the number of write() system calls by
process name

This example uses the syscall::write:entry probe and an aggregation to store the count
value. The aggregation uses the built-in variable, execname, as a key.

syscall::write:entry
{
  @counts[execname] = count();
}

When run, output similar to the following is displayed when the program exits:

dtrace: description 'syscall::write:entry' matched 1 probe
^C
  dirname                                                           1
  dtrace                                                            1
  gnome-panel                                                       1
  ps                                                                1
  basename                                                          2
  gconfd-2                                                          2
  java                                                              2
  bash                                                              9
  cat                                                               9
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  gnome-session                                                     9
  Xorg                                                             21
  firefox                                                         149
  gnome-terminal                                                 9421
  ...

denormalize
Removes the normalization that's applied to a specified aggregation.

void denormalize(@ aggr)

The denormalize function removes any normalization that's applied to a specified aggregation.
Normalization doesn't change the underlying data that makes up an aggregation, so the
denormalize function removes the normalization to return the raw data directly.

Example 8-13    How denormalize is used in a script to present raw data

#pragma D option quiet

BEGIN
{
  start = timestamp;
}

syscall:::entry
{
  @func[execname] = count();
}

END
{
  this->seconds = (timestamp - start) / 1000000000;
  printf("Ran for %d seconds.\n", this->seconds);
  printf("Per-second rate:\n");
  normalize(@func, this->seconds);
  printa(@func);
  printf("\nRaw counts:\n");
  denormalize(@func);
  printa(@func);
}

dirname
Returns the path up to the last level of a specified string.

string dirname(const char *string)

The dirname function creates a string that consists of all but the last level of the path name
that's specified by a specified string, string. The returned string is allocated out of scratch
memory and is therefore valid only during processing of the clause. If insufficient scratch
memory is available, dirname doesn't run and an error is generated.
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Example 8-14    How to use dirname to return the path up to the last element in a string

BEGIN
{
        printf("%s\n", dirname("/foo/bar/baz"));
        printf("%s\n", dirname("/foo/bar///baz/"));
        printf("%s\n", dirname("/foo/bar/baz/"));
        printf("%s\n", dirname("/foo/bar/baz//"));
}

Each of these statements renders the output: /foo/bar.

discard
Discards a speculative buffer specified by the provided speculation ID.

void discard(int id)

The discard function causes DTrace to discard a speculative buffer specified by the provided
speculation ID, id.

When a speculative buffer is discarded, its contents are also discarded. If the speculation has
only been active on the CPU calling discard, the buffer is immediately available for further
calls to speculation. If the speculation has been active on more than one CPU, the discarded
buffer is available for further speculation some time after the call to discard. The length of
time between a discard on one CPU and the buffer being made available for later
speculations is guaranteed to be no longer than the time that's dictated by the cleaning rate. If,
at the time speculation is called, no buffer is available because all speculative buffers are
being discarded or committed, dtrace generates a message similar to the following:

dtrace: 905 failed speculations (available buffer(s) still busy)

You can reduce the likelihood of all buffers being unavailable by tuning the number of
speculation buffers or the cleaning rate.

Example 8-15    How to use speculation

The following example illustrates how to use speculation. All speculation functions must be
used together for speculation to work correctly.

The speculation is created for the syscall::open:entry probe and the ID for the speculation is
attached to a thread-local variable. The first argument of the open() system call is traced to the
speculation buffer by using the printf function.

Three more clauses are included for the syscall::open:return probe. In the first of these
clauses, the errno is traced to the speculative buffer. The predicate for the second of the
clauses filters for a non-zero errno value and commits the speculation buffer. The predicate of
the third of the clauses filters for a zero errno value and discards the speculation buffer.
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The output of the program is returned for the primary data buffer, so the program effectively
returns the file name and error number when an open() system call fails. If the call doesn't fail,
the information that was traced into the speculation buffer is discarded.

syscall::open:entry
{
  /*
   * The call to speculation() creates a new speculation. If this fails,
   * dtrace will generate an error message indicating the reason for
   * the failed speculation(), but subsequent speculative tracing will be
   * silently discarded.
   */
  self->spec = speculation();
  speculate(self->spec);

  /*
   * Because this printf() follows the speculate(), it is being
   * speculatively traced; it will only appear in the primary data buffer if 
the
   * speculation is subsequently committed.
   */
  printf("%s", copyinstr(arg0));
}

syscall::open:return
/self->spec/
{
  /*
   * Trace the errno value into the speculation buffer.
   */
  speculate(self->spec);
  trace(errno);
}

syscall::open:return
/self->spec && errno != 0/
{
  /*
   * If errno is non-zero, commit the speculation.
   */
  commit(self->spec);
  self->spec = 0;
}

syscall::open:return
/self->spec && errno == 0/
{
  /*
   * If errno is not set, discard the speculation.
   */
  discard(self->spec);
  self->spec = 0;
}
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exit
Stops all tracing and exits to return an exit value.

void exit(int status)

The exit function is used to immediately stop tracing and inform DTrace to do the following:
stop tracing, perform any final processing, and call exit() with the specified status value.
Because exit returns a status to user level, it's considered a data recording function. However,
unlike other data recording functions, exit can't be speculatively traced. Note that because
exit is a data recording function, it can be dropped.

When exit is called, only those DTrace functions that are already in progress on other CPUs
are completed. No new functions occur on any CPU. The only exception to this rule is the
processing of the END probe, which is called after the DTrace has processed the exit function,
and indicates that tracing must stop.

Example 8-16    How to use exit to end all tracing and exit with an exit value

BEGIN
{
  trace("hello, world");
  exit(0);
}

freopen
Changes the file associated with stdout to a specified file.

void freopen(const char pathname, ...)

The freopen function is typically a data recording function that changes the file that's
associated with stdout to the file that's specified by the arguments in printf fashion.

If the "" string is used, the output is again restored to stdout.

The freopen function isn't only data-recording but also destructive, because you can use it to
overwrite arbitrary files.

Example 8-17    How to use freopen to write to a specified file and log a system call

The script opens with a pragma to enable destructive functions in DTrace. You can alternatively
remove this line and run the script with dtrace -w. The freopen function is destructive
because it writes to a file on the file system and can overwrite existing files. The example
creates a temporary log file to track the process names that make a mkdir system call while
the program is running.

 #pragma D option destructive
 dtrace:::BEGIN
 {
        freopen("/tmp/dlog");
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 }
 syscall:vmlinux:mkdir:entry
 {
        printf("%Y-> %s \n",walltimestamp,execname);
 }

ftruncate
Truncates the output stream on stdout.

void ftruncate()

The ftruncate function is a data recording function that truncates the output stream on
stdout.

Example 8-18    How to use ftruncate to truncate the stdout output stream, by using a
counter

tick-10ms
{
    printf("%d\n", i++);
}

tick-10ms
/i == 10/
{
    ftruncate();
}

tick-10ms
/i == 20/
{
    exit(0);
}

When the example script is run using sudo dtrace -o /tmp/result -s /path/to/
script. Standard output is saved to /tmp/result. The program implements a counter that's
triggered every 10 ms and is designed to count up to 20 before exiting. The counter prints to
standard output for every count, but when the counter reaches 10, ftruncate is called to
truncate standard output. When the program exits and you can view the contents of /tmp/
result you can see that the standard output preceding the 11th counter is removed.

func
Prints the symbol for a specified kernel space address. An alias for sym.

_symaddr func(uintptr_t addr)

The func function is a data recording function that prints the symbol that corresponds to a
specified kernel space address, addr. The func function is an alias for sym.
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Example 8-19    How the func function can return the symbol for a kernel space address

This example uses a bash script to pick a test symbol from /proc/kallmodsyms that can be
used as a reference in the DTrace program that returns the symbols for the module and
function.

#!/bin/bash
read ADD <<< $(awk '/ksys_write/ {print $1}' /proc/kallsyms)
dtrace -qn 'BEGIN {func(0x'$ADD'); exit(0)}'

getmajor
Returns the major device number for a specified device.

vmlinux`dev_t getmajor(vmlinux`dev_t))

The getmajor function returns the major device number for a specified device.

getminor
Returns the minor device number for a specified device

vmlinux`dev_t getminor(vmlinux`dev_t)

The getminor function returns the minor device number for a specified device.

htonl
Converts an unsigned 32-bit long integer from host byte order to network byte order.

uint32_t htonl(uint32_t)

The htonl function converts an unsigned 32-bit long integer from host byte order to network
byte order.

htonll
Converts an unsigned 64-bit long integer from host byte order to network byte order.

uint64_t htonll(uint64_t)

The htonll function converts an unsigned 64-bit long integer from host-byte order to network-
byte order.
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htons
Converts a short 16-bit unsigned integer from host byte order to network byte order.

uint16_t htons(uint16_t)

The htons function converts a short 16-bit unsigned integer from host byte order to network
byte order.

index
Finds the first occurrence of a substring within a string.

int index(const char * str, const char * substr [, int start])

The index function finds the position of the first occurrence of a substring, substr, in a string,
str, starting at an optional position, start. If the specified value of the start position is less than
0, it's implicitly set to 0. If the string is empty, index returns 0. If no match is found for the
substring within the string, index returns -1.

Example 8-20    How to use index to identify the first occurrence of a substring within a
string

BEGIN {
         x = "#canyoufindapenguininthisstring?";
         y = "penguin";
         printf("The penguin appears at character %3d\n", index(x, y));
         exit(0)
}

inet_ntoa
Returns a dotted, quad decimal string for a pointer to an IPv4 address.

string inet_ntoa(ipaddr_t *)

The inet_ntoa function takes a pointer to an IPv4 address and returns it as a dotted, quad
decimal string. The returned string is allocated out of scratch memory and is therefore valid
only during processing of the clause. If insufficient scratch memory is available, inet_ntoa
doesn't run and an error is generated. See the inet(3) manual page for more information.

Example 8-21    How to use inet_ntoa to return dotted IPv4 address notation for a
pointer to an IPv4 address

In the example, an IP address pointer is created in scratch memory and populated so that the
inet_ntoa function can process it and return a string value.

 typedef vmlinux`__be32 ipaddr_t;
 ipaddr_t *ip4a;
 BEGIN
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 {
         ip4a = alloca(sizeof(ipaddr_t));
         *ip4a = 0x0100007f;
         printf("%s\n", inet_ntoa(ip4a));
         exit(0);
 }

inet_ntoa6
Returns an RFC 1884 convention 2 string for a pointer to an IPv6 address.

string inet_ntoa6(in6_addr_t *addr)

The inet_ntoa6 function takes a pointer addr to an IPv6 address and returns it as an RFC
1884 convention 2 string, with lowercase hexadecimal digits. The returned string is allocated
out of scratch memory and is therefore valid only during the clause. If insufficient scratch
memory is available, inet_ntoa6 doesn't run and an error is generated.

inet_ntop
Returns an RFC 1884 convention 2 string for a pointer to an IPv6 address.

string inet_ntop(int af, void *addr)

The inet_ntop function takes a pointer addr to an IP address and returns a string version that
depends on the provided address family, either AF_INET, or AF_INET6. The returned string is
allocated out of scratch memory and is therefore valid only during the clause. If insufficient
scratch memory is available, inet_ntop doesn't run and an error is generated.

link_ntop
Returns a string translation of a hardware address.

string link_ntop(int hardware_type, void *addr)

The link_ntop function translates a hardware address into a string. The hardware_type can be
ARPHRD_ETHER or ARPHRD_INFINIBAND. The returned string is allocated out of scratch memory,
and is therefore valid only during the clause. If insufficient scratch space is available,
link_ntop doesn't run and an error is generated. The function is the link-level equivalent of
inet_ntop.

llquantize
Stores the log-linear frequency distribution in an aggregation.

void llquantize(expr, int32_t factor, int32_t from, int32_t to [, int32_t 
steps [, int32_t incr]])
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The llquantize function is an aggregation function used to display a log-linear frequency
distribution for an expression. The logarithmic base, factor, is specified along with lower, from,
and upper, to, exponents and the number of steps, steps, per order of magnitude. If the
number of steps isn't provided, a default value of 1 is used. An optional integer, incr, can be
provided to specify the amount to increment each step by.

The log-linear llquantize aggregating function combines the capabilities of both the log and
linear functions. While the quantize function uses base 2 logarithms, with llquantize, you
specify the base, and the minimum and, maximum exponents. Further, each logarithmic range
is subdivided linearly by the number of steps specified and the increment value, if specified.

Example 8-22    How to use llquantize to visualize system call latencies

The script monitors all system call entry and return calls. The time spent in each call is
calculated using the timestamp for each. An aggregation is used to create a log-linear
quantization with factor of 10 ranging from magnitude 3 to magnitude 5 (inclusive) with 10
steps per magnitude. The output from this script visualizes the latency of system calls in the
microsecond range.

syscall:::entry
{
  self->ts = timestamp;
}

syscall:::return
/ self->ts /
{
  @ = llquantize(timestamp - self->ts, 10, 3, 5, 5);
  self->ts = 0;
}

           value  ------------- Distribution ------------- count    
           -1000 |                                         0        
    abs() < 1000 |@@@@@@@@@@@@@@@                          2888133  
            1000 |@@@@@                                    1017345  
            2000 |@@@@                                     714432   
            4000 |@                                        266057   
            6000 |@                                        118797   
            8000 |                                         84332    
           10000 |@                                        152108   
           20000 |@                                        125154   
           40000 |                                         49334    
           60000 |                                         38374    
           80000 |                                         31739    
          100000 |                                         91033    
          200000 |                                         51153    
          400000 |                                         20343    
          600000 |                                         10685    
          800000 |                                         6970     
      >= 1000000 |@@@@@@@@@@@                              2081856  
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lltostr
Converts an unsigned 64-bit integer to a string.

string lltostr(int64_t)

The lltostr function converts an unsigned 64-bit integer to a string. The returned string is
allocated out of scratch memory and is therefore valid only during processing of the clause. If
insufficient scratch memory is available, lltostr doesn't run and an error is generated.

Example 8-23    How to use lltostr to convert a 64-bit integer to a string

The example shows that the printf function treats the value as a string. The pragma option in
the script sets the maximum string size to 7 bytes, so the string that's returned by the lltostr
function is truncated to 1234567.

#pragma D option strsize=7

BEGIN
{
    printf("%s\n", lltostr(1234567890));
}

lquantize
Stores the linear frequency distribution of the values of the specified expressions, sized by the
specified range, in an aggregation.

void lquantize(expr, int32_t from, int32_t to [, int32_t step])

The lquantize function is an aggregation function used to display a linear value distribution.
The lquantize function takes four arguments: a D expression, expr, a lower bound, from, an
upper bound, to, and an optional step. Note that the default step value is 1.

Example 8-24    How to use lquantize to display the distribution of write() calls by file
descriptor

syscall::write:entry
{
  @fds[execname] = lquantize(arg0, 0, 100, 1);
}

Output similar to the following might be displayed after the program exits:

 ...
  gnome-session                                     
           value  ------------- Distribution ------------- count    
              25 |                                         0        
              26 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 9        
              27 |                                         0        
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  gnome-terminal                                    
           value  ------------- Distribution ------------- count    
              15 |                                         0        
              16 |@@                                       1        
              17 |                                         0        
              18 |                                         0        
              19 |                                         0        
              20 |                                         0        
              21 |@@@@@@@@                                 4        
              22 |@@                                       1        
              23 |@@                                       1        
              24 |                                         0        
              25 |                                         0        
              26 |                                         0        
              27 |                                         0        
              28 |                                         0        
              29 |@@@@@@@@@@@@@                            6        
              30 |@@@@@@@@@@@@@                            6        
              31 |                                         0        
 ...

max
Stores the largest value among the specified expressions in an aggregation.

void max(expr)

The max function is an aggregation function to store the largest value for an expression in an
aggregation.

Example 8-25    How to use max to display the maximum time that processes spend in
the system write call

The example stores the timestamp for the syscall::write:entry probe fires and then
subtracts this value from the timestamp when the syscall::write:return fires. The maximum
time is calculated based on the time difference between the two probes and stored in an
aggregation so that it can be updated for each process that runs. When the program exits, the
aggregated maximum timestamp value is displayed for each process identified by the built-in
variable execname.

syscall::write:entry
{
  self->ts = timestamp;
}

syscall::write:return
/self->ts/
{
  @time[execname] = max(timestamp - self->ts);
  self->ts = 0;
}
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Output similar to the following is displayed when the program exits:

  ProxyResolution                                                4891
  firewalld                                                      7892
  RDD Process                                                   11028
  Utility Process                                               11344
  gdbus                                                         11474
  GLXVsyncThread                                                14181
  python3                                                       15286
  Socket Process                                                15294
  rtkit-daemon                                                  16547
  pmdakvm                                                       17089
  NetworkManager                                                18246
  pmdaxfs                                                       19661
  sudo                                                          19917
...

min
Stores the smallest value among the specified expressions in an aggregation.

void min(expr)

The min function is an aggregation function to store the smallest value for an expression in an
aggregation.

