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Preface

Oracle Linux: Using DTrace for System Tracing describes how to use DTrace v2, which is a
powerful dynamic tracing tool based on eBPF. Most of the information in this document is
generic and applies to all releases of Oracle Linux from Oracle Linux 8 onward. DTrace v2 is
supported for Unbreakable Enterprise Kernel Release 6 and later.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share
Alike 4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or
an adaptation of it, you must provide attribution to Oracle and retain the original copyright
notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an action,
or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle Accessibility
Conformance Report at https://www.oracle.com/corporate/accessibility/templates/
t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.
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https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/
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Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.
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1
Get Started With DTrace

The topics in this section provide guidance on how to perform particular operations with
DTrace and serve as an introduction to installing and using DTrace. By following steps in this
guide, you can get started with DTrace immediately. After you have explored these topics,
you can either review DTrace Concepts to get a better understanding of how DTrace works
and how you can improve the way that you use it, or you can use the various references that
are included to find out more about writing D programs that do what you need them to do.

Install DTrace
Install the dtrace package to use the DTrace command line utility and to run D programs.

1. Enable the appropriate yum repository for the system.

On x86_64 systems, you can install the DTrace v2 user space tools from any of the
following yum repositories, or from the equivalent channels on the Unbreakable Linux
Network (ULN):

• ol8_UEKR6
• ol8_UEKR7
• ol9_UEKR7
For example, if using the Oracle Linux yum server on an Oracle Linux 9 x86_64 system,
run:

sudo dnf config-manager --enable ol9_UEKR7

Note:

Oracle releases UEK and DTrace packages in the baseos repository for
aarch64 platforms. You don't need to enable any other repositories to access
the DTrace packages for aarch64 platforms.

2. Install the dtrace package.

sudo dnf install -y dtrace

3. Check that DTrace installed to the correct location and verify the DTrace version.

Run ls -lah /usr/sbin/dtrace to verify that the DTrace utility is present:

ls -lah /usr/sbin/dtrace
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Run the dtrace -V command to display the version number.

dtrace -V

List and Enable Probes
This topic explores how you can list and enable the probes that are available to
DTrace.

DTrace providers publish available probes to DTrace so that you can enable them to
perform functions when they fire. You can use the dtrace command to list all
available probes or to enable a probe.

1. List available probes.

To list all available probes, run:

sudo dtrace -l

Note:

Most uses of DTrace require root privileges. This document assumes
that you run commands with the appropriate privileges. Use the sudo
command to escalate to root user privileges before you run the
commands presented in this document.

The command returns output similar to the following:

DTrace 2.0.0 [Pre-Release with limited functionality]
    ID   PROVIDER            MODULE                          
FUNCTION NAME
     1     
dtrace                                                     BEGIN
     2     
dtrace                                                     END
     3     
dtrace                                                     ERROR
     4        fbt           vmlinux        
__traceiter_initcall_level entry
     5        fbt           vmlinux        
__traceiter_initcall_level return
     6        fbt           vmlinux        
__traceiter_initcall_start entry
     7        fbt           vmlinux        
__traceiter_initcall_start return
     8        fbt           vmlinux       
__traceiter_initcall_finish entry
     9        fbt           vmlinux       
__traceiter_initcall_finish return
...
144917        sdt               

Chapter 1
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rtc                                   rtc_set_time
144918        sdt               i2c                                   
i2c_result
144919        sdt               i2c                                   
i2c_reply
144920        sdt               i2c                                   
i2c_read
144921        sdt               i2c                                   
i2c_write
144922        sdt             smbus                                   
smbus_result
144923        sdt             smbus                                   
smbus_reply
144924        sdt             smbus                                   
smbus_read
144925        sdt             smbus                                   
smbus_write
144926        sdt             hwmon                                   
hwmon_attr_show_string
144927        sdt             hwmon                                   
hwmon_attr_store
144928        sdt             hwmon                                   
hwmon_attr_show
144929        sdt           thermal                                   
thermal_zone_trip
144930        sdt           thermal                                   
cdev_update
144931        sdt           thermal                                   
thermal_temperature
144932        sdt            bcache    
...
145763    syscall           vmlinux                            listen 
entry
145764    syscall           vmlinux                              bind 
return
145765    syscall           vmlinux                              bind 
entry
145766    syscall           vmlinux                        socketpair 
return
145767    syscall           vmlinux                        socketpair 
entry
145768    syscall           vmlinux                            socket 
return
145769    syscall           vmlinux                            socket 
entry

Tip:

You can get a unique list of providers available for DTrace by running:

sudo dtrace -l|tail -n +3|awk '{print $2}'|uniq

Chapter 1
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You can limit the list of probes to a particular provider by using the -P option. You
can also limit to a particular module by using the -m option. For example:

sudo dtrace -l -P sdt
sudo dtrace -l -m thermal

2. Run dtrace -n to enable a named probe using the command line utility.

You can enable any probe matching a name. Although you can specify only the
name part for a probe's full name, using the full name helps to avoid unpredictable
behavior:

sudo dtrace -n dtrace:::BEGIN

Output similar to the following is displayed:

dtrace: description 'dtrace:::BEGIN' matched 1 probe
CPU     ID                    FUNCTION:NAME
  2      1                           :BEGIN

The dtrace:::BEGIN probe fires once when you start a new tracing request.
Tabulated output shows the CPU where the probe fired, and the ID, function, and
name for the probe.
DTrace continues to run, waiting for other probes to fire. To exit, press Ctrl-C.

3. Enable several probes by chaining them together in a request.

You can construct DTrace requests by using arbitrary numbers of probes and
functions. For example, create a request using two probes by adding the BEGIN
and END probes.

Type the following command, and then press Ctrl-C in the shell again, after you
see the line of output for the BEGIN probe:

sudo dtrace -n dtrace:::BEGIN -n dtrace:::END 

dtrace: description 'dtrace:::BEGIN' matched 1 probe
dtrace: description 'dtrace:::END' matched 1 probe
CPU     ID                    FUNCTION:NAME
  0      1                           :BEGIN 
^C
  1      2                             :END

The dtrace:::BEGIN probe fires when the tracing request starts. DTrace waits for
further probes to activate until you press Ctrl-C to exit. The dtrace:::END probe
activates once when tracing completes. The dtrace command reports the probe
firing before exiting.

4. Enable all probes for a function by using the -f option, or use the -m option to
enable all probes for a module.

Chapter 1
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You can match and enable probes for functions or for whole modules. For example, to
enable both the entry and return probes for the syscall:vmlinux:socket function, run:

sudo dtrace -f syscall:vmlinux:socket

You can also enable probes for an entire module. For example, to enable all probes for
the sdt:tcp module, run:

sudo dtrace -m sdt:tcp

Create a DTrace Script
This tutorial describes how to create a DTrace script. The tutorial provides steps to develop
understanding of the D Programming language and to illustrate DTrace at work.

Ensure that DTrace is installed on the system and that you can list and enable probes. See 
Install DTrace and List and Enable Probes.

This tutorial provides successive steps toward developing a DTrace script that you can use
on a system to gather useful information. You can use this tutorial as a framework to create
other scripts for DTrace, in future.

1. In a text editor, create a file named hello.d and write a DTrace clause to fire for the
dtrace:::BEGIN probe.

Enter the following text into the editor:

dtrace:::BEGIN
{
  trace("hello, world");
  exit(0);
}

Save the file.

2. Run the hello.d program by using the dtrace -s command.

sudo dtrace -s hello.d

Output similar to the following is displayed:

dtrace: script 'hello.d' matched 1 probe
CPU     ID                    FUNCTION:NAME
  0      1                           :BEGIN   hello, world    

Note that you didn't have to press Ctrl-c to exit because you specified the exit function
for the BEGIN probe in the program.

3. Open hello.d in the text editor and add an interpreter line to the beginning of the script.

Edit the file and add the following line of text to the top of the file:

#!/usr/sbin/dtrace -s

Chapter 1
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The complete script follows:

#!/usr/sbin/dtrace -s
dtrace:::BEGIN
{
  trace("hello, world");
  exit(0);
}

Save the file.

4. Change the permissions on the hello.d file to make it executable.

Run the chmod command to update the file permissions:

chmod a+rx hello.d

5. Run the new executable script file.

Use the sudo command so that the DTrace script still runs with root privileges so
that it can access all DTrace features:

sudo ./hello.d

Note that by including an interpreter line at the beginning of the program, you can
run the script without even specifying the dtrace command.

6. Change the script to use an external macro variable.

Edit the file to greet a person by name, when you specify a name as an argument
to the script:

#!/usr/sbin/dtrace -s
dtrace:::BEGIN
{
  printf("hello, %s", $$1);
  exit(0);
}

Notice how the trace function is now replaced with the printf() function, which
lets you insert the macro variable $1 into the string by using variable substitution.
The $$ syntax is used when referencing the macro variable, to express it as a
string value.

7. Run the script to see how the modification has altered behavior.

Run the script as before, using the command:

sudo ./hello.d

An error similar to the following is generated.

dtrace: failed to compile script ./hello.d: line 4: macro 
argument $$1 is not defined

Chapter 1
Create a DTrace Script

1-6



The error is generated because the script now expects you to provide another argument
when you run it. Try to run the script again, this time specifying a name:

sudo ./hello.d bob

The script returns output similar to the following:

dtrace: script './hello.d' matched 1 probe
CPU     ID                    FUNCTION:NAME
  3      1                           :BEGIN hello, bob

8. Change the script to use a pragma statement.

To reduce how verbose the script is and to limit output to only what's functionally returned
by the clause, add a pragma statement to set the runtime quiet option. Edit the script to
add the pragma statement, as follows:

#!/usr/sbin/dtrace -s
 #pragma D option quiet
 dtrace:::BEGIN
 {
   printf("hello, %s", $$1);
   exit(0);
 }

9. Run the script to see how the modification has altered behavior.

Run the script as before, using the command:

sudo ./hello.d sally

The script output is reduced to only what's returned by the printf() function.

10. Change the script to use a predicate to control when to process the clause.

You can use a predicate to control the script so that it only runs when a certain condition
is true. Edit the script to add a predicate line to evaluate whether the string value of the
macro variable is equal to 'bob', as follows:

#!/usr/sbin/dtrace -s
 #pragma D option quiet

 dtrace:::BEGIN
 /$$1=="bob"/
 {
   printf("hello, %s", $$1);
   exit(0);
 }

11. Run the script to see how the modification has altered behavior.

Run the script as before, using the command:

sudo ./hello.d sally

Chapter 1
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The script doesn't exit and you need to press Ctrl-C to force quit the process.
This is because the exit() function is part of the clause that evaluates whether
the first argument of the script is equal to 'bob'. Try running the script again, using
bob as the argument.

sudo ./hello.d bob

The script runs as before, illustrating that the predicate is working.

Use Predicates For Control Flow
For runtime safety, one major difference between D and other programming languages
such as C, C++, and the Java programming language is the absence of control-flow
constructs such as if-statements and loops. D program clauses are written as single
straight-line statement lists that trace an optional, fixed amount of data. D does provide
the ability to conditionally trace data and change control flow using logical expressions
called predicates. This tutorial shows how to use predicates to control D programs.

To illustrate predicates at work, you can create a D program that implements a 10-
second countdown timer. When the program runs, it counts down from 10 and then
prints a message and exits. The program uses a variable and predicates to evaluate
how much time has passed and what to print.

1. Design a logical flow for the program.

Consider designing the logical flow for a program before trying to write the
program itself. When the flow is clearly defined, it's possible to transform
conditional constructs into separate clauses and predicates. The logical flow for
the program might look as follows:

i = 10
once per second,
  if i is greater than zero
    trace(i--);
  if i is equal to zero
    trace("blastoff!");
    exit(0);

By creating two clauses with the same probe description but different predicates
and functions it's possible to achieve the required logical flow for this program.

2. Write the program code using predicates to decide whether the functions for the
specified probe description are permitted to run or not when the probe fires.

The program source code follows. Copy this code and save it in a file named
countdown.d:

dtrace:::BEGIN 
{
  i = 10;
}

profile:::tick-1sec
/i > 0/
{

Chapter 1
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  trace(i--);
}

profile:::tick-1sec
/i == 0/
{
  trace("blastoff!");
  exit(0);
}

3. Run the program.

sudo dtrace -s countdown.d

Output similar to the following is displayed:

dtrace: script 'countdown.d' matched 3 probes
CPU     ID                    FUNCTION:NAME
  0    638                       :tick-1sec        10
  0    638                       :tick-1sec         9
  0    638                       :tick-1sec         8
  0    638                       :tick-1sec         7
  0    638                       :tick-1sec         6
  0    638                       :tick-1sec         5
  0    638                       :tick-1sec         4
  0    638                       :tick-1sec         3
  0    638                       :tick-1sec         2
  0    638                       :tick-1sec         1
  0    638                       :tick-1sec   blastoff!       
#

This tutorial uses the BEGIN probe to initialize a variable integer i to 10 to begin the
countdown. Next, the program uses the tick-1sec probe to implement a timer that fires once
every second. Notice that in countdown.d, the tick-1sec probe description is used in two
different clauses, each with a different predicate and function list. The predicate is a logical
expression surrounded by enclosing slashes // that appears after the probe name and
before the braces {} that surround the clause statement list.

The first predicate tests whether i is greater than zero, indicating that the timer is still
running:

profile:::tick-1sec
/i > 0/
{
  trace(i--);
}

The relational operator > means greater than and returns the integer value zero for false and
one for true. If i isn't yet zero, the script traces i and then decrements it by one using the --
operator.

Chapter 1
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The second predicate uses the == operator to return true when i is exactly equal to
zero, indicating that the countdown is complete:

profile:::tick-1sec
/i == 0/
{
  trace("blastoff!");
  exit(0);
}

The second clause uses the trace function on a sequence of characters inside double
quotes, called a string constant, to print a final message when the countdown is
complete. The exit function is then used to end all tracing and to perform any
remaining tasks such as consuming the final data, printing aggregations (as needed),
and performing cleanup before returning to the shell prompt.

Example 1-1    How to use a predicate to monitor system calls for a process ID

You can create a D Program to trace system calls for a process ID, by using a
predicate to limit the default tracing function to match the process ID that you want to
trace.

syscall:::entry
/pid == 2860/
{
}

Note that in this example, the built-in variable pid is evaluated to match a particular ID,
2860 in this example. You could further change this script to take advantage of shell
macro variables, so that it becomes more extensible and can be run for any process
ID at runtime. Edit the script as follows and save it to a file called strace.ds:

#!/usr/sbin/dtrace -s

syscall:::entry
/pid == $1/
{
}

Change the file mode to make it executable:

sudo chmod +x strace.ds

Now you can use this script to monitor all the system calls made by any process on
the system. For example, you could run the script to monitor system calls made by the
cron daemon:

sudo ./strace.ds $(pidof /usr/sbin/crond)

Chapter 1
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2
DTrace Concepts

The topics in this section explore DTrace at a conceptual level and describe components and
terminology. Topics are general and can help you to understand what DTrace is and how it
works.

About DTrace
DTrace is a powerful tracing tool that's available in Oracle Linux for use with the Unbreakable
Enterprise Kernel (UEK). DTrace has low overhead and is safe to use on production systems
to analyze what a system is doing in real time.

DTrace lets you examine the behavior of user programs and the OS, to understand how the
system works, to track down performance problems, and to find the causes of aberrant
behavior. DTrace can collect or print stack traces, function arguments, timestamps, and
statistical aggregates by using probes that can be runtime events or source-code locations.

Unlike many tracing tools, DTrace is fully programmable. You can collect data for one event
and store it for use when another event is triggered. You can choose what information you
want to gather and how to report it. DTrace programs have a familiar syntax that draws on the
C programming language.

DTrace v2 is a reimplementation of DTrace that uses existing Linux kernel tracing facilities,
such as eBPF, which didn't exist when DTrace was first ported to Linux. The new
implementation removes DTrace dependencies on specialized kernel patches, but retains
syntax compatibility with earlier implementations of DTrace to deliver a mature tracing tool
based on modern technology. Furthermore, DTrace v2 also maintains functional compatibility
with earlier implementations of DTrace, so that you can perform the same actions using either
version of DTrace.

DTrace v2 is available with UEK R6 and later kernels and is implemented as a user space
application on Oracle Linux 8 and Oracle Linux 9.

DTrace is developed as an open source project available under the Universal Permissive
License (UPL), Version 1.0. You can access source code and more information at https://
github.com/oracle/dtrace-utils.

DTrace Components and Terminology
This topic discusses different components and the terms used to describe them within the
DTrace framework.

DTrace is a framework that dynamically traces data into buffers that are read by the dtrace
command line utility. The dtrace command line utility can run programs that can implement
certain functions by compiling D programs to generate eBPF code that's loaded into the
kernel. In practice, all interaction with DTrace is performed by using the dtrace command
line utility. See Install DTrace for information on how to install the command line utility.

2-1
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Probes
DTrace works by using probes that identify particular instrumentation in the kernel or
within a user space application, or which can be used to identify interval counters or
performance event counters. Events such as when particular code is run or when a
specific counter is incremented cause a probe to fire and DTrace can perform
functions that are bound to the event in a program or script. For example, a probe can
fire when a particular file is opened and a DTrace program can print information
related to the event that can be useful for debugging or resolving an issue. Equally, at
the moment that DTrace starts or ends any tracing activity, the BEGIN and END
probes dedicated to these actions always fire.

You can list all the available probes on a system by typing the following command:

sudo dtrace -l

Output is displayed to show each of the different values that are used to reference a
probe correctly:

   ID   PROVIDER            MODULE                          FUNCTION 
NAME
    1     dtrace                                                     
BEGIN
    2     dtrace                                                     
END
    3     dtrace                                                     
ERROR
    4    syscall           vmlinux                              read 
entry
    5    syscall           vmlinux                              read 
return
    6    syscall           vmlinux                             write 
entry
    7    syscall           vmlinux                             write 
return
    ...

See List and Enable Probes for more information on how to list and enable specific
probes.

Probes are made available by providers, which group particular kinds of
instrumentation together. If a provider is related to source code, its probes might also
include information about the piece of code that the probe relates to in a module and a
function identifier. Therefore, a probe is identified by a probe description, grouped into
four fields:

provider
The name of the DTrace provider that the probe belongs to.

module
If the probe corresponds to a specific program location, the name of the kernel
module, library, or user-space program in which the probe is found. Some probes

Chapter 2
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might be associated with a module name that isn't tied to a particular source location in
cases where they relate to more abstract tracepoints.

function
If the probe corresponds to a specific program location, the name of the program function in
which the probe is found.

name
The name that provides some idea of the probe's semantic meaning, such as BEGIN or END.

When referencing a probe, write all four parts of the probe description separated by colons:

provider:module:function:name

Note that some probes don't have a module or function identifier when they're listed. When
providing the complete probe description for these probes, you must still include the empty
fields:

dtrace:::BEGIN

Probes aren't required to have a module and function. The dtrace BEGIN, END and ERROR
probes are good examples of this because these probes don't correspond to any specific
instrumented program function or location. Instead, these probes are used for more abstract
concepts, such as the idea of the end a tracing request. Other probes, such as those made
available by the Profile Provider or the CPC Provider, also don't include module or function
identifiers in their descriptions.

D Programs
You can bind a set of processing instructions called statements to one or more DTrace
probes, so that when a probe fires, the specified statements are run to perform some
required functionality. The set of enabled probes, the statements, and any conditions that
might be evaluated when the probe fires, can all be collated into a D program.

A program can consist of several probe descriptions that decide which probes can trigger
some functionality within the D program. Probe descriptions are followed by a set of
processing instructions, called a clause, that describes what to do when the selected probe
fires. Conditional expressions, called predicates, can be inserted between the probe
descriptions and the clause to control the conditions under which the actions within the
clause are run. For example, a program might be designed to fire for all system calls and to
count these for a particular application. The program would consist of a probe description for
the syscall:::entry probe, a predicate to limit processing to match either a process ID or
the name of an executable, and a clause that performed the count() function to gather
information about each system call function. The resulting D program might be:

/* Probe descriptions */
syscall:::entry
/* Predicate */
/execname=='date'/
/* Clause */
{
@reads[probefunc]=count();
}
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When the script is run it shows each system call that's made by the date command
and provides the count value for each, as follows:

dtrace: description 'syscall:::entry ' matched 344 probes
Wed 22 Feb 11:54:51 GMT 2023

  exit_group                                                        1
  lseek                                                             1
  mmap                                                              1
  write                                                             1
  openat                                                            2
  read                                                              2
  brk                                                               3
  close                                                             4
  newfstat                                                          4

The program probe description matches all system call functions at the entry point.
The program predicate evaluates a built-in variable, execname, against a string using
an operator. The clause includes an aggregation, @reads, that's used to gather data
about the firing probe. In this case, the aggregation stores a counter that increments
every time the probe fires and the predicate resolves. The counter is implemented by
the count() function and stores count values for each system call probe function. See 
D Program Syntax Reference for more information on program structure and syntax.

Aggregations

Aggregations can be used to reduce large bodies of data to smaller, meaningful
statistical metrics. Many common functions that are used to understand a set of data
are aggregating functions. These functions include the following:

• Counting the number of elements in the set.

• Computing the minimum value of the set.

• Computing the maximum value of the set.

• Summing all the elements in the set.

• Creating a histogram of the values in the set, as quantized into certain bins.

Although you could code an application to calculate an aggregation for a set of data,
when many probes are firing concurrently, they can overwrite each other's updates to
the aggregating variable or the calculation can become a serial bottleneck.

DTrace aggregation functions apply to the data as it's traced, so that the dataset
doesn't need to be stored and the aggregation is always available as events occur. In
this way, aggregation functions are more efficient and exact, and avoid overwrites. See 
Aggregations for more information.

Speculation
While predicates can be used to filter out uninteresting events, they're only useful if
you already know which events you need to filter. Because DTrace is often used to
help debug particular system behaviors, DTrace includes a set of speculation functions
that can be used to trace data speculatively.
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Speculation is used to trace quantities temporarily until particular information is known, at
which case the data can be discarded or committed. By performing speculative tracing you
can trace data until you know whether it's useful. For example, to trace data about events that
might trigger a particular return code or error, you could speculatively trace all events and
discard the trace data if it doesn't match the return code that you're interested in. See 
Speculation for more information.

Buffers
As DTrace probes fire, the kernel writes data into various buffers that are read by the dtrace
user-space utility, which prints requested data.

The generation of trace data by the kernel and the processing of that data by the dtrace
utility operate asynchronously. The processing of the trace data can be tuned by setting
buffer options and refresh rates. Buffer sizes can be tuned with options such as aggsize,
bufsize, and nspec.

The various options that control buffer sizing and policies are described in DTrace Runtime
and Compile-time Options Reference.

Stability
DTrace is a tracing tool that takes advantage of the probes that are included in code that can
change over time. DTrace and the D compiler include features to dynamically compute and
describe the stability of the D programs that you create. You can use these DTrace stability
features to inform you of the stability attributes of D programs or to produce compile-time
errors when a program has inappropriate interface dependencies.

DTrace provides two types of stability attributes for entities such as built-in variables,
functions, and probes: a stability level and an architectural dependency class. The DTrace
stability level helps you to assess risk when developing scripts and tools that are based on
DTrace by indicating how likely an interface or DTrace entity might change in a future release
or patch. The DTrace dependency class indicates whether an interface is common to all
Oracle Linux platforms and processors or whether it's associated with a particular
architecture. The two types of attributes that are used to describe interfaces can vary
independently.

Applications that depend only on stable interfaces are likely to continue to function reliably on
future minor releases and are unlikely to be broken by interim patches. Less stable interfaces
can be used for experimentation, prototyping, tuning, and debugging on the current system.
Use less stable with the understanding that they might change and become incompatible or
even be dropped or replaced with alternatives in future minor releases.

Interfaces can be common to all Oracle Linux platforms and processors or might be
associated with a particular system architecture. Dependency classes help indicate
architecture dependencies and are orthogonal to stability levels. For example, a DTrace
interface can be stable, but only available on x86_64 microprocessors. Or, the interface can
be unstable, but common to all Oracle Linux platforms.

See DTrace Stability Reference for more information about the different stability levels and
dependency classes.
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3
D Program Syntax Reference

This reference describes how to write D programs that can be used with DTrace to enable
probes and perform operations.

Program Structure
A D program consists of a set of clauses that describe the probes to enable, an optional
predicate that controls when to run, and one or more statements that often describe some
functionality to implement when the probe fires. D programs can also contain declarations of
variables and definitions of new types. A probe clause declaration uses the following
structure:

probe descriptions 
/ predicate / 
{
  statements
}

Probe Descriptions
Probe descriptions ideally express the full description for a probe and take the form:

provider:module:function:name

The field descriptors are defined as follows:

provider
The name of the DTrace provider that the probe belongs to.

module
If the probe corresponds to a specific program location, the name of the kernel module,
library, or user-space program in which the probe is found. Some probes might be
associated with a module name that isn't tied to a particular source location in cases
where they relate to more abstract tracepoints.

function
If the probe corresponds to a specific program location, the name of the program
function in which the probe is found.

name
The name that provides some idea of the probe's semantic meaning, such as BEGIN or
END.

DTrace recognizes a form of shorthand when referencing probes. By convention, if you don't
specify all the fields of a probe description, DTrace can match a request to all the probes
with matching values in the parts of the name that you do specify. For example, you can
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reference the probe name BEGIN in a script to match any probe with the name field
BEGIN, regardless of the value of the provider, module, and function fields. For
example, you might see a probe referenced as:

BEGIN

If a probe is referenced in a D program and it doesn't use a full probe description, the
fields are interpreted based on an order of precedence:

• A single component matches the probe name, expressed as:

name

• Two components match the function and probe name, expressed as:

function:name

• Three components match the module, function, and probe name

module:function:name

Although probes can also be referenced by their ID, this value can change over time.
The number of probes on the system doesn't directly correlate to the ID, because new
provider modules can be loaded at any time and some providers also offer the ability
to create new probes on-the-fly. Avoid using the numerical probe ID to reference a
probe.
Probe descriptions also support a pattern-matching syntax similar to the shell
globbing pattern matching syntax that's described in the sh(1) manual page. For
example, you can use the asterisk symbol (*) to perform a wildcard match, as in the
following description:

sdt:::tcp*

If any fields are blank in the probe description, a wildcard match is performed on that
field.
Unless matching several probes intentionally, specifying the full probe description to
avoid unpredictable results is better practice.

Symbol Description

* Matches any string, including the
null string.

? Matches any single character.

[] Matches any one of the characters
inside the square brackets. A pair
of characters separated by -
matches any character between the
pair, inclusive. If the first character
after the [ is !, any character not
within the set is matched.
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Symbol Description

\ Interpret the next character as
itself, without any special meaning.

To successfully match and enable a probe, the complete probe description must match on
every field. A probe description field that isn't a pattern must exactly match the
corresponding field of the probe. Note that a description field that's empty matches any
probe.
Several probes can be included in a comma-separated list. By including several probes in
the description, the same predicate, and function sequences are applied when each probe is
activated.

Predicates
Predicates are expressions that appear between a pair of slashes (//) that are then
evaluated at probe firing time to decide whether the associated functions must be processed.
Predicates are the primary conditional construct that are used for building more complex
control flow in a D program. You can omit the predicate section of the probe clause entirely
for any probe so that the functions are always processed when the probe is activated.
Predicate expressions can use any of the D operators and can include any D data objects
such as variables and constants. The predicate expression must evaluate to a value of
integer or pointer type so that it can be considered as true or false. As with all D expressions,
a zero value is interpreted as false and any non-zero value is interpreted as true.

Statements
Statements are described by a list of expressions or functions that are separated by
semicolons (;) and within braces ({}). An empty set of braces with no statements included
causes the default action to be processed. The Default Action reports the probe activation.

A program can consist of several probe-clause declarations. Clauses run in program order.

A program can be stored on the file system and can be run by the DTrace utility. You can
transform a program into an executable script by prepending the file with an interpreter
directive that calls the dtrace command along with any required options, as a single
argument, to run the program. See the sh(1) manual page for more information on adding
the interpreter line to the beginning of a script. The interpreter directive might look as follows:

#!/usr/sbin/dtrace -qs

A script can also include D pragma directives to set runtime and compiler options. See 
DTrace Runtime and Compile-time Options Reference for more information on including this
information in a script.

