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Preface
Important

This document is deprecated.

Oracle recommends that you use Oracle Linux Cloud Native Environment to install
Kubernetes and to facilitate container orchestration.

With the release of Oracle Linux Cloud Native Environment Release 1.2, customers
are advised that Oracle Linux Container Services for use with Kubernetes will no
longer provide error correcting updates. Oracle recommends customers move to
Oracle Linux Cloud Native Environment to continue to receive updates.

Oracle Linux Cloud Native Environment is a curated set of open source Cloud
Native Computing Foundation (CNCF) projects that can be easily deployed, have
been tested for interoperability, and for which enterprise-grade support is offered.
With the Oracle Linux Cloud Native Environment, Oracle provides the features for
customers to develop microservices-based applications that can be deployed in
environments that support open standards and specifications. Find out more at:

https://docs.oracle.com/en/operating-systems/olcne/

Oracle® Linux: Oracle Linux Container Services for use with Kubernetes User's Guide describes how to
use Oracle Linux Container Services for use with Kubernetes, which is an implementation of the open-
source, containerized application management platform known as Kubernetes . Oracle provides additional
tools, testing and support to deliver this technology with confidence. Kubernetes integrates with container
products like Docker to handle more complex deployments where clustering may be used to improve the
scalability, performance and availability of containerized applications. Detail is provided on the advanced
features of Kubernetes and how it can be installed, configured and used on Oracle Linux 7.

This document describes functionality and usage available in the most current release of the product.

Document generated on: 2020-12-01 (revision: 11214)

Audience
This document is intended for administrators who need to install, configure and use Kubernetes on Oracle
Linux 7. It is assumed that readers are familiar with web and virtualization technologies and have a general
understanding of the Linux operating system.

Related Documents
The documentation for this product is available at:

Oracle® Linux Documentation

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.
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Documentation Accessibility

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle recognizes the influence of ethnic and cultural
values and is working to remove language from our products and documentation that might be considered
insensitive. While doing so, we are also mindful of the necessity to maintain compatibility with our
customers' existing technologies and the need to ensure continuity of service as Oracle's offerings and
industry standards evolve. Because of these technical constraints, our effort to remove insensitive terms is
an ongoing, long-term process.
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Important

This document is deprecated.

Oracle recommends that you use Oracle Linux Cloud Native Environment to install
Kubernetes and to facilitate container orchestration.

With the release of Oracle Linux Cloud Native Environment Release 1.2, customers
are advised that Oracle Linux Container Services for use with Kubernetes will no
longer provide error correcting updates. Oracle recommends customers move to
Oracle Linux Cloud Native Environment to continue to receive updates.

Oracle Linux Cloud Native Environment is a curated set of open source Cloud
Native Computing Foundation (CNCF) projects that can be easily deployed, have
been tested for interoperability, and for which enterprise-grade support is offered.
With the Oracle Linux Cloud Native Environment, Oracle provides the features for
customers to develop microservices-based applications that can be deployed in
environments that support open standards and specifications. Find out more at:

https://docs.oracle.com/en/operating-systems/olcne/

Kubernetes is an open-source system for automating the deployment, scaling and management of
containerized applications. Primarily, Kubernetes provides the tools to easily create a cluster of systems
across which containerized applications can be deployed and scaled as required.

The Kubernetes project is maintained at https://kubernetes.io/.

Oracle Linux Container Services for use with Kubernetes is fully tested on Oracle Linux 7 and includes
additional tools developed at Oracle to ease configuration and deployment of a Kubernetes cluster.

1
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Release Information for Oracle Linux Container Services for use with Kubernetes

1.1 Release Information for Oracle Linux Container Services for use
with Kubernetes

Oracle Linux Container Services for use with Kubernetes version 1.1.12 is based on Kubernetes version
1.12.5, as released upstream. A full change log and links to source and binaries are provided at https://
github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.12.md. This section
contains details about notable features and known issues for Kubernetes releases on Oracle Linux.

Warning

Oracle does not support Kubernetes on systems where the ol7_preview,
ol7_developer or ol7_developer_EPEL yum repositories or ULN channels
are enabled, or where software from these repositories or channels is currently
installed on the systems where Kubernetes runs. Even if you follow the instructions
in this document, you may render your platform unsupported if these repositories or
channels are enabled or software from these channels or repositories is installed on
your system.

1.1.1 New and Notable Features

Oracle Linux Container Services for use with Kubernetes 1.1.12

Features in this release of Oracle Linux Container Services for use with Kubernetes include:

• Upstream Kubernetes 1.12 software packaged for Oracle Linux

• Improvements and updates to setup and configuration utilities

• Support for high availability multi-master clusters

• Updates for the Kubernetes Dashboard software

• Improvements to cluster backup and restore tools

• Integration testing for use with Oracle Cloud Infrastructure

• A new cluster DNS service

Oracle has provided and tested a new setup and configuration utility that takes advantage of the
kubeadm cluster configuration utility to create high availability clusters with three master nodes. For
more information, see Chapter 3, Installing High Availability Oracle Linux Container Services for use with
Kubernetes.

Oracle has provided support for CoreDNS to function as the cluster DNS service. CoreDNS is installed by
default on all new clusters, and support for KubeDNS is deprecated. Note that CoreDNS support requires
Unbreakable Enterprise Kernel Release 5 (UEK R5). Although Oracle makes KubeDNS and support for
Unbreakable Enterprise Kernel Release 4 (UEK R4) available for users upgrading from earlier versions,
this configuration is deprecated and future upgrades will automatically replace KubeDNS with CoreDNS
and will require that the host platform is running UEK R5.

Important

To facilitate upgrade from Oracle Linux Container Services for use with Kubernetes
1.1.9, Oracle makes packages available for the 1.10 and 1.11 releases of
Kubernetes. These packages are not supported outside of the context of the
upgrade process described in Section 2.5, “Upgrading 1.1.9 to 1.1.12”.
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Technical Preview

Unsupported developer preview builds are no longer released in the ol7_preview repository. You can
read more in Appendix A, Developer Preview Releases.

Oracle Linux Container Services for use with Kubernetes 1.1.9

This release is the first supported release of Oracle Linux Container Services for use with Kubernetes. The
release is supported with the appropriate Oracle Linux support level defined in Oracle® Linux 7: Licensing
Information User Manual.

This release of Oracle Linux Container Services for use with Kubernetes is only made available for Oracle
Linux 7 and is designed to integrate with Oracle Container Runtime for Docker only. For more information
about Oracle Container Runtime for Docker, see Oracle® Linux: Oracle Container Runtime for Docker
User's Guide.

This release of Oracle Linux Container Services for use with Kubernetes includes:

• Upstream Kubernetes 1.9 software packaged for Oracle Linux

• Setup and configuration utilities

• Kubernetes Dashboard software

• Cluster backup and restore tools

• Integration testing for use with Oracle Cloud Infrastructure

Oracle has provided and tested a setup and configuration script that takes advantage of the kubeadm
cluster configuration utility. This setup script eases the configuration and setup processes on Oracle Linux
and provides additional support for backup and recovery.

Setting up and configuring Kubernetes on Oracle Linux should be limited to the parameters of the provided
scripts and utilities described within this document.

1.1.2 Technical Preview

The following items are highlighted as technical preview features within the current release:

• Flexvolume driver for Oracle Cloud Infrastructure.  The oci-flexvolume-driver package
enables you to add block storage volumes hosted on Oracle Cloud Infrastructure to your Kubernetes
cluster.

• IPVS switching.  This functionality can automate load balancing and firewall management in your
Kubernetes cluster through the use of unique virtual IP addresses and kernel-level proxying.

• API server functions available as technical preview.  The API server includes many functions
that cater to the full range of capabilities available in Kubernetes. These are described in the upstream
documentation available at https://kubernetes.io/docs/reference/.

Not all features described for the API are fully supported by Oracle. The following items are available as
technical preview only:

Workloads

• CronJob v1beta1 batch

• Job v1 batch

3
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Known Issues

• ReplicationController v1 core

Discovery and Load Balancing

• Ingress v1beta1 extensions

Metadata

• ControllerRevision v1 apps

• CustomResourceDefinition v1beta1 apiextensions

• LimitRange v1 core

• HorizontalPodAutoscaler v1 autoscaling

• InitializerConfiguration v1alpha1 admissionregistration

• PodDisruptionBudget v1beta1 policy

• PriorityClass v1beta1 scheduling

• PodPreset v1alpha1 settings

• PodSecurityPolicy v1beta1 extensions

Cluster

• APIService v1 apiregistration.k8s.io

• Binding v1 core

• CertificateSigningRequest v1beta1 certificates

• LocalSubjectAccessReview v1 authorization

• ResourceQuota v1 core

• Role v1 rbac

• RoleBinding v1 rbac

• SelfSubjectAccessReview v1 authorization

• SelfSubjectRulesReview v1 authorization

• SubjectAccessReview v1 authorization

• TokenReview v1 authentication

• NetworkPolicy v1 extensions

1.1.3 Known Issues

• Overlay networking issue on Oracle Cloud Infrastructure compute instances using VM 2.x
shapes.  When setting up a Kubernetes cluster that uses overlay networking on compute nodes within
Oracle Cloud Infrastructure, where the compute nodes use a VM 2.x shape, issues can result in the

4
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Kubernetes Components

vxlan configuration for the cluster. This issue is commonly caused when the tx offload feature is enabled
in the bnxt_en driver module. Nodes that are affected by the issue display errors similar to the following
in the dmesg output:

[  610.495450] bnxt_en 0000:00:03.0 ens3: hwrm req_type 0xa1 seq id 0x67
error 0xf
[  610.498246] bnxt_en 0000:00:03.0 ens3: hwrm_tunnel_dst_port_alloc failed.
rc:15

You can resolve this issue by disabling the tx offload feature using the ethtool command. For
example:

# ethtool --offload $(ip -o -4 route show to default | awk '{print $5}') tx off

Not all nodes that use this shape seem to be affected.

1.2 Kubernetes Components
You are likely to encounter the following common components when you start working with Kubernetes on
Oracle Linux. The descriptions provided are brief, and largely intended to help provide a glossary of terms
and an overview of the architecture of a typical Kubernetes environment. Upstream documentation can be
found at https://kubernetes.io/docs/concepts/.

1.2.1 Nodes

Kubernetes Node architecture is described in detail at:

https://kubernetes.io/docs/concepts/architecture/nodes/

1.2.1.1 Master Node

The master node is responsible for cluster management and for providing the API that is used to configure
and manage resources within the Kubernetes cluster. Kubernetes master node components can be run
within Kubernetes itself, as a set of containers within a dedicated pod.

The following components are required for a master node:

• API Server (kube-apiserver): the Kubernetes REST API is exposed by the API Server. This
component processes and validates operations and then updates information in the Cluster State Store
to trigger operations on the worker nodes. The API is also the gateway to the cluster.

• Cluster State Store (etcd): configuration data relating to the cluster state is stored in the Cluster State
Store, which can roll out changes to the coordinating components like the Controller Manager and the
Scheduler. It is essential to have a backup plan in place for the data stored in this component of your
cluster.

• Cluster Controller Manager (kube-controller-manager): this manager is used to perform many of
the cluster-level functions, as well as application management, based on input from the Cluster State
Store and the API Server.

• Scheduler (kube-scheduler): the Scheduler handles automatically determining where containers
should be run by monitoring availability of resources, quality of service and affinity and anti-affinity
specifications.

The master node is also usually configured as a worker node within the cluster. Therefore, the master node
also runs the standard node services: the kubelet service, the container runtime (the Docker engine, in
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this case) and the kube proxy service. Note that it is possible to taint a node to prevent workloads from
running on an inappropriate node. The kubeadm utility automatically taints the master node so that no
other workloads or containers can run on this node. This helps to ensure that the master node is never
placed under any unnecessary load and that backup and restore of the master node for the cluster is
simplified.

If the master node becomes unavailable for a period, cluster functionality is suspended, but the worker
nodes continue to run container applications without interruption.

For single node clusters, when the master node is offline, the API is unavailable, so the environment
is unable to respond to node failures and there is no way to perform new operations like creating new
resources or editing or moving existing resources.

A high availability cluster with multiple master nodes ensures that more requests for master node
functionality can be handled, and with the assistance of master replica nodes, uptime is significantly
improved.

1.2.1.2 Master Replica Nodes

Master replica nodes are responsible for duplicating the functionality and data contained on master
nodes within a Kubernetes cluster configured for high availability. To benefit from increased uptime and
resilience, you can host master replica nodes in different zones, and configure them to load balance for
your Kubernetes cluster.

Replica nodes are designed to mirror the master node configuration and the current cluster state in real
time so that if the master nodes become unavailable the Kubernetes cluster can fail over to the replica
nodes automatically whenever they are needed. In the event that a master node fails, the API continues to
be available, the cluster can respond automatically to other node failures and you can still perform regular
operations for creating and editing existing resources within the cluster.

You can use the kubeadm-ha-setup utility to create a multi-master cluster where all master nodes are
replicas of each other.

1.2.1.3 Worker Nodes

Worker nodes within the Kubernetes cluster are used to run containerized applications and handle
networking to ensure that traffic between applications across the cluster and from outside of the cluster can
be properly facilitated. The worker nodes perform any actions triggered via the Kubernetes API, which runs
on the master node.

All nodes within a Kubernetes cluster must run the following services:

• The Kubelet Service: the agent that allows each worker node to communicate with the API Server
running on the master node. This agent is also responsible for setting up pod requirements, such as
mounting volumes, starting containers and reporting status.

• A Container Runtime: an environment where containers can be run. In this release, only Docker is
supported. Therefore, the runtime here is equivalent to the Docker Engine.

• The Kube Proxy Service: a service that programs iptables rules to handle port forwarding and IP
redirects to ensure that network traffic from outside the pod network can be transparently proxied to the
pods in a service.

In all cases, these services are run from systemd as inter-dependent daemons.

6
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1.2.2 Pods

Kubernetes introduces the concept of "pods", which are groupings of one or more containers and their
shared storage and any specific options on how these should be run together. Pods are used for tightly
coupled applications that would typically run on the same logical host and which may require access to
the same system resources. Typically, containers in a pod share the same network and memory space
and can access shared volumes for storage. These shared resources allow the containers in a pod to
communicate internally in a seamless way as if they were installed on a single logical host.

You can easily create or destroy pods as a set of containers. This makes it possible to do rolling updates to
an application by controlling the scaling of the deployment. It also allows you to scale up or down easily by
creating or removing replica pods.

See https://kubernetes.io/docs/concepts/workloads/pods/ for more information.

1.2.3 ReplicaSet, Deployment, StatefulSet Controllers

Kubernetes provides a variety of controllers that you can use to define how pods are set up and deployed
within the Kubernetes cluster. These controllers can be used to group pods together according to their
runtime needs and define pod replication and pod start up ordering.

You can define a set of pods that should be replicated with a ReplicaSet. This allows you to define the
exact configuration for each of the pods in the group and which resources they should have access to.
Using ReplicaSets not only caters to the easy scaling and rescheduling of an application, but also allows
you to perform rolling or multi-track updates to an application.

See https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/ for more information on
ReplicaSets.

You can use a Deployment to manage pods and ReplicaSets. Deployments are useful when you need to
roll out changes to ReplicaSets. By using a Deployment to manage a ReplicaSet, you can easily rollback
to an earlier Deployment revision. A Deployment allows you to create a newer revision of a ReplicaSet and
then migrate existing pods from a previous ReplicaSet into the new revision. The Deployment can then
manage the cleanup of older unused ReplicaSets.

See https://kubernetes.io/docs/concepts/workloads/controllers/deployment/ for more information on
Deployments.

You can use StatefulSets to create pods that guarantee start up order and unique identifiers, which are
then used to ensure that the pod maintains its identity across the lifecycle of the StatefulSet. This feature
makes it possible to run stateful applications within Kubernetes, as typical persistent components such as
storage and networking are guaranteed. Furthermore, when you create pods they are always created in
the same order and allocated identifiers that are applied to host names and the internal cluster DNS. Those
identifiers ensure there are stable and predictable network identities for pods in the environment.

See https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/ for more information on
StatefulSets.

1.2.4 Services

You can use services to expose access to one or more mutually interchangeable pods. Since pods can be
replicated for rolling updates and for scalability, clients accessing an application must be directed to a pod
running the correct application. Pods may also need access to applications outside of Kubernetes. In either
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case, you can define a service to make access to these facilities transparent, even if the actual backend
changes.

Typically, services consist of port and IP mappings that are managed using iptables. How services
function in network space is defined by the service type when it is created.

The default service type is the ClusterIP, and you can use this to expose the service on the internal IP
of the cluster. This option makes the service only reachable from within the cluster. Therefore, you should
use this option to expose services for applications that need to be able to access each other from within
the cluster.

Frequently, clients outside of the Kubernetes cluster may need access to services within the cluster. You
can achieve this by creating a NodePort service type. This service type enables you to take advantage
of the Kube Proxy service that runs on every worker node and reroute traffic to a ClusterIP, which is
created automatically along with the NodePort service. The service is exposed on each node IP at a static
port, called the NodePort. The Kube Proxy routes traffic destined to the NodePort into the cluster to
be serviced by a pod running inside the cluster. This means that if a NodePort service is running in the
cluster, it can be accessed via any node in the cluster, regardless of where the pod is running.

Building on top of these service types, the LoadBalancer service type makes it possible for you to
expose the service externally by using a cloud provider's load balancer. This allows an external load
balancer to handle redirecting traffic to pods directly in the cluster via the Kube Proxy. A NodePort service
and a ClusterIP service are automatically created when you set up the LoadBalancer service.

Important

As you add services for different pods, you must ensure that your network is
properly configured to allow traffic to flow for each service declaration. If you create
a NodePort or LoadBalancer service, any of the ports exposed must also be
accessible through any firewalls that are in place.

If you are using Oracle Cloud Infrastructure, you must add ingress rules to the
security lists for the Virtual Cloud Network (VCN) for your compute instances
connections. Each rule should allow access to the port that you have exposed for a
service.

Equally, if you are running firewalld on any of your nodes, you must ensure that
you add rules to allow traffic for the external facing ports of the services that you
create.

See https://kubernetes.io/docs/concepts/services-networking/service/ for more information.

1.2.5 Volumes

In Kubernetes, a volume  is storage that persists across the containers within a pod for the lifespan of the
pod itself. When a container within the pod is restarted, the data in the Kubernetes volume is preserved.
Furthermore, Kubernetes volumes can be shared across containers within the pod, providing a file store
that different containers can access locally.

Kubernetes supports a variety of volume types that define how the data is stored and how persistent it is,
which are described in detail at https://kubernetes.io/docs/concepts/storage/volumes/.

Kubernetes volumes typically have a lifetime that matches the lifetime of the pod, and data in a volume
persists for as long as the pod using that volume exists. Containers can be restarted within the pod, but the
data remains persistent. If the pod is destroyed, the data is usually destroyed with it.
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In some cases, you may require even more persistence to ensure the lifecycle of the volume is decoupled
from the lifecycle of the pod. Kubernetes introduces the concepts of the PersistentVolume and the
PersistentVolumeClaim. PersistentVolumes are similar to Volumes except that they exist independently
of a pod. They define how to access a storage resource type, such as NFS or iSCSI. You can configure
a PersistentVolumeClaim to make use of the resources available in a PersistentVolume, and the
PersistentVolumeClaim will specify the quota and access modes that should be applied to the resource for
a consumer. A pod you have created can then make use of the PersistentVolumeClaim to gain access to
these resources with the appropriate access modes and size restrictions applied.

For more information about PersistentVolumes, see https://kubernetes.io/docs/concepts/storage/persistent-
volumes/. Examples of using PersistentVolumes are also provided in Section 5.2, “Pod Configuration Using
a YAML Deployment” and Section 5.3, “Using Persistent Storage”.

1.2.6 Namespaces

Kubernetes implements and maintains strong separation of resources through the use of namespaces.
Namespaces effectively run as virtual clusters backed by the same physical cluster and are intended for
use in environments where Kubernetes resources must be shared across use cases.

Kubernetes takes advantage of namespaces to separate cluster management and specific Kubernetes
controls from any other user-specific configuration. Therefore, all of the pods and services specific to
the Kubernetes system are found within the kube-system namespace. A default namespace is also
created to run all other deployments for which no namespace has been set.

See https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/ for more information
on namespaces.
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This chapter describes the steps required to install Kubernetes on an Oracle Linux 7 host, and to build a
Kubernetes cluster.

2.1 Overview
Kubernetes can be deployed in a variety of ways depending on requirements and on the tools that
you have at hand. The kubeadm package provides the kubeadm utility, a tool designed to make the
deployment of a Kubernetes cluster simple. Many users may find that using this tool directly, along with the
upstream documentation, provides the maximum configuration flexibility.

Oracle provides the kubeadm-setup.sh script in the kubeadm package to help new users install and
configure a base deployment of Kubernetes with the greater ease, regardless of whether it is hosted on
bare metal, on a virtual machine, or out on the cloud. The script handles checking that basic package
requirements are in place, setting proxy and firewall requirements, configuring networking, and initializing
a cluster configuration for the Kubernetes environment. The script uses the kubeadm utility, but handles
many additional configuration steps that can help new users get running with minimal effort.

The kubeadm utility automatically taints the master node so that no other workloads or containers can run
on this node. This helps to ensure that the master node is never placed under any unnecessary load and
that backing up and restoring the master node for the cluster is simplified.

The instructions provided here, assume that you are new to Kubernetes and are using the provided
kubeadm-setup.sh script to deploy your cluster. This script is developed and tested at Oracle and
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deployment using this script is fully supported. Alternate configurations and deployment mechanisms are
untested by Oracle.

2.2 Requirements
Kubernetes is a clustered environment that generally functions with more than one node in the cluster.
It is possible to run a single node cluster, but this defeats the point of having a cluster in the first place.
Therefore, your environment should consist of two or more systems where Kubernetes is installed.

The following sections describe various other requirements that must be met to install and configure
Kubernetes on an Oracle Linux 7 system.

Note

Oracle Linux Container Services for use with Kubernetes 1.12 requires that you
configure the system to use the Unbreakable Enterprise Kernel Release 5 (UEK
R5) or later and boot the system with this kernel.

If you are still using the Unbreakable Enterprise Kernel Release 4 (UEK R4) and
have a pre-existing cluster based on Oracle Linux Container Services for use with
Kubernetes 1.1.9, this is the last supported release available for your environment.
It is strongly recommended that you upgrade your system to use the Unbreakable
Enterprise Kernel Release 5 (UEK R5) and boot the system with this kernel.

2.2.1 Yum or ULN Channel Subscription

To install all of the required packages to use Kubernetes, you must ensure that you are subscribed to the
correct yum repositories or Unbreakable Linux Network (ULN) channels.

If your systems are registered with ULN, enable the ol7_x86_64_addons channel.

If you use the Oracle Linux yum server, enable the ol7_addons repository on each system in your
deployment. You can do this easily using yum-config-manager:

# yum-config-manager --enable ol7_addons

For more information on the ol7_x86_64_addons channel, please see Oracle® Linux: Unbreakable
Linux Network User's Guide for Oracle Linux 6 and Oracle Linux 7.