Example 8-26    How to use max to display the minimum time that processes spend in
the system write call

The example stores the timestamp for the syscall::write:entry probe fires and then
subtracts this value from the timestamp when the syscall::write:return fires. The minimum
time is calculated based on the time difference between the two probes and stored in an
aggregation so that it can be updated for each process that runs. When the program exits, the
aggregated minimum timestamp value is displayed for each process identified by the built-in
variable execname.

syscall::write:entry
{
  self->ts = timestamp;
}

syscall::write:return
/self->ts/
{
  @time[execname] = min(timestamp - self->ts);
  self->ts = 0;
}

Output similar to the following is displayed when the program exits:

  IPC I/O Parent                                                 1087
  gmain                                                          1091
  libvirt-dbus                                                   1501
  pmcd                                                           1601
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  libvirtd                                                       1615
  threaded-ml                                                    1673
  Timer                                                          2130
  NetworkManager                                                 2140
  Socket Thread                                                  2275
  InputThread                                                    2420
...

mod
Prints the module name that corresponds to a specified kernel space address.

_symaddr mod(uintptr_t addr)

The mod function is a data recording function that prints the name of the module that
corresponds to a specified kernel space address.

Example 8-27    How to use mod to print the module name for a pointer to a specified
kernel space address

This example uses a bash script to pick a test symbol from /proc/kallmodsyms that can be
used as a reference in the DTrace program that returns the symbol for the module. Note that
where a module is effectively empty in /proc/kallmodsyms it's the same as a value of vmlinux.

#!/bin/bash
read ADD <<< `awk '/ksys_write/ {print $1}' /proc/kallmodsyms`
dtrace -qn 'BEGIN {mod(0x'$ADD'); exit(0) }'

mutex_owned
Checks whether a thread holds the specified kernel mutex.

int mutex_owned(vmlinux`struct mutex *)

The mutex_owned function returns non-zero if the calling thread holds the specified kernel
mutex, or zero otherwise.

Example 8-28    How to use mutex_owned to check whether the calling thread holds a
mutex

fbt::mutex_lock:entry
{
        this->mutex = arg0;
}

fbt::mutex_lock:return
{
        this->owned = mutex_owned((struct mutex *)this->mutex);
}

fbt::mutex_lock:return
/!this->owned/
{
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        printf("mutex_owned() returned 0, expected non-zero\n");
        exit(1);
}

mutex_owner
Returns the thread pointer to the current owner of the specified kernel mutex.

vmlinux`struct task_struct mutex_owner(vmlinux`struct mutex *)

The mutex_owner function returns the thread pointer of the current owner of the specified
adaptive kernel mutex. mutex_owner returns NULL if the specified adaptive mutex is unowned or
if the specified mutex is a spin mutex.

Example 8-29    How to use mutex_owner to check whether the calling thread doesn't
have ownership of a mutex

fbt::mutex_lock:entry
{
        this->mutex = arg0;
}

fbt::mutex_lock:return
{
        this->owner = mutex_owner((struct mutex *)this->mutex);
}

fbt::mutex_lock:return
/this->owner != curthread/
{
        printf("current thread is not current owner of owned lock\n");
        exit(1);
}

mutex_type_adaptive
Returns a non zero value if a specified kernel mutex is adaptive.

int mutex_type_adaptive(vmlinux`struct mutex *)

The mutex_type_adaptive function returns a non zero value if a specified kernel mutex is
adaptive. All mutexes in the Oracle Linux kernel are adaptive, so the mutex_type_adaptive
function always returns 1.

Example 8-30    How to use mutex_type_adaptive to check whether a mutex isn't
adaptive

Because all mutexes on Oracle Linux are adaptive, the final clause in this program is never
processed.

fbt::mutex_lock:entry
{
        this->mutex = arg0;
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}

fbt::mutex_lock:return
{
        this->adaptive = mutex_type_adaptive((struct mutex *)this->mutex);
}

fbt::mutex_lock:return
/!this->adaptive/
{
        printf("mutex_type_adaptive returned 0, expected non-zero\n");
        exit(1);
}

mutex_type_spin
Returns a non zero value if a specified kernel mutex is a spin mutex.

mutex_type_spin(int(vmlinux`struct mutex *))

The mutex_type_spin function returns a non zero value if a specified kernel mutex is a spin
mutex. All mutexes in the Oracle Linux kernel are adaptive, so the mutex_type_spin function
always returns 0.

Example 8-31    How to use mutex_type_spin to check whether a mutex is a spin mutex

Because all mutexes on Oracle Linux are adaptive, the final clause in this program is never
processed.

fbt::mutex_lock:entry
{
        this->mutex = arg0;
}

fbt::mutex_lock:return
{
        this->spin = mutex_type_spin((struct mutex *)this->mutex);
}

fbt::mutex_lock:return
/this->spin/
{
        printf("mutex_type_spin returned non-zero, expected 0\n");
        exit(1);
}

normalize
Divides an aggregation value by a specified normalization factor.

void normalize(@ aggr, uint64_t)
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The normalize function divides an aggregation value by a normalization factor to provide a
better view of data within an aggregation. The function takes the aggregation and the
normalization factor as arguments. A program used to aggregate data over a period but that
presents the data as a per-second occurrence rather than an absolute value is a typical
example of a use case for this function.

Example 8-32    How to use normalize to show the number of system calls per second
for processes

The normalize function is called against the aggregation. The time is divided to by
1,000,000,000 to convert nanoseconds to seconds.

#pragma D option quiet

BEGIN
{
  start = timestamp;
}

syscall:::entry
{
  @func[execname] = count();
}

END
{
  normalize(@func, (timestamp - start) / 1000000000);
}

ntohl
Converts a 32-bit long integer from network byte order to host byte order.

uint32_t ntohl(uint32_t)

The ntohl function converts a 32-bit long integer from network byte order to host byte order.
See the byteorder(3) manual page for more information.

ntohll
Converts a 64-bit long integer from network byte order to host byte order.

uint64_t ntohll(uint64_t)

The ntohll function converts a 64-bit long integer from network byte order to host byte order.
See the byteorder(3) manual page for more information.
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ntohs
Converts a short 16-bit integer from network byte order to host byte order.

uint16_t ntohs(uint16_t)

The ntohs function converts a short 16-bit integer from network byte order to host byte order.
See the byteorder(3) manual page for more information.

print
Prints information about a variable.

void print(void *addr)

The print function is a data recording function that prints information about the variable at the
specified address. The function prints the address, type, and data values. This function is
aware of kernel and user defined data types, and it recursively descends hierarchies of
structures to report on their members. Zero-valued fields are skipped. The dynamic printsize
option can be used to restrict the amount of data displayed. In the case of a printsize
overrun, ellipsis (...) are shown in the output.

printa
Displays and controls the formatting of an aggregation

void printa([string format,] @aggr )

The printa function is a data recording function that enables you to display and format
aggregations. The function takes an aggregation and optionally a string to specify the output
formatting using printf formatting directives. If no formatting string is specified, printa the
specified aggregation is displayed using the default format. If format is specified, the
aggregation is formatted.

See the printf(1) manual page for more information on formatting directives. Note that
although DTrace's implementation of printf is aligned with the correlating system function,
some differences apply. Notably, you can use the %d formatting directive to represent any
length of an integer. Furthermore, printa also handles the appropriate formatting for each
aggregation.

Example 8-33    How to use printa to print basic formatting for different aggregations

BEGIN
{
        @a = avg(1);
        @b = count();
        @c = lquantize(1, 1, 10);
        printa("@a = %@u\n", @a);
        printa("@b = %@u\n", @b);
        printa("@c = %@d\n", @c);
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        exit(0);
}

printf
Displays and controls the formatting of a string.

void printf(string format, ...)

The printf function is a data recording function that traces expressions and enables elaborate
printf-style formatting. The parameters consist of a format string, followed by a variable
number of arguments. The arguments are traced to the directed buffer and are later formatted
for output by the dtrace command, according to the specified format string.

See the printf(1) manual page for more information on formatting directives. Note that
although DTrace's implementation of printf is aligned with the correlating system function,
some differences apply. Notably, you can use the %d formatting directive to represent any
length of an integer.

Example 8-34    How to use printf to print a formatted string

BEGIN {
   printf("execname is %s; priority is %d", execname, curlwpsinfo->pr_pri);
}

progenyof
Checks whether a calling process is in the progeny of a specified process ID.

int progenyof(pid_t)

The progenyof function returns non zero if the calling process is among the progeny of the
specified process ID. The calling process is the process associated with the thread that
triggers the matched probe.

Example 8-35    How to use progenyof to limit a clause to list the write system calls for
all child processes of a specified process ID

syscall::write:entry 
/progenyof($1)/ 
{ 
   @[pid,execname,probefunc]=count()
}

This script could be run as follows, to monitor all the system calls that are triggered by a
running instance of an application, such as the gnome-terminal-server:

sudo dtrace -n 'syscall::write:entry /progenyof($1)/
{@[pid,execname,probefunc]=count()}' $(pidof gnome-terminal-server)
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quantize
Stores a power-of-two frequency distribution of the values of the specified expressions in an
aggregation. An optional increment can be specified.

void quantize(expr [, uint32_t incr])

The quantize function is an aggregation function to distribution of information in a histogram
for an expression, expr. An optional integer value, incr, can be specified to find the amount that
the values are incremented by to weight the output. This function makes it easier to see a
graphical representation of the values returned by an expression.

The rows for the frequency distribution are always power-of-two values. Each row indicates a
count of the number of elements that are greater than or equal to the corresponding value, but
less than the next larger row's value.

Example 8-36    How to use quantize to display the distribution of write() call times by
process

syscall::write:entry
{
  self->ts = timestamp;
}

syscall::write:return
/self->ts/
{
  @time[execname] = quantize(timestamp - self->ts);
  self->ts = 0;
}

Output similar to the following is displayed after the program exits:

  bash                                              
           value  ------------- Distribution ------------- count    
            8192 |                                         0        
           16384 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@         4        
           32768 |                                         0        
           65536 |                                         0        
          131072 |@@@@@@@@                                 1        
          262144 |                                         0        

  gnome-terminal                                    
           value  ------------- Distribution ------------- count    
            4096 |                                         0        
            8192 |@@@@@@@@@@@@@                            5        
           16384 |@@@@@@@@@@@@@                            5        
           32768 |@@@@@@@@@@@                              4        
           65536 |@@@                                      1        
          131072 |                                         0        

  Xorg                                              
           value  ------------- Distribution ------------- count    
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            2048 |                                         0        
            4096 |@@@@@@@                                  4        
            8192 |@@@@@@@@@@@@@                            8        
           16384 |@@@@@@@@@@@@                             7        
           32768 |@@@                                      2        
           65536 |@@                                       1        
          131072 |                                         0        
          262144 |                                         0        
          524288 |                                         0        
         1048576 |                                         0        
         2097152 |@@@                                      2        
         4194304 |                                         0        

  firefox                                           
           value  ------------- Distribution ------------- count    
            2048 |                                         0        
            4096 |@@@                                      22       
            8192 |@@@@@@@@@@@                              90       
           16384 |@@@@@@@@@@@@@                            107      
           32768 |@@@@@@@@@                                72       
           65536 |@@@                                      28       
          131072 |                                         3        
          262144 |                                         0        
          524288 |                                         1        
         1048576 |                                         1        
         2097152 |                                         0
...

raise
Sends a specified signal to the running process.

void raise(int)

The raise function is a destructive function that sends the specified signal to the running
process. This function is similar to using the kill command to send a signal to the process.
The raise function can be used to send a signal at a precise point in the runtime of the
process.

See the sigaction(2) and kill(1) manual pages for more information on how process
signals work.

Example 8-37    How to use raise to stop a running process

The script opens with a pragma to enable destructive functions in DTrace. You can alternatively
remove this line and run the script with dtrace -w. The predicate for this script evaluates the
process id against a provided argument. The clause includes the raise function with a SIGINT
signal that stops the process immediately.

#pragma D option destructive
syscall::: 
/pid==$1/
{ 
   raise(SIGINT); 

Chapter 8
raise

8-34



   exit(0) 
}

You must provide the process ID that you intend to stop for this script to function correctly. An
example test run might be as follows:

xclock & sudo dtrace -wn 'syscall::: /pid==$1/{ raise(SIGINT); exit(0) }' $
(pidof xclock)

rand
Returns a pseudo random integer.

int rand(void)

The rand function returns a pseudo random integer. The value returned is a weak pseudo
random number and we don't recommend using it for any cryptographic application.

Example 8-38    How to use rand to generate a pseudo random integer

The example uses the trace function to print the generated integer in the trace output.

BEGIN{ 
   trace(rand()); 
}

rindex
Finds the last occurrence of a specific substring within a string.

int rindex(const char * str, const char * substr[, int start])

The rindex function finds the position of the last occurrence of a substring, substr, in a string,
str, starting at an optional position, start. If the specified value of start position is less than 0, it's
implicitly set to 0. If the string is an empty string, rindex returns 0. If no match is found for the
substring within the string, rindex returns -1.

Example 8-39    How to use rindex to identify the last occurrence of a substring within a
string

BEGIN {
         x = "#findthelastpenguininthepenguinstring!";
         y = "penguin";
         printf("The last penguin appears at character %3d\n", rindex(x, y));
         exit(0)
 }
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rw_iswriter
Checks whether a writer is holding or waiting for the specified reader-writer lock.

int rw_iswriter(vmlinux`rwlock_t *rwlock)

The rw_iswriter function returns non zero if a writer is holding or waiting for the specified
reader-writer lock (rwlock). If the lock is held only by readers and no writer is blocked, or if the
lock isn't held at all, rw_iswriter returns zero.

Example 8-40    How to use rw_iswriter to check whether a writer is holding or waiting
for a specified reader-writer lock

The example contains two clauses. The first clause triggers for when the _raw_write_lock is
entered, and uses rw_iswriter function to print whether a lock is held. At this stage, no lock is
held, so the output returns 0. When the _raw_write_lock returns, a lock is held and the
rw_iswriter function returns 1 and exits.

fbt:vmlinux:_raw_write_lock:entry
{
         self->wlock = (rwlock_t *)arg0;
         printf("write entry  %x\n", 0 != rw_iswriter(self->wlock));
}
 
fbt:vmlinux:_raw_write_lock:return
/self->wlock/
{
         printf("write return %x\n", 0 != rw_iswriter(self->wlock));
         exit(0)
}

rw_read_held
Checks whether the specified reader-writer lock is held by a reader.

int rw_read_held(vmlinux`rwlock_t *rwlock)

The rw_read_held function returns non zero if the specified reader-writer lock (rwlock) is held
by a reader. If the lock is held only by writers or isn't held at all, rw_read_held returns zero.

Example 8-41    How to use rw_iswriter to check whether a writer is holding or waiting
for a specified reader-writer lock

The example includes two clauses. The first clause triggers for when the _raw_read_lock is
entered, and uses rw_read_held function to print whether a lock is held. At this stage, no lock
is held, so the output returns 0. When the _raw_read_lock returns, a lock is held and the
rw_read_held function returns 1.

 fbt:vmlinux:_raw_read_lock:entry
 {
         self->rlock = (rwlock_t *)arg0;
         printf("read  entry  %x\n", 0 != rw_read_held(self->rlock));
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 }
 
 fbt:vmlinux:_raw_read_lock:return
 /self->rlock/
 {
         printf("read  return %x\n", 0 != rw_read_held(self->rlock));
         exit(0);
 }

rw_write_held
Checks whether the specified reader-writer lock is held by a writer.

int rw_write_held(vmlinux`rwlock_t *rwlock)

The rw_write_held function returns non zero if the specified reader-writer lock (rwlock) is held
by a writer. If the lock is held only by readers or isn't held at all, rw_write_held returns zero.

Example 8-42    How to use rw_write_held to check whether a writer is holding a
specified reader-writer lock

The example uses two clauses. The first clause triggers for when the _raw_write_lock is
entered, and uses rw_write_held function to print whether a write lock is held. At this stage,
no lock is held, so the output returns 0. When the _raw_write_lock returns, a lock is held and
the rw_write_held function returns 1 and the script exits.

 fbt:vmlinux:_raw_write_lock:entry
 {
         self->wlock = (rwlock_t *)arg0;
         printf("write entry  %x\n", 0 != rw_write_held(self->wlock));
 }
 
 fbt:vmlinux:_raw_write_lock:return
 /self->wlock/
 {
         printf("write return %x\n", 0 != rw_write_held(self->wlock));
         exit(0)
 }

setopt
Dynamically sets DTrace compiler or runtime options.

void setopt(const char *[, const char *])

The setopt function is a special function that can be used to specify a DTrace runtime or
compiler option dynamically. See DTrace Runtime and Compile-time Options Reference for
more information.