Types, Operators, and Expressions
D provides the ability to access and manipulate various data objects: variables and data
structures can be created and changed, data objects that are defined in the OS kernel and
user processes can be accessed, and integer, floating-point, and string constants can be
declared. D provides a superset of the ANSI C operators that are used to manipulate objects
and create complex expressions. This section describes the detailed set of rules for types,
operators, and expressions.
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Identifier Names and Keywords
D identifier names are composed of uppercase and lowercase letters, digits, and
underscores, where the first character must be a letter or underscore. All identifier
names beginning with an underscore (_) are reserved for use by the D system
libraries. Avoid using these names in D programs. By convention, D programmers
typically use mixed-case names for variables and all uppercase names for constants.

D language keywords are special identifiers that are reserved for use in the
programming language syntax itself. These names are always specified in lowercase
and must not be used for the names of D variables. The following table lists the
keywords that are reserved for use by the D language.

Table 3-2    D Keywords

auto* do* if* register* string+ unsigned
break* double import*+ restrict* stringof+ void
case* else* inline return* struct volatile
char enum int self+ switch* while*
const extern long short this+ xlate+
continue* float offsetof+ signed translator+
counter*+ for* probe*+ sizeof typedef
default* goto* provider*+ static* union

D reserves for use as keywords a superset of the ANSI C keywords. The keywords
reserved for future use by the D language are marked with “*”. The D compiler
produces a syntax error if you try to use a keyword that's reserved for future use. The
keywords that are defined by D but not defined by ANSI C are marked with “+”. D
provides the complete set of types and operators found in ANSI C. The major
difference in D programming is the absence of control-flow constructs. Note that
keywords associated with control-flow in ANSI C are reserved for future use in D.

Data Types and Sizes
D provides fundamental data types for integers and floating-point constants. Arithmetic
can only be performed on integers in D programs. Floating-point constants can be
used to initialize data structures, but floating-point arithmetic isn't permitted in D. D
provides a 64-bit data model for use in writing programs.

The names of the integer types and their sizes in the 64-bit data model are shown in
the following table. Integers are always represented in twos-complement form in the
native byte-encoding order of a system.

Table 3-3    D Integer Data Types

Type Name 64-bit Size

char 1 byte

short 2 bytes
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Table 3-3    (Cont.) D Integer Data Types

Type Name 64-bit Size

int 4 bytes

long 8 bytes

long long 8 bytes

Integer types, including char, can be prefixed with the signed or unsigned qualifier. Integers
are implicitly signed unless the unsigned qualifier isn't specified. The D compiler also
provides the type aliases that are listed in the following table.

Table 3-4    D Integer Type Aliases

Type Name Description

int8_t 1-byte signed integer

int16_t 2-byte signed integer

int32_t 4-byte signed integer

int64_t 8-byte signed integer

intptr_t Signed integer of size equal to a pointer

uint8_t 1-byte unsigned integer

uint16_t 2-byte unsigned integer

uint32_t 4-byte unsigned integer

uint64_t 8-byte unsigned integer

uintptr_t Unsigned integer of size equal to a pointer

These type aliases are equivalent to using the name of the corresponding base type listed in
the previous table and are appropriately defined for each data model. For example, the
uint8_t type name is an alias for the type unsigned char.

Note:

The predefined type aliases can't be used in files that are included by the
preprocessor.

D provides floating-point types for compatibility with ANSI C declarations and types. Floating-
point operators aren't available in D, but floating-point data objects can be traced and
formatted with the printf function. You can use the floating-point types that are listed in the
following table.

Chapter 3
Types, Operators, and Expressions

3-5



Table 3-5    D Floating-Point Data Types

Type Name 64-bit Size

float 4 bytes

double 8 bytes

long double 16 bytes

D also provides the special type string to represent ASCII strings. Strings are
discussed in more detail in DTrace String Processing.

Constants
Integer constants can be written in decimal (12345), octal (012345), or hexadecimal
(0x12345) format. Octal (base 8) constants must be prefixed with a leading zero.
Hexadecimal (base 16) constants must be prefixed with either 0x or 0X. Integer
constants are assigned the smallest type among int, long, and long long that can
represent their value. If the value is negative, the signed version of the type is used. If
the value is positive and too large to fit in the signed type representation, the unsigned
type representation is used. You can apply one of the suffixes listed in the following
table to any integer constant to explicitly specify its D type.

Suffix D type

u or U unsigned version of the type selected by
the compiler

l or L long
ul or UL unsigned long
ll or LL long long
ull or ULL unsigned long long

Floating-point constants are always written in decimal format and must contain either a
decimal point (12.345), an exponent (123e45), or both ( 123.34e-5). Floating-point
constants are assigned the type double by default. You can apply one of the suffixes
listed in the following table to any floating-point constant to explicitly specify its D type.

Suffix D type

f or F float
l or L long double

Character constants are written as a single character or escape sequence that's inside
a pair of single quotes ('a'). Character constants are assigned the int type rather
than char and are equivalent to an integer constant with a value that's determined by
that character's value in the ASCII character set. See the ascii(7) manual page for a
list of characters and their values. You can also use any of the special escape
sequences that are listed in the following table. D uses the same escape sequences
as those found in ANSI C.
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Table 3-6    Character Escape Sequences

Escape Sequence Represents Escape Sequence Represents

\a alert \\ backslash

\b backspace \? question mark

\f form feed \' single quote

\n newline \" double quote

\r carriage return \0oo octal value 0oo

\t horizontal tab \xhh hexadecimal value
0xhh

\v vertical tab \0 null character

You can include more than one character specifier inside single quotes to create integers with
individual bytes that are initialized according to the corresponding character specifiers. The
bytes are read left-to-right from a character constant and assigned to the resulting integer in
the order corresponding to the native endianness of the operating environment. Up to eight
character specifiers can be included in a single character constant.

Strings constants of any length can be composed by enclosing them in a pair of double
quotes ("hello"). A string constant can't contain a literal newline character. To create strings
containing newlines, use the \n escape sequence instead of a literal newline. String
constants can contain any of the special character escape sequences that are shown for
character constants before. Similar to ANSI C, strings are represented as arrays of
characters that end with a null character (\0) that's implicitly added to each string constant
you declare. String constants are assigned the special D type string. The D compiler
provides a set of special features for comparing and tracing character arrays that are
declared as strings.

Arithmetic Operators
Binary arithmetic operators are described in the following table. These operators all have the
same meaning for integers that they do in ANSI C.

Table 3-7    Binary Arithmetic Operators

Operator Description

+ Integer addition

- Integer subtraction

* Integer multiplication

/ Integer division

% Integer modulus

Arithmetic in D can only be performed on integer operands or on pointers. Arithmetic can't be
performed on floating-point operands in D programs. The DTrace execution environment
doesn't take any action on integer overflow or underflow. You must check for these conditions
in situations where overflow and underflow can occur.
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However, the DTrace execution environment does automatically check for and report
division by zero errors resulting from improper use of the / and % operators. If a D
program contains an invalid division operation that's detectable at compile time, a
compile error is returned and the compilation fails. If the invalid division operation
takes place at run time, processing of the current clause is quit, and the ERROR probe
is activated. If the D program has no clause for the ERROR probe, the error is printed
and tracing continues. Otherwise, the actions in the clause assigned to the ERROR
probe are processed. Errors that are detected by DTrace have no effect on other
DTrace users or on the OS kernel. You therefore don't need to be concerned about
causing any damage if a D program inadvertently contains one of these errors.

In addition to these binary operators, the + and - operators can also be used as unary
operators, and these operators have higher precedence than any of the binary
arithmetic operators. The order of precedence and associativity properties for all D
operators is presented in Operator Precedence. You can control precedence by
grouping expressions in parentheses (()).

Relational Operators
Binary relational operators are described in the following table. These operators all
have the same meaning that they do in ANSI C.

Table 3-8    D Relational Operators

Operator Description

< Left-hand operand is less than right-
operand

<= Left-hand operand is less than or equal to
right-hand operand

> Left-hand operand is greater than right-
hand operand

>= Left-hand operand is greater than or equal
to right-hand operand

== Left-hand operand is equal to right-hand
operand

!= Left-hand operand isn't equal to right-hand
operand

Relational operators are most often used to write D predicates. Each operator
evaluates to a value of type int, which is equal to one if the condition is true, or zero
if it's false.

Relational operators can be applied to pairs of integers, pointers, or strings. If pointers
are compared, the result is equivalent to an integer comparison of the two pointers
interpreted as unsigned integers. If strings are compared, the result is determined as if
by performing a strcmp() on the two operands. The following table shows some
example D string comparisons and their results.

D string comparison Result

"coffee" < "espresso" Returns 1 (true)

"coffee" == "coffee" Returns 1 (true)
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D string comparison Result

"coffee"" >= "mocha" Returns 0 (false)

Relational operators can also be used to compare a data object associated with an
enumeration type with any of the enumerator tags defined by the enumeration.

Logical Operators
Binary logical operators are listed in the following table. The first two operators are equivalent
to the corresponding ANSI C operators.

Table 3-9    D Logical Operators

Operator Description

&& Logical AND: true if both operands are true

|| Logical OR: true if one or both operands are
true

^^ Logical XOR: true if exactly one operand is true

Logical operators are most often used in writing D predicates. The logical AND operator
performs the following short-circuit evaluation: if the left-hand operand is false, the right-hand
expression isn't evaluated. The logical OR operator also performs the following short-circuit
evaluation: if the left-hand operand is true, the right-hand expression isn't evaluated. The
logical XOR operator doesn't short-circuit. Both expression operands are always evaluated.

In addition to the binary logical operators, the unary ! operator can be used to perform a
logical negation of a single operand: it converts a zero operand into a one and a non-zero
operand into a zero. By convention, D programmers use ! when working with integers that
are meant to represent Boolean values and == 0 when working with non-Boolean integers,
although the expressions are equivalent.

The logical operators can be applied to operands of integer or pointer types. The logical
operators interpret pointer operands as unsigned integer values. As with all logical and
relational operators in D, operands are true if they have a non-zero integer value and false if
they have a zero integer value.

Bitwise Operators
D provides the bitwise operators that are listed in the following table for manipulating
individual bits inside integer operands. These operators all have the same meaning as in
ANSI C.
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Table 3-10    D Bitwise Operators

Operator Description

~ Unary operator that can be used to
perform a bitwise negation of a single
operand: it converts each zero bit in the
operand into a one bit, and each one bit in
the operand into a zero bit

& Bitwise AND
| Bitwise OR
^ Bitwise XOR
<< Shift the left-hand operand left by the

number of bits specified by the right-hand
operand

>> Shift the left-hand operand right by the
number of bits specified by the right-hand
operand

The shift operators are used to move bits left or right in a particular integer operand.
Shifting left fills empty bit positions on the right-hand side of the result with zeroes.
Shifting right using an unsigned integer operand fills empty bit positions on the left-
hand side of the result with zeroes. Shifting right using a signed integer operand fills
empty bit positions on the left-hand side with the value of the sign bit, also known as
an arithmetic shift operation.

Shifting an integer value by a negative number of bits or by a number of bits larger
than the number of bits in the left-hand operand itself produces an undefined result.
The D compiler produces an error message if the compiler can detect this condition
when you compile the D program.

Assignment Operators
Binary assignment operators are listed in the following table. You can only modify D
variables and arrays. Kernel data objects and constants can not be modified using the
D assignment operators. The assignment operators have the same meaning as they
do in ANSI C.

Table 3-11    D Assignment Operators

Operator Description

= Set the left-hand operand equal to the
right-hand expression value.

+= Increment the left-hand operand by the
right-hand expression value

-= Decrement the left-hand operand by the
right-hand expression value.

*= Multiply the left-hand operand by the right-
hand expression value.
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Table 3-11    (Cont.) D Assignment Operators

Operator Description

/= Divide the left-hand operand by the right-
hand expression value.

%= Modulo the left-hand operand by the right-
hand expression value.

|= Bitwise OR the left-hand operand with the
right-hand expression value.

&= Bitwise AND the left-hand operand with
the right-hand expression value.

^= Bitwise XOR the left-hand operand with the
right-hand expression value.

<<= Shift the left-hand operand left by the
number of bits specified by the right-hand
expression value.

>>= Shift the left-hand operand right by the
number of bits specified by the right-hand
expression value.

Aside from the assignment operator =, the other assignment operators are provided as
shorthand for using the = operator with one of the other operators that were described earlier.
For example, the expression x = x + 1 is equivalent to the expression x += 1. These
assignment operators adhere to the same rules for operand types as the binary forms
described earlier.

The result of any assignment operator is an expression equal to the new value of the left-
hand expression. You can use the assignment operators or any of the operators described
thus far in combination to form expressions of arbitrary complexity. You can use parentheses
() to group terms in complex expressions.

Increment and Decrement Operators
D provides the special unary ++ and -- operators for incrementing and decrementing pointers
and integers. These operators have the same meaning as they do in ANSI C. These
operators can be applied to variables and to the individual elements of a struct, union, or
array. The operators can be applied either before or after the variable name. If the operator
appears before the variable name, the variable is first changed and then the resulting
expression is equal to the new value of the variable. For example, the following two code
fragments produce identical results:

x += 1; y = x;

y = ++x;
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If the operator appears after the variable name, then the variable is changed after its
current value is returned for use in the expression. For example, the following two
code fragments produce identical results:

y = x; x -= 1;

y = x--;

You can use the increment and decrement operators to create new variables without
declaring them. If a variable declaration is omitted and the increment or decrement
operator is applied to a variable, the variable is implicitly declared to be of type
int64_t.

To use the increment and decrement operators on elements of an array or struct, place
the operator after or before the full reference to the element:

int foo[5];
struct { int a; } bar;

bar.a++;
foo[1]++;
--foo[1];

The increment and decrement operators can be applied to integer or pointer variables.
When applied to integer variables, the operators increment, or decrement the
corresponding value by one. When applied to pointer variables, the operators
increment, or decrement the pointer address by the size of the data type that's
referenced by the pointer.

Conditional Expressions
D doesn't provide the facility to use if-then-else constructs. Instead, conditional
expressions, by using the ternary operator (?:), can be used to approximate some of
this functionality. The ternary operator associates a triplet of expressions, where the
first expression is used to conditionally evaluate one of the other two.

For example, the following D statement could be used to set a variable x to one of two
strings, depending on the value of i:

x = i == 0 ? "zero" : "non-zero";

In the previous example, the expression i == 0 is first evaluated to determine whether
it's true or false. If the expression is true, the second expression is evaluated and its
value is returned. If the expression is false, the third expression is evaluated and its
value is returned.

As with any D operator, you can use several ?: operators in a single expression to
create more complex expressions. For example, the following expression would take a
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char variable c containing one of the characters 0-9, a-f, or A-F, and return the value of this
character when interpreted as a digit in a hexadecimal (base 16) integer:

hexval = (c >= '0' && c <= '9') ? c - '0' : (c >= 'a' && c <= 'f') ? c + 10 
- 'a' : c + 10 - 'A';

To be evaluated for its truth value, the first expression that's used with ?: must be a pointer or
integer. The second and third expressions can be of any compatible types. You can't
construct a conditional expression where, for example, one path returns a string and another
path returns an integer. The second and third expressions must be true expressions that
have a value. Therefore, data reporting functions can't be used in these expressions because
those functions don't return a value. To conditionally trace data, use a predicate instead.

Type Conversions
When expressions are constructed by using operands of different but compatible types, type
conversions are performed to determine the type of the resulting expression. The D rules for
type conversions are the same as the arithmetic conversion rules for integers in ANSI C.
These rules are sometimes referred to as the usual arithmetic conversions.

Each integer type is ranked in the order char, short, int, long, long long, with the
corresponding unsigned types assigned a rank higher than its signed equivalent, but below
the next integer type. When you construct an expression using two integer operands such as
x + y and the operands are of different integer types, the operand type with the highest rank
is used as the result type.

If a conversion is required, the operand with the lower rank is first promoted to the type of the
higher rank. Promotion doesn't change the value of the operand: it only extends the value to
a larger container according to its sign. If an unsigned operand is promoted, the unused high-
order bits of the resulting integer are filled with zeroes. If a signed operand is promoted, the
unused high-order bits are filled by performing sign extension. If a signed type is converted to
an unsigned type, the signed type is first sign-extended and then assigned the new, unsigned
type that's determined by the conversion.

Integers and other types can also be explicitly cast from one type to another. Pointers and
integers can be cast to any integer or pointer types, but not to other types.

An integer or pointer cast is formed using an expression such as the following:

y = (int)x;

In this example, the destination type is within parentheses and used to prefix the source
expression. Integers are cast to types of higher rank by performing promotion. Integers are
cast to types of lower rank by zeroing the excess high-order bits of the integer.

Because D doesn't include floating-point arithmetic, no floating-point operand conversion or
casting is permitted and no rules for implicit floating-point conversion are defined.

Operator Precedence
D includes complex rules for operator precedence and associativity. The rules provide precise
compatibility with the ANSI C operator precedence rules. The entries in the following table
are in order from highest precedence to lowest precedence.
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Table 3-12    D Operator Precedence and Associativity

Operators Associativity

() [] -> . Left to right

! ~ ++ -- + - * & (type) sizeof
stringof offsetof xlate

Right to left
(Note that these are the unary operators)

* / % Left to right

+ - Left to right

<< >> Left to right

< <= > >= Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

^^ Left to right

|| Left to right

?: Right to left

= += -= *= /= %= &= ^= ?= <<= >>= Right to left

, Left to right

The comma (,) operator that's listed in the table is for compatibility with the ANSI C
comma operator. It can be used to evaluate a set of expressions in left-to-right order
and return the value of the right most expression. This operator is provided for
compatibility with C and usage isn't recommended.

The () entry listed in the table of operator precedence represents a function call. A
comma is also used in D to list arguments to functions and to form lists of associative
array keys. Note that this comma isn't the same as the comma operator and doesn't
guarantee left-to-right evaluation. The D compiler provides no guarantee regarding the
order of evaluation of arguments to a function or keys to an associative array. Be
careful of using expressions with interacting side-effects, such as the pair of
expressions i and i++, in these contexts.

The [] entry listed in the table of operator precedence represents an array or
associative array reference. Note that aggregations are also treated as associative
arrays. The [] operator can also be used to index into fixed-size C arrays.

The following table provides further explanation for the function of several
miscellaneous operators that are provided by the D language.

Operators Description

sizeof Computes the size of an object.

offsetof Computes the offset of a type member.
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Operators Description

stringof Converts the operand to a string.

xlate Translates a data type.

unary & Computes the address of an object.

unary * Dereferences a pointer to an object.

-> and . Accesses a member of a structure or union
type.

Type and Constant Definitions
This section describes how to declare type aliases and named constants in D. It also
discusses D type and namespace management for program and OS types and identifiers.

typedefs
The typedef keyword is used to declare an identifier as an alias for an existing type. The
typedef declaration is used outside of probe clauses in the following form:

typedef existing-type new-type ;

where existing-type is any type declaration and new-type is an identifier to be used as the
alias for this type. For example, the D compiler uses the following declaration internally to
create the uint8_t type alias:

typedef unsigned char uint8_t;

You can use type aliases anywhere that a normal type can be used, such as the type of a
variable or associative array value or tuple member. You can also combine typedef with
more elaborate declarations such as the definition of a new struct, as shown in the following
example:

typedef struct foo {
  int x;
  int y;
} foo_t;

In the previous example, struct foo is defined using the same type as its alias, foo_t. Linux
C system headers often use the suffix _t to denote a typedef alias.

Enumerations
Defining symbolic names for constants in a program eases readability and simplifies the
process of maintaining the program in the future. One method is to define an enumeration,
which associates a set of integers with a set of identifiers called enumerators that the
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compiler recognizes and replaces with the corresponding integer value. An
enumeration is defined by using a declaration such as the following:

enum colors {
  RED,
  GREEN,
  BLUE
};

The first enumerator in the enumeration, RED, is assigned the value zero and each
subsequent identifier is assigned the next integer value.

You can also specify an explicit integer value for any enumerator by suffixing it with an
equal sign and an integer constant, as shown in the following example:

enum colors {
  RED = 7,
  GREEN = 9,
  BLUE
};

The enumerator BLUE is assigned the value 10 by the compiler because it has no value
specified and the previous enumerator is set to 9. When an enumeration is defined,
the enumerators can be used anywhere in a D program that an integer constant is
used. In addition, the enumeration enum colors is also defined as a type that's
equivalent to an int. The D compiler permits a variable of enum type to be used
anywhere an int can be used and permits any integer value to be assigned to a
variable of enum type. You can also omit the enum name in the declaration, if the type
name isn't needed.

Enumerators are visible in all the following clauses and declarations in a program.
Therefore, you can't define the same enumerator identifier in more than one
enumeration. However, you can define more than one enumerator with the same value
in either the same or different enumerations. You can also assign integers that have no
corresponding enumerator to a variable of the enumeration type.

The D enumeration syntax is the same as the corresponding syntax in ANSI C. D also
provides access to enumerations that are defined in the OS kernel and its loadable
modules. Note that these enumerators aren't globally visible in a D program. Kernel
enumerators are only visible if you specify one as an argument in a comparison with
an object of the corresponding enumeration type. This feature protects D programs
against inadvertent identifier name conflicts, with the large collection of enumerations
that are defined in the OS kernel.

Inlines
D named constants can also be defined by using inline directives, which provide a
more general means of creating identifiers that are replaced by predefined values or
expressions during compilation. Inline directives are a more powerful form of lexical
replacement than the #define directive provided by the C preprocessor because the
replacement is assigned an actual type and is performed by using the compiled syntax
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tree and not a set of lexical tokens. An inline directive is specified by using a declaration of
the following form:

inline type name = expression;

where type is a type declaration of an existing type, name is any valid D identifier that isn't
previously defined as an inline or global variable, and expression is any valid D expression.
After the inline directive is processed, the D compiler substitutes the compiled form of
expression for each subsequent instance of name in the program source.

For example, the following D program would trace the string "hello" and integer value 123:

inline string hello = "hello";
inline int number = 100 + 23;

BEGIN
{
  trace(hello);
  trace(number);
}

An inline name can be used anywhere a global variable of the corresponding type is used. If
the inline expression can be evaluated to an integer or string constant at compile time, then
the inline name can also be used in contexts that require constant expressions, such as
scalar array dimensions.

The inline expression is validated for syntax errors as part of evaluating the directive. The
expression result type must be compatible with the type that's defined by the inline,
according to the same rules used for the D assignment operator (=). An inline expression
can't reference the inline identifier itself: recursive definitions aren't permitted.

The DTrace software packages install several D source files in the system directory /usr/
lib64/dtrace/installed-version , which contain inline directives that you can use in D
programs.

For example, the signal.d library includes directives of the following form:

inline int SIGHUP = 1;
inline int SIGINT = 2;
inline int SIGQUIT = 3;
...

These inline definitions provide you with access to the current set of Oracle Linux signal
names, as described in the sigaction(2) manual page. Similarly, the errno.d library
contains inline directives for the C errno constants that are described in the errno(3) manual
page.

By default, the D compiler includes all of the provided D library files automatically so that you
can use these definitions in any D program.

Type Namespaces
In traditional languages such as ANSI C, type visibility is determined by whether a type is
nested inside a function or other declaration. Types declared at the outer scope of a C
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program are associated with a single global namespace and are visible throughout the
entire program. Types that are defined in C header files are typically included in this
outer scope. Unlike these languages, D provides access to types from several outer
scopes.

D is a language that provides dynamic observability across different layers of a
software stack, including the OS kernel, an associated set of loadable kernel modules,
and user processes that are running on the system. A single D program can instantiate
probes to gather data from several kernel modules or other software entities that are
compiled into independent binary objects. Therefore, more than one data type of the
same name, sometimes with different definitions, might be present in the universe of
types that are available to DTrace and the D compiler. To manage this situation, the D
compiler associates each type with a namespace, which is identified by the containing
program object. Types from a particular kernel level object, such as the main kernel or
a kernel module, can be accessed by specifying the object name and the back quote
(`) scoping operator in any type name.

For a kernel module named foo that contains the following C type declaration:

typedef struct bar {
  int x;
} bar_t;

The types struct bar and bar_t could be accessed from D using the following type
names:

struct foo`bar
foo`bar_t

For example, the kernel includes a task_struct that's described in include/linux/
sched.h. The definition of this struct depends on kernel configuration at build. You can
find out information about the struct, such as its size, by referencing it as follows:

sizeof(struct vmlinux`task_struct)

The back quote operator can be used in any context where a type name is
appropriate, including when specifying the type for D variable declarations or cast
expressions in D probe clauses.

The D compiler also provides two special, built-in type namespaces that use the
names C and D. The C type namespace is initially populated with the standard ANSI C
intrinsic types, such as int. In addition, type definitions that are acquired by using the
C preprocessor (cpp), by running the dtrace -C command, are processed by, and
added to the C scope. So, you can include C header files containing type declarations
that are already visible in another type namespace without causing a compilation error.

The D type namespace is initially populated with the D type intrinsics, such as int and
string, and the built-in D type aliases, such as uint64_t. Any new type declarations
that appear in the D program source are automatically added to the D type
namespace. If you create a complex type such as a struct in a D program consisting
of member types from other namespaces, the member types are copied into the D
namespace by the declaration.
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When the D compiler encounters a type declaration that doesn't specify an explicit
namespace using the back quote operator, the compiler searches the set of active type
namespaces to find a match by using the specified type name. The C namespace is always
searched first, followed by the D namespace. If the type name isn't found in either the C or D
namespace, the type namespaces of the active kernel modules are searched in load address
order, which doesn't guarantee any ordering properties among the loadable modules. To
avoid type name conflicts with other kernel modules, use the scoping operator when
accessing types that are defined in loadable kernel modules.

The D compiler uses the compressed ANSI C debugging information that's provided with the
core Linux kernel modules to access the types that are associated with the OS source code,
without the need to access the corresponding C include files. Note that this symbolic
debugging information might not be available for all kernel modules on the system. The D
compiler reports an error if you try to access a type within the namespace of a module that
lacks the compressed C debugging information that's intended for use with DTrace.

Variables
D provides several variable types: scalar variables, associative arrays, scalar arrays, and
multidimensional scalar arrays. Variables can be created by declaring them explicitly, but are
most often created implicitly on first use. Variables can be restricted to clause or thread scope
to avoid name conflicts and to control the lifetime of a variable explicitly.

Scalar Variables
Scalar variables are used to represent individual, fixed-size data objects, such as integers
and pointers. Scalar variables can also be used for fixed-size objects that are composed of
one or more primitive or composite types. D provides the ability to create arrays of objects
and composite structures. DTrace also represents strings as fixed-size scalars by permitting
them to grow to a predefined maximum length.
To create a scalar variable, you can write an assignment expression of the following form:

name = expression ;

where name is any valid D identifier and expression is any value or expression that the
variable contains.
DTrace includes several built-in scalar variables that can be referenced within D programs.
The values of these variables are automatically populated by DTrace. See DTrace Built-in
Variable Reference for a complete list of these variables.

Associative Arrays
Associative arrays are used to represent collections of data elements that can be retrieved
by specifying a key. Associative arrays differ from normal, fixed-size arrays in that they have
no predefined limit on the number of elements and can use any expression as a key.
Furthermore, elements in an associative array aren't stored in consecutive storage locations.
To create an associative array, you can write an assignment expression of the following form:

name [ key ] = expression ;

where name is any valid D identifier, key is a comma-separated list of one or more
expressions, often as string values, and expression is the value that's contained by the array
for the specified key.
The type of each object that's contained in the array is also fixed for all elements in the array.
You can use any of the assignment operators that are defined in Types, Operators, and
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Expressions to change associative array elements, subject to the operand rules
defined for each operator. The D compiler produces an appropriate error message if
you try an incompatible assignment. You can use any type with an associative array
key or value that can be used with a scalar variable.
You can reference values in an associative array by specifying the array name and
the appropriate key.
You can remove the elements of an associative array by assigning 0 to them. When
you remove the elements in the array, the storage that's used for that element is
deallocated and made available to the system for use.