Important

Oracle does not support Kubernetes on systems where the ol7_preview,
ol7_developer or ol7_developer_EPEL repositories are enabled, or where
software from these repositories is currently installed on the systems where
Kubernetes runs. Even if you follow the instructions in this document, you may
render your platform unsupported if these repositories or channels are enabled or
software from these channels or repositories is installed on your system.

2.2.2 Setting up UEK R5

Oracle Linux Container Services for use with Kubernetes 1.1.12 and later versions require that you
configure the system to use the Unbreakable Enterprise Kernel Release 5 (UEK R5) and boot the system
with this kernel. If you are using either UEK R4 or the Red Hat Compatible Kernel (RHCK), you must
configure Yum to allow you to install UEK R5.
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1. If your system is registered with the Unbreakable Linux Network (ULN), disable access to the
ol7_x86_64_UEKR4 channel and enable access to the ol7_x86_64_UEKR5 channel.

If you use the Oracle Linux yum server, disable the ol7_UEKR4 repository and enable the ol7_UEKR5
repository. You can do this easily using yum-config-manager, if you have the yum-utils package
installed:

# yum-config-manager --disable ol7_UEKR4
# yum-config-manager --enable ol7_UEKR5

2. Run the following command to upgrade the system to UEK R5:

# yum update

For information on how to make UEK R5 the default boot kernel, see Oracle® Linux 7: Administrator's
Guide.

3. Reboot the system, selecting the UEK R5 kernel if this is not the default boot kernel.

# systemctl reboot

2.2.3 Resource Requirements

Each node in your cluster requires at least 2 GB of RAM and 2 or more CPUs to facilitate the use of
kubeadm and any further applications that are provisioned using kubectl.

Also ensure that each node has a unique hostname, MAC address and product UUID as Kubernetes uses
this informaton to identify and track each node in the cluster. You can verify the product UUID on each host
with:

# dmidecode -s system-uuid

A storage volume with at least 5 GB free space must be mounted at /var/lib/kubelet on each node.
For the underlying Docker engine an additional volume with at least 5 GB free space must be mounted on
each node at /var/lib/docker.

2.2.4 Docker Engine Requirements

Kubernetes is used to manage containers running on a containerization platform deployed on several
systems. On Oracle Linux, Kubernetes is currently only supported when used in conjunction with the
Docker containerization platform. Therefore, each system in the deployment must have the Docker engine
installed and ready to run. Support of Oracle Linux Container Services for use with Kubernetes is limited to
usage with the latest Oracle Container Runtime for Docker version available in the ol7_addons repository
on the Oracle Linux yum server and in the ol7_x86_64_addons channel on ULN.

Please note that if you enable the ol7_preview repository, you may install a preview version of Oracle
Container Runtime for Docker and your installation can no longer be supported by Oracle. If you have
already installed a version of Docker from the ol7_preview repository, you should disable the repository
and uninstall this version before proceeding with the installation.

Install, the Docker engine on all nodes in the cluster:

# yum install docker-engine

Enable the Docker service in systemd so that it starts on subsequent reboots and you should start the
service before running the kubeadm-setup.sh script.
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# systemctl enable docker
# systemctl start docker

See Oracle® Linux: Oracle Container Runtime for Docker User's Guide for more information on installing
and running the Docker engine.

2.2.5 Oracle Container Registry Requirements

The images that are deployed by the kubeadm-setup.sh script are hosted on the Oracle Container
Registry. For the script to be able to install the required components, you must perform the following steps:

1. Log in to the Oracle Container Registry website at https://container-registry.oracle.com using your
Single Sign-On credentials.

2. Use the web interface to navigate to the Container Services business area and accept the Oracle
Standard Terms and Restrictions for the Oracle software images that you intend to deploy. You are
able to accept a global agreement that applies to all of the existing repositories within this business
area. If newer repositories are added to this business area in the future, you may need to accept these
terms again before performing upgrades.

3. Ensure that each of the systems that are used as nodes within the cluster are able to access https://
container-registry.oracle.com and use the docker login command to authenticate against the Oracle
Container Registry using the same credentials that you used to log into the web interface:

# docker login container-registry.oracle.com

The command prompts you for your user name and password.

Detailed information about the Oracle Container Registry is available in Oracle® Linux: Oracle Container
Runtime for Docker User's Guide.

2.2.5.1 Using an Oracle Container Registry Mirror

It is also possible to use any of the Oracle Container Registry mirror servers to obtain the correct images
to set up Oracle Linux Container Services for use with Kubernetes. The Oracle Container Registry mirror
servers are located within the same data centers used for Oracle Cloud Infrastructure. More information
about the Oracle Container Registry mirror servers is available in Oracle® Linux: Oracle Container
Runtime for Docker User's Guide.

Steps to use an alternate Oracle Container Registry mirror server follow:

1. You must still log in to the Oracle Container Registry website at https://container-registry.oracle.com
using your Single Sign-On credentials and use the web interface to accept the Oracle Standard Terms
and Restrictions.

2. On each node, use the docker login command to authenticate against the Oracle Container
Registry mirror server using the same credentials that you used to log into the web interface:

# docker login container-registry-phx.oracle.com

The command prompts you for your user name and password.

3. After you have logged in, set the environment variable to use the correct registry mirror when you
deploy Kubernetes:

# export KUBE_REPO_PREFIX=container-registry-phx.oracle.com/kubernetes
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# echo 'export KUBE_REPO_PREFIX=container-registry-phx.oracle.com/kubernetes' > ~/.bashrc

If you are using Oracle Linux Container Services for use with Kubernetes on Oracle Cloud
Infrastructure, the kubeadm-setup.sh script automatically detects the most appropriate mirror server
to use and sets this environment variable for you so that you do not have to perform this step. If you
manually set the KUBE_REPO_PREFIX environment variable on the command line, the kubeadm-
setup.sh honors the variable and does not attempt to detect which mirror server you should be using.

2.2.5.2 Setting Up an Optional Local Registry

If the systems that you are using for your Kubernetes cluster nodes do not have direct access to the
Internet and are unable to connect directly to the Oracle Container Registry, you can set up a local Docker
registry to perform this function. The kubeadm-setup.sh script provides an option to change the registry
that you use to obtain these images. Instructions to set up a local Docker registry are provided in Oracle®
Linux: Oracle Container Runtime for Docker User's Guide.

When you have set up a local Docker registry, you must pull the images required to run Oracle Linux
Container Services for use with Kubernetes, tag these images and then push them to your local registry.
The images must be tagged identically to the way that they are tagged in the Oracle Container Registry.
The kubeadm-setup.sh matches version numbers during the setup process and cannot successfully
complete many operations if it cannot find particular versions of images. To assist with this process, Oracle
Linux Container Services for use with Kubernetes provides the kubeadm-registry.sh script in the
kubeadm package.

To use the kubeadm-registry.sh script to automatically pull images from the Oracle Container
Registry, tag them appropriately and push them to your local registry:

1. If you are using the Oracle Container Registry to obtain images, log in following the instructions in
Section 2.2.5, “Oracle Container Registry Requirements”. If you are using one of the Oracle Container
Registry mirrors, see Section 2.2.5.1, “Using an Oracle Container Registry Mirror” for more information.

2. Run the kubeadm-registry.sh script with the required options:

# kubeadm-registry.sh --to host.example.com:5000

Substitute host.example.com:5000 with the resolvable domain name and port by which your local
Docker registry is available.

You may optionally use the --from option to specify an alternate registry to pull the images from. You
may also use the --version option to specify the version of Kubernetes images that you intend to
host. For example:

# kubeadm-registry.sh --to host.example.com:5000 --from \
  container-registry-phx.oracle.com/kubernetes --version 1.12.5

Important

If you are upgrading your environment and you intend to use a local registry, you
must make sure that you have the most recent version of the images required to
run Oracle Linux Container Services for use with Kubernetes. You can use the
kubeadm-registry.sh script to pull the correct images and to update your local
registry before running the upgrade on the master node.

After your local Docker registry is installed and configured and the required images have been imported,
you must set the environment variable that controls which registry server the kubeadm-setup.sh script
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uses. On each of the systems where you intend to run the kubeadm-setup.sh tool run the following
commands:

# export KUBE_REPO_PREFIX="local-registry.example.com:5000/kubernetes"
# echo 'export KUBE_REPO_PREFIX="local-registry.example.com:5000/kubernetes"' > ~/.bashrc

Substitute local-registry.example.com with the IP address or resolvable domain name of the host
on which your local Docker registry is configured.

2.2.6 Network Time Service Requirements

As a clustering environment, Kubernetes requires that system time is synchronized across each node
within the cluster. Typically, this can be achieved by installing and configuring an NTP daemon on each
node. You can do this in the following way:

1. Install the ntp package, if it is not already installed:

# yum install ntp

2. Edit the NTP configuration in /etc/ntp.conf. Your requirements may vary. If you are using DHCP
to configure the networking for each node, it is possible to configure NTP servers automatically. If
you have not got a locally configured NTP service that your systems can sync to, and your systems
have Internet access, you can configure them to use the public pool.ntp.org service. See https://
www.ntppool.org/en/.

3. Ensure that NTP is enabled to restart at boot and that it is started before you proceed with your
Kubernetes installation. For example:

# systemctl start ntpd
# systemctl enable ntpd

Note that systems running on Oracle Cloud Infrastructure are configured to use the chronyd time service
by default, so there is no requirement to add or configure NTP if you are installing into an Oracle Cloud
Infrastructure environment.

For information on configuring a Network Time Service, see Oracle® Linux 7: Administrator's Guide.

2.2.7 Firewall and iptables Requirements

Kubernetes uses iptables to handle many networking and port forwarding rules. Therefore, you must
ensure that you do not have any rules set that may interfere with the functioning of Kubernetes. The
kubeadm-setup.sh script requires an iptables rule to accept forwarding traffic. If this rule is not set, the
script exits and notifies you that you may need to add this iptables rule. A standard Docker installation
may create a firewall rule that prevents forwarding, therefore you may need to run:

# iptables -P FORWARD ACCEPT

The kubeadm-setup.sh script checks iptables rules and, where there is a match, instructions are
provided on how to modify your iptables configuration to meet any requirements. See Section 4.1,
“Kubernetes and iptables Rules” for more information.

If you have a requirement to run a firewall directly on the systems where Kubernetes is deployed, you
must ensure that all ports required by Kubernetes are available. For instance, the TCP port 6443 must be
accessible on the master node to allow other nodes to access the API Server. All nodes must be able to
accept connections from the master node on the TCP port 10250 and traffic should be allowed on the UDP
port 8472. All nodes must be able to receive traffic from all other nodes on every port on the network fabric
that is used for the Kubernetes pods. The firewall must support masquerading.
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Oracle Linux 7 installs and enables firewalld, by default. If you are running firewalld, the kubeadm-
setup.sh script notifies you of any rules that you may need to add. In summary, run the following
commands on all nodes:

# firewall-cmd --add-masquerade --permanent
# firewall-cmd --add-port=10250/tcp --permanent
# firewall-cmd --add-port=8472/udp --permanent

Additionally, run the following command on the master node:

# firewall-cmd --add-port=6443/tcp --permanent

Use the --permanent option to make these firewall rules persistent across reboots.

Remember to restart the firewall for these rules to take effect:

# systemctl restart firewalld

2.2.8 Network Requirements

The kubeadm-setup.sh script requires that it is able to access the Oracle Container Registry and
possibly other internet resources to be able to pull any container images that you required. Therefore,
unless you intend to set up a local mirror for all of your container image requirements, the systems where
you intend to install Kubernetes must either have direct internet access, or must be configured to use a
proxy. See Section 4.2, “Using Kubernetes With a Proxy Server” for more information.

The kubeadm-setup.sh script checks whether the br_netfilter module is loaded and exits if it is not
available. This module is required to enable transparent masquerading and to facilitate Virtual Extensible
LAN (VxLAN) traffic for communication between Kubernetes pods across the cluster. If you need to check
whether it is loaded, run:

# lsmod|grep br_netfilter

Kernel modules are usually loaded as they are needed, and it is unlikely that you would need to load this
module manually. However, if necessary, you can load the module manually by running:

# modprobe br_netfilter
# echo "br_netfilter" > /etc/modules-load.d/br_netfilter.conf

Kubernetes requires that packets traversing a network bridge are processed by iptables for filtering and
for port forwarding. To achieve this, tunable parameters in the kernel bridge module are automatically set
when the kubeadm package is installed and a sysctl file is created at /etc/sysctl.d/k8s.conf that
contains the following lines:

net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1

If you modify this file, or create anything similar yourself, you must run the following command to load the
bridge tunable parameters:

# /sbin/sysctl -p /etc/sysctl.d/k8s.conf

The kubeadm-setup.sh script configures a flannel network as the network fabric that is used for
communications between Kubernetes pods. This overlay network uses VxLANs to facilitate network
connectivity: https://github.com/coreos/flannel

By default, the kubeadm-setup.sh script creates a network in the 10.244.0.0/16 range to host this
network. The kubeadm-setup.sh script provides an option to set the network range to an alternate
range, if required, during installation. Systems in the Kubernetes deployment must not have any network
devices configured for this reserved IP range.
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2.2.9 SELinux Requirements

The kubeadm-setup.sh script checks whether SELinux is set to enforcing mode. If enforcing mode is
enabled, the script exits with an error requesting that you set SELinux to permissive mode. Setting SELinux
to permissive mode allows containers to access the host file system, which is required by pod networks.
This requirement exists until SELinux support in the kubelet tool for Kubernetes is improved.

To disable SELinux temporarily, do the following:

# /usr/sbin/setenforce 0

To disable SELinux enforcing mode for subsequent reboots so that Kubernetes continues to run correctly,
modify /etc/selinux/config and set the SELinux variable:

SELINUX=Permissive

2.2.10 Requirements to Use Oracle Linux Container Services for use with
Kubernetes on Oracle Cloud Infrastructure

Oracle Linux Container Services for use with Kubernetes is engineered to work on Oracle Cloud
Infrastructure. You can use all of the instructions that are provided in this document to install and configure
Kubernetes across a group of compute instances. Additional information about configuration steps
and usage of Oracle Cloud Infrastructure can be found at https://docs.cloud.oracle.com/iaas/Content/
home.htm.

The most important requirement for Oracle Linux Container Services for use with Kubernetes on Oracle
Cloud Infrastructure is that your Virtual Cloud Network (VCN) allows the compute nodes that are used
in your Kubernetes deployment to communicate through the required ports. By default, compute nodes
are unable to access each other across the VCN until you have configured the Security List with the
appropriate ingress rules.

Ingress rules should match the rules that are required in any firewall configuration, as described in
Section 2.2.7, “Firewall and iptables Requirements”. Typically, the configuration involves adding the
following ingress rules to the default security list for your VCN:

1. Allow 6443/TCP. 

• STATELESS: Unchecked

• SOURCE CIDR: 10.0.0.0/16

• IP PROTOCOL: TCP

• SOURCE PORT RANGE: All

• DESTINATION PORT RANGE: 6443

2. Allow 10250/TCP. 

• STATELESS: Unchecked

• SOURCE CIDR: 10.0.0.0/16

• IP PROTOCOL: TCP

• SOURCE PORT RANGE: All
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• DESTINATION PORT RANGE: 10250

3. Allow 8472/UDP. 

• STATELESS: Unchecked

• SOURCE CIDR: 10.0.0.0/16

• IP PROTOCOL: UDP

• SOURCE PORT RANGE: All

• DESTINATION PORT RANGE: 8472

Substitute 10.0.0.0/16 with the range used for the subnet that you created within the VCN for the
compute nodes that will participate in the Kubernetes cluster. You may wish to limit the specific IP address
range to the range that is used specifically by the cluster components, or you may expand this range,
depending on your particular security requirements.

Important

The ingress rules that are described here are the core rules that you need to set up
to allow the cluster to function. For each service that you define or intend to use,
you might need to define additional rules in the Security List.

When creating compute instances to host Oracle Linux Container Services for use with Kubernetes, all
shape types are supported. The environment requires that you use Oracle Linux 7 Update 5 or later, with
Unbreakable Enterprise Kernel Release 5 (UEK R5).

Note

A future version of Oracle Linux Container Services for use with Kubernetes will
migrate existing single master clusters from KubeDNS to CoreDNS. CoreDNS
requires an Oracle Linux 7 Update 5 image or later with the Unbreakable Enterprise
Kernel Release 5 (UEK R5).

Existing Oracle Linux Container Services for use with Kubernetes 1.1.9 installations
may already run on an Oracle Linux 7 Update 3 image, with Unbreakable Enterprise
Kernel Release 4 (UEK R4), but you must upgrade your environment to permit
future product upgrades.

2.3 Setting Up the Master Node
Before you begin, ensure you have satisfied the requirements in Section 2.2.5, “Oracle Container Registry
Requirements”. Then on the host that you are configuring as the master node, install the kubeadm
package and its dependencies:

# yum install kubeadm kubelet kubectl

As root, run kubeadm-setup.sh up to add the host as a master node:

# kubeadm-setup.sh up
Checking kubelet and kubectl RPM ...
Starting to initialize master node ...
Checking if env is ready ... 
Checking whether docker can pull busybox image ...
Checking access to container-registry.oracle.com/kubernetes...
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Trying to pull repository container-registry.oracle.com/kube-proxy ...
v1.12.5: Pulling from container-registry.oracle.com/kube-proxy
Digest: sha256:9f57fd95dc9c5918591930b2316474d10aca262b5c89bba588f45c1b96ba6f8b
Status: Image is up to date for container-registry.oracle.com/kube-proxy:v1.12.5
Checking whether docker can run container ...
Checking firewalld settings ...
Checking iptables default rule ...
Checking br_netfilter module ...
Checking sysctl variables ...
Enabling kubelet ...
Created symlink from /etc/systemd/system/multi-user.target.wants/kubelet.service 
to /etc/systemd/system/kubelet.service.
Check successful, ready to run 'up' command ...
Waiting for kubeadm to setup master cluster...
Please wait ...
\ - 80% completed
Waiting for the control plane to become ready ...
...............
100% completed
clusterrole.rbac.authorization.k8s.io/flannel created
clusterrolebinding.rbac.authorization.k8s.io/flannel created
serviceaccount/flannel created
configmap/kube-flannel-cfg created
daemonset.extensions/kube-flannel-ds created

Installing kubernetes-dashboard ...

secret/kubernetes-dashboard-certs created
serviceaccount/kubernetes-dashboard created
role.rbac.authorization.k8s.io/kubernetes-dashboard-minimal created
rolebinding.rbac.authorization.k8s.io/kubernetes-dashboard-minimal created
deployment.apps/kubernetes-dashboard created
service/kubernetes-dashboard created
Enabling kubectl-proxy.service ...
Starting kubectl-proxy.service ...

[===> PLEASE DO THE FOLLOWING STEPS BELOW: <===]

Your Kubernetes master has initialized successfully!

To start using your cluster, you need to run the following as a regular user:

  mkdir -p $HOME/.kube
  sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
  sudo chown $(id -u):$(id -g) $HOME/.kube/config

You can now join any number of machines by running the following on each node
as root:

  export KUBE_REPO_PREFIX=container-registry.oracle.com/kubernetes && kubeadm-setup.sh join 192.0.2.10:6443 \
 --token 8tipwo.tst0nvf7wcaqjcj0 --discovery-token-ca-cert-hash \
sha256:f2a5b22b658683c3634459c8e7617c9d6c080c72dd149f3eb903445efe9d8346

If you do not specify a network range, the script uses the default network range of 10.244.0.0/16 to
configure the internal network used for pod interaction within the cluster. To specify an alternative network
range, run the script with the --pod-network-cidr option. For example, you would set the network to
use the 10.100.0.0/16 range as follows:

# kubeadm-setup.sh up --pod-network-cidr 10.100.0.0/16

The kubeadm-setup.sh script checks whether the host meets all of the requirements before it sets up
the master node. If a requirement is not met, an error message is displayed, along with the recommended
fix. You should fix the errors before running the script again.
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The systemd service for the kubelet is automatically enabled on the host so that the master node
always starts at system boot.

The output of the kubeadm-setup.sh script provides the command for adding worker nodes to the
cluster. Take note of this command for later use. The token that is shown in the command is only valid for
24 hours. See Section 2.4, “Setting Up a Worker Node” for more details about tokens.

Preparing to Use Kubernetes as a Regular User

To use the Kubernetes cluster as a regular user, perform the following steps on the master node:

1. Create the .kube subdirectory in your home directory:

$ mkdir -p $HOME/.kube

2. Create a copy of the Kubernetes admin.conf file in the .kube directory:

$ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

3. Change the ownership of the file to match your regular user profile:

$ sudo chown $(id -u):$(id -g) $HOME/.kube/config

4. Export the path to the file for the KUBECONFIG environment variable:

$ export KUBECONFIG=$HOME/.kube/config

Note

You cannot use the kubectl command if the path to this file is not set for this
environment variable. Remember to export the KUBECONFIG variable for each
subsequent login so that the kubectl and kubeadm commands use the correct
admin.conf file, otherwise you might find that these commands do not behave
as expected after a reboot or a new login.

For example, append the export line to your .bashrc:

$ echo 'export KUBECONFIG=$HOME/.kube/config' >> $HOME/.bashrc

5. Verify that you can use the kubectl command.

Kubernetes runs many of its services to manage the cluster configuration as Docker containers running
as a Kubernetes pod, which can be viewed by running the following command on the master node:

$ kubectl get pods -n kube-system
NAME                                        READY   STATUS    RESTARTS   AGE
coredns-6c77847dcf-77grm                    1/1     Running   0          5m16s
coredns-6c77847dcf-vtk8k                    1/1     Running   0          5m16s
etcd-master.example.com                     1/1     Running   0          4m26s
kube-apiserver-master.example.com           1/1     Running   0          4m46s
kube-controller-manager-master.example.com  1/1     Running   0          4m31s
kube-flannel-ds-glwgx                       1/1     Running   0          5m13s
kube-proxy-tv2mj                            1/1     Running   0          5m16s
kube-scheduler-master.example.com           1/1     Running   0          4m32s
kubernetes-dashboard-64458f66b6-q8dzh       1/1     Running   0          5m13s

2.4 Setting Up a Worker Node
Repeat these steps on each host that you want to add to the cluster as a worker node.
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Install the kubeadm package and its dependencies:

# yum install kubeadm kubelet kubectl

As root, run the kubeadm-setup.sh join command to add the host as a worker node:

# kubeadm-setup.sh join 192.0.2.10:6443 --token 8tipwo.tst0nvf7wcaqjcj0 \
      --discovery-token-ca-cert-hash \
      sha256:f2a5b22b658683c3634459c8e7617c9d6c080c72dd149f3eb903445efe9d8346
Checking kubelet and kubectl RPM ...
Starting to initialize worker node ...
Checking if env is ready ...
Checking whether docker can pull busybox image ...
Checking access to container-registry.oracle.com/kubernetes...
Trying to pull repository container-registry.oracle.com/kubernetes/kube-proxy ... 
v1.12.5: Pulling from container-registry.oracle.com/kubernetes/kube-proxy
Digest: sha256:9f57fd95dc9c5918591930b2316474d10aca262b5c89bba588f45c1b96ba6f8b
Status: Image is up to date for container-registry.oracle.com/kubernetes/kube-proxy:v1.12.5
Checking whether docker can run container ...
Checking firewalld settings ...
Checking iptables default rule ...
Checking br_netfilter module ...
Checking sysctl variables ...
Enabling kubelet ...
Created symlink from /etc/systemd/system/multi-user.target.wants/kubelet.service 
to /etc/systemd/system/kubelet.service.
Check successful, ready to run 'join' command ...
[validation] WARNING: kubeadm doesn't fully support multiple API Servers yet
[preflight] running pre-flight checks
[discovery] Trying to connect to API Server "192.0.2.10:6443"
[discovery] Created cluster-info discovery client, requesting info from "https://192.0.2.10:6443"
[discovery] Trying to connect to API Server "192.0.2.10:6443"
[discovery] Created cluster-info discovery client, requesting info from "https://192.0.2.10:6443"
[discovery] Requesting info from "https://192.0.2.10:6443" again 
to validate TLS against the pinned public key
[discovery] Requesting info from "https://192.0.2.10:6443" again 
to validate TLS against the pinned public key
[discovery] Cluster info signature and contents are valid 
and TLS certificate validates against pinned roots, will use API Server "192.0.2.10:6443"
[discovery] Successfully established connection with API Server "192.0.2.10:6443"
[discovery] Cluster info signature and contents are valid 
and TLS certificate validates against pinned roots, will use API Server "192.0.2.10:6443"
[discovery] Successfully established connection with API Server "192.0.2.10:6443"
[kubelet] Downloading configuration for the kubelet from the "kubelet-config-1.12" ConfigMap 
in the kube-system namespace
[kubelet] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
[kubelet] Writing kubelet environment file with flags 
to file "/var/lib/kubelet/kubeadm-flags.env"
[preflight] Activating the kubelet service
[tlsbootstrap] Waiting for the kubelet to perform the TLS Bootstrap...
[patchnode] Uploading the CRI Socket information "/var/run/dockershim.sock" 
to the Node API object "worker1.example.com" as an annotation

This node has joined the cluster:
* Certificate signing request was sent to apiserver and a response was received.
* The Kubelet was informed of the new secure connection details.