Chapter 8
rw_write_held

8-37



Example 8-43    How to use setopt to set compiler or runtime options inside a program

setopt("quiet");
setopt("bufsize", "50m");
setopt("aggrate", "2hz");

speculate
A special function that causes DTrace to switch to using a speculation buffer identified by the
specified ID for the remainder of a clause.

void speculate(int)

The speculate function is a special function that causes DTrace to use a speculative buffer
specified by the provided id for the remainder of a clause.

To use a speculation, an identifier that's returned from speculation must be passed to the
speculate function in a clause before any data-recording functions. All subsequent data-
recording functions in a clause containing a speculate are speculatively traced. The D
compiler generates a compile-time error if a call to speculate follows data-recording functions
in a D probe clause. Therefore, clauses might contain speculative tracing or non-speculative
tracing requests, but not both.

Aggregating functions, destructive functions, and the exit function can never be speculative.
Any attempt to take one of these functions in a clause containing a speculate results in a
compile-time error. Also, a speculate can't follow a speculate. Only one speculation is
permitted per clause. A clause that contains only a speculate speculatively traces the default
function, which is defined to trace only the enabled probe ID.

Example 8-44    How to use speculation

The following example illustrates how to use speculation. All speculation functions must be
used together for speculation to work correctly.

The speculation is created for the syscall::open:entry probe and the ID for the speculation is
attached to a thread-local variable. The first argument of the open() system call is traced to the
speculation buffer by using the printf function.

Three more clauses are included for the syscall::open:return probe. In the first of these
clauses, the errno is traced to the speculative buffer. The predicate for the second of the
clauses filters for a non-zero errno value and commits the speculation buffer. The predicate of
the third of the clauses filters for a zero errno value and discards the speculation buffer.

The output of the program is returned for the primary data buffer, so the program effectively
returns the file name and error number when an open() system call fails. If the call doesn't fail,
the information that was traced into the speculation buffer is discarded.

syscall::open:entry
{
  /*
   * The call to speculation() creates a new speculation. If this fails,
   * dtrace will generate an error message indicating the reason for
   * the failed speculation(), but subsequent speculative tracing will be
   * silently discarded.
   */
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  self->spec = speculation();
  speculate(self->spec);

  /*
   * Because this printf() follows the speculate(), it is being
   * speculatively traced; it will only appear in the primary data buffer if 
the
   * speculation is subsequently committed.
   */
  printf("%s", copyinstr(arg0));
}

syscall::open:return
/self->spec/
{
  /*
   * Trace the errno value into the speculation buffer.
   */
  speculate(self->spec);
  trace(errno);
}

syscall::open:return
/self->spec && errno != 0/
{
  /*
   * If errno is non-zero, commit the speculation.
   */
  commit(self->spec);
  self->spec = 0;
}

syscall::open:return
/self->spec && errno == 0/
{
  /*
   * If errno is not set, discard the speculation.
   */
  discard(self->spec);
  self->spec = 0;
}

speculation
Creates a speculative trace buffer and returns its ID.

int speculation(void)

The speculation function reserves a speculative trace buffer for use with speculate and returns
an identifier for this buffer.

Example 8-45    How to use speculation

The following example illustrates how to use speculation. All speculation functions must be
used together for speculation to work correctly.
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The speculation is created for the syscall::open:entry probe and the ID for the speculation is
attached to a thread-local variable. The first argument of the open() system call is traced to the
speculation buffer by using the printf function.

Three more clauses are included for the syscall::open:return probe. In the first of these
clauses, the errno is traced to the speculative buffer. The predicate for the second of the
clauses filters for a non-zero errno value and commits the speculation buffer. The predicate of
the third of the clauses filters for a zero errno value and discards the speculation buffer.

The output of the program is returned for the primary data buffer, so the program effectively
returns the file name and error number when an open() system call fails. If the call doesn't fail,
the information that was traced into the speculation buffer is discarded.

syscall::open:entry
{
  /*
   * The call to speculation() creates a new speculation. If this fails,
   * dtrace will generate an error message indicating the reason for
   * the failed speculation(), but subsequent speculative tracing will be
   * silently discarded.
   */
  self->spec = speculation();
  speculate(self->spec);

  /*
   * Because this printf() follows the speculate(), it is being
   * speculatively traced; it will only appear in the primary data buffer if 
the
   * speculation is subsequently committed.
   */
  printf("%s", copyinstr(arg0));
}

syscall::open:return
/self->spec/
{
  /*
   * Trace the errno value into the speculation buffer.
   */
  speculate(self->spec);
  trace(errno);
}

syscall::open:return
/self->spec && errno != 0/
{
  /*
   * If errno is non-zero, commit the speculation.
   */
  commit(self->spec);
  self->spec = 0;
}

syscall::open:return
/self->spec && errno == 0/
{
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  /*
   * If errno is not set, discard the speculation.
   */
  discard(self->spec);
  self->spec = 0;
}

stack
Records a stack trace to the buffer.

stack stack([uint32_t frames])

The stack function records a kernel stack trace to the directed buffer. The function includes an
option to specify the number of frames deep to record from the kernel stack. If no value is
specified, the number of stack frames recorded is the number that's specified by the
stackframes runtime option. The dtrace command reports frames, either up to the root frame
or until the specified limit has been reached, whichever comes first.

The stack function, having a non-void return value, can also be used as the key to an
aggregation.

Example 8-46    How to use stack to obtain a kernel stack trace for a particular probe

fbt::ksys_write:entry
{
        stack();
        exit(0);
}

stddev
Stores the standard deviation of the specified expressions in an aggregation.

void stddev(expr)

The stddev function is an aggregation function that returns the standard deviation for an
expression.

The standard deviation is imprecisely approximated as √((Σ(x2)/N)-(Σx/N)2). This value is
sufficient for most DTrace purposes.

Example 8-47    How to use stddev to display the standard deviation of time taken to run
processes

The example stores the timestamp for the syscall::execve:entry probe fires and then
subtracts this value from the timestamp when the syscall::execve:return fires. The standard
deviation is calculated based on the time difference between the two probes and stored in an
aggregation so that it can be updated for each process that runs. When the program exits, the
aggregated standard deviation value is displayed.

syscall::execve:entry
{
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 self->ts = timestamp;
}

syscall::execve:return
/ self->ts /
{
  t = timestamp - self->ts;
  @execsd[execname] = stddev(t);
  self->ts = 0;
}

END
{
  printf("\nSTDDEV:");
  printa(@execsd);
}

Output similar to the following is displayed when the program exits:

STDDEV:
  head                                                              0
  lsb_release                                                       0
  mkdir                                                             0
  pidof                                                             0
  pkla-check-auth                                                   0
  tr                                                                0
  uname                                                             0
  getopt                                                         5646
  basename                                                       7061
  sed                                                            7236

strchr
Returns a substring that begins at the first matching occurrence of a specified character in a
string.

string strchr(const char *string, char char)

The strchr function returns a substring that matches the first occurrence of a specified
character, char, in the specified string, string. If no match is found, strstr returns 0. Note that
this function doesn't work with wide characters or multibyte characters.

The returned string is allocated out of scratch memory and is therefore valid only during
processing of the clause. If insufficient scratch memory is available, strchr doesn't run and an
error is generated.

Example 8-48    How to use strchr to return a string starting at the first occurrence of a
character

 BEGIN
 {
         str = "fooeyfooeyfoo";
         c = 'y';
         # the following line prints "yfooeyfoo"
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         printf("\"%s\"\n", strchr(str, c));
         exit(0)
 }

strjoin
Concatenates two specified strings and returns the resulting string.

string strjoin(const char *string1, const char *string2)

The strjoin function returns the concatenation of two specified strings. The returned string is
allocated out of scratch memory and is therefore valid only during processing of the clause. If
insufficient scratch memory is available, strjoin doesn't run and an error is generated.

Example 8-49    How to use strjoin to concatenate two strings together

BEGIN {
     string1="foo";
     string2="bar";
     printf("%s",strjoin(string1,string2));
     exit(0);
 }

strlen
Returns the length of a string in bytes.

size_t strlen(const char *string)

The strlen function returns the length of a specified string in bytes, excluding the terminating
null byte.

Example 8-50    How to use strlen to return the length of a string

BEGIN {
     string1="foo bar?";
     printf("%d",strlen(string1));
     exit(0);
 }

strrchr
Returns a substring that begins at the last matching occurrence of a specified character in a
string.

string strrchr(const char *, char)

The strrchr function returns a substring that begins at the last occurrence of a matching
character in a specified string. If no match is found, strrchr returns 0. This function doesn't
work with wide characters or multibyte characters.
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The returned string is allocated out of scratch memory and is therefore valid only during
processing of the clause. If insufficient scratch memory is available, strrchr doesn't run and
an error is generated.

Example 8-51    How to use strrchr to return the pointer to the last occurrence of a
character

BEGIN
{
        str = "fooeyfooeyfoo";
        c = 'y';
        # the following line prints "yfoo"
        printf("\"%s\"\n", strrchr(str, c));
        exit(0)
}

strstr
Returns a substring starting at first occurrence of a specified substring within a string.

string strstr(const char *string, const char *substring)

The strstr function returns a substring starting at the first occurrence of a specified substring
in the specified string. If the specified string is empty, strstr returns an empty string. If no
match is found, strstr returns 0.

Example 8-52    How to use strstr to return a substring starting at the first occurrence of
a substring in a string

 BEGIN {
     string1="foo bar?";
     substring=" ba";
     # the following line prints " bar?"
     printf("%s",strstr(string1,substring));
     exit(0);
 }

strtok
Parse a string into a sequence of tokens using a specified delimiter.

string strtok(const char *string, const char *delimiter)

The strtok function parses a string into a sequence of tokens by using a specified delimiter as
the delimiting string . When you initially call strtok, specify the string to be parsed. In each
following call to obtain the next token, specify the string as NULL. You can specify a different
delimiter for each call. The internal pointer that strtok uses to traverse the string is only valid
within more than one enabling of the same probe. The strtok function returns NULL if no
more tokens are found.
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Example 8-53    How to use strtok to break a comma delimited string into tokens.

In this example, strtok is used to break a comma delimited string into tokens. Because
DTrace doesn't include flow-control structures similar to while loops, you must use predicates
to emulate this functionality to step through each token. The example, shows how to walk
through the first two tokens generated by the string. Each predicate gets the next token and
checks that it's not a NULL value, which would represent the end of the string.

BEGIN
 {
     this->str = "Carrots,Barley,Oatmeal,Corn,Beans";
 }
 
 BEGIN
 /(this->field = strtok(this->str, ",")) == NULL/
 {
         exit(1);
 }
 
 BEGIN
 {
         printf("First token: %s\n", this->field);
 }
 
 BEGIN
 /(this->field = strtok(NULL, ",")) == NULL/
 {
         exit(2);
 }
 
 BEGIN
 {
         printf("Second token: %s\n", this->field);
         exit(0)
 }

substr
Returns the substring from a string at a specified index position.

string substr(const char * string, int index[, int length])

The substr function returns the substring of a string, string, starting at the specified index
position, index. An optional length parameter, length, can be specified to limit the substring to a
specified length.

Example 8-54    How to use substr to return a substring from a specified index

In the example, the length of the substring returned is limited to 4 characters.

 BEGIN {
     string1="daddyorchips";
     trace(substr(string1,7,4))
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     exit(0)
 }

sum
Stores the total value of the specified expression in an aggregation.

void sum(expr)

The sum function is an aggregation function to used to obtain the total value of a specified
expression, expr.

Example 8-55    How to use sum to aggregate a value over a period

This example increments a variable, i, by 100 every 10 ms until i has a value of 1000. An
aggregation is used to calculate the sum of values of i. This is equal to the expression:
0+100+200+300+400+500+600+700+800+900=4500.

BEGIN
{
        i = 0;
}

tick-10ms
/i < 1000/
{
        @a = sum(i);
        i += 100;
}

tick-10ms
/i == 1000/
{
        exit(0);
}

sym
Prints the symbol for a specified kernel space address. An alias for func.

_symaddr sym(uintptr_t addr)

The sym function is a data recording function that prints the symbol that corresponds to a
specified kernel space address, addr. The sym function is an alias for func.
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Example 8-56    How the sym function can return the symbol for a kernel space address

This example uses a bash script to pick a test symbol from /proc/kallmodsyms that can be
used as a reference in the DTrace program that returns the symbol for the function.

#!/bin/bash
read ADD <<< `awk '/ksys_write/ {print $1}' /proc/kallmodsyms`
dtrace -qn 'BEGIN {sym(0x'$ADD'); exit(0) }'

system
Causes a specified program to be run on the system as if within a shell.

void system(const char command)

The system function is a destructive function that causes the specified program to be run as
though provided to the shell as input. The program string can contain any of the printf or
printa format conversions. Arguments that match the format conversions must be specified.

Note that a command specified for the system function doesn't run in the context of the firing
probe. Rather, it occurs when the buffer containing the details of the system function are
processed at user level.

Example 8-57    How to use system to run the system date command after every second

Note that the pragma lines include the destructive option to permit DTrace to run destructive
functions for this example.

#pragma D option destructive
#pragma D option quiet

tick-1sec
{
system("date")
}

trace
Traces the result of an expression to the directed buffer.

void trace(expr)

The trace function is the most fundamental DTrace function. This function takes a D
expression as its argument and then traces the result to the directed buffer.

If the trace function is used on a buffer, the output format depends on the data type. If the data
is 1, 2, 4, or 8 bytes in size, the result is formatted as a decimal integer value. If the data is any
other size, and is a sequence of printable characters if interpreted as a sequence of bytes, it's
printed as an ASCII string and ends with a null character (0). If the data is any other size, and
isn't a sequence of printable characters, it's printed as a series of byte values that's formatted
as hexadecimal integers.
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You can force the trace function to always use the binary format by specifying the rawbytes
dynamic runtime option.

Example 8-58    How to use trace to display a variety of different outputs

The example shows the trace function being used to return output for a built-in variable, an
expression, and a string value.

BEGIN
{
trace(execname);
trace(timestamp / 1000);
trace("somehow managed to get here");
}

tracemem
Copies the specified number of bytes of data from an address in memory to the current buffer.

void tracemem(addr, size_t bytes[, size_t limit])

The tracemem function copies a specified number of bytes of data, bytes, from an address in
memory, addr, to the current buffer. The address that the data is copied from is specified as a
D expression. An optional third argument, limit, can be used to limit the size of the data that's
copied to the buffer. The limit can be a variable amount, but it must be less than or equal to the
size of the memory data that you specified to copy from memory, or it's ignored.

Limiting the data that's copied to the buffer is useful when the data that you're copying has a
known upper bound, but the actual number of bytes can vary. DTrace statically reserves bytes
in the output buffer at compile time. You can reserve a larger amount of memory in the output
buffer at run time by setting the number of bytes, but dynamically control the amount of
memory used by specifying a dynamic limit.

Example 8-59    How to use tracemem to trace 256 bytes from an address in memory for
the current thread

The example creates a pointer to the current thread by using the built-in variable curthread.

BEGIN {
     p = curthread;
     tracemem(p, 256);
     exit(0);
 }

uaddr
Prints the symbol for a specified address.

_usymaddr uaddr(uintptr_t)

The uaddr function prints the symbol for a specified address, including hexadecimal offset,
which enables the same symbol resolution that ustack provides.
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Example 8-60    How to use uaddr to obtain the symbol for an address

uaddropenatdateucaller

sudo dtrace -n syscall::openat:entry'/pid == $target/{usym(ucaller);}' -c 
'date'

Generates output similar to the following:

CPU     ID                    FUNCTION:NAME
  5 147861                     openat:entry   
libc.so.6`_nl_find_locale                         
  5 147861                     openat:entry   
0x0                                               
Mon 20 Feb 18:11:30 GMT 2023

ufunc
Prints the symbol for a specified user space address. An alias for usym.

_usymaddr ufunc(uintptr_t)

The ufunc function is a data recording function that prints the symbol that corresponds to a
specified user space address. The func function is an alias for usym.

Example 8-61    How to use usym to obtain the symbol for an address

usymopenatdateucaller

sudo dtrace -n syscall::openat:entry'/pid == $target/{usym(ucaller);}' -c 
'date'

Generates output similar to the following:

CPU     ID                    FUNCTION:NAME
  2 147861                     openat:entry   
libc.so.6`_nl_find_locale                         
Mon 20 Feb 18:12:58 GMT 2023
  2 147861                     openat:entry   0x0 

umod
Prints the module name that corresponds to a specified user space address.