Scalar Arrays
Scalar arrays are a fixed-length group of consecutive memory locations that each
store a value of the same type. Scalar arrays are accessed by referring to each
location with an integer, starting from zero. Scalar arrays aren't used as often in D as
associative arrays.
A D scalar array of 5 integers is declared by using the type int and suffixing the
declaration with the number of elements in square brackets, for example:

int s[5];

The D expression s[0] refers to the first array element, s[1] refers to the second, and
so on. DTrace performs bounds checking on the indexes of scalar arrays at compile
time to help catch bad index references early.
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Note:

Scalar arrays and associative arrays are syntactically similar. You can declare an
associative array of integers referenced by an integer key as follows:

int a[int];

You can also reference this array using the expression a[0], but from a storage
and implementation perspective, the two arrays are different. The scalar array s
consists of five consecutive memory locations numbered from zero, and the index
refers to an offset in the storage that's allocated for the array. However, the
associative array a has no predefined size and doesn't store elements in
consecutive memory locations. In addition, associative array keys have no
relationship to the corresponding value storage location. You can access
associative array elements a[0] and a[-5] and only two words of storage are
allocated by DTrace. Furthermore, these elements don't have to be consecutive.
Associative array keys are abstract names for the corresponding values and have
no relationship to the value storage locations.
If you create an array using an initial assignment and use a single integer
expression as the array index , for example, a[0] = 2, the D compiler always
creates a new associative array, even though in this expression a could also be
interpreted as an assignment to a scalar array. Scalar arrays must be predeclared
in this situation so that the D compiler can recognize the definition of the array size
and infer that the array is a scalar array.

Multidimensional Scalar Arrays
Multidimensional scalar arrays are used infrequently in D, but are provided for compatibility
with ANSI C and are for observing and accessing OS data structures that are created by
using this capability in C. A multidimensional array is declared as a consecutive series of
scalar array sizes within square brackets [] following the base type. For example, to declare
a fixed-size, two-dimensional array of integers of dimensions that's 12 rows by 34 columns,
you would write the following declaration:

int s[12][34];

A multidimensional scalar array is accessed by using similar notation. For example, to
access the value stored at row 0 and column 1, you would write the D expression as follows:

s[0][1]

Storage locations for multidimensional scalar array values are computed by multiplying the
row number by the total number of columns declared and then adding the column number.
Be careful not to confuse the multidimensional array syntax with the D syntax for associative
array accesses, that's, s[0][1], isn't the same as s[0,1]). If you use an incompatible key
expression with an associative array or try an associative array access of a scalar array, the
D compiler reports an appropriate error message and refuses to compile the program.
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Variable Scope
Variable scoping is used to define where variable names are valid within a program
and to avoid variable naming collisions. By using scoped variables you can control the
availability of the variable instance to the whole program, a particular thread, or a
specific clause.

The following table lists and describes the three primary variable scopes that are
available. Note that external variables provide a fourth scope that falls outside of the
control of the D program.

Scope Syntax Initial Value Thread-safe? Description

global myname 0 No Any probe that
fires on any
thread accesses
the same
instance of the
variable.

Thread-local self->myname 0 Yes Any probe that
fires on a thread
accesses the
thread-specific
instance of the
variable.

Clause-local this->myname Not defined Yes Any probe that
fires accesses an
instance of the
variable specific
to that
particular firing
of the probe.

Note:

Note the following information:

• Scalar variables and associative arrays have a global scope and aren't
multi-processor safe (MP-safe). Because the value of such variables can
be changed by more than one processor, a variable can become
corrupted if more than one probe changes it.

• Aggregations are MP-safe even though they have a global scope
because independent copies are updated locally before a final
aggregation produces the global result.

Global Variables

Global variables are used to declare variable storage that's persistent across the entire
D program. Global variables provide the broadest scope.
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Global variables of any type can be defined in a D program, including associative arrays. The
following are some example global variable definitions:

x = 123; /* integer value */
s = "hello"; /* string value */
a[123, 'a'] = 456; /* associative array */

Global variables are created automatically on their first assignment and use the type
appropriate for the right side of the first assignment statement. Except for scalar arrays, you
don't need to explicitly declare global variables before using them. To create a declaration
anyway, you must place it outside of program clauses, for example:

int x; /* declare int x as a global variable */
int x[unsigned long long, char];
syscall::read:entry
{
  x = 123;
  a[123, 'a'] = 456;
}

D variable declarations can't assign initial values. You can use a BEGIN probe clause to
assign any initial values. All global variable storage is filled with zeroes by DTrace before you
first reference the variable.

Thread-Local Variables

Thread-local variables are used to declare variable storage that's local to each OS thread.
Thread-local variables are useful in situations where you want to enable a probe and mark
every thread that fires the probe with some tag or other data.

Thread-local variables are referenced by applying the -> operator to the special identifier
self, for example:

syscall::read:entry
{
  self->read = 1;
}

This D fragment example enables the probe on the read() system call and associates a
thread-local variable named read with each thread that fires the probe. Similar to global
variables, thread-local variables are created automatically on their first assignment and
assume the type that's used on the right-hand side of the first assignment statement, which is
int in this example.

Each time the self->read variable is referenced in the D program, the data object that's
referenced is the one associated with the OS thread that was executing when the
corresponding DTrace probe fired. You can think of a thread-local variable as an associative
array that's implicitly indexed by a tuple that describes the thread's identity in the system. A
thread's identity is unique over the lifetime of the system: if the thread exits and the same OS
data structure is used to create a thread, this thread doesn't reuse the same DTrace thread-
local storage identity.

When you have defined a thread-local variable, you can reference it for any thread in the
system, even if the variable in question hasn't been previously assigned for that particular
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thread. If a thread's copy of the thread-local variable hasn't yet been assigned, the
data storage for the copy is defined to be filled with zeroes. As with associative array
elements, underlying storage isn't allocated for a thread-local variable until a non-zero
value is assigned to it. Also, as with associative array elements, assigning zero to a
thread-local variable causes DTrace to deallocate the underlying storage. Always
assign zero to thread-local variables that are no longer in use.

Thread-local variables of any type can be defined in a D program, including
associative arrays. The following are some example thread-local variable definitions:

self->x = 123; /* integer value */
self->s = "hello"; /* string value */
self->a[123, 'a'] = 456; /* associative array */

You don't need to explicitly declare thread-local variables before using them. To create
a declaration anyway, you must place it outside of program clauses by prepending the
keyword self, for example:

self int x; /* declare int x as a thread-local variable */ 
syscall::read:entry
{
  self->x = 123;
}

Thread-local variables are kept in a separate namespace from global variables so that
you can reuse names. Remember that x and self->x aren't the same variable if you
overload names in a program.

Clause-Local Variables

Clause-local variable are used to restrict the storage of a variable to the particular
firing of a probe. Clause-local is the narrowest scope. When a probe fires on a CPU,
the D script is run in program order. Each clause-local variable is instantiated with an
undefined value the first time it is used in the script. The same instance of the variable
is used in all clauses until the D script has completed running for that particular firing of
the probe.

Clause-local variables can be referenced and assigned by prefixing with this->:

BEGIN
{
  this->secs = timestamp / 1000000000;
  ...
}

To declare a clause-local variable explicitly before using it, you can do so by using the
this keyword:

this int x;  /* an integer clause-local variable */
this char c; /* a character clause-local variable */

BEGIN
{
  this->x = 123;
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  this->c = 'D';
}

Note that if a program contains several clauses for a single probe, any clause-local variables
remain intact as the clauses are run sequentially and clause-local variables are persistent
across different clauses that are enabling the same probe. While clause-local variables are
persistent across clauses that are enabling the same probe, their values are undefined in the
first clause processed for a specified probe. To avoid unexpected results, assign each clause-
local variable an appropriate value before using it.

Clause-local variables can be defined using any scalar variable type, but associative arrays
can't be defined using clause-local scope. The scope of clause-local variables only applies to
the corresponding variable data, not to the name and type identity defined for the variable.
When a clause-local variable is defined, this name and type signature can be used in any
later D program clause.

You can use clause-local variables to accumulate intermediate results of calculations or as
temporary copies of other variables. Access to a clause-local variable is much faster than
access to an associative array. Therefore, if you need to reference an associative array value
several times in the same D program clause, it's more efficient to copy it into a clause-local
variable first and then reference the local variable repeatedly.

External Variables

The D language uses the back quote character (`) as a special scoping operator for
accessing symbols or variables that are defined in the OS, outside of the D program itself.

DTrace instrumentation runs inside the Oracle Linux OS kernel. So, in addition to accessing
special DTrace variables and probe arguments, you can also access kernel data structures,
symbols, and types. These capabilities enable advanced DTrace users, administrators,
service personnel, and driver developers to examine low-level behavior of the OS kernel and
device drivers.

For example, the Oracle Linux kernel contains a C declaration of a system variable named
max_pfn. This variable is declared in C in the kernel source code as follows:

unsigned long max_pfn

To trace the value of this variable in a D program, you can write the following D statement:

trace(`max_pfn);

DTrace associates each kernel symbol with the type that's used for the symbol in the
corresponding OS C code, which provides source-based access to the local OS data
structures.

Kernel symbol names are kept in a separate namespace from D variable and function
identifiers, so you don't need to be concerned about these names conflicting with other D
variables. When you prefix a variable with a back quote, the D compiler searches the known
kernel symbols and uses the list of loaded modules to find a matching variable definition.
Because the Oracle Linux kernel can dynamically load modules with separate symbol
namespaces, the same variable name might be used more than once in the active OS kernel.
You can resolve these name conflicts by specifying the name of the kernel module that
contains the variable to be accessed before the back quote in the symbol name. For
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example, you would refer to the address of the _bar function that's provided by a
kernel module named foo as follows:

foo`_bar

You can apply any of the D operators to external variables, except for those that
modify values, subject to the usual rules for operand types. When required, the D
compiler loads the variable names that correspond to active kernel modules, so you
don't need to declare these variables. You can't apply any operator to an external
variable that modifies its value, such as = or +=. For safety reasons, DTrace prevents
you from damaging or corrupting the state of the software that you're observing.

When you access external variables from a D program, you're accessing the internal
implementation details of another program, such as the OS kernel or its device drivers.
These implementation details don't form a stable interface upon which you can rely.
Any D programs you write that depend on these details might not work when you next
upgrade the corresponding piece of software. For this reason, external variables are
typically used to debug performance or functionality problems by using DTrace.

Pointers
Pointers are memory addresses of data objects and reference memory used by the
OS, by the user program, or by the D script. Pointers in D are data objects that store
an integer virtual address value and associate it with a D type that describes the
format of the data stored at the corresponding memory location.

You can explicitly declare a D variable to be of pointer type by first specifying the type
of the referenced data and then appending an asterisk (*) to the type name. Doing so
indicates you want to declare a pointer type, as shown in the following statement:

int *p;

The statement declares a D global variable named p that's a pointer to an integer. The
declaration means that p is a 64-bit integer with a value that's the address of another
integer located somewhere in memory. Because the compiled form of the D code is
run at probe firing time inside the kernel itself, D pointers are typically pointers
associated with the kernel's address space.

To create a pointer to a data object inside the kernel, you can compute its address by
using the & operator. For example, the kernel source code declares an unsigned long
max_pfn variable. You could trace the address of this variable by tracing the result of
applying the & operator to the name of that object in D:

trace(&`max_pfn);

The * operator can be used to specify the object addressed by the pointer, and acts as
the inverse of the & operator. For example, the following two D code fragments are
equivalent in meaning:

q = &`max_pfn; trace(*q);

trace(`max_pfn); 
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In this example, the first fragment creates a D global variable pointer q. Because the max_pfn
object is of type unsigned long, the type of &`max_pfn is unsigned long *, a pointer to
unsigned long. The type of q is implicit in the declaration. Tracing the value of *q follows the
pointer back to the data object max_pfn. This fragment is therefore the same as the second
fragment, which directly traces the value of the data object by using its name.

Pointer Safety
DTrace is a robust, safe environment for running D programs. You might write a buggy D
program, but invalid D pointer accesses don't cause DTrace or the OS kernel to fail or crash
in any way. Instead, the DTrace software detects any invalid pointer accesses, and returns a
BADADDR fault; the current clause execution quits, an ERROR probe fires, and tracing
continues unless the program called exit for the ERROR probe.

Pointers are required in D because they're an intrinsic part of the OS's implementation in C,
but DTrace implements the same kind of safety mechanisms that are found in the Java
programming language to prevent buggy programs from affecting themselves or each other.
DTrace's error reporting is similar to the runtime environment for the Java programming
language that detects a programming error and reports an exception.

To observe DTrace's error handling and reporting, you could write a deliberately bad D
program using pointers. For example, in an editor, type the following D program and save it in
a file named badptr.d:

BEGIN
{
  x = (int *)NULL;
  y = *x;
  trace(y);
}

The badptr.d program uses a cast expression to convert NULL to be a pointer to an integer.
The program then dereferences the pointer by using the expression *x, assigns the result to
another variable y, and then tries to trace y. When the D program is run, DTrace detects an
invalid pointer access when the statement y = *x is processed and reports the following
error:

dtrace: script '/tmp/badptr.d' matched 1 probe
dtrace: error on enabled probe ID 2 (ID 1: dtrace:::BEGIN): invalid address 
(0x0) in action #1 at BPF pc 156

Notice that the D program moves past the error and continues to run; the system and all
observed processes remain unperturbed. You can also add an ERROR probe to any script to
handle D errors. For details about the DTrace error mechanism, see ERROR Probe.

Pointer and Array Relationship
A scalar array is represented by a variable that's associated with the address of its first
storage location. A pointer is also the address of a storage location with a defined type. Thus,
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D permits the use of the array [] index notation with both pointer variables and array
variables. For example, the following two D fragments are equivalent in meaning:

p = &a[0]; trace(p[2]);

trace(a[2]); 

In the first fragment, the pointer p is assigned to the address of the first element in
scalar array a by applying the & operator to the expression a[0]. The expression p[2]
traces the value of the third array element (index 2). Because p now contains the same
address associated with a, this expression yields the same value as a[2], shown in
the second fragment. One consequence of this equivalence is that D permits you to
access any index of any pointer or array. If you access memory beyond the end of a
scalar array's predefined size, you either get an unexpected result or DTrace reports
an invalid address error.

The difference between pointers and arrays is that a pointer variable refers to a
separate piece of storage that contains the integer address of some other storage;
whereas, an array variable names the array storage itself, not the location of an
integer that in turn contains the location of the array.

This difference is manifested in the D syntax if you try to assign pointers and scalar
arrays. If x and y are pointer variables, the expression x = y is legal; it copies the
pointer address in y to the storage location that's named by x. If x and y are scalar
array variables, the expression x = y isn't legal. Arrays can't be assigned as a whole
in D. If p is a pointer and a is a scalar array, the statement p = a is permitted. This
statement is equivalent to the statement p = &a[0].

Pointer Arithmetic
As in C, pointer arithmetic in D isn't identical to integer arithmetic. Pointer arithmetic
implicitly adjusts the underlying address by multiplying or dividing the operands by the
size of the type referenced by the pointer.

The following D fragment illustrates this property:

int *x;

BEGIN
{
  trace(x);
  trace(x + 1);
  trace(x + 2);
}

This fragment creates an integer pointer x and then traces its value, its value
incremented by one, and its value incremented by two. If you create and run this
program, DTrace reports the integer values 0, 4, and 8.

Because x is a pointer to an int (size 4 bytes), incrementing x adds 4 to the
underlying pointer value. This property is useful when using pointers to reference
consecutive storage locations such as arrays. For example, if x was assigned to the
address of an array a, the expression x + 1 would be equivalent to the expression
&a[1]. Similarly, the expression *(x + 1) would reference the value a[1]. Pointer
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arithmetic is implemented by the D compiler whenever a pointer value is incremented by
using the +, ++, or =+ operators. Pointer arithmetic is also applied as follows; when an integer
is subtracted from a pointer on the left-hand side, when a pointer is subtracted from another
pointer, or when the -- operator is applied to a pointer.

For example, the following D program would trace the result 2:

int *x, *y;
int a[5];

BEGIN
{
  x = &a[0];
  y = &a[2];
  trace(y - x);
}

Generic Pointers
Sometimes it's useful to represent or manipulate a generic pointer address in a D program
without specifying the type of data referred to by the pointer. Generic pointers can be
specified by using the type void *, where the keyword void represents the absence of
specific type information, or by using the built-in type alias uintptr_t, which is aliased to an
unsigned integer type of size that's appropriate for a pointer in the current data model. You
can't apply pointer arithmetic to an object of type void *, and these pointers can't be
dereferenced without casting them to another type first. You can cast a pointer to the
uintptr_t type when you need to perform integer arithmetic on the pointer value.

Pointers to void can be used in any context where a pointer to another data type is required,
such as an associative array tuple expression or the right-hand side of an assignment
statement. Similarly, a pointer to any data type can be used in a context where a pointer to
void is required. To use a pointer to a non-void type in place of another non-void pointer
type, an explicit cast is required. You must always use explicit casts to convert pointers to
integer types, such as uintptr_t, or to convert these integers back to the appropriate pointer
type.

Pointers to DTrace Objects
The D compiler prohibits you from using the & operator to obtain pointers to DTrace objects
such as associative arrays, built-in functions, and variables. You're prohibited from obtaining
the address of these variables so that the DTrace runtime environment is free to relocate
them as needed between probe firings . In this way, DTrace can more efficiently manage the
memory required for programs. If you create composite structures, it's possible to construct
expressions that retrieve the kernel address of DTrace object storage. Avoid creating such
expressions in D programs. If you need to use such an expression, don't rely on the address
being the same across probe firings.

Pointers and Address Spaces
A pointer is an address that provides a translation within some virtual address space to a
piece of physical memory. DTrace runs D programs within the address space of the OS
kernel itself. The Linux system manages many address spaces: one for the OS kernel itself,
and one for each user process. Because each address space provides the illusion that it can
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access all the memory on the system, the same virtual address pointer value can be
reused across address spaces, but translate to different physical memory. Therefore,
when writing D programs that use pointers, you must be aware of the address space
corresponding to the pointers you intend to use.

For example, if you use the syscall provider to instrument entry to a system call that
takes a pointer to an integer or array of integers as an argument, such as, pipe(), it
would not be valid to dereference that pointer or array using the * or [] operators
because the address in question is an address in the address space of the user
process that performed the system call. Applying the * or [] operators to this address
in D would result in kernel address space access, which would result in an invalid
address error or in returning unexpected data to the D program, depending on whether
the address happened to match a valid kernel address.

To access user-process memory from a DTrace probe, you must apply one of the 
copyin, copyinstr, or copyinto functions. To avoid confusion, take care when writing D
programs to name and comment variables storing user addresses appropriately. You
can also store user addresses as uintptr_t so that you don't accidentally compile D
code that dereferences them..

Structs and Unions
Collections of related variables can be grouped together into composite data objects
called structs and unions. You define these objects in D by creating new type
definitions for them. You can use any new types for any D variables, including
associative array values. This section explores the syntax and semantics for creating
and manipulating these composite types and the D operators that interact with them.

Structs
The D keyword struct, short for structure, is used to introduce a new type that's
composed of a group of other types. The new struct type can be used as the type for
D variables and arrays, enabling you to define groups of related variables under a
single name. D structs are the same as the corresponding construct in C and C++. If
you have programmed in the Java programming language, think of a D struct as a
class that contains only data members and no methods.

Suppose you want to create a more sophisticated system call tracing program in D
that records several things about each read() and write() system call that's run for
an application, for example, the elapsed time, number of calls, and the largest byte
count passed as an argument.

You could write a D clause to record these properties in four separate associative
arrays, as shown in the following example:

int ts[string];       /* declare ts */
int calls[string];    /* declare calls */
int elapsed [string];  /* declare elapsed */
int maxbytes[string]; /* declare maxbytes */ 

syscall::read:entry, syscall::write:entry
/pid == $target/
{
  ts[probefunc] = timestamp;
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  calls[probefunc]++;
  maxbytes[probefunc] = arg2 > maxbytes[probefunc] ?
        arg2 : maxbytes[probefunc];
}

syscall::read:return, syscall::write:return
/ts[probefunc] != 0 && pid == $target/
{
  elapsed[probefunc] += timestamp - ts[probefunc];
}

END
{
  printf("       calls max bytes elapsed nsecs\n");
  printf("------ ----- --------- -------------\n");
  printf("  read %5d %9d %d\n",
  calls["read"], maxbytes["read"], elapsed["read"]);
  printf(" write %5d %9d %d\n",
  calls["write"], maxbytes["write"], elapsed["write"]);
}

You can make the program easier to read and maintain by using a struct. A struct provides a
logical grouping pf data items that belong together. It also saves storage space because all
data items can be stored with a single key.

First, declare a new struct type at the top of the D program source file:

struct callinfo {
  uint64_t ts;       /* timestamp of last syscall entry */
  uint64_t elapsed;  /* total elapsed time in nanoseconds */
  uint64_t calls;    /* number of calls made */
  size_t maxbytes;   /* maximum byte count argument */
};

The struct keyword is followed by an optional identifier that's used to refer back to the new
type, which is now known as struct callinfo. The struct members are then within a set of
braces {} and the entire declaration ends with a semicolon (;). Each struct member is
defined by using the same syntax as a D variable declaration, with the type of the member
listed first followed by an identifier naming the member and another semicolon (;).

The struct declaration defines the new type. It doesn't create any variables or allocate any
storage in DTrace. When declared, you can use struct callinfo as a type throughout the
remainder of the D program. Each variable of type struct callinfo stores a copy of the four
variables that are described by our structure template. The members are arranged in memory
in order, according to the member list, with padding space introduced between members, as
required for data object alignment purposes.

You can use the member identifier names to access the individual member values using the
“.” operator by writing an expression of the following form:

        variable-name.member-name
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The following example is an improved program that uses the new structure type. In a
text editor, type the following D program and save it in a file named rwinfo.d:

struct callinfo {
  uint64_t ts; /* timestamp of last syscall entry */
  uint64_t elapsed; /* total elapsed time in nanoseconds */
  uint64_t calls; /* number of calls made */
  size_t maxbytes; /* maximum byte count argument */
};

struct callinfo i[string]; /* declare i as an associative array */

syscall::read:entry, syscall::write:entry
/pid == $target/
{
  i[probefunc].ts = timestamp;
  i[probefunc].calls++;
  i[probefunc].maxbytes = arg2 > i[probefunc].maxbytes ?
        arg2 : i[probefunc].maxbytes;
}

syscall::read:return, syscall::write:return
/i[probefunc].ts != 0 && pid == $target/
{
  i[probefunc].elapsed += timestamp - i[probefunc].ts;
}

END
{
  printf("       calls max bytes elapsed nsecs\n");
  printf("------ ----- --------- -------------\n");
  printf("  read %5d %9d %d\n",
  i["read"].calls, i["read"].maxbytes, i["read"].elapsed);
  printf(" write %5d %9d %d\n",
  i["write"].calls, i["write"].maxbytes, i["write"].elapsed);
}

Run the program to return the results for a command. For example run the dtrace -
q -s rwinfo.d -c /bin/date command. The date program runs and is traced
until it exits and fires the END probe which prints the results:

# dtrace -q -s rwinfo.d -c date
 ...
       calls max bytes elapsed nsecs 
------ ----- --------- ------------- 
 read     2       4096         10689 
 write    1         29          9817

Pointers to Structs
Referring to structs by using pointers is common in C and D. You can use the operator
-> to access struct members through a pointer. If struct s has a member m, and you
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have a pointer to this struct named sp, where sp is a variable of type struct s *, you can
either use the * operator to first dereference the sp pointer to access the member:

struct s *sp;
(*sp).m

Or, you can use the -> operator to achieve the same thing:

struct s *sp; 
sp->m

DTrace provides several built-in variables that are pointers to structs. For example, the
pointer curpsinfo refers to struct psinfo and its content provides a snapshot of information
about the state of the process associated with the thread that fired the current probe. The
following table lists a few example expressions that use curpsinfo, including their types and
their meanings.

Example Expression Type Meaning

curpsinfo->pr_pid pid_t Current process ID

curpsinfo->pr_fname char [] Executable file name

curpsinfo->pr_psargs char [] Initial command line
arguments

The next example uses the pr_fname member to identify a process of interest. In an editor,
type the following script and save it in a file named procfs.d:

syscall::write:entry
/ curpsinfo->pr_fname == "date" /
{
  printf("%s run by UID %d\n", curpsinfo->pr_psargs, curpsinfo->pr_uid);
}

This clause uses the expression curpsinfo->pr_fname to access and match the command
name so that the script selects the correct write() requests before tracing the arguments.
Notice that by using operator == with a left-hand argument that's an array of char and a right-
hand argument that's a string, the D compiler infers that the left-hand argument can be
promoted to a string and a string comparison is performed. Type the command dtrace -q
-s procs.d in one shell and then run several variations of the date command in another
shell. The output that's displayed by DTrace might be similar to the following, indicating that
curpsinfo->pr_psargs can show how the command is invoked and also any arguments that
are included with the command:

# dtrace -q -s procfs.d 
date  run by UID 500
/bin/date  run by UID 500
date -R  run by UID 500
...
^C
#
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Complex data structures are used often in C programs, so the ability to describe and
reference structs from D also provides a powerful capability for observing the inner
workings of the Oracle Linux OS kernel and its system interfaces.

Unions
Unions are another kind of composite type available in ANSI C and D and are related
to structs. A union is a composite type where a set of members of different types are
defined and the member objects all occupy the same region of storage. A union is
therefore an object of variant type, where only one member is valid at any particular
time, depending on how the union has been assigned. Typically, some other variable,
or piece of state is used to indicate which union member is currently valid. The size of
a union is the size of its largest member. The memory alignment that's used for the
union is the maximum alignment required by the union members.

Member Sizes and Offsets
You can determine the size in bytes of any D type or expression, including a struct or
union, by using the sizeof operator. The sizeof operator can be applied either to an
expression or to the name of a type surrounded by parentheses, as illustrated in the
following two examples:

sizeof expression 
sizeof (type-name)

For example, the expression sizeof (uint64_t) would return the value 8, and the
expression sizeof (callinfo.ts) would also return 8, if inserted into the source code
of the previous example program. The formal return type of the sizeof operator is the
type alias size_t, which is defined as an unsigned integer that's the same size as a
pointer in the current data model and is used to represent byte counts. When the
sizeof operator is applied to an expression, the expression is validated by the D
compiler, but the resulting object size is computed at compile time and no code for the
expression is generated. You can use sizeof anywhere an integer constant is
required.

You can use the companion operator offsetof to determine the offset in bytes of a
struct or union member from the start of the storage that's associated with any object
of the struct or union type. The offsetof operator is used in an expression of the
following form:

offsetof (type-name, member-name)

Here, type-name is the name of any struct or union type or type alias, and member-
name is the identifier naming a member of that struct or union. Similar to sizeof,
offsetof returns a size_t and you can use it anywhere in a D program that an integer
constant can be used.

Bit-Fields
D also permits the definition of integer struct and union members of arbitrary numbers
of bits, known as bit-fields. A bit-field is declared by specifying a signed or unsigned
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integer base type, a member name, and a suffix indicating the number of bits to be assigned
for the field, as shown in the following example:

struct s 
{
  int a : 1;
  int b : 3;
  int c : 12;
};

The bit-field width is an integer constant that's separated from the member name by a trailing
colon. The bit-field width must be positive and must be of a number of bits not larger than the
width of the corresponding integer base type. Bit-fields that are larger than 64 bits can't be
declared in D. D bit-fields provide compatibility with and access to the corresponding ANSI C
capability. Bit-fields are typically used in situations when memory storage is at a premium or
when a struct layout must match a hardware register layout.

A bit-field is a compiler construct that automates the layout of an integer and a set of masks
to extract the member values. The same result can be achieved by defining the masks
yourself and using the & operator. The C and D compilers try to pack bits as efficiently as
possible, but they're free to do so in any order or fashion. Therefore, bit-fields aren't
guaranteed to produce identical bit layouts across differing compilers or architectures. If you
require stable bit layout, construct the bit masks yourself and extract the values by using the
& operator.

A bit-field member is accessed by specifying its name with the “.” or -> operators, similar to
any other struct or union member. The bit-field is automatically promoted to the next largest
integer type for use in any expressions. Because bit-field storage can't be aligned on a byte
boundary or be a round number of bytes in size, you can't apply the sizeof or offsetof
operators to a bit-field member. The D compiler also prohibits you from taking the address of
a bit-field member by using the & operator.

DTrace String Processing
DTrace provides facilities for tracing and manipulating strings. This section describes the
complete set of D language features for declaring and manipulating strings. Unlike ANSI C,
strings in D have their own built-in type and operator support to enable you to easily and
unambiguously use them in tracing programs.