Run 'kubectl get nodes' on the master to see this node join the cluster.

Replace the IP address and port, 192.0.2.10:6443, with the IP address and port that is used by the API
Server (the master node). Note that the default port is 6443.
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Replace the --token value, 8tipwo.tst0nvf7wcaqjcj0, with a valid token for the master node. If you
do not have this information, run the following command on the master node to obtain this information:

# kubeadm token list
TOKEN                    TTL  EXPIRES             USAGES           DESCRIPTION        EXTRA GROUPS
8tipwo.tst0nvf7wcaqjcj0  22h  2018-12-11          authentication,  <none>             system:
                              T03:32:44-08:00     signing                             bootstrappers:
                                                                                      kubeadm:
                                                                                      default-node-token

By default, tokens expire after 24 hours. If you are joining a node to the cluster after the current token has
expired, you can create a new token by running the following command on the master node:

# kubeadm token create
e05e12.3c1096c88cc11720

You can explicitly set the expiry period for a token when you create it by using the --ttl option. This
option sets the expiration time of the token, relative to the current time. The value is generally set in
seconds, but other units can be specified as well. For example, you can set the token expiry for 15m (or
15 minutes) from the current time; or, for 1h (1 hour) from the current time. A value of 0 means the token
never expires, but this value is not recommended.

Replace the --discovery-token-ca-cert-hash value,
f2a5b22b658683c3634459c8e7617c9d6c080c72dd149f3eb903445efe9d8346, with the correct
SHA256 CA certificate hash that is used to sign the token certificate for the master node. If you do not
have this information, run the following command chain on the master node to obtain it:

#  openssl x509 -pubkey -in /etc/kubernetes/pki/ca.crt | openssl rsa -pubin -outform der 2>/dev/null | \
   openssl dgst -sha256 -hex | sed 's/^.* //'
f2a5b22b658683c3634459c8e7617c9d6c080c72dd149f3eb903445efe9d8346

The kubeadm-setup.sh script checks whether the host meets all the requirements before it sets up a
worker node. If a requirement is not met, an error message is displayed together with the recommended
fix. You should fix the errors before running the script again.

The kubelet systemd service is automatically enabled on the host so that the worker node always starts
at boot.

After the kubeadm-setup.sh join command completes, check that the worker node has joined the
cluster on the master node:

$ kubectl get nodes
NAME                  STATUS    ROLES   AGE       VERSION
master.example.com    Ready     master  1h        v1.12.7+1.1.2.el7
worker1.example.com   Ready     <none>  1h        v1.12.7+1.1.2.el7

The output for this command displays a listing of all of the nodes in the cluster and their status.

2.5 Upgrading 1.1.9 to 1.1.12

The following instructions are specifically for a major package upgrade from Oracle Linux Container
Services for use with Kubernetes 1.1.9 to version 1.1.12.

Warning

The upgrade process that is described here only applies for the stated upgrade path
on existing hosts.
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Oracle does not support upgrading existing clusters between smaller errata
releases by using the kubeadm-uprade.sh script. Instead, you must use the
kubeadm-setup.sh script that is described in Section 2.6, “Updating to Errata
Releases”.

These instructions work on hosts that are booting from UEK R4, but it is
recommended that hosts currently running UEK R4 are upgraded to use UEK R5 to
facilitate future upgrades, where KubeDNS is deprecated.

The upgrade process requires you to first upgrade the master node in your cluster, and then update
each of the worker nodes. The upgrade of the master node is scripted so that the pre-requisite checks,
validation, and reconfiguration are automated. It is a good practice to make a backup file for your cluster
before upgrading. This process is described in Section 2.5.1, “Upgrading the Master Node from 1.1.9 to
1.1.12”.

After the master node is upgraded, you can upgrade each worker node, as described in Section 2.5.2,
“Upgrading Worker Nodes from 1.1.9 to 1.1.12”.

When the upgrade of the cluster has completed, you must restart or redeploy any applications that were
running in the cluster.

Important

Oracle does not support an upgrade from a preview release to a stable and
supported release.

Oracle also does not support upgrading existing single master node clusters that
are built with the kubeadm-setup.sh script to High Availability clusters. You must
build and manage High Availability clusters by using the kubeadm-ha-setup
utility.

2.5.1 Upgrading the Master Node from 1.1.9 to 1.1.12

You must upgrade the master node in your cluster before upgrading the worker nodes. Use the kubeadm-
upgrade.sh upgrade command on the master node to create the necessary backup files and complete
the necessary steps to prepare and upgrade the cluster.

Important

Before you perform any update operations, make a backup file of your cluster at
its current version. After you update the kubeadm package, any backup files that
you make are not backward compatible: if you revert to an earlier version of Oracle
Linux Container Services for use with Kubernetes, the restore operation might fail to
successfully load your backup file. See Section 4.3, “Cluster Backup and Restore”
for more information.

Do not use backups that are generated by kubeadm-setup to restore from a failed
1.1.9 to 1.1.12 upgrade. The kubeadm-upgrade tool provides its own separate
backup and restore mechanism, as described later in this section.

Upgrade the master node to 1.1.12

1. Unlike errata upgrades, you do not need to manually update the kubeadm package, but you do need to
install the kubeadm-upgrade package is required:
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# yum install kubeadm-upgrade

2. If you are using the Oracle Container Registry to obtain images, log in.

Follow the instructions in Section 2.2.5, “Oracle Container Registry Requirements”. Note that if images
are updated on the Oracle Container Registry, you may be required to accept the Oracle Standard
Terms and Restrictions again before you are able to perform the upgrade. If you are using one of the
Oracle Container Registry mirrors, see Section 2.2.5.1, “Using an Oracle Container Registry Mirror” for
more information.

If you configured a local registry, you may need to set the KUBE_REPO_PREFIX environment variable
to point to the appropriate registry. You might also need to update your local registry with the most
current images for the version that you are upgrading to. See Section 2.2.5.2, “Setting Up an Optional
Local Registry” for more information.

3. Ensure that you open any new firewall ports, as described in Section 2.2.7, “Firewall and iptables
Requirements”.

4. Create a pre-upgrade backup file. Unlike the errata release upgrade procedure, the backup file is
generated by using kubeadm-upgrade.sh backup. In the event that the upgrade does not complete
successfully, the backup can revert back to the configuration of your cluster prior to upgrade.

# kubeadm-setup.sh stop
Stopping kubelet now ...
Stopping containers now ...

# kubeadm-upgrade.sh backup /backups
-- Running upgrade script---
Backing up cluster
Creating backup at directory /backups ...
Using 3.1.11
Checking if container-registry.oracle.com/kubernetes/etcd-amd64:3.1.11 is available
dc9ed9408e82dbd9d925c4d660206f9c60dce98c150cb32517284a6ef764f59d  
/var/run/kubeadm/backup/etcd-backup-1546953894.tar
aa2dad1ba2c2ec486d30fe0a15b29566b257474429d79889472fd79128489ae0  
/var/run/kubeadm/backup/k8s-master-0-1546953894.tar
Backup is successfully stored at /backups/master-backup-v1.9.11-0-1546953894.tar ...
You can restart your cluster now by doing: 
# kubeadm-setup.sh restart
Storing meta-data to backup file master-backup-v1.9.11-0-1546953894.tar
.version-info
Backup creation successful :)

# kubeadm-setup.sh restart
Restarting containers now ...
Detected node is master ...
Checking if env is ready ...
Checking whether docker can pull busybox image ...
Checking access to container-registry.oracle.com/kubernetes ...
Trying to pull repository container-registry.oracle.com/kubernetes/pause ... 
3.1: Pulling from container-registry.oracle.com/kubernetes/pause
Digest: sha256:802ef89b9eb7e874a76e1cfd79ed990b63b0b84a05cfa09f0293379ac0261b49
Status: Image is up to date for container-registry.oracle.com/kubernetes/pause:3.1
Checking firewalld settings ...
Checking iptables default rule ...
Checking br_netfilter module ...
Checking sysctl variables ...
Restarting kubelet ...
Waiting for node to restart ...
.......+..............
Master node restarted. Complete synchronization between nodes may take a few minutes.

25



The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Upgrading the Master Node from 1.1.9 to 1.1.12

5. Run the kubeadm-upgrade.sh upgrade command as root on the master node.

# kubeadm-upgrade.sh upgrade
-- Running upgrade script---
Number of cpu present in this system 2
Total memory on this system: 7710MB
Space available on the mount point /var/lib/docker: 44GB
Space available on the mount point /var/lib/kubelet: 44GB
kubeadm version 1.9
kubectl version 1.9
kubelet version 1.9
ol7_addons repo enabled
[WARNING] This action will upgrade this node to latest version
[WARNING] The cluster will be upgraded through intermediate 
versions which are unsupported
[WARNING] You must take backup before upgrading the cluster as upgrade may fail
  Please select 1 (continue) or 2 (abort) :
1) continue
2) abort
#? 1

Upgrading master node
Checking access to container-registry.oracle.com/kubernetes for update
Trying to pull repository container-registry.oracle.com/kubernetes/kube-proxy-amd64
v1.10.5: Pulling from container-registry.oracle.com/kubernetes/kube-proxy-amd64
Digest: sha256:4739e1154818a95786bc94d44e1cb4f493083d1983e98087c8a8279e616582f1
Status: Image is up to date for 
container-registry.oracle.com/kubernetes/kube-proxy-amd64:v1.10.5
Checking access to container-registry.oracle.com/kubernetes for update
Trying to pull repository container-registry.oracle.com/kubernetes/kube-proxy-amd64
v1.11.3: Pulling from container-registry.oracle.com/kubernetes/kube-proxy-amd64
Digest: sha256:2783b4d4689da3210d2a915a8ee60905bf53841be4d52ffbf56cc811c61d5728
Status: Image is up to date for 
container-registry.oracle.com/kubernetes/kube-proxy-amd64:v1.11.3
Checking access to container-registry.oracle.com/kubernetes for update
Trying to pull repository container-registry.oracle.com/kubernetes/kube-proxy ...
v1.12.7: Pulling from Pulling from container-registry.oracle.com/kubernetes/kube-proxy
Digest: sha256:f4f9e7b70a65f4f7d751da9b97c7536b21a7ac2b301155b0685778fc83d5510f
Status: Image is up to date for Pulling from 
container-registry.oracle.com/kubernetes/kube-proxy:v1.12.7
Loaded plugins: langpacks, ulninfo
Resolving Dependencies
--> Running transaction check
---> Package kubeadm.x86_64 0:1.9.11-2.1.1.el7 will be updated
---> Package kubeadm.x86_64 0:1.10.5-2.0.2.el7 will be an update
---> Package kubectl.x86_64 0:1.9.11-2.1.1.el7 will be updated
---> Package kubectl.x86_64 0:1.10.5-2.0.2.el7 will be an update
---> Package kubelet.x86_64 0:1.9.11-2.1.1.el7 will be updated
---> Package kubelet.x86_64 0:1.10.5-2.0.2.el7 will be an update
--> Finished Dependency Resolution

Dependencies Resolved

================================================================
 Package   Arch          Version          Repository       Size
================================================================
Updating:
 kubeadm   x86_64     1.10.5-2.0.2.el7    ol7_addons       17 M
 kubectl   x86_64     1.10.5-2.0.2.el7    ol7_addons       7.6 M
 kubelet   x86_64     1.10.5-2.0.2.el7    ol7_addons       17 M

Transaction Summary
=================================================================
Upgrade  3 Packages
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Total download size: 42 M
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
--------------------------------------------------------------------------------
Total                                               49 MB/s |  42 MB  00:00
Running transaction check
Running transaction test
Transaction test succeeded   
Running transaction
  Updating   : kubelet-1.10.5-2.0.2.el7.x86_64                              1/6
  Updating   : kubectl-1.10.5-2.0.2.el7.x86_64                              2/6
  Updating   : kubeadm-1.10.5-2.0.2.el7.x86_64                              3/6
  Cleanup    : kubeadm-1.9.11-2.1.1.el7.x86_64                              4/6
  Cleanup    : kubectl-1.9.11-2.1.1.el7.x86_64                              5/6
  Cleanup    : kubelet-1.9.11-2.1.1.el7.x86_64                              6/6
  Verifying  : kubectl-1.10.5-2.0.2.el7.x86_64                              1/6
  Verifying  : kubelet-1.10.5-2.0.2.el7.x86_64                              2/6
  Verifying  : kubeadm-1.10.5-2.0.2.el7.x86_64                              3/6
  Verifying  : kubectl-1.9.11-2.1.1.el7.x86_64                              4/6
  Verifying  : kubeadm-1.9.11-2.1.1.el7.x86_64                              5/6
  Verifying  : kubelet-1.9.11-2.1.1.el7.x86_64                              6/6

Updated:
  kubeadm.x86_64 0:1.10.5-2.0.2.el7      kubectl.x86_64 0:1.10.5-2.0.2.el7
  kubelet.x86_64 0:1.10.5-2.0.2.el7

Complete!
Upgrading pre-requisite
Checking whether api-server is using image lower than 1.9
Upgrading pre-requisite done 
Checking cluster health ...  
....
[preflight] Running pre-flight checks.
[upgrade] Making sure the cluster is healthy:
[upgrade/config] Making sure the configuration is correct:
[upgrade/config] Reading configuration options from a file: 
/var/run/kubeadm/kubeadm-cfg
[upgrade/version] You have chosen to change the cluster version to "v1.10.5"
[upgrade/versions] Cluster version: v1.9.11+2.1.1.el7
[upgrade/versions] kubeadm version: v1.10.5+2.0.2.el7
[upgrade/prepull] Will prepull images for 
components [kube-apiserver kube-controller-manager kube-scheduler]
[upgrade/apply] Upgrading your Static Pod-hosted control plane to version "v1.10.5"...
Static pod: kube-apiserver-master.example.com hash: 
3b6cc643053ae0164a687e53fbcf4eb7
Static pod: kube-controller-manager-master.example.com hash: 
78b0313a30bbf65cf169686001a2c093
Static pod: kube-scheduler-master.example.com hash: 
8fa7d39f0a3246bb39baf3712702214a
[upgrade/etcd] Upgrading to TLS for etcd
Static pod: etcd-master.example.com hash: 196164156fbbd2ef7daaf8c6a0ec6379
[etcd] Wrote Static Pod manifest for a local etcd instance 
to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests139181353/etcd.yaml"
[certificates] Generated etcd/ca certificate and key.
[certificates] Generated etcd/server certificate and key.
[certificates] etcd/server serving cert is signed for DNS names [localhost] 
and IPs [127.0.0.1]
[certificates] Generated etcd/peer certificate and key.
[certificates] etcd/peer serving cert is signed for DNS 
names [master.example.com] and IPs [19.0.2.10]
[certificates] Generated etcd/healthcheck-client certificate and key.
[upgrade/staticpods] Moved new manifest to "/etc/kubernetes/manifests/etcd.yaml" 
and backed up old manifest 
to "/etc/kubernetes/tmp/kubeadm-backup-manifests154060916/etcd.yaml"
[upgrade/staticpods] Not waiting for pod-hash change for component "etcd"
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[upgrade/etcd] Waiting for etcd to become available
[util/etcd] Waiting 30s for initial delay
[util/etcd] Attempting to see if all cluster endpoints are available 1/10
[util/etcd] Attempt failed with error: dial tcp [::1]:2379: 
getsockopt: connection refused
[util/etcd] Waiting 15s until next retry
[util/etcd] Attempting to see if all cluster endpoints are available 2/10
[util/etcd] Attempt failed with error: dial tcp [::1]:2379: 
getsockopt: connection refused
[util/etcd] Waiting 15s until next retry
[util/etcd] Attempting to see if all cluster endpoints are available 3/10
[upgrade/staticpods] Writing new Static Pod manifests 
to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests139181353"
[controlplane] Wrote Static Pod manifest for component kube-apiserver 
to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests139181353/kube-apiserver.yaml"
[controlplane] Wrote Static Pod manifest for component kube-controller-manager 
to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests139181353/kube-controller-manager.yaml"
[controlplane] Wrote Static Pod manifest for component kube-scheduler 
to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests139181353/kube-scheduler.yaml"
[upgrade/staticpods] The etcd manifest will be restored if 
component "kube-apiserver" fails to upgrade
[certificates] Using the existing etcd/ca certificate and key.
[certificates] Generated apiserver-etcd-client certificate and key.
[upgrade/staticpods] Moved new manifest to "/etc/kubernetes/manifests/kube-apiserver.yaml" 
and backed up old manifest 
to "/etc/kubernetes/tmp/kubeadm-backup-manifests154060916/kube-apiserver.yaml"
[upgrade/staticpods] Waiting for the kubelet to restart the component
Static pod: kube-apiserver-master.example.com hash: 3b6cc643053ae0164a687e53fbcf4eb7
Static pod: kube-apiserver-master.example.com hash: f7c7c2a1693f48bc6146119961c47cad
[apiclient] Found 1 Pods for label selector component=kube-apiserver
[upgrade/staticpods] Component "kube-apiserver" upgraded successfully!
[upgrade/staticpods] Moved new manifest 
to "/etc/kubernetes/manifests/kube-controller-manager.yaml" 
and backed up old manifest 
to "/etc/kubernetes/tmp/kubeadm-backup-manifests154060916/kube-controller-manager.yaml"
[upgrade/staticpods] Waiting for the kubelet to restart the component
Static pod: kube-controller-manager-master.example.com hash: 
78b0313a30bbf65cf169686001a2c093
Static pod: kube-controller-manager-master.example.com hash: 
3fffc11595801c3777e45ff96ce75444
[apiclient] Found 1 Pods for label selector component=kube-controller-manager
[upgrade/staticpods] Component "kube-controller-manager" upgraded successfully!
[upgrade/staticpods] Moved new manifest to "/etc/kubernetes/manifests/kube-scheduler.yaml" 
and backed up old manifest 
to "/etc/kubernetes/tmp/kubeadm-backup-manifests154060916/kube-scheduler.yaml"
[upgrade/staticpods] Waiting for the kubelet to restart the component
Static pod: kube-scheduler-master.example.com hash: 8fa7d39f0a3246bb39baf3712702214a
Static pod: kube-scheduler-master.example.com hash: c191e26d0faa00981a2f0d6f1f0d7e5f
[apiclient] Found 1 Pods for label selector component=kube-scheduler
[upgrade/staticpods] Component "kube-scheduler" upgraded successfully!
[uploadconfig] Storing the configuration used in ConfigMap "kubeadm-config" 
in the "kube-system" Namespace
[bootstraptoken] Configured RBAC rules to allow Node Bootstrap tokens to post CSRs 
in order for nodes to get long term certificate credentials
[bootstraptoken] Configured RBAC rules to allow the csrapprover controller 
automatically approve CSRs from a Node Bootstrap Token
[bootstraptoken] Configured RBAC rules to allow certificate rotation 
for all node client certificates in the cluster
[addons] Applied essential addon: kube-dns
[addons] Applied essential addon: kube-proxy

[upgrade/successful] SUCCESS! Your cluster was upgraded to "v1.10.5". Enjoy!