_usymaddr umod(uintptr_t)

The umod function is a data recording function that prints the name of the module that
corresponds to a specified user space address.
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Example 8-62    How to use umod to print the module name for an address

The example shows how to use umod to print the module names for openat system calls by the
date command.

sudo dtrace -qn syscall::openat:entry'/pid == $target/{umod(ucaller);}' -c 
'date'

Generates output similar to the following:

CPU     ID                    FUNCTION:NAME
  7 147861                     openat:entry   
libc.so.6                                         
  7 147861                     openat:entry   
0x0                                               
Mon 20 Feb 18:07:43 GMT 2023

ustack
Records a user stack trace to the directed buffer.

stack ustack([uint32_t nframes, uint32_t strsize])

The ustack function records a user stack trace to the directed buffer. The user stack is, at
most, nframes in depth. If nframes isn't specified, the number of stack frames recorded is the
number specified by the ustackframes option. While ustack can determine the address of the
calling frames when the probe fires, the stack frames aren't translated into symbols until the
ustack function is processed at user level by the DTrace utility. If strsize is specified and is non
zero, ustack allocates the specified amount of string space and then uses it to perform
address-to-symbol translation directly from the kernel. Such direct user symbol translation is
used only with stacktrace helpers that support this usage with DTrace. If such frames can't be
translated, the frames appear only as hexadecimal addresses.

The ustack symbol translation occurs after the stack data is recorded. Therefore, the
corresponding user process might exit before symbol translation can be performed, making
stack frame translation impossible. If the user process exits before symbol translation is
performed, dtrace outputs a warning message, followed by the hexadecimal stack frames.

Example 8-63    How to use ustack to trace a stack with no address-to-symbol
translation

The example shows how to use ustack to trace the stack for an openat system call by the
date command.

sudo dtrace -qn syscall::openat:entry'/pid == $target/{ustack();}' -c 'date'

Generates output similar to the following:

CPU     ID                    FUNCTION:NAME
  2 147861                     openat:entry 
              libc.so.6`__open64_nocancel+0x45
Mon 20 Feb 17:38:15 GMT 2023
              libc.so.6`_nl_find_locale+0xfc
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              libc.so.6`setlocale+0x1cf
              date`0x556ebae140ad
              0x7a696c616d726f6e

  2 147861                     openat:entry 
              0x7f6d63fc2e65

usym
Prints the symbol for a specified address. An alias for ufunc.

_usymaddr usym(uintptr_t)

The usym function prints the symbol for a specified address, which is analogous to how uaddr
works, but without the hexadecimal offsets. The usym function is an alias for ufunc.

Example 8-64    How to use usym to obtain the symbol for an address

usymopenatdateucaller

sudo dtrace -n syscall::openat:entry'/pid == $target/{usym(ucaller);}' -c 
'date'

Generates output similar to the following:

CPU     ID                    FUNCTION:NAME
  2 147861                     openat:entry   
libc.so.6`_nl_find_locale                         
Mon 20 Feb 18:12:58 GMT 2023
  2 147861                     openat:entry   0x0 
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9
DTrace Provider Reference

DTrace exposes different providers that publish probes that are grouped together for particular
instrumentation or functionality.

CPC Provider
The CPU performance counter (cpc) provider makes available probes that are associated with
CPU performance counter events.

A probe fires when a specified number of events of a type in a chosen processor mode has
occurred. When a probe fires, you can sample aspects of system state and make inferences
about system behavior. A reasonable value for the event counter value depends on the event
and also on the workload. To keep probe firings from being excessive, start with a high value.
Lower the value to improve statistical accuracy.

CPU performance counters are a finite resource and the number of probes that can be enabled
depends upon hardware capabilities. An error is returned when the number of cpc probes
enabled exceed the hardware capability. If hardware resources are unavailable, probes fail
until resources become available.

Start with higher event counter values for CPC probes and reduce them through trial-and-error
as you work toward a more accurate representation of system activity.

cpc Probes

Probes made available by the cpc provider have the following probe description format:

cpc:::<event name>-<mode>-<count>

The definitions of the components of the probe name are listed in table.

Table 9-1    Probe Name Components

Component Meaning
event name The platform specific or generic event name.
mode The privilege mode in which to count events. Valid modes are user for

user mode events, kernel for kernel mode events and all for both user
mode and kernel mode events.

count The number of events that must occur on a CPU for a probe to be fired
on that CPU. Note that the count is a configurable value. If the count
value is too high, then the probe fires less often and the statistics are
less reliable. If the count value is too low, the probe fires too often and
the system is inundate with tracing activity. When selecting a count
value, start with a higher value and then decrease it to get more
accurate statistics.
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Note that when you list CPC probes, example count values are provided in the probe listings.
The count values are artificially set high as a guideline.

cpc Probe Arguments
The following table lists the argument types for the cpc probes.

Table 9-2    Probe Arguments

arg0 The program counter (PC) in the kernel at the time that the probe
fired, or 0 if the current process wasn't running in the kernel at the
time that the probe fired

arg1 The PC in the user-level process at the time that the probe fired, or 0 if
the current process was running at the kernel at the time that the
probe fired

As the descriptions imply, if arg0 is non-zero then arg1 is zero; if arg0 is zero then arg1 is non-
zero.

cpc Examples
The following example illustrates the use of a probe published by the cpc provider.

cycles-all-50000000

The example performs a count for each process name that triggers the performance counter
probe on a count value of 50000000.

cpc:::cycles-all-50000000
 {
         @[execname] = count();
 }

cpc Stability

The cpc provider uses DTrace's stability mechanism to describe its stabilities. These values
are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving CPU

Arguments Evolving Evolving Common

Chapter 9
CPC Provider

9-2



DTrace Provider
The dtrace provider includes several probes that are specific to DTrace itself.

Use these probes to initialize state before tracing begins, process state after tracing has
completed, and to handle unexpected execution errors in other probes.

BEGIN Probe
The BEGIN probe fires before any other probe.

No other probe fires until all BEGIN clauses have completed. This probe can be used to initialize
any state that's needed in other probes. The following example shows how to use the BEGIN
probe to initialize an associative array to map between mmap() protection bits and a textual
representation:

dtrace:::BEGIN
{
  prot[0] = "---";
  prot[1] = "r--";
  prot[2] = "-w-";
  prot[3] = "rw-";
  prot[4] = "--x";
  prot[5] = "r-x";
  prot[6] = "-wx";
  prot[7] = "rwx";
}

syscall::mmap:entry
{
  printf("mmap with prot = %s", prot[arg2 & 0x7]);
}

The BEGIN probe fires in an unspecified context, which means the output of stack or ustack,
and the value of context-specific variables such as execname, are all arbitrary. These values
should not be relied upon or interpreted to infer any meaningful information. No arguments are
defined for the BEGIN probe.

END Probe
The END probe fires after all other probes.

This probe doesn't fire until all other probe clauses have completed. This probe can be used to
process state that has been gathered or to format the output. The printa function is therefore
often used in the END probe. The BEGIN and END probes can be used together to measure the
total time that's spent tracing, for example:

dtrace:::BEGIN
{
  start = timestamp;
}

/*
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 * ... other tracing functions...
 */

dtrace:::END
{
  printf("total time: %d secs", (timestamp - start) / 1000000000);
}

As with the BEGIN probe, no arguments are defined for the END probe. The context in which the
END probe fires is arbitrary and can't be depended upon.

Note:

The exit function causes tracing to stop and the END probe to fire. However, a delay
exists between the invocation of the exit function and when the END probe fires.
During this delay, no further probes can fire. After a probe invokes the exit function,
the END probe isn't fired until DTrace determines that exit has been called and stops
tracing. The rate at which the exit status is checked can be set by using
statusrate option.

ERROR Probe
The ERROR probe fires when a runtime error occurs during the processing of a clause for a
DTrace probe.

When a runtime error occurs, DTrace doesn't process the rest of the clause that resulted in the
error. If an ERROR probe is included in the script, it's triggered immediately. After the ERROR
probe is processed, tracing continues. If you want a D runtime error to stop all further tracing,
you must include an exit() action in the clause for the ERROR probe.

In the following example, a clause attempts to dereference a NULL pointer and causes the
ERROR probe to fire. Save it in a file named error.d:

dtrace:::BEGIN
{
  *(char *)NULL;
}

dtrace:::ERROR
{
  printf("Hit an error!");
}

When you run this program, output similar to the following is displayed:

dtrace: script 'error.d' matched 2 probes
dtrace: error on enabled probe ID 3 (ID 1: dtrace:::BEGIN): invalid address 
(0x0) in action #1 at BPF pc 142
CPU     ID                    FUNCTION:NAME
  0      3                           :ERROR Hit an error!
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The output indicates that the ERROR probe fired and that dtrace reported the error. dtrace
has its own enabling of the ERROR probe so that it can report errors. Using the ERROR probe, you
can create custom error handling.

The arguments to the ERROR probe are described in the following table.

Argument Description

arg1 The enabled probe identifier (EPID) of the
probe that caused the error.

arg2 The index of the action that caused the fault.

arg3 The DIF offset into the action or -1 if not
applicable.

arg4 The fault type.

arg5 Value that's particular to the fault type.

The following table describes the various fault types that can be specified in arg4 and the
values that arg5 can take for each fault type.

arg4 Value Description arg5 Meaning

DTRACEFLT_UNKNOWN Unknown fault type None

DTRACEFLT_BADADDR Access to unmapped or invalid
address

Address accessed

DTRACEFLT_BADALIGN Unaligned memory access Address accessed

DTRACEFLT_ILLOP Illegal or invalid operation None

DTRACEFLT_DIVZERO Integer divide by zero None

DTRACEFLT_NOSCRATCH Insufficient scratch memory to
satisfy scratch allocation

None

DTRACEFLT_KPRIV Attempt to access a kernel
address or property without
sufficient privileges

Address accessed or 0 if not
applicable

DTRACEFLT_UPRIV Attempt to access a user
address or property without
sufficient privileges

Address accessed or 0 if not
applicable

DTRACEFLT_TUPOFLOW DTrace internal parameter
tuple stack overflow

None

DTRACEFLT_BADSTACK Invalid user process stack Address of invalid stack
pointer

DTRACEFLT_BADSIZE Invalid size fault that appears
when an invalid size is passed
to a function such as alloca(),
bcopy() or copyin().

The invalid size.

DTRACEFLT_BADINDEX Index out of bounds in a scalar
array.

The index that was specified.

DTRACEFLT_LIBRARY Library level fault None.

If the actions that are taken in the ERROR probe cause an error, that error is silently dropped.
The ERROR probe isn't recursively invoked.
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dtrace Stability
The dtrace provider uses DTrace's stability mechanism to describe its stabilities. These values
are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Stable Stable Common

Module Private Private Unknown

Function Private Private Unknown

Name Stable Stable Common

Arguments Stable Stable Common

FBT Provider
The fbt (Function Boundary Tracing) provider includes probes that are associated with the
entry to and return from most functions in the Oracle Linux kernel. Therefore, there could be
tens of thousands of fbt probes.

While the FBT implementation is highly specific to the instruction set architecture, FBT has
been implemented on both x86 and 64-bit Arm platforms. Some functions in each instruction
set are highly optimized by the compiler and can't be instrumented by FBT. Probes for these
functions aren't present in DTrace, but you can check what's available by running:

sudo dtrace -lP fbt

An effective use of FBT probes requires knowledge of the kernel implementation. Therefore,
we recommend that you use FBT only when developing kernel software or when other
providers aren't sufficient.

Because of the large number of FPB probes that are available, be specific about the modules
and functions that you enable probes for. Performance can be impacted when the full range of
FBT probes are enabled at the same time.

fbt Probes
FBT provides an entry probe and a return probe for most functions in the kernel.

fbt Probe Arguments
The arguments to entry probes are the same as the arguments to the corresponding operating
system kernel function. These arguments can be accessed as int64_t values by using the
arg0, arg1, arg2, ... variables.

If the function has a return value, the return value is stored in arg1 of the return probe. If a
function doesn't have a return value, arg1 isn't defined.

fbt Examples
You can use the fbt provider to explore the kernel's implementation. The following example
script creates an aggregation on the number of times different functions allocate kernel virtual
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memory. The results of the aggregation are printed when the script exits. This would help
somebody to monitor what functions are memory intensive. Type the following D source code
and save it in a file named getkmemalloc.d:

#pragma D option quiet
fbt::kmem*alloc*:entry 
{ 
  @[caller] = count(); 
} 
dtrace:::END 
{ 
  printa("%40a %@10d\n", @); 
}

Running this script results in output similar to the following:

              vmlinux`vm_area_alloc+0x1a          1
           vmlinux`__sigqueue_alloc+0x65          1
          vmlinux`__create_xol_area+0x4d          1
          vmlinux`__create_xol_area+0x6f          1
               vmlinux`vmstat_start+0x39          1
           vmlinux`proc_alloc_inode+0x1d          1
         vmlinux`proc_self_get_link+0x5b          1
       vmlinux`security_inode_alloc+0x24          1
             vmlinux`avc_alloc_node+0x1c          1
       vmlinux`ep_ptable_queue_proc+0x3d          2
            vmlinux`kernfs_fop_open+0xbf          2
           vmlinux`kernfs_fop_open+0x2e8          2
            vmlinux`disk_seqf_start+0x25          2
               vmlinux`__alloc_skb+0x16c          6
                  vmlinux`skb_clone+0x4b          6
                  vmlinux`ep_insert+0xbb          8
                 vmlinux`ep_insert+0x34c          8
                  vmlinux`__d_alloc+0x29          9
        vmlinux`kernfs_iop_get_link+0x33          9
                vmlinux`single_open+0x2a         15
              vmlinux`proc_reg_open+0x6e         17
                   vmlinux`seq_open+0x2a         21
               vmlinux`__alloc_file+0x23         29
        vmlinux`security_file_alloc+0x24         29
       vmlinux`getname_flags.part.0+0x2c         40

The output shows the internal kernel functions that are making calls to the kmem*alloc system
calls and can be used to find which kernel functions most often allocate kernel virtual memory
on a system.

fbt Stability
The fbt provider uses DTrace's stability mechanism to describe its stabilities. These stability
values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common
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Element Name Stability Data Stability Dependency Class

Module Private Private Unknown

Function Private Private ISA

Name Evolving Evolving Common

Arguments Private Private ISA

IO Provider
The io provider makes available probes that relate to data input and output.

For example, you can use the io provider to understand I/O by device, I/O type, I/O size,
process, or application name.

io Probes
The following table describes the probes for the io provider. For all io probes, the module is
vmlinux and the function is an empty string.

Table 9-3    io Probes

Probe Description

start Fires when an I/O request is about to be made
either to a peripheral device or to an NFS
server.

done Fires after an I/O request has been fulfilled. The
done probe fires after the I/O completes, but
before completion processing has been
performed on the buffer. B_DONE isn't set in
b_flags at the time the done probe fires.

wait-start Fires immediately before a thread begins to
wait pending completion of an I/O request.
Some time after the wait-start probe fires,
the wait-done probe fires in the same thread.

wait-done Fires when a thread finishes waiting for the
completion of an I/O request. The wait-done
probe fires only after the wait-start probe
has fired in the same thread.

The io probes fire for all I/O requests to peripheral devices, and for all file read and file write
requests to an NFS server. Requests for metadata from an NFS server, for example, don't
trigger io probes because of a readdir() request.

io Probe Arguments
The following table describes the arguments for the io probes. The argN are implementation
specific. Use args[] to access the probe arguments.
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Table 9-4    io Probe Arguments

Probe args[0] args[1] args[2]
start bufinfo_t * devinfo_t * fileinfo_t *
done bufinfo_t * devinfo_t * fileinfo_t *
wait-start bufinfo_t * devinfo_t * fileinfo_t *
wait-done bufinfo_t * devinfo_t * fileinfo_t *

Note:

DTrace doesn't provide the option to use fileinfo_t with io probes. In Oracle Linux,
no information is accessible at the level where the io probes fire about the file where
an I/O request originated.

bufinfo_t
The bufinfo_t structure is the abstraction that describes an I/O request. The buffer that
corresponds to an I/O request is pointed to by args[0] in the start, done, wait-start, and
wait-done probes. Detailed information about this data structure can be found in /usr/lib64/
dtrace/version/io.d. The definition of bufinfo_t is as follows:

typedef struct bufinfo {
  int b_flags;         /* flags */
  size_t b_bcount;     /* number of bytes */
  caddr_t b_addr;      /* buffer address */
  uint64_t b_lblkno;   /* logical block # on device */
  uint64_t b_blkno;    /* expanded block # on device */
  size_t b_resid;      /* not supported */
  size_t b_bufsize;    /* size of allocated buffer */
  caddr_t b_iodone;    /* I/O completion routine */
  int b_error;         /* not supported */
  dev_t b_edev;        /* extended device */
} bufinfo_t;

Note:

DTrace translates the members of bufinfo_t from the buffer_head or bio for the
Oracle Linux I/O request structure, depending on the kernel version.

b_flags indicates the state of the I/O buffer, and consists of a bitwise-or of different state
values. The following table describes the values for the states.
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Table 9-5    b_flags Values

b_flags Value Description

B_ASYNC 0x000400 Indicates that the I/O request is
asynchronous and isn't waited
upon. The wait-start and
wait-done probes don't fire for
asynchronous I/O requests.
Some I/Os directed to be
asynchronous might not set
B_ASYNC. The asynchronous I/O
subsystem could implement
the asynchronous request by
having a separate worker
thread perform a synchronous
I/O operation.

