Abstract

This guide provides information about using Ksplice to update a running system without the need to reboot the system.

Document generated on: 2020-08-11 (revision: 10544)
Table of Contents

Preface .. v
1 About Oracle Ksplice .. 1
 1.1 Overview of Oracle Ksplice .. 1
 1.1.1 Supported Architectures .. 2
 1.1.2 Supported Kernels .. 2
 1.1.3 About Ksplice Updates .. 4
 1.1.4 Patching and Updating Your System .. 5
 1.1.5 Using Ksplice With Oracle Enterprise Manager 5
 1.2 About Ksplice Client Software .. 5
 1.2.1 About the Ksplice Enhanced Client .. 5
 1.2.2 About the Ksplice Uptrack Client .. 6
 1.3 Preparing to Use Oracle Ksplice .. 7
 1.3.1 Choosing a Ksplice Client .. 8
 1.3.2 About Oracle Ksplice and ULN Registration ... 8
 1.3.3 Available Ksplice Channels .. 8
 1.3.4 Configuring a Local ULN Mirror to Act as a Ksplice Mirror 9
 1.3.5 Configuring an Oracle Linux 7 Spacewalk Server to Act as a Ksplice Mirror 9
 1.4 About the Ksplice Enhanced Client .. 11
 1.5 About the Ksplice Uptrack Client ... 11
2 Working With the Ksplice Enhanced Client ... 12
 2.1 Requirements for Installing the Ksplice Enhanced Client 12
 2.2 Installing the Ksplice Enhanced Client From ULN 12
 2.3 Managing the Ksplice Enhanced Client by Using the ksplice Command 14
 2.4 Preventing the Ksplice Enhanced Client From Patching User-Space Processes and Libraries .. 17
 2.5 Configuring the Ksplice Enhanced Client for Offline Mode 18
 2.6 Removing the Ksplice Enhanced Client Software 20
 2.7 Using the Known Exploit Detection Feature on the Ksplice Enhanced Client 21
 2.7.1 Running Known Exploit Detection on the Ksplice Enhanced Client 21
 2.7.2 Setting Up Email Alerts for Exploit Attempts .. 22
 2.7.3 Temporarily Disabling and Re-Enabling Tripwires 22
3 Working With Ksplice Uptrack ... 23
 3.1 Installing Ksplice Uptrack From ULN ... 23
 3.2 Installing Ksplice Uptrack Within Oracle Cloud Infrastructure 24
 3.3 Configuring the Ksplice Uptrack Client .. 25
 3.4 Managing Ksplice Updates by Using the uptrack-upgrade Command 26
 3.5 Removing the Ksplice Uptrack Client Software .. 27
 3.6 Switching Between Online and Offline Ksplice Uptrack Installation Modes 27
 3.7 Working With the Ksplice Uptrack Client in Offline Mode 27
 3.7.1 Configuring Ksplice Uptrack Clients for Offline Mode 28
 3.8 Updating the Ksplice Uptrack Client to a Specific Effective Kernel Version 30
 3.9 Using the SNMP Plugin for Ksplice Uptrack ... 31
 3.9.1 Installing and Configuring the SNMP Plugin 31
 3.9.2 Testing the SNMP Plugin ... 32
4 Working With the Ksplice Uptrack API .. 35
 4.1 About the Ksplice Uptrack API .. 35
 4.2 Viewing Your API User Name and API Key .. 35
 4.3 Generating a New API Key ... 35
 4.4 Installing the API Command-Line Tools ... 36
 4.5 Ksplice Uptrack API Commands .. 36
 4.5.1 About the uptrack-api-authorize Command ... 36
 4.5.2 About the uptrack-api-describe Command .. 36
 4.5.3 About the uptrack-api-list Command .. 37
4.5.4 Specifying the username and api_key Variables ... 37
4.5.5 Specifying a Proxy ... 37
4.6 About the API Implementation .. 38
 4.6.1 API Version ... 38
 4.6.2 API Authentication ... 38
 4.6.3 API Request Format .. 38
 4.6.4 Supported API Requests ... 38
 4.6.5 Interaction Sample .. 40
4.7 Configuring the check_uptrack Nagios Plugin .. 41
4.8 Using the Nagios Plugins ... 42
Preface

Oracle® Linux: Ksplice User’s Guide provides information about how to install, configure, and use Oracle Ksplice to update kernel, userspace, and Xen hypervisor packages on a running system and how to use the Ksplice Uptrack API.

Audience

This document is intended for administrators who need to configure Oracle Ksplice on Oracle Linux systems. It is assumed that readers are familiar with and have a general understanding of Linux system administration.

Document Organization

The document is organized as follows:

• Chapter 1, About Oracle Ksplice provides an overview of Oracle Ksplice.
• Chapter 2, Working With the Ksplice Enhanced Client provides information about installing and configuring the Ksplice Enhanced client and applying updates to a running system.
• Chapter 3, Working With Ksplice Uptrack provides information about installing and configuring the Ksplice Uptrack client and applying updates to a running system.
• Chapter 4, Working With the Ksplice Uptrack API describes how to use the Ksplice Uptrack API.

Related Documents

The documentation for this product is available at:

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td><code>monospace</code></td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit
Access to Oracle Support

https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.
Chapter 1 About Oracle Ksplice

Table of Contents

1.1 Overview of Oracle Ksplice ... 1
1.1.1 Supported Architectures ... 2
1.1.2 Supported Kernels ... 2
1.1.3 About Ksplice Updates ... 4
1.1.4 Patching and Updating Your System .. 5
1.1.5 Using Ksplice With Oracle Enterprise Manager .. 5
1.2 About Ksplice Client Software ... 5
1.2.1 About the Ksplice Enhanced Client .. 5
1.2.2 About the Ksplice Uptrack Client ... 6
1.3 Preparing to Use Oracle Ksplice .. 7
1.3.1 Choosing a Ksplice Client .. 8
1.3.2 About Oracle Ksplice and ULN Registration ... 8
1.3.3 Available Ksplice Channels ... 8
1.3.4 Configuring a Local ULN Mirror to Act as a Ksplice Mirror ... 9
1.3.5 Configuring an Oracle Linux 7 Spacewalk Server to Act as a Ksplice Mirror 9

This chapter provides a high-level overview of Oracle Ksplice, including tasks that you might need to perform in preparation for using Ksplice in Oracle Linux.

Note

Some of the instructions and examples in this document apply to multiple Oracle Linux releases. The examples use the `yum` command for compatibility with several supported versions of Oracle Linux. If you are running Oracle Linux 8, you may opt to use the `dnf` command, as appropriate.

Caution

The majority of the installation and configuration instructions in this guide apply only to Oracle Linux releases. If you plan to use Oracle Ksplice to patch the Xen hypervisor on Oracle VM Server 3.4.5, and later releases, refer to the documentation for the Oracle VM release that you are running for step-by-step instructions. For example, if you are running Oracle VM 3.4.5, see *Updating Oracle VM Server With Oracle Ksplice* in the *Oracle VM Administration Guide for Release 3.4*.

Linux systems receive regular security updates to core operating system components that necessitate patching and rebooting. Traditionally, applying such updates would require you to obtain and install the updated RPMs, schedule downtime, and reboot the server to the new package version, with any critical updates. However, as system setups become more complex, with many interdependencies, access to services and applications must remain as undisrupted as possible, as scheduling such reboots becomes more difficult and costly.

Ksplice provides a way for you to keep your systems secure and highly available by enabling you to update the running systems with the latest kernel and key user-space security and bug fix updates, as well as Xen hypervisor updates on Oracle VM Server 3.4.5, and later.
Supported Architectures

When using Ksplice to patch the Xen hypervisor on Oracle VM Server 3.4.5 and later, the minimum version that is required is `xen-4.4.4-196.el6.x86_64.rpm`.

Ksplice updates the running operating system without requiring a reboot. Your systems remain up to date with OS vulnerability patches and downtime is minimized. A Ksplice update takes effect immediately upon application, which is different than an on-disk change that requires a subsequent reboot to take effect. However, note that on-disk updates are still required, even when using Ksplice, to ensure that package binaries are updated to the most recent version and can be used in the event that the system or processes are restarted. On-disk updates are handled by subscribing to Unbreakable Linux Network (ULN) or by using a local ULN mirror.

Oracle creates each Ksplice update from a package update that originates either from Oracle or from the open source community.

1.1.1 Supported Architectures

Oracle Ksplice is supported on the following platforms:

- Intel 64-bit (x86_64)
- AMD 64-bit (x86_64)
- 64-bit Arm (aarch64)

Ksplice support on the Arm platform is for the Ksplice Uptrack client only. Ksplice support on the 64-bit Arm (aarch64) platform is only available with supported Unbreakable Enterprise Kernel (UEK) releases. For more information, see the release notes for the UEK release that you are running in the Unbreakable Enterprise Kernel Documentation Library.

1.1.2 Supported Kernels

You can use Ksplice to bring the Oracle Linux kernels up to date with the latest important security and bug fix patches. You can also use Ksplice to update and patch kernels from other Linux distributions, provided that they are hosted within Oracle Cloud Infrastructure. The following table shows the distributions and kernel versions that are supported with Ksplice.

<table>
<thead>
<tr>
<th>Kernel type</th>
<th>On Premise Support</th>
<th>Oracle Cloud Infrastructure Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbreakable Enterprise Kernel (UEK) versions for all Oracle Linux releases:</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>- UEK R2 starting with <code>2.6.39-100.5.1</code> (released Mar 13, 2012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- UEK R3 starting with <code>3.8.13-35</code> (released May 13, 2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- UEK R4 starting with <code>4.1.12-32</code> (released Jan 25, 2016)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supported Kernels

<table>
<thead>
<tr>
<th>Kernel type</th>
<th>On Premise Support</th>
<th>Oracle Cloud Infrastructure Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>• UEK R5 (x86_64) starting with 4.14.35-1818.0.9 (released Jun 20, 2018)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• UEK R5 (aarch64) starting with 4.14.35-1902.300.11 (released Mar 18, 2020)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• UEK R6 (x86_64) starting with 5.4.17-2011.1.2 (released Apr 27, 2020)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• UEK R6 (aarch64) starting with 5.4.17-2011.0.7 (released Mar 17, 2020)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Oracle Linux 8 Red Hat Compatible Kernels (RHCK) starting with the official release</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Oracle Linux 7 Red Hat Compatible Kernels (RHCK) starting with the official release</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Oracle Linux 6 Red Hat Compatible Kernels (RHCK) starting with the official release</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Oracle Linux 5.11 RHCK starting with 2.6.18-398 (released Sept, 2014 with an Extended Support agreement)</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Oracle Linux 5.11 RHCK starting with 2.6.18-398.0.0.0.1 (released Sept, 2014 with bug fixes added by Oracle and an Extended Support agreement)</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>CentOS and RHEL 8 kernels starting with the official release</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>CentOS and RHEL 7 kernels starting with the official release</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>CentOS and RHEL 6 kernels starting with the official release</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ubuntu 20.04 Focal kernels starting with 5.4.0-37.41 (released Jun 3, 2020)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ubuntu 19.04 Disco kernels starting with 5.0.0-13.14 (released Apr 16, 2019)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ubuntu 18.04 Bionic kernels, starting with the official release</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
About Ksplice Updates

<table>
<thead>
<tr>
<th>Kernel type</th>
<th>On Premise Support</th>
<th>Oracle Cloud Infrastructure Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubuntu 16.04 LTS Xenial kernels starting with the official release</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ubuntu kernels starting with 4.15.0-1017.19 with bug fixes or patches already applied by Oracle.</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note

If your system is currently running Red Hat Enterprise Linux (RHEL) and you recently migrated to Oracle Linux Premier Support, you can use Ksplice to update the existing RHEL kernel. You do not need to switch to RHCK to use Ksplice kernel patches. These patches are available on ULN as `uptrack-updates-kernel_version` packages in the Ksplice for Oracle Linux channels.