[upgrade/kubelet] Now that your control plane is upgraded, 
please proceed with upgrading your kubelets in turn.
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Upgrading kubeadm to 1.11.3 version
Loaded plugins: langpacks, ulninfo
Resolving Dependencies
--> Running transaction check
---> Package kubeadm.x86_64 0:1.10.5-2.0.2.el7 will be updated
---> Package kubeadm.x86_64 0:1.11.3-2.0.2.el7 will be an update
--> Finished Dependency Resolution

Dependencies Resolved

================================================================
 Package   Arch          Version          Repository       Size
================================================================
Updating:
 kubeadm   x86_64    1.11.3-2.0.2.el7     ol7_addons      7.6 M

Transaction Summary
================================================================
Upgrade  1 Package

Total download size: 7.6 M   
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
Running transaction check
Running transaction test
Transaction test succeeded   
Running transaction
  Updating   : kubeadm-1.11.3-2.0.2.el7.x86_64                              1/2
  Cleanup    : kubeadm-1.10.5-2.0.2.el7.x86_64                              2/2
  Verifying  : kubeadm-1.11.3-2.0.2.el7.x86_64                              1/2
  Verifying  : kubeadm-1.10.5-2.0.2.el7.x86_64                              2/2

Updated:
  kubeadm.x86_64 0:1.11.3-2.0.2.el7

Complete!
Upgrading pre-requisite
Checking whether api-server is using image lower than 1.9
Upgrading pre-requisite done 
Checking cluster health ...  
....................................................................................
[preflight] Running pre-flight checks.
[upgrade] Making sure the cluster is healthy:
[upgrade/config] Making sure the configuration is correct:
[upgrade/config] Reading configuration options from a file: /var/run/kubeadm/kubeadm-cfg
[upgrade/apply] Respecting the --cri-socket flag that 
is set with higher priority than the config file.
[upgrade/version] You have chosen to change the cluster version to "v1.11.3"
[upgrade/versions] Cluster version: v1.10.5+2.0.2.el7
[upgrade/versions] kubeadm version: v1.11.3+2.0.2.el7
[upgrade/version] Found 1 potential version compatibility errors 
but skipping since the --force flag is set:

        - There are kubelets in this cluster that are too old 
          that have these versions [v1.9.11+2.1.1.el7]
[upgrade/prepull] Will prepull images 
for components [kube-apiserver kube-controller-manager kube-scheduler etcd]
[upgrade/apply] Upgrading your Static Pod-hosted control plane to version "v1.11.3"...
Static pod: kube-apiserver-master.example.com hash: f7c7c2a1693f48bc6146119961c47cad
Static pod: kube-controller-manager-master.example.com hash: 
3fffc11595801c3777e45ff96ce75444
Static pod: kube-scheduler-master.example.com hash: c191e26d0faa00981a2f0d6f1f0d7e5f
Static pod: etcd-master.example.com hash: 6ecccbc01b0cd9daa0705a1396ef38e5
[etcd] Wrote Static Pod manifest for a local etcd instance 
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to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests842182537/etcd.yaml"
[certificates] Using the existing etcd/ca certificate and key.
[certificates] Using the existing etcd/server certificate and key.
[certificates] Using the existing etcd/peer certificate and key.
[certificates] Using the existing etcd/healthcheck-client certificate and key.
[upgrade/staticpods] Moved new manifest to "/etc/kubernetes/manifests/etcd.yaml" 
and backed up old manifest 
to "/etc/kubernetes/tmp/kubeadm-backup-manifests-2019-01-09-07-25-48/etcd.yaml"
[upgrade/staticpods] Waiting for the kubelet to restart the component
Static pod: etcd-master.example.com hash: 6ecccbc01b0cd9daa0705a1396ef38e5
Static pod: etcd-master.example.com hash: 6ecccbc01b0cd9daa0705a1396ef38e5
Static pod: etcd-master.example.com hash: 6ecccbc01b0cd9daa0705a1396ef38e5
Static pod: etcd-master.example.com hash: 560672e3081cf0ff6a30ac1f943240eb
[apiclient] Found 1 Pods for label selector component=etcd
[upgrade/staticpods] Component "etcd" upgraded successfully!
[upgrade/etcd] Waiting for etcd to become available
[util/etcd] Waiting 0s for initial delay
[util/etcd] Attempting to see if all cluster endpoints are available 1/10
[upgrade/staticpods] Writing new Static Pod manifests 
to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests842182537"
[controlplane] wrote Static Pod manifest for component kube-apiserver 
to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests842182537/kube-apiserver.yaml"
[controlplane] wrote Static Pod manifest for component kube-controller-manager 
to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests842182537/kube-controller-manager.yaml"
[controlplane] wrote Static Pod manifest for component kube-scheduler 
to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests842182537/kube-scheduler.yaml"
[certificates] Using the existing etcd/ca certificate and key.
[certificates] Using the existing apiserver-etcd-client certificate and key.
[upgrade/staticpods] Moved new manifest to "/etc/kubernetes/manifests/kube-apiserver.yaml" 
and backed up old manifest 
to "/etc/kubernetes/tmp/kubeadm-backup-manifests-2019-01-09-07-25-48/kube-apiserver.yaml"
[upgrade/staticpods] Waiting for the kubelet to restart the component
Static pod: kube-apiserver-master.example.com hash: f7c7c2a1693f48bc6146119961c47cad
Static pod: kube-apiserver-master.example.com hash: f7c7c2a1693f48bc6146119961c47cad
Static pod: kube-apiserver-master.example.com hash: f7c7c2a1693f48bc6146119961c47cad
Static pod: kube-apiserver-master.example.com hash: 9eefcb38114108702fad91f927799c04
[apiclient] Found 1 Pods for label selector component=kube-apiserver
[upgrade/staticpods] Component "kube-apiserver" upgraded successfully!
[upgrade/staticpods] Moved new manifest 
to "/etc/kubernetes/manifests/kube-controller-manager.yaml" 
and backed up old manifest to 
"/etc/kubernetes/tmp/kubeadm-backup-manifests-2019-01-09-07-25-48/
kube-controller-manager.yaml"
[upgrade/staticpods] Waiting for the kubelet to restart the component
Static pod: kube-controller-manager-master.example.com hash: 
3fffc11595801c3777e45ff96ce75444
Static pod: kube-controller-manager-master.example.com hash: 
32b0f7233137a5c4879bda1067f36f8a
[apiclient] Found 1 Pods for label selector component=kube-controller-manager
[upgrade/staticpods] Component "kube-controller-manager" upgraded successfully!
[upgrade/staticpods] Moved new manifest to "/etc/kubernetes/manifests/kube-scheduler.yaml" 
and backed up old manifest 
to "/etc/kubernetes/tmp/kubeadm-backup-manifests-2019-01-09-07-25-48/kube-scheduler.yaml"
[upgrade/staticpods] Waiting for the kubelet to restart the component
Static pod: kube-scheduler-master.example.com hash: c191e26d0faa00981a2f0d6f1f0d7e5f
Static pod: kube-scheduler-master.example.com hash: b589c7f85a86056631f252695c20358b
[apiclient] Found 1 Pods for label selector component=kube-scheduler
[upgrade/staticpods] Component "kube-scheduler" upgraded successfully!
[uploadconfig] storing the configuration used in 
ConfigMap "kubeadm-config" in the "kube-system" Namespace
[kubelet] Creating a ConfigMap "kubelet-config-1.11" in namespace kube-system 
with the configuration for the kubelets in the cluster
[kubelet] Downloading configuration for the kubelet from 
the "kubelet-config-1.11" ConfigMap in the kube-system namespace
[kubelet] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
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[kubelet] Writing kubelet environment file with flags 
to file "/var/lib/kubelet/kubeadm-flags.env"
[patchnode] Uploading the CRI Socket information "/var/run/dockershim.sock" 
to the Node API object "master.example.com" as an annotation
[bootstraptoken] configured RBAC rules to allow Node Bootstrap tokens 
to post CSRs in order for nodes to get long term certificate credentials
[bootstraptoken] configured RBAC rules to allow the csrapprover controller 
automatically approve CSRs from a Node Bootstrap Token
[bootstraptoken] configured RBAC rules 
to allow certificate rotation for all node client certificates in the cluster
[addons] Applied essential addon: kube-dns
[addons] Applied essential addon: kube-proxy

[upgrade/successful] SUCCESS! Your cluster was upgraded to "v1.11.3". Enjoy!

[upgrade/kubelet] Now that your control plane is upgraded, please proceed with 
upgrading your kubelets if you haven't already done so.
Upgrading kubelet and kubectl now ...
Checking kubelet and kubectl RPM ...
[INFO] yum install -y kubelet-1.11.3-2.0.2.el7.x86_64
Loaded plugins: langpacks, ulninfo
Resolving Dependencies
--> Running transaction check
---> Package kubelet.x86_64 0:1.10.5-2.0.2.el7 will be updated
---> Package kubelet.x86_64 0:1.11.3-2.0.2.el7 will be an update
--> Finished Dependency Resolution

Dependencies Resolved
===================================================================================
 Package        Arch          Version                   Repository           Size
===================================================================================
Updating:
 kubelet        x86_64      1.11.3-2.0.2.el7             ol7_addons           18 M

Transaction Summary
===================================================================================
Upgrade  1 Package

Total download size: 18 M
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
kubelet-1.11.3-2.0.2.el7.x86_64.rpm                           |  18 MB  00:00:00
Running transaction check
Running transaction test
Transaction test succeeded   
Running transaction
  Updating   : kubelet-1.11.3-2.0.2.el7.x86_64                1/2
  Cleanup    : kubelet-1.10.5-2.0.2.el7.x86_64                2/2
  Verifying  : kubelet-1.11.3-2.0.2.el7.x86_64                1/2
  Verifying  : kubelet-1.10.5-2.0.2.el7.x86_64                2/2

Updated:
  kubelet.x86_64 0:1.11.3-2.0.2.el7

Complete!
[INFO] yum install -y kubectl-1.11.3-2.0.2.el7.x86_64
Loaded plugins: langpacks, ulninfo
Resolving Dependencies
--> Running transaction check
---> Package kubectl.x86_64 0:1.10.5-2.0.2.el7 will be updated
---> Package kubectl.x86_64 0:1.11.3-2.0.2.el7 will be an update
--> Finished Dependency Resolution

Dependencies Resolved
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===================================================================================
 Package        Arch          Version                   Repository           Size
===================================================================================
Updating:
 kubectl       x86_64     1.11.3-2.0.2.el7               ol7_addons          7.6 M

Transaction Summary
===================================================================================
Upgrade  1 Package

Total download size: 7.6 M   
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
kubectl-1.11.3-2.0.2.el7.x86_64.rpm                          | 7.6 MB  00:00:00
Running transaction check
Running transaction test
Transaction test succeeded   
Running transaction
  Updating   : kubectl-1.11.3-2.0.2.el7.x86_64                1/2
  Cleanup    : kubectl-1.10.5-2.0.2.el7.x86_64                2/2
  Verifying  : kubectl-1.11.3-2.0.2.el7.x86_64                1/2
  Verifying  : kubectl-1.10.5-2.0.2.el7.x86_64                2/2

Updated:
  kubectl.x86_64 0:1.11.3-2.0.2.el7

Complete!
Upgrading kubelet and kubectl to 1.11.3 version
Loaded plugins: langpacks, ulninfo
Package kubelet-1.11.3-2.0.2.el7.x86_64 already installed and latest version
Package kubectl-1.11.3-2.0.2.el7.x86_64 already installed and latest version
Nothing to do
Upgrading kubeadm to 1.12.7-1.1.2.el7 version
Loaded plugins: langpacks, ulninfo
Resolving Dependencies
--> Running transaction check
---> Package kubeadm.x86_64 0:1.11.3-2.0.2.el7 will be updated
---> Package kubeadm.x86_64 0:1.12.7-1.1.2.el7 will be an update
--> Finished Dependency Resolution

Dependencies Resolved

===================================================================================
 Package        Arch          Version                   Repository           Size
===================================================================================
 kubeadm        x86_64      1.12.7-1.1.2.el7            ol7_addons          7.3 M

Transaction Summary
===================================================================================
Upgrade  1 Package

Total download size: 7.3 M   
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
kubeadm-1.12.7-1.1.2.el7.x86_64.rpm                               | 7.3 MB  00:00:00
Running transaction check
Running transaction test
Transaction test succeeded   
Running transaction
  Updating   : kubeadm-1.12.7-1.1.2.el7.x86_64                    1/2
  Cleanup    : kubeadm-1.11.3-2.0.2.el7.x86_64                    2/2
  Verifying  : kubeadm-1.12.7-1.1.2.el7.x86_64                    1/2
  Verifying  : kubeadm-1.11.3-2.0.2.el7.x86_64                    2/2
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Updated:
  kubeadm.x86_64 0:1.12.7-1.1.2.el7

Complete!
Upgrading pre-requisite
Checking whether api-server is using image lower than 1.9
Upgrading pre-requisite done 
Checking cluster health ...  
...........................................................................
[preflight] Running pre-flight checks.
[upgrade] Making sure the cluster is healthy:
[upgrade/config] Making sure the configuration is correct:
[upgrade/config] Reading configuration options from a file: /var/run/kubeadm/kubeadm-cfg
[upgrade/apply] Respecting the --cri-socket flag that is set with higher priority 
than the config file.
[upgrade/version] You have chosen to change the cluster version to "v1.12.5"
[upgrade/versions] Cluster version: v1.11.3+2.0.2.el7
[upgrade/versions] kubeadm version: v1.12.7+1.1.2.el7
[upgrade/version] Found 1 potential version compatibility errors 
but skipping since the --force flag is set:

        - There are kubelets in this cluster that are too old that have 
          these versions [v1.9.11+2.1.1.el7]
[upgrade/prepull] Will prepull images for 
components [kube-apiserver kube-controller-manager kube-scheduler etcd]
[upgrade/prepull] Prepulling image for component etcd.
[upgrade/prepull] Prepulling image for component kube-apiserver.
[upgrade/prepull] Prepulling image for component kube-controller-manager.
[upgrade/prepull] Prepulling image for component kube-scheduler.
[apiclient] Found 0 Pods for label selector k8s-app=upgrade-prepull-kube-scheduler
[apiclient] Found 0 Pods for label selector k8s-app=upgrade-prepull-etcd
[apiclient] Found 1 Pods for label selector k8s-app=upgrade-prepull-kube-controller-manager
[apiclient] Found 1 Pods for label selector k8s-app=upgrade-prepull-kube-apiserver
[apiclient] Found 1 Pods for label selector k8s-app=upgrade-prepull-kube-scheduler
[apiclient] Found 0 Pods for label selector k8s-app=upgrade-prepull-etcd
[upgrade/prepull] Prepulled image for component kube-apiserver.
[upgrade/prepull] Prepulled image for component kube-controller-manager.
[upgrade/prepull] Prepulled image for component etcd.
[upgrade/prepull] Prepulled image for component kube-scheduler.
[upgrade/prepull] Successfully prepulled the images for all the control plane components
[upgrade/apply] Upgrading your Static Pod-hosted control plane to version "v1.12.5"...
Static pod: kube-apiserver-master.example.com hash: 7c19bbee52e8a857c9e75551139951b7
Static pod: kube-controller-manager-master.example.com hash: 
0221796c266be3d6f237a7256da5fa36
Static pod: kube-scheduler-master.example.com hash: e0549b9041665ae07cfacdaf337ab1e0
Static pod: etcd-master.example.com hash: 7a68f8a24bf031e2027cc6d528ce6efe
[etcd] Wrote Static Pod manifest for a local etcd instance 
to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests665746710/etcd.yaml"
[upgrade/staticpods] Moved new manifest 
to "/etc/kubernetes/manifests/etcd.yaml" and backed up old manifest 
to "/etc/kubernetes/tmp/kubeadm-backup-manifests-2019-01-09-07-34-07/etcd.yaml"
[upgrade/staticpods] Waiting for the kubelet to restart the component
[upgrade/staticpods] This might take a minute or longer depending 
on the component/version gap (timeout 5m0s
Static pod: etcd-master.example.com hash: 7a68f8a24bf031e2027cc6d528ce6efe
Static pod: etcd-master.example.com hash: 7a68f8a24bf031e2027cc6d528ce6efe
Static pod: etcd-master.example.com hash: 7eab06d7296bf87cff84cb56f26d13e6
[apiclient] Found 1 Pods for label selector component=etcd
[upgrade/staticpods] Component "etcd" upgraded successfully!
[upgrade/etcd] Waiting for etcd to become available
[util/etcd] Waiting 0s for initial delay
[util/etcd] Attempting to see if all cluster endpoints are available 1/10
[upgrade/staticpods] Writing new Static Pod manifests 
to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests665746710"
[controlplane] wrote Static Pod manifest for component kube-apiserver 
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to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests665746710/kube-apiserver.yaml"
[controlplane] wrote Static Pod manifest for component kube-controller-manager 
to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests665746710/kube-controller-manager.yaml"
[controlplane] wrote Static Pod manifest for component kube-scheduler 
to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests665746710/kube-scheduler.yaml"
[upgrade/staticpods] Moved new manifest to "/etc/kubernetes/manifests/kube-apiserver.yaml" 
and backed up old manifest 
to "/etc/kubernetes/tmp/kubeadm-backup-manifests-2019-01-09-07-34-07/kube-apiserver.yaml"
[upgrade/staticpods] Waiting for the kubelet to restart the component
[upgrade/staticpods] This might take a minute or longer depending on 
the component/version gap (timeout 5m0s
Static pod: kube-apiserver-master.example.com hash: 7c19bbee52e8a857c9e75551139951b7
Static pod: kube-apiserver-master.example.com hash: 7c19bbee52e8a857c9e75551139951b7
Static pod: kube-apiserver-master.example.com hash: 7c19bbee52e8a857c9e75551139951b7
Static pod: kube-apiserver-master.example.com hash: 7c19bbee52e8a857c9e75551139951b7
Static pod: kube-apiserver-master.example.com hash: 5c6ceef93d0a8c04d331d6ea6da4b6a7
[apiclient] Found 1 Pods for label selector component=kube-apiserver
[apiclient] Found 1 Pods for label selector component=kube-scheduler
[upgrade/staticpods] Component "kube-scheduler" upgraded successfully!
[uploadconfig] storing the configuration used in ConfigMap 
"kubeadm-config" in the "kube-system" Namespace
[kubelet] Creating a ConfigMap "kubelet-config-1.12" in 
namespace kube-system with the configuration for the kubelets in the cluster
[kubelet] Downloading configuration for the kubelet from 
the "kubelet-config-1.12" ConfigMap in the kube-system namespace
[kubelet] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
[patchnode] Uploading the CRI Socket information "/var/run/dockershim.sock" to 
the Node API object "k8s-m1.us.oracle.com" as an annotation
[bootstraptoken] configured RBAC rules to allow Node Bootstrap tokens to 
post CSRs in order for nodes to get long term certificate credentials
[bootstraptoken] configured RBAC rules to allow the csrapprover controller 
automatically approve CSRs from a Node Bootstrap Token
[bootstraptoken] configured RBAC rules to allow certificate rotation for 
all node client certificates in the cluster
[addons] Applied essential addon: kube-dns
[addons] Applied essential addon: kube-proxy

[upgrade/successful] SUCCESS! Your cluster was upgraded to "v1.12.5". Enjoy!

[upgrade/kubelet] Now that your control plane is upgraded, 
please proceed with upgrading your kubelets if you haven't already done so.
Upgrading kubelet and kubectl now ...
Checking kubelet and kubectl RPM ...
[INFO] yum install -y kubelet-1.12.7-1.1.2.el7.x86_64
Loaded plugins: langpacks, ulninfo
Resolving Dependencies
--> Running transaction check
---> Package kubelet.x86_64 0:1.11.3-2.0.2.el7 will be updated
---> Package kubelet.x86_64 0:1.12.7-1.1.2.el7 will be an update
--> Finished Dependency Resolution

Dependencies Resolved

===================================================================================
 Package        Arch          Version                   Repository           Size
===================================================================================
Updating:
 kubelet       x86_64      1.12.7-1.1.2.el7             ol7_addons           19 M

Transaction Summary
====================================================================================

Upgrade  1 Package
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Total download size: 19 M
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
kubelet-1.12.7-1.1.2.el7.x86_64.rpm                                        
Running transaction check
Running transaction test
Transaction test succeeded   
Running transaction
  Updating   : kubelet-1.12.7-1.1.2.el7.x86_64                        1/2
  Cleanup    : kubelet-1.11.3-2.0.2.el7.x86_64                        2/2
  Verifying  : kubelet-1.12.7-1.1.2.el7.x86_64                        1/2
  Verifying  : kubelet-1.11.3-2.0.2.el7.x86_64                        2/2

Updated:
  kubelet.x86_64 0:1.12.7-1.1.2.el7

Complete!
[INFO] yum install -y kubectl-1.12.7-1.1.2.el7.x86_64
Loaded plugins: langpacks, ulninfo
Resolving Dependencies
--> Running transaction check
---> Package kubectl.x86_64 0:1.11.3-2.0.2.el7 will be updated
---> Package kubectl.x86_64 0:1.12.7-1.1.2.el7 will be an update
--> Finished Dependency Resolution

Dependencies Resolved

===================================================================================
 Package        Arch          Version                   Repository           Size
===================================================================================
Updating:
 kubectl        x86_64      1.12.7-1.1.2.el7            ol7_addons           7.7 M

Transaction Summary
===================================================================================
Upgrade  1 Package

Total download size: 7.7 M   
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
kubectl-1.12.7-1.1.2.el7.x86_64.rpm                        | 7.7 MB  00:00:00
Running transaction check
Running transaction test
Transaction test succeeded   
Running transaction
  Updating   : kubectl-1.12.7-1.1.2.el7.x86_64              1/2
  Cleanup    : kubectl-1.11.3-2.0.2.el7.x86_64              2/2
  Verifying  : kubectl-1.12.7-1.1.2.el7.x86_64              1/2
  Verifying  : kubectl-1.11.3-2.0.2.el7.x86_64              2/2

Updated:
  kubectl.x86_64 0:1.12.7-1.1.2.el7

Complete!
[INSTALLING DASHBOARD NOW]   

Installing kubernetes-dashboard ...

Kubernetes version: v1.12.7 and dashboard yaml file: 
/usr/local/share/kubeadm/kubernetes-dashboard-self-certs.yaml
The connection to the server 10.147.25.195:6443 was refused - 
did you specify the right host or port?
Restarting kubectl-proxy.service ...
[INFO] Upgrading master node done successfully
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[INFO] Flannel is not upgraded yet. Please run 
'kubeadm-upgrade.sh upgrade --flannel' to upgrade flannel
[INFO] Dashboard is not upgraded yet. Please run 
'kubeadm-upgrade.sh upgrade --dashboard' to upgrade dashboard

6. Because the flannel service that Oracle Linux Container Services for use with Kubernetes 1.1.12
depends on is not upgraded automatically by the specialized upgrade script, ensure you upgrade
separately, for example:

# kubeadm-setup.sh upgrade --flannel
Trying to pull repository container-registry.oracle.com/kubernetes/flannel ... 
v0.10.0: Pulling from container-registry.oracle.com/kubernetes/flannel
Digest: sha256:da1f7af813d6b6123c9a240b3e7f9b58bc7b50d9939148aa08c7ba8253e0c312
Status: Image is up to date for container-registry.oracle.com/kubernetes/flannel:v0.10.0
kube-flannel-ds-85clc kube-flannel-ds-x9grm
clusterrole.rbac.authorization.k8s.io "flannel" deleted
clusterrolebinding.rbac.authorization.k8s.io "flannel" deleted
serviceaccount "flannel" deleted
configmap "kube-flannel-cfg" deleted
daemonset.extensions "kube-flannel-ds" deleted
pod "kube-flannel-ds-85clc" deleted
pod "kube-flannel-ds-x9grm" deleted
NAME                                        READY   STATUS    RESTARTS   AGE
etcd-master.example.com                      1/1     Running   0          11m
kube-apiserver-master.example.com            1/1     Running   0          11m
kube-controller-manager-master.example.com   1/1     Running   0          11m
kube-dns-554d547449-hhl6p                    3/3     Running   0          12m
kube-proxy-bc7ht                             1/1     Running   0          12m
kube-proxy-jd8gh                             1/1     Running   0          12m
kube-scheduler-master.example.com            1/1     Running   0          11m
kubernetes-dashboard-64c8c8b9dd-c9wfl        1/1     Running   1          41m
clusterrole.rbac.authorization.k8s.io/flannel created
clusterrolebinding.rbac.authorization.k8s.io/flannel created
serviceaccount/flannel created
configmap/kube-flannel-cfg created
daemonset.extensions/kube-flannel-ds created

7. The Oracle Linux Container Services for use with Kubernetes dashboard service also needs to be
upgraded separately to 1.1.12:

# kubeadm-upgrade.sh upgrade --dashboard
Upgrading dashboard
secret "kubernetes-dashboard-certs" deleted
serviceaccount "kubernetes-dashboard" deleted
role.rbac.authorization.k8s.io "kubernetes-dashboard-minimal" deleted
rolebinding.rbac.authorization.k8s.io "kubernetes-dashboard-minimal" deleted
deployment.apps "kubernetes-dashboard" deleted
service "kubernetes-dashboard" deleted

Installing kubernetes-dashboard ...