B_BUSY 0x000001
B_DONE 0x000002
B_ERROR 0x000004
B_PAGEIO 0x000010 Indicates that the buffer is

being used in a paged I/O
request.

B_PHYS 0x000020 Indicates that the buffer is
being used for physical (direct)
I/O to a user data area.

B_READ 0x000040 Indicates that data is to be read
from the peripheral device into
main memory.

B_WRITE 0x000100 Indicates that the data is to be
transferred from main
memory to the peripheral
device.

b_bcount: Is the number of bytes to be transferred as part of the I/O request.

b_addr: Is the virtual address of the I/O request, when known.

b_lblkno: Identifies which logical block on the device is to be accessed. The mapping from a
logical block to a physical block (such as the cylinder, track, and so on) is defined by the
device.

b_blkno: Identifies which block on the device is to be accessed.

b_bufsize: Contains the size of the allocated buffer.

b_iodone: Identifies a specific routine in the kernel that's called when the I/O is complete.

b_edev: Contains the major and minor device numbers of the device accessed. You can use
the D subroutines getmajor and getminor to extract the major and minor device numbers from
the b_edev field.
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devinfo_t
The devinfo_t structure provides information about a device. The devinfo_t structure that
corresponds to the destination device of an I/O is pointed to by args[1] in the start, done,
wait-start, and wait-done probes. Detailed information about this data structure can be
found in /usr/lib64/dtrace/version/io.d. The definition of devinfo_t is as follows:

typedef struct devinfo {
  int dev_major;           /* major number */
  int dev_minor;           /* minor number */
  int dev_instance;        /* not supported */
  string dev_name;         /* name of device */
  string dev_statname;     /* name of device + instance/minor */
  string dev_pathname;     /* pathname of device */
} devinfo_t;

Note:

DTrace translates the members of devinfo_t from the buffer_head for the Oracle
Linux I/O request structure.

dev_major: Is the major number of the device.

dev_minor: Is the minor number of the device.

dev_name: Is the name of the device driver that manages the device.

dev_statname: Is the name of the device as reported by iostat. This field is provided so that
aberrant iostat output can be quickly correlated to actual I/O activity.

dev_pathname: Is the full path of the device. The path that's specified by dev_pathname includes
components expressing the device node, the instance number, and the minor node. However,
note that all three of these elements aren't necessarily expressed in the statistics name. For
some devices, the statistics name consists of the device name and the instance number. For
other devices, the name consists of the device name and the number of the minor node. So,
two devices that have the same dev_statname migh differ in their dev_pathname.

fileinfo_t

Note:

On Oracle Linux, the fileinfo_t argument args[2] of the io probes isn't supported.
However, you can use the fileinfo_t structure to obtain information about a
process's open files by using the built-in variable fds[] array.

The fileinfo_t structure provides information about a file. The presence of file information is
contingent upon the file system providing this information when dispatching I/O requests.
Some file systems, especially third-party file systems, might not provide this information. Also,
I/O requests might emanate from a file system for which no file information exists. For

Chapter 9
IO Provider

9-11



example, any I/O from or to file system metadata isn't associated with any one file. Finally,
some highly optimized file systems might aggregate I/O from disjoint files into a single I/O
request. In this case, the file system might provide the file information either for the file that
represents most of the I/O or for the file that represents some I/O. Or, the file system might
provide no file information at all in this case.

Detailed information about this data structure can be found in /usr/lib64/dtrace/version/
io.d. The definition of fileinfo_t is as follows:

typedef struct fileinfo {
  string fi_name;           /* basename */
  string fi_dirname;        /* not supported */
  string fi_pathname;       /* not supported */
  loff_t fi_offset;         /* offset within file */
  string fi_fs;             /* file system */
  string fi_mount;          /* not supported */
  int fi_oflags;            /* open() flags for file descriptor */
} fileinfo_t;

The fi_name field contains the name of the file but doesn't include any directory components. If
no file information is associated with an I/O, the fi_name field is set to the string <none>. In
some rare cases, the pathname that's associated with a file might be unknown. In this case,
the fi_name field is set to the string <unknown>.

The fi_dirname field contains only the directory component of the file name. As with fi_name,
this string can be set to <none>, if no file information is present, or <unknown> if the pathname
that's associated with the file isn't known.

The fi_pathname field contains the full pathname to the file. As with fi_name, this string can be
set to <none>, if no file information is present, or <unknown> if the pathname that's associated
with the file isn't known.

The fi_offset field contains the offset within the file , or -1, if either file information isn't
present or if the offset is otherwise unspecified by the file system.

The fi_fs field contains the name of the file system type, or <none>, if no information is
present.

The fi_oflags field contains the flags that were specified when opening the file.

io Examples
The following example script displays information for every I/O as it's issued. Type the following
source code and save it in a file named iosnoop.d.

#pragma D option quiet

BEGIN
{
  printf("%10s %2s\n", "DEVICE", "RW");
}

io:::start
{
  printf("%10s %2s\n", args[1]->dev_statname,
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  args[0]->b_flags & B_READ ? "R" : "W");
}

The output from this script is similar to the following:

    DEVICE RW
     dm-00  R
     dm-00  R
     dm-00  R
     dm-00  R
     dm-00  R
     dm-00  R
...

You can make the example script slightly more sophisticated by using an associative array to
track the time (in milliseconds) spent on each I/O, as shown in the following example:

#pragma D option quiet

BEGIN
{
  printf("%10s %2s %7s\n", "DEVICE", "RW", "MS");
}

io:::start
{
  start[args[0]->b_edev, args[0]->b_blkno] = timestamp;
}

io:::done
/start[args[0]->b_edev, args[0]->b_blkno]/
{
  this->elapsed = timestamp - start[args[0]->b_edev, args[0]->b_blkno];
  printf("%10s %2s %3d.%03d\n", args[1]->dev_statname,
  args[0]->b_flags & B_READ ? "R" : "W",
  this->elapsed / 10000000, (this->elapsed / 1000) % 1000);
  start[args[0]->b_edev, args[0]->b_blkno] = 0;
}

The changed script adds a MS (milliseconds) column to the output.

You can aggregate on device, application, process ID, and bytes transferred, then save it in a
file named whoio.d, as shown in the following example:

#pragma D option quiet

io:::start
{
  @[args[1]->dev_statname, execname, pid] = sum(args[0]->b_bcount);
}

END
{
  printf("%10s %20s %10s %15s\n", "DEVICE", "APP", "PID", "BYTES");
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  printa("%10s %20s %10d %15@d\n", @);
}

Running this script for a few seconds results in output that's similar to the following:

    DEVICE                  APP        PID           BYTES
     dm-00               evince      14759           16384
     dm-00          flush-252:0       1367           45056
     dm-00                 bash      14758          131072
     dm-00       gvfsd-metadata       2787          135168
     dm-00               evince      14758          139264
     dm-00               evince      14338          151552
     dm-00          jbd2/dm-0-8        390          356352

If you're copying data from one device to another, you might want to know if one of the devices
acts as a limiter on the copy. To answer this question, you need to know the effective
throughput of each device, rather than the number of bytes per second that each device is
transferring. For exampe, you can find throughput by using the following script and saving it in
a file named copy.d:

#pragma D option quiet

io:::start
{
  start[args[0]->b_edev, args[0]->b_blkno] = timestamp;
}

io:::done
/start[args[0]->b_edev, args[0]->b_blkno]/
{
  /*
   * We want to get an idea of our throughput to this device in KB/sec.
   * What we have, however, is nanoseconds and bytes. That is we want
   * to calculate:
   *
   * bytes / 1024
   * ------------------------
   * nanoseconds / 1000000000
   *
   * But we cannot calculate this using integer arithmetic without losing
   * precision (the denominator, for one, is between 0 and 1 for nearly
   * all I/Os). So we restate the fraction, and cancel:
   *
   * bytes       1000000000      bytes       976562
   * --------- * ------------- = --------- * -------------
   * 1024        nanoseconds     1           nanoseconds
   *
   * This is easy to calculate using integer arithmetic.
   */
  this->elapsed = timestamp - start[args[0]->b_edev, args[0]->b_blkno];
  @[args[1]->dev_statname, args[1]->dev_pathname] =
    quantize((args[0]->b_bcount * 976562) / this->elapsed);
  start[args[0]->b_edev, args[0]->b_blkno] = 0;
}
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END
{
  printa(" %s (%s)\n%@d\n", @);
}

Running the previous script for several seconds while copying data from a hard disk to a USB
drive yields the following output:

sdc1 (/dev/sdc1)

           value  ------------- Distribution ------------- count    
              32 |                                         0
              64 |                                         3
             128 |                                         1
             256 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@  2257
             512 |                                         1
            1024 |                                         0       

 dm-00 (/dev/dm-00)

           value  ------------- Distribution ------------- count    
             128 |                                         0
             256 |                                         1
             512 |                                         0
            1024 |                                         2
            2048 |                                         0
            4096 |                                         2
            8192 |@@@@@@@@@@@@@@@@@@                       172
           16384 |@@@@@                                    52
           32768 |@@@@@@@@@@@                              108
           65536 |@@@                                      34
          131072 |                                         0     

The previous output shows that the USB drive (sdc1) is clearly the limiting device. The
throughput of sdc1 is between 256K/sec and 512K/sec, while dm-00 delivered I/O at anywhere
from 8 MB/second to over 64 MB/second.

io Stability
The io provider uses DTrace's stability mechanism to describe its stabilities. These values are
listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA
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Lockstat Provider
The lockstat provider provides probes that can be used to study lock usage and contention.

lockstat Probes
For all lockstat probes, the module name is vmlinux and the function name is an empty
string.

Locks are classified as:

• Spin: This is spin wait if there's contention.

• Adaptive: This is either spin wait, or else block, if there's contention.

• Readers-writer.

The following probes fire when a lock is acquired or released:

• spin-acquire.

• spin-release.

• adaptive-acquire.

• adaptive-release.

• rw-acquire.

• rw-release.

The following probe fires before a lock is acquired if there was contention for the lock and if the
probe is enabled:

• spin-spin.

• adaptive-block, adaptive-spin. One probe fires or else the other, depending on which
wait is used.

• rw-spin.

Finally, an adaptive-acquire-error probe indicates an error acquiring an adaptive lock.

lockstat Probe Arguments
The following table lists the argument types for the lockstat probes. The argN are
implementation specific. Use args[] to access the probe arguments.

Table 9-6    lockstat Probe Arguments

Probe args[0] args[1] args[2]
adaptive-acquire struct mutex * — —

adaptive-acquire-
error

struct mutex * int —

adaptive-block struct mutex * uint64_t —

adaptive-release struct mutex * — —
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Table 9-6    (Cont.) lockstat Probe Arguments

Probe args[0] args[1] args[2]
adaptive-spin struct mutex * uint64_t —

rw-acquire struct rwlock * int —

rw-release struct rwlock * int —

rw-spin struct rwlock * uint64_t int
spin-acquire spinlock_t * — —

spin-release spinlock_t * — —

spin-spin spinlock_t * uint64_t —

Note:

args[0] has a pointer to the lock in question. The probes that fire in case of
contention report a uint64_t args[1], which is the wait time in nanoseconds. The rw
probes also report an int that's either RW_READER or RW_WRITER. Finally, adaptive-
acquire-error reports an int with a non zero error.

lockstat Examples
The following examples illustrate the use of the probes that are published by the lockstat
provider.

adaptive-acquire and spin-acquire

Type the following D source code and save it in a file named whatlock.d:

lockstat:::spin-acquire,
lockstat:::adaptive-acquire
/pid == $target/
{
  @locks[probename] = count();
}

Run the program on the date command using sudo dtrace -qs whatlock.d -c date. The D
output looks similar to:

 adaptive-acquire                                                  6
 spin-acquire                                                    134

It might be surprising that so many locks are acquired with the date command. The large
number of locks is a natural artifact of the fine-grained locking required of a scalable system
such as the Oracle Liux kernel.
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lockstat Stability
The lockstat provider uses DTrace's stability mechanism to describe its stabilities. These
values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

Pid Provider
The pid provider traces a user process, both function entry and return, and an arbitrary
instruction.

pid Probes
A probe is fully specified by naming its provider, module, function, and name.

A pid provider name is pid$pid, where $pid is the process ID (pid) of the process you're
interested in. The process ID must be specified (no wild cards), but symbolic values can be
used. For example:

sudo dtrace -lP pid

The previous command doesn't find any probes because no process ID was specified. Instead,
use commands such as:

sudo dtrace -ln 'pid1234567:libc::entry'
sudo dtrace -p 1234567 -ln 'pid$target:libc::entry'
sudo dtrace -c ./a.out -n 'pid$target:libc::entry { trace("hi"); }'
sudo dtrace -n 'pid$1:libc::entry { trace("hi"); }'

In this example, 1234567 is a fictious pid value that should be replaced with a pid value
appropriate to the system, $target is a macro that expands to the pid of the target command
specified by -p or -c, and $1 is the command line argument to dtrace. In this example, the
following is displayed:

1234567

The module name is the module within the executable. Special cases include the load object of
the executable, which might be referred to as a.out, and a shared library that can be referred
to by:

• A full pathname, for example, /usr/lib/libc.so.1.

• A basename, for example, libc.so.1.
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• An initial basename match up to a . suffix, for example, libc.so or libc.

The function name is typically the name of the function where the probe is located. If a function
is inlined by the compiler, it's not available for pid tracing.

There is a special function -. In this case, the module name must be blank or refer to the a.out
module. Further, the probe name must be an absolute hexadecimal offset to some instruction
within the a.out module.

The probe name is one of:

• entry: refers to the entry to the associated function.

• return: refers to a return from the associated function. In traditional implementations of
DTrace, the probe fired at some return instruction. In the current implementation, a return
is implemented with a uretprobe, firing in the caller function.

• An instruction offset. The hexadecimal offset, without a leading 0x, is relative to the named
function, but it's an absolute offset when the function name is -.

pid Probe Arguments
For entry probes, the probe arguments are the same arguments as those of the probed
function.

For return probes, arg1 is the return value of the probed function.

For offset probes, there are no probe arguments.

pid Examples
Consider the following program, named main.c, that calls a function foo():

 int foo(int i, int j) {
     return (i + j) - 6666;
 }

 int main(int c, char **v) {
     return foo(1234, 8765) != 3333;
 }

The arguments to foo() are 1234 and 8765, while the return value is 3333.

Compile the program:

gcc main.c

We create a D script named D1.d:

 pid$target:a.out:foo:entry,
 pid$target:a.out:foo:return
 {
     printf("%x %s:%s\n", uregs[R_PC], probefunc, probename);
 }

 pid$target:a.out:foo:entry
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 {
     printf("entry args: %d %d\n", arg0, arg1);
 }

 pid$target:a.out:foo:return
 {
     printf("return arg: %d\n", arg1);
 }

Run the D script:

sudo dtrace -c ./a.out -qs D1.d

The output looks similar to:

 401106 foo:entry
 entry args: 1234 8765
 40113d foo:return
 return arg: 3333

On foo() entry and return, we print the PC from the target thread's saved user-mode register
values at probe firing time, along with the probe function and name. In addition, we print the
entry probe's two arguments and the return probe's arg1. We see that the foo() entry
arguments are 1234 and 8765, and the return value is 3333, as expected.

To understand the PCs, run objdump:

 objdump -d a.out

The output looks similar to:

 0000000000401106 <foo>:
   401106:    55                       push   %rbp
   401107:    48 89 e5                 mov    %rsp,%rbp
   40110a:    89 7d fc                 mov    %edi,-0x4(%rbp)
   [...]