For questions about supported kernels, send an email to ksplice-support_ww@oracle.com.

1.1.3 About Ksplice Updates

The following figure illustrates the life cycle of a Ksplice update for the Linux kernel.

Figure 1.1 Life Cycle of a Ksplice Update

1. A critical bug or security vulnerability is discovered in the Linux kernel.
2. Oracle makes a new kernel release and prepares a rebootless update corresponding to that release.
3. The rebootless update is securely distributed and applied to your systems with zero downtime.
4. Your infrastructure is once again up to date and secure.
Patching and Updating Your System

Per the previous figure, when a critical bug or security vulnerability is discovered in the Linux kernel, Oracle produces a new kernel release and prepares a rebootless update corresponding to that release. The rebootless update is securely distributed by using the Oracle Ksplice Uptrack server and ULN, and is then applied to your systems by the Ksplice Uptrack client or Ksplice Enhanced client, with zero downtime. Your infrastructure is again up to date and secure.

Note
The Ksplice Uptrack API does not currently support userspace or Xen updates. However, the online version of the Ksplice Enhanced client can patch shared libraries for user-space processes that are running on an Oracle Linux 6, Oracle Linux 7, or Oracle Linux 8 system.

1.1.4 Patching and Updating Your System

Ksplice patches enable you to keep a system up to date while it is running. Note that you must continue to install the regular kernel packages for released errata that are made available from ULN or the Oracle Linux yum server so that the kernel is also updated on disk. Your system is then ready for the next maintenance window or reboot. When you restart the system, you can boot it from the newer kernel version. Ksplice Uptrack uses the new kernel as a baseline for applying patches when they become available.

1.1.5 Using Ksplice With Oracle Enterprise Manager

All Oracle Linux systems on which Enterprise Manager Agent is installed and the Ksplice software is configured, can be monitored and managed through Oracle Enterprise Manager, within the Oracle Linux Home Ksplice region of the Enterprise Manager user interface (UI).

To learn more about using Oracle Enterprise Manager to monitor and use Oracle Ksplice patching on Oracle Linux hosts, see the Oracle Enterprise Manager Lifecycle Management Administrator’s Guide at https://docs.oracle.com/cd/cloud-control-13.3/EMLCM/GUID-DA483950-9009-4293-BEF2-2F3C9DAACF33.htm#EMLCM-GUID-DA483950-9009-4293-BEF2-2F3C9DAACF33.

1.2 About Ksplice Client Software

The following client software types are available for Oracle Ksplice.

For a quick reference to the level of support that each Ksplice client provides and when to use each client, see Section 1.3.1, “Choosing a Ksplice Client”.

1.2.1 About the Ksplice Enhanced Client

The Ksplice Enhanced client is available as both an online and offline client for Oracle Linux 6, Oracle Linux 7, and Oracle Linux 8, but not Oracle Linux 5. The online version of the Ksplice Enhanced client supports kernel and user-space updates and can also be used to patch the Xen hypervisor on Oracle VM Server Release 3.4.5, and later.

Note
To use Ksplice to patch the Xen hypervisor on Oracle VM, the minimum Xen hypervisor version that is required is xen-4.4.4-196.el6.x86_64.rpm.

The Ksplice Enhanced client can patch in-memory pages of Ksplice-aware shared libraries such as glibc and openssl for user-space processes, in addition to the kernel updates that are applied by the traditional Ksplice Uptrack client. User-space patching enables you to install bug fixes and protect your system.
About the Ksplice Uptrack Client

The Ksplice Uptrack client is available as both an online and offline client. Ksplice Uptrack enables you to apply the latest kernel security errata for Common Vulnerabilities and Exposures (CVEs) without halting against security vulnerabilities, without having to restart processes and services. Both an online and an offline version of the enhanced client are available.

You manage the Ksplice Enhanced client by using the `ksplice` command rather than `uptrack` commands. Note that the enhanced client shares the same configuration file as the Uptrack client, which is located at `/etc/uptrack/uptrack.conf`. For more information about this file, see Section 3.3, “Configuring the Ksplice Uptrack Client”.

Note the following important information about Ksplice limitations:

- Ksplice reports an error similar to the following if it cannot apply updates to processes that do not have access to the `/var/cache/ksplice` directory:

```plaintext
Ksplice was unable to load the update as the target process is in a different mount namespace or has changed root. The service must be restarted to apply on-disk updates.
Extra information: the process has changed root or mount namespace.
```

This error might typically occur with processes that use `chroot` or those that run in an LXC or Docker container. In such cases, you must restart the process to apply any available updates. For example, to restart the `rtkit-daemon` service, you would use the `systemctl restart rtkit-daemon` command.

To avoid having to restart a `chrooted` application that you maintain and compile, ensure that the `/var/cache/ksplice` directory is bind-mounted in the `chrooted` environment.

- Ksplice cannot patch applications that use either `setcontext` or `swapcontext` from `glibc` to perform user-space context switching between process threads.

- Due to certain kernel limitations, Ksplice does not patch the `init` process (PID 1).

 On Oracle Linux 7, the `init` process, which is actually `systemd`, is automatically re-executed on system updates, so it does not require patching with Ksplice.

 On Oracle Linux 6, Upstart is not capable of re-executing itself, so any updates to `glibc` that can affect Upstart might require a reboot.

The offline version of the Ksplice Enhanced client removes the requirement that a server on your intranet have a direct connection to the Oracle Uptrack server or to ULN. All available Ksplice updates for each supported kernel version or user-space package are bundled into an RPM that is specific to that version. This package is updated every time a new Ksplice patch becomes available for the kernel. In this way, you can create a local ULN mirror that acts as a mirror for the Ksplice-aware channels for Oracle Linux on ULN. See Section 2.5, “Configuring the Ksplice Enhanced Client for Offline Mode”.

At regular intervals, you can download the latest Ksplice update packages to this server. After installing the offline Ksplice Enhanced client on your local systems, they can then connect to the local ULN mirror to receive updates. See Section 1.3.4, “Configuring a Local ULN Mirror to Act as a Ksplice Mirror” for more information about configuring a local ULN mirror.

When you have set up a local ULN mirror to act as a Ksplice mirror, you can then configure your other systems to receive `yum` updates, as well as Ksplice updates. For task-related information, see Chapter 2, Working With the Ksplice Enhanced Client.

1.2.2 About the Ksplice Uptrack Client

The Ksplice Uptrack client is available as both an online and offline client. Ksplice Uptrack enables you to apply the latest kernel security errata for Common Vulnerabilities and Exposures (CVEs) without halting.
Preparing to Use Oracle Ksplice

the system or restarting any applications. Ksplice Uptrack applies the updated patches in the background with negligible impact, and usually only requires a pause of a few milliseconds. You can use Ksplice Uptrack, as well as continue to upgrade your kernel through the usual mechanism, such as running the `yum` command.

Ksplice Uptrack is freely available for Oracle customers who subscribe to Oracle Linux Premier Support, and to Oracle Cloud Infrastructure services. If you are an Oracle Linux Basic, Basic Limited, or Network Support subscriber, contact your sales representatives to discuss a potential upgrade of your subscription to a Premier Support plan.

The Ksplice Offline client removes the requirement that a server on your intranet have a direct connection to the Oracle Uptrack server. All of the available Ksplice updates for each supported kernel version are bundled into an RPM that is specific to that version. This package is updated every time a new Ksplice patch becomes available for the kernel.

A Ksplice Offline client does not require a network connection to be able to apply the update package to the kernel. For example, you could use the `yum` command to install the update package directly from a memory stick. However, a more typical method would be to create a local ULN mirror that acts as a mirror of the Ksplice for Oracle Linux channels on ULN. At regular intervals, you download the latest Ksplice update packages to this server. After installing the Ksplice Offline client on your local systems, the systems can connect to the local ULN mirror to receive updates without requiring access to the Oracle Uptrack server. See Section 3.7, “Working With the Ksplice Uptrack Client in Offline Mode”.

For information about when you might want to use the Ksplice Offline client, see Section 1.3.1, “Choosing a Ksplice Client”.

Note

You cannot use the web interface or the Ksplice Uptrack API to monitor systems that are running Ksplice Offline client, as such systems are not registered with https://status-ksplice.oracle.com/static/landing.html.

1.3 Preparing to Use Oracle Ksplice

The following tasks might be required prior to installing and configuring Ksplice, depending on which Ksplice client you plan to use:

- Choose a Ksplice client. Determine which Ksplice client will best suit your needs, as the additional tasks described in this section are dictated by the Ksplice client that you choose to install. See Section 1.3.1, “Choosing a Ksplice Client” for more details.

- Register your system with ULN. If you are running Oracle Linux 6 or Oracle Linux 7, see Oracle® Linux: Unbreakable Linux Network User's Guide for Oracle Linux 6 and Oracle Linux 7.

 If you are running Oracle Linux 8, see Oracle® Linux 8: Managing Software on Oracle Linux.

- Ensure that you have a valid Oracle Linux Premier, Premier Limited, or Oracle Premier Support for Systems and Operating Systems subscription, as any of these subscriptions automatically register you to use the Ksplice Uptrack server at https://status-ksplice.oracle.com/status/settings. See Section 1.3.2, “About Oracle Ksplice and ULN Registration”.

- If you plan to use either the Ksplice Enhanced client or the Ksplice Uptrack client as offline clients, you must first set up a local ULN mirror first, as described in Section 1.3.4, “Configuring a Local ULN Mirror to Act as a Ksplice Mirror”.

- If you are using Ksplice with Spacewalk, you must also set up a local ULN mirror, as described in Section 1.3.5, “Configuring an Oracle Linux 7 Spacewalk Server to Act as a Ksplice Mirror”.

For further details on setting up the Ksplice Enhanced client in offline mode, see Section 2.5, “Configuring the Ksplice Enhanced Client for Offline Mode”. For further details on setting up the Ksplice Uptrack client in offline mode, see Section 3.7.1, “Configuring Ksplice Uptrack Clients for Offline Mode”

1.3.1 Choosing a Ksplice Client

The following table describes feature support, requirements, and limitations for each Ksplice client. Use this information to decide which Ksplice client will best suit your needs.

<table>
<thead>
<tr>
<th>Ksplice Client</th>
<th>User-Space Support</th>
<th>x86_64 Support</th>
<th>Arm (aarch64) support</th>
<th>Xen Hypervisor Patching Support</th>
<th>Legacy Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ksplice Enhanced Client</td>
<td>Supported</td>
<td>Supported</td>
<td>Not supported</td>
<td>Supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>Ksplice Uptrack Client</td>
<td>Not supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

1.3.2 About Oracle Ksplice and ULN Registration

To use Oracle Ksplice, your system must have access to the Internet, and you must register your system with ULN first, unless the system is configured to use the Oracle Ksplice client as an offline client. If your client is configured to function as an offline client, you must configure a local ULN mirror that the client can access to receive updates. For more information, see Section 1.3.4, “Configuring a Local ULN Mirror to Act as a Ksplice Mirror”.