Kubernetes version: v1.12.7 and dashboard yaml file: 
/usr/local/share/kubeadm/kubernetes-dashboard-self-certs.yaml
secret/kubernetes-dashboard-certs created
serviceaccount/kubernetes-dashboard created
role.rbac.authorization.k8s.io/kubernetes-dashboard-minimal created
rolebinding.rbac.authorization.k8s.io/kubernetes-dashboard-minimal created
deployment.apps/kubernetes-dashboard created
service/kubernetes-dashboard created
Restarting kubectl-proxy.service ...

8. If the master node upgrade fails, roll back as follows:

# kubeadm-upgrade.sh restore /backups/master-backup-v1.9.11-0-1546953894.tar
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-- Running upgrade script---
Restoring the cluster
Loaded plugins: langpacks, ulninfo
Nothing to do
Checking sha256sum of the backup files ...
/var/run/kubeadm/backup/etcd-backup-1546953894.tar: OK
/var/run/kubeadm/backup/k8s-master-0-1546953894.tar: OK
Restoring backup from /backups/master-backup-v1.9.11-0-1546953894.tar ...
Using 3.1.11
etcd cluster is healthy ...
Cleaning up etcd container ...
ab9e7a31a721c2b9690047ac3445beeb2c518dd60da81da2a396f250f089e82e
ab9e7a31a721c2b9690047ac3445beeb2c518dd60da81da2a396f250f089e82e
Restore successful ...
You can restart your cluster now by doing: 
# kubeadm-setup.sh restart
Restore successful :)

9. If the script completes successfully, create a fresh backup on your new Oracle Linux Container
Services for use with Kubernetes 1.1.12 master node by using kubeadm-setup.sh backup.

See Section 4.3, “Cluster Backup and Restore”.

You can read the full upgrade log in /var/log/kubeadm-upgrade. After completing the master node
upgrade, you can upgrade the packages for Oracle Linux Container Services for use with Kubernetes on
each worker node.

2.5.2 Upgrading Worker Nodes from 1.1.9 to 1.1.12

Only upgrade worker nodes after the master node has completed the upgrade process, as described in
Section 2.5.1, “Upgrading the Master Node from 1.1.9 to 1.1.12”.

Important

You must perform several manual steps to complete the upgrade of a worker
node. These steps involve draining the node prior to upgrade to prevent the cluster
from scheduling or starting any pods on the node while it is being upgraded. The
drain process deletes any running pods from the node. If there is local storage
configured, the drain process errors out so that you have the opportunity to
determine whether or not you need to back up local data.

When the upgrade is complete, you can uncordon the worker node so that pods are
able to resume on this node.

To upgrade a worker node, perform the following steps:

1. Drain the worker node by running the following command from the master node:

$ kubectl drain worker1.example.com --ignore-daemonsets

where worker1.example.com is the hostname of the worker node that you wish to upgrade.

If local storage is configured for the node, the drain process may generate an error. The following
example output shows a node, using local storage, that fails to drain:

node/worker1.example.com cordoned
error: unable to drain node "worker1.example.com", aborting command...
 
There are pending nodes to be drained:
 worker1.example.com

37



The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Upgrading Worker Nodes from 1.1.9 to 1.1.12

error: pods with local storage (use --delete-local-data to override): carts-74f4558cb8-c8p8x, 
    carts-db-7fcddfbc79-c5pkx, orders-787bf5b89f-nt9zj, orders-db-775655b675-rhlp7, 
    shipping-5bd69fb4cc-twvtf, user-db-5f9d89bbbb-7t85k

In the case where a node fails to drain, determine whether to follow any procedure to back up local
data and restore it later or whether you can proceed and delete the local data directly. After any backup
files have been made, you can rerun the command with the --delete-local-data switch to force
the removal of the data and drain the node. For example, on the master node, run:

$ kubectl drain worker1.example.com --ignore-daemonsets --delete-local-data
node/worker1.example.com cordoned already cordoned
WARNING: Ignoring DaemonSet-managed pods: kube-flannel-ds-xrszk, kube-proxy-7g9px; 
Deleting pods with local storage: carts-74f4558cb8-g2fdw, orders-db-775655b675-gfggs, 
                                  user-db-5f9d89bbbb-k78sk
pod "user-db-5f9d89bbbb-k78sk" evicted
pod "rabbitmq-96d887875-lxm5f" evicted
pod "orders-db-775655b675-gfggs" evicted
pod "catalogue-676d4b9f7c-lvwfb" evicted
pod "payment-75f75b467f-skrbq" evicted
pod "carts-74f4558cb8-g2fdw" evicted
node "kubernetes-worker1" drained

2. Check that the worker node is unable to accept any further scheduling by running the following
command on the master node:

$ kubectl get nodes

Note that a node that has been drained should have its status set to SchedulingDisabled.

3. If you are using the Oracle Container Registry to obtain images, log in.

Follow the instructions in Section 2.2.5, “Oracle Container Registry Requirements”. Note that if images
are updated on the Oracle Container Registry, you may be required to accept the Oracle Standard
Terms and Restrictions again before you are able to perform the upgrade. If you are using one of the
Oracle Container Registry mirrors, see Section 2.2.5.1, “Using an Oracle Container Registry Mirror” for
more information. If you have configured a local registry, you may need to set the KUBE_REPO_PREFIX
environment variable to point to the appropriate registry. You may also need to update your local
registry with the most current images for the version that you are upgrading to. See Section 2.2.5.2,
“Setting Up an Optional Local Registry” for more information.

4. Run the kubeadm-upgrade.sh upgrade command as root on the worker node:

# kubeadm-upgrade.sh upgrade
-- Running upgrade script---
Number of cpu present in this system 2
Total memory on this system: 7710MB
Space available on the mount point /var/lib/docker: 44GB
Space available on the mount point /var/lib/kubelet: 44GB
kubeadm version 1.9
kubectl version 1.9
kubelet version 1.9
ol7_addons repo enabled
[WARNING] This action will upgrade this node to latest version
[WARNING] The cluster will be upgraded through intermediate versions which are unsupported
[WARNING] You must take backup before upgrading the cluster as upgrade may fail
  Please select 1 (continue) or 2 (abort) :
1) continue
2) abort
#? 1
Upgrading worker node
Updating kubeadm package
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Checking access to container-registry.oracle.com/kubernetes for update
Trying to pull repository container-registry.oracle.com/kubernetes/kube-proxy ...
v1.12.5: Pulling from container-registry.oracle.com/kubernetes/kube-proxy
Digest: sha256:9eba681b56e15078cb499a3360f138cc16987cf5aea06593f77d0881af6badbe
Status: Image is up to date for container-registry.oracle.com/kubernetes/kube-proxy:v1.12.5
Upgrading kubeadm to latest version
Loaded plugins: langpacks, ulninfo
Resolving Dependencies
--> Running transaction check
---> Package kubeadm.x86_64 0:1.9.11-2.1.1.el7 will be updated
---> Package kubeadm.x86_64 0:1.12.7-1.1.2.el7 will be an update
--> Finished Dependency Resolution

Dependencies Resolved

===============================================================
 Package    Arch        Version          Repository      Size
===============================================================
Updating:
 kubeadm   x86_64     1.12.7-1.1.2.el7   ol7_addons      7.3 M

Transaction Summary
===============================================================
Upgrade  1 Package

Total download size: 7.3 M   
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
Running transaction check
Running transaction test
Transaction test succeeded   
Running transaction
Upgrading kubeadm forcefully from version earlier that 1.11
  Updating   : kubeadm-1.12.7-1.1.2.el7.x86_64                              1/2
  Cleanup    : kubeadm-1.9.11-2.1.1.el7.x86_64                              2/2
  Verifying  : kubeadm-1.12.7-1.1.2.el7.x86_64                              1/2
  Verifying  : kubeadm-1.9.11-2.1.1.el7.x86_64                              2/2

Updated:
  kubeadm.x86_64 0:1.12.7-1.1.2.el7

Complete!
Upgrading kubelet and kubectl now ...
Checking kubelet and kubectl RPM ...
[INFO] yum install -y kubelet-1.12.7-1.1.2.el7.x86_64
Loaded plugins: langpacks, ulninfo
Resolving Dependencies
--> Running transaction check
---> Package kubelet.x86_64 0:1.9.11-2.1.1.el7 will be updated
---> Package kubelet.x86_64 0:1.12.7-1.1.2.el7 will be an update
--> Finished Dependency Resolution

Dependencies Resolved

==========================================================================================
 Package    Arch           Version                       Repository             Size
==========================================================================================
Updating:
 kubelet    x86_64        1.12.7-1.1.2.el7              ol7_addons              19 M

Transaction Summary
==========================================================================================
Upgrade  1 Package

Total download size: 19 M
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Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
kubelet-1.12.7-1.1.2.el7.x86_64.rpm                               |  19 MB  00:00:01
Running transaction check
Running transaction test
Transaction test succeeded   
Running transaction
  Updating   : kubelet-1.12.7-1.1.2.el7.x86_64                      1/2
  Cleanup    : kubelet-1.9.11-2.1.1.el7.x86_64                      2/2
  Verifying  : kubelet-1.12.7-1.1.2.el7.x86_64                      1/2
  Verifying  : kubelet-1.9.11-2.1.1.el7.x86_64                      2/2

Updated:
  kubelet.x86_64 0:1.12.7-1.1.2.el7

Complete!
[INFO] yum install -y kubectl-1.12.7-1.1.2.el7.x86_64
Loaded plugins: langpacks, ulninfo
Resolving Dependencies
--> Running transaction check
---> Package kubectl.x86_64 0:1.9.11-2.1.1.el7 will be updated
---> Package kubectl.x86_64 0:1.12.7-1.1.2.el7 will be an update
--> Finished Dependency Resolution

Dependencies Resolved

==========================================================================================
 Package       Arch             Version                       Repository           Size
==========================================================================================
Updating:
 kubectl       x86_64           1.12.7-1.1.2.el7              ol7_addons         7.7 M

Transaction Summary
==========================================================================================
Upgrade  1 Package

Total download size: 7.7 M   
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
kubectl-1.12.7-1.1.2.el7.x86_64.rpm                            | 7.7 MB  00:00:00
Running transaction check
Running transaction test
Transaction test succeeded   
Running transaction
  Updating   : kubectl-1.12.7-1.1.2.el7.x86_64                 1/2
  Cleanup    : kubectl-1.9.11-2.1.1.el7.x86_64                 2/2
  Verifying  : kubectl-1.12.7-1.1.2.el7.x86_64                 1/2
  Verifying  : kubectl-1.9.11-2.1.1.el7.x86_64                 2/2

Updated:
  kubectl.x86_64 0:1.12.7-1.1.2.el7

Complete!
[kubelet] Downloading configuration for the kubelet from
 the "kubelet-config-1.12" ConfigMap in the kube-system namespace
[kubelet] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
[upgrade] The configuration for this node was successfully updated!
[upgrade] Now you should go ahead and upgrade the kubelet package 
using your package manager.
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[WORKER NODE UPGRADED SUCCESSFULLY]

Note that you are warned that the upgrade affects the node's availability temporarily. You must confirm
that you wish to continue to complete the upgrade.

The kubelet service and all running containers are restarted automatically after upgrade.

5. Uncordon the worker node so that it is able to schedule new nodes, as required. On the master node,
run:

$ kubectl uncordon worker1.example.com
node/worker1.example.com uncordoned

where worker1.example.com is the hostname of the worker node that you have just upgraded.

6. When you have finished the upgrade process, check that the nodes are all running the expected
version as follows:

$ kubectl get nodes
NAME                  STATUS    ROLES   AGE       VERSION
master.example.com    Ready     master  1h        v1.12.7+1.1.2.el7
worker1.example.com   Ready     <none>  1h        v1.12.7+1.1.2.el7
worker2.example.com   Ready     <none>  1h        v1.12.7+1.1.2.el7

2.6 Updating to Errata Releases

Updates for Oracle Linux Container Services for use with Kubernetes are released on the Oracle Linux
yum server and on ULN.

Warning

The update process that is described here only applies for updates to errata
releases that provide minor updates and security patches for existing installations.

Oracle does not support upgrading existing clusters that are created by using
Oracle Linux Container Services for use with Kubernetes 1.1.9 to 1.1.12 with the
kubeadm-setup.sh script. You must use the kubeadm-upgrade.sh script, as
described in Section 2.5, “Upgrading 1.1.9 to 1.1.12”.

These instructions work on hosts that are booting from UEK R4, but it is
recommended that hosts currently running UEK R4 are upgraded to use UEK R5 to
facilitate future upgrades, where KubeDNS is deprecated.

The update process requires that you first update the master node in your cluster, and then update each
of the worker nodes. Update of the master node is scripted so that the pre-requisite checks, validation, and
reconfiguration are automated. It is good practice to make a backup file for your cluster before update. See
Section 2.6.1, “Updating the Master Node”.

After the master node is updated, you can update each worker node, as described in Section 2.6.2,
“Updating Worker Nodes”.

Important

Oracle does not support any upgrade from a preview release to a stable and
supported release.
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Oracle also does not support upgrading existing single master node clusters built
with the kubeadm-setup.sh script to High Availability clusters. You must build
and manage High Availability clusters by using the kubeadm-ha-setup utility.

2.6.1 Updating the Master Node

You must update the master node in your cluster before you update worker nodes. The kubeadm-
setup.sh upgrade command is used on the master node to complete the necessary steps to prepare
and update the cluster. The following steps describe how to update the master node.

Important

Before you perform any update operations, make a backup file for your cluster at its
current version. After you update the kubeadm package, any backup files that you
make are not backward compatible, and if you revert to an earlier version of Oracle
Linux Container Services for use with Kubernetes, the restore operation may fail to
successfully load your backup file. See Section 4.3, “Cluster Backup and Restore”
for more information.

Steps to update the master node

1. On the master node, update the kubeadm package first:

# yum update kubeadm

2. If you are using the Oracle Container Registry to obtain images, log in.

Follow the instructions in Section 2.2.5, “Oracle Container Registry Requirements”. Note that if images
are updated on the Oracle Container Registry, you may be required to accept the Oracle Standard
Terms and Restrictions again before you are able to perform the update. If you are using one of the
Oracle Container Registry mirrors, see Section 2.2.5.1, “Using an Oracle Container Registry Mirror” for
more information. If you have configured a local registry, you may need to set the KUBE_REPO_PREFIX
environment variable to point to the appropriate registry. You may also need to update your local
registry with the most current images for the version that you are upgrading to. See Section 2.2.5.2,
“Setting Up an Optional Local Registry” for more information.

3. Ensure that you open any new firewall ports in Section 2.2.7, “Firewall and iptables Requirements”.

4. Create a pre-update backup file. In the event that the update does not complete successfully, the
backup can revert back to the configuration of your cluster prior to update.

# kubeadm-setup.sh stop
Stopping kubelet now ...
Stopping containers now ...

# kubeadm-setup.sh backup /backups
Creating backup at directory /backup ...
Using 3.2.24
Checking if container-registry.oracle.com/kubernetes/etcd:3.2.24 is available
d05a0ef2bea8cd05e1311fcb5391d8878a5437f8384887ae31694689bc6d57f5 
/var/run/kubeadm/backup/etcd-backup-1543581013.tar
9aa26d015a4d2cf7a73438b04b2fe2e61be71ee56e54c08fd7047555eb1e0e6f 
/var/run/kubeadm/backup/k8s-master-0-1543581013.tar
Backup is successfully stored at /backup/master-backup-v1.12.5-2-1543581013.tar ...
You can restart your cluster now by doing: 
# kubeadm-setup.sh restart
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# kubeadm-setup.sh restart
Restarting containers now ...
Detected node is master ...
Checking if env is ready ...
Checking whether docker can pull busybox image ...
Checking access to container-registry.oracle.com/kubernetes ...
Trying to pull repository container-registry.oracle.com/kubernetes/pause ... 
3.1: Pulling from container-registry.oracle.com/kubernetes/pause
Digest: sha256:802ef89b9eb7e874a76e1cfd79ed990b63b0b84a05cfa09f0293379ac0261b49
Status: Image is up to date for container-registry.oracle.com/kubernetes/pause:3.1
Checking firewalld settings ...
Checking iptables default rule ...
Checking br_netfilter module ...
Checking sysctl variables ...
Restarting kubelet ...
Waiting for node to restart ...
.......+..............
Master node restarted. Complete synchronization between nodes may take a few minutes.

5. Run the kubeadm-setup.sh upgrade command as root on the master node. The script prompts
you to continue with the update and warns you to make a backup file before you continue. Enter 1 to
continue.

# kubeadm-setup.sh upgrade
Checking whether api-server is using image lower than 1.12
[WARNING] Please make sure that you have performed backup of the cluster before upgrading
          Please select 1 (continue) or 2 (abort) :
1) continue
2) abort
#? 1
Checking whether https works (export https_proxy if behind firewall)
v1.12.5-2: Pulling from kubernetes/kube-proxy-amd64
Digest: sha256:d3b87a1cb0eb64d702921169e442c6758a09c94ee91a0080e801ec41355077cd
Status: Image is up to date for 
       container-registry.oracle.com/kubernetes/kube-proxy-amd64:v1.12.5-2
Checking cluster health ...
 
[preflight] Running pre-flight checks.
[upgrade] Making sure the cluster is healthy:
[upgrade/config] Making sure the configuration is correct:
[upgrade/config] Reading configuration options from a file: /var/run/kubeadm/kubeadm-cfg
[upgrade/version] You have chosen to change the cluster version to "v1.12.5-2"
[upgrade/versions] Cluster version: v1.12.7+1.1.2.el7
[upgrade/versions] kubeadm version: v1.12.7+1.1.2.el7
[upgrade/prepull] Will prepull images for components [kube-apiserver kube-controller-manager 
                                                      kube-scheduler]
[upgrade/apply] Upgrading your Static Pod-hosted control plane to version "v1.12.5-2"...
[upgrade/staticpods] Writing new Static Pod manifests to 
    "/etc/kubernetes/tmp/kubeadm-upgraded-manifests120255399"
[controlplane] Wrote Static Pod manifest for component kube-apiserver to 
    "/etc/kubernetes/tmp/kubeadm-upgraded-manifests120255399/kube-apiserver.yaml"
[controlplane] Wrote Static Pod manifest for component kube-controller-manager to 
    "/etc/kubernetes/tmp/kubeadm-upgraded-manifests120255399/kube-controller-manager.yaml"
[controlplane] Wrote Static Pod manifest for component kube-scheduler to 
    "/etc/kubernetes/tmp/kubeadm-upgraded-manifests120255399/kube-scheduler.yaml"
[upgrade/staticpods] Moved new manifest to "/etc/kubernetes/manifests/kube-apiserver.yaml" 
    and backed up old manifest to 
    "/etc/kubernetes/tmp/kubeadm-backup-manifests555128538/kube-apiserver.yaml"
[upgrade/staticpods] Waiting for the kubelet to restart the component
[apiclient] Found 1 Pods for label selector component=kube-apiserver
[upgrade/staticpods] Component "kube-apiserver" upgraded successfully!
[upgrade/staticpods] Moved new manifest to "/etc/kubernetes/manifests/kube-controller-manager.yaml" 
    and backed up old manifest to 
    "/etc/kubernetes/tmp/kubeadm-backup-manifests555128538/kube-controller-manager.yaml"
[upgrade/staticpods] Waiting for the kubelet to restart the component
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[apiclient] Found 1 Pods for label selector component=kube-controller-manager
[upgrade/staticpods] Component "kube-controller-manager" upgraded successfully!
[upgrade/staticpods] Moved new manifest to "/etc/kubernetes/manifests/kube-scheduler.yaml" 
    and backed up old manifest to 
    "/etc/kubernetes/tmp/kubeadm-backup-manifests555128538/kube-scheduler.yaml"
[upgrade/staticpods] Waiting for the kubelet to restart the component
[apiclient] Found 1 Pods for label selector component=kube-scheduler
[upgrade/staticpods] Component "kube-scheduler" upgraded successfully!
[uploadconfig] Storing the configuration used in ConfigMap "kubeadm-config" in the 
   "kube-system" Namespace
[bootstraptoken] Configured RBAC rules to allow Node Bootstrap tokens to post CSRs in 
    order for nodes to get long term certificate credentials
[bootstraptoken] Configured RBAC rules to allow the csrapprover controller automatically 
    approve CSRs from a Node Bootstrap Token
[bootstraptoken] Configured RBAC rules to allow certificate rotation for all node client 
    certificates in the cluster
[addons] Applied essential addon: kube-dns
[addons] Applied essential addon: kube-proxy
 
[upgrade/successful] SUCCESS! Your cluster was upgraded to "v1.12.5-2". Enjoy!
 
[upgrade/kubelet] Now that your control plane is upgraded, please proceed with upgrading 
    your kubelets in turn.
Warning: kubelet.service changed on disk. Run 'systemctl daemon-reload' to reload units.
 
[MASTER UPGRADE COMPLETED SUCCESSFULLY]
 Cluster may take a few minutes to get backup!
 Please proceed to upgrade your $WORKER node *in turn* by running the following command:
  # kubectl drain $WORKER --ignore-daemonsets (run following command with proper KUBECONFIG)
  Login to the $WORKER node
  # yum update kubeadm
  # kubeadm-setup.sh upgrade
  # kubectl uncordon $WORKER (run the following command with proper KUBECONFIG)
  upgrade the next $WORKER node

The upgrade command performs a health check on the cluster, validates the existing configuration,
and then pulls the necessary images that are required to update the cluster. All of the controlplane
components for the cluster are updated and certificates and tokens are configured to ensure that all
cluster components on all nodes are able to continue to function after update.

After these components have been updated, the kubelet and kubectl packages are updated
automatically.

6. If you are prompted by the following message, it is an indication that you need to update the flannel
component manually:

[INFO] Flannel is not upgraded yet. Run 'kubeadm-setup.sh upgrade --flannel' to upgrade flannel

Re-run the kubeadm-setup.sh upgrade with the --flannel flag to ensure that you have fully
upgraded your cluster:

# kubeadm-setup.sh upgrade --flannel

After you have completed the master node upgrade, you can upgrade the packages for Oracle Linux
Container Services for use with Kubernetes on each worker node.

2.6.2 Updating Worker Nodes

Only update worker nodes after the master node has completed the update process, as described in
Section 2.6.1, “Updating the Master Node”.
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Important

You must perform several manual steps to complete the update of a worker
node. These steps involve draining the node prior to update to prevent the cluster
from scheduling or starting any pods on the node while it is being updated. The
drain process deletes any running pods from the node. If there is local storage
configured, the drain process errors out so that you have the opportunity to
determine whether or not you need to back up local data.

When the update is complete you can uncordon the worker node so that pods are
able to resume on this node.

To update a worker node, perform the following steps:

1. Drain the worker node by running the following command from the master node:

$ kubectl drain worker1.example.com --ignore-daemonsets

where worker1.example.com is the hostname of the worker node that you wish to update.

If local storage is configured for the node, the drain process might generate an error. The following
example output shows a node, using local storage, that fails to drain:

node/worker1.example.com cordoned
error: unable to drain node "worker1.example.com", aborting command...
 