String Representation
In DTrace, strings are represented as an array of characters ending in a null byte, which is a
byte with a value of zero, usually written as '\0'. The visible part of the string is of variable
length, depending on the location of the null byte, but DTrace stores each string in a fixed-
size array so that each probe traces a consistent amount of data. Strings cannot exceed the
length of the predefined string limit. However, the limit can be modified in your D program or
on the dtrace command line by tuning the strsize option. The default string limit is 256
bytes.

The D language provides an explicit string type rather than using the type char * to refer to
strings. The string type is equivalent to char *, in that it's the address of a sequence of
characters, but the D compiler and D functions such as trace provide enhanced capabilities
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when applied to expressions of type string. For example, the string type removes the
ambiguity of type char * when you need to trace the actual bytes of a string.

In the following D statement, if s is of type char *, DTrace traces the value of the
pointer s, which means it traces an integer address value:

trace(s);

In the following D statement, by the definition of the * operator, the D compiler
dereferences the pointer s and traces the single character at that location:

trace(*s);

These behaviors enable you to manipulate character pointers that refer to either single
characters, or to arrays of byte-sized integers that aren't strings and don't end with a
null byte.

In the next D statement, if s is of type string, the string type indicates to the D
compiler that you want DTrace to trace a null terminated string of characters whose
address is stored in the variable s:

trace(s);

You can also perform lexical comparison of expressions of type string. See String
Comparison.

String Constants
String constants are enclosed in pairs of double quotes ("") and are automatically
assigned the type string by the D compiler. You can define string constants of any
length, limited only by the amount of memory DTrace is permitted to consume on your
system and by whatever limit you have set for the strsize DTrace runtime option. The
terminating null byte (\0) is added automatically by the D compiler to any string
constants that you declare. The size of a string constant object is the number of bytes
associated with the string, plus one additional byte for the terminating null byte.

A string constant can't contain a literal newline character. To create strings containing
newlines, use the \n escape sequence instead of a literal newline. String constants
can also contain any of the special character escape sequences that are defined for
character constants.

String Assignment
Unlike the assignment of char * variables, strings are copied by value and not by
reference. The string assignment operator = copies the actual bytes of the string from
the source operand up to and including the null byte to the variable on the left-hand
side, which must be of type string.

You can use a declaration to create a string variable:

string s;
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Or you can create a string variable by assigning it an expression of type string.

For example, the D statement:

s = "hello";

creates a variable s of type string and copies the six bytes of the string "hello" into it (five
printable characters, plus the null byte).

String assignment is analogous to the C library function strcpy(), with the exception that if
the source string exceeds the limit of the storage of the destination string, the resulting string
is automatically truncated by a null byte at this limit.

You can also assign to a string variable an expression of a type that's compatible with strings.
In this case, the D compiler automatically promotes the source expression to the string type
and performs a string assignment. The D compiler permits any expression of type char * or
of type char[n], a scalar array of char of any size, to be promoted to a string.

String Conversion
Expressions of other types can be explicitly converted to type string by using a cast
expression or by applying the special stringof operator, which are equivalent in the following
meaning:

s = (string) expression;

s = stringof (expression);

The expression is interpreted as an address to the string.

The stringof operator binds very tightly to the operand on its right-hand side. You can
optionally surround the expression by using parentheses, for clarity.

Scalar type expressions, such as a pointer or integer, or a scalar array address can be
converted to strings, in that the scalar is interpreted as an address to a char type.
Expressions of other types such as void may not be converted to string. If you erroneously
convert an invalid address to a string, the DTrace safety features prevents you from
damaging the system or DTrace, but you might end up tracing a sequence of undecipherable
characters.

String Comparison
D overloads the binary relational operators and permits them to be used for string
comparisons, as well as integer comparisons. The relational operators perform string
comparison whenever both operands are of type string or when one operand is of type
string and the other operand can be promoted to type string. See String Assignment for a
detailed description. See also Table 3-13, which lists the relational operators that can be used
to compare strings.
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Table 3-13    D Relational Operators for Strings

Operator Description

< Left-hand operand is less than right-
operand.

<= Left-hand operand is less than or equal to
right-hand operand.

> Left-hand operand is greater than right-
hand operand.

>= Left-hand operand is greater than or equal
to right-hand operand.

== Left-hand operand is equal to right-hand
operand.

!= Left-hand operand is not equal to right-
hand operand.

As with integers, each operator evaluates to a value of type int, which is equal to one
if the condition is true or zero if it is false.

The relational operators compare the two input strings byte-by-byte, similarly to the C
library routine strcmp(). Each byte is compared by using its corresponding integer
value in the ASCII character set until a null byte is read or the maximum string length
is reached. See the ascii(7) manual page for more information. Some example D
string comparisons and their results are shown in the following table.

D string comparison Result

"coffee" < "espresso" Returns 1 (true)

"coffee" == "coffee" Returns 1 (true)

"coffee"" >= "mocha" Returns 0 (false)

Note:

Identical Unicode strings might compare as being different if one or the other
of the strings isn't normalized.

Aggregations
Aggregations enable you to accumulate data for statistical analysis. The aggregation is
calculated at runtime, so that post-processing isn't required and processing is highly
efficient and accurate. Aggregations function similarly to associative arrays, but are
populated by aggregating functions. In D, the syntax for an aggregation is as follows:

@name[ keys ] = aggfunc( args );

The aggregation name is a D identifier that's prefixed with the special character @. All
aggregations that are named in D programs are global variables. Aggregations can't
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have thread-local or clause-local scope. The aggregation names are kept in an identifier
namespace that's separate from other D global variables. If you reuse names, remember that
a and @a are not the same variable. The special aggregation name @ can be used to name an
anonymous aggregation in D programs. The D compiler treats this name as an alias for the
aggregation name @_.

Aggregations can be regular or indexed. Indexed aggregations use keys, where keys are a
comma-separated list of D expressions, similar to the tuples of expressions used for
associative arrays. Regular aggregations are treated similarly to indexed aggregations, but
don't use keys for indexing.

The aggfunc is one of the DTrace aggregating functions, and args is a comma-separated list
of arguments appropriate to that function. Most aggregating functions take a single argument
that represents the new datum.

Aggregation Functions

The following functions are aggregating functions that can be used in a program to collect
data and present it in a meaningful way.

• avg: Stores the arithmetic average of the specified expressions in an aggregation.

• count: Stores an incremented count value in an aggregation.

• max: Stores the largest value among the specified expressions in an aggregation.

• min: Stores the smallest value among the specified expressions in an aggregation.

• sum: Stores the total value of the specified expression in an aggregation.

• stddev: Stores the standard deviation of the specified expressions in an aggregation.

• quantize: Stores a power-of-two frequency distribution of the values of the specified
expressions in an aggregation. An optional increment can be specified.

• lquantize: Stores the linear frequency distribution of the values of the specified
expressions, sized by the specified range, in an aggregation.

• llquantize: Stores the log-linear frequency distribution in an aggregation.

Printing Aggregations

By default, several aggregations are displayed in the order in which they're introduced in the
D program. You can override this behavior by using the printa function to print the
aggregations. The printa function also lets you precisely format the aggregation data by
using a format string.

If an aggregation isn't formatted with a printa statement in a D program, the dtrace
command snapshots the aggregation data and prints the results after tracing has completed,
using the default aggregation format. If an aggregation is formatted with a printa statement,
the default behavior is disabled. You can achieve the same results by adding the
printa(@aggregation-name) statement to an END probe clause in a program.

The default output format for the avg, count, min, max, stddev, and sum aggregating functions
displays an integer decimal value corresponding to the aggregated value for each tuple. The
default output format for the quantize, lquantize, and llquantize aggregating functions
displays an ASCII histogram with the results. Aggregation tuples are printed as though trace
had been applied to each tuple element.
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Data Normalization

When aggregating data over some period, you might want to normalize the data based
on some constant factor. This technique lets you compare disjointed data more easily.
For example, when aggregating system calls, you might want to output system calls as
a per-second rate instead of as an absolute value over the course of the run. The
DTrace normalize function lets you normalize data in this way. The parameters to
normalize are an aggregation and a normalization factor. The output of the
aggregation shows each value divided by the normalization factor.

Speculation
DTrace includes a speculative tracing facility that can be used to tentatively trace data
at one or more probe locations. You can then decide to commit the data to the
principal buffer at another probe location. You can use speculation to trace data that
only contains the output that's of interest; no extra processing is required and the
DTrace overhead is minimized.

Speculation is achieved by:

• Setting up a temporary speculation buffer

• Instructing on or more clauses to trace to the speculation buffer

• Committing the data in the speculation buffer to the primary buffer; or discarding
the speculation buffer.

You can choose to commit or discard speculation data when certain conditions are
met, by using the appropriate functions within a clause. By using speculation, you can
trace data for a set of probes until a condition is met and then either dispose of the
data if it isn't useful, or keep it.

The following table describes DTrace speculation functions.

Table 3-14    DTrace Speculation Functions

Function Args Description

speculation None Returns an identifier for a
new speculative buffer.

speculate ID Denotes that the remainder
of the clause must be traced
to the speculative buffer
specified by ID.

commit ID Commits the speculative
buffer that's associated with
ID.

discard ID Discards the speculative
buffer that's associated with
ID.

Example 3-1    How to use speculation

The following example illustrates how to use speculation. All speculation functions
must be used together for speculation to work correctly.
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The speculation is created for the syscall::open:entry probe and the ID for the speculation
is attached to a thread-local variable. The first argument of the open() system call is traced to
the speculation buffer by using the printf function.

Three more clauses are included for the syscall::open:return probe. In the first of these
clauses, the errno is traced to the speculative buffer. The predicate for the second of the
clauses filters for a non-zero errno value and commits the speculation buffer. The predicate
of the third of the clauses filters for a zero errno value and discards the speculation buffer.

The output of the program is returned for the primary data buffer, so the program effectively
returns the file name and error number when an open() system call fails. If the call doesn't
fail, the information that was traced into the speculation buffer is discarded.

syscall::open:entry
{
  /*
   * The call to speculation() creates a new speculation. If this fails,
   * dtrace will generate an error message indicating the reason for
   * the failed speculation(), but subsequent speculative tracing will be
   * silently discarded.
   */
  self->spec = speculation();
  speculate(self->spec);

  /*
   * Because this printf() follows the speculate(), it is being
   * speculatively traced; it will only appear in the primary data buffer if 
the
   * speculation is subsequently committed.
   */
  printf("%s", copyinstr(arg0));
}

syscall::open:return
/self->spec/
{
  /*
   * Trace the errno value into the speculation buffer.
   */
  speculate(self->spec);
  trace(errno);
}

syscall::open:return
/self->spec && errno != 0/
{
  /*
   * If errno is non-zero, commit the speculation.
   */
  commit(self->spec);
  self->spec = 0;
}

syscall::open:return
/self->spec && errno == 0/
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{
  /*
   * If errno is not set, discard the speculation.
   */
  discard(self->spec);
  self->spec = 0;
}
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4
DTrace Runtime and Compile-time Options
Reference

DTrace uses reasonable default values and flexible default policies for runtime configuration.
Tuning mechanisms in the form of DTrace compiler or runtime option can change the default
behavior of the dtrace utility. You can find more information about the dtrace utility and
various command line options in the dtrace(8) manual page.

Options that can be specified when running the dtrace utility can be categorized into three
types:

• Compile-time Options: affect the compilation process but might also affect runtime
behavior.

• Runtime Options: affect the runtime behavior of DTrace but which are often set at
compile time.

• Dynamic Runtime Options: affect the runtime behavior of DTrace but which can be
changed while tracing, by using the setopt function.

Setting DTrace Compile-time and Runtime Options
You can tune DTrace by setting or enabling a selection of runtime or compiler options. You
can set options by either using the -x command line switch when running the dtrace
command, or by specifying pragma lines in D programs. If an option takes a value, follow the
option name with an equal sign (=) and the option value.

Value Suffixes

Use the following optional suffixes for values that denote size or time:

• k or K: kilobytes

• m or M: megabytes

• g or G: gigabytes

• t or T: terabytes

• ns or nsec: nanoseconds

• us or usec: microseconds

• ms or msec: milliseconds

• s or sec: seconds

• m or min: minutes

• h or hour: hours

• d or day: days

• hz: number per second
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Example 4-1    Enabling Options Using the DTrace Utility

The dtrace command accepts option settings on the command line by using the -x
switch, for example:

sudo dtrace -x nspec=4 -x bufsize=2g \
-x switchrate=10hz -x aggrate=100us -x bufresize=manual

Example 4-2    DTrace Pragma Lines To Enable Options in a D Program

You can set options in a D program by using #pragma D followed by the string option
and the option name and value. The following are examples of valid option settings:

#pragma D option nspec=4

#pragma D option bufsize=2g

#pragma D option switchrate=10hz

#pragma D option aggrate=100us

#pragma D option bufresize=manual

Compile-time Options
Compile-time options can control how DTrace programs are compiled into eBPF code
that's loaded into kernel space.

aggpercpu
Compile-time option that forces the compiler to perform aggregation per CPU.

amin=<string>
Compile-time option that sets the stability attribute minimum.

argref
Compile-time option that disables the requirement to use all macro arguments.

core
Compile-time option that enables core dumping by dtrace.

cpp
Compile-time option that enables cpp to preprocess the input file.

cppargs
Compile-time option that specifies and extra arguments to pass to cpp (when using -
C).

cpphdrs
Compile-time option that specifies the -H option to cpp to print the name of each
header file used.

cpppath=<string>
Compile-time option that specifies the path name of cpp.
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ctfpath
Compile-time option that can specify the path of vmlinux.ctfa.

ctypes=<string>
Compile-time option that specifies Compact Type Format (CTF) definitions of all C types
used in a program at the end of a D compilation run.

debug
Compile-time option that enables DTrace debugging mode. This option is the same as
setting the environment variable DTRACE_DEBUG.

debugassert
Compile-time option that can enable specific debug modes [UNTESTED].

defaultargs
Compile-time option that allows references to unspecified macro arguments. Use 0 as the
value for an unspecified argument.

define=<string>
Compile-time option that specifies a macro name and optional value in the form
name[=value]. This option is the same as running dtrace -D.

disasm
Compile-time option to specify requested disassembler listings (when using -S).

droptags
Compile-time option that specifies that drop tags are used.

dtypes=<string>
Compile-time option that specifies CTF definitions of all D types that are used in a program
at the end of a D compilation run.

empty
Compile-time option that permits compilation of empty D source files.

errtags
Compile-time option that prefixes default error message with error tags.

evaltime=[exec|main|postinit|preinit]
Compile-time option that controls when DTrace starts tracing a new process. For dynamically
linked binaries, tracing starts:

• exec: After exec().

• preinit: After initialization of the dynamic linker to load the binary.

• postinit: After constructor execution. Default value.

• main: Before main() starts. Same as postinit.

For statically linked binaries, preinit is equivalent to exec.
For stripped, statically linked binaries, postinit and main are equivalent to preinit.

incdir=<string>
Compile-time option that adds an #include directory to the preprocessor search path. This
option is the same as running dtrace -I.
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iregs=<scalar>
Compile-time option that sets the size of the DTrace Intermediate Format (DIF)
integer register set. The default value is 8.

kdefs
Compile-time option that prevents unresolved kernel symbols.

knodefs
Compile-time option that permits unresolved kernel symbols.

late=[dynamic|static]
Compile-time option that specifies whether to permit references to dynamic
translators:

• dynamic: Allow references to dynamic translators.

• static: Require translators to be statically defined.

lazyload=<true|false>
Compile-time option that specifies lazy loading for the DTrace Object Format (DOF)
rather than active loading.

ldpath=<string>
Compile-time option that specifies the path of the dynamic linker loader (ld).

libdir=<string>
Compile-time option that adds a library directory to the library search path.

linkmode=[dynamic|kernel|static]
Compile-time option that specifies the symbol linking mode used by the assembler
when processing external symbol references:

• dynamic: All symbols are treated as dynamic.

• kernel: Kernel symbols are treated as static and user symbols are treated as
dynamic.

• static: All symbols are treated as static.

linknommap
Compile-time option to disable use of MMAP-based libelf support when linking USDT
objects.

linktype=[dof|elf]
Compile-time option that specifies the output file type:

• dof: Produce a standalone DOF file.

• elf: Produce an ELF file that contains DOF.

modpath=<string>
Compile-time option that specifies the module path. The default path is /lib/
modules/ version.

nolibs
Compile-time option that prevents processing D system libraries.
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pgmax=<scalar>
Compile-time option that sets a limit on the number of threads that DTrace can grab for
tracing. The default value is 8.

preallocate=<scalar>
Compile-time option that sets the amount of memory to preallocate.

procfspath=<string>
Compile-time option that sets the path to the procfs file system. The default path is /proc.

pspec
Compile-time option that enables interpretation of ambiguous specifiers as probe names.

stdc=[a|c|s|t]
Compile-time option that specifies ISO C conformance settings for the preprocessor when
invoking cpp with the -C option.
The a, c, and t settings include the-std=gnu99 option (conformance with 1999 C standard
including GNU extensions).
The s setting includes the -traditional-cpp option (conformance with K&R C).

strip
Compile-time option that strips non-loadable sections from the program.

syslibdir=<string>
Compile-time option that sets the path name of system libraries.

tree=<scalar>
Compile-time option that sets the value of the DTrace tree dump bitmap.

tregs=<scalar>
Compile-time option that sets the size of the DIF tuple register set. The default value is 8.

udefs
Compile-time option that prevents unresolved user symbols.

undef=<string>
Compile-time option that undefines a symbol when invoking the preprocessor. This option is
the same as running dtrace -U.

unodefs
Compile-time option that permits unresolved user symbols.

useruid
Compile-time option to use first UID that isn't in the system range .

verbose
Compile-time option that enables DIF verbose mode, which shows each compiled DIF object
(DIFO).

version=<string>
Compile-time option that requests a specific version of the DTrace library.

zdefs
Compile-time option that permits probe definitions that match zero probes.
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Runtime Options
Runtime options can control how the DTrace utility behaves.

aggsize=<size>
Runtime option that sets the buffer size for aggregation.

bpflog=<size>
Runtime option that forces reporting of the BPF verifier log (even if verification was
successful).

bpflogsize
Runtime option that sets the maximum size of the BPF verifier log.

bufsize=<size>
Runtime option that sets the principal buffer size. The default buffer size is set to 4
MB. This option is the same as running dtrace -b.

cleanrate=<time>
Runtime option that sets the cleaning rate.

cpu=<scalar>
Runtime option that restricts tracing to a particular CPU.

destructive
Runtime option that permits destructive functions to run. This option is the same as
running dtrace -w.

dynvarsize=<size>
Runtime option that sets dynamic variable space size.

lockmem
Runtime option that sets the locked pages limit.

maxframes=<scalar>
Runtime option that sets the maximum number of stack frames reported by the kernel.

noresolve
Runtime option that disables automatic resolving of userspace symbols.

nspec=<scalar>
Runtime option that sets the number of speculations.

pcapsize=<size>
Runtime option that sets the maximum packet data capture size.

scratchsize=<size>
Runtime option that sets the maximum DTrace scratch memory size. Some functions
in DTrace require that scratch memory, is made available. For example, when you
allocate memory in a program by using the alloca() function, scratch memory is
used for this purpose. Scratch memory is only valid while a clause is being processed
and is released when the clause has finished being processed. If there isn't enough
scratch memory, a function in a DTrace script can return an error and any remaining
processing of the clause might fail. The default value is 256 bytes.
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specsize=<size>
Runtime option that sets the speculation buffer size.

stackframes=<scalar>
Runtime option that sets the number of stack frames. The default value is 20.

statusrate=<time>
Runtime option that sets the rate of status checking.

strsize=<size>
Runtime option that sets the string size. The default value is 256.

ustackframes=<scalar>
Runtime option that sets the number of user-land stack frames. The default value is 100.

Dynamic Runtime Options
Dynamic runtime options are specific to D programs themselves and are likely to change
depending on program functionality and requirements.

aggrate=<time>
Dynamic runtime option that sets the amount of time between aggregation readings.

aggsortkey=<true|false>
Dynamic runtime option that sorts aggregations by key.

aggsortkeypos=<scalar>
Dynamic runtime option that sets the position, or number, of the aggregation key on which to
sort.

aggsortpos=<scalar>
Dynamic runtime option that sets the position, or number, of the aggregation variable on
which to sort

aggsortrev=<true|false>
Dynamic runtime option that sorts aggregations in reverse order.

flowindent
Dynamic runtime option that controls indentation.
Indent function entry and prefix with ->.
Unindent function return and prefix with <-.
Indent system call entry and prefix with =>.
Unindent system call return and prefix with <=.
This option is the same as running dtrace -F.

quiet
Dynamic runtime option that restricts output to explicitly traced data. This option isthe same
as running dtrace -q.

quietresize
Dynamic runtime option that suppresses buffer-resize messages.

rawbytes
Dynamic runtime option that prints trace output in hexadecimal.
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stackindent=<scalar>
Dynamic runtime option that sets the number of white space characters to use when
indenting stack and ustack output. The default value is 14.

switchrate=<time>
Dynamic runtime option that sets the rate at which the buffer is read. You can
increase the rate to help prevent data drops, or consider increasing the size of the
principal buffer with the bufsize option.
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5
DTrace Stability Reference

DTrace provides a mechanism to track the stability of interfaces and their architecture
dependencies. This reference provides detail on how attributes are stored and described and
their values.

DTrace Interface Stability Attributes

DTrace describes interfaces by using a triplet of attributes consisting of two stability levels
and one dependency class. By convention, the interface attributes are written in the following
order and are separated by slashes:

name_stability / data_stability / dependency_class

The name stability of an interface describes the stability level that's associated with its name,
as it appears in a D program or on the dtrace command line. For example, the execname D
variable is a Stable name.

The data stability of an interface is distinct from the stability that's associated with the
interface name. This stability level describes the commitment to maintain the data formats
that are used by the interface and any associated data semantics.

The dependency class of an interface is distinct from its name and data stability and
describes whether the interface is specific to the current operating platform or
microprocessor.

DTrace and the D compiler track the stability attributes for all the following DTrace interface
entities: providers, probe descriptions, D variables, D functions, types, and program
statements.

Stability attributes are computed by selecting the minimum stability level and class from the
corresponding values for each interface attributes triplet.

The DTrace utility can report on the calculated stability of a D program when run with the -v
option. Use the -e option to prevent DTrace from running the program and to restrict output to
only provide the report. For example, you can run:

sudo dtrace -ev -s myscript.d

Output similar to the following is displayed:

Stability attributes for description dtrace:::BEGIN:

    Minimum Probe Description Attributes
        Identifier Names: Stable
        Data Semantics:   Stable
        Dependency Class: Common

    Minimum Statement Attributes
        Identifier Names: Stable
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        Data Semantics:   Private
        Dependency Class: Common

dtrace:::BEGIN

    Probe Description Attributes
        Identifier Names: Stable
        Data Semantics:   Stable
        Dependency Class: Common

    Argument Attributes
        Identifier Names: Stable
        Data Semantics:   Stable
        Dependency Class: Common

    Argument Types
        None

You can use the -x amin=_attributes_ option with the dtrace command to force
the D compiler to produce an error whenever any attributes computation results in a
triplet of attributes less than the minimum values that you specify on the command
line. Note that attributes are specified with three labels that are delimited /, according
to the standard notation to describe stability. For example:

sudo dtrace -x amin=Evolving/Evolving/Common -s myscript.d

Stability attributes are computed for a probe description by taking the minimum
stability attributes of all the specified probe description fields, according to the
attributes that are published by the provider. DTrace providers export a stability
attributes triplet for each of the four description fields for all the probes published by
that provider. Therefore, a provider's name can have a greater stability than the
individual probes that it exports. For simplicity, most providers use a single set of
attributes for all the individual module function name values they publish. Providers
also specify attributes for the args[] array because the stability of any probe
arguments varies by provider.

If the provider field isn't specified in a probe description, then the description is
assigned the Unstable/Unstable/Common stability attributes because the description
might end up matching probes of providers that don't yet exist when used on a future
Oracle Linux release. As such, Oracle doesn't provide guarantees about the future
stability and behavior of the program. Always explicitly specify the provider when
writing D program clauses. In addition, any probe description fields that contain pattern
matching characters or macro variables, such as $1, are treated as unspecified
because these description patterns might expand to match providers or probes to be
released in future versions of DTrace and Oracle Linux.

Stability Levels

Stability levels describe the stability of software entities and DTrace interfaces. DTrace
stability levels indicate how likely D programs and layered tools are to require
corresponding changes when you upgrade or change the software stack.
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Stability Value Description

Internal The interface is private to DTrace and
represents an implementation detail of
DTrace. Internal interfaces might change in
minor or micro releases.

Private The interface is private to Oracle and
represents an interface developed for use by
other Oracle products that aren't yet publicly
documented for use by customers and ISVs
(independent software vendors). Private
interfaces might change in minor or micro
releases.

Obsolete The interface is available in the current
release but is scheduled to be removed, most
likely in a future minor release. The D
compiler might produce warning messages if
you try to use an Obsolete interface.

External The interface is controlled by an entity other
than Oracle. Oracle makes no claims regarding
either source or binary compatibility for
External interfaces between any two releases.
Applications based on these interfaces might
not work in future releases, including patches
that contain External interfaces.

Unstable The interface provides developers early access
to new or changing technology or to an
implementation artifact that's essential for
observing or debugging system behavior for
which a more stable solution is expected in the
future. Oracle makes no claims about either
source or binary compatibility for Unstable
interfaces from one minor release to another.

Evolving The interface might eventually become
Standard or Stable but is still in transition.
When non-upward, compatible changes
become necessary, they occur in minor and
major releases. These changes are avoided in
micro releases whenever possible. If such a
change is necessary, it's documented in the
release notes for the affected release. Also,
when feasible, migration aids are provided for
binary compatibility and continued D program
development.

Stable The interface is a mature interface.
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Stability Value Description

Standard The interface complies with an industry
standard. The corresponding documentation
for the interface describes the standard to
which the interface conforms. Standards are
typically controlled by a standards
development organization. Changes can be
made to the interface in accordance with
approved changes to the standard. This
stability level can also apply to interfaces that
have been adopted (without a formal
standard) by an industry convention.
Availability is provided for only the specified
versions of a standard; availability in later
versions isn't guaranteed.

Dependency Classes

Dependency classes are used to describe architectural dependencies for interfaces in
DTrace.

Dependency Class Description

Unknown The interface has an unknown set of
architectural dependencies. DTrace doesn't
necessarily know the architectural
dependencies of all entities, such as the
data types defined in the OS
implementation. The Unknown label is
typically applied to interfaces of very low
stability for which dependencies can't be
computed. The interface might not be
available when using DTrace on any
architecture other than what you're
currently using.

CPU The interface is specific to the CPU model
of the current system. Interfaces with CPU
model dependencies might not be available
on other CPU implementations, even if
those CPUs export the same instruction set
architecture (ISA).

Platform The interface is specific to the hardware
platform for the current system. A platform
typically associates a set of system
components and architectural
characteristics. To display the current
platform name, use the uname -i
command. The interface might not be
available on other hardware platforms.
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Dependency Class Description

Group The interface is specific to the hardware
platform group for the current system. A
platform group typically associates a set of
platforms with related characteristics
together under a single name. To display
the current platform group name, use the
uname -m command. The interface is
available on other platforms in the
platform group, but it might not be
available on hardware platforms that
aren't members of the group.

ISA The interface is specific to the ISA that's
available for the microprocessors on the
current system. The ISA describes a
specification for software that can be run
on the microprocessor, including details
such as assembly language instructions
and registers.

Common The interface is common to all Oracle
Linux platforms, regardless of the
underlying hardware. DTrace programs
and layered applications that depend only
on Common interfaces can be run and
deployed on other Oracle Linux platforms
with the same Oracle Linux and DTrace
revisions. Most DTrace interfaces are
Common, so you can use them wherever
you use Oracle Linux.
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6
DTrace Built-in Variable Reference

DTrace includes a set of built-in scalar variables that can be used in D programs or scripts.

Macro Variables
Macro variables are variables that are populated at runtime and identify information about the
running dtrace process or the process running the compiler.

The D compiler defines a set of built-in macro variables that you can use when writing D
programs or interpreter files. Macro variables are identifiers that are prefixed with a dollar
sign ($) and are expanded once by the D compiler when processing an input file or script.
The following table describes the macro variables that the D compiler provides.

Table 6-1    D Macro Variables

Name Description Reference

$[0-9]+ Macro arguments See Macro Arguments

$egid Effective group ID See the getegid(2) manual
page.