If you have an Oracle Linux Premier support subscription, a Premier Limited support subscription, or an Oracle Premier Support for Systems and Operating Systems subscription and a Customer Support Identifier (CSI), your account is automatically registered to use the Ksplice Uptrack server. Systems that are registered with ULN can install either the Ksplice Enhanced client software or the Ksplice Uptrack client software from ULN to automatically receive updates from the Ksplice Uptrack server. When the Ksplice client is installed, it is allocated an identification key that associates it with the CSI for your account.

If your account has a valid CSI, you can log in to the Ksplice Uptrack server web interface at https://status-ksplice.oracle.com/status/settings by using your Oracle Account credentials. After logging into the server, you can view the status of your registered systems, the patches that have been applied, and the patches that are available. You can also create access control groups for your registered systems.

1.3.3 Available Ksplice Channels

The following table describes the channels that are available for Ksplice on Oracle Linux.

<table>
<thead>
<tr>
<th>Channel Name</th>
<th>Channel Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ksplice for Oracle Linux 5 (i386)</td>
<td>ol5_i386_ksplice</td>
<td>Oracle Ksplice clients, updates, and dependencies for Oracle Linux 5 on i386 systems.</td>
</tr>
<tr>
<td>Ksplice for Oracle Linux 5 (x86_64)</td>
<td>ol5_x86_64_ksplice</td>
<td>Oracle Ksplice clients, updates, and dependencies for Oracle Linux 5 on x86_64 systems.</td>
</tr>
<tr>
<td>Ksplice for Oracle Linux (i386)</td>
<td>ol6_i386_ksplice</td>
<td>Oracle Ksplice clients, updates, and dependencies for Oracle Linux 6 on i386 systems.</td>
</tr>
<tr>
<td>Ksplice for Oracle Linux 6 (x86_64)</td>
<td>ol6_x86_64_ksplice</td>
<td>Oracle Ksplice clients, updates, and dependencies for Oracle Linux 6 on x86_64 systems.</td>
</tr>
<tr>
<td>Ksplice for Oracle Linux 7 (x86_64)</td>
<td>ol7_x86_64_ksplice</td>
<td>Oracle Ksplice clients, updates, and dependencies for Oracle Linux 7 on x86_64 systems.</td>
</tr>
</tbody>
</table>
1.3.4 Configuring a Local ULN Mirror to Act as a Ksplice Mirror

The following procedure describes how to configure a local ULN mirror to act as a Ksplice mirror. Use this procedure if you are planning to install and configure the Ksplice client as an offline client.

For more information about setting up a local ULN mirror, see Creating and Using a Local ULN Mirror in the Oracle Linux Unbreakable Linux Network User’s Guide.

1. Using a browser, log in to https://linux.oracle.com by providing the ULN user name and password that you used to register your system.
2. On the Systems tab, click the link that is named for your system in the list of registered machines.
3. On the System Details page, click Edit.
4. On the Edit System Properties page, select the Yum Server check box and then click Apply Changes.
5. On the System Details page, click Manage Subscriptions.
6. On the System Summary page, select channels from the list of available or subscribed channels and click the arrows to move the channels between the lists.
 Modify the list of subscribed channels to include those Ksplice for Oracle Linux channels that you want to make available to local offline clients. See Section 1.3.3, “Available Ksplice Channels”.
7. When you are finished selecting channels, save the subscription and log out of ULN.

1.3.5 Configuring an Oracle Linux 7 Spacewalk Server to Act as a Ksplice Mirror

Note

The following information applies to the configuration of an Oracle Linux 7 Spacewalk server only.
To configure a Spacewalk server to act as a Ksplice mirror, you configure repositories and the associated software channels for the Oracle Linux releases and architectures of the systems on which you want to run Ksplice Offline client. Note that each Ksplice channel should be a child of the appropriate base software channel. For information about the channels that are available for Ksplice, see Section 1.3.3, “Available Ksplice Channels”.

You would then specify the URL for the appropriate Ksplice channel. For example, for the Oracle Linux 7 (x86_64) channel on ULN, you would specify the URL as follows:

```
uln:///ol7_x86_64_ksplice
```

See Chapter 12 in the *Spacewalk for Oracle® Linux: Client Life Cycle Management Guide for Release 2.10* for further instructions.
Chapter 2 Working With the Ksplice Enhanced Client

Table of Contents

2.1 Requirements for Installing the Ksplice Enhanced Client ... 11
2.2 Installing the Ksplice Enhanced Client From ULN .. 12
2.3 Managing the Ksplice Enhanced Client by Using the ksplice Command 14
2.4 Preventing the Ksplice Enhanced Client From Patching User-Space Processes and Libraries 17
2.5 Configuring the Ksplice Enhanced Client for Offline Mode ... 18
2.6 Removing the Ksplice Enhanced Client Software .. 20
2.7 Using the Known Exploit Detection Feature on the Ksplice Enhanced Client 21
 2.7.1 Running Known Exploit Detection on the Ksplice Enhanced Client 21
 2.7.2 Setting Up Email Alerts for Exploit Attempts ... 22
 2.7.3 Temporarily Disabling and Re-Enabling Tripwires ... 22

This chapter describes how to install and configure the Ksplice Enhanced client to update packages on a running system. For more information about Ksplice Uptrack, visit http://www.ksplice.com/.

Note

Some of the instructions and examples in this document apply to multiple Oracle Linux releases. The examples use the `yum` command for compatibility with several supported versions of Oracle Linux. If you are running Oracle Linux 8, you may opt to use the `dnf` command, as appropriate.

2.1 Requirements for Installing the Ksplice Enhanced Client

The Ksplice Enhanced client is available as both an online and offline client. Using the online version of the Ksplice Enhanced client requires the server to have a direct connection to the Oracle Uptrack server. To use the Ksplice Enhanced client as an offline client, access to a local ULN mirror is required. See Section 1.3, “Preparing to Use Oracle Ksplice”.

The system on which you install the enhanced client must meet the following additional requirements:

- Must be registered with ULN or have access to the ULN channels on a mirror.
- Must have access to the Internet or a host that is running a local ULN mirror. See Section 1.3.4, “Configuring a Local ULN Mirror to Act as a Ksplice Mirror”.
- Must be running either Oracle Linux 6, Oracle Linux 7, or Oracle Linux 8, with a supported version of either the Unbreakable Enterprise Kernel (UEK) or the Red Hat Compatible Kernel (RHCK) installed.

Note

Support for the Ksplice Enhanced client is not available on Oracle Linux 5.

To verify the kernel version that you are running, use the `uname -a` command. See Section 1.1.2, “Supported Kernels”.

- Must be running the same kernel that you want to update. It is assumed that the currently running kernel is the one that you want to update, as Ksplice applies updates to the currently running kernel only.
2.2 Installing the Ksplice Enhanced Client From ULN

The following procedure describes how to install the Ksplice Enhanced client and Ksplice-aware libraries from ULN:

Note

The following procedure applies to Oracle Linux releases only. If you plan to use Ksplice to patch the Xen hypervisor on Oracle VM 3.4.5, and later releases, refer to the documentation for the Oracle VM release that you are running for instructions. For example, if you are running Oracle VM 3.4.5, see *Updating Oracle VM Server With Oracle Ksplice* in the *Oracle VM Administration Guide for Release 3.4*.

1. Using a browser, log in at https://linux.oracle.com with the ULN user name and password that you used to register the system, then perform the following steps:
 a. On the Systems tab, click the link named for your system in the list of registered machines.
 b. On the System Details page, click Manage Subscriptions.

 The Ksplice Enhanced client and Ksplice-aware user-space packages are available in the following channels on ULN:

 • Ksplice for Oracle Linux 6 (x86_64) (ol6_x86_64_ksplice)
 • Ksplice for Oracle Linux 7 (x86_64) (ol7_x86_64_ksplice)
 • Ksplice for Oracle Linux 8 (x86_64) (ol8_x86_64_ksplice)
 • Ksplice-aware user-space packages for Oracle Linux 6 (x86_64) (ol6_x86_64_userspace_ksplice)
 • Ksplice-aware user-space packages for Oracle Linux 7 (x86_64) (ol7_x86_64_userspace_ksplice)
 • Ksplice-aware user-space packages for Oracle Linux 8 (x86_64) (ol8_x86_64_userspace_ksplice)
 c. On the System Summary page, select both the Userspace Ksplice channel and the Ksplice channel from the list of available channels, then click the right arrow (>) to move them to the list of subscribed channels.
 d. Accept the licensing terms for the Ksplice Enhanced client packages.
 e. Save the subscription and log out of ULN.

2. If you use an Internet proxy, configure the HTTP and HTTPS settings for the proxy in the shell as follows:
 a. For the `sh`, `ksh`, or `bash` shells, use commands such as the following:

   ```
   # http_proxy=http://proxy_URL:http_port
   # https_proxy=http://proxy_URL:https_port
   # export http_proxy https_proxy
   
   For the `csh` shell, use commands such as the following:
   
   ```}

12
3. Log in as `root` on the system.

4. If `prelink` is installed, revert all prelinked binaries and dependent libraries to their original state and use the `yum` command to remove the `prelink` package.

```
# prelink -au
# yum remove prelink
```

Note
`prelink` is installed and enabled by default on Oracle Linux 6, but not Oracle Linux 7 or Oracle Linux 8.

5. Install the `ksplice` package as follows:

- For the online Ksplice client, use the following command:

```
# yum install -y ksplice uptrack
```

- For the offline Ksplice client, use the following command:

```
# yum install -y ksplice ksplice-offline uptrack-offline
```

The access key for Ksplice Uptrack is retrieved from ULN and added to `/etc/uptrack/uptrack.conf`, as shown in the following example:

```
[Auth]
accesskey = 0e1859ad88ea14b4306349142ce9160353297daee30240dab4d61f4ea4e59b
```

The packages that are installed on the system include the following:

- `ksplice-core` Contains the shared user-space libraries, such as `glibc` and `openssl`, that support Ksplice patching.
- `ksplice-helper` Contains a helper library that enables user-space executables to be patched by Ksplice.
- `ksplice-helper-devel` Contains the development environment for creating user-space libraries that support Ksplice patching.
- `ksplice-tools` Contains the `ksplice` executable and `ksplice(8)` manual page.

6. Update the system to install the Ksplice-aware versions of the user-space libraries:

```
# yum update
```

To install just the libraries and not update any other packages, limit the update to the following channels, as appropriate: `ol6_x86_64_userspace_ksplice`, `ol7_x86_64_userspace_ksplice` or `ol8_x86_64_userspace_ksplice`, for example:

```
# yum --disablerepo= --enablerepo=ol6_x86_64_userspace_ksplice update
```

You can also use the `glibc*` and `openssl*` syntax with the `install` command for your package manager. To use this client to perform kernel updates, install it in the same way that you are able to use the standard Uptrack client:

```
# yum install uptrack-updates-`uname -r`
```
Managing the Ksplice Enhanced Client by Using the ksplice Command

7. To enable the automatic installation of updates, change the entry in the /etc/uptrack/uptrack.conf file from no to yes, as shown in the following example:

 autoinstall = yes

8. Reboot the system so that it uses the new libraries.

 # systemctl reboot

 On Oracle Linux 5 or Oracle Linux 6, use the following command:

 # reboot

The enhanced client uses the same configuration file (/etc/uptrack/uptrack.conf) as Ksplice Uptrack. See Section 3.3, “Configuring the Ksplice Uptrack Client”.

To manage the enhanced client, use the ksplice command, see Section 2.3, “Managing the Ksplice Enhanced Client by Using the ksplice Command”.

2.3 Managing the Ksplice Enhanced Client by Using the ksplice Command

You manage the Ksplice Enhanced client by using the ksplice command. This command is used instead of the uptrack commands that are used with the traditional Ksplice client. The ksplice command enables you to perform user-space patching, in addition to kernel patching.