There are pending nodes to be drained:
 worker1.example.com
error: pods with local storage (use --delete-local-data to override): carts-74f4558cb8-c8p8x, 
    carts-db-7fcddfbc79-c5pkx, orders-787bf5b89f-nt9zj, orders-db-775655b675-rhlp7, 
    shipping-5bd69fb4cc-twvtf, user-db-5f9d89bbbb-7t85k

In the case where a node fails to drain, determine whether you should follow any procedure to back up
local data and restore it later or whether you can proceed and delete the local data directly. After any
backup files have been made, you can rerun the command with the --delete-local-data switch to
force the removal of the data and drain the node, for example:

$ kubectl drain worker1.example.com --ignore-daemonsets --delete-local-data
node/worker1.example.com already cordoned
WARNING: Ignoring DaemonSet-managed pods: kube-flannel-ds-xrszk, kube-proxy-7g9px; 
Deleting pods with local storage: carts-74f4558cb8-g2fdw, orders-db-775655b675-gfggs, 
                                  user-db-5f9d89bbbb-k78sk
pod "user-db-5f9d89bbbb-k78sk" evicted
pod "rabbitmq-96d887875-lxm5f" evicted
pod "orders-db-775655b675-gfggs" evicted
pod "catalogue-676d4b9f7c-lvwfb" evicted
pod "payment-75f75b467f-skrbq" evicted
pod "carts-74f4558cb8-g2fdw" evicted
node "kubernetes-worker1" drained

2. Check that the worker node is unable to accept any further scheduling by running the following
command on the master node:

$ kubectl get nodes

A node that has been drained should have its status set to SchedulingDisabled.
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3. Update the packages on the worker node by using a standard yum update command. To specifically
update only those packages required for Oracle Linux Container Services for use with Kubernetes, on
the worker node, run the following command as root:

# yum update kubeadm

4. If you are using the Oracle Container Registry to obtain images, log in.

Follow the instructions in Section 2.2.5, “Oracle Container Registry Requirements”. Note that if images
are updated on the Oracle Container Registry, you may be required to accept the Oracle Standard
Terms and Restrictions again before you are able to perform the update. If you are using one of the
Oracle Container Registry mirrors, see Section 2.2.5.1, “Using an Oracle Container Registry Mirror” for
more information. If you have configured a local registry, you may need to set the KUBE_REPO_PREFIX
environment variable to point to the appropriate registry. You may also need to update your local
registry with the most current images for the version that you are upgrading to. See Section 2.2.5.2,
“Setting Up an Optional Local Registry” for more information.

5. When the yum update process completes, run the kubeadm-setup.sh upgrade command as
root on the worker node. You are warned that the update affects the node's availability temporarily.
Confirm that you wish to continue to complete the update:

#  kubeadm-setup.sh upgrade
[WARNING] Upgrade will affect this node's application(s) availability temporarily
          Please select 1 (continue) or 2 (abort) :
1) continue
2) abort
#? 1
Checking access to container-registry.oracle.com/kubernetes for update
v1.12.5-2: Pulling from kubernetes/kube-proxy-amd64
Digest: sha256:f525d06eebf7f21c55550b1da8cee4720e36b9ffee8976db357f49eddd04c6d0
Status: Image is up to date for 
container-registry.oracle.com/kubernetes/kube-proxy-amd64:v1.12.5-2
Restarting containers ...
[NODE UPGRADED SUCCESSFULLY]

The kubelet service and all of the running containers are restarted automatically after the update.

6. Uncordon the worker node so that it is able to schedule new nodes, as required, by running the
following command on the master node:

$ kubectl uncordon worker1.example.com
node/worker1.example.com uncordoned

where worker1.example.com is the hostname of the worker node that you have just updated.

7. After the update process has completed, run the following command on the master node to check that
all of the nodes are running the expected version:

$ kubectl get nodes
NAME                  STATUS    ROLES   AGE       VERSION
master.example.com    Ready     master  1h        v1.12.7+1.1.2.el7
worker1.example.com   Ready     <none>  1h        v1.12.7+1.1.2.el7
worker2.example.com   Ready     <none>  1h        v1.12.7+1.1.2.el7
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This chapter describes the steps required to install Kubernetes clusters using master nodes configured for
high availability on Oracle Linux 7 hosts.

3.1 Overview

Kubernetes can be deployed with more than one replica of the required master node, and automated
failover to those replicas, for the purpose of providing a more scalable and resilient service.

The kubeadm package provides the kubeadm utility, a tool designed to make the deployment of a
Kubernetes cluster simple. Many users may find that using this tool directly, along with the upstream
documentation, provides the maximum configuration flexibility.

Oracle provides the kubeadm-ha-setup tool in an additional kubeadm-ha-setup package to help new
users install and configure a high availability deployment of Kubernetes with greater ease, regardless of
whether it is hosted on bare metal, on a virtual machine, or out on the cloud. The tool handles checking
that basic package requirements are in place, setting proxy and firewall requirements, configuring
networking, and initializing a high availability master cluster configuration for the Kubernetes environment.
The tool uses the kubeadm utility, but handles many additional configuration steps that can help new users
get running with minimal effort.

The instructions provided here assume that you are new to Kubernetes and are using the provided
kubeadm-ha-setup tool to deploy your cluster. This tool is developed and tested at Oracle and
deployment using this tool is fully supported. Alternate configurations and deployment mechanisms are
untested by Oracle.
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Important

High availability clusters have resilience for one master node failure. If more than
one master node fails then you will need to restore you master cluster from a
backup file to avoid data loss.

3.2 Requirements
Kubernetes configured for high availability requires three nodes in the master cluster and at least one
worker node.

Creating three master nodes ensures replication of configuration data between them through the
distributed key store, etcd, so that your high availability cluster is resilient to a single node failing without
any loss of data or uptime.

Placing each master node in a different Kubernetes zone can safeguard cluster availability in the event of a
zone failure within the master cluster.

The following sections describe various requirements that must be met to install and configure Kubernetes
clusters with high availability on Oracle Linux 7 hosts.

3.2.1 Yum or ULN Channel Subscription

To install all of the required packages to use Kubernetes, you must ensure that you are subscribed to the
correct yum repositories or Unbreakable Linux Network (ULN) channels.

If your systems are registered with ULN, enable the ol7_x86_64_addons channel.

If you use the Oracle Linux yum server, enable the ol7_addons repository on each system in your
deployment. You can do this easily using yum-config-manager:

# yum-config-manager --enable ol7_addons

For more information on the ol7_x86_64_addons channel, please see Oracle® Linux: Unbreakable
Linux Network User's Guide for Oracle Linux 6 and Oracle Linux 7.

Important

Oracle does not support Kubernetes on systems where the ol7_preview,
ol7_developer or ol7_developer_EPEL repositories are enabled, or where
software from these repositories is currently installed on the systems where
Kubernetes runs. Even if you follow the instructions in this document, you may
render your platform unsupported if these repositories or channels are enabled or
software from these channels or repositories is installed on your system.

3.2.2 Requirement for Upgrading the Unbreakable Enterprise Kernel

Oracle Linux Container Services for use with Kubernetes 1.1.12 and later versions require that you
configure the system to use the Unbreakable Enterprise Kernel Release 5 (UEK R5) and boot the system
with this kernel. If you are using either UEK R4 or the Red Hat Compatible Kernel (RHCK), you must
configure Yum to allow you to install UEK R5.

1. If your system is registered with the Unbreakable Linux Network (ULN), disable access to the
ol7_x86_64_UEKR4 channel and enable access to the ol7_x86_64_UEKR5 channel.
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If you use the Oracle Linux yum server, disable the ol7_UEKR4 repository and enable the ol7_UEKR5
repository. You can do this easily using yum-config-manager, if you have the yum-utils package
installed:

# yum-config-manager --disable ol7_UEKR4
# yum-config-manager --enable ol7_UEKR5

2. Run the following command to upgrade the system to UEK R5:

# yum update

For information on how to make UEK R5 the default boot kernel, see Oracle® Linux 7: Administrator's
Guide.

3. Reboot the system, selecting the UEK R5 kernel if this is not the default boot kernel.

# systemctl reboot

3.2.3 Resource Requirements

Each node in your cluster requires at least 2 GB of RAM and 2 or more CPUs to facilitate the use of
kubeadm and any further applications that are provisioned using kubectl.

Also ensure that each node has a unique hostname, MAC address and product UUID as Kubernetes uses
this information to identify and track each node in the cluster. You can verify the product UUID on each
host with:

# dmidecode -s system-uuid

At least 5 GB free space must be available in the /var/lib/kubelet directory or volume on each node.
The underlying Docker engine requires an additional 5 GB free space available in the /var/lib/docker
directory or volume on each node.

3.2.4 Docker Engine Requirements

Kubernetes is used to manage containers running on a containerization platform deployed on several
systems. On Oracle Linux, Kubernetes is currently only supported when used in conjunction with the
Docker containerization platform. Therefore, each system in the deployment must have the Docker engine
installed and ready to run. Support of Oracle Linux Container Services for use with Kubernetes is limited to
usage with the latest Oracle Container Runtime for Docker version available in the ol7_addons repository
on the Oracle Linux yum server and in the ol7_x86_64_addons channel on ULN.

Please note that if you enable the ol7_preview repository, you may install a preview version of Oracle
Container Runtime for Docker and your installation can no longer be supported by Oracle. If you have
already installed a version of Docker from the ol7_preview repository, you should disable the repository
and uninstall this version before proceeding with the installation.

Install, the Docker engine on all nodes in the cluster:

# yum install docker-engine

Enable the Docker service in systemd so that it starts on subsequent reboots and you should start the
service before running the kubeadm-setup.sh tool.
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# systemctl enable docker
# systemctl start docker

See Oracle® Linux: Oracle Container Runtime for Docker User's Guide for more information on installing
and running the Docker engine.

3.2.5 Oracle Container Registry Requirements

The images that are deployed by the kubeadm-ha-setup tool are hosted on the Oracle Container
Registry. For the tool to be able to install the required components, you must perform the following steps:

1. Log in to the Oracle Container Registry website at https://container-registry.oracle.com using your
Single Sign-On credentials.

2. Use the web interface to navigate to the Container Services business area and accept the Oracle
Standard Terms and Restrictions for the Oracle software images that you intend to deploy. You are
able to accept a global agreement that applies to all of the existing repositories within this business
area. If newer repositories are added to this business area in the future, you may need to accept these
terms again before performing upgrades.

3. Ensure that each of the systems that are used as nodes within the cluster are able to access https://
container-registry.oracle.com and use the docker login command to authenticate against the Oracle
Container Registry using the same credentials that you used to log into the web interface:

# docker login container-registry.oracle.com

The command prompts you for your user name and password.

Detailed information about the Oracle Container Registry is available in Oracle® Linux: Oracle Container
Runtime for Docker User's Guide.

3.2.5.1 Using an Oracle Container Registry Mirror

It is also possible to use any of the Oracle Container Registry mirror servers to obtain the correct images
to set up Oracle Linux Container Services for use with Kubernetes. The Oracle Container Registry mirror
servers are located within the same data centers used for Oracle Cloud Infrastructure. More information
about the Oracle Container Registry mirror servers is available in Oracle® Linux: Oracle Container
Runtime for Docker User's Guide.

Steps to use an alternate Oracle Container Registry mirror server follow:

1. You must still log in to the Oracle Container Registry website at https://container-registry.oracle.com
using your Single Sign-On credentials and use the web interface to accept the Oracle Standard Terms
and Restrictions.

2. On each node, use the docker login command to authenticate against the Oracle Container
Registry mirror server using the same credentials that you used to log into the web interface:

# docker login container-registry-phx.oracle.com

The command prompts you for your user name and password.

3. After you have logged in, set the environment variable to use the correct registry mirror when you
deploy Kubernetes:

# export KUBE_REPO_PREFIX=container-registry-phx.oracle.com/kubernetes
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# echo 'export KUBE_REPO_PREFIX=container-registry-phx.oracle.com/kubernetes' > ~/.bashrc

If you are using Oracle Linux Container Services for use with Kubernetes on Oracle Cloud
Infrastructure, the kubeadm-ha-setup tool automatically detects the most appropriate mirror server
to use and sets this environment variable for you so that you do not have to perform this step. If you
manually set the KUBE_REPO_PREFIX environment variable on the command line, the kubeadm-ha-
setup honors the variable and does not attempt to detect which mirror server you should be using.

3.2.5.2 Setting Up an Optional Local Registry

If the systems that you are using for your Kubernetes cluster nodes do not have direct access to the
Internet and are unable to connect directly to the Oracle Container Registry, you can set up a local Docker
registry to perform this function. The kubeadm-ha-setup tool provides an option to change the registry
that you use to obtain these images. Instructions to set up a local Docker registry are provided in Oracle®
Linux: Oracle Container Runtime for Docker User's Guide.

When you have set up a local Docker registry, you must pull the images required to run Oracle Linux
Container Services for use with Kubernetes, tag these images and then push them to your local registry.
The images must be tagged identically to the way that they are tagged in the Oracle Container Registry.
The kubeadm-ha-setup matches version numbers during the setup process and cannot successfully
complete many operations if it cannot find particular versions of images. To assist with this process,
Oracle Linux Container Services for use with Kubernetes provides the kubeadm-registry.sh tool in the
kubeadm package.

To use the kubeadm-registry.sh tool to automatically pull images from the Oracle Container Registry,
tag them appropriately, and push them to your local registry:

1. If you are using the Oracle Container Registry to obtain images, log in following the instructions in
Section 2.2.5, “Oracle Container Registry Requirements”. If you are using one of the Oracle Container
Registry mirrors, see Section 3.2.5.1, “Using an Oracle Container Registry Mirror” for more information.

2. Run the kubeadm-registry.sh tool with the required options:

# kubeadm-registry.sh --to host.example.com:5000

Substitute host.example.com:5000 with the resolvable domain name and port by which your local
Docker registry is available.

You may optionally use the --from option to specify an alternate registry to pull the images from. You
may also use the --version option to specify the version of Kubernetes images that you intend to
host. For example:

# kubeadm-registry.sh --to host.example.com:5000 --from \
  container-registry-phx.oracle.com/kubernetes --version 1.12.0

Important

If you are upgrading your environment and you intend to use a local registry, you
must make sure that you have the most recent version of the images required to
run Oracle Linux Container Services for use with Kubernetes. You can use the
kubeadm-registry.sh tool to pull the correct images and to update your local
registry before running the upgrade on the master node.

After your local Docker registry is installed and configured and the required images have been imported,
you must set the environment variable that controls which registry server the kubeadm-ha-setup tool
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uses. On each of the systems where you intend to run the kubeadm-ha-setup tool run the following
commands:

# export KUBE_REPO_PREFIX="local-registry.example.com:5000/kubernetes"
# echo 'export KUBE_REPO_PREFIX="local-registry.example.com:5000/kubernetes"' > ~/.bashrc

Substitute local-registry.example.com with the IP address or resolvable domain name of the host
on which your local Docker registry is configured.

3.2.6 Network Time Service Requirements

As a clustering environment, Kubernetes requires that system time is synchronized across each node
within the cluster. Typically, this can be achieved by installing and configuring an NTP daemon on each
node. You can do this in the following way:

1. Install the ntp package, if it is not already installed:

# yum install ntp

2. Edit the NTP configuration in /etc/ntp.conf. Your requirements may vary. If you are using DHCP
to configure the networking for each node, it is possible to configure NTP servers automatically. If
you have not got a locally configured NTP service that your systems can sync to, and your systems
have Internet access, you can configure them to use the public pool.ntp.org service. See https://
www.ntppool.org/en/.

3. Ensure that NTP is enabled to restart at boot and that it is started before you proceed with your
Kubernetes installation. For example:

# systemctl start ntpd
# systemctl enable ntpd

Note that systems running on Oracle Cloud Infrastructure are configured to use the chronyd time service
by default, so there is no requirement to add or configure NTP if you are installing into an Oracle Cloud
Infrastructure environment.

For information on configuring a Network Time Service, see Oracle® Linux 7: Administrator's Guide.

3.2.7 Firewall and iptables Requirements

Kubernetes uses iptables to handle many networking and port forwarding rules. Therefore, you must
ensure that you do not have any rules set that may interfere with the functioning of Kubernetes. The
kubeadm-ha-setup tool requires an iptables rule to accept forwarding traffic. If this rule is not set, the
tool exits and notifies you that you may need to add this iptables rule. A standard Docker installation
may create a firewall rule that prevents forwarding, therefore you may need to run:

# iptables -P FORWARD ACCEPT

The kubeadm-ha-setup tool checks iptables rules and, where there is a match, instructions are provided
on how to modify your iptables configuration to meet any requirements. See Section 4.1, “Kubernetes and
iptables Rules” for more information.

If you have a requirement to run a firewall directly on the systems where Kubernetes is deployed, you
must ensure that all ports required by Kubernetes are available. For instance, the TCP port 6443 must be
accessible on the master node to allow other nodes to access the API Server. All nodes must be able to
accept connections from the master node on the TCP ports 10250-10252 and 10255, and traffic should be
allowed on the UDP port 8472. All nodes must be able to receive traffic from all other nodes on every port
on the network fabric that is used for the Kubernetes pods. The firewall must support masquerading.
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Oracle Linux 7 installs and enables firewalld, by default. If you are running firewalld, the kubeadm-
ha-setup tool notifies you of any rules that you may need to add. In summary, run the following
commands on all nodes:

# firewall-cmd --add-masquerade --permanent

# firewall-cmd --add-port=2379-2380/tcp --permanent
# firewall-cmd --add-port=10250/tcp --permanent
# firewall-cmd --add-port=10251/tcp --permanent
# firewall-cmd --add-port=10252/tcp --permanent
# firewall-cmd --add-port=10255/tcp --permanent
# firewall-cmd --add-port=8472/udp --permanent

Additionally, run the following command on each node in the master cluster to enable API access:

# firewall-cmd --add-port=6443/tcp --permanent

The --permanent option ensures these firewall rules persistent across reboots. Remember to restart the
firewall for these rules to take effect:

# systemctl restart firewalld

3.2.8 Network Requirements

The kubeadm-ha-setup tool requires that it is able to access the Oracle Container Registry and possibly
other internet resources to be able to pull any container images that you required. Therefore, unless you
intend to set up a local mirror for all of your container image requirements, the systems where you intend
to install Kubernetes must either have direct internet access, or must be configured to use a proxy. See
Section 4.2, “Using Kubernetes With a Proxy Server” for more information.

The kubeadm-ha-setup tool checks whether the br_netfilter module is loaded and exits if it is not
available. This module is required to enable transparent masquerading and to facilitate Virtual Extensible
LAN (VxLAN) traffic for communication between Kubernetes pods across the cluster. If you need to check
whether it is loaded, run:

# lsmod|grep br_netfilter

Kernel modules are usually loaded as they are needed, and it is unlikely that you would need to load this
module manually. However, if necessary, you can load the module manually by running:

# modprobe br_netfilter
# echo "br_netfilter" > /etc/modules-load.d/br_netfilter.conf

Kubernetes requires that packets traversing a network bridge are processed by iptables for filtering and
for port forwarding. To achieve this, tunable parameters in the kernel bridge module are automatically set
when the kubeadm package is installed and a sysctl file is created at /etc/sysctl.d/k8s.conf that
contains the following lines:

net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1

If you modify this file, or create anything similar yourself, you must run the following command to load the
bridge tunable parameters:

# /sbin/sysctl -p /etc/sysctl.d/k8s.conf

The kubeadm-ha-setup tool configures a flannel network as the network fabric that is used for
communications between Kubernetes pods. This overlay network uses VxLANs to facilitate network
connectivity: https://github.com/coreos/flannel
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By default, the kubeadm-ha-setup tool creates a network in the 10.244.0.0/16 range to host this
network. The kubeadm-ha-setup tool provides an option to set the network range to an alternate range,
if required, during installation. Systems in the Kubernetes deployment must not have any network devices
configured for this reserved IP range.

3.2.9 SELinux Requirements

The kubeadm-ha-setup tool checks whether SELinux is set to enforcing mode. If enforcing mode is
enabled, the tool exits with an error requesting that you set SELinux to permissive mode. Setting SELinux
to permissive mode allows containers to access the host file system, which is required by pod networks.
This is a requirement until SELinux support is improved in the kubelet tool for Kubernetes.

To disable SELinux temporarily, do the following:

# /usr/sbin/setenforce 0

To disable SELinux enforcing mode for subsequent reboots so that Kubernetes continues to run correctly,
modify /etc/selinux/config and set the SELinux variable:

SELINUX=Permissive

3.2.10 Requirements to Use Oracle Linux Container Services for use with
Kubernetes on Oracle Cloud Infrastructure

Oracle Linux Container Services for use with Kubernetes is engineered to work on Oracle Cloud
Infrastructure. All of the instructions provided in this document can be used to install and configure
Kubernetes across a group of compute instances. If you require additional information on configuration
steps and usage of Oracle Cloud Infrastructure, please see:

https://docs.cloud.oracle.com/iaas/Content/home.htm

The most important requirement for Oracle Linux Container Services for use with Kubernetes on Oracle
Cloud Infrastructure is that your Virtual Cloud Network (VCN) allows the compute nodes used in your
Kubernetes deployment to communicate on the required ports. By default, compute nodes are unable to
access each other across the Virtual Cloud Network until you have configured the Security List with the
appropriate ingress rules.

Ingress rules should match the rules required in any firewall configuration, as described in Section 3.2.7,
“Firewall and iptables Requirements”. Typically this involves adding the following ingress rules to the
default security list for your VCN:

1. Allow 2379-2380/TCP. 

• STATELESS: Unchecked

• SOURCE CIDR: 10.0.0.0/16

• IP PROTOCOL: TCP

• SOURCE PORT RANGE: All

• DESTINATION PORT RANGE: 2379-2380

2. Allow 6443/TCP. 
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• STATELESS: Unchecked

• SOURCE CIDR: 10.0.0.0/16

• IP PROTOCOL: TCP

• SOURCE PORT RANGE: All

• DESTINATION PORT RANGE: 6443

3. Allow 10250-10252/TCP. 

• STATELESS: Unchecked

• SOURCE CIDR: 10.0.0.0/16

• IP PROTOCOL: TCP

• SOURCE PORT RANGE: All

• DESTINATION PORT RANGE: 10250-10252

4. Allow 10255/TCP. 

• STATELESS: Unchecked

• SOURCE CIDR: 10.0.0.0/16

• IP PROTOCOL: TCP

• SOURCE PORT RANGE: All

• DESTINATION PORT RANGE: 10255

5. Allow 8472/UDP. 

• STATELESS: Unchecked

• SOURCE CIDR: 10.0.0.0/16

• IP PROTOCOL: UDP

• SOURCE PORT RANGE: All

• DESTINATION PORT RANGE: 8472

Substitute 10.0.0.0/16 with the range used for the subnet that you created within the VCN for the
compute nodes that will participate in the Kubernetes cluster. You may wish to limit this to the specific IP
address range used specifically by the cluster components, or you may set this wider depending on your
own security requirements.

Important

The ingress rules described here are the core rules that you need to set up to allow
the cluster to function. For each service that you define or that you intend to use,
you may need to define additional rules in the security list.
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When creating compute instances to host Oracle Linux Container Services for use with Kubernetes, all
shape types are supported. The environment requires that for high availability clusters you use an Oracle
Linux 7 Update 5 image or later with the Unbreakable Enterprise Kernel Release 5 (UEK R5).