$euid Effective user ID See the geteuid(2) manual
page.

$gid Real group ID See the getgid(2) manual
page.

$pid Process ID See the getpid(2) manual
page.

$pgid Process group ID See the getpgid(2) manual
page.

$ppid Parent process ID See the getppid(2) manual
page.

$sid Session ID See the getsid(2) manual
page.

$target Target process ID See Target Process ID

$uid Real user ID See the getuid(2) manual
page

The variables expand to the attribute value associated with the current dtrace process or
whatever process is running the D compiler. All the macro variables expand to integers that
correspond to system attributes, such as the process ID and the user ID, except the $[0-9]+
macro arguments and the $target macro variable.

Using macro variables in interpreter files lets you create persistent D programs that you don't
need to edit every time you want to use them. For example, to count all system calls, except
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those that are run by the dtrace command, use the following D program clause
containing $pid:

syscall:::entry
/pid != $pid/
{
  @calls = count();
}

This clause always behaves as expected, even though each invocation of the dtrace
command has a different process ID. Macro variables can be used in a D program
anywhere that an integer, identifier, or string can be used.

Macro variables are expanded only one time when the input file or script is parsed, not
recursively.

Except in probe descriptions, each macro variable is expanded to form a separate
input token and can't be concatenated with other text to yield a single token.

For example, if $pid expands to the value 456, the D code in the following example
would expand to the two adjacent tokens 123 and 456, resulting in a syntax error,
rather than the single integer token 123456:

123$pid

However, in probe descriptions, macro variables are expanded and concatenated with
adjacent text.

Macro variables are only expanded one time within each probe description field and
they can't contain probe description delimiters (:).

Macro Arguments

The D compiler also provides a set of macro variables corresponding to any more
argument operands that are specified as part of the dtrace command invocation.
These macro arguments are accessed by using the built-in names $0, for the name of
the D program file or dtrace command, $1, for the first extra operand, $2 for the
second operand, and so on. If you use the -s option, $0 expands to the value of the
name of the input file that's used with this option. For D programs that are specified on
the command line, $0 expands to the value of argv[0], which is used to run the
dtrace command itself.

Macro arguments can expand to integers, identifiers, or strings, depending on the form
of the corresponding text. As with all macro variables, macro arguments can be used
anywhere integer, identifier, and string tokens can be used in a D program.

All of the following examples could form valid D expressions assuming appropriate
macro argument values:

execname == $1  /* with a string macro argument */

x += $1         /* with an integer macro argument */

trace(x->$1)    /* with an identifier macro argument */
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Macro arguments can be used to create DTrace interpreter files that run as normal Linux
commands and use information that's specified by a user or by another tool to change their
behavior.

For example, the following D interpreter file traces write() system calls that are run by a
particular process ID and saved in a file named tracewrite:

#!/usr/sbin/dtrace -s 
syscall::write:entry
/pid == $1/
{
}

If you make this interpreter file executable, you can specify the value of $1 by using an extra
command line argument after the interpreter file, for example:

sudo chmod a+rx ./tracewrite
sudo ./tracewrite 12345

The resulting command invocation counts each write() system call that's made by the
process ID 12345.

If a D program references a macro argument that isn't provided on the command line, an
appropriate error message is printed and the program fails to compile, as shown in the
following example output:

dtrace: failed to compile script ./tracewrite: line 4: 
  macro argument $1 is not defined

D programs can reference unspecified macro arguments if you set the defaultargs option. If
defaultargs is set, unspecified arguments have the value 0. See DTrace Runtime and
Compile-time Options Reference for more information about D compiler options. The D
compiler also produces an error message if other arguments that aren't referenced by the D
program are specified on the command line.

The macro argument values must match the form of an integer, identifier, or string. If the
argument doesn't match any of these forms, the D compiler reports an appropriate error
message. When specifying string macro arguments to a DTrace interpreter file, surround the
argument in an extra pair of single quotes to avoid interpretation of the double quotes and
string contents by the shell:

sudo ./foo '"a string argument"'

If you want D macro arguments to be interpreted as string tokens, even if they match the form
of an integer or identifier, prefix the macro variable or argument name with two leading dollar
signs, for example, $$1, which forces the D compiler to interpret the argument value as if it
were a string surrounded by double quotes. All the usual D string escape sequences, per 
Table 3-6, are expanded inside any string macro arguments, regardless of whether they're
referenced by using the $arg or $$arg form of the macro. If the defaultargs option is set,
unspecified arguments that are referenced with the $$arg form have the value of the empty
string ("").
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Target Process ID

Use the $target macro variable to create scripts to be applied to the user process of
interest that you specify with the -p option or that you create by using the dtrace
command with the -c option. The D programs that you specify on the command line or
by using the -s option are compiled after processes are created or grabbed, and
the $target variable expands to the integer process ID of the first such process.

For example, you could use the following D script to find the distribution of system
calls that are made by a particular subject process. Save it in a file named syscall.d:

syscall:::entry
/pid == $target/
{
  @[probefunc] = count();
}

To find the number of system calls made by the date command, save the script in the
file named syscall.d, then run the following command:

sudo dtrace -s syscall.d -c date

args[]
The typed arguments, if any, to the current probe. The args[] array is accessed using
an integer index, but each element is defined to be the type corresponding to the
specific probe argument. For information about any typed arguments, use dtrace -l
with the verbose option -v and check Argument Types.

arg0, …, arg9
int64_t arg0, ..., arg9

The built-in variables arg0,arg1 and so on, represent the first ten input arguments to a
probe, represented as raw 64-bit integers. Values are meaningful only for arguments
defined for the current probe.

caller
uintptr_t caller

The built-in variable caller references the program counter location of the current
kernel thread at the time the probe fired.

curcpu
cpuinfo_t * curcpu
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The built-in variable curcpu references the current physical CPU.

curthread
vmlinux`struct task_struct * curthread

The built-in variable curthread references a vmlinux data type, for which members can be
found by searching for "task_struct" on the Internet.

epid
uint_t epid

The built-in variable epid references the enabled probe ID (EPID) for the current probe. This
integer uniquely identifies a particular probe that's enabled with a specific predicate and set of
functions.

errno
int errno

The built-in variable errno references the error value returned by the last system call run by
this thread.

execname
string execname

The built-in variable execname references the name that was passed to execve() to run the
current process.

gid
gid_t gid

The built-in variable gid references the real group ID of the current process.

id
uint_t id

The built-in variable id references the probe ID for the current probe. This ID is the system-
wide unique identifier for the probe, as published by DTrace and listed in the output of
dtrace -l.
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ipl
uint_t ipl

The built-in variable ipl references the interrupt priority level (IPL) on the current CPU
at probe firing time.

Note:

This value is non-zero if interrupts are firing and zero otherwise. The non-
zero value depends on whether preemption is active, and other factors, and
can vary between kernel releases and kernel configurations.

pid
pid_t pid

The built-in variable pid references the process ID of the current process.

ppid
pid_t ppid

The built-in variable ppid references the parent process ID of the current process.

probefunc
string probefunc

The built-in variable probefunc references the function name part of the current
probe's description.

probemod
string probemod

The built-in variable probemod references the module name part of the current probe's
description.
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probename
string probename

The built-in variable probename references the name part of the current probe's description.

probeprov
string probeprov

The built-in variable probeprov references the provider name part of the current probe's
description.

stackdepth
uint32_t stackdepth

The built-in variable stackdepth references the current thread's stack frame depth at probe
firing time.

tid
id_t tid

The built-in variable tid references the task ID of the current thread.

timestamp
uint64_t timestamp

The built-in variable timestamp references the current value of a nanosecond timestamp
counter. This counter increments from an arbitrary point in the past. Therefore, only use the
timestamp counter for relative computations.

ucaller
uint64_t ucaller

The built-in variable ucaller references the program counter location of the current user
thread at the time the probe fired.
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uid
uid_t uid

The built-in variable uid references the real user ID of the current process.

uregs
uint64_t uregs[]

The current thread's saved user-mode register values at probe firing time.

ustackdepth
uint32_t ustackdepth

The built-in variable ustackdepth references the user thread's stack frame depth at
probe firing time.

vtimestamp
uint64_t vtimestamp

The built-in variable vtimestamp references the current value of a nanosecond
timestamp counter that's virtualized to the amount of time that the current thread has
been running on a CPU, minus the time spent in DTrace predicates and functions. This
counter increments from an arbitrary point in the past. Therefore, only use the
vtimestamp counter for relative time computations.

walltimestamp
int64_t walltimestamp

The built-in variable walltimestamp references the current number of nanoseconds
since 00:00 Universal Coordinated Time, January 1, 1970.
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7
DTrace Function Reference

You use D function calls to invoke different kinds of services that DTrace provides.

Functions can be grouped according to their general use case and might appear in more than
one grouping:

Data Recording Functions
Data recording functions record data to a DTrace buffer. These are the most common
functions and the default DTrace function belongs to this category. By default, data recording
functions record data to the principal buffer, but can also be directed to record data into a
speculative buffer.
Data recording functions include:

• Default Action: The default action applies when DTrace encounters an empty clause for
a probe. The default action is to trace the enabled probe identifier (EPID).

• printa: Displays and controls the formatting of an aggregation

• printf: Displays and controls the formatting of a string.

• trace: Traces the result of an expression to the directed buffer.

• tracemem: Copies the specified number of bytes of data from an address in memory to
the current buffer.

Aggregation Functions
Aggregation functions provide calculated information about sets of DTrace data stored in
aggregations.
The following functions are aggregation functions:

• avg: Stores the arithmetic average of the specified expressions in an aggregation.

• count: Stores an incremented count value in an aggregation.

• max: Stores the largest value among the specified expressions in an aggregation.

• min: Stores the smallest value among the specified expressions in an aggregation.

• sum: Stores the total value of the specified expression in an aggregation.

• stddev: Stores the standard deviation of the specified expressions in an aggregation.

• quantize: Stores a power-of-two frequency distribution of the values of the specified
expressions in an aggregation. An optional increment can be specified.

• lquantize: Stores the linear frequency distribution of the values of the specified
expressions, sized by the specified range, in an aggregation.

• llquantize: Stores the log-linear frequency distribution in an aggregation.

The following functions aren't aggregating functions but work on aggregations:

• clear: Clears the values from an aggregation while retaining aggregation keys.

• denormalize: Removes the normalization that's applied to a specified aggregation.

7-1



• normalize: Divides an aggregation value by a specified normalization factor.

• printa: Displays and controls the formatting of an aggregation

Speculation Functions
Speculation functions create or operate on speculative buffers. Speculation is used to
trace quantities into speculation buffers that can either be committed to the primary
buffer or discarded at a later point, when other important information is known.
The following functions are speculation functions:

• speculation: Creates a speculative trace buffer and returns its ID.

• speculate: A special function that causes DTrace to switch to using a speculation
buffer identified by the specified ID for the remainder of a clause.

• commit: Commits the speculative buffer, specified by ID, to the principal buffer.

• discard: Discards a speculative buffer specified by the provided speculation ID.

String Manipulation Functions
String manipulation functions are typical in most programming languages and are
used to perform common functional operations on strings. Many functions have
analogs in the system library calls described in section 3 of the Oracle Linux manual
pages. You can often find out more about these functions by examining the
corresponding manual page. For example:

man 3 strchr

Several of these functions require temporary buffers, which persist only for duration of
the clause. Preallocated scratch memory is used for such buffers.
The following string manipulation functions are available:

• index: Finds the first occurrence of a substring within a string.

• rindex: Finds the last occurrence of a specific substring within a string.

• lltostr: Converts an unsigned 64-bit integer to a string.

• strchr: Returns a substring that begins at the first matching occurrence of a
specified character in a string.

• strjoin: Concatenates two specified strings and returns the resulting string.

• strlen: Returns the length of a string in bytes.

• strrchr: Returns a substring that begins at the last matching occurrence of a
specified character in a string.

• strstr: Returns a substring starting at first occurrence of a specified substring within
a string.

• strtok: Parse a string into a sequence of tokens using a specified delimiter.

• substr: Returns the substring from a string at a specified index position.

File Path Manipulation Functions
Similar to string manipulation functions, file path manipulation functions act on file
paths or can provide the path name for a specified pointer. Some of these functions
have analogs in the system library calls described in section 3 of the Oracle Linux
manual pages.
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• basename: Returns a string excluding any prefix ending in /.

• dirname: Returns the path up to the last level of a specified string.

Integer Conversion Functions
Similar to string manipulation functions, DTrace includes several integer conversion functions
that can convert integers between host byte order and network byte order. These functions
have analogs in the system library calls described in section 3 of the Oracle Linux manual
pages.
The following integer conversion functions are available:

• htonl: Converts an unsigned 32-bit long integer from host byte order to network byte
order.

• htonll: Converts an unsigned 64-bit long integer from host byte order to network byte
order.

• htons: Converts a short 16-bit unsigned integer from host byte order to network byte
order.

• ntohl: Converts a 32-bit long integer from network byte order to host byte order.

• ntohll: Converts a 64-bit long integer from network byte order to host byte order.

• ntohs: Converts a short 16-bit integer from network byte order to host byte order.

Copying Functions
Copying functions are functions that relate to copying information between memory
addresses and DTrace buffers. Some of these functions are also considered process
destructive functions because they change data in memory for a running process.
Destructive functions must be explicitly enabled in DTrace.

• alloca: Allocates memory and returns a pointer.

• bcopy: Copies a specified size in bytes from a specified source address outside of
scratch memory to a destination address inside scratch memory.

• copyin: Copies the specified size from the user address to a DTrace buffer and returns
the address of the buffer.

• copyinstr: Copies a null-terminated C string from the specified user address to a DTrace
buffer and returns the address of the buffer.

• copyinto: Copies the specified size in bytes from the specified user address into the
DTrace scratch buffer and returns the buffer address.

• copyout: Copies the specified size from the specified DTrace buffer to the specified user
space address.

• copyoutstr: Copies a specified string to a specified user space address.

Lock Analysis Functions
Lock analysis functions are used to check mutexes and file locks.
The following lock analysis functions are available:

• mutex_owned: Checks whether a thread holds the specified kernel mutex.

• mutex_owner: Returns the thread pointer to the current owner of the specified kernel
mutex.

• mutex_type_adaptive: Returns a non-zero value if a specified kernel mutex is adaptive.
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• mutex_type_spin: Returns a non-zero value if a specified kernel mutex is a spin
mutex.

• rw_iswriter: Checks whether a writer is holding or waiting for the specified reader-
writer lock.

• rw_read_held: Checks whether the specified reader-writer lock is held by a reader.

• rw_write_held: Checks whether the specified reader-writer lock is held by a writer.

Symbolic Names and Stack Analysis Functions
DTrace includes functions that either record stack traces to the buffer or which can
print symbols and module names for pointers to addresses in user space or kernel
space can be helpful for debugging processes.
The following functions return information about stack and addresses:

• stack: Records a stack trace to the buffer.

• func: Prints the symbol for a specified kernel space address. An alias for sym.

• mod: Prints the module name that corresponds to a specified kernel space
address.

• sym: Prints the symbol for a specified kernel space address. An alias for func.

• ustack: Records a user stack trace to the directed buffer.

• uaddr: Prints the symbol for a specified address.

• ufunc: Prints the symbol for a specified user space address. An alias for usym.

• umod: Prints the module name that corresponds to a specified user space
address.

• usym: Prints the symbol for a specified address. An alias for ufunc.

General System Functions
DTrace includes several functions to obtain information from the system or which are
generalized for different use cases. Functions in this category include:

• getmajor: Returns the major device number for a specified device.

• getminor: Returns the minor device number for a specified device

• inet_ntoa: Returns a dotted, quad decimal string for a pointer to an IPv4 address.

• progenyof: Checks whether a calling process is in the progeny of a specified
process ID.

• rand: Returns a pseudo random integer.

Destructive Functions
DTrace is designed to run code safely. By using destructive functions, you must
explicitly enable them to relax the constraints that protect a system from actions that
are run from DTrace.
Destructive functions can change a process or the entire system in some defined
manner. These include functions such as stopping the current process, raising a
specific signal on the current process or even spawning another system process. You
can only use these functions if the facility to use destructive functions is explicitly
enabled. When using the dtrace utility, you can enable destructive functions by using
the -w command line option.
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If you try to use destructive functions without explicitly enabling them, dtrace fails with a
message similar to the following:

dtrace: failed to enable 'syscall': destructive functions not allowed

These functions must be used with caution, as such functions can affect every process on
the system and any other system, implicitly or explicitly, depending upon the affected
system's network services.

• copyout: Copies the specified size from the specified DTrace buffer to the specified user
space address.

• copyoutstr: Copies a specified string to a specified user space address.

• freopen: Changes the file associated with stdout to a specified file.

• ftruncate: Truncates the output stream on stdout.

• raise: Sends a specified signal to the running process.

• system: Causes a specified program to be run on the system as if within a shell.

Special Functions
DTrace also includes functions that change DTrace behavior such as exiting tracing
altogether or changing DTrace runtime options.

• exit: Stops all tracing and exits to return an exit value.

• setopt: Dynamically sets DTrace compiler or runtime options.

Default Action
The default action applies when DTrace encounters an empty clause for a probe. The default
action is to trace the enabled probe identifier (EPID).

The default action copies trace data from the EPID to the principal buffer. The following
information is returned: CPU, probe ID, probe function, and probe name.

The default action provides the most direct use of the dtrace command. For example,
running the following command enables all the probes in the vmlinux module with the default
action:

sudo dtrace -m vmlinux

Output similar to the following is displayed:

dtrace: description 'vmlinux' matched 35 probes
CPU     ID                    FUNCTION:NAME
  0     42                 __schedule:sleep 
  0     34             dequeue_task:dequeue 
  0     40               __schedule:off-cpu 
  0     23        finish_task_switch:on-cpu 
  0     24             enqueue_task:enqueue 
  0     41               __schedule:preempt 
...
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Unimplemented Functions
Development of DTrace v2 is ongoing. Some functions that were available in the
original port of DTrace aren't implemented at this stage and aren't available for use.

List of Unimplemented Functions

The following functions are unimplemented:

• breakpoint

• chill

• cleanpath

• dpath

• ddi_pathname

• inet_ntoa6

• inet_ntop

• msgdsize

• msgsize

• panic

• pcap

• stop

• trunc

Some of these functions aren't relevant to Linux and might never be implemented.

alloca
Allocates memory and returns a pointer.

void alloca(size_t size)

The alloca function allocates size bytes out of scratch memory, and returns a pointer
to the allocated memory. The returned pointer is guaranteed to have 8–byte alignment.
Scratch memory is only valid during the processing of a clause. Memory that's
allocated with alloca is deallocated when processing of the clause completes. If
insufficient scratch memory is available, no memory is allocated and an error is
generated.

Example 7-1    How to use alloca to assign a string to an allocated memory
region and then to read it out again by using the pointer

BEGIN
{
        x = (string *)alloca(sizeof(string) + 1);
        *x = "abc";
        trace(*x);
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        exit(0);
}

avg
Stores the arithmetic average of the specified expressions in an aggregation.

void avg(expr)

The avg function is an aggregation function to return the arithmetic average for a specified D
expression.

Example 7-2    How to use avg to display the average time that processes spend in the
system write call

The example stores the timestamp for the syscall::write:entry probe fires and then
subtracts this value from the timestamp when the syscall::write:return fires. The average
time is calculated based on the time difference between the two probes and stored in an
aggregation so that it can be updated for each process that runs. When the program exits,
the aggregated average timestamp value is displayed for each process identified by the built-
in variable execname.

syscall::write:entry
{
  self->ts = timestamp;
}

syscall::write:return
/self->ts/
{
  @time[execname] = avg(timestamp - self->ts);
  self->ts = 0;
}

Output similar to the following is displayed when the program exits:

 gnome-session                                                  8260
  udisks-part-id                                                 9279
  gnome-terminal                                                 9378
  lsof                                                          14903
  ip                                                            15075
  date                                                          15371
  ...
  ps                                                            91792
  sestatus                                                      98374
  pstree                                                       102566
  udisks-daemon                                                250405
  gconfd-2                                                   17880523
  cat                                                        59752284
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basename
Returns a string excluding any prefix ending in /.

string basename(const char *str)

The basename function creates a string that consists of a copy of the specified string,
str, but excludes any prefix that ends in /, such as a directory path. The returned string
is allocated out of scratch memory, and is therefore valid only during the processing of
the clause. If insufficient scratch memory is available, basename doesn't run and an
error is generated.

Example 7-3    How to use basename to return the last element of a path in a
string

BEGIN
{
        printf("%s\n", basename("/foo/bar/baz"));
        printf("%s\n", basename("/foo/bar///baz/"));
        printf("%s\n", basename("/foo/bar/baz/"));
        printf("%s\n", basename("/foo/bar/baz//"));
}

Each of these statements renders the output: baz.

bcopy
Copies a specified size in bytes from a specified source address outside of scratch
memory to a destination address inside scratch memory.

void bcopy(void src, void dest, size_t size)

The bcopy function copies size bytes from the memory that's pointed to by src to the
memory that's pointed to by dest. The source memory mustn't be in user space, and
the destination memory must be within DTrace scratch memory.

Example 7-4    How to use bcopy to copy data from one memory location to
another

In this example, the bcopy function is used to copy 14 characters from the
`linux_banner pointer into a separate memory pointer, s, that's allocated 14 bytes of
memory. The printf line prints a string of the value in stored in the pointer, s. The
string that's printed is the same as the first 14 characters stored in `linux_banner.

 BEGIN
 {
         s = (char *)alloca(14);
         bcopy(`linux_banner, &s[0], 13);
         printf("%s\n", stringof(s));
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         exit(0);
 }

clear
Clears the values from an aggregation while retaining aggregation keys.

void clear(@ aggr)

The clear function takes an aggregation as its only parameter. The clear function clears
only the aggregation's values, while the aggregation's keys are retained. If the key is
referenced after the clear function is run, it has a zero value.

Example 7-5    How to use clear to show the system call rate only for the most recent
ten-second period

The clear function is used inside the tick-10sec probe to clear the counter values inside the
@func aggregation.

#pragma D option quiet

BEGIN
{
  last = timestamp;
}

syscall:::entry
{
  @func[execname] = count();
}

tick-10sec
{
  normalize(@func, (timestamp - last) / 1000000000);
  printa(@func);
  clear(@func);
  last = timestamp;
}

commit
Commits the speculative buffer, specified by ID, to the principal buffer.

void commit(int id)

The commit function is a special function that copies data from a speculative buffer, identified
by the provided id, into the principal buffer. If more data exists in the specified speculative
buffer than the available space in the principal buffer, no data is copied and the drop count for
the buffer is incremented.

If the buffer has been speculatively traced on more than one CPU, the speculative data on
the committing CPU is copied immediately, while speculative data on other CPUs is copied
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some time later. Thus, some time might elapse between a commit that begins on one
CPU, while the data is copied from speculative buffers to principal buffers on all CPUs.
This length of time is guaranteed to be no longer than the time dictated by the cleaning
rate.

Further calls to the speculative buffer while a commit is active are handled as follows:

• speculation: the speculative buffer isn't available until each per-CPU speculative
buffer has been copied into the corresponding per-CPU principal buffer.

• speculate, commit, or discard: calls are discarded or fail.

A clause containing a commit can't contain a data recording function. However, a
clause can contain several commit calls to commit disjoint buffers.

Example 7-6    How to use speculation

The following example illustrates how to use speculation. All speculation functions
must be used together for speculation to work correctly.

The speculation is created for the syscall::open:entry probe and the ID for the
speculation is attached to a thread-local variable. The first argument of the open()
system call is traced to the speculation buffer by using the printf function.

Three more clauses are included for the syscall::open:return probe. In the first of
these clauses, the errno is traced to the speculative buffer. The predicate for the
second of the clauses filters for a non-zero errno value and commits the speculation
buffer. The predicate of the third of the clauses filters for a zero errno value and
discards the speculation buffer.

The output of the program is returned for the primary data buffer, so the program
effectively returns the file name and error number when an open() system call fails. If
the call doesn't fail, the information that was traced into the speculation buffer is
discarded.

syscall::open:entry
{
  /*
   * The call to speculation() creates a new speculation. If this 
fails,
   * dtrace will generate an error message indicating the reason for
   * the failed speculation(), but subsequent speculative tracing will 
be
   * silently discarded.
   */
  self->spec = speculation();
  speculate(self->spec);

  /*
   * Because this printf() follows the speculate(), it is being
   * speculatively traced; it will only appear in the primary data 
buffer if the
   * speculation is subsequently committed.
   */
  printf("%s", copyinstr(arg0));
}
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syscall::open:return
/self->spec/
{
  /*
   * Trace the errno value into the speculation buffer.
   */
  speculate(self->spec);
  trace(errno);
}

syscall::open:return
/self->spec && errno != 0/
{
  /*
   * If errno is non-zero, commit the speculation.
   */
  commit(self->spec);
  self->spec = 0;
}

syscall::open:return
/self->spec && errno == 0/
{
  /*
   * If errno is not set, discard the speculation.
   */
  discard(self->spec);
  self->spec = 0;
}

copyin
Copies the specified size from the user address to a DTrace buffer and returns the address of
the buffer.

void copyin(uintptr_t addr, size_t size)

The copyin function copies the specified size in bytes from the specified user address, addr,
into a DTrace scratch buffer and returns the address of this buffer. The user address is
interpreted as an address in the space of the process that's associated with the current
thread. The resulting buffer pointer is guaranteed to have 8-byte alignment. The address in
question must correspond to a faulted-in page in the current process. If the address doesn't
correspond to a faulted-in page, or if insufficient scratch memory is available, NULL is
returned, and an error is generated.

Example 7-7    How to use copyin to copy data from a system write call into the DTrace
buffer

In this example, a probe is set for the entry point on write system calls. A predicate is set to
filter for when the process execname matches the bash application. The copyin function is
used to copy the first argument, arg1, and second argument, arg2, of the write call to a string
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which is printed by printf. This script prints the argument for the system write calls
when somebody uses the bash application.

syscall::write:entry
/execname=="bash"/
{
    printf("%s", stringof(copyin(arg1,arg2)));
}

copyinstr
Copies a null-terminated C string from the specified user address to a DTrace buffer
and returns the address of the buffer.

string copyinstr(uintptr_t addr [, size_t size])

The copyinstr function copies a null-terminated C string from the specified user
address into a DTrace scratch buffer and returns the address of this buffer. The user
address is interpreted as an address in the space of the process that's associated with
the current thread. An optional maximum length parameter sets a limit on the number
of bytes that are examined beyond the address. The resulting string is always null-
terminated and the string's length is limited to the value set by the compiler and
runtime strsize option. As with the copyin function, the specified address must
correspond to a faulted-in page in the current process. If the address doesn't
correspond to a faulted-in page, or if insufficient scratch memory is available, NULL is
returned, and an error is generated.

Example 7-8    How to use copyinstr to copy a string from an address space for a
process to the DTrace buffer

In this example, a probe is set for the entry point on write system calls. A predicate is
set to filter for when the process execname matches the passwd application. The
copyinstr function is used to copy the first argument, arg1, of the write call to a string
which is printed by printf. This script prints the arguments for the system write calls
when somebody uses the passwd application to reset a password.

syscall::write:entry
/execname=="passwd"/
{
    printf("%s", copyinstr(arg1));
}

copyinto
Copies the specified size in bytes from the specified user address into the DTrace
scratch buffer and returns the buffer address.

void copyinto(uintptr_t addr, size_t size, void dest)

The copyinto function copies the specified size in bytes, size, from the specified user
address, addr, into the specified DTrace scratch buffer, dest. The user address is

Chapter 7
copyinstr

7-12



interpreted as an address in the space of the process that's associated with the current
thread. The address in question must correspond to a faulted-in page in the current process.
If the address doesn't correspond to a faulted-in page, or if any of the destination memory lies
outside of scratch memory, no copying takes place and an error is generated.

Example 7-9    How to use copyinto to copy data from a system write call into an
allocated memory buffer

In this example, a probe is set for the entry point on write system calls. A predicate is set to
filter for when the process execname matches the podman application. The copyinto function
is used to copy 32 bytes of the first argument, arg1, of the write call into a pointer to an
allocated memory buffer of 32 bytes, ptr. The script prints the a string representation of ptr
when the podman application makes a system write call.

syscall::write:entry
/execname=="podman"/
{
        ptr = (char *)alloca(32);
        copyinto(arg1, 32, ptr);
        printf("'%s'", stringof(ptr));
}

copyout
Copies the specified size from the specified DTrace buffer to the specified user space
address.

void copyout(void *src, uintptr_t addr, size_t size)

The copyout function is a destrructive function that copies the specified number of bytes from
a specified DTrace buffer to a specified user space address. The user space address is in the
address space of the process that associated with the current thread. If the user space
address doesn't correspond to a valid, faulted-in page in the current address space, an error
is generated.