To display all of the running user-space processes that the client can patch, use the ksplice all list-targets command:

 # ksplice all list-targets

User-space targets:

 glibc-ISO8859-1-2.17.78.0.1.1.ksplice25.el7
 └─ gnome-shell (3783)
 glibc-libutil-2.17.78.0.1.1.ksplice25.el7
 └─ firewalld (680)
 └─ tuned (695)
 └─ libvirtd (1492)
 └─ sshd (1497)
 └─ httpd (1503)
 └─ httpd (1706)
 └─ httpd (1707)
 └─ httpd (1708)
 └─ httpd (1709)
 └─ httpd (1710)
 └─ colord (1942)
 └─ gdm-session-wor (3418)
 └─ gnome-session (3460)
 └─ gvfsd (3534)
 └─ gvfsd-fuse (3555)
 └─ ssh-agent (3617)
 └─ gnome-settings- (3658)
 └─ gvfs-udisks2-vo (3727)
 └─ gvfs-afc-volume (3754)
 └─ gvfs-mtp-volume (3761)
 └─ gvfs-gphoto2-vo (3765)
 └─ gvfs-goa-volume (3769)

Managing the Ksplice Enhanced Client by Using the ksplice Command

To display just the Xen hypervisor targets that the client can patch, use the `ksplice xen list-targets` command:

```
# ksplice xen list-targets
xen/x86_64/4.4.4OVM/Tue Aug 1 20:27:56 PDT 2017
```

For each Ksplice-aware library, the command reports the running processes that would be affected by an update. The command also reports the effective version of the loaded kernel.

To display the updates that have been applied to the system, use the `ksplice all show` command:

```
# ksplice all show
httpd (1706)
httpd (1708)
httpd (1707)
httpd (1709)
httpd (1710)
rsyslogd (689)
chronyd (705)
httpd (1503)
  [h73qvumn]: CVE-2014-7817: Command execution in wordexp().
  [ml55ngz4]: CVE-2015-1781: Privilege escalation in gethostbyname_r().
```

Ksplice kernel updates installed:

```
Installed updates:
[rfywob9d] Clear garbage data on the kernel stack when handling signals.
[6w5ho5e2] Provide an interface to freeze tasks.
[01560qvg] CVE-2015-2830: mis-handling of int80 fork from 64bits application.
[7yohnu77] CVE-2015-1805: Memory corruption in handling of userspace pipe I/O vector.
[7yeh1pm8] Kernel hang on UDP flood with wrong checksums.
[xp1v1o7h] CVE-2014-9715: Remote code execution in the netfilter connection tracking subsystem.
```

Ksplice xen updates installed
Managing the Ksplice Enhanced Client by Using the ksplice Command

The command reports both the updates that have been applied to running processes and to the kernel. In this example, Ksplice has applied updates for CVE-2014-7817 and CVE-2015-1781 to all of the listed processes.

To restrict the scope of the ksplice command to user-space updates or kernel updates, specify user or kernel instead of all with the command.

To restrict the ksplice command to just the Xen hypervisor, specify xen instead of all with the command.

To display the updates that have been applied to a process specified by its PID, use the --pid=PID option with the ksplice user show command:

```
# ksplice user show --pid=705
chronyd (705)
   [h73qvumn]: CVE-2014-7817: Command execution in wordexp().
   [ml55ngz4]: CVE-2015-1781: Privilege escalation in gethostbyname_r().
```

Use the remove subcommand to remove all of the updates from a process, for example:

```
# ksplice user remove --all --pid=705
```

To remove a specific update that Ksplice has applied to a process, use the undo subcommand:

```
# ksplice user undo --pid=705 h73qvumn
```

Note
If necessary, you can prevent Ksplice from patching specified executables and libraries. See Section 2.4, “Preventing the Ksplice Enhanced Client From Patching User-Space Processes and Libraries”.

Ksplice patches are stored in the /var/cache/uptrack directory. Following a reboot, Ksplice automatically re-applies these patches very early in the boot process before the network is configured so that the system is hardened before any remote connections can be established.

To list all of the available Ksplice updates, use the upgrade subcommand:

```
# ksplice -n kernel upgrade
```

To install all of the available Ksplice updates, use the upgrade subcommand as follows:

```
# ksplice --y user upgrade
```

To list all of the available Ksplice updates for the Xen hypervisor, use the upgrade subcommand:

```
# ksplice -n xen upgrade
```

After Ksplice applies updates to a running kernel, the kernel has an effective version that is different than the original boot version displayed by the uname -r command.

Use the ksplice kernel uname -r command to display the effective version of the kernel:
The `ksplice kernel uname` command supports the commonly used `uname` flags, including `−a` and `−r`, and also provides a way for applications to detect that the kernel has been patched. The effective version is based on the version number of the latest patch that Ksplice Uptrack has applied to the kernel.

The following examples show ways in which you can view information about Ksplice updates and administer Ksplice updates on a system.

View the updates that Ksplice Uptrack has made to the running kernel:

```bash
# ksplice kernel show
```

View the updates that Ksplice Uptrack has made to the Xen hypervisor:

```bash
# ksplice xen show
```

View the updates that are available to be installed:

```bash
# ksplice kernel show --available
```

Remove all updates from the kernel:

```bash
# ksplice kernel remove --all
```

Remove all updates from the Xen hypervisor:

```bash
# ksplice xen remove --all
```

Prevent Ksplice from reapplying the updates at the next system reboot, create the empty file `/etc/uptrack/disable`:

```bash
# touch /etc/uptrack/disable
```

Alternatively, you can specify `nouptrack` as a parameter on the boot command line when you next restart the system.

For more information and examples, see the `ksplice(8)` manual page.

2.4 Preventing the Ksplice Enhanced Client From Patching User-Space Processes and Libraries

If you do not want Ksplice to patch the user-space processes for certain executables or libraries, you can specify the information in a `/etc/ksplice/blacklist.d` configuration file. The following is an example of a `localblacklist.conf` file. The example shows how you would prevent Ksplice from patching any process that corresponds to any executable in the `/opt/app/bin` or `/usr/local/bin` directory, or from patching any shared library with a name matching `liblocal-*`. As shown in the following example, the format of the rules is Python regular expressions:

```ini
[executables]
^/opt/app/bin/.*$
^/usr/local/bin/.*$

[targets]
^liblocal-.*$
```
2.5 Configuring the Ksplice Enhanced Client for Offline Mode

The offline version of the Ksplice Enhanced client removes the requirement that a server on your intranet have a direct connection to the Oracle Uptrack server or to ULN.

At regular intervals, you can download the latest Ksplice update packages to this server. After installing the offline Ksplice Enhanced client on your local systems, they can then connect to the local ULN mirror to receive updates. After you have set up a local ULN mirror to act as a Ksplice mirror, you can then configure your other systems to receive `yum` updates, as well as Ksplice updates. See Section 1.3.4, “Configuring a Local ULN Mirror to Act as a Ksplice Mirror” for more information about configuring a local ULN mirror.

Configure a system as an offline Ksplice Enhanced client as follows:

1. Import the GPG key.

   ```
   # rpm --import /usr/share/rhn/RPM-GPG-KEY
   ```

2. Disable any existing yum repositories configured in the `/etc/yum.repos.d` directory. You can either edit any existing repository files and disable all entries by setting `enabled=0` or you can use `yum-config-manager`, for example:

   ```
   # yum-config-manager --disable *
   ```

 Alternatively, you can rename any of the files in this directory so that they do not use the `.repo` suffix. This change causes the `yum` command to ignore these entries, as shown in the following example:

   ```
   # cd /etc/yum.repos.d
   # for i in *.repo; do mv $i $i.disabled; done
   ```

3. In the `/etc/yum.repos.d` directory, create the `local-yum.repo` file, which contains entries such as the following for an Oracle Linux 7 yum client:

   ```
   [local_ol7_x86_64_ksplice]
   name=Ksplice for Oracle Linux $releasever - $basearch
   baseurl=http://local_oln_mirror/yum/OracleLinux/OL7/ksplice/$basearch/
   gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
   gpgcheck=1
   enabled=1

   [local_ol7_x86_64_ksplice_userspace]
   name=Ksplice aware userspace packages for Oracle Linux $releasever - $basearch
   baseurl=http://local_oln_mirror/yum/OracleLinux/OL7/userspace/ksplice/$basearch/
   gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
   gpgcheck=1
   enabled=1

   [local_ol7_latest]
   name=Oracle Linux $releasever - $basearch - latest
   baseurl=http://local_oln_mirror/yum/OracleLinux/OL7/latest/$basearch/
   gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
   gpgcheck=1
   enabled=1

   [local_ol7_UEKR5_latest]
   name=Unbreakable Enterprise Kernel Release 5 for Oracle Linux $releasever - $basearch - latest
   baseurl=http://local_oln_mirror/yum/OracleLinux/OL7/UEKR5/latest/$basearch/
   gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
   gpgcheck=1
   enabled=1

   [local_ol7_addons]
   name=Oracle Linux $releasever - $basearch - addons
   baseurl=http://local_oln_mirror/yum/OracleLinux/OL7/addons/$basearch/
   ```
Configuring the Ksplice Enhanced Client for Offline Mode

- Replace `local_uln_mirror` with the IP address or resolvable host name of the local ULN mirror.
- To distinguish the local repositories from the ULN repositories, optionally prefix the labels for each entry with a string such as `local_`. Note that you must also edit the uptrack configuration, as described in step 7.
- The previous example configuration enables the `local_ol7_x86_64_ksplice`, `local_ol7_x86_64_ksplice_userspace`, `local_ol7_latest`, `local_ol7 UEKR5_latest`, and `local_ol7_addons` channels.

4. Test the configuration:
 a. Clear the yum metadata cache.
   ```
   # yum clean metadata
   ```
 b. Verify the configuration.
   ```
   # yum repolist
   ```
 If the `yum` commands cannot connect to the local ULN mirror, check that the firewall settings on the local ULN mirror server allow incoming TCP connections to the HTTP port (usually, port 80).

5. If `prelink` is installed, revert all of the prelinked binaries and dependent libraries to the original states and then remove the `prelink` package as follows:
   ```
   # prelink -au
   # yum remove prelink
   ```
 The `prelink` package is installed and enabled by default on Oracle Linux 6, but not on Oracle Linux 7 or Oracle Linux 8.

6. Install the offline version of the enhanced client package.
   ```
   # yum install ksplice-offline
   ```

7. Add a configuration directive to the `/etc/uptrack/uptrack.conf` file to provide the enhanced client with the label of the local, user-space channel in your local yum repository configuration.
   ```
   [User]
   yum_userspace_ksplice_repo_name = local_ol7_x86_64_ksplice_userspace
   ```
 Note
 You can skip this step if you did not use the `local_` prefix for the channel label, and this label is an exact match of the label that is used on ULN. If you used the `local_` prefix or labeled this channel differently, add the following lines, but instead of `local_ol7_x86_64_ksplice_userspace`, specify the same label that you used for the Ksplice Userspace channel, for example:
   ```
   [User]
   yum_userspace_ksplice_repo_name = local_ol7_x86_64_ksplice_userspace
   ```

8. To install offline update packages, install the relevant packages, for example:
   ```
   # yum install ksplice-updates-glibc ksplice-updates-openssl
   ```
 If you are installing the offline updates package for the Xen hypervisor, specify the release in the command, for example:
Removing the Ksplice Enhanced Client Software

yum install ksplice-updates-xen-$RELEASE

For the previous command, $RELEASE is the update package that corresponds to the version of the hypervisor that is currently running, as shown in this example:

yum install ksplice-updates-xen-4.4.4-153.el6

After you have installed these packages, the offline version of the enhanced client behaves exactly the same way as the online version.