If you intend to configure load balancers for your master cluster, while using Oracle Cloud Infrastructure, as
described in Configure Load Balancing, see:

https://docs.cloud.oracle.com/en-us/iaas/Content/Balance/Concepts/balanceoverview.htm

3.3 Setting Up the Master Cluster
Before you begin, ensure you have satisfied the requirements in Section 3.2.5, “Oracle Container Registry
Requirements”. Then on all the hosts that you are configuring as master nodes, install the kubeadm and
kubeadm-ha-setup packages and their dependencies:

# yum install kubeadm kubelet kubectl kubeadm-ha-setup

Define the nodes in your high availability master cluster before proceeding further. To generate a template
configuration file, copy the one provided on any node in the master cluster at /usr/local/share/
kubeadm/kubeadm-ha/ha.yaml:

# cp /usr/local/share/kubeadm/kubeadm-ha/ha.yaml ~/ha.yaml    

The first step is to specify the server IP addresses for each node used in the master cluster. There must
be three nodes defined in this cluster, and they must each have unique hostnames:

clusters:
- name: master
  vip: 192.0.2.13
  nodes:
  - 192.0.2.10
  - 192.0.2.11
  - 192.0.2.12

Your cluster's vip address is the IP address of the server running the keepalive service for your cluster.
This service is included by default with Oracle Linux 7, and you can find out more information about this
service in Oracle® Linux 7: Administrator's Guide.

All master nodes in your cluster must have shell access with password-less key-based authentication for
the other master nodes whenever you use kubeadm-ha-setup. You can configure SSH keys for this, by
following the instructions in Oracle® Linux 7: Administrator's Guide.

You must define the SSH private key in the private_key variable, and the remote user in the user
variable:

  private_key: /root/.ssh/id_rsa
  user: root

You can optionally define a pod_cidr for your pod network. This is set by default to a reserved local IP
range:

  pod_cidr: 10.244.0.0/16

Set the image variable to point at the Oracle Container Registry or an Oracle Container Registry mirror
so that you are able to fetch the container images for the current release. See Section 3.2.5.1, “Using an
Oracle Container Registry Mirror” for more information on using a mirror:

  image: container-registry.oracle.com/kubernetes
  k8sversion: v1.12.5

56

https://docs.cloud.oracle.com/en-us/iaas/Content/Balance/Concepts/balanceoverview.htm
https://docs.oracle.com/en/operating-systems/oracle-linux/7/admin/
https://docs.oracle.com/en/operating-systems/oracle-linux/7/admin/


The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Setting Up the Master Cluster

Run kubeadm-ha-setup up instead of kubeadm-setup.sh up on just one Kubernetes node in the
master cluster to apply these settings and automatically provision the other master nodes.

As root, run kubeadm-ha-setup up to add the host as a master node:

# kubeadm-ha-setup up ~/ha.yaml
Cleaning up ...
Reading configuration file /usr/local/share/kubeadm/kubeadm-ha/ha.yaml ...
CreateSSH /root/.ssh/id_rsa root

Checking 192.0.2.10
status 0

Checking 192.0.2.11
status 0

Checking 192.0.2.12
status 0

Configuring keepalived for HA ...
success
success
Setting up first master ... (maximum wait time 185 seconds)
[init] using Kubernetes version: v1.12.5
[preflight] running pre-flight checks
[preflight/images] Pulling images required for setting up a Kubernetes cluster
[preflight/images] This might take a minute or two, 
depending on the speed of your internet connection
[preflight/images] You can also perform this action beforehand using 'kubeadm config images pull'
[kubelet] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"
[kubelet] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
[preflight] Activating the kubelet service
[certificates] Generated front-proxy-ca certificate and key.
[certificates] Generated front-proxy-client certificate and key.
[certificates] Generated etcd/ca certificate and key.
[certificates] Generated etcd/server certificate and key.
[certificates] etcd/server serving cert is signed for DNS names 
[master1.example.com localhost] and IPs [127.0.0.1 ::1 192.0.2.10]
[certificates] Generated etcd/peer certificate and key.
[certificates] etcd/peer serving cert is signed for DNS names 
[master1.example.com localhost] and IPs [192.0.2.10 127.0.0.1 ::1 192.0.2.10]
[certificates] Generated apiserver-etcd-client certificate and key.
[certificates] Generated etcd/healthcheck-client certificate and key.
[certificates] Generated ca certificate and key.
[certificates] Generated apiserver certificate and key.
[certificates] apiserver serving cert is signed for DNS names 
[master1.example.com kubernetes kubernetes.default 
kubernetes.default.svc kubernetes.default.svc.cluster.local] and
 IPs [10.96.0.1 192.0.2.10 192.0.2.10 192.0.2.10 192.0.2.11 192.0.2.12 192.0.2.10]
[certificates] Generated apiserver-kubelet-client certificate and key.
[certificates] valid certificates and keys now exist in "/etc/kubernetes/pki"
[certificates] Generated sa key and public key.
[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/admin.conf"
[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/kubelet.conf"
[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/controller-manager.conf"
[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/scheduler.conf"
[controlplane] wrote Static Pod manifest for component kube-apiserver 
to "/etc/kubernetes/manifests/kube-apiserver.yaml"
[controlplane] wrote Static Pod manifest for component kube-controller-manager 
to "/etc/kubernetes/manifests/kube-controller-manager.yaml"
[etcd] Wrote Static Pod manifest for a local etcd instance to "/etc/kubernetes/manifests/etcd.yaml"
[init] waiting for the kubelet to boot up the control plane as Static Pods 
from directory "/etc/kubernetes/manifests"
[init] this might take a minute or longer if the control plane images have to be pulled
[apiclient] All control plane components are healthy after 27.004111 seconds
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[uploadconfig] storing the configuration used in 
ConfigMap "kubeadm-config" in the "kube-system" Namespace
[kubelet] Creating a ConfigMap "kubelet-config-1.12" 
in namespace kube-system with the configuration for the kubelets in the cluster
[markmaster] Marking the node master1.example.com as master 
by adding the label "node-role.kubernetes.io/master=''"
[markmaster] Marking the node master1.example.com as master 
by adding the taints [node-role.kubernetes.io/master:NoSchedule]
[patchnode] Uploading the CRI Socket information "/var/run/dockershim.sock" 
to the Node API object "master1.example.com" as an annotation
[bootstraptoken] using token: ixxbh9.zrtxo7jwo1uz2ssp
[bootstraptoken] configured RBAC rules to allow Node Bootstrap tokens 
to post CSRs in order for nodes to get long term certificate credentials
[bootstraptoken] configured RBAC rules to allow the csrapprover controller 
automatically approve CSRs from a Node Bootstrap Token
[bootstraptoken] configured RBAC rules to allow certificate rotation 
for all node client certificates in the cluster
[bootstraptoken] creating the "cluster-info" ConfigMap in the "kube-public" namespace
[addons] Applied essential addon: CoreDNS
[addons] Applied essential addon: kube-proxy

Your Kubernetes master has initialized successfully!

To start using your cluster, you need to run the following as a regular user:

  mkdir -p $HOME/.kube
  sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
  sudo chown $(id -u):$(id -g) $HOME/.kube/config

You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
  https://kubernetes.io/docs/concepts/cluster-administration/addons/

You can now join any number of machines by running the following on each node
as root:

  kubeadm-ha-setup join container-registry.oracle.com/kubernetes:v1.12.5 192.0.2.10:6443 \
 --token ixxbh9.zrtxo7jwo1uz2ssp \
--discovery-token-ca-cert-hash \
sha256:6459031d2993f672f5a47f1373f009a3ce220ceddd6118f14168734afc0a43ad

Attempting to send file to:  192.0.2.11:22
Attempting to send file to:  192.0.2.12:22
Setting up master on 192.0.2.11
[INFO] 192.0.2.11 added   
Setting up master on 192.0.2.12
[INFO] 192.0.2.12 added   
Installing flannel and dashboard ...
[SUCCESS] Complete synchronization between nodes may take a few minutes.

Note

You should back up the ~/ha.yaml file on shared or external storage in case you
need to recreate the cluster at a later date.

Configure Load Balancing

To support a load balancer as part of your high availability master cluster configuration, set its IP address
as the loadbalancer value in your ~/ha.yaml file:

 loadbalancer: 192.0.2.15
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The loadbalancer value will be applied as part of the setup process with the following command:

# kubeadm-ha-setup up ~/ha.yaml --lb

This configuration step is optional, but if it is included ensure port 6443 is open for all of your master nodes.
See Section 3.2.7, “Firewall and iptables Requirements”.

Preparing to Use Kubernetes as a Regular User

To use the Kubernetes cluster as a regular user, perform the following steps on each of the nodes in the
master cluster:

1. Create the .kube subdirectory in your home directory:

$ mkdir -p $HOME/.kube

2. Create a copy of the Kubernetes admin.conf file in the .kube directory:

$ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

3. Change the ownership of the file to match your regular user profile:

$ sudo chown $(id -u):$(id -g) $HOME/.kube/config

4. Export the path to the file for the KUBECONFIG environment variable:

$ export KUBECONFIG=$HOME/.kube/config

You cannot use the kubectl command if the path to this file is not set for this environment variable.
Remember to export the KUBECONFIG variable for each subsequent login so that the kubectl and
kubeadm commands use the correct admin.conf file, otherwise you might find that these commands
do not behave as expected after a reboot or a new login. For instance, append the export line to your
.bashrc:

$ echo 'export KUBECONFIG=$HOME/.kube/config' >> $HOME/.bashrc

5. Verify that you can use the kubectl command.

Kubernetes runs many of its services to manage the cluster configuration as Docker containers running
as a Kubernetes pod. These can be viewed by running the following command on the master node:

$ kubectl get pods -n kube-system
NAME                                   READY   STATUS             RESTARTS   AGE
coredns-6c77847dcf-mxjqt               1/1     Running            0          12m
coredns-6c77847dcf-s6pgz               1/1     Running            0          12m
etcd-master1.example.com               1/1     Running            0          11m
etcd-master2.example.com               1/1     Running            0          11m
etcd-master3.example.com               1/1     Running            0          11m
kube-apiserver-master1.example.com     1/1     Running            0          11m
kube-apiserver-master2.example.com     1/1     Running            0          11m
kube-apiserver-master3.example.com     1/1     Running            0          11m
kube-controller-master1.example.com    1/1     Running            0          11m
kube-controller-master2.example.com    1/1     Running            0          11m
kube-controller-master3.example.com    1/1     Running            0          11m
kube-flannel-ds-z77w9                  1/1     Running            0          12m
kube-flannel-ds-n8t99                  1/1     Running            0          12m
kube-flannel-ds-pkw2l                  1/1     Running            0          12m
kube-proxy-zntpv                       1/1     Running            0          12m
kube-proxy-p5kfv                       1/1     Running            0          12m
kube-proxy-x7rfh                       1/1     Running            0          12m
kube-scheduler-master1.example.com     1/1     Running            0          11m
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kube-scheduler-master2.example.com     1/1     Running            0          11m
kube-scheduler-master3.example.com     1/1     Running            0          11m
kubernetes-dashboard-64458f66b6-2l5n6  1/1     Running            0          12m

3.4 Setting Up a Worker Node
Repeat these steps on each host that you want to add to the cluster as a worker node.

Install the kubeadm package and its dependencies:

# yum install kubeadm kubelet kubectl kubeadm-ha-setup

As root, run the kubeadm-ha-setup join command to add the host as a worker node:

# kubeadm-ha-setup join container-registry.oracle.com/kubernetes:v1.12.5 192.0.2.13:6443 \
   --token ixxbh9.zrtxo7jwo1uz2ssp --discovery-token-ca-cert-hash \
      sha256:6459031d2993f672f5a47f1373f009a3ce220ceddd6118f14168734afc0a43ad
Trying to pull image kube-proxy v1.12.5 from container-registry.oracle.com/kubernetes
Cleaning up ...
[preflight] running pre-flight checks
[discovery] Trying to connect to API Server "192.0.2.13:6443"
[discovery] Created cluster-info discovery client, 
requesting info from "https://192.0.2.13:6443"
[discovery] Requesting info from "https://192.0.2.13:6443" again 
to validate TLS against the pinned public key
[discovery] Cluster info signature and contents are valid and TLS certificate validates 
against pinned roots, will use API Server "192.0.2.13:6443"
[discovery] Successfully established connection with API Server "192.0.2.13:6443"
[kubelet] Downloading configuration for the kubelet from 
the "kubelet-config-1.12" ConfigMap in the kube-system namespace
[kubelet] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
[kubelet] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"
[preflight] Activating the kubelet service
[tlsbootstrap] Waiting for the kubelet to perform the TLS Bootstrap...
[patchnode] Uploading the CRI Socket information "/var/run/dockershim.sock" 
to the Node API object "worker1.example.com" as an annotation

This node has joined the cluster:
* Certificate signing request was sent to apiserver and a response was received.
* The Kubelet was informed of the new secure connection details.

Run 'kubectl get nodes' on the master to see this node join the cluster.

Replace the IP address and port, 192.0.2.13:6443, with the IP address and port that is set for the vip
or loadbalancer used by the master cluster. Note that the default port is 6443, and you can check the IP
address you need to use with kubectl cluster-info.

To verify that the worker has been successfully added to the high availability cluster, run kubectl get
nodes on any node in the master cluster:

$ kubectl get nodes
NAME                  STATUS   ROLES    AGE     VERSION
master1.example.com   Ready    master   10m     v1.12.5+2.1.1.el7
master2.example.com   Ready    master   9m56s   v1.12.5+2.1.1.el7
master3.example.com   Ready    master   9m16s   v1.12.5+2.1.1.el7
worker1.example.com   Ready    <none>   2m26s   v1.12.5+2.1.1.el7

3.5 Upgrading
Oracle Linux Container Services for use with Kubernetes 1.1.12 is the first release to support high
availability clusters.
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Important

Oracle does not support upgrading existing single master node clusters built with
the kubeadm-setup.sh script to high availability clusters. You must build and
manage high availability clusters using the kubeadm-ha-setup utility.

Similarly, upgrading master nodes in a high availability cluster with the kubeadm-
setup.sh script is not supported. All maintenance and management operations
within high availability clusters must be performed with the kubeadm-ha-setup
utility.

3.5.1 Updating the High Availability cluster

Important

The kubeadm-ha-setup update command is only supported for errata release
updates on existing High Availability clusters.

A kubeadm-ha-setup upgrade command for larger upgrades will be provided in
a future release. Major release upgrades are not supported at this time.

Errata Release Update Steps

1. Create a backup for your High Availability cluster before proceeding before proceeding by following the
instructions in Section 4.3, “Cluster Backup and Restore”.

2. On each master node in the cluster, update the kubeadm-ha-setup package:

# yum update kubeadm-ha-setup

3. On the master node from which you intend to run the cluster update from, update the required
prerequisite packages:

# yum update kubeadm

4. If you are using the Oracle Container Registry to obtain images, log in.

Follow the instructions in Section 3.2.5, “Oracle Container Registry Requirements”. Note that if images
are updated on the Oracle Container Registry, you may be required to accept the Oracle Standard
Terms and Restrictions again before you are able to perform the update. If you are using one of the
Oracle Container Registry mirrors, see Section 3.2.5.1, “Using an Oracle Container Registry Mirror” for
more information. If you have configured a local registry, you may need to set the KUBE_REPO_PREFIX
environment variable to point to the appropriate registry. You may also need to update your local
registry with the most current images for the version that you are upgrading to. See Section 3.2.5.2,
“Setting Up an Optional Local Registry” for more information.

5. Verify that the currently reported node versions match those of the previous package:

# kubectl get nodes
NAME                  STATUS   ROLES    AGE     VERSION
master1.example.com   Ready    master   4m8s    v1.12.5+2.1.1.el7
master2.example.com   Ready    master   2m25s   v1.12.5+2.1.1.el7
master3.example.com   Ready    master   2m12s   v1.12.5+2.1.1.el7
worker1.example.com   Ready    <none>   25s     v1.12.5+2.1.1.el7

6. Start the scripted update process by using the kubeadm-ha-setup tool:

# kubeadm-ha-setup update
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[WARNING] This action will update this cluster to the latest version(1.12.7).
[WARNING] You must take a backup before updating the cluster, as the update may fail. 
[PROMPT] Do you want to continue updating your cluster?
Please type Yes/y to confirm or No/n to abort(Case insensitive):
Y
Kubernetes Cluster Version: v1.12.5
Kubeadm version:1.12.7-1.1.2, Kueblet version 1.12.5-2.1.1
Kubeadm version: 1.12.5-2.1.1 Kubelet version: 1.12.7-1.1.2
Reading configuration file /usr/local/share/kubeadm/run/kubeadm/ha.yaml ...
Checking repo access
[preflight] Running pre-flight checks.
[upgrade] Making sure the cluster is healthy:
[upgrade/config] Making sure the configuration is correct:
[upgrade/config] Reading configuration from the cluster...
[upgrade/config] FYI: You can look at this config file with 
'kubectl -n kube-system get cm kubeadm-config -oyaml'
[upgrade/apply] Respecting the --cri-socket flag that is set 
with higher priority than the config file.
[upgrade/version] You have chosen to change the cluster version to "v1.12.7"
[upgrade/versions] Cluster version: v1.12.5+2.1.1.el7
[upgrade/versions] kubeadm version: v1.12.7+1.1.2.el7
[upgrade/prepull] Will prepull images for components 
[kube-apiserver kube-controller-manager kube-scheduler etcd]
[upgrade/prepull] Prepulling image for component etcd.
[upgrade/prepull] Prepulling image for component kube-apiserver.
[upgrade/prepull] Prepulling image for component kube-controller-manager.
[upgrade/prepull] Prepulling image for component kube-scheduler.
[apiclient] Found 0 Pods for label selector k8s-app=upgrade-prepull-etcd
[apiclient] Found 1 Pods for label selector k8s-app=upgrade-prepull-kube-controller-manager
[apiclient] Found 0 Pods for label selector k8s-app=upgrade-prepull-kube-scheduler
[apiclient] Found 3 Pods for label selector k8s-app=upgrade-prepull-kube-apiserver
[apiclient] Found 3 Pods for label selector k8s-app=upgrade-prepull-etcd
[apiclient] Found 3 Pods for label selector k8s-app=upgrade-prepull-kube-controller-manager
[apiclient] Found 3 Pods for label selector k8s-app=upgrade-prepull-kube-scheduler
[upgrade/prepull] Prepulled image for component kube-apiserver.
[upgrade/prepull] Prepulled image for component kube-controller-manager.
[upgrade/prepull] Prepulled image for component kube-scheduler.
[upgrade/prepull] Prepulled image for component etcd.
[upgrade/prepull] Successfully prepulled the images for all the control plane components
[upgrade/apply] Upgrading your Static Pod-hosted control plane to version "v1.12.7"...
Static pod: kube-apiserver-master1.example.com hash: 
f9004e982ed918c6303596943cef5493
Static pod: kube-controller-manager-master1.example.com hash: 
9590101be574fc0a237ca3f029f03ea2
Static pod: kube-scheduler-master1.example.com hash: 
22961405d099beb7721c7598daaa73d6
[upgrade/staticpods] Writing new Static Pod manifests to 
"/etc/kubernetes/tmp/kubeadm-upgraded-manifests867609756"
[controlplane] wrote Static Pod manifest for component kube-apiserver to 
"/etc/kubernetes/tmp/kubeadm-upgraded-manifests867609756/kube-apiserver.yaml"
[controlplane] wrote Static Pod manifest for component kube-controller-manager to 
"/etc/kubernetes/tmp/kubeadm-upgraded-manifests867609756/kube-controller-manager.yaml"
[controlplane] wrote Static Pod manifest for component kube-scheduler to 
"/etc/kubernetes/tmp/kubeadm-upgraded-manifests867609756/kube-scheduler.yaml"
[upgrade/staticpods] Moved new manifest to 
"/etc/kubernetes/manifests/kube-apiserver.yaml" and backed up old manifest to 
"/etc/kubernetes/tmp/kubeadm-backup-manifests-2019-04-08-14-28-11/kube-apiserver.yaml"
[upgrade/staticpods] Waiting for the kubelet to restart the component
[upgrade/staticpods] This might take a minute or longer depending on 
the component/version gap (timeout 5m0s
Static pod: kube-apiserver-master1.example.com hash: f9004e982ed918c6303596943cef5493
Static pod: kube-apiserver-master1.example.com hash: f9004e982ed918c6303596943cef5493
Static pod: kube-apiserver-master1.example.com hash: f9004e982ed918c6303596943cef5493
Static pod: kube-apiserver-master1.example.com hash: a692b9726292a4c2a89e2cdcd8301035
[apiclient] Found 3 Pods for label selector component=kube-apiserver
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[upgrade/staticpods] Component "kube-apiserver" upgraded successfully!
[upgrade/staticpods] Moved new manifest to 
"/etc/kubernetes/manifests/kube-controller-manager.yaml" and 
backed up old manifest to 
"/etc/kubernetes/tmp/kubeadm-backup-manifests-2019-04-08-14-28-11/
kube-controller-manager.yaml"
[upgrade/staticpods] Waiting for the kubelet to restart the component
[upgrade/staticpods] This might take a minute or longer depending on 
the component/version gap (timeout 5m0s
Static pod: kube-controller-manager-master1.example.com hash: 
9590101be574fc0a237ca3f029f03ea2
Static pod: kube-controller-manager-master1.example.com hash: 
7dbb816a4ac17a9522e761017dcd444c
[apiclient] Found 3 Pods for label selector component=kube-controller-manager
[upgrade/staticpods] Component "kube-controller-manager" upgraded successfully!
[upgrade/staticpods] Moved new manifest to 
"/etc/kubernetes/manifests/kube-scheduler.yaml" and backed up old manifest to 
"/etc/kubernetes/tmp/kubeadm-backup-manifests-2019-04-08-14-28-11/kube-scheduler.yaml"
[upgrade/staticpods] Waiting for the kubelet to restart the component
[upgrade/staticpods] This might take a minute or longer depending on 
the component/version gap (timeout 5m0s
Static pod: kube-scheduler-master1.example.com hash: 22961405d099beb7721c7598daaa73d6
Static pod: kube-scheduler-master1.example.com hash: 980091350a77a7fbcff570589689adc2
[apiclient] Found 3 Pods for label selector component=kube-scheduler
[upgrade/staticpods] Component "kube-scheduler" upgraded successfully!
[uploadconfig] storing the configuration used in 
ConfigMap "kubeadm-config" in the "kube-system" Namespace
[kubelet] Creating a ConfigMap "kubelet-config-1.12" in namespace kube-system 
with the configuration for the kubelets in the cluster
[kubelet] Downloading configuration for the kubelet from 
the "kubelet-config-1.12" ConfigMap in the kube-system namespace
[kubelet] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
[patchnode] Uploading the CRI Socket information "/var/run/dockershim.sock" to 
the Node API object "master1.example.com" as an annotation
[bootstraptoken] configured RBAC rules to allow Node Bootstrap tokens to 
post CSRs in order for nodes to get long term certificate credentials
[bootstraptoken] configured RBAC rules to allow the csrapprover controller 
automatically approve CSRs from a Node Bootstrap Token
[bootstraptoken] configured RBAC rules to allow certificate rotation for 
all node client certificates in the cluster
[addons] Applied essential addon: CoreDNS
[addons] Applied essential addon: kube-proxy

[upgrade/successful] SUCCESS! Your cluster was upgraded to "v1.12.7". Enjoy!