Example 7-10    How to use copyout to copy data from a DTrace buffer to a specified
user space address

The example shows how to use copyout to write a string value, "DTrace", into the user space
address for a write system call when a user runs the ls command. If you run this script,
whenever anybody runs the ls command on the system, the string "DTrace" replaces the
first 5 bytes returned by the command.

#pragma D option destructive
syscall::write:entry
/execname == "ls"/
{
    copyout("DTrace", arg1, 5);
}
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copyoutstr
Copies a specified string to a specified user space address.

void copyoutstr(char * string, uintptr_t addr, size_t size)

The copyoutstr function is a destructive function that copies the specified string,
string, to a specified address, addr, in the address space of the process associated
with the current thread. A third argument, size, is used to control the length of the
string. If the user space address doesn't correspond to a valid, faulted-in page in the
current address space, an error is generated. Note that the string length is also limited
to the value that's set by the compiler and runtime strsize option. If size exceeds the
value strsize option, then the string length is limited to the value specified by the
strsize option.

Example 7-11    How to use copyoutstr to copy a string to a specified user space
address

In this example, the syscall::newuname:entry and syscall::newuname:return
probes are used. The entry probe is used to populate a user space address with the
first argument used in the entry probe. The return probe writes the string "DTraceHost"
into the address of the first argument. When any process makes the newuname system
call, the hostname part of the call is rewritten.

#pragma D option destructive

syscall::newuname:entry 
{ 
  self->a = arg0; 
}

syscall::newuname:return 
{
 copyoutstr("DtraceHost", self->a+65, 128);
}

When you run this script and then run the uname -a command, output similar to the
following is displayed:

Linux DtraceHost 5.15.0-7.86.6.1.el8uek.x86_64 #2 SMP ... GNU/Linux

count
Stores an incremented count value in an aggregation.

void count()

The count function is an aggregation function that takes no arguments and returns the
value for the number of times that it has been called.
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Example 7-12    How to use count to display the number of write() system calls by
process name

This example uses the syscall::write:entry probe and an aggregation to store the count
value. The aggregation uses the built-in variable, execname, as a key.

syscall::write:entry
{
  @counts[execname] = count();
}

When run, output similar to the following is displayed when the program exits:

dtrace: description 'syscall::write:entry' matched 1 probe
^C
  dirname                                                           1
  dtrace                                                            1
  gnome-panel                                                       1
  ps                                                                1
  basename                                                          2
  gconfd-2                                                          2
  java                                                              2
  bash                                                              9
  cat                                                               9
  gnome-session                                                     9
  Xorg                                                             21
  firefox                                                         149
  gnome-terminal                                                 9421
  ...

denormalize
Removes the normalization that's applied to a specified aggregation.

void denormalize(@ aggr)

The denormalize function removes any normalization that's applied to a specified
aggregation. Normalization doesn't change the underlying data that makes up an
aggregation, so the denormalize function removes the normalization to return the raw data
directly.

Example 7-13    How denormalize is used in a script to present raw data

#pragma D option quiet

BEGIN
{
  start = timestamp;
}

syscall:::entry
{
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  @func[execname] = count();
}

END
{
  this->seconds = (timestamp - start) / 1000000000;
  printf("Ran for %d seconds.\n", this->seconds);
  printf("Per-second rate:\n");
  normalize(@func, this->seconds);
  printa(@func);
  printf("\nRaw counts:\n");
  denormalize(@func);
  printa(@func);
}

dirname
Returns the path up to the last level of a specified string.

string dirname(const char *string)

The dirname function creates a string that consists of all but the last level of the path
name that's specified by a specified string, string. The returned string is allocated out
of scratch memory and is therefore valid only during processing of the clause. If
insufficient scratch memory is available, dirname doesn't run and an error is
generated.

Example 7-14    How to use dirname to return the path up to the last element in a
string

BEGIN
{
        printf("%s\n", dirname("/foo/bar/baz"));
        printf("%s\n", dirname("/foo/bar///baz/"));
        printf("%s\n", dirname("/foo/bar/baz/"));
        printf("%s\n", dirname("/foo/bar/baz//"));
}

Each of these statements renders the output: /foo/bar.

discard
Discards a speculative buffer specified by the provided speculation ID.

void discard(int id)

The discard function causes DTrace to discard a speculative buffer specified by the
provided speculation ID, id.

When a speculative buffer is discarded, its contents are also discarded. If the
speculation has only been active on the CPU calling discard, the buffer is immediately
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available for further calls to speculation. If the speculation has been active on more than
one CPU, the discarded buffer is available for further speculation some time after the call to
discard. The length of time between a discard on one CPU and the buffer being made
available for later speculations is guaranteed to be no longer than the time that's dictated by
the cleaning rate. If, at the time speculation is called, no buffer is available because all
speculative buffers are being discarded or committed, dtrace generates a message similar
to the following:

dtrace: 905 failed speculations (available buffer(s) still busy)

You can reduce the likelihood of all buffers being unavailable by tuning the number of
speculation buffers or the cleaning rate.

Example 7-15    How to use speculation

The following example illustrates how to use speculation. All speculation functions must be
used together for speculation to work correctly.

The speculation is created for the syscall::open:entry probe and the ID for the speculation
is attached to a thread-local variable. The first argument of the open() system call is traced to
the speculation buffer by using the printf function.

Three more clauses are included for the syscall::open:return probe. In the first of these
clauses, the errno is traced to the speculative buffer. The predicate for the second of the
clauses filters for a non-zero errno value and commits the speculation buffer. The predicate
of the third of the clauses filters for a zero errno value and discards the speculation buffer.

The output of the program is returned for the primary data buffer, so the program effectively
returns the file name and error number when an open() system call fails. If the call doesn't
fail, the information that was traced into the speculation buffer is discarded.

syscall::open:entry
{
  /*
   * The call to speculation() creates a new speculation. If this fails,
   * dtrace will generate an error message indicating the reason for
   * the failed speculation(), but subsequent speculative tracing will be
   * silently discarded.
   */
  self->spec = speculation();
  speculate(self->spec);

  /*
   * Because this printf() follows the speculate(), it is being
   * speculatively traced; it will only appear in the primary data buffer if 
the
   * speculation is subsequently committed.
   */
  printf("%s", copyinstr(arg0));
}

syscall::open:return
/self->spec/
{
  /*
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   * Trace the errno value into the speculation buffer.
   */
  speculate(self->spec);
  trace(errno);
}

syscall::open:return
/self->spec && errno != 0/
{
  /*
   * If errno is non-zero, commit the speculation.
   */
  commit(self->spec);
  self->spec = 0;
}

syscall::open:return
/self->spec && errno == 0/
{
  /*
   * If errno is not set, discard the speculation.
   */
  discard(self->spec);
  self->spec = 0;
}

exit
Stops all tracing and exits to return an exit value.

void exit(int status)

The exit function is used to immediately stop tracing and inform DTrace to do the
following: stop tracing, perform any final processing, and call exit() with the specified
status value. Because exit returns a status to user level, it's considered a data
recording function. However, unlike other data recording functions, exit can't be
speculatively traced. Note that because exit is a data recording function, it can be
dropped.

When exit is called, only those DTrace functions that are already in progress on other
CPUs are completed. No new functions occur on any CPU. The only exception to this
rule is the processing of the END probe, which is called after the DTrace has processed
the exit function, and indicates that tracing must stop.

Example 7-16    How to use exit to end all tracing and exit with an exit value

BEGIN
{
  trace("hello, world");
  exit(0);
}
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freopen
Changes the file associated with stdout to a specified file.

void freopen(const char pathname, ...)

The freopen function is typically a data recording function that changes the file that's
associated with stdout to the file that's specified by the arguments in printf fashion.

If the "" string is used, the output is again restored to stdout.

The freopen function isn't only data-recording but also destructive, because you can use it to
overwrite arbitrary files.

Example 7-17    How to use freopen to write to a specified file and log a system call

The script opens with a pragma to enable destructive functions in DTrace. You can
alternatively remove this line and run the script with dtrace -w. The freopen function is
destructive because it writes to a file on the file system and can overwrite existing files. The
example creates a temporary log file to track the process names that make a mkdir system
call while the program is running.

 #pragma D option destructive
 dtrace:::BEGIN
 {
        freopen("/tmp/dlog");
 
 }
 syscall:vmlinux:mkdir:entry
 {
        printf("%Y-> %s \n",walltimestamp,execname);
 }

ftruncate
Truncates the output stream on stdout.

void ftruncate()

The ftruncate function is a data recording function that truncates the output stream on
stdout.

Example 7-18    How to use ftruncate to truncate the stdout output stream, by using a
counter

tick-10ms
{
    printf("%d\n", i++);
}

tick-10ms
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/i == 10/
{
    ftruncate();
}

tick-10ms
/i == 20/
{
    exit(0);
}

When the example script is run using sudo dtrace -o /tmp/result -s /
path/to/script. Standard output is saved to /tmp/result. The program
implements a counter that's triggered every 10 ms and is designed to count up to 20
before exiting. The counter prints to standard output for every count, but when the
counter reaches 10, ftruncate is called to truncate standard output. When the
program exits and you can view the contents of /tmp/result you can see that the
standard output preceding the 11th counter is removed.

func
Prints the symbol for a specified kernel space address. An alias for sym.

_symaddr func(uintptr_t addr)

The func function is a data recording function that prints the symbol that corresponds
to a specified kernel space address, addr. The func function is an alias for sym.

Example 7-19    How the func function can return the symbol for a kernel space
address

This example uses a bash script to pick a test symbol from /proc/kallmodsyms that
can be used as a reference in the DTrace program that returns the symbols for the
module and function.

#!/bin/bash
read ADD <<< $(awk '/ksys_write/ {print $1}' /proc/kallsyms)
dtrace -qn 'BEGIN {func(0x'$ADD'); exit(0)}'

getmajor
Returns the major device number for a specified device.

vmlinux`dev_t getmajor(vmlinux`dev_t))

The getmajor function returns the major device number for a specified device.

Chapter 7
func

7-20



getminor
Returns the minor device number for a specified device

vmlinux`dev_t getminor(vmlinux`dev_t)

The getminor function returns the minor device number for a specified device.

htonl
Converts an unsigned 32-bit long integer from host byte order to network byte order.

uint32_t htonl(uint32_t)

The htonl function converts an unsigned 32-bit long integer from host byte order to network
byte order.

htonll
Converts an unsigned 64-bit long integer from host byte order to network byte order.

uint64_t htonll(uint64_t)

The htonll function converts an unsigned 64-bit long integer from host-byte order to
network-byte order.

htons
Converts a short 16-bit unsigned integer from host byte order to network byte order.

uint16_t htons(uint16_t)

The htons function converts a short 16-bit unsigned integer from host byte order to network
byte order.

index
Finds the first occurrence of a substring within a string.

int index(const char * str, const char * substr [, int start])

The index function finds the position of the first occurrence of a substring, substr, in a string,
str, starting at an optional position, start. If the specified value of the start position is less than
0, it's implicitly set to 0. If the string is empty, index returns 0. If no match is found for the
substring within the string, index returns -1.
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Example 7-20    How to use index to identify the first occurrence of a substring
within a string

BEGIN {
         x = "#canyoufindapenguininthisstring?";
         y = "penguin";
         printf("The penguin appears at character %3d\n", index(x, y));
         exit(0)
}

inet_ntoa
Returns a dotted, quad decimal string for a pointer to an IPv4 address.

string inet_ntoa(void *ptr)

The inet_ntoa function takes a pointer to an IPv4 address, ptr, and returns it as a
dotted, quad decimal string. The returned string is allocated out of scratch memory
and is therefore valid only during processing of the clause. If insufficient scratch
memory is available, inet_ntoa doesn't run and an error is generated. See the
inet(3) manual page for more information.

Example 7-21    How to use inet_ntoa to return dotted IPv4 address notation for a
pointer to an IPv4 address

In the example, an IP address pointer is created in scratch memory and populated so
that the inet_ntoa function can process it and return a string value.

 typedef vmlinux`__be32 ipaddr_t;
 ipaddr_t *ip4a;
 BEGIN
 {
         ip4a = alloca(sizeof(ipaddr_t));
         *ip4a = 0x0100007f;
         printf("%s\n", inet_ntoa(ip4a));
         exit(0);
 }

llquantize
Stores the log-linear frequency distribution in an aggregation.

void llquantize(expr, int32_t factor, int32_t from, int32_t to [, 
int32_t steps [, int32_t incr]])

The llquantize function is an aggregation function used to display a log-linear
frequency distribution for an expression. The logarithmic base, factor, is specified
along with lower, from, and upper, to, exponents and the number of steps, steps, per
order of magnitude. If the number of steps isn't provided, a default value of 1 is used.
An optional integer, incr, can be provided to specify the amount to increment each step
by.
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The log-linear llquantize aggregating function combines the capabilities of both the log and
linear functions. While the quantize function uses base 2 logarithms, with llquantize, you
specify the base, and the minimum and, maximum exponents. Further, each logarithmic
range is subdivided linearly by the number of steps specified and the increment value, if
specified.

Example 7-22    How to use llquantize to visualize system call latencies

The script monitors all system call entry and return calls. The time spent in each call is
calculated using the timestamp for each. An aggregation is used to create a log-linear
quantization with factor of 10 ranging from magnitude 3 to magnitude 5 (inclusive) with 10
steps per magnitude. The output from this script visualizes the latency of system calls in the
microsecond range.

syscall:::entry
{
  self->ts = timestamp;
}

syscall:::return
/ self->ts /
{
  @ = llquantize(timestamp - self->ts, 10, 3, 5, 5);
  self->ts = 0;
}

           value  ------------- Distribution ------------- count    
           -1000 |                                         0        
    abs() < 1000 |@@@@@@@@@@@@@@@                          2888133  
            1000 |@@@@@                                    1017345  
            2000 |@@@@                                     714432   
            4000 |@                                        266057   
            6000 |@                                        118797   
            8000 |                                         84332    
           10000 |@                                        152108   
           20000 |@                                        125154   
           40000 |                                         49334    
           60000 |                                         38374    
           80000 |                                         31739    
          100000 |                                         91033    
          200000 |                                         51153    
          400000 |                                         20343    
          600000 |                                         10685    
          800000 |                                         6970     
      >= 1000000 |@@@@@@@@@@@                              2081856  

lltostr
Converts an unsigned 64-bit integer to a string.

string lltostr(int64_t)
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The lltostr function converts an unsigned 64-bit integer to a string. The returned
string is allocated out of scratch memory and is therefore valid only during processing
of the clause. If insufficient scratch memory is available, lltostr doesn't run and an
error is generated.

Example 7-23    How to use lltostr to convert a 64-bit integer to a string

The example shows that the printf function treats the value as a string. The pragma
option in the script sets the maximum string size to 7 bytes, so the string that's
returned by the lltostr function is truncated to 1234567.

#pragma D option strsize=7

BEGIN
{
    printf("%s\n", lltostr(1234567890));
}

lquantize
Stores the linear frequency distribution of the values of the specified expressions,
sized by the specified range, in an aggregation.

void lquantize(expr, int32_t from, int32_t to [, int32_t step])

The lquantize function is an aggregation function used to display a linear value
distribution. The lquantize function takes four arguments: a D expression, expr, a
lower bound, from, an upper bound, to, and an optional step. Note that the default step
value is 1.

Example 7-24    How to use lquantize to display the distribution of write() calls by
file descriptor

syscall::write:entry
{
  @fds[execname] = lquantize(arg0, 0, 100, 1);
}

Output similar to the following might be displayed after the program exits:

 ...
  gnome-session                                     
           value  ------------- Distribution ------------- count    
              25 |                                         0        
              26 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 9        
              27 |                                         0        

  gnome-terminal                                    
           value  ------------- Distribution ------------- count    
              15 |                                         0        
              16 |@@                                       1        
              17 |                                         0        
              18 |                                         0        
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              19 |                                         0        
              20 |                                         0        
              21 |@@@@@@@@                                 4        
              22 |@@                                       1        
              23 |@@                                       1        
              24 |                                         0        
              25 |                                         0        
              26 |                                         0        
              27 |                                         0        
              28 |                                         0        
              29 |@@@@@@@@@@@@@                            6        
              30 |@@@@@@@@@@@@@                            6        
              31 |                                         0        
 ...

max
Stores the largest value among the specified expressions in an aggregation.

void max(expr)

The max function is an aggregation function to store the largest value for an expression in an
aggregation.

Example 7-25    How to use max to display the maximum time that processes spend in
the system write call

The example stores the timestamp for the syscall::write:entry probe fires and then
subtracts this value from the timestamp when the syscall::write:return fires. The
maximum time is calculated based on the time difference between the two probes and stored
in an aggregation so that it can be updated for each process that runs. When the program
exits, the aggregated maximum timestamp value is displayed for each process identified by
the built-in variable execname.

syscall::write:entry
{
  self->ts = timestamp;
}

syscall::write:return
/self->ts/
{
  @time[execname] = max(timestamp - self->ts);
  self->ts = 0;
}

Output similar to the following is displayed when the program exits:

  ProxyResolution                                                4891
  firewalld                                                      7892
  RDD Process                                                   11028
  Utility Process                                               11344
  gdbus                                                         11474
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  GLXVsyncThread                                                14181
  python3                                                       15286
  Socket Process                                                15294
  rtkit-daemon                                                  16547
  pmdakvm                                                       17089
  NetworkManager                                                18246
  pmdaxfs                                                       19661
  sudo                                                          19917
...

min
Stores the smallest value among the specified expressions in an aggregation.

void min(expr)

The min function is an aggregation function to store the smallest value for an
expression in an aggregation.

Example 7-26    How to use max to display the minimum time that processes
spend in the system write call

The example stores the timestamp for the syscall::write:entry probe fires and then
subtracts this value from the timestamp when the syscall::write:return fires. The
minimum time is calculated based on the time difference between the two probes and
stored in an aggregation so that it can be updated for each process that runs. When
the program exits, the aggregated minimum timestamp value is displayed for each
process identified by the built-in variable execname.

syscall::write:entry
{
  self->ts = timestamp;
}

syscall::write:return
/self->ts/
{
  @time[execname] = min(timestamp - self->ts);
  self->ts = 0;
}

Output similar to the following is displayed when the program exits:

  IPC I/O Parent                                                 1087
  gmain                                                          1091
  libvirt-dbus                                                   1501
  pmcd                                                           1601
  libvirtd                                                       1615
  threaded-ml                                                    1673
  Timer                                                          2130
  NetworkManager                                                 2140
  Socket Thread                                                  2275
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  InputThread                                                    2420
...

mod
Prints the module name that corresponds to a specified kernel space address.

_symaddr mod(uintptr_t addr)

The mod function is a data recording function that prints the name of the module that
corresponds to a specified kernel space address.

Example 7-27    How to use mod to print the module name for a pointer to a specified
kernel space address

This example uses a bash script to pick a test symbol from /proc/kallmodsyms that can be
used as a reference in the DTrace program that returns the symbol for the module. Note that
where a module is effectively empty in /proc/kallmodsyms it's the same as a value of
vmlinux.

#!/bin/bash
read ADD <<< `awk '/ksys_write/ {print $1}' /proc/kallmodsyms`
dtrace -qn 'BEGIN {mod(0x'$ADD'); exit(0) }'

mutex_owned
Checks whether a thread holds the specified kernel mutex.

int mutex_owned(vmlinux`struct mutex *)

The mutex_owned function returns non-zero if the calling thread holds the specified kernel
mutex, or zero otherwise.

Example 7-28    How to use mutex_owned to check whether the calling thread holds a
mutex

fbt::mutex_lock:entry
{
        this->mutex = arg0;
}

fbt::mutex_lock:return
{
        this->owned = mutex_owned((struct mutex *)this->mutex);
}

fbt::mutex_lock:return
/!this->owned/
{
        printf("mutex_owned() returned 0, expected non-zero\n");
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        exit(1);
}

mutex_owner
Returns the thread pointer to the current owner of the specified kernel mutex.

vmlinux`struct task_struct mutex_owner(vmlinux`struct mutex *)

The mutex_owner function returns the thread pointer of the current owner of the
specified adaptive kernel mutex. mutex_owner returns NULL if the specified adaptive
mutex is unowned or if the specified mutex is a spin mutex.

Example 7-29    How to use mutex_owner to check whether the calling thread
doesn't have ownership of a mutex

fbt::mutex_lock:entry
{
        this->mutex = arg0;
}

fbt::mutex_lock:return
{
        this->owner = mutex_owner((struct mutex *)this->mutex);
}

fbt::mutex_lock:return
/this->owner != curthread/
{
        printf("current thread is not current owner of owned lock\n");
        exit(1);
}

mutex_type_adaptive
Returns a non-zero value if a specified kernel mutex is adaptive.

int mutex_type_adaptive(vmlinux`struct mutex *)

The mutex_type_adaptive function returns a non-zero value if a specified kernel
mutex is adaptive. All mutexes in the Oracle Linux kernel are adaptive, so the
mutex_type_adaptive function always returns 1.

Example 7-30    How to use mutex_type_adaptive to check whether a mutex isn't
adaptive

Because all mutexes on Oracle Linux are adaptive, the final clause in this program is
never processed.

fbt::mutex_lock:entry
{
        this->mutex = arg0;
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}

fbt::mutex_lock:return
{
        this->adaptive = mutex_type_adaptive((struct mutex *)this->mutex);
}

fbt::mutex_lock:return
/!this->adaptive/
{
        printf("mutex_type_adaptive returned 0, expected non-zero\n");
        exit(1);
}

mutex_type_spin
Returns a non-zero value if a specified kernel mutex is a spin mutex.

mutex_type_spin(int(vmlinux`struct mutex *))

The mutex_type_spin function returns a non-zero value if a specified kernel mutex is a spin
mutex. All mutexes in the Oracle Linux kernel are adaptive, so the mutex_type_spin function
always returns 0.

Example 7-31    How to use mutex_type_spin to check whether a mutex is a spin mutex

Because all mutexes on Oracle Linux are adaptive, the final clause in this program is never
processed.

fbt::mutex_lock:entry
{
        this->mutex = arg0;
}

fbt::mutex_lock:return
{
        this->spin = mutex_type_spin((struct mutex *)this->mutex);
}

fbt::mutex_lock:return
/this->spin/
{
        printf("mutex_type_spin returned non-zero, expected 0\n");
        exit(1);
}

normalize
Divides an aggregation value by a specified normalization factor.

void normalize(@ aggr, uint64_t)
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The normalize function divides an aggregation value by a normalization factor to
provide a better view of data within an aggregation. The function takes the aggregation
and the normalization factor as arguments. A program used to aggregate data over a
period but that presents the data as a per-second occurrence rather than an absolute
value is a typical example of a use case for this function.

Example 7-32    How to use normalize to show the number of system calls per
second for processes

The normalize function is called against the aggregation. The time is divided to by
1,000,000,000 to convert nanoseconds to seconds.

#pragma D option quiet

BEGIN
{
  start = timestamp;
}

syscall:::entry
{
  @func[execname] = count();
}

END
{
  normalize(@func, (timestamp - start) / 1000000000);
}

ntohl
Converts a 32-bit long integer from network byte order to host byte order.

uint32_t ntohl(uint32_t)

The ntohl function converts a 32-bit long integer from network byte order to host byte
order. See the byteorder(3) manual page for more information.

ntohll
Converts a 64-bit long integer from network byte order to host byte order.

uint64_t ntohll(uint64_t)

The ntohll function converts a 64-bit long integer from network byte order to host byte
order. See the byteorder(3) manual page for more information.
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ntohs
Converts a short 16-bit integer from network byte order to host byte order.

uint16_t ntohs(uint16_t)

The ntohs function converts a short 16-bit integer from network byte order to host byte order.
See the byteorder(3) manual page for more information.

printa
Displays and controls the formatting of an aggregation

void printa([string format,] @aggr )

The printa function is a data recording function that enables you to display and format
aggregations. The function takes an aggregation and optionally a string to specify the output
formatting using printf formatting directives. If no formatting string is specified, printa the
specified aggregation is displayed using the default format. If format is specified, the
aggregation is formatted.

See the printf(1) manual page for more information on formatting directives. Note that
although DTrace's implementation of printf is aligned with the correlating system function,
some differences apply. Notably, you can use the %d formatting directive to represent any
length of an integer. Furthermore, printa also handles the appropriate formatting for each
aggregation.

Example 7-33    How to use printa to print basic formatting for different aggregations

BEGIN
{
        @a = avg(1);
        @b = count();
        @c = lquantize(1, 1, 10);
        printa("@a = %@u\n", @a);
        printa("@b = %@u\n", @b);
        printa("@c = %@d\n", @c);
        exit(0);
}

printf
Displays and controls the formatting of a string.

void printf(string format, ...)

The printf function is a data recording function that traces expressions and enables
elaborate printf-style formatting. The parameters consist of a format string, followed by a
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variable number of arguments. The arguments are traced to the directed buffer and
are later formatted for output by the dtrace command, according to the specified
format string.

See the printf(1) manual page for more information on formatting directives. Note
that although DTrace's implementation of printf is aligned with the correlating system
function, some differences apply. Notably, you can use the %d formatting directive to
represent any length of an integer.

Example 7-34    How to use printf to print a formatted string

BEGIN {
   printf("execname is %s; priority is %d", execname, curlwpsinfo-
>pr_pri);
}

progenyof
Checks whether a calling process is in the progeny of a specified process ID.

int progenyof(pid_t)

The progenyof function returns non-zero if the calling process is among the progeny of
the specified process ID. The calling process is the process associated with the thread
that triggers the matched probe.

Example 7-35    How to use progenyof to limit a clause to list the write system
calls for all child processes of a specified process ID

syscall::write:entry 
/progenyof($1)/ 
{ 
   @[pid,execname,probefunc]=count()
}

This script could be run as follows, to monitor all the system calls that are triggered by
a running instance of an application, such as the gnome-terminal-server:

sudo dtrace -n 'syscall::write:entry /progenyof($1)/
{@[pid,execname,probefunc]=count()}' $(pidof gnome-terminal-server)

quantize
Stores a power-of-two frequency distribution of the values of the specified expressions
in an aggregation. An optional increment can be specified.

void quantize(expr [, uint32_t incr])

The quantize function is an aggregation function to distribution of information in a
histogram for an expression, expr. An optional integer value, incr, can be specified to
determine the amount that the values are incremented by to weight the output. This
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function makes it easier to see a graphical representation of the values returned by an
expression.

The rows for the frequency distribution are always power-of-two values. Each row indicates a
count of the number of elements that are greater than or equal to the corresponding value,
but less than the next larger row's value.

Example 7-36    How to use quantize to display the distribution of write() call times by
process

syscall::write:entry
{
  self->ts = timestamp;
}

syscall::write:return
/self->ts/
{
  @time[execname] = quantize(timestamp - self->ts);
  self->ts = 0;
}

Output similar to the following is displayed after the program exits:

  bash                                              
           value  ------------- Distribution ------------- count    
            8192 |                                         0        
           16384 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@         4        
           32768 |                                         0        
           65536 |                                         0        
          131072 |@@@@@@@@                                 1        
          262144 |                                         0        

  gnome-terminal                                    
           value  ------------- Distribution ------------- count    
            4096 |                                         0        
            8192 |@@@@@@@@@@@@@                            5        
           16384 |@@@@@@@@@@@@@                            5        
           32768 |@@@@@@@@@@@                              4        
           65536 |@@@                                      1        
          131072 |                                         0        

  Xorg                                              
           value  ------------- Distribution ------------- count    
            2048 |                                         0        
            4096 |@@@@@@@                                  4        
            8192 |@@@@@@@@@@@@@                            8        
           16384 |@@@@@@@@@@@@                             7        
           32768 |@@@                                      2        
           65536 |@@                                       1        
          131072 |                                         0        
          262144 |                                         0        
          524288 |                                         0        
         1048576 |                                         0        
         2097152 |@@@                                      2        

Chapter 7
quantize

7-33



         4194304 |                                         0        

  firefox                                           
           value  ------------- Distribution ------------- count    
            2048 |                                         0        
            4096 |@@@                                      22       
            8192 |@@@@@@@@@@@                              90       
           16384 |@@@@@@@@@@@@@                            107      
           32768 |@@@@@@@@@                                72       
           65536 |@@@                                      28       
          131072 |                                         3        
          262144 |                                         0        
          524288 |                                         1        
         1048576 |                                         1        
         2097152 |                                         0
...

raise
Sends a specified signal to the running process.

void raise(int)

The raise function is a destructive function that sends the specified signal to the
currently running process. This function is similar to using the kill command to send
a signal to the process. The raise function can be used to send a signal at a precise
point in the runtime of the process.