9. Update the system to install the Ksplice-aware versions of the user-space libraries:

yum update

To install just the libraries and not any other packages, limit the update to the Ksplice userspace channel, for example, ol7_x86_64_userspace_ksplice channel:

yum --disablerepo=* --enablerepo=ol7_x86_64_userspace_ksplice update

Alternatively, you can use the following command:

yum update *glibc *openssl*

You might also use this client to perform kernel updates in the same way that you are able to use the standard uptrack client:

yum install uptrack-updates-`uname -r`

10. To enable the automatic installation of updates, change the entry in /etc/uptrack/uptrack.conf from no to yes, as shown in the following example:

autoinstall = yes

11. Reboot the system so that the system uses the new libraries.

Note
If you installed updates for the Xen hypervisor, no special configuration is required, and you do not need to reboot the system for the updates to be applied.

2.6 Removing the Ksplice Enhanced Client Software

The following procedure describes how to remove the Ksplice Enhanced client software. For information about switching between online and offline Ksplice Installations, see Section 3.6, “Switching Between Online and Offline Ksplice Uptrack Installation Modes”.

To remove the Ksplice Enhanced client software:

yum -y remove ksplice

To remove the offline version of the Ksplice Enhanced client software from a system, type the following command:

yum -y remove ksplice-offline

To remove the Ksplice-aware versions of the glibc+openssl packages from the system, follow these steps:
1. Unsubscribe the `ol8_x86_64_userspace_ksplice` channel from the Oracle Linux 8 yum repository, the `ol7_x86_64_userspace_ksplice` channel from the Oracle Linux 7 yum repository, and the `ol6_x86_64_userspace_ksplice` channel from the Oracle Linux 6 yum repository.

2. Downgrade the Ksplice-aware channels.

   ```
   # yum downgrade glibc{,-devel,-headers,-common} openssl{,-libs}
   ```

3. You can then remove all of the other Ksplice packages.

2.7 Using the Known Exploit Detection Feature on the Ksplice Enhanced Client

Oracle provides the known exploit detection feature for supported systems that have the Ksplice Enhanced client installed. This feature reports attempted exploitation by known attack vectors. When new Common Vulnerabilities and Exposures (CVEs) are discovered and patched with Ksplice, Oracle may add tripwires to the code that fire when an erroneous condition is triggered, thus enabling you to monitor your systems for suspicious activity.

Note

Because not all security issues have tripwires added, and also because it is possible to trigger tripwires under normal operations, additional analysis of erroneous conditions might be required.

2.7.1 Running Known Exploit Detection on the Ksplice Enhanced Client

You can run the Oracle Ksplice known exploit detection on supported Oracle Linux systems that have the Ksplice Enhanced client installed. This feature works for both the online and offline Ksplice Enhanced client.

To run known exploit detection with the default configuration:

1. Install the `ksplice-known-exploit-detection` package:

   ```
   # yum install ksplice-known-exploit-detection
   ```

2. Add the following lines to the `/etc/uptrack/uptrack.conf` file:

   ```
   [Known-Exploit-Detection]
   enabled = yes
   ```

3. Enable the feature by running the `kernel upgrade` command:

   ```
   # ksplice kernel upgrade
   ```

4. Verify that the feature has been enabled for the current kernel:

   ```
   # cat /proc/sys/kernel/known_exploit_detection
   ```

 If the value is 0 or the file is missing, then the kernel has not enabled kernel exploit detection. If the value is 1, known exploit detection is enabled on the system.

The helper file, `/usr/sbin/log-known-exploit`, is invoked directly by the kernel. To invoke the help manually to check your configuration or perform dry-run tests, use the following command:

```
# /usr/sbin/log-known-exploit --help
```
You can specify the following additional options and arguments with this command:

- **-h, --help** Display the help message and exit.
- **-c, --config** `/etc/example.conf` Specify a compatible configuration file. Defaults to `/etc/log-known-exploit.conf`.
- **-f, --force** Run the command without checking for root permissions.
- **-n, --dry-run** Simulate the output and expected actions that would be performed by the helper file.
- **-d, --dummy** Use dummy data to verify that report logging is configured correctly.

2.7.2 Setting Up Email Alerts for Exploit Attempts

The default configuration for the Oracle Ksplice known exploit detection feature only logs exploit attempts to `syslog` by using the normal `syslog` facilities. To set up email alerts, edit the `/etc/log-known-exploit.conf` file as follows:

```
[email]
enabled: 1
recipients: admin@example.com
```

You can use the same configuration file to specify which tripwire reports should be logged or ignored:

```
[actions]
CVE-2019-12345: report
CVE-2019-12346: ignore
```

To define the logging behavior for tripwires that are not specified, add a value for `default` to the list. For example, to avoid logging any tripwire reports unless they are specified, do the following:

```
[actions]
default: ignore
```

2.7.3 Temporarily Disabling and Re-Enabling Tripwires

For troubleshooting purposes, you can disable or re-enable a specific tripwire manually.

To disable a specific tripwire until the next reboot, remove the CVE reference from the `/proc/sys/kernel/known_exploit_detection_tripwires` file as follows:

```
# echo -n '¬CVE-2019-12345' > /proc/sys/kernel/known_exploit_detection_tripwires
```

To re-enable a specific tripwire, re-append the CVE reference to the same configuration file:

```
# echo -n '+CVE-2019-12345' > /proc/sys/kernel/known_exploit_detection_tripwires
```
Chapter 3 Working With Ksplice Uptrack

Table of Contents

3.1 Installing Ksplice Uptrack From ULN ... 23
3.2 Installing Ksplice Uptrack Within Oracle Cloud Infrastructure .. 24
3.3 Configuring the Ksplice Uptrack Client ... 25
3.4 Managing Ksplice Updates by Using the uptrack-upgrade Command 26
3.5 Removing the Ksplice Uptrack Client Software .. 27
3.6 Switching Between Online and Offline Ksplice Uptrack Installation Modes 27
3.7 Working With the Ksplice Uptrack Client in Offline Mode ... 27
 3.7.1 Configuring Ksplice Uptrack Clients for Offline Mode 28
3.8 Updating the Ksplice Uptrack Client to a Specific Effective Kernel Version 30
3.9 Using the SNMP Plugin for Ksplice Uptrack .. 31
 3.9.1 Installing and Configuring the SNMP Plugin .. 31
 3.9.2 Testing the SNMP Plugin .. 32

This chapter describes how to configure and use Ksplice Uptrack to update packages on a running system. For more information about Ksplice Uptrack, visit http://www.ksplice.com/.

Note

Some of the instructions and examples in this document apply to multiple Oracle Linux releases. The examples use the yum command for compatibility with several supported versions of Oracle Linux. If you are running Oracle Linux 8, you may opt to use the dnf command, as appropriate.

3.1 Installing Ksplice Uptrack From ULN

If you have an Oracle Linux Premier support subscription, a Premier Limited subscription, or an Oracle Premier Support for Systems and Operating Systems support subscription, you are automatically registered to use Oracle Ksplice. You can configure your registered systems to use Ksplice Uptrack through the Ksplice for Oracle Linux channel on ULN by using the yum command. See Section 1.3.2, "About Oracle Ksplice and ULN Registration".

The system on which you want to install Ksplice Uptrack must also meet the following requirements:

- Must have access to the Internet.
- Must be registered with ULN.
- Must be running a supported Oracle Linux release, with a supported version of either UEK or RHCK installed. You can verify the kernel version by using the uname -a command. See Section 1.1.2, "Supported Kernels".
- The kernel that is currently running is also the kernel you want to update, as Ksplice Uptrack applies updates only to the running kernel.

To install Ksplice Uptrack from ULN:

1. Log in as the root user on the system.
2. If you use an Internet proxy, configure the HTTP and HTTPS settings for the proxy in the shell.
 - For the sh, ksh, or bash shells, use commands such as the following:
For the `csh` shell, use commands such as the following:

```bash
setenv http_proxy=http://proxy_URL:http_port
setenv https_proxy=http://proxy_URL:https_port
```

3. Using a browser, log in at https://linux.oracle.com with your ULN user name and password, then do the following:

 a. On the Systems tab, click the link that is named for your system in the list of registered machines.
 b. On the System Details page, click **Manage Subscriptions**.
 c. On the System Summary page, from the list of available channels, select the appropriate Ksplice for Oracle Linux channel your Oracle Linux release system’s architecture (i386 or x86_64).
 d. Click the right arrow (>) to move your selection to the list of subscribed channels.
 e. Save the subscription and log out of ULN.

4. On your system, use the `yum` command to install the `uptrack` package.

   ```bash
   # yum install -y uptrack
   ```

 The access key for Ksplice Uptrack is retrieved from ULN and added to `/etc/uptrack/uptrack.conf`, for example:

   ```ini
   [Auth]
   accesskey = 0e1859ad8aeaf0b4306349142ce9160353297daee30240dab4d61f4ea4e59b
   ```

5. To enable automatic installation of updates, change the value of the `autoinstall` entry in the `/etc/uptrack/uptrack.conf` file from `no` to `yes`:

   ```bash
   autoinstall = yes
   ```

 For information about configuring Ksplice Uptrack, see Section 3.3, “Configuring the Ksplice Uptrack Client”.

 For information about managing Ksplice updates, see Section 3.4, “Managing Ksplice Updates by Using the uptrack-upgrade Command”.

3.2 Installing Ksplice Uptrack Within Oracle Cloud Infrastructure

If you are an Oracle Cloud Infrastructure customer, you can use Oracle Ksplice on any of the Oracle Linux, Red Hat Enterprise Linux (RHEL), CentOS, and Ubuntu systems that are hosted in your cloud environment. You do not need to register with ULN to use Ksplice.

Note

The following installation procedure is only required for Oracle Cloud Infrastructure instances that were launched prior to August 25, 2017.

For Oracle Cloud Infrastructure instances launched on or after August 25, 2017, Ksplice is installed by default. For these instances, you only need to run Ksplice to install the available Ksplice patches.
For information about configuring the Ksplice Uptrack client and managing Ksplice updates, see Section 3.3, “Configuring the Ksplice Uptrack Client” and Section 3.4, “Managing Ksplice Updates by Using the uptrack-upgrade Command”.

Also, for Oracle Autonomous Linux images, Ksplice is installed and configured by default to run automatic updates. For more information, see https://docs.cloud.oracle.com/en-us/iaas/Content/Compute/Tasks/installingconfiguringksplice.htm.

To install Ksplice Uptrack on an instance that is running on Oracle Cloud Infrastructure:

1. Connect your Linux instance by using a Secure Shell.

 For instructions, see https://docs.cloud.oracle.com/en-us/iaas/Content/Compute/Tasks/accessinginstance.htm.

2. Access the instance by using the following command:

   ```
   ssh -l opc@public-ip-address
   ```

 In the previous command, `public-ip-address` is the instance IP address that you retrieved from the Console. For more information, see https://docs.cloud.oracle.com/en-us/iaas/Content/GSG/Tasks/launchinginstance.htm#Getting.

3. Run the following command to sudo to `root`:

   ```
   sudo bash
   ```

4. Download the Ksplice installer for Oracle Cloud Infrastructure.

   ```
   ```

5. After the script is downloaded, install Ksplice.

   ```
   sh install-uptrack-oc
   ```

3.3 Configuring the Ksplice Uptrack Client

The configuration file for both the Ksplice Uptrack client and the Ksplice Enhanced client is `/etc/uptrack/uptrack.conf`. You can modify this file to configure a proxy server, install updates automatically at boot time, and check for and apply new updates automatically.