 000000000040111f <main>:
   40111f:    55                       push   %rbp
   [...]
   401138:    e8 c9 ff ff ff           callq  401106 <foo>
   40113d:    83 f0 01                 xor    $0x1,%eax
   [...]

Much of the output has been suppressed, but we see the foo() entry PC is 0x401106, as
reported by our D script. The return PC is 0x40113d, which is the PC immediately after the
foo() call.
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Note:

In other versions of DTrace, the return PC is for the return instruction in the called
function. On Linux, we use a return uprobe (a uretprobe) which returns an instruction
in the caller, as we saw.

Finally, we illustrate how to probe on a specific instruction. We select the third instruction in
foo(), PC 0x40110a. This is at a relative offset of 4 bytes from the start of foo(). This D script
is named D2.d:

 pid$target:a.out:foo:4,
 pid$target:a.out:-:40110a
 {
     printf("%x %s:%s\n", uregs[R_PC], probefunc, probename);
 }

Run the D script:

sudo dtrace -c ./a.out -qs D2.d

The output looks similar to:

 40110a foo:4
 40110a -:40110a

We probe on the chosen instruction, using both a relative offset foo:4, and an absolute offset
-:40110a. Both probes fire, both reporting the same PC 0x40110a.

pid Stability
The pid provider uses DTrace's stability mechanism to describe its stabilities. These values
are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private Unknown

Proc Provider
The proc provider makes available the probes that pertain to the following activities: process
creation and termination, LWP creation and termination, execution of new program images,
and signal sending and handling.
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proc Probes
The probes for the proc provider are listed in the following table.

Table 9-7    proc Probes

Probe Description

create Fires when a process (or process thread) is
created using fork() or vfork(), which both
invoke clone(). The psinfo_t corresponding
to the new child process is pointed to by
args[0].

exec Fires whenever a process loads a new process
image using a variant of the execve() system
call. The exec probe fires before the process
image is loaded. Process variables like
execname and curpsinfo therefore contain the
process state before the image is loaded. Some
time after the exec probe fires, either the exec-
failure or exec-success probe subsequently
fires in the same thread. The path of the new
process image is pointed to by args[0].

exec-failure Fires when an exec() variant has failed. The
exec-failure probe fires only after the exec
probe has fired in the same thread. The errno
value is provided in args[0].

exec-success Fires when an exec() variant has succeeded.
Like the exec-failure probe, the exec-
success probe fires only after the exec probe
has fired in the same thread. By the time that
the exec-success probe fires, process
variables like execname and curpsinfo contain
the process state after the new process image
has been loaded.

exit Fires when the current process is exiting. The
reason for exit, which is expressed as one of the
SIGCHLD <asm-generic/signal.h> codes, is
contained in args[0].

lwp-create Fires when a process thread is created, the
latter typically as a result of
pthread_create(). The lwpsinfo_t
corresponding to the new thread is pointed to
by args[0]. The psinfo_t of the process that
created the thread is pointed to by args[1].

lwp-exit Fires when a process or process thread is
exiting, due either to a signal or to an explicit
call to exit or pthread_exit().

Chapter 9
Proc Provider

9-22



Table 9-7    (Cont.) proc Probes

Probe Description

lwp-start Fires within the context of a newly created
process or process thread. The lwp-start
probe fires before any user-level instructions
are executed. If the thread is the first created
for the process, the start probe fires, followed
by lwp-start.

signal-clear Probes that fires when a pending signal is
cleared because the target thread was waiting
for the signal in sigwait(), sigwaitinfo(), or
sigtimedwait(). Under these conditions, the
pending signal is cleared and the signal
number is returned to the caller. The signal
number is in args[0]. signal-clear fires in
the context of the formerly waiting thread.

signal-discard Fires when a signal is sent to a single-threaded
process and the signal is both unblocked and
ignored by the process. Under these conditions,
the signal is discarded on generation. The
lwpsinfo_t and psinfo_t of the target process
and thread are in args[0] and args[1],
respectively. The signal number is in args[2].

signal-handle Fires immediately before a thread handles a
signal. The signal-handle probe fires in the
context of the thread that will handle the
signal. The signal number is in args[0]. A
pointer to the siginfo_t structure that
corresponds to the signal is in args[1]. The
address of the signal handler in the process is
in args[2].

signal-send Fires when a signal is sent to a process or to a
thread created by a process. The signal-send
probe fires in the context of the sending
process or thread. The lwpsinfo_t and
psinfo_t of the receiving process and thread
are in args[0] and args[1], respectively. The
signal number is in args[2]. signal-send is
always followed by signal-handle or signal-
clear in the receiving process and thread.

start Fires in the context of a newly created process.
The start probe fires before any user-level
instructions are executed in the process.

Note:

No fundamental difference between a process and a thread that a process creates,
exists in Linux. The threads of a process are set up so that they can share resources,
but each thread has its own entry in the process table with its own process ID.
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proc Probe Arguments
The following table lists the argument types for the proc probes. See proc Probes for a
description of the arguments. The argN are implementation specific. Use args[] to access the
probe arguments.

Table 9-8    proc Probe Arguments

Probe args[0] args[1] args[2]
create psinfo_t * — —

exec char * — —

exec-failure int — —

exec-success — — —

exit int — —

lwp-create lwpsinfo_t * psinfo_t * —

lwp-exit — — —

lwp-start — — —

signal-clear int — —

signal-discard lwpsinfo_t * psinfo_t * int
signal-handle int siginfo_t * void (*)(void)
signal-send lwpsinfo_t * psinfo_t * int
start — — —

lwpsinfo_t
Several proc probes have arguments of type lwpsinfo_t. Detailed information about this data
structure can be found in /usr/lib64/dtrace/version/procfs.d. Some structure members,
while still recognized for historical reasons, aren't implemented. The definition of the
lwpsinfo_t structure is as follows:

typedef struct lwpsinfo {       
        int pr_flag;                    /* lwp flags (DEPRECATED) */  
        int pr_lwpid;                   /* lwp id */
        uintptr_t pr_addr;              /* internal address of lwp */
        uintptr_t pr_wchan;             /* NOT IMPLEMENTED */
        char pr_stype;                  /* NOT IMPLEMENTED */
        char pr_state;                  /* numeric lwp state */
        char pr_sname;                  /* printable char for pr_state */
        char pr_nice;                   /* NOT IMPLEMENTED */
        short pr_syscall;               /* NOT IMPLEMENTED */
        char pr_oldpri;                 /* NOT IMPLEMENTED */
        char pr_cpu;                    /* NOT IMPLEMENTED */
        int pr_pri;                     /* priority */
        ushort_t pr_pctcpu;             /* NOT IMPLEMENTED */
        ushort_t pr_pad;                /* struct padding */
        timestruc_t pr_start;           /* NOT IMPLEMENTED */
        timestruc_t pr_time;            /* NOT IMPLEMENTED */
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        char pr_clname[8];              /* NOT IMPLEMENTED */
        char pr_name[16];               /* name */
        processorid_t pr_onpro;         /* processor last ran on */
        processorid_t pr_bindpro;       /* NOT IMPLEMENTED */
        psetid_t pr_bindpset;           /* NOT IMPLEMENTED */
        int pr_lgrp;                    /* NOT IMPLEMENTED */
        int pr_filler[4];               /* struct padding */

} lwpsinfo_t;

Note:

Lightweight processes don't exist in Linux. Rather, in Oracle Linux, processes and
threads are represented by process descriptors of type struct task_struct in the
task list. DTrace translates the members of lwpsinfo_t from the task_struct for the
Oracle Linux process.

The pr_flag is set to 1 if the thread is stopped. Otherwise, it's set to 0.

In Oracle Linux, the pr_stype field is unsupported, and hence is always 0.

The following table describes the values that pr_state can take, including the corresponding
character values for pr_sname.

Table 9-9    pr_state Values

pr_state Value pr_sname Value Description

SRUN (2) R The thread is runnable or is
running on a CPU. The
sched:::enqueue probe fires
immediately before a thread's
state is transitioned to SRUN.
The sched:::on-cpu probe
will fire a short time after the
thread starts to run.
The equivalent Oracle Linux
task state is TASK_RUNNING.

SSLEEP (1) S The thread is sleeping. The
sched:::sleep probe will fire
immediately before a thread's
state is transitioned to SSLEEP.

The equivalent Oracle Linux
task state is
TASK_INTERRUPTABLE or
TASK_UNINTERRUPTABLE.
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Table 9-9    (Cont.) pr_state Values

pr_state Value pr_sname Value Description

SSTOP (4) T The thread is stopped, either
because of an explicit proc
directive or some other
stopping mechanism.
The equivalent Oracle Linux
task state is __TASK_STOPPED
or __TASK_TRACED.

SWAIT (7) W The thread is waiting on wait
queue. The sched:::cpucaps-
sleep probe will fire
immediately before the
thread's state transitions to
SWAIT.

The equivalent Oracle Linux
task state is TASK_WAKEKILL or
TASK_WAKING.

SZOMB (3) Z The thread is a zombie.
The equivalent Oracle Linux
task state is EXIT_ZOMBIE,
EXIT_DEAD, or TASK_DEAD.

psinfo_t
Several proc probes have an argument of type psinfo_t. Detailed information about this data
structure can be found in /usr/lib64/dtrace/version/procfs.d. The definition of the
psinfo_t structure, is as follows:

typedef struct psinfo {
        int pr_flag;                    /* process flags (DEPRECATED) */
        int pr_nlwp;                    /* number of active lwps (Linux: 1) */
        pid_t pr_pid;                   /* unique process id */
        pid_t pr_ppid;                  /* process id of parent */
        pid_t pr_pgid;                  /* pid of process group leader */
        pid_t pr_sid;                   /* session id */
        uid_t pr_uid;                   /* real user id */
        uid_t pr_euid;                  /* effective user id */
        uid_t pr_gid;                   /* real group id */
        uid_t pr_egid;                  /* effective group id */
        uintptr_t pr_addr;              /* address of process */
        size_t pr_size;                 /* size of process image (in KB) */
        size_t pr_rssize;               /* resident set sie (in KB) */
        size_t pr_pad1;
        struct tty_struct *pr_ttydev;   /* controlling tty (or -1) */
        ushort_t pr_pctcpu;             /* % of recent cpu time used */
        ushort_t pr_pctmem;             /* % of recent memory used */
        timestruc_t pr_start;           /* process start time */
        timestruc_t pr_time;            /* usr+sys cpu time for process */
        timestruc_t pr_ctime;           /* usr+sys cpu time for children */
        char pr_fname[16];              /* name of exec'd file */
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        char pr_psargs[80];             /* initial chars of arg list */
        int pr_wstat;                   /* if zombie, wait() status */
        int pr_argc;                    /* initial argument count */
        uintptr_t pr_argv;              /* address of initial arg vector */
        uintptr_t pr_envp;              /* address of initial env vector */
        char pr_dmodel;                 /* data model */
        char pr_pad2[3];
        taskid_t pr_taskid;             /* task id */
        dprojid_t pr_projid;            /* project id */
        int pr_nzomb;                   /* number of zombie lwps (Linux: 0) */
        poolid_t pr_poolid;             /* pool id */
        zoneid_t pr_zoneid;             /* zone id */
        id_t pr_contract;               /* process contract */
        int pr_filler[1];
        lwpsinfo_t pr_lwp;

} psinfo_t;

Note:

Lightweight processes don't exist in Linux. In Oracle Linux, processes and threads
are represented by process descriptors of type struct task_struct in the task list.
DTrace translates the members of psinfo_t from the task_struct for the Oracle
Linux process.

pr_dmodel is set to either PR_MODEL_ILP32, denoting a 32–bit process, or PR_MODEL_LP64,
denoting a 64–bit process.

proc Examples
The following examples illustrate the use of the probes that are published by the proc provider.

create

The following example shows how you can use the create probe to show the pids that are
creating other pids. Both the creating and resulting pids are shown in the output. Add the
following D source code and save it in a file named create.d:

proc:::create
{
  printf("%d created %d\n",
      args[0]->pr_ppid,
      args[0]->pr_pid);
}

Run the D script. The D script shows output similar to the following:

CPU     ID                    FUNCTION:NAME
  0 111864                          :create 2670 created 691647

  2 111864                          :create 1 created 691648
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  2 111864                          :create 691074 created 691649

  3 111864                          :create 691649 created 691650

  3 111864                          :create 691649 created 691651
...

exec, exec-success and exec-failure

The following example shows how you can use the exec, exec-success and exec-failure
probes to easily determine which programs are being run, and by which parent process. Type
the following D source code and save it in a file named whoexec.d:

#pragma D option quiet

proc:::exec
{
  self->parent = execname;
}

proc:::exec-success
/self->parent != NULL/
{
  @[self->parent, execname] = count();
  self->parent = NULL;
}

proc:::exec-failure
/self->parent != NULL/
{
  self->parent = NULL;
}

END
{
  printf("%-20s %-20s %s\n", "WHO", "WHAT", "COUNT");
  printa("%-20s %-20s %@d\n", @);
}

Running the example script for a short period results in output similar to the following:

WHO                  WHAT                 COUNT
bash                 date                 1
bash                 grep                 1
bash                 ssh                  1
bash                 wc                   1
bash                 ls                   2
bash                 sed                  2
...
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start and exit

To determine how long programs are running, from creation to termination, you can enable the
start and exit probes, as shown in the following example. Save it in a file named progtime.d:

proc:::start
{
  self->start = timestamp;
}

proc:::exit
/self->start/
{
  @[execname] = quantize(timestamp - self->start);
  self->start = 0;
}

Running the example script on a build server for several seconds results in output similar to the
following:

...
cc
          value  ------------- Distribution ------------- count
       33554432 |                                         0
       67108864 |@@@                                      3
      134217728 |@                                        1
      268435456 |                                         0
      536870912 |@@@@                                     4
     1073741824 |@@@@@@@@@@@@@@                           13
     2147483648 |@@@@@@@@@@@@                             11
     4294967296 |@@@                                      3
     8589934592 |                                         0

sh
          value  ------------- Distribution ------------- count
         262144 |                                         0
         524288 |@                                        5
        1048576 |@@@@@@@                                  29
        2097152 |                                         0
        4194304 |                                         0
        8388608 |@@@                                      12
       16777216 |@@                                       9
       33554432 |@@                                       9
       67108864 |@@                                       8
      134217728 |@                                        7
      268435456 |@@@@@                                    20
      536870912 |@@@@@@                                   26
     1073741824 |@@@                                      14
     2147483648 |@@                                       11
     4294967296 |                                         3
     8589934592 |                                         1
    17179869184 |                                         0
...
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signal-send

The following example shows how you can use the signal-send probe to determine the
sending and receiving of process associated with any signal. Type the following D source code
and save it in a file named sig.d:

#pragma D option quiet

proc:::signal-send
{
  @[execname, stringof(args[1]->pr_fname), args[2]] = count();
}

END
{
  printf("%20s %20s %12s %s\n",
      "SENDER", "RECIPIENT", "SIG", "COUNT");
  printa("%20s %20s %12d %@d\n", @);
}

Running this script results in output similar to the following:

              SENDER            RECIPIENT          SIG COUNT
       kworker/u16:7               dtrace            2 1
       kworker/u16:7                 sudo            2 1
           swapper/2             sssd_kcm           34 1
           swapper/6             pmlogger           14 1

proc Stability
The proc provider uses DTrace's stability mechanism to describe its stabilities. These values
are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

Profile Provider
The profile provider includes probes that are associated with an interrupt that fires at some
regular, specified time interval.

Such probes aren't associated with any particular point of execution, but rather with the
asynchronous interrupt event. You can use these probes to sample some aspect of the system
state and then use the samples to infer system behavior. If the sampling rate is high or the
sampling time is long, an accurate inference is possible. Using DTrace functions, you can use
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the profile provider to sample many aspects of the system. For example, you could sample
the state of the current thread, the state of the CPU, or the current machine instruction.

profile-n Probes
The profile-n probes fire at a fixed interval, at a high-interrupt level on all active CPUs.

The units of n default to a frequency that's expressed as a rate of firing per second, but the
value can also have an optional suffix , as shown in Table 9-10, which specifies either a time
interval or a frequency. The following table describes valid time suffixes for a tick- n probe.

Table 9-10    Valid Time Suffixes

Suffix Time Units

nsec or ns nanoseconds

usec or us microseconds

msec or ms milliseconds

sec or s seconds

min or m minutes

hour or h hours

day or d days

hz hertz (frequency expressed as rate per second)

tick-n Probes
The tick-n probes fire at fixed intervals, at a high interrupt level on only one CPU per interval.

Unlike profile-n probes, which fire on every CPU, tick-n probes fire on only one CPU per
interval and the CPU on which they fire can change over time. The units of n default to a
frequency expressed as a rate of firing per second, but the value can also have an optional
time suffix as shown in Table 9-10, which specifies either a time interval or a frequency.