See the sigaction(2) and kill(1) manual pages for more information on how
process signals work.

Example 7-37    How to use raise to stop a running process

The script opens with a pragma to enable destructive functions in DTrace. You can
alternatively remove this line and run the script with dtrace -w. The predicate for this
script evaluates the process id against a provided argument. The clause includes the
raise function with a SIGINT signal that stops the process immediately.

#pragma D option destructive
syscall::: 
/pid==$1/
{ 
   raise(SIGINT); 
   exit(0) 
}

You must provide the process ID that you intend to stop for this script to function
correctly. An example test run might be as follows:

xclock & sudo dtrace -wn 'syscall::: /pid==$1/{ raise(SIGINT); 
exit(0) }' $(pidof xclock)
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rand
Returns a pseudo random integer.

int rand(void)

The rand function returns a pseudo random integer. The value returned is a weak pseudo
random number and Oracle doesn't recommend using it for any cryptographic application.

Example 7-38    How to use rand to generate a pseudo random integer

The example uses the trace function to print the generated integer in the trace output.

BEGIN{ 
   trace(rand()); 
}

rindex
Finds the last occurrence of a specific substring within a string.

int rindex(const char * str, const char * substr[, int start])

The rindex function finds the position of the last occurrence of a substring, substr, in a string,
str, starting at an optional position, start. If the specified value of start position is less than 0, it
is implicitly set to 0. If the string is an empty string, rindex returns 0. If no match is found for
the substring within the string, rindex returns -1.

Example 7-39    How to use rindex to identify the last occurrence of a substring within
a string

BEGIN {
         x = "#findthelastpenguininthepenguinstring!";
         y = "penguin";
         printf("The last penguin appears at character %3d\n", rindex(x, y));
         exit(0)
 }

rw_iswriter
Checks whether a writer is holding or waiting for the specified reader-writer lock.

int rw_iswriter(vmlinux`rwlock_t *rwlock)

The rw_iswriter function returns non-zero if a writer is holding or waiting for the specified
reader-writer lock (rwlock). If the lock is held only by readers and no writer is blocked, or if the
lock isn't held at all, rw_iswriter returns zero.
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Example 7-40    How to use rw_iswriter to check whether a writer is holding or
waiting for a specified reader-writer lock

The example contains two clauses. The first clause triggers for when the
_raw_write_lock is entered, and uses rw_iswriter function to print whether a lock is
held. At this stage, no lock is held, so the output returns 0. When the _raw_write_lock
returns, a lock is held and the rw_iswriter function returns 1 and exits.

fbt:vmlinux:_raw_write_lock:entry
{
         self->wlock = (rwlock_t *)arg0;
         printf("write entry  %x\n", 0 != rw_iswriter(self->wlock));
}
 
fbt:vmlinux:_raw_write_lock:return
/self->wlock/
{
         printf("write return %x\n", 0 != rw_iswriter(self->wlock));
         exit(0)
}

rw_read_held
Checks whether the specified reader-writer lock is held by a reader.

int rw_read_held(vmlinux`rwlock_t *rwlock)

The rw_read_held function returns non-zero if the specified reader-writer lock (rwlock)
is held by a reader. If the lock is held only by writers or isn't held at all, rw_read_held
returns zero.

Example 7-41    How to use rw_iswriter to check whether a writer is holding or
waiting for a specified reader-writer lock

The example includes two clauses. The first clause triggers for when the
_raw_read_lock is entered, and uses rw_read_held function to print whether a lock is
held. At this stage, no lock is held, so the output returns 0. When the _raw_read_lock
returns, a lock is held and the rw_read_held function returns 1.

 fbt:vmlinux:_raw_read_lock:entry
 {
         self->rlock = (rwlock_t *)arg0;
         printf("read  entry  %x\n", 0 != rw_read_held(self->rlock));
 }
 
 fbt:vmlinux:_raw_read_lock:return
 /self->rlock/
 {
         printf("read  return %x\n", 0 != rw_read_held(self->rlock));
         exit(0);
 }
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rw_write_held
Checks whether the specified reader-writer lock is held by a writer.

int rw_write_held(vmlinux`rwlock_t *rwlock)

The rw_write_held function returns non-zero if the specified reader-writer lock (rwlock) is
held by a writer. If the lock is held only by readers or isn't held at all, rw_write_held returns
zero.

Example 7-42    How to use rw_write_held to check whether a writer is holding a
specified reader-writer lock

The example uses two clauses. The first clause triggers for when the _raw_write_lock is
entered, and uses rw_write_held function to print whether a write lock is held. At this stage,
no lock is held, so the output returns 0. When the _raw_write_lock returns, a lock is held
and the rw_write_held function returns 1 and the script exits.

 fbt:vmlinux:_raw_write_lock:entry
 {
         self->wlock = (rwlock_t *)arg0;
         printf("write entry  %x\n", 0 != rw_write_held(self->wlock));
 }
 
 fbt:vmlinux:_raw_write_lock:return
 /self->wlock/
 {
         printf("write return %x\n", 0 != rw_write_held(self->wlock));
         exit(0)
 }

setopt
Dynamically sets DTrace compiler or runtime options.

void setopt(const char *[, const char *])

The setopt function is a special function that can be used to specify a DTrace runtime or
compiler option dynamically. See DTrace Runtime and Compile-time Options Reference for
more information.

Example 7-43    How to use setopt to set compiler or runtime options inside a program

setopt("quiet");
setopt("bufsize", "50m");
setopt("aggrate", "2hz");
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speculate
A special function that causes DTrace to switch to using a speculation buffer identified
by the specified ID for the remainder of a clause.

void speculate(int)

The speculate function is a special function that causes DTrace to use a speculative
buffer specified by the provided id for the remainder of a clause.

To use a speculation, an identifier that's returned from speculation must be passed to
the speculate function in a clause before any data-recording functions. All subsequent
data-recording functions in a clause containing a speculate are speculatively traced.
The D compiler generates a compile-time error if a call to speculate follows data-
recording functions in a D probe clause. Therefore, clauses might contain speculative
tracing or non-speculative tracing requests, but not both.

Aggregating functions, destructive functions, and the exit function can never be
speculative. Any attempt to take one of these functions in a clause containing a
speculate results in a compile-time error. Also, a speculate can't follow a speculate.
Only one speculation is permitted per clause. A clause that contains only a speculate
speculatively traces the default function, which is defined to trace only the enabled
probe ID.

Example 7-44    How to use speculation

The following example illustrates how to use speculation. All speculation functions
must be used together for speculation to work correctly.

The speculation is created for the syscall::open:entry probe and the ID for the
speculation is attached to a thread-local variable. The first argument of the open()
system call is traced to the speculation buffer by using the printf function.

Three more clauses are included for the syscall::open:return probe. In the first of
these clauses, the errno is traced to the speculative buffer. The predicate for the
second of the clauses filters for a non-zero errno value and commits the speculation
buffer. The predicate of the third of the clauses filters for a zero errno value and
discards the speculation buffer.

The output of the program is returned for the primary data buffer, so the program
effectively returns the file name and error number when an open() system call fails. If
the call doesn't fail, the information that was traced into the speculation buffer is
discarded.

syscall::open:entry
{
  /*
   * The call to speculation() creates a new speculation. If this 
fails,
   * dtrace will generate an error message indicating the reason for
   * the failed speculation(), but subsequent speculative tracing will 
be
   * silently discarded.
   */
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  self->spec = speculation();
  speculate(self->spec);

  /*
   * Because this printf() follows the speculate(), it is being
   * speculatively traced; it will only appear in the primary data buffer if 
the
   * speculation is subsequently committed.
   */
  printf("%s", copyinstr(arg0));
}

syscall::open:return
/self->spec/
{
  /*
   * Trace the errno value into the speculation buffer.
   */
  speculate(self->spec);
  trace(errno);
}

syscall::open:return
/self->spec && errno != 0/
{
  /*
   * If errno is non-zero, commit the speculation.
   */
  commit(self->spec);
  self->spec = 0;
}

syscall::open:return
/self->spec && errno == 0/
{
  /*
   * If errno is not set, discard the speculation.
   */
  discard(self->spec);
  self->spec = 0;
}

speculation
Creates a speculative trace buffer and returns its ID.

int speculation(void)

The speculation function reserves a speculative trace buffer for use with speculate and
returns an identifier for this buffer.
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Example 7-45    How to use speculation

The following example illustrates how to use speculation. All speculation functions
must be used together for speculation to work correctly.

The speculation is created for the syscall::open:entry probe and the ID for the
speculation is attached to a thread-local variable. The first argument of the open()
system call is traced to the speculation buffer by using the printf function.

Three more clauses are included for the syscall::open:return probe. In the first of
these clauses, the errno is traced to the speculative buffer. The predicate for the
second of the clauses filters for a non-zero errno value and commits the speculation
buffer. The predicate of the third of the clauses filters for a zero errno value and
discards the speculation buffer.

The output of the program is returned for the primary data buffer, so the program
effectively returns the file name and error number when an open() system call fails. If
the call doesn't fail, the information that was traced into the speculation buffer is
discarded.

syscall::open:entry
{
  /*
   * The call to speculation() creates a new speculation. If this 
fails,
   * dtrace will generate an error message indicating the reason for
   * the failed speculation(), but subsequent speculative tracing will 
be
   * silently discarded.
   */
  self->spec = speculation();
  speculate(self->spec);

  /*
   * Because this printf() follows the speculate(), it is being
   * speculatively traced; it will only appear in the primary data 
buffer if the
   * speculation is subsequently committed.
   */
  printf("%s", copyinstr(arg0));
}

syscall::open:return
/self->spec/
{
  /*
   * Trace the errno value into the speculation buffer.
   */
  speculate(self->spec);
  trace(errno);
}

syscall::open:return
/self->spec && errno != 0/
{
  /*

Chapter 7
speculation

7-40



   * If errno is non-zero, commit the speculation.
   */
  commit(self->spec);
  self->spec = 0;
}

syscall::open:return
/self->spec && errno == 0/
{
  /*
   * If errno is not set, discard the speculation.
   */
  discard(self->spec);
  self->spec = 0;
}

stack
Records a stack trace to the buffer.

stack stack([uint32_t frames])

The stack function records a kernel stack trace to the directed buffer. The function includes
an option to specify the number of frames deep to record from the kernel stack. If no value is
specified, the number of stack frames recorded is the number that's specified by the
stackframes runtime option. The dtrace command reports frames, either up to the root
frame or until the specified limit has been reached, whichever comes first.

The stack function, having a non-void return value, can also be used as the key to an
aggregation.

Example 7-46    How to use stack to obtain a kernel stack trace for a particular probe

fbt::ksys_write:entry
{
        stack();
        exit(0);
}

stddev
Stores the standard deviation of the specified expressions in an aggregation.

void stddev(expr)

The stddev function is an aggregation function that returns the standard deviation for an
expression.

The standard deviation is imprecisely approximated as √((Σ(x2)/N)-(Σx/N)2). This value is
sufficient for most DTrace purposes.

Chapter 7
stack

7-41



Example 7-47    How to use stddev to display the standard deviation of time
taken to run processes

The example stores the timestamp for the syscall::execve:entry probe fires and
then subtracts this value from the timestamp when the syscall::execve:return fires.
The standard deviation is calculated based on the time difference between the two
probes and stored in an aggregation so that it can be updated for each process that
runs. When the program exits, the aggregated standard deviation value is displayed.

syscall::execve:entry
{
 self->ts = timestamp;
}

syscall::execve:return
/ self->ts /
{
  t = timestamp - self->ts;
  @execsd[execname] = stddev(t);
  self->ts = 0;
}

END
{
  printf("\nSTDDEV:");
  printa(@execsd);
}

Output similar to the following is displayed when the program exits:

STDDEV:
  head                                                              0
  lsb_release                                                       0
  mkdir                                                             0
  pidof                                                             0
  pkla-check-auth                                                   0
  tr                                                                0
  uname                                                             0
  getopt                                                         5646
  basename                                                       7061
  sed                                                            7236

strchr
Returns a substring that begins at the first matching occurrence of a specified
character in a string.

string strchr(const char *string, char char)

The strchr function returns a substring that matches the first occurrence of a specified
character, char, in the specified string, string. If no match is found, strstr returns 0.
Note that this function doesn't work with wide characters or multibyte characters.
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The returned string is allocated out of scratch memory and is therefore valid only during
processing of the clause. If insufficient scratch memory is available, strchr doesn't run and
an error is generated.

Example 7-48    How to use strchr to return a string starting at the first occurrence of a
character

 BEGIN
 {
         str = "fooeyfooeyfoo";
         c = 'y';
         # the following line prints "yfooeyfoo"
         printf("\"%s\"\n", strchr(str, c));
         exit(0)
 }

strjoin
Concatenates two specified strings and returns the resulting string.

string strjoin(const char *string1, const char *string2)

The strjoin function returns the concatenation of two specified strings. The returned string is
allocated out of scratch memory and is therefore valid only during processing of the clause. If
insufficient scratch memory is available, strjoin doesn't run and an error is generated.

Example 7-49    How to use strjoin to concatenate two strings together

BEGIN {
     string1="foo";
     string2="bar";
     printf("%s",strjoin(string1,string2));
     exit(0);
 }

strlen
Returns the length of a string in bytes.

size_t strlen(const char *string)

The strlen function returns the length of a specified string in bytes, excluding the terminating
null byte.

Example 7-50    How to use strlen to return the length of a string

BEGIN {
     string1="foo bar?";
     printf("%d",strlen(string1));
     exit(0);
 }
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strrchr
Returns a substring that begins at the last matching occurrence of a specified
character in a string.

string strrchr(const char *, char)

The strrchr function returns a substring that begins at the last occurrence of a
matching character in a specified string. If no match is found, strrchr returns 0. This
function doesn't work with wide characters or multibyte characters.

The returned string is allocated out of scratch memory and is therefore valid only
during processing of the clause. If insufficient scratch memory is available, strrchr
doesn't run and an error is generated.

Example 7-51    How to use strrchr to return the pointer to the last occurrence of
a character

BEGIN
{
        str = "fooeyfooeyfoo";
        c = 'y';
        # the following line prints "yfoo"
        printf("\"%s\"\n", strrchr(str, c));
        exit(0)
}

strstr
Returns a substring starting at first occurrence of a specified substring within a string.

string strstr(const char *string, const char *substring)

The strstr function returns a substring starting at the first occurrence of a specified
substring in the specified string. If the specified string is empty, strstr returns an
empty string. If no match is found, strstr returns 0.

Example 7-52    How to use strstr to return a substring starting at the first
occurrence of a substring in a string

 BEGIN {
     string1="foo bar?";
     substring=" ba";
     # the following line prints " bar?"
     printf("%s",strstr(string1,substring));
     exit(0);
 }
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strtok
Parse a string into a sequence of tokens using a specified delimiter.

string strtok(const char *string, const char *delimiter)

The strtok function parses a string into a sequence of tokens by using a specified delimiter
as the delimiting string . When you initially call strtok, specify the string to be parsed. In
each following call to obtain the next token, specify the string as NULL. You can specify a
different delimiter for each call. The internal pointer that strtok uses to traverse the string is
only valid within more than one enabling of the same probe. The strtok function returns
NULL if no more tokens are found.

Example 7-53    How to use strtok to break a comma delimited string into tokens.

In this example, strtok is used to break a comma delimited string into tokens. Because
DTrace doesn't include flow-control structures similar to while loops, you must use predicates
to emulate this functionality to step through each token. The example, shows how to walk
through the first two tokens generated by the string. Each predicate gets the next token and
checks that it's not a NULL value, which would represent the end of the string.

BEGIN
 {
     this->str = "Carrots,Barley,Oatmeal,Corn,Beans";
 }
 
 BEGIN
 /(this->field = strtok(this->str, ",")) == NULL/
 {
         exit(1);
 }
 
 BEGIN
 {
         printf("First token: %s\n", this->field);
 }
 
 BEGIN
 /(this->field = strtok(NULL, ",")) == NULL/
 {
         exit(2);
 }
 
 BEGIN
 {
         printf("Second token: %s\n", this->field);
         exit(0)
 }
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substr
Returns the substring from a string at a specified index position.

string substr(const char * string, int index[, int length])

The substr function returns the substring of a string, string, starting at the specified
index position, index. An optional length parameter, length, can be specified to limit the
substring to a specified length.

Example 7-54    How to use substr to return a substring from a specified index

In the example, the length of the substring returned is limited to 4 characters.

 BEGIN {
     string1="daddyorchips";
     trace(substr(string1,7,4))
     exit(0)
 }

sum
Stores the total value of the specified expression in an aggregation.

void sum(expr)

The sum function is an aggregation function to used to obtain the total value of a
specified expression, expr.

Example 7-55    How to use sum to aggregate a value over a period

This example increments a variable, i, by 100 every 10 ms until i has a value of 1000.
An aggregation is used to calculate the sum of values of i. This is equal to the
expression: 0+100+200+300+400+500+600+700+800+900=4500.

BEGIN
{
        i = 0;
}

tick-10ms
/i < 1000/
{
        @a = sum(i);
        i += 100;
}

tick-10ms
/i == 1000/
{
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        exit(0);
}

sym
Prints the symbol for a specified kernel space address. An alias for func.

_symaddr sym(uintptr_t addr)

The sym function is a data recording function that prints the symbol that corresponds to a
specified kernel space address, addr. The sym function is an alias for func.

Example 7-56    How the sym function can return the symbol for a kernel space
address

This example uses a bash script to pick a test symbol from /proc/kallmodsyms that can be
used as a reference in the DTrace program that returns the symbol for the function.

#!/bin/bash
read ADD <<< `awk '/ksys_write/ {print $1}' /proc/kallmodsyms`
dtrace -qn 'BEGIN {sym(0x'$ADD'); exit(0) }'

system
Causes a specified program to be run on the system as if within a shell.

void system(const char command)

The system function is a destructive function that causes the specified program to be run as
though provided to the shell as input. The program string can contain any of the printf or
printa format conversions. Arguments that match the format conversions must be specified.

Note that a command specified for the system function doesn't run in the context of the firing
probe. Rather, it occurs when the buffer containing the details of the system function are
processed at user level.

Example 7-57    How to use system to run the system date command after every
second

Note that the pragma lines include the destructive option to permit DTrace to run destructive
functions for this example.

#pragma D option destructive
#pragma D option quiet

tick-1sec
{
system("date")
}
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trace
Traces the result of an expression to the directed buffer.

void trace(expr)

The trace function is the most fundamental DTrace function. This function takes a D
expression as its argument and then traces the result to the directed buffer.

If the trace function is used on a buffer, the output format depends on the data type. If
the data is 1, 2, 4, or 8 bytes in size, the result is formatted as a decimal integer value.
If the data is any other size, and is a sequence of printable characters if interpreted as
a sequence of bytes, it's printed as an ASCII string and ends with a null character (0).
If the data is any other size, and isn't a sequence of printable characters, it's printed as
a series of byte values that's formatted as hexadecimal integers.

You can force the trace function to always use the binary format by specifying the
rawbytes dynamic runtime option.

Example 7-58    How to use trace to display a variety of different outputs

The example shows the trace function being used to return output for a built-in
variable, an expression, and a string value.

BEGIN
{
trace(execname);
trace(timestamp / 1000);
trace("somehow managed to get here");
}

tracemem
Copies the specified number of bytes of data from an address in memory to the
current buffer.

void tracemem(addr, size_t bytes[, size_t limit])

The tracemem function copies a specified number of bytes of data, bytes, from an
address in memory, addr, to the current buffer. The address that the data is copied
from is specified as a D expression. An optional third argument, limit, can be used to
limit the size of the data that's copied to the buffer. The limit can be a variable amount,
but it must be less than or equal to the size of the memory data that you specified to
copy from memory, or it's ignored.

Limiting the data that's copied to the buffer is useful when the data that you are
copying has a known upper bound, but the actual number of bytes can vary. DTrace
statically reserves bytes in the output buffer at compile time. You can reserve a larger
amount of memory in the output buffer at run time by setting the number of bytes, but
dynamically control the amount of memory used by specifying a dynamic limit.
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Example 7-59    How to use tracemem to trace 256 bytes from an address in memory
for the current thread

The example creates a pointer to the current thread by using the built-in variable curthread.

BEGIN {
     p = curthread;
     tracemem(p, 256);
     exit(0);
 }

uaddr
Prints the symbol for a specified address.

_usymaddr uaddr(uintptr_t)

The uaddr function prints the symbol for a specified address, including hexadecimal offset,
which enables the same symbol resolution that ustack provides.

Example 7-60    How to use uaddr to obtain the symbol for an address

uaddropenatdateucaller

sudo dtrace -n syscall::openat:entry'/pid == $target/{usym(ucaller);}' -c 
'date'

Generates output similar to the following:

CPU     ID                    FUNCTION:NAME
  5 147861                     openat:entry   
libc.so.6`_nl_find_locale                         
  5 147861                     openat:entry   
0x0                                               
Mon 20 Feb 18:11:30 GMT 2023

ufunc
Prints the symbol for a specified user space address. An alias for usym.

_usymaddr ufunc(uintptr_t)

The ufunc function is a data recording function that prints the symbol that corresponds to a
specified user space address. The func function is an alias for usym.

Example 7-61    How to use usym to obtain the symbol for an address

usymopenatdateucaller

sudo dtrace -n syscall::openat:entry'/pid == $target/{usym(ucaller);}' -c 
'date'
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Generates output similar to the following:

CPU     ID                    FUNCTION:NAME
  2 147861                     openat:entry   
libc.so.6`_nl_find_locale                         
Mon 20 Feb 18:12:58 GMT 2023
  2 147861                     openat:entry   0x0 

umod
Prints the module name that corresponds to a specified user space address.

_usymaddr umod(uintptr_t)

The umod function is a data recording function that prints the name of the module that
corresponds to a specified user space address.

Example 7-62    How to use umod to print the module name for an address

The example shows how to use umod to print the module names for openat system
calls by the date command.

sudo dtrace -qn syscall::openat:entry'/pid == $target/
{umod(ucaller);}' -c 'date'

Generates output similar to the following:

CPU     ID                    FUNCTION:NAME
  7 147861                     openat:entry   
libc.so.6                                         
  7 147861                     openat:entry   
0x0                                               
Mon 20 Feb 18:07:43 GMT 2023

ustack
Records a user stack trace to the directed buffer.

stack ustack([uint32_t nframes, uint32_t strsize])

The ustack function records a user stack trace to the directed buffer. The user stack
is, at most, nframes in depth. If nframes isn't specified, the number of stack frames
recorded is the number specified by the ustackframes option. While ustack can
determine the address of the calling frames when the probe fires, the stack frames
aren't translated into symbols until the ustack function is processed at user level by
the DTrace utility. If strsize is specified and is non-zero, ustack allocates the specified
amount of string space and then uses it to perform address-to-symbol translation
directly from the kernel. Such direct user symbol translation is used only with
stacktrace helpers that support this usage with DTrace. If such frames can't be
translated, the frames appear only as hexadecimal addresses.
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The ustack symbol translation occurs after the stack data is recorded. Therefore, the
corresponding user process might exit before symbol translation can be performed, making
stack frame translation impossible. If the user process exits before symbol translation is
performed, dtrace outputs a warning message, followed by the hexadecimal stack frames.

Example 7-63    How to use ustack to trace a stack with no address-to-symbol
translation

The example shows how to use ustack to trace the stack for an openat system call by the
date command.

sudo dtrace -qn syscall::openat:entry'/pid == $target/{ustack();}' -c 'date'

Generates output similar to the following:

CPU     ID                    FUNCTION:NAME
  2 147861                     openat:entry 
              libc.so.6`__open64_nocancel+0x45
Mon 20 Feb 17:38:15 GMT 2023
              libc.so.6`_nl_find_locale+0xfc
              libc.so.6`setlocale+0x1cf
              date`0x556ebae140ad
              0x7a696c616d726f6e

  2 147861                     openat:entry 
              0x7f6d63fc2e65

usym
Prints the symbol for a specified address. An alias for ufunc.

_usymaddr usym(uintptr_t)

The usym function prints the symbol for a specified address, which is analogous to how uaddr
works, but without the hexadecimal offsets. The usym function is an alias for ufunc.

Example 7-64    How to use usym to obtain the symbol for an address

usymopenatdateucaller

sudo dtrace -n syscall::openat:entry'/pid == $target/{usym(ucaller);}' -c 
'date'

Generates output similar to the following:

CPU     ID                    FUNCTION:NAME
  2 147861                     openat:entry   
libc.so.6`_nl_find_locale                         
Mon 20 Feb 18:12:58 GMT 2023
  2 147861                     openat:entry   0x0 
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8
DTrace Provider Reference

DTrace exposes different providers that publish probes that are grouped together for
particular instrumentation or functionality.

DTrace Provider
The dtrace provider includes several probes that are specific to DTrace itself.

Use these probes to initialize state before tracing begins, process state after tracing has
completed, and to handle unexpected execution errors in other probes.

BEGIN Probe
The BEGIN probe fires before any other probe.

No other probe fires until all BEGIN clauses have completed. This probe can be used to
initialize any state that's needed in other probes. The following example shows how to use
the BEGIN probe to initialize an associative array to map between mmap() protection bits and a
textual representation:

dtrace:::BEGIN
{
  prot[0] = "---";
  prot[1] = "r--";
  prot[2] = "-w-";
  prot[3] = "rw-";
  prot[4] = "--x";
  prot[5] = "r-x";
  prot[6] = "-wx";
  prot[7] = "rwx";
}

syscall::mmap:entry
{
  printf("mmap with prot = %s", prot[arg2 & 0x7]);
}

The BEGIN probe fires in an unspecified context, which means the output of stack or ustack,
and the value of context-specific variables such as execname, are all arbitrary. These values
should not be relied upon or interpreted to infer any meaningful information. No arguments
are defined for the BEGIN probe.

END Probe
The END probe fires after all other probes.
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This probe doesn't fire until all other probe clauses have completed. This probe can be
used to process state that has been gathered or to format the output. The printa
function is therefore often used in the END probe. The BEGIN and END probes can be
used together to measure the total time that's spent tracing, for example:

dtrace:::BEGIN
{
  start = timestamp;
}

/*
 * ... other tracing functions...
 */

dtrace:::END
{
  printf("total time: %d secs", (timestamp - start) / 1000000000);
}

As with the BEGIN probe, no arguments are defined for the END probe. The context in
which the END probe fires is arbitrary and can't be depended upon.

Note:

The exit function causes tracing to stop and the END probe to fire. However, a
delay exists between the invocation of the exit function and when the END
probe fires. During this delay, no further probes can fire. After a probe
invokes the exit function, the END probe isn't fired until DTrace determines
that exit has been called and stops tracing. The rate at which the exit status
is checked can be set by using statusrate option.

ERROR Probe
The ERROR probe fires when a runtime error occurs during the processing of a clause
for a DTrace probe.

When a runtime error occurs, DTrace doesn't process the rest of the clause that
resulted in the error. If an ERROR probe is included in the script, it's triggered
immediately. After the ERROR probe is processed, tracing continues. If you want a D
runtime error to stop all further tracing, you must include an exit() action in the clause
for the ERROR probe.

In the following example, a clause attempts to dereference a NULL pointer and causes
the ERROR probe to fire. Save it in a file named error.d:

dtrace:::BEGIN
{
  *(char *)NULL;
}
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dtrace:::ERROR
{
  printf("Hit an error!");
}

When you run this program, output similar to the following is displayed:

dtrace: script 'error.d' matched 2 probes
dtrace: error on enabled probe ID 3 (ID 1: dtrace:::BEGIN): invalid address 
(0x0) in action #1 at BPF pc 142
CPU     ID                    FUNCTION:NAME
  0      3                           :ERROR Hit an error!