If your system is registered with the Ksplice Uptrack repository, the client communicates with the Uptrack server by connecting to `https://updates.ksplice.com:443`. You can either configure your firewall to allow the connection through port 443, or you can configure the client to use a proxy server. To configure the client to use a proxy server, set the following entry in the `/etc/uptrack/uptrack.conf` file:

```
https_proxy = https://proxy_URL:https_port
```

You receive an email notification when Ksplice updates are available for your system.

To instruct the client to install all updates automatically, as they become available, set the following entry in the `/etc/uptrack/uptrack.conf` file:

```
autoupdate = yes
```
Managing Ksplice Updates by Using the uptrack-upgrade Command

Note
Enabling the automatic installation of updates does not automatically update the Ksplice client itself. Oracle notifies you by email when you can upgrade the Ksplice software by using the `yum` command.

Setting the `autoinstall` entry value to `yes` also installs updates automatically at boot time. When you boot the system, the `/etc/init.d/uptrack` script reapplies the installed Ksplice updates.

To install all available updates at boot time, uncomment the following entry in the `/etc/uptrack/uptrack.conf` file:

```
upgrade_on_reboot = yes
```

Note
The `upgrade_on_reboot` setting is not implemented for user-space updates.

3.4 Managing Ksplice Updates by Using the uptrack-upgrade Command

Ksplice patches are stored in `/var/cache/uptrack`. Following a reboot, Ksplice automatically re-applies these patches very early in the boot process, before the network is configured, so that the system is hardened before any remote connections can be established.

To list all of the available Ksplice updates, use the `uptrack-upgrade` command:

```
# uptrack-upgrade -n
```

Install all of the available Ksplice updates as follows:

```
# uptrack-upgrade -y
```

After Ksplice has applied updates to a running kernel, the kernel has an effective version that is different from the original boot version displayed by the `uname -a` command.

Use the `uptrack-uname` command to display the effective version of the kernel:

```
# uptrack-uname -r
```

The `uptrack-uname` command supports commonly used `uname` flags, including `-a` and `-r`, and also provides a way for applications to detect that the kernel has been patched. The effective version is based on the version number of the latest patch that Ksplice has applied to the kernel.

The following examples show ways in which you can view information about Ksplice updates and administer Ksplice updates on a system.

View the updates that Ksplice has made to the running kernel:

```
# uptrack-show
```

View the updates that are available for installation:

```
# uptrack-show --available
```

Remove all of the updates from the kernel:

```
# uptrack-remove --all
```
Removing the Ksplice Uptrack Client Software

Prevent Ksplice from reapplying the updates at the next system reboot, create the empty file /etc/uptrack/disable:

```bash
# touch /etc/uptrack/disable
```

Alternatively, you can specify the `nouptrack` argument as a parameter on the boot command line when you next reboot the system.

3.5 Removing the Ksplice Uptrack Client Software

You can remove the Ksplice Uptrack software from a system by using the following command:

```bash
# yum -y remove uptrack
```

Remove the offline Ksplice Uptrack software from a system as follows:

```bash
# yum -y remove uptrack-offline
```

3.6 Switching Between Online and Offline Ksplice Uptrack Installation Modes

To switch from one Ksplice client software version (or mode) to another Ksplice software version, for example, switch from a Ksplice online installation to a Ksplice offline installation, you must first remove the existing Ksplice client software from the system. You can then install the new version of the Ksplice client software.

Caution

Failure to remove an existing Ksplice client software version prior to installing a new Ksplice client software version results in transaction check errors during the package installation process.

For example, if you have the Ksplice Uptrack client software installed on the system and you want to install the Ksplice Offline Enhanced client software, you would need to first remove the Ksplice Uptrack client software, and then install the Ksplice Offline Enhanced client software as follows:

```bash
# yum remove uptrack ksplice-tools
# yum install ksplice-offline
```

To switch from an offline installation to an online installation, for example, switch from the Ksplice Uptrack Offline client software to the Ksplice Uptrack client software, you would run the following commands:

```bash
# yum remove ksplice-offline ksplice-tools
# yum install uptrack
```

3.7 Working With the Ksplice Uptrack Client in Offline Mode

The Ksplice Offline client eliminates the need for having a server on your intranet that has a direct connection to the Oracle Uptrack server. Also, a Ksplice Offline client does not require a network connection to be able to apply the update package to the kernel. For example, you could use the `yum` command to install the update package directly from a memory stick. The following tasks describe how to configure systems to use the Ksplice Offline client.

Note

You cannot use the web interface or the Ksplice Uptrack API to monitor systems that are running Ksplice Offline client, as such systems are not registered with https://status-ksplice.oracle.com/static/landing.html.
3.7.1 Configuring Ksplice Uptrack Clients for Offline Mode

Prior to configuring a Ksplice Offline client, you must set up a local ULN mirror that can act as a Ksplice mirror. See Section 1.3.4, “Configuring a Local ULN Mirror to Act as a Ksplice Mirror”. After you set up a local ULN mirror that can act as a Ksplice mirror, you can configure your other systems to receive yum and Ksplice updates.

You can also configure Ksplice Offline Clients by creating software channels in Spacewalk that can act as a Ksplice mirror. For instructions, see Chapter 12 in the Spacewalk for Oracle® Linux: Client Life Cycle Management Guide for Release 2.10.

To configure a system as a Ksplice Offline client by setting up a local ULN mirror, do the following:

1. Import the GPG key:

   ```
   # rpm --import /usr/share/rhn/RPM-GPG-KEY
   ```

2. Set up a local ULN mirror:

 • Disable any existing yum repositories configured in the /etc/yum.repos.d directory. You can either edit any existing repository files and disable all entries by setting enabled=0 or you can use yum-config-manager:

   ```
   # yum-config-manager --disable *
   ```

 Alternately, you can rename any of the files in this directory so that they do not use the .repo suffix. This causes yum to ignore these entries. For example:

   ```
   # cd /etc/yum.repos.d
   # for i in *.repo; do mv $i $i.disabled; done
   ```

 • In the /etc/yum.repos.d directory, create the file local-yum.repo, which contains entries such as the following for an Oracle Linux 7 yum client:

   ```
   [local_ol7_x86_64_ksplice]
   name=Ksplice for Oracle Linux $releasever - $basearch
   baseurl=http://local_uln_mirror/yum/OracleLinux/OL7/ksplice/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
   enabled=1

   [local_ol7_latest]
   name=Oracle Linux $releasever - $basearch - latest
   baseurl=http://local_uln_mirror/yum/OracleLinux/OL7/latest/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
   enabled=1

   [local_ol7_UEKR5_latest]
   name=Unbreakable Enterprise Kernel Release 5 for Oracle Linux $releasever - $basearch - latest
   baseurl=http://local_uln_mirror/yum/OracleLinux/OL7/UEKR5/latest/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
   enabled=1

   [local_ol7_addons]
   name=Oracle Linux $releasever - $basearch - addons
   baseurl=http://local_uln_mirror/yum/OracleLinux/OL7/addons/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
   enabled=1
   ```
Configuring Ksplice Uptrack Clients for Offline Mode

- To distinguish the local repositories from the ULN repositories, prefix the labels of their entries with a string such as `local_`.

- Replace `local_uln_mirror` with the IP address or resolvable host name of the local ULN mirror.

- The example configuration enables the `local_ol7_x86_64_ksplice`, `local_ol7_latest`, `local_ol7_UEKR5_latest`, and `local_ol7_addons` channels. Note that the Ksplice Offline client package is unable to install user-space updates, so you should not enable any `*_userspace_ksplice` channels unless you intend to use the offline version of the Ksplice Enhanced client.

3. Install the Ksplice Offline client package:

```
# yum -y install uptrack-offline
```

4. Test the configuration:

 a. Clear the yum metadata cache.

      ```
      # yum clean metadata
      ```

 b. Verify the configuration.

      ```
      # yum repolist
      ```

 Note

 If the `yum` command cannot connect to the local ULN mirror, check that the firewall settings on the local ULN mirror server allow incoming TCP connections to the HTTP port (usually, port 80).

5. Install the Ksplice updates that are available for the kernel.

```
# yum -y install uptrack-updates-`uname -r`
```

For Oracle Linux 5, you would use the following command:

```
# yum -y install uptrack-updates-`uname -r`.`uname -m`
```

As new Ksplice updates are made available, use the same command to pick up and apply these updates. You should set up an `anacron` script to perform this task. For example, the following script named `uptrack-updates` in `/etc/cron.daily` would run one time daily:

```
#!/bin/sh
yum -y install uptrack-updates-`uname -r`
exit 0
```

Important

The script must be executable and be owned by `root`. Also, you *must* include the `--` option with the `yum` command when using a script; otherwise, the command hangs and waits for user input.

To display information about Ksplice updates, use the `rpm -qa | grep uptrack-updates` and `uptrack-show` commands.
3.8 Updating the Ksplice Uptrack Client to a Specific Effective Kernel Version

Under some circumstances, you might want to limit the set of updates that `uptrack-upgrade` installations. For example, the security policy at your site might require a senior administrator to approve Ksplice updates before you can install these updates on production systems. In such cases, you can direct `uptrack-upgrade` to upgrade to a specific effective kernel version instead of the latest available version.

The options for selecting a specific effective version are only available in the Ksplice Offline client for use with the offline update RPM packages.

Note

Oracle Ksplice is intended to provide the latest security and stability fixes, and the goal is to get the effective kernel up-to-date as soon as possible. Choosing a specific effective kernel version is only intended to allow the offline update RPM package to be updated without immediately applying the latest available patches bundled in that package. This enables production systems to remain temporarily at a tested update level, while the latest updates are tested in an integration or UAT environment.

To update a system to a specific effective kernel version:

1. Install the `uptrack-updates` package for the current kernel.
   ```
   # yum -y install uptrack-updates-`uname -r`
   ```
 For an Oracle Linux 5 client, use the following command:
   ```
   # yum -y install uptrack-updates-`uname -r`.`uname -m`
   ```

2. Use the `uptrack-uname -r` command to display the current effective kernel version:
   ```
   # uptrack-uname -r
   ```

3. To list all of the effective kernel versions that are available, specify the `--list-effective` option to the `uptrack-upgrade` command, for example:
   ```
   # uptrack-upgrade --list-effective
   Available effective kernel versions:
   3.8.13-44.1.1.el6uek.x86_64/#2 SMP Wed Sep 10 06:10:25 PDT 2014
   3.8.13-44.1.3.el6uek.x86_64/#2 SMP Wed Oct 15 19:53:10 PDT 2014
   3.8.13-44.1.4.el6uek.x86_64/#2 SMP Wed Oct 29 23:58:06 PDT 2014
   3.8.13-44.1.5.el6uek.x86_64/#2 SMP Wed Nov 12 14:23:31 PST 2014
   3.8.13-55.el6uek.x86_64/#2 SMP Mon Dec 1 11:32:40 PST 2014
   3.8.13-55.1.1.el6uek.x86_64/#2 SMP Thu Dec 11 00:20:49 PST 2014
   ```

4. Remove the installed updates to revert the effective kernel version to the earliest that is available, which is 44.1.1 in the following example:
   ```
   # uptrack-remove --all
   ...
   # uptrack-uname -r
   3.8.13-44.1.1.el6uek.x86_64
   ```

5. You can set the effective kernel version that you want the system to use by using either of the following methods:
 - Specify the `--effective` option to the `uptrack-upgrade` command.
Using the SNMP Plugin for Ksplice Uptrack

For example, if you want to update from 44.1.1 to 44.1.5 instead of updating to the latest 55.1.1, use the `--effective` option to specify 44.1.5:

```bash
# uptrack-upgrade --effective="3.8.13-44.1.5.el6uek.x86_64/#2 SMP Wed Nov 12 14:23:31 PST 2014"
...
Effective kernel version is 3.8.13-44.1.5.el6uek
# uptrack-uname -r
3.8.13-44.1.5.el6uek.x86_64
```

This method is suitable for setting the effective kernel version on individual systems.