The tick-n probes have several uses, such as providing some periodic output or taking a
periodic action.

Note:

The highest available tick frequency is 5000 Hz (tick-5000).

profile Probe Arguments
The following table describes the arguments for the profile probes.
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Table 9-11    profile Probe Arguments

Probe arg0 arg1
profile-n pc upc
tick-n pc upc

The arguments are as follows:

• pc: kernel program counter

• upc: user-space program counter

profile Probe Creation
Unlike other providers, the profile provider creates probes dynamically on an as-needed
basis. Thus, the preferred probe might not appear in a listing of all probes, for example, when
using the dtrace -l -P profile command, but the probe is created when it's explicitly
enabled.

A time interval that's too short causes the machine to continuously field time-based interrupts
and denies service on the machine. The profile provider refuses to create a probe that would
result in an interval of less than two hundred microseconds and returns an error.

prof Stability
The profile provider uses DTrace's stability mechanism to describe its stabilities. These
stability values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Unstable Unstable Unknown

Function Private Private Unknown

Name Evolving Evolving Common

Arguments Evolving Evolving Common

Rawtp Provider
The rawtp provider gives DTrace users access to the raw tracepoints exposed by the kernel
tracing system, including access to the untranslated arguments of the associated tracepoint
events.

To see what raw tracepoints are available on a system, use:

sudo dtrace -lP rawtp

To see the types of the untranslated arguments, use:

sudo dtrace -lvP rawtp
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rawtp Stability
The rawtp provider uses DTrace's stability mechanism to describe its stabilities. These stability
values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Private Private ISA

Arguments Private Private ISA

Sched Provider
The sched provider makes available probes related to CPU scheduling.

Because CPUs are the one resource that all threads must consume, the sched provider is
useful for understanding systemic behavior.

sched Probes
The probes for the sched provider are listed in the following table. For all sched probes, the
module is vmlinux and the function is an empty string.

Table 9-12    sched Probes

Probe Description

dequeue Fires immediately before a runnable thread is
dequeued from a run queue. The run queue's
associated CPU is described by args[2]. If there
is no associated CPU, the cpu_id member of the
args[2] structure is -1."

enqueue Fires immediately before a runnable thread is
enqueued to a run queue. If the run queue isn't
associated with a particular CPU, the cpu_id
member of the args[2] structure is -1. The
value in args[3] is a Boolean, non zero if the
thread is enqueued at the front of the run
queue, and zero if at the back.

off-cpu Fires when the current CPU is about to end
execution of a thread. The curcpu variable
indicates the current CPU. The curlwpsinfo
variable indicates the thread that's ending
execution, while args[0] and args[1] refer to
the next thread to run on the CPU.

on-cpu Fires when a CPU has begun execution of a
thread. The current CPU, thread, and process,
are described by curcpu, curlwpsinfo, and
curpsinfo, respectively.
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Table 9-12    (Cont.) sched Probes

Probe Description

surrender Fires when a CPU has been instructed by
another CPU to make a scheduling decision,
often because a higher-priority thread has
become runnable.

tick Fires as a part of clock tick-based accounting. In
clock tick-based accounting, CPU accounting is
performed by examining which threads and
processes are running when a fixed-interval
interrupt fires.

wakeup Fires immediately before the current thread
wakes a thread sleeping on a synchronization
object. Here, args[0] and args[1] refer to the
sleeping thread, as an lwpsinfo_t * and
psinfo_t *, respectively. The type and address
of the synchronization object are contained in
the pr_stype and pr_wchan members of the
lwpsinfo_t of the sleeping thread. The
meaning of this address is a private
implementation detail, but the address value
might be treated as a token unique to the
synchronization object.

sched Probe Arguments
Many of these probes refer to a particular thread. For these probes, the thread's lwpsinfo_t is
pointed to by args[0] and the psinfo_t of the process containing the thread by args[1]. A
few probes refer to a particular CPU. Its cpuinfo_t is pointed to by args[2]. Only enqueue has
an args[3], and that argument is a Boolean, as described. The argN values are
implementation specific. Instead, use args[] to access the probe arguments.

The following table contains a summary of the sched provider probe arguments.

Table 9-13    sched Probe Arguments

Probe args[0] args[1] args[2] args[3]
dequeue lwpsinfo_t * psinfo_t * cpuinfo_t * —

enqueue lwpsinfo_t * psinfo_t * cpuinfo_t * int
off-cpu lwpsinfo_t * psinfo_t * — —

on-cpu — — — —

surrender lwpsinfo_t * psinfo_t * — —

tick lwpsinfo_t * psinfo_t * — —

wakeup lwpsinfo_t * psinfo_t * — —

lwpsinfo_t and psinfo_t
The lwpsinfo_t and psinfo_t structures are described in Proc Provider.
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cpuinfo_t
The cpuinfo_t structure defines a CPU. The args[2] arguments for the enqueue and dequeue
probes point to the cpuinfo_t for the CPU associated with the run queue, which is sometimes
different from the current CPU, whose cpuinfo_t is pointed to by the curcpu variable.

The definition of the cpuinfo_t structure is:

typedef struct cpuinfo {
  processorid_t cpu_id;      
  psetid_t cpu_pset;         /* not supported */
  chipid_t cpu_chip;        
  lgrp_id_t cpu_lgrp;        /* not supported */
} cpuinfo_t;

sched Examples
The following examples illustrate the use of the probes that are published by the sched
provider.

on-cpu and off-cpu

One common question that you might want answered is which CPUs are running threads and
for how long? The following example shows how you can use the on-cpu and off-cpu probes
to easily answer this question on a system-wide basis. Type the following D source code and
save it in a file named where.d:

sched:::on-cpu
{
  self->ts = timestamp;
}

sched:::off-cpu
/self->ts/
{
  @[cpu] = quantize(timestamp - self->ts);
  self->ts = 0;
}

Run the script. After a few seconds, cancel the script using Ctrl-C. The output looks similar to:

        0
          value  ------------- Distribution ------------- count
           2048 |                                         0
           4096 |@@                                       37
           8192 |@@@@@@@@@@@@@                            212
          16384 |@                                        30
          32768 |                                         10
          65536 |@                                        17
         131072 |                                         12
         262144 |                                         9
         524288 |                                         6
        1048576 |                                         5
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        2097152 |                                         1
        4194304 |                                         3
        8388608 |@@@@                                     75
       16777216 |@@@@@@@@@@@@                             201
       33554432 |                                         6
       67108864 |                                         0

        1
          value  ------------- Distribution ------------- count
           2048 |                                         0
           4096 |@                                        6
           8192 |@@@@                                     23
          16384 |@@@                                      18
          32768 |@@@@                                     22
          65536 |@@@@                                     22
         131072 |@                                        7
         262144 |                                         5
         524288 |                                         2
        1048576 |                                         3
        2097152 |@                                        9
        4194304 |                                         4
        8388608 |@@@                                      18
       16777216 |@@@                                      19
       33554432 |@@@                                      16
       67108864 |@@@@                                     21
      134217728 |@@                                       14
      268435456 |                                         0

The previous output shows that on CPU 1 threads tend to run for less than 131072
nanoseconds (on order of 100 microseconds) at a stretch, or for 8388608 to 134217728
nanoseconds (about 10 to 100 milliseconds). A noticeable gap between the two clusters of
data is shown in the histogram. You also might be interested in knowing which CPUs are
running a particular process.

You can also use the on-cpu and off-cpu probes for answering this question. The following
script displays which CPUs run a specified application over a period of ten seconds. Save it in
a file named whererun.d.:

#pragma D option quiet
dtrace:::BEGIN
{
  start = timestamp;
}

sched:::on-cpu
/execname == $$1/
{
  self->ts = timestamp;
}

sched:::off-cpu
/self->ts/
{
  @[cpu] = sum(timestamp - self->ts);
  self->ts = 0;
}
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profile:::tick-10sec
{
  exit(0);
}

dtrace:::END
{
  printf("CPU distribution over %d seconds:\n\n",
    (timestamp - start) / 1000000000);
  printf("CPU microseconds\n--- ------------\n");
  normalize(@, 1000);
  printa("%3d %@d\n", @);
}

Running the previous script on a large mail server and specifying the IMAP daemon (using
sudo dtrace -qs whererun.d imapd) results in output that's similar to the following:

CPU distribution of imapd over 10 seconds:

CPU microseconds
--- ------------
 15 10102
 12 16377
 21 25317
 19 25504
 17 35653
 13 41539
 14 46669
 20 57753
 22 70088
 16 115860
 23 127775
 18 160517

Oracle Linux considers the amount of time that a thread has been sleeping when selecting a
CPU on which to run the thread, as a thread that has been sleeping for less time tends not to
migrate. Use the off-cpu and on-cpu probes to observe this behavior. Type the following
source code and save it in a file named howlong.d:

sched:::off-cpu
/curlwpsinfo->pr_state == SSLEEP/
{
 self->cpu = cpu;
 self->ts = timestamp;
}

sched:::on-cpu
/self->ts/
{
 @[self->cpu == cpu ?
   "sleep time, no CPU migration" : "sleep time, CPU migration"] =
   lquantize((timestamp - self->ts) / 1000000, 0, 500, 25);
 self->ts = 0;
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 self->cpu = 0;
}

Run the script. After around 30 seconds, cancel the script using Ctrl+C. The output looks
similar to:

 sleep time, CPU migration
          value  ------------- Distribution ------------- count
            < 0 |                                         0
              0 |@@@@@@@                                  6838
             25 |@@@@@                                    4714
             50 |@@@                                      3108
             75 |@                                        1304
            100 |@                                        1557
            125 |@                                        1425
            150 |                                         894
            175 |@                                        1526
            200 |@@                                       2010
            225 |@@                                       1933
            250 |@@                                       1982
            275 |@@                                       2051
            300 |@@                                       2021
            325 |@                                        1708
            350 |@                                        1113
            375 |                                         502
            400 |                                         220
            425 |                                         106
            450 |                                         54
            475 |                                         40
         >= 500 |@                                        1716

 sleep time, no CPU migration
          value  ------------- Distribution ------------- count
            < 0 |                                         0
              0 |@@@@@@@@@@@@                             58413
             25 |@@@                                      14793
             50 |@@                                       10050
             75 |                                         3858
            100 |@                                        6242
            125 |@                                        6555
            150 |                                         3980
            175 |@                                        5987
            200 |@                                        9024
            225 |@                                        9070
            250 |@@                                       10745
            275 |@@                                       11898
            300 |@@                                       11704
            325 |@@                                       10846
            350 |@                                        6962
            375 |                                         3292
            400 |                                         1713
            425 |                                         585
            450 |                                         201
            475 |                                         96
         >= 500 |                                         3946
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The previous output reveals more occurrences of non-migration than migration. Also, when
sleep times are longer, migrations are more likely. The distributions are different in the under
100 millisecond range, but look similar as the sleep times get longer. This result would seem to
indicate that sleep time isn't factored into the scheduling decision when a certain threshold is
exceeded.

enqueue and dequeue

You might want to know on which CPUs processes and threads are waiting to run. You can use
the enqueue probe along with the dequeue probe to answer this question. Type the following
source code and save it in a file named qtime.d:

sched:::enqueue
{
  a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id] =
  timestamp;
}

sched:::dequeue
/a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id]/
{
  @[args[2]->cpu_id] = quantize(timestamp -
    a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id]);
  a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id] = 0;
}

Running the previous script for several seconds results in output that's similar to the following:

        1
           value  ------------- Distribution ------------- count    
            8192 |                                         0        
           16384 |                                         1        
           32768 |@                                        47       
           65536 |@@@@@@@                                  365      
          131072 |@@@@@@@@@@@@                             572      
          262144 |@@@@@@@@@@@@                             570      
          524288 |@@@@@@@                                  354      
         1048576 |@                                        57       
         2097152 |                                         7        
         4194304 |                                         1        
         8388608 |                                         1        
        16777216 |                                         0        

        0
           value  ------------- Distribution ------------- count    
            8192 |                                         0        
           16384 |                                         6        
           32768 |@                                        49       
           65536 |@@@@@                                    261      
          131072 |@@@@@@@@@@@@@                            753      
          262144 |@@@@@@@@@@@@                             704      
          524288 |@@@@@@@@                                 455      
         1048576 |@                                        74       
         2097152 |                                         9        
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         4194304 |                                         2        
         8388608 |                                         0

Rather than looking at wait times, you might want to examine the length of the run queue over
time. Using the enqueue and dequeue probes, you can set up an associative array to track the
queue length. Type the following source code and save it in a file named qlen.d:

sched:::enqueue
{
  this->len = qlen[args[2]->cpu_id]++;
  @[args[2]->cpu_id] = lquantize(this->len, 0, 100);
}

sched:::dequeue
/qlen[args[2]->cpu_id]/
{
  qlen[args[2]->cpu_id]--;
}

Running the previous script on a largely idle dual-core processor system for about 30 seconds
results in output that's similar to the following:

        1
           value  ------------- Distribution ------------- count    
             < 0 |                                         0        
               0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@        8124     
               1 |@@@@@@                                   1558     
               2 |@                                        160      
               3 |                                         51       
               4 |                                         24       
               5 |                                         13       
               6 |                                         11       
               7 |                                         9        
               8 |                                         6        
               9 |                                         0        

        0
           value  ------------- Distribution ------------- count    
             < 0 |                                         0        
               0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@           8569     
               1 |@@@@@@@@@                                2429     
               2 |@                                        292      
               3 |                                         25       
               4 |                                         8        
               5 |                                         5        
               6 |                                         4        
               7 |                                         4        
               8 |                                         1        
               9 |                                         0

The output is what you might expect for an idle system: most the time that a runnable thread is
enqueued, the run queues were short (three or fewer threads in length). However, as that the
system was largely idle, the exceptional data points at the bottom of each table might be
unexpected. For example, why were the run queues as long as 8 runnable threads? To explore
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this question further, you could write a D script that displays the contents of the run queue
when the length of the run queue is long. This problem is complicated because D probes can't
iterate over data structures, and therefore can't iterate over the entire run queue. Even if D
probes could do so, avoid dependencies on the kernel's internal data structures.

For this type of script, you would enable the enqueue and dequeue probes and then use both
speculations and associative arrays. For example, type the following source code and save it
in a file named whoqueue.d:

#pragma D option quiet
#pragma D option nspec=4
#pragma D option specsize=100k

int maxlen;
int spec[int];
sched:::enqueue
{
  this->len = ++qlen[this->cpu = args[2]->cpu_id];
  in[args[0]->pr_addr] = timestamp;
}

sched:::enqueue
/this->len > maxlen && spec[this->cpu]/
{
  /*
   * There is already a speculation for this CPU. We just set a new
   * record, so we’ll discard the old one.
   */
  discard(spec[this->cpu]);
}

sched:::enqueue
/this->len > maxlen/
{
  /*
   * We have a winner. Set the new maximum length and set the timestamp
   * of the longest length.
   */
  maxlen = this->len;
  longtime[this->cpu] = timestamp;
  /*
   * Now start a new speculation, and speculatively trace the length.
   */
  this->spec = spec[this->cpu] = speculation();
  speculate(this->spec);
  printf("Run queue of length %d:\n", this->len);
}

sched:::dequeue
/(this->in = in[args[0]->pr_addr]) &&
  this->in <= longtime[this->cpu = args[2]->cpu_id]/
{
  speculate(spec[this->cpu]);
  printf(" %d/%d (%s)\n",
    args[1]->pr_pid, args[0]->pr_lwpid,
    stringof(args[1]->pr_fname));
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}

sched:::dequeue
/qlen[args[2]->cpu_id]/
{
  in[args[0]->pr_addr] = 0;
  this->len = --qlen[args[2]->cpu_id];
}

sched:::dequeue
/this->len == 0 && spec[this->cpu]/
{
  /*
   * We just processed the last thread that was enqueued at the time
   * of longest length; commit the speculation, which by now contains
   * each thread that was enqueued when the queue was longest.
   */
  commit(spec[this->cpu]);
  spec[this->cpu] = 0;
}

In this script, whenever a thread is enqueued, it increments the length of the queue and
records the timestamp in an associative array keyed by the thread. You can't use a thread-local
variable in this case because a thread might be enqueued by another thread. The script then
checks to see if the queue length exceeds the maximum, and if so, the script starts a new
speculation, and records the timestamp and the new maximum. Then, when a thread is
dequeued, the script compares the enqueue timestamp to the timestamp of the longest length:
if the thread was enqueued before the timestamp of the longest length, the thread was in the
queue when the longest length was recorded. In this case, the script speculatively traces the
thread's information. When the kernel dequeues the last thread that was enqueued at the
timestamp of the longest length, the script commits the speculation data.