The output indicates that the ERROR probe fired and that dtrace reported the error. dtrace
has its own enabling of the ERROR probe so that it can report errors. Using the ERROR probe,
you can create custom error handling.

The arguments to the ERROR probe are described in the following table.

Argument Description

arg1 The enabled probe identifier (EPID) of the
probe that caused the error.

arg2 The index of the action that caused the fault.

arg3 The DIF offset into the action or -1 if not
applicable.

arg4 The fault type.

arg5 Value that's particular to the fault type.

The following table describes the various fault types that can be specified in arg4 and the
values that arg5 can take for each fault type.

arg4 Value Description arg5 Meaning

DTRACEFLT_UNKNOWN Unknown fault type None

DTRACEFLT_BADADDR Access to unmapped or invalid
address

Address accessed

DTRACEFLT_BADALIGN Unaligned memory access Address accessed

DTRACEFLT_ILLOP Illegal or invalid operation None

DTRACEFLT_DIVZERO Integer divide by zero None

DTRACEFLT_NOSCRATCH Insufficient scratch memory to
satisfy scratch allocation

None

DTRACEFLT_KPRIV Attempt to access a kernel
address or property without
sufficient privileges

Address accessed or 0 if not
applicable

DTRACEFLT_UPRIV Attempt to access a user
address or property without
sufficient privileges

Address accessed or 0 if not
applicable

DTRACEFLT_TUPOFLOW DTrace internal parameter
tuple stack overflow

None
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arg4 Value Description arg5 Meaning

DTRACEFLT_BADSTACK Invalid user process stack Address of invalid stack
pointer

DTRACEFLT_BADSIZE Invalid size fault that appears
when an invalid size is passed
to a function such as
alloca(), bcopy() or
copyin().

The invalid size.

DTRACEFLT_BADINDEX Index out of bounds in a scalar
array.

The index that was specified.

DTRACEFLT_LIBRARY Library level fault None.

If the actions that are taken in the ERROR probe cause an error, that error is silently
dropped. The ERROR probe isn't recursively invoked.

dtrace Stability
The dtrace provider uses DTrace's stability mechanism to describe its stabilities.
These values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Stable Stable Common

Module Private Private Unknown

Function Private Private Unknown

Name Stable Stable Common

Arguments Stable Stable Common

Profile Provider
The profile provider includes probes that are associated with an interrupt that fires at
some regular, specified time interval.

Such probes aren't associated with any particular point of execution, but rather with
the asynchronous interrupt event. You can use these probes to sample some aspect of
the system state and then use the samples to infer system behavior. If the sampling
rate is high or the sampling time is long, an accurate inference is possible. Using
DTrace functions, you can use the profile provider to sample many aspects of the
system. For example, you could sample the state of the current thread, the state of the
CPU, or the current machine instruction.

profile-n Probes
The profile-n probes fire at a fixed interval, at a high-interrupt level on all active
CPUs.

The units of n default to a frequency that's expressed as a rate of firing per second, but
the value can also have an optional suffix , as shown in Table 8-1, which specifies
either a time interval or a frequency. The following table describes valid time suffixes
for a tick- n probe.
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Table 8-1    Valid Time Suffixes

Suffix Time Units

nsec or ns nanoseconds

usec or us microseconds

msec or ms milliseconds

sec or s seconds

min or m minutes

hour or h hours

day or d days

hz hertz (frequency expressed as rate per second)

tick-n Probes
The tick-n probes fire at fixed intervals, at a high interrupt level on only one CPU per
interval.

Unlike profile-n probes, which fire on every CPU, tick-n probes fire on only one CPU per
interval and the CPU on which they fire can change over time. The units of n default to a
frequency expressed as a rate of firing per second, but the value can also have an optional
time suffix as shown in Table 8-1, which specifies either a time interval or a frequency.

The tick-n probes have several uses, such as providing some periodic output or taking a
periodic action.

Note:

The highest available tick frequency is 5000 Hz (tick-5000).

profile Probe Arguments
The following table describes the arguments for the profile probes.

Table 8-2    profile Probe Arguments

Probe arg0 arg1
profile-n pc upc
tick-n pc upc

The arguments are as follows:

• pc: kernel program counter

• upc: user-space program counter
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profile Probe Creation
Unlike other providers, the profile provider creates probes dynamically on an as-
needed basis. Thus, the preferred probe might not appear in a listing of all probes, for
example, when using the dtrace -l -P profile command, but the probe is
created when it's explicitly enabled.

A time interval that's too short causes the machine to continuously field time-based
interrupts and denies service on the machine. The profile provider refuses to create
a probe that would result in an interval of less than two hundred microseconds and
returns an error.

prof Stability
The profile provider uses DTrace's stability mechanism to describe its stabilities.
These stability values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Unstable Unstable Unknown

Function Private Private Unknown

Name Evolving Evolving Common

Arguments Evolving Evolving Common

FBT Provider
The fbt (Function Boundary Tracing) provider includes probes that are associated
with the entry to and return from most functions in the Oracle Linux kernel. Therefore,
there could be tens of thousands of fbt probes.

While the FBT implementation is highly specific to the instruction set architecture, FBT
has been implemented on both x86 and 64-bit Arm platforms. Some functions in each
instruction set are highly optimized by the compiler and can't be instrumented by FBT.
Probes for these functions aren't present in DTrace, but you can check what's
available by running:

sudo dtrace -lP fbt

An effective use of FBT probes requires knowledge of the kernel implementation.
Therefore, we recommend that you use FBT only when developing kernel software or
when other providers aren't sufficient.

Because of the large number of FPB probes that are available, be specific about the
modules and functions that you enable probes for. Performance can be impacted
when the full range of FBT probes are enabled at the same time.
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fbt Probes
FBT provides a probe named entry at the start of most functions in the kernel. A probe
named return is included at the end of most functions in the kernel. All FBT probes have a
function name and module name.

fbt Probe Arguments
The arguments to entry probes are the same as the arguments to the corresponding
operating system kernel function. These arguments can be accessed as int64_t values by
using the arg0, arg1, arg2, ... variables.

If the function has a return value, the return value is stored in arg1 of the return probe. If a
function doesn't have a return value, arg1 isn't defined.

While a specified function only has a single point of entry, it might have many different points
where it returns to its caller. FBT collects a function's multiple return sites into a single return
probe. If you want to know the exact return path, you can examine the return probe arg0
value, which indicates the offset in bytes of the returning instruction in the function text.

fbt Examples
You can use the fbt provider to explore the kernel's implementation. The following example
script creates an aggregation on the number of times different functions allocate kernel virtual
memory. The results of the aggregation are printed when the script exits. This would help
somebody to monitor what functions are memory intensive. Type the following D source code
and save it in a file named getkmemalloc.d:

#pragma D option quiet
fbt::kmem*alloc*:entry 
{ 
  @[caller] = count(); 
} 
dtrace:::END 
{ 
  printa("%40a %@10d\n", @); 
}

Running this script results in output similar to the following:

              vmlinux`vm_area_alloc+0x1a          1
           vmlinux`__sigqueue_alloc+0x65          1
          vmlinux`__create_xol_area+0x4d          1
          vmlinux`__create_xol_area+0x6f          1
               vmlinux`vmstat_start+0x39          1
           vmlinux`proc_alloc_inode+0x1d          1
         vmlinux`proc_self_get_link+0x5b          1
       vmlinux`security_inode_alloc+0x24          1
             vmlinux`avc_alloc_node+0x1c          1
       vmlinux`ep_ptable_queue_proc+0x3d          2
            vmlinux`kernfs_fop_open+0xbf          2
           vmlinux`kernfs_fop_open+0x2e8          2
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            vmlinux`disk_seqf_start+0x25          2
               vmlinux`__alloc_skb+0x16c          6
                  vmlinux`skb_clone+0x4b          6
                  vmlinux`ep_insert+0xbb          8
                 vmlinux`ep_insert+0x34c          8
                  vmlinux`__d_alloc+0x29          9
        vmlinux`kernfs_iop_get_link+0x33          9
                vmlinux`single_open+0x2a         15
              vmlinux`proc_reg_open+0x6e         17
                   vmlinux`seq_open+0x2a         21
               vmlinux`__alloc_file+0x23         29
        vmlinux`security_file_alloc+0x24         29
       vmlinux`getname_flags.part.0+0x2c         40

The output shows the internal kernel functions that are making calls to the kmem*alloc
system calls and can be used to find which kernel functions most often allocate kernel
virtual memory on a system.

fbt Stability
The fbt provider uses DTrace's stability mechanism to describe its stabilities. These
stability values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Private Private ISA

Name Evolving Evolving Common

Arguments Private Private ISA

Syscall Provider
The syscall provider makes available a probe at the entry to and return from every
system call in the system. Because system calls are the primary interface between
user-level applications and the operating system kernel, the syscall provider can offer
tremendous insight into application behavior with respect to the system.

syscall Probes
syscall provides a pair of probes for each system call: an entry probe that fires
before the system call is entered, and a return probe that fires after the system call
has completed, but before control has been transferred back to user-level. For all
syscall probes, the function name is set as the name of the instrumented system call.

Often, the system call names that are provided by syscall correspond to names in the
Section 2 manual pages. However, some syscall provider probes don't directly
correspond to any documented system call, such as the case where a system call
might be a sub operation of another system call or where a system call might be
private in that they span the user-kernel boundary.
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syscall Probe Arguments
For entry probes, the arguments, arg0 ... argn , are arguments to the system call. For return
probes, both arg0 and arg1 contain the return value. A non-zero value in the D variable errno
indicates a system call failure.

syscall Stability
The syscall provider uses DTrace's stability mechanism to describe its stabilities. These
stability values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Private Private Instruction set
architecture (ISA)

Name Evolving Evolving Common

Arguments Private Private ISA

Proc Provider
The proc provider makes available the probes that pertain to the following activities: process
creation and termination, LWP creation and termination, execution of new program images,
and signal sending and handling.

proc Probes
The probes for the proc provider are listed in the following table.

Table 8-3    proc Probes

Probe Description

create Fires when a process (or process thread) is
created using fork() or vfork(), which both
invoke clone(). The psinfo_t corresponding
to the new child process is pointed to by
args[0].

exec Fires whenever a process loads a new process
image using a variant of the execve() system
call. The exec probe fires before the process
image is loaded. Process variables like
execname and curpsinfo therefore contain
the process state before the image is loaded.
Some time after the exec probe fires, either
the exec-failure or exec-success probe
subsequently fires in the same thread. The
path of the new process image is pointed to by
args[0].
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Table 8-3    (Cont.) proc Probes

Probe Description

exec-failure Fires when an exec() variant has failed. The
exec-failure probe fires only after the exec
probe has fired in the same thread. The errno
value is provided in args[0].

exec-success Fires when an exec() variant has succeeded.
Like the exec-failure probe, the exec-
success probe fires only after the exec probe
has fired in the same thread. By the time that
the exec-success probe fires, process
variables like execname and curpsinfo
contain the process state after the new process
image has been loaded.

exit Fires when the current process is exiting. The
reason for exit, which is expressed as one of
the SIGCHLD <asm-generic/signal.h> codes,
is contained in args[0].

lwp-create Fires when a process thread is created, the
latter typically as a result of
pthread_create(). The lwpsinfo_t
corresponding to the new thread is pointed to
by args[0]. The psinfo_t of the process that
created the thread is pointed to by args[1].

lwp-exit Fires when a process or process thread is
exiting, due either to a signal or to an explicit
call to exit or pthread_exit().

lwp-start Fires within the context of a newly created
process or process thread. The lwp-start
probe fires before any user-level instructions
are executed. If the thread is the first created
for the process, the start probe fires, followed
by lwp-start.

signal-clear Probes that fires when a pending signal is
cleared because the target thread was waiting
for the signal in sigwait(), sigwaitinfo(),
or sigtimedwait(). Under these conditions,
the pending signal is cleared and the signal
number is returned to the caller. The signal
number is in args[0]. signal-clear fires in
the context of the formerly waiting thread.

signal-discard Fires when a signal is sent to a single-threaded
process and the signal is both unblocked and
ignored by the process. Under these
conditions, the signal is discarded on
generation. The lwpsinfo_t and psinfo_t of
the target process and thread are in args[0]
and args[1], respectively. The signal number
is in args[2].
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Table 8-3    (Cont.) proc Probes

Probe Description

signal-handle Fires immediately before a thread handles a
signal. The signal-handle probe fires in the
context of the thread that will handle the
signal. The signal number is in args[0]. A
pointer to the siginfo_t structure that
corresponds to the signal is in args[1]. The
address of the signal handler in the process is
in args[2].

signal-send Fires when a signal is sent to a process or to a
thread created by a process. The signal-send
probe fires in the context of the sending
process or thread. The lwpsinfo_t and
psinfo_t of the receiving process and thread
are in args[0] and args[1], respectively. The
signal number is in args[2]. signal-send is
always followed by signal-handle or signal-
clear in the receiving process and thread.

start Fires in the context of a newly created process.
The start probe fires before any user-level
instructions are executed in the process.

Note:

No fundamental difference between a process and a thread that a process creates,
exists in Linux. The threads of a process are set up so that they can share
resources, but each thread has its own entry in the process table with its own
process ID.

proc Probe Arguments
The following table lists the argument types for the proc probes. See proc Probes for a
description of the arguments.

Table 8-4    proc Probe Arguments

Probe args[0] args[1] args[2]
create psinfo_t * — —

exec char * — —

exec-failure int — —

exec-success — — —

exit int — —

lwp-create lwpsinfo_t * psinfo_t * —
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Table 8-4    (Cont.) proc Probe Arguments

Probe args[0] args[1] args[2]
lwp-exit — — —

lwp-start — — —

signal-clear int — —

signal-discard lwpsinfo_t * psinfo_t * int
signal-handle int siginfo_t * void (*)(void)
signal-send lwpsinfo_t * psinfo_t * int
start — — —

lwpsinfo_t
Several proc probes have arguments of type lwpsinfo_t. Detailed information about
this data structure can be found in /usr/lib64/dtrace/version/procfs.d. The
definition of the lwpsinfo_t structure is as follows:

typedef struct lwpsinfo {       
        int pr_flag;                    /* lwp flags (DEPRECATED) */
        int pr_lwpid;                   /* lwp id */
        uintptr_t pr_addr;              /* internal address of lwp */
        uintptr_t pr_wchan;             /* wait addr for sleeping lwp 
*/
        char pr_stype;                  /* sync event type */
        char pr_state;                  /* numeric lwp state */
        char pr_sname;                  /* printable char for pr_state 
*/
        char pr_nice;                   /* nice for cpu usage */
        short pr_syscall;               /* syscall number */
        char pr_oldpri;                 /* priority */
        char pr_cpu;                    /* CPU usage */
        int pr_pri;                     /* priority */
        ushort_t pr_pctcpu;             /* % of recent cpu time */
        ushort_t pr_pad;
        timestruc_t pr_start;           /* lwp start time */
        timestruc_t pr_time;            /* usr+sys cpu time */
        char pr_clname[8];              /* scheduling class name */
        char pr_name[16];               /* name */
        processorid_t pr_onpro;         /* processor last ran on */
        processorid_t pr_bindpro;       /* processor bound to */
        psetid_t pr_bindpset;           /* processor set */
        int pr_lgrp;                    /* lwp home lgroup */
        int pr_filler[4];

} lwpsinfo_t;
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Note:

Lightweight processes don't exist in Linux. Rather, in Oracle Linux, processes and
threads are represented by process descriptors of type struct task_struct in the
task list. DTrace translates the members of lwpsinfo_t from the task_struct for
the Oracle Linux process.

The pr_flag is set to 1 if the thread is stopped. Otherwise, it's set to 0.

In Oracle Linux, the pr_stype field is unsupported, and hence is always 0.

The following table describes the values that pr_state can take, including the corresponding
character values for pr_sname.

Table 8-5    pr_state Values

pr_state Value pr_sname Value Description

SRUN (2) R The thread is runnable or is
running on a CPU. The
sched:::enqueue probe fires
immediately before a thread's
state is transitioned to SRUN.
The sched:::on-cpu probe
will fire a short time after the
thread starts to run.
The equivalent Oracle Linux
task state is TASK_RUNNING.

SSLEEP (1) S The thread is sleeping. The
sched:::sleep probe will fire
immediately before a thread's
state is transitioned to SSLEEP.

The equivalent Oracle Linux
task state is
TASK_INTERRUPTABLE or
TASK_UNINTERRUPTABLE.

SSTOP (4) T The thread is stopped, either
because of an explicit proc
directive or some other
stopping mechanism.
The equivalent Oracle Linux
task state is __TASK_STOPPED
or __TASK_TRACED.
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Table 8-5    (Cont.) pr_state Values

pr_state Value pr_sname Value Description

SWAIT (7) W The thread is waiting on wait
queue. The sched:::cpucaps-
sleep probe will fire
immediately before the
thread's state transitions to
SWAIT.

The equivalent Oracle Linux
task state is TASK_WAKEKILL or
TASK_WAKING.

SZOMB (3) Z The thread is a zombie.
The equivalent Oracle Linux
task state is EXIT_ZOMBIE,
EXIT_DEAD, or TASK_DEAD.

psinfo_t
Several proc probes have an argument of type psinfo_t. Detailed information about
this data structure can be found in /usr/lib64/dtrace/version/procfs.d. The
definition of the psinfo_t structure, is as follows:

typedef struct psinfo {
        int pr_flag;                    /* process flags (DEPRECATED) 
*/
        int pr_nlwp;                    /* number of active lwps 
(Linux: 1) */
        pid_t pr_pid;                   /* unique process id */
        pid_t pr_ppid;                  /* process id of parent */
        pid_t pr_pgid;                  /* pid of process group leader 
*/
        pid_t pr_sid;                   /* session id */
        uid_t pr_uid;                   /* real user id */
        uid_t pr_euid;                  /* effective user id */
        uid_t pr_gid;                   /* real group id */
        uid_t pr_egid;                  /* effective group id */
        uintptr_t pr_addr;              /* address of process */
        size_t pr_size;                 /* size of process image (in 
KB) */
        size_t pr_rssize;               /* resident set sie (in KB) */
        size_t pr_pad1;
        struct tty_struct *pr_ttydev;   /* controlling tty (or -1) */
        ushort_t pr_pctcpu;             /* % of recent cpu time used */
        ushort_t pr_pctmem;             /* % of recent memory used */
        timestruc_t pr_start;           /* process start time */
        timestruc_t pr_time;            /* usr+sys cpu time for 
process */
        timestruc_t pr_ctime;           /* usr+sys cpu time for 
children */
        char pr_fname[16];              /* name of exec'd file */
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        char pr_psargs[80];             /* initial chars of arg list */
        int pr_wstat;                   /* if zombie, wait() status */
        int pr_argc;                    /* initial argument count */
        uintptr_t pr_argv;              /* address of initial arg vector */
        uintptr_t pr_envp;              /* address of initial env vector */
        char pr_dmodel;                 /* data model */
        char pr_pad2[3];
        taskid_t pr_taskid;             /* task id */
        dprojid_t pr_projid;            /* project id */
        int pr_nzomb;                   /* number of zombie lwps (Linux: 0) 
*/
        poolid_t pr_poolid;             /* pool id */
        zoneid_t pr_zoneid;             /* zone id */
        id_t pr_contract;               /* process contract */
        int pr_filler[1];
        lwpsinfo_t pr_lwp;

} psinfo_t;

Note:

Lightweight processes don't exist in Linux. In Oracle Linux, processes and threads
are represented by process descriptors of type struct task_struct in the task list.
DTrace translates the members of psinfo_t from the task_struct for the Oracle
Linux process.

pr_dmodel is set to either PR_MODEL_ILP32, denoting a 32–bit process, or PR_MODEL_LP64,
denoting a 64–bit process.

proc Examples
The following examples illustrate the use of the probes that are published by the proc
provider.

exec, exec-success and exec-failure

The following example shows how you can use the exec, exec-success and exec-failure
probes to easily determine which programs are being run, and by which parent process. Type
the following D source code and save it in a file named whoexec.d:

#pragma D option quiet

proc:::exec
{
  self->parent = execname;
}

proc:::exec-success
/self->parent != NULL/
{
  @[self->parent, execname] = count();
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  self->parent = NULL;
}

proc:::exec-failure
/self->parent != NULL/
{
  self->parent = NULL;
}

END
{
  printf("%-20s %-20s %s\n", "WHO", "WHAT", "COUNT");
  printa("%-20s %-20s %@d\n", @);
}

Running the example script for a short period results in output similar to the following:

WHO                  WHAT                 COUNT
bash                 date                 1
bash                 grep                 1
bash                 ssh                  1
bash                 wc                   1
bash                 ls                   2
bash                 sed                  2
...

start and exit Probes

To determine how long programs are running, from creation to termination, you can
enable the start and exit probes, as shown in the following example. Save it in a file
named progtime.d:

proc:::start
{
  self->start = timestamp;
}

proc:::exit
/self->start/
{
  @[execname] = quantize(timestamp - self->start);
  self->start = 0;
}

Running the example script on a build server for several seconds results in output
similar to the following:

...
cc
          value  ------------- Distribution ------------- count
       33554432 |                                         0
       67108864 |@@@                                      3
      134217728 |@                                        1
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      268435456 |                                         0
      536870912 |@@@@                                     4
     1073741824 |@@@@@@@@@@@@@@                           13
     2147483648 |@@@@@@@@@@@@                             11
     4294967296 |@@@                                      3
     8589934592 |                                         0

sh
          value  ------------- Distribution ------------- count
         262144 |                                         0
         524288 |@                                        5
        1048576 |@@@@@@@                                  29
        2097152 |                                         0
        4194304 |                                         0
        8388608 |@@@                                      12
       16777216 |@@                                       9
       33554432 |@@                                       9
       67108864 |@@                                       8
      134217728 |@                                        7
      268435456 |@@@@@                                    20
      536870912 |@@@@@@                                   26
     1073741824 |@@@                                      14
     2147483648 |@@                                       11
     4294967296 |                                         3
     8589934592 |                                         1
    17179869184 |                                         0
...

signal-send

The following example shows how you can use the signal-send probe to determine the
sending and receiving of process associated with any signal. Type the following D source
code and save it in a file named sig.d:

#pragma D option quiet

proc:::signal-send
{
  @[execname, stringof(args[1]->pr_fname), args[2]] = count();
}

END
{
  printf("%20s %20s %12s %s\n",
      "SENDER", "RECIPIENT", "SIG", "COUNT");
  printa("%20s %20s %12d %@d\n", @);
}

Running this script results in output similar to the following:

              SENDER            RECIPIENT          SIG COUNT
       kworker/u16:7               dtrace            2 1
       kworker/u16:7                 sudo            2 1

Chapter 8
Proc Provider

8-17



           swapper/2             sssd_kcm           34 1
           swapper/6             pmlogger           14 1

proc Stability
The proc provider uses DTrace's stability mechanism to describe its stabilities. These
values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

CPC Provider
The CPU performance counter (cpc) provider makes available probes that are
associated with CPU performance counter events.

A probe fires when a specified number of events of a type in a chosen processor mode
has occurred. When a probe fires, you can sample aspects of system state and make
inferences about system behavior. A reasonable value for the event counter value
depends on the event and also on the workload. To keep probe firings from being
excessive, start with a high value. Lower the value to improve statistical accuracy.

CPU performance counters are a finite resource and the number of probes that can be
enabled depends upon hardware capabilities. An error is returned when the number of
cpc probes enabled exceed the hardware capability. If hardware resources are
unavailable, probes fail until resources become available.

Start with higher event counter values for CPC probes and reduce them through trial-
and-error as you work toward a more accurate representation of system activity.

cpc Probes

Probes made available by the cpc provider have the following probe description
format:

cpc:::<event name>-<mode>-<count>

The definitions of the components of the probe name are listed in table.

Table 8-6    Probe Name Components

Component Meaning
event name The platform specific or generic event name.

Chapter 8
CPC Provider

8-18



Table 8-6    (Cont.) Probe Name Components

mode The privilege mode in which to count events. Valid modes are
user for user mode events, kernel for kernel mode events and
all for both user mode and kernel mode events.

count The number of events that must occur on a CPU for a probe to
be fired on that CPU. Note that the count is a configurable value.
If the count value is too high, then the probe fires less often and
the statistics are less reliable. If the count value is too low, the
probe fires too often and the system is inundate with tracing
activity. When selecting a count value, start with a higher value
and then decrease it to get more accurate statistics.

Note that when you list CPC probes, example count values are provided in the probe listings.
The count values are artificially set high as a guideline.

cpc Probe Arguments
The following table lists the argument types for the cpc probes.

Table 8-7    Probe Arguments

arg0 The program counter (PC) in the kernel at the time that the probe
fired, or 0 if the current process wasn't running in the kernel at the
time that the probe fired

arg1 The PC in the user-level process at the time that the probe fired, or 0
if the current process was running at the kernel at the time that the
probe fired

As the descriptions imply, if arg0 is non-zero then arg1 is zero; if arg0 is zero then arg1 is
non-zero.

cpc Examples
The following example illustrates the use of a probe published by the cpc provider.

cycles-all-50000000

The example performs a count for each process name that triggers the performance counter
probe on a count value of 50000000.

cpc:::cycles-all-50000000
 {
         @[execname] = count();
 }

cpc Stability

The cpc provider uses DTrace's stability mechanism to describe its stabilities. These values
are listed in the following table.
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Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving CPU

Arguments Evolving Evolving Common

SDT Provider
The Statically Defined Tracing (SDT) provider (sdt) creates probes at sites that a
software programmer has formally designated. Thus, the SDT provider is chiefly of
interest only to developers of new providers. Most users access SDT only indirectly by
using other providers.

The SDT mechanism enables programmers to consciously choose locations of interest
to users of DTrace and to convey some semantic knowledge about each location
through the probe name.

Importantly, SDT can act as a metaprovider by registering probes so that they appear
to come from other providers, such as io, proc, and sched.

Both the name stability and the data stability of the probes are Private, which reflects
the kernel's implementation and should not be interpreted as a commitment to
preserve these interfaces.

Creating sdt Probes
If you are a device driver developer, you might be interested in creating sdt probes for
an Oracle Linux driver that you are working on. The disabled probe effect of SDT is
only the cost of several no-operation machine instructions. You are therefore
encouraged to add sdt probes to device driver code as needed. Unless these probes
negatively affect performance, you can leave them in shipped code.

DTrace also provides a mechanism for application developers to define user-space
static probes.

Declaring Probes
The sdt probes are declared by using the DTRACE_PROBE macro from <linux/sdt.h>.

The module name and function name of an SDT-based probe correspond to the kernel
module name and function name where the probe is declared. DTrace includes the
kernel module name and function name as part of the tuple used to identify the probe
in the probe description, so you don't need to explicitly include this information when
devising the probe name. You can still specify the module and function name when
referring to the probe in a DTrace program to prevent namespace collisions. Use the
dtrace -l -m mymodule command to list the probes that mymodule has installed
and the full names that are seen by DTrace users.

The name of the probe depends on the name that's provided in the DTRACE_PROBE
macro. If the name doesn't contain two consecutive underscores (__), the name of the
probe is as written in the macro. If the name contains two consecutive underscores,

Chapter 8
SDT Provider

8-20



the probe name converts the consecutive underscores to a single dash (-). For example, if a
DTRACE_PROBE macro specifies transaction__start, the SDT probe is named transaction-
start. This substitution enables C code to provide macro names that aren't valid C identifiers
without specifying a string.

SDT can also act as a metaprovider by registering probes so that they appear to come from
other providers, such as io, proc, and sched, which don't have dedicated modules of their
own. For example, kernel/exit.c contains calls to the DTRACE_PROC macro, which are
defined as follows in <linux/sdt.h>:

# define DTRACE_PROC(name) \
         DTRACE_PROBE(__proc_##name);

Probes that use such macros appear to come from a provider other than sdt. The leading
double underscore, provider name, and trailing underscore in the name argument are used to
match the provider and aren't included in the probe name.

sdt Probe Arguments
The arguments for each sdt probe are the arguments that are specified in the kernel source
code in the corresponding DTRACE_PROBE macro reference. When declaring sdt probes, you
can minimize their disabled probe effect by not dereferencing pointers and by not loading
from global variables in the probe arguments. Both pointer dereferencing and global variable
loading can be done safely in D functions that enable probes, so DTrace users can request
these functions only when they're needed.

sdt Stability
The sdt provider uses DTrace's stability mechanism to describe its stabilities. These values
are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Private Private ISA

Arguments Private Private ISA
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