- Use the `effective_version` option in the `/etc/uptrack/uptrack.conf` file to set an effective package version for the `uptrack-upgrade` command. This method works the same as specifying `--effective` on the command line.

Because `uptrack-upgrade` runs automatically whenever you update the `uptrack-updates` package on a system, the following entry would limit the effective kernel version to 44.1.5:

```bash
effective_version = 3.8.13-44.1.5.el6uek.x86_64/#2 SMP Wed Nov 12 14:23:31 PST 2014
```

This method is convenient for setting the effective version for a package on multiple production systems, where the content of the `/etc/uptrack/uptrack.conf` file can be obtained from a centrally maintained master copy.

3.9 Using the SNMP Plugin for Ksplice Uptrack

The SNMP plugin for Ksplice enables you to use Oracle Enterprise Manager to monitor the status of Ksplice on your systems. It also works with any monitoring solution that is compatible with SNMP.

3.9.1 Installing and Configuring the SNMP Plugin

The following prerequisites apply to the system that you want to monitor:

- The `net-snmp` package must be installed.
- The `net-snmp-utils` package must be installed if you want to be able to test the configuration using the `snmpwalk` command.
- The `snmpd` service must be configured to start automatically.
- SELinux must either be disabled or set to permissive mode on the system.

To install and configure the SNMP plugin on a system that you want to monitor using SNMP, follow these steps:

1. Subscribe the system to the appropriate Ksplice channel for the installed Oracle Linux distribution and system architecture, for example, `ol6_x86_64_ksplice` for Oracle Linux 6 on x86_64.
2. As the `root` use, install the `kspliace-snmp-plugin` package on the system:

   ```bash
   # yum -y install kspliace-snmp-plugin
   ```

3. (Optional) If you plan to test the configuration by using the `snmpwalk` command, install the `net-snmp-utils` package as follows:

   ```bash
   # yum -y install net-snmp-utils
   ```

4. Configure the system to use the SNMP plugin by editing the `/etc/snmp/snmpd.conf` file.
The following example shows how the entries in this file might look on an Oracle Linux 6 system:

```plaintext
# Setting up permissions
# ======================
com2sec local localhost public
com2sec mynet source public

group local v1 local
group local v2c local
group local usm local
group mynet v1 mynet
group mynet v2c mynet
group mynet usm mynet

view all included .1 80

access mynet "" any noauth exact all none none
access local "" any noauth exact all all none

syslocation Oracle Linux 6
syscontact sysadmin <root@localhost>

# Load the plugin
# ===============
dlmod kspliceUptrack /usr/lib/ksplice-snmp/kspliceUptrack.so
```

a. In the `com2sec mynet` community entry, replace `source` with the IP address or resolvable host name of the server that hosts the SNMP monitoring software, or with a subnet address represented as `IP_address/netmask`, for example, `com2sec mynet 192.168.10.0/24 private`.

For IPv6 configuration, specify an IPv6 address and netmask to a `com2sec6 mynet` community entry, for example, `com2sec6 mynet fec0::/64 private`.

b. In the `syslocation` entry, replace the argument for the identifier of the system being monitored.

c. In the `dlmod` entry that loads the `kspliceUptrack.so` plugin, replace the `lib` path element with `lib` on a 32-bit system and `lib64` on a 64-bit system.

This sample configuration file is suitable for the purposes of testing.

5. Restart the SNMP service:

```plaintext
# systemctl restart snmpd
```

For Oracle Linux 5 and Oracle Linux 6 clients, use the following command:

```plaintext
# service snmpd restart
```

For information about configuring SNMP, refer to the documentation at http://www.net-snmp.org/docs/readmefiles.html. See also the `snmpd(8)` and `snmpd.conf(5)` manual pages.

3.9.2 Testing the SNMP Plugin

You can use the `snmpwalk` command in the following ways to check information and test the SNMP plugin.

Display the installed version of Ksplice as follows:

```plaintext
$ snmpwalk -v 1 -c public -O e localhost KSPLICE-UPTRACK-MIB::ksspliceVersion
KSPLICE-UPTRACK-MIB::ksspliceVersion.0 = STRING: 1.2.12
```
Testing the SNMP Plugin

To check whether all of the available updates for a kernel have been installed:

```
$ snmpwalk -v 1 -c public -O e localhost KSPLICE-UPTRACK-MIB::kspliceStatus
KSPLICE-UPTRACK-MIB::kspliceStatus.0 = STRING: outofdate
```

In the previous example, the kernel is shown as being out of date.

Display and compare the kernel that is installed on disk with the Ksplice effective version as follows:

```
$ snmpwalk -v 1 -c public -O e localhost KSPLICE-UPTRACK-MIB::kspliceBaseKernel
KSPLICE-UPTRACK-MIB::kspliceBaseKernel.0 = STRING: 2.6.18-274.3.1.el5
$ snmpwalk -v 1 -c public -O e localhost KSPLICE-UPTRACK-MIB::kspliceEffectiveKernel
KSPLICE-UPTRACK-MIB::kspliceEffectiveKernel.0 = STRING: 2.6.18-274.3.1.el5
```

In the output of the previous example, the base kernel version and the effective kernel version are the same, which implies that no updates have been applied.

Display a list of all of the updates that have been applied to the kernel as follows:

```
$ snmpwalk -v 1 -c public -O e localhost KSPLICE-UPTRACK-MIB::ksplicePatchTable
```

In the previous example, no updates have been applied, which confirms why the base and effective kernel versions are the identical and why the kernel is out of date.

Display a list of updates that can be installed as follows:

```
$ snmpwalk -v 1 -c public -O e localhost KSPLICE-UPTRACK-MIB::kspliceAvailTable
KSPLICE-UPTRACK-MIB::kspliceAvailIndex.0 = INTEGER: 0
KSPLICE-UPTRACK-MIB::kspliceAvailIndex.1 = INTEGER: 1
KSPLICE-UPTRACK-MIB::kspliceAvailIndex.2 = INTEGER: 2
...
KSPLICE-UPTRACK-MIB::kspliceAvailDesc.24 = STRING: CVE-2011-4348: Socking locking race in SCTP.
KSPLICE-UPTRACK-MIB::kspliceAvailDesc.25 = STRING: CVE-2011-1020, CVE-2011-3637: Information leak, DoS in ...
```

After fully upgrading your kernel by using Ksplice Uptrack, you can run the following `snmpwalk` commands to verify that the kernel is up to date, that there are no updates available for installation, and also that the patches that have been applied:

```
$ snmpwalk -v 1 -c public -O e localhost KSPLICE-UPTRACK-MIB::kspliceStatus
KSPLICE-UPTRACK-MIB::kspliceStatus.0 = STRING: uptodate
$ snmpwalk -v 1 -c public -O e localhost KSPLICE-UPTRACK-MIB::kspliceAvailTable
$ snmpwalk -v 1 -c public -O e localhost KSPLICE-UPTRACK-MIB::ksplicePatchTable
KSPLICE-UPTRACK-MIB::ksplicePatchIndex.0 = INTEGER: 0
KSPLICE-UPTRACK-MIB::ksplicePatchIndex.1 = INTEGER: 1
KSPLICE-UPTRACK-MIB::ksplicePatchIndex.2 = INTEGER: 2
...
```
Chapter 4 Working With the Ksplice Uptrack API

Table of Contents

4.1 About the Ksplice Uptrack API ... 35
4.2 Viewing Your API User Name and API Key ... 35
4.3 Generating a New API Key ... 35
4.4 Installing the API Command-Line Tools ... 36
4.5 Ksplice Uptrack API Commands ... 36
 4.5.1 About the uptrack-api-authorize Command 36
 4.5.2 About the uptrack-api-describe Command 36
 4.5.3 About the uptrack-api-list Command ... 37
 4.5.4 Specifying the username and api_key Variables 37
 4.5.5 Specifying a Proxy ... 37
4.6 About the API Implementation ... 38
 4.6.1 API Version .. 38
 4.6.2 API Authentication ... 38
 4.6.3 API Request Format ... 38
 4.6.4 Supported API Requests .. 38
 4.6.5 Interaction Sample .. 40
4.7 Configuring the check_uptrack Nagios Plugin .. 41
4.8 Using the Nagios Plugins .. 42

This chapter describes the programming interfaces for Ksplice Uptrack. For more information about the Ksplice Uptrack API, visit http://www.ksplice.com/.

4.1 About the Ksplice Uptrack API

The Ksplice Uptrack API is a RESTful web API that enables you to query the status of machines that are running Ksplice Uptrack. The API provides information about the updates that your machines have, as well as status of any out-of-date, inactive, or unsupported machines.

You can use the command-line tools that are included with the Python bindings; or, you can write your own custom scripts by using the bindings. You can also write your own interface by using HTTP requests. The Python bindings include the check_uptrack and check_uptrack_local plugins for Nagios. These plugins enable you to monitor the status of your machines.

Note

You cannot use the Ksplice Uptrack API to monitor machines that are running Ksplice Offline client because these systems are not registered with https://uptrack.ksplice.com.

4.2 Viewing Your API User Name and API Key

You can view your API user name and API key by logging into https://uptrack.ksplice.com and then selecting the Settings tab.

4.3 Generating a New API Key

To generate a new API key:

1. Log in to https://uptrack.ksplice.com and select the Settings tab.
2. On the Settings page, select the Generate a new API key? check box and click Save Changes.

![Note]
This action invalidates your existing key.

4.4 Installing the API Command-Line Tools

The API command-line tools are included with the Python bindings for the API in the python-ksplice-uptrack package. This package is available in the Ksplice for Oracle repositories on ULN at linux.oracle.com or the Ksplice Uptrack for Oracle Linux repositories at www.ksplice.com.

Install the command-line API tools as follows:

1. Ensure that you have a valid Oracle Linux Premier subscription, a Premier Limited subscription, or an Oracle Premier Support for Systems and Operating Systems subscription.

 The previously listed subscriptions automatically register your system to use Oracle Ksplice. See Section 1.3.2, “About Oracle Ksplice and ULN Registration” for more details.

2. Install the python-ksplice-uptrack package.

   ```
   # yum install -y python-ksplice-uptrack
   ```

 The Python bindings are installed in the Python site-packages directory, which is typically /usr/lib/python2.6/site-packages/ksplice. The API tools are installed in the /usr/bin directory.

 The Nagios plugins are installed in /usr/lib/nagios/plugins.

4.5 Ksplice Uptrack API Commands

The Python bindings include the following commands, which cover common uses of the Ksplice Uptrack API.

4.5.1 About the uptrack-api-authorize Command

The uptrack-api-authorize command uses the authorize API call to change the authorization for a single machine, as shown in the following example:

```
$ uptrack-api-authorize -u api_username -k api_key uuid deny
Successfully denied access for uuid.
$ uptrack-api-authorize -u api_username -k api_key uuid allow
Successfully allowed access for uuid.
```

![Note]
To view your API user name and API key, log into https://uptrack.ksplice.com and then select the Settings tab.