Running the previous script on the same system results in output that's similar to the following:

Run queue of length 1:
 2850/2850 (java)
Run queue of length 2:
 4034/4034 (kworker/0:1)
 16/16 (sync_supers)
Run queue of length 3:
 10/10 (ksoftirqd/1)
 1710/1710 (hald-addon-inpu)
 25350/25350 (dtrace)
Run queue of length 4:
 2852/2852 (java)
 2850/2850 (java)
 1710/1710 (hald-addon-inpu)
 2099/2099 (Xorg)
Run queue of length 5:
 3149/3149 (notification-da)
 2417/2417 (gnome-settings-)
 2437/2437 (gnome-panel)
 2461/2461 (wnck-applet)
 2432/2432 (metacity)
Run queue of length 9:
 3685/3685 (firefox)
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 3149/3149 (notification-da)
 2417/2417 (gnome-settings-)
 2437/2437 (gnome-panel)
 2852/2852 (java)
 2452/2452 (nautilus)
 2461/2461 (wnck-applet)
 2432/2432 (metacity)
 2749/2749 (gnome-terminal)
^C

wakeup

The following example shows how you might use the wakeup probe to find what's waking a
particular process, and when, over a time period. Type the following source code and save it in
a file named gterm.d:

#pragma D option quiet

dtrace:::BEGIN
{
  start = timestamp;
}

sched:::wakeup
/stringof(args[1]->pr_fname) == "gnome-terminal"/
{
  @[execname] = lquantize((timestamp - start) / 1000000000, 0, 10);
}

profile:::tick-10sec
{
  exit(0);
}

Running this script results in output similar to:

  Xorg                                              
           value  ------------- Distribution ------------- count    
             < 0 |                                         0        
               0 |@@@@@@@@@@@@@@@                          69       
               1 |@@@@@@@@                                 35       
               2 |@@@@@@@@@                                42       
               3 |                                         2        
               4 |                                         0        
               5 |                                         0        
               6 |                                         0        
               7 |@@@@                                     16       
               8 |                                         0        
               9 |@@@                                      15       
           >= 10 |                                         0  

This output shows that the X server is waking the gnome-terminal process as you interact with
the system.
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tick

Oracle Linux might use tick-based CPU accounting, where a system clock interrupt fires at a
fixed interval and attributes CPU utilization to the processes that are running at the time of the
tick. The following example shows how you would use the tick probe to observe this
attribution.

sudo dtrace -n sched:::tick'{ @[stringof(args[1]->pr_fname)] = count() }'

Enter Ctrl+C, and output similar to the following is shown:

  VBoxService                                                       1
  gpk-update-icon                                                   1
  hald-addon-inpu                                                   1
  jbd2/dm-0-8                                                       1
  automount                                                         2
  gnome-session                                                     2
  hald                                                              2
  gnome-power-man                                                   3
  ksoftirqd/0                                                       3
  kworker/0:2                                                       3
  notification-da                                                   4
  devkit-power-da                                                   6
  nautilus                                                          9
  dbus-daemon                                                      11
  gnome-panel                                                      11
  gnome-settings-                                                  11
  dtrace                                                           19
  khugepaged                                                       22
  metacity                                                         27
  kworker/0:0                                                      41
  swapper                                                          56
  firefox                                                          58
  wnck-applet                                                      61
  gnome-terminal                                                   67
  java                                                             84
  Xorg                                                            227

One deficiency of tick-based accounting is that the system clock that performs accounting is
often also responsible for dispatching any time-related scheduling activity. If a thread is to
perform some amount of work every clock tick (say, every 10 milliseconds), the system either
over accounts or under accounts for the thread, depending on whether the accounting is done
before or after time-related dispatching scheduling activity. If accounting is performed before
time-related dispatching, the system under accounts for threads running at a regular interval. If
such threads run for less than the clock tick interval, they can effectively hide behind the clock
tick.

The following example examines whether a system has any such threads. Type the following
source code and save it in a file named tick.d:

sched:::tick,
sched:::enqueue
{
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  @[probename] = lquantize((timestamp / 1000000) % 10, 0, 10);
}

The output of the example script is two distributions of the millisecond offset within a ten
millisecond interval, one for the tick probe and another for enqueue:

  tick                                              
           value  ------------- Distribution ------------- count    
             < 0 |                                         0        
               0 |@@@@@                                    29       
               1 |@@@@@@@@@@@@@@@@@@@                      106      
               2 |@@@@@                                    27       
               3 |@                                        7        
               4 |@@                                       10       
               5 |@@                                       12       
               6 |@                                        4        
               7 |@                                        8        
               8 |@@                                       9        
               9 |@@@                                      17       
           >= 10 |                                         0        

  enqueue                                           
           value  ------------- Distribution ------------- count    
             < 0 |                                         0        
               0 |@@@@                                     82       
               1 |@@@@                                     86       
               2 |@@@@                                     76       
               3 |@@@                                      65       
               4 |@@@@@                                    101      
               5 |@@@@                                     79       
               6 |@@@@                                     75       
               7 |@@@@                                     76       
               8 |@@@@                                     89       
               9 |@@@@                                     75       
           >= 10 |                                         0 

The output histogram named tick shows that the clock tick is firing at a 1 millisecond offset. In
this example, the output for enqueue is evenly spread across the ten millisecond interval and
no spike is visible at 1 millisecond, so it seems the threads aren't being scheduled on a time
basis.

sched Stability
The sched provider uses DTrace's stability mechanism to describe its stabilities. These values
are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA
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SDT Provider
The Statically Defined Tracing (SDT) provider (sdt) creates probes at sites that a software
programmer has formally designated. Thus, the SDT provider is chiefly of interest only to
developers of new providers. Most users access SDT only indirectly by using other providers.

The SDT mechanism enables programmers to consciously choose locations of interest to
users of DTrace and to convey some semantic knowledge about each location through the
probe name.

Importantly, SDT can act as a metaprovider by registering probes so that they appear to come
from other providers, such as io, lockstat, proc, and sched.

Both the name stability and the data stability of the probes are Private, which reflects the
kernel's implementation and should not be interpreted as a commitment to preserve these
interfaces.

Creating sdt Probes
If you are a device driver developer, you might be interested in creating sdt probes for an
Oracle Linux driver that you are working on. The disabled probe effect of SDT is only the cost
of several no-operation machine instructions. You are therefore encouraged to add sdt probes
to device driver code as needed. Unless these probes negatively affect performance, you can
leave them in shipped code.

DTrace also provides a mechanism for application developers to define user-space static
probes.

Declaring Probes
The sdt probes are declared by using the DTRACE_PROBE macro from <linux/sdt.h>.

The module name and function name of an SDT-based probe correspond to the kernel module
name and function name where the probe is declared. DTrace includes the kernel module
name and function name as part of the tuple used to identify the probe in the probe description,
so you don't need to explicitly include this information when devising the probe name. You can
still specify the module and function name when referring to the probe in a DTrace program to
prevent namespace collisions. Use the dtrace -l -m mymodule command to list the
probes that mymodule has installed and the full names that are seen by DTrace users.

The name of the probe depends on the name that's provided in the DTRACE_PROBE macro. If the
name doesn't contain two consecutive underscores (__), the name of the probe is as written in
the macro. If the name contains two consecutive underscores, the probe name converts the
consecutive underscores to a single dash (-). For example, if a DTRACE_PROBE macro specifies
transaction__start, the SDT probe is named transaction-start. This substitution enables
C code to provide macro names that aren't valid C identifiers without specifying a string.

SDT can also act as a metaprovider by registering probes so that they appear to come from
other providers, such as io, proc, and sched, which don't have dedicated modules of their own.
For example, kernel/exit.c contains calls to the DTRACE_PROC macro, which are defined as
follows in <linux/sdt.h>:

# define DTRACE_PROC(name) \
         DTRACE_PROBE(__proc_##name);
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Probes that use such macros appear to come from a provider other than sdt. The leading
double underscore, provider name, and trailing underscore in the name argument are used to
match the provider and aren't included in the probe name.

sdt Probe Arguments
The arguments for each sdt probe are the arguments that are specified in the kernel source
code in the corresponding DTRACE_PROBE macro reference. When declaring sdt probes, you
can minimize their disabled probe effect by not dereferencing pointers and by not loading from
global variables in the probe arguments. Both pointer dereferencing and global variable loading
can be done safely in D functions that enable probes, so DTrace users can request these
functions only when they're needed.

sdt Stability
The sdt provider uses DTrace's stability mechanism to describe its stabilities. These values
are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Private Private ISA

Arguments Private Private ISA

Syscall Provider
The syscall provider makes available a probe at the entry to and return from every system
call in the system.

Because system calls are the primary interface between user-level applications and the OS
kernel, the syscall provider can offer tremendous insight into application behavior about the
system.

syscall Probes
syscall provides a pair of probes for each system call: an entry probe that fires before the
system call is entered, and a return probe that fires after the system call has completed, but
before control has been transferred back to user-level. For all syscall probes, the function
name is set as the name of the instrumented system call.

Often, the system call names that are provided by syscall correspond to names in the Section
2 manual pages. However, some syscall provider probes don't directly correspond to any
documented system call, such as the case where a system call might be a sub operation of
another system call or where a system call might be private in that they span the user-kernel
boundary.
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syscall Probe Arguments
For entry probes, the arguments, arg0 ... argn , are arguments to the system call. For return
probes, both arg0 and arg1 contain the return value. A non-zero value in the D variable errno
indicates a system call failure.

syscall Stability
The syscall provider uses DTrace's stability mechanism to describe its stabilities. These
stability values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Private Private Instruction set
architecture (ISA)

Name Evolving Evolving Common

Arguments Private Private ISA

USDT Provider
Use the USDT provider, for user space statically defined tracing, to instrument user space
code with probes that are meaningful for an application.

For example, if an application has put and get operations, you can insert put and get
instrumentation points in the source code, even if each operation is implemented on several
code paths. A DTrace user could then enable such probes to trace activity, even without
knowing how those operations are implemented in the source code. As usual, there are
negligible performance impacts for DTrace probes when the probes aren't enabled. USDT
probes can also appear in shared libraries.

USDT is for user space processes. For kernel modules, statically defined tracing is handled by
the related SDT mechanism.

Defining USDT Providers and Probes
Define USDT providers and probes in a .d file that you add to the source code. For example, a
file myproviders.d contains:

provider myprov
{
  probe my__put(int, int);
  probe my__get();
};

In this example, the provider name is myprov, but, as with the pid provider, DTrace users must
append the process ID (pid) of the process or processes that interest them. In contrast to the
pid provider, the USDT provider descriptions can use wildcards for the pids. For example,
specifying myprov1234 traces this provider's probes only for process ID 1234. In contrast,
myprov* traces this provider's probes for all processes that have been appropriately
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instrumented, even processes that haven't yet started. Or, as with the pid provider, you can
use a symbolic pid, such as myprov$target for the process started with the -c option.

The provider definition lists its probes, along with any probe arguments. The D compiler
converts two consecutive underscores (__) to a dash (-) in the probe name.

This following example runs command ./a.out, then traces the USDT probe my-put on that
one process, displaying the two arguments to that probe.

sudo dtrace -c ./a.out -n 'myprov$target:::my-put { printf("put %d %d\n", 
arg0, arg1); }'

The following example traces all processes with myprov probes, even if they haven't yet
started. This example uses the -Z option of dtrace in case zero processes match at the time
dtrace is started.

sudo dtrace -Z -n 'myprov*:::my-put { printf("put %d %d\n", arg0, arg1); }'

Adding USDT Probes to Application Code
Consider this C code func.c:

#include "myproviders.h"

void foo(void)
{
    ...
    if (MYPROV_MY_PUT_ENABLED()) {
        int arg0, arg1;

        arg0 = bar(1111);
        arg1 = bar(2222);
        MYPROV_MY_PUT(arg0, arg1);
    }
    ...
    MYPROV_MY_GET();
    ...
}

This example includes a header file that's automatically generated. The name of this header
file is derived from the file name that defines the macros to access the probes. It defines
macros that provide access to the USDT probes.

You can place probes in the code, referring to the probes by using the macros, which
concatenate provider, and probe names, and converting to uppercase. In this example, the
macros are MYPROV_MY_PUT() and MYPROV_MY_GET().

An optional optimization is to test if a probe is enabled. While the computational overhead of a
disabled DTrace probe is often similar to a few no-op instructions, setting up probe arguments
can be expensive. In this example, bar(1111) and bar(2222)might be costly function calls.
Therefore, for each probe, DTrace also supplies an is-enabled macro, named by appending
_ENABLED. In the example, MYPROV_MY_PUT_ENABLED() for the my-put probe, to help minimize
the cost of any work associated with disabled probes.

Chapter 9
USDT Provider

9-49



Building Applications With USDT Probes
The dtrace command becomes part of the build procedure, which can be thought of in four
parts:

1. Generate the header file that defines the macros to access the probes. For example:

dtrace -h -s myproviders.d

The previous command produces the myproviders.h header file. While dtrace requires
root privileges for runtime tracing, generating the header file doesn't have this requirement.

2. Compile the source code, which includes the dtrace generated header file based on the
provider and probe definitions. For example, for several source files:

gcc -c func1.c
gcc -c func2.c
gcc -c func3.c

3. Post process each object file using dtrace. For example:

dtrace -G -s myproviders.d func1.o func2.o func3.o

Again, dtrace doesn't require root privileges for this step. This step also generates the
object file myproviders.o from myproviders.d and the other object files, linking provider
and probe definitions with a user application.

4. Link the final executable. The -Wl,--export-dynamic link options to gcc are required for
symbol lookup in a stripped executable at runtime, for example, when you use the D
function ustack(). For example:

gcc -Wl,--export-dynamic,--strip-all myproviders.o func1.o func2.o func3.o

USDT Examples
1. Create a file myproviders.d that contains:

provider myprov
{
    probe my__put(int, int);
    probe my__get();
};          

2. Create a C program func.c that contains:

#include <stdio.h>
#include <unistd.h>
#include "myproviders.h"

int bar(int in)
{
    printf("bar evaluates %d\n", in);
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    return 3 * in;
}

void foo(void)
{
    if (MYPROV_MY_PUT_ENABLED()) {
        int arg0, arg1;
        arg0 = bar(1111);
        arg1 = bar(2222);
        MYPROV_MY_PUT(arg0, arg1);
    }
    MYPROV_MY_GET();
}

int main(int c, char **v)
{
    while (1) {
        usleep(1000 * 1000);
        foo();
    }

    return 0;
}

3. Build the application using:

dtrace -h -s myproviders.d
gcc -c func.c
dtrace -G -s myproviders.d func.o
gcc -Wl,--export-dynamic,--strip-all myproviders.o func.o

4. You could run this program in several ways. For example:

• You could run the tracing program using:

sudo dtrace -c ./a.out -q -n '
    myprov$target:::my-put { printf("put %d %d\n", arg0, arg1); }
    myprov$target:::my-get { printf("get\n"); }
    tick-5sec {exit(0)}'

This first example, runs the a.out command with the -c option. The -q quiet option
suppresses extraneous output. The D script is on the command line, and it prints both
args for the put probe and reports the get probe. The example refers symbolically
to $target, the pid of the target command is specified with -c.

After five seconds, the dtrace job finishes, ending the target command.

• Or, you could run this example using:

./a.out &
pid=$!
sudo dtrace -q -n '
         myprov'$pid':::my-put { printf("put %d %d\n", arg0, arg1); }
         myprov'$pid':::my-get { printf("get\n"); }
         tick-5sec {exit(0)}'
kill $pid
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In this example, the command is already running with process ID $pid. We refer to the
specific numerical pid that interests us. The dtrace command doesn't, in this case,
end the process of interest. We handle that separately.

• One more possibility is to run the program using:

sudo dtrace -Z -q -n '
    myprov*:::my-put { printf("put %d %d\n", arg0, arg1); }
    myprov*:::my-get { printf("get\n"); }
    tick-10sec {exit(0)}' &
./a.out &

In this example, the -Z option allows for zero probe matches at first. The probes match
later, when a USDT process has started. After a short delay, a USDT process is
started. At some point, the USDT process is ended.

In each of these cases, the output is printed after one second, and looks similar to:

...
bar evaluates 1111
bar evaluates 2222
put 3333 6666
get
...

The D script can omit the put probe using:

sudo dtrace -c ./a.out -q -n '
    myprov$target:::my-get { printf("get\n"); }
    tick-5sec {exit(0)}'

In this case, not only does the put probe not fire, but also the is-enabled conditional
MYPROV_MY_PUT_ENABLED() is false. Therefore, the bar() function isn't called. The only
output displayed each second is:

get
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