The UUID of a registered machine is stored in /var/lib/uptrack/uuid on the system. An example of a UUID is e82ba0ae-ad0a-4b92-a776-62b502bfd29d.

4.5.2 About the uptrack-api-describe Command

The uptrack-api-describe command uses the describe API call to get detailed information about a single machine, which is specified by its UUID, for example:
About the uptrack-api-list Command

The `uptrack-api-list` command uses the `machines` API call to return a list of all of your machines and their statuses, for example:

```
$ uptrack-api-list -u api_username -k api_key
  - dev1.mydom.com (192.168.1.102): outofdate
  - qa1.mydom.com (192.168.1.103): outofdate (inactive)
  - prod1.mydom.com (192.168.1.100): uptodate
  - prod2.mydom.com (192.168.1.101): uptodate
```

4.5.4 Specifying the username and api_key Variables

If you set the `username` and `api_key` variables in the `/etc/uptrack-api.conf` file, you do not need to supply these variables as command-line arguments to the scripts.

Place the variables under an `[uptrack]` section heading, for example:

```
[uptrack]
username = jo.admin@mydom.com
api_key  = 3af3c2c1ec407feb0fdc9fc1d8c4460c
```

You can also set the `username` and `api_key` variables in the `UPTRACK_API_USERNAME` and `UPTRACK_API_KEY` environment variables, for example:

```
$ export UPTRACK_API_USERNAME=jo.admin@mydom.com
$ export UPTRACK_API_KEY=3af3c2c1ec407feb0fdc9fc1d8c4460c
```

4.5.5 Specifying a Proxy

If you access the Internet by using a proxy, specify the connection information in the `[uptrack]` section of the `/etc/uptrack-api.conf` file, as shown in the following example:

```
https_proxy = [protocol://][username:password@]proxy[:port]
```

In the previous example, `protocol` is either specified as `http` or `https`, `username` and `password` authenticate you with the proxy (if required), and `proxy` and `port` are the host name/IP address and port number that you use to connect to the proxy server, respectively.

The following example shows how you might specify this connection information:
About the API Implementation

4.6 About the API Implementation

The following information pertains to the implementation of the Ksplice Uptrack API.

4.6.1 API Version

This document describes version 1 of the API. All requests go to paths that begin with /api/1/.

4.6.2 API Authentication

Authentication to the Uptrack API server uses a user name and an API key that are specified in custom HTTP headers. Specifically, all requests must include X-Uptrack-User and X-Uptrack-Key HTTP headers that include the API user name and API key of the user who is making the request.

4.6.3 API Request Format

API requests or responses include JSON-encoded data in the request body. Requests should set a Content-Type header of application/json. Similarly, any requests that expect a response containing content should include an Accept: header that contains the value application/json.

These headers are not required currently, as the API supports only JSON-encoded data, but future versions of the API might support additional data-encoding formats.

4.6.4 Supported API Requests

The following are descriptions of the API requests that are currently supported.

4.6.4.1 GET /api/1/machines

The GET /api/1/machines API request returns a list of all of the registered machines. This list includes inactive machines that have uninstalled Uptrack or any machines that have not reported to the Uptrack server recently. The list does not include machines that you have hidden by using the web interface. The response shows a list of machines, which are represented as dictionaries, as shown in the following example:

```json
{
    hostname: uptrack.example.com,
    ip: 184.73.248.238,
    last_seen: '2010-04-26T18:03:45Z',
    uuid: e82ba0ae-ad0a-4b92-a776-62b502baf29d,
    active: true,
    status: uptodate,
    authorization: allowed,
    autoinstall: true,
    mmap_min_addr: 4096,
    uptrack_client_version: 1.2.1
}
```

The following fields are provided in the response:

- **status**
 - Contains one of the following values:
 - **outofdate**
 - Additional updates are available for installation on the machine.
Supported API Requests

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsupported</td>
<td>The machine's kernel is not supported by Ksplice Uptrack.</td>
</tr>
<tr>
<td>uptodate</td>
<td>All available updates have been installed on the machine.</td>
</tr>
<tr>
<td>authorization</td>
<td>Contains one of the following values:</td>
</tr>
<tr>
<td>allowed</td>
<td>The machine is allowed to communicate with the Uptrack servers and to receive updates.</td>
</tr>
<tr>
<td>denied</td>
<td>The machine has been denied access to the Uptrack servers via the web interface, <code>uptrack-api-authorize</code>, or the <code>authorize</code> API call.</td>
</tr>
<tr>
<td>pending</td>
<td>This account has the default deny policy set for new machines, and the machine has not yet been authorized.</td>
</tr>
<tr>
<td>autoinstall</td>
<td>Indicates whether <code>autoinstall</code> is set on the machine.</td>
</tr>
<tr>
<td>mmap_min_addr</td>
<td>Is the value of <code>/proc/sys/vm/mmap_min_addr</code> or <code>None</code> for clients prior to version 1.0.3.</td>
</tr>
<tr>
<td>uptrack_client_version</td>
<td>Is the version of the Uptrack client that the machine is running.</td>
</tr>
</tbody>
</table>

4.6.4.2 GET /api/1/machine/$UUID/describe

The `GET /api/1/machine/$UUID/describe` API request returns information about the machine with the specified UUID. The UUID of a machine is stored in `/var/lib/uptrack/uuid` and can be retrieved by using the `machines` query. The response is a dictionary of the same form that `GET /api/1/machines` returns, except that it includes the following additional fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>effective_kernel</td>
<td>Ksplice has applied all of the important security and reliability updates that are needed to bring the machine into line with this kernel version.</td>
</tr>
<tr>
<td>group</td>
<td>The group to which the machine is assigned. You can also use the web interface to manage machine groups.</td>
</tr>
<tr>
<td>installed_updates</td>
<td>A list of 2-element dictionaries of the form <code>{ ID: update_id, Name: update_name }</code> that represent the updates currently installed on the machine. <code>update_id</code> is the ID code of an update (for example, <code>diptbg4f</code>) and <code>update_name</code> is a short descriptive name for the update (for example, <code>CVE-2010-0415: Information Leak in sys_move_pages</code>).</td>
</tr>
<tr>
<td>original_kernel</td>
<td>The kernel version of the machine before any Ksplice updates were applied.</td>
</tr>
<tr>
<td>steps</td>
<td>A list of two-element lists of the form <code>[action, { ID: update_id, Name: update_name }]</code>, which represent the updates that need to be installed or removed to bring the machine up to date. For the</td>
</tr>
</tbody>
</table>
4.6.4.3 POST /api/1/machine/$UUID/authorize

The POST /api/1/machine/$UUID/authorize API request authorizes the machine with the specified UUID to access the Uptrack service if you have configured your account to deny access to new machines.

The content is a dictionary of the following form:

```json
{authorized: boolean}
```

Specify the boolean argument as true to authorize the machine or false to revoke authorization.

4.6.4.4 POST /api/1/machine/$UUID/group

The POST /api/1/machine/$UUID/group API request changes the group of the machine with the specified UUID.

The content is a dictionary that uses the following form:

```json
{group_name: string}
```

In the previous example, string is the name of the new group. The group is created if it does not already exist. Note that if the account does not have a machine with the specified UUID, the request results in an HTTP 404 error.

To remove a machine from a group, you can set the group to a different name, or you can specify an empty string for no group.

4.6.5 Interaction Sample

The following example, which is provided as a reference only, shows an interaction that might take place when using the Uptrack API.

This conversation takes place with the server uptrack.api.ksplice.com over port 443 by using the Secure Sockets Layer (SSL) protocol.

The following is a request for a list of registered machines that is made to the server:

```
GET /api/1/machines HTTP/1.1
Host: uptrack.api.ksplice.com
Accept: application/json
X-Uptrack-User: jo.admin@mydom.com
X-Uptrack-Key: 3af3c2c1ec407feb0fdc9fc1d8c4460c
```

The server authenticates the request and responds with a list of the machines, for example:

```
HTTP/1.0 200 OK
Date: Mon, 03 May 2010 21:09:48 GMT
Content-Type: application/json

[{"status": "uptodate", "uid": "e82ba0ae-ad0a-4b92-a776-62b502bf29d", "active": true, "ip": "192.168.248.238", "hostname": "utclient.mydom.com", "authorization": "allowed", "autoinstall": true, "last_seen": "2010-04-26T18:03:43Z", "mmap_min_addr": 4096, "uptrack_client_version": "1.2.1"}]
```
4.7 Configuring the check_uptrack Nagios Plugin

Note

The Nagios software does not include the python-ksplice-uptrack package. For information about obtaining and using Nagios, visit the official Nagios website at http://www.nagios.org.

Configure the check_uptrack Nagios plugin as follows:

1. Set the username and api_key variables in the configuration file /etc/uptrack-api.conf under an [uptrack] section heading, for example:

```
[uptrack]
username = jo.admin@mydom.com
api_key = 3af3c2c1ec407feb0f0dc9fc1d8e4460c
```

2. If you access the Internet by using a proxy, specify the connection information in the [uptrack] section of /etc/uptrack-api.conf:

```
https_proxy = [protocol://][username:password@]proxy[:port]
```

In the previous example, protocol is http or https, username and password authenticate you with the proxy (if required), and proxy and port are host name/IP address and port that you use to connect to the proxy server, respectively. The connection information you specify might be similar to the following:

```
https_proxy = http://proxy.example.com:3128/
```

The proxy must support HTTPS connections.

3. Configure the check_uptrack plugin in the Nagios configuration file, which is usually /usr/local/nagios/etc/nagios.cfg.

The following minimal configuration enables you to run the plugin:

```
# Dummy host with which to associate the Uptrack service
define host {
    host_name                       uptrack-service
    notifications_enabled           0
    max_check_attempts              1
    notification_interval           0
    check_period                    never
    contacts                        server-admins
}

define service {
    host_name                       uptrack-service
    service_description             Ksplice Uptrack Update Status
    check_command                   check_uptrack
    notifications_enabled           1
    normal_check_interval           60
    retry_check_interval            15
    max_check_attempts              4
    notification_options            w,c,r
    contacts                        server-admins
}

define command {
    command_name     check_uptrack
    command_line     /usr/lib/nagios/plugins/check_uptrack
}
4.8 Using the Nagios Plugins

To monitor all of your machines by using the Nagios plugins, run the following command:

```
/usr/lib/nagios/plugins/check_uptrack
```

The previous command produces a summary of your machines in the standard Nagios plug-in format, as shown in the following example:

```
2 machines are OUTOFDATE!|uptodate=1280;outofdate=1;unsupported=0;inactive=3
 prod1.mydom.com (192.168.1.1) is OUTOFDATE
 prod2.mydom.com (192.168.1.2) is OUTOFDATE
```

If you specify the `-c` or `-w` options with a comma-separated list of the arguments that also specify the `i`, `o`, or `u` options for inactive, out-of-date, or unsupported machines, the `check_uptrack` command displays critical or warning notices for machines that match the criteria.

For example, the following command returns warning notices for any machines that are inactive or unsupported, as well as critical notices for any machines that are out of date:

```
/usr/lib/nagios/plugins/check_uptrack -w u,i -c o
```

To monitor the local machine, use the `check_uptrack_local` plugin:

```
/usr/lib/nagios/plugins/check_uptrack_local
```

The output from the `check_uptrack_local` command is similar to the output from the `check_uptrack` command. However, for out-of-date machines, the command also lists the updates that are required to bring the machine up to date.

**Note**

The `check_uptrack_local` command reads the local uptrack update cache; however, it does not use the settings from the `/etc/uptrack-api.conf` file.