[upgrade/kubelet] Now that your control plane is upgraded, please proceed with 
upgrading your kubelets if you haven't already done so.
Loaded plugins: langpacks, ulninfo
Resolving Dependencies
--> Running transaction check
---> Package kubelet.x86_64 0:1.12.5-2.1.1.el7 will be updated
---> Package kubelet.x86_64 0:1.12.7-1.1.2.el7 will be an update
--> Processing Dependency: conntrack for package: kubelet-1.12.7-1.1.2.el7.x86_64
--> Running transaction check
---> Package conntrack-tools.x86_64 0:1.4.4-4.el7 will be installed
--> Processing Dependency: libnetfilter_cttimeout.so.1(LIBNETFILTER_CTTIMEOUT_1.1)(64bit) 
for package: conntrack-tools-1.4.4-4.el7.x86_64
--> Processing Dependency: libnetfilter_cttimeout.so.1(LIBNETFILTER_CTTIMEOUT_1.0)(64bit) 
for package: conntrack-tools-1.4.4-4.el7.x86_64
--> Processing Dependency: libnetfilter_cthelper.so.0(LIBNETFILTER_CTHELPER_1.0)(64bit) 
for package: conntrack-tools-1.4.4-4.el7.x86_64
--> Processing Dependency: libnetfilter_cttimeout.so.1()(64bit) 
for package: conntrack-tools-1.4.4-4.el7.x86_64
--> Processing Dependency: libnetfilter_cthelper.so.0()(64bit) 
for package: conntrack-tools-1.4.4-4.el7.x86_64
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--> Processing Dependency: libnetfilter_queue.so.1()(64bit) 
for package: conntrack-tools-1.4.4-4.el7.x86_64
--> Running transaction check
---> Package libnetfilter_cthelper.x86_64 0:1.0.0-9.el7 will be installed
---> Package libnetfilter_cttimeout.x86_64 0:1.0.0-6.el7 will be installed
---> Package libnetfilter_queue.x86_64 0:1.0.2-2.el7_2 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

================================================================================
 Package                   Arch      Version                Repository     Size
================================================================================
Updating:
 kubelet                   x86_64    1.12.7-1.1.2.el7       ol7_addons        19 M
Installing for dependencies:
 conntrack-tools           x86_64    1.4.4-4.el7            ol7_latest    186 k
 libnetfilter_cthelper     x86_64    1.0.0-9.el7            ol7_latest     17 k
 libnetfilter_cttimeout    x86_64    1.0.0-6.el7            ol7_latest     17 k
 libnetfilter_queue        x86_64    1.0.2-2.el7_2          ol7_latest     22 k

Transaction Summary
================================================================================
Install             ( 4 Dependent packages)
Upgrade  1 Package

Total download size: 19 M
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
--------------------------------------------------------------------------------
Total                                              5.2 MB/s |  19 MB  00:03     
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
  Installing : libnetfilter_cthelper-1.0.0-9.el7.x86_64                     1/6 
  Installing : libnetfilter_cttimeout-1.0.0-6.el7.x86_64                    2/6 
  Installing : libnetfilter_queue-1.0.2-2.el7_2.x86_64                      3/6 
  Installing : conntrack-tools-1.4.4-4.el7.x86_64                           4/6 
  Updating   : kubelet-1.12.7-1.1.2.el7.x86_64                              5/6 
  Cleanup    : kubelet-1.12.5-2.1.1.el7.x86_64                              6/6 
  Verifying  : libnetfilter_queue-1.0.2-2.el7_2.x86_64                      1/6 
  Verifying  : libnetfilter_cttimeout-1.0.0-6.el7.x86_64                    2/6 
  Verifying  : kubelet-1.12.7-1.1.2.el7.x86_64                              3/6 
  Verifying  : libnetfilter_cthelper-1.0.0-9.el7.x86_64                     4/6 
  Verifying  : conntrack-tools-1.4.4-4.el7.x86_64                           5/6 
  Verifying  : kubelet-1.12.5-2.1.1.el7.x86_64                              6/6 

Dependency Installed:
  conntrack-tools.x86_64 0:1.4.4-4.el7                                          
  libnetfilter_cthelper.x86_64 0:1.0.0-9.el7                                    
  libnetfilter_cttimeout.x86_64 0:1.0.0-6.el7                                   
  libnetfilter_queue.x86_64 0:1.0.2-2.el7_2                                     

Updated:
  kubelet.x86_64 0:1.12.7-1.1.2.el7                                             

Complete!
Loaded plugins: langpacks, ulninfo
Resolving Dependencies
--> Running transaction check
---> Package kubectl.x86_64 0:1.12.5-2.1.1.el7 will be updated
---> Package kubectl.x86_64 0:1.12.7-1.1.2.el7 will be an update
--> Finished Dependency Resolution
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Dependencies Resolved

================================================================================
 Package         Arch           Version                  Repository        Size
================================================================================
Updating:
 kubectl         x86_64         1.12.7-1.1.2.el7         ol7_addons          7.7 M

Transaction Summary
================================================================================
Upgrade  1 Package

Total download size: 7.7 M
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
  Updating   : kubectl-1.12.7-1.1.2.el7.x86_64                              1/2 
  Cleanup    : kubectl-1.12.5-2.1.1.el7.x86_64                              2/2 
  Verifying  : kubectl-1.12.7-1.1.2.el7.x86_64                              1/2 
  Verifying  : kubectl-1.12.5-2.1.1.el7.x86_64                              2/2 

Updated:
  kubectl.x86_64 0:1.12.7-1.1.2.el7                                             

Complete!
Waiting for the cluster to become healthy
.Updating remote master nodes
CreateSSH /root/.ssh/id_rsa root
Updating the master node:  master2.example.com
Successfully updated the master node:  master2.example.com
Updating the master node:  master3.example.com
Successfully updated the master node:  master3.example.com
The cluster has been updated successfully
Please update the worker nodes in your cluster and do the following:
     1. On Master: kubectl drain worker1.example.com --ignore-daemonsets
     2. On Worker1: yum install -y \
kubeadm-1.12.7-1.1.2.el7 kubelet-1.12.7-1.1.2.el7 \
kubectl-1.12.7-1.1.2.el7 kubeadm-ha-setup-0.0.2-1.0.21.el7
     3. On Worker1: systemctl restart kubelet
     4. On Master: kubectl uncordon worker1.example.com
     5. Verify the update on master node: kubectl get nodes

Optionally, you can override the default container registry choice during the errata release update by
specifying the --registry option:

# kubeadm-ha-setup update --registry container-registry-phx.oracle.com

7. Verify that your master nodes have been updated correctly before proceeding to update the worker
nodes:

# kubectl get nodes
NAME                  STATUS   ROLES    AGE   VERSION
master1.example.com   Ready    master   17m   v1.12.7+1.1.2.el7
master2.example.com   Ready    master   15m   v1.12.7+1.1.2.el7
master3.example.com   Ready    master   15m   v1.12.7+1.1.2.el7
worker1.example.com   Ready    <none>   13m   v1.12.5+2.1.1.el7

8. Use the kubectl tool to drain each of your worker nodes from the cluster:

# kubectl drain worker1.example.com --ignore-daemonsets
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node/worker1.example.com cordoned

Check that the worker nodes are unable to accept any further scheduling or new pods:

# kubectl get nodes

Note that a node that has been drained should have its status set to SchedulingDisabled.

9. On each of the worker nodes, upgrade the required packages to the latest versions and restart the
kubelet service:

# yum update kubeadm kubelet kubectl kubeadm-ha-setup
# systemctl restart kubelet

10. Now that the upgrades are complete for each worker node, uncordon them using the kubectl tool
from the master cluster:

# kubectl uncordon worker1.example.com
node/worker1.example.com uncordoned

Check that the worker nodes are now able to accept new schedules and pods:

# kubectl get nodes
NAME                  STATUS   ROLES    AGE   VERSION
master1.example.com   Ready    master   17m   v1.12.7+1.1.2.el7
master2.example.com   Ready    master   15m   v1.12.7+1.1.2.el7
master3.example.com   Ready    master   15m   v1.12.7+1.1.2.el7
worker1.example.com   Ready    <none>   13m   v1.12.7+1.1.2.el7

Recover from Errata Release Update Failures

If the update fails to complete successfully, you will need to do a full cluster restore from backup. Note that
the cluster will not be responsive to new commands until the restore process is complete.

Recovery Steps

1. Check which of the required packages were updated on each node:

# yum list installed kubeadm kubelet kubectl

2. Downgrade each of the individual packages that has already been updated to the previous errata
version. For example, to downgrade the kubeadm package:

# yum downgrade kubeadm

Note

Do not downgrade the kubeadm-ha-setup package on your master nodes, as
the latest version is always designed to support errata release update recovery.

3. Follow the restore steps in Section 4.3, “Cluster Backup and Restore”, but add the --force flag to
override any version checks:

# kubeadm-ha-setup restore /backups/master-backup-v1.12.5-2-1544442719.tar --force

4. When recovery is complete, you may re-attempt the High Availability cluster update.
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This chapter describes how to configure and administer your Kubernetes deployment.

4.1 Kubernetes and iptables Rules

Kubernetes uses iptables to handle many networking and port forwarding rules. Be careful of using
services that may create conflicting iptables rules. You can check the rules by running iptables-
save, which dumps the rule set to STDOUT.

If you intend to expose application services externally, by either using the NodePort or LoadBalancing
service types, traffic forwarding must be enabled in your iptables rule set. If you find that you are unable
to access a service from outside of the network used by the pod where your application is running, check
that your iptables rule set does not contain a rule similar to the following:

:FORWARD DROP [0:0]

If you have a rule to drop all forwarding traffic, you may need to run:

# iptables -P FORWARD ACCEPT

If you are running iptables as a service instead of firewalld, you can save current iptables
configuration so that it is persistent across reboots. To do this, run:

# iptables-save > /etc/sysconfig/iptables

Note that you must have the iptables-services package installed for this to work. Oracle recommends
using the default firewalld service as this provides a more consistent experience and allows you to
make changes to the firewall configuration without flushing existing rules and reloading the firewall.

Nodes running applications that need to communicate directly between pods and that are IP aware, may
require additional custom iptables configuration to bypass the default firewalld masquerading rules.
For example, setting these two iptables rules on the nodes running a server application on IP address
192.0.2.15 and a client application on IP address 192.0.2.16 enables direct communication between
them:

# iptables -t nat -I POST_public_allow -s 192.0.2.15/32 -d 192.0.2.16/32 -j RETURN
# iptables -t nat -I POST_public_allow -s 192.0.2.16/32 -d 192.0.2.15/32 -j RETURN
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4.2 Using Kubernetes With a Proxy Server
In environments where a proxy server is configured to access the internet services, such as the Docker
Hub or the Oracle Container Registry, you may need to perform several configuration steps to get
Kubernetes to install and to run correctly.

1. Ensure that the Docker engine startup configuration on each node in the cluster is configured to use
the proxy server. For instance, create a systemd service drop-in file at /etc/systemd/system/
docker.service.d/http-proxy.conf with the following contents:

[Service]
Environment="HTTP_PROXY=http://proxy.example.com:80/"
Environment="HTTPS_PROXY=https://proxy.example.com:443/"

Replace http://proxy.example.com:80/ with the URL for your HTTP proxy service. If you have
an HTTPS proxy and you have specified this as well, replace https://proxy.example.com:443/
with the URL and port for this service. If you have made a change to your Docker systemd service
configuration, run the following commands:

# systemctl daemon-reload; systemctl restart docker

2. You may need to set the http_proxy or https_proxy environment variables to be able to run other
commands on any of the nodes in your cluster. For example:

# export http_proxy="http://proxy.example.com:80/"
# export https_proxy="https://proxy.example.com:443/"

3. Disable the proxy configuration for the local host and any node IPs in the cluster:

# export no_proxy="127.0.0.1, 192.0.2.10, 192.0.2.11, 192.0.2.12"

These steps should be sufficient to enable the deployment to function normally. Use of a transparent proxy
that does not require configuration on the host and which ignores internal network requests, can reduce the
complexity of the configuration and may help to avoid unexpected behavior.

4.3 Cluster Backup and Restore

4.3.1 Single Master Cluster

The kubeadm-setup.sh script enables cluster backup and restore functionality so that you can easily
protect your Kubernetes deployment from a failure of the master node in the cluster. Cluster status and
configuration data is stored in the Cluster State Store, also referred to as etcd.

For the backup and restore processes to work properly, there are some basic requirements:

• The hostname and IP address of the master node being restored, must match the hostname and IP
address of the master node that was backed up. The usual use case for restore is after system failure,
so the restore process expects a matching system for the master node with a fresh installation of the
Docker engine and the Kubernetes packages.

• The master node must be tainted so that is unable to run any workloads or containers other than those
that the master node requires. This is the default configuration if you used the kubeadm-setup.sh
script to setup your environment. The backup process does not back up any containers running on the
master node other than the containers specific to managing the Kubernetes cluster.

• The backup command must be run on the master node.
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• Any Docker engine configuration applied to the master node prior to the backup process must be
manually replicated on the node on which you intend to run the restore operation. You may need to
manually configure your Docker storage driver and proxy settings before running a restore operation.

• The backup command checks for minimum disk space of 100 MB at the specified backup location. If the
space is not available, the backup command exits with an error.

• A restore can only function correctly using the backup file for a Kubernetes cluster running the same
version of Kubernetes. You cannot restore a backup file for a Kubernetes 1.7.4 cluster, using the
Kubernetes 1.8.4 tools.

The backup command requires that you stop the cluster during the backup process. Running container
configurations on the worker nodes are unaffected during the backup process. The following steps
describe how to create a backup file for the master node.

Back up the cluster configuration and state

1. Stop the cluster.

To back up the cluster configuration and state, the cluster must be stopped so that no changes can
occur in state or configuration during the backup process. While the cluster is stopped, the worker
nodes continue to run independently of the cluster, allowing the containers hosted on each of these
nodes to continue to function. To stop the cluster, on the master node, run:

# kubeadm-setup.sh stop
Stopping kubelet now ...
Stopping containers now ...

2. Run kubeadm-setup.sh backup and specify the directory where the backup file should be stored.

# kubeadm-setup.sh backup /backups
Using container-registry.oracle.com/etcd:3.2.24
Checking if container-registry.oracle.com/etcd:3.2.24 is available
376ebb3701caa1e3733ef043d0105569de138f3e5f6faf74c354fa61cd04e02a 
/var/run/kubeadm/backup/etcd-backup-1544442719.tar
e8e528be930f2859a0d6c7b953cec4fab2465278376a59f8415a430e032b1e73 
/var/run/kubeadm/backup/k8s-master-0-1544442719.tar
Backup is successfully stored at /backups/master-backup-v1.12.5-2-1544442719.tar ...
You can restart your cluster now by doing: 
# kubeadm-setup.sh restart

Substitute /backups with the path to a directory where you wish to store the backed up data for your
cluster.

Each run of the backup command creates as a tar file that is timestamped so that you can easily
restore the most recent backup file. The backup file also contains a sha256 checksum that is used to
verify the validity of the backup file during restore. The backup command instructs you to restart the
cluster when you have finished backing up.

3. Restart the cluster.

# kubeadm-setup.sh restart
Restarting containers now ...
Detected node is master ...
Checking if env is ready ...
Checking whether docker can pull busybox image ...
Checking access to container-registry.oracle.com ...
Trying to pull repository container-registry.oracle.com/pause ... 
3.1: Pulling from container-registry.oracle.com/pause
Digest: sha256:802ef89b9eb7e874a76e1cfd79ed990b63b0b84a05cfa09f0293379ac0261b49
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Status: Image is up to date for container-registry.oracle.com/pause:3.1
Checking firewalld settings ...
Checking iptables default rule ...
Checking br_netfilter module ...
Checking sysctl variables ...
Restarting kubelet ...
Waiting for node to restart ...
....
Master node restarted. Complete synchronization between nodes may take a few minutes.

Checks, similar to those performed during cluster setup, are performed when the cluster is restarted, to
ensure that no environment changes may have occurred that could prevent the cluster from functioning
correctly. Once the cluster has started, it can take a few minutes for the nodes within the cluster to
report status and for the cluster to settle back to normal operation.

A restore operation is typically performed on a freshly installed host, but can be run on an existing setup,
as long as any pre-existing setup configuration is removed. The restore process assumes that the Docker
engine is configured in the same way as the original master node. The Docker engine must be configured
to use the same storage driver and if proxy configuration is required, you must set this up manually before
restoring, as described in the following steps.

Restore the cluster configuration and state

1. On the master host, ensure that the latest Docker and Kubernetes versions are installed and that the
master node IP address and hostname match the IP address and hostname used before failure. The
kubeadm package pulls in all of the required dependencies, including the correct version of the Docker
engine.

# yum install kubeadm kubectl kubelet

2. Run the kubeadm-setup.sh restore command.

# kubeadm-setup.sh restore /backups/master-backup-v1.12.5-2-1544442719.tar
Checking sha256sum of the backup files ...
/var/run/kubeadm/backup/etcd-backup-1544442719.tar: OK
/var/run/kubeadm/backup/k8s-master-0-1544442719.tar: OK
Restoring backup from /backups/master-backup-v1.12.5-2-1544442719.tar ...
Using 3.2.24
etcd cluster is healthy ...
Cleaning up etcd container ...
27148ae6765a546bf45d527d627e5344130fb453c4a532aa2f47c54946f2e665
27148ae6765a546bf45d527d627e5344130fb453c4a532aa2f47c54946f2e665
Restore successful ...
You can restart your cluster now by doing: 
# kubeadm-setup.sh restart

Substitute /backups/master-backup-v1.12.5-2-1544442719.tar with the full path to the
backup file that you wish to restore.

3. Restart the cluster.

# kubeadm-setup.sh restart
Restarting containers now ...
Detected node is master ...
Checking if env is ready ...
Checking whether docker can pull busybox image ...
Checking access to container-registry.oracle.com ...
Trying to pull repository container-registry.oracle.com/pause ... 
3.1: Pulling from container-registry.oracle.com/pause
Digest: sha256:802ef89b9eb7e874a76e1cfd79ed990b63b0b84a05cfa09f0293379ac0261b49
Status: Image is up to date for container-registry.oracle.com/pause:3.1
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Checking firewalld settings ...
Checking iptables default rule ...
Checking br_netfilter module ...
Checking sysctl variables ...
Enabling kubelet ...
Created symlink from /etc/systemd/system/multi-user.target.wants/kubelet.service 
to /etc/systemd/system/kubelet.service.
Restarting kubelet ...
Waiting for node to restart ...
....+++++
Restarting pod kube-flannel-ds-glwgx
pod "kube-flannel-ds-glwgx" deleted
Restarting pod kube-flannel-ds-jz8sf
pod "kube-flannel-ds-jz8sf" deleted
Master node restarted. Complete synchronization between nodes may take a few minutes.

4. Copy the Kubernetes admin.conf file to your home directory:

$ sudo cp /etc/kubernetes/admin.conf $HOME/ 

Change the ownership of the file to match your regular user profile:

$ sudo chown $(id -u):$(id -g) $HOME/admin.conf

Export the path to the file for the KUBECONFIG environment variable:

$ export KUBECONFIG=$HOME/admin.conf

You cannot use the kubectl command if the path to this file is not set for this environment variable.
Remember to export the KUBECONFIG variable for each subsequent login so that the kubectl and
kubeadm commands use the correct admin.conf file, otherwise you might find that these commands
do not behave as expected after a reboot or a new login. For instance, append the export line to your
.bashrc:

$ echo 'export KUBECONFIG=$HOME/admin.conf' >> $HOME/.bashrc

5. Check that you cluster has been properly restored. Use kubectl to check on the status of the nodes
within the cluster and to check any existing configuration. For example:

$ kubectl get nodes
NAME                  STATUS    ROLES   AGE       VERSION
master.example.com    Ready     master  1h        v1.12.5+2.1.1.el7
worker1.example.com   Ready     <none>  1h        v1.12.5+2.1.1.el7
worker2.example.com   Ready     <none>  1h        v1.12.5+2.1.1.el7

$ kubectl get pods
NAME                                READY     STATUS    RESTARTS   AGE
nginx-deployment-4234284026-g8g95   1/1       Running   0          10m
nginx-deployment-4234284026-k1h8w   1/1       Running   0          10m
nginx-deployment-4234284026-sbkqr   1/1       Running   0          10m

4.3.2 High Availability Cluster

The kubeadm-ha-setup tool enables cluster backup and restore functionality so that you can easily
protect your Kubernetes deployment from a failure of the master node in the cluster. Cluster status,
configuration data and snapshots are stored in the Cluster State Store, also referred to as etcd.

For the backup and restore processes to work properly, there are some basic requirements:

• The hostname and IP address of the master node being restored, must match the hostname and IP
address of the master node that was backed up. The usual use case for restore is after system failure,
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so the restore process expects a matching system for each master node with a fresh installation of the
Docker engine and the Kubernetes packages.

• A restore can only function correctly using a backup of a Kubernetes high availability cluster running the
same version of Kubernetes. The Docker engine versions must also match.

• There must be a dedicated share storage directory that is accessible to all nodes in the master cluster
during the backup and restore phases.

• All nodes in the master cluster must have root access using password-less key-based authentication for
all other nodes in the master cluster whenever kubeadm-ha-setup is used.

A full restore is only required if a period of downtime included more than one node in the master cluster.
Note that a full restore disrupts master node availability throughout the duration of the restore process.

Back up the cluster configuration and state

1. Run kubeadm-ha-setup backup and specify the directory where the backup file should be stored.

# kubeadm-ha-setup backup /backups
Disaster Recovery
Reading configuration file /usr/local/share/kubeadm/run/kubeadm/ha.yaml ...
CreateSSH /root/.ssh/id_rsa root
Backup  /backup
Checking overall clusters health ...
Performing backup on 192.0.2.10
Performing backup on 192.0.2.11
Performing backup on 192.0.2.13
{"level":"info","msg":"created temporary db file","path":"/var/lib/etcd/etcd-snap.db.part"}
{"level":"info","msg":"fetching snapshot","endpoint":"127.0.0.1:2379"}
{"level":"info","msg":"fetched snapshot","endpoint":"127.0.0.1:2379","took":"110.033606ms"}
{"level":"info","msg":"saved","path":"/var/lib/etcd/etcd-snap.db"}
[Backup is stored at /backup/fulldir-1544115826/fullbackup-1544115827.tar]

Substitute /backups with the path to the network share directory where you wish to store the backup
data for your master cluster.

Each run of the backup command creates as a tar file that is timestamped so that you can easily
restore the most recent backup file. The backup file also contains a sha256 checksum that is used to
verify the validity of the backup file during restore. The backup command instructs you to restart the
cluster when you have finished backing up.

A restore operation is typically performed on a freshly installed host, but can be run on an existing setup,
as long as any pre-existing setup configuration is removed.

The restore process assumes that the IP address configuration for each node in the master cluster
matches the configuration in the backed up data. If you are restoring on one or more freshly installed
hosts, make sure that the IP addressing matches the address assigned to the host or hosts that you are
replacing.

The restore process assumes that the Docker engine is configured in the same way as the original master
node. The Docker engine must be configured to use the same storage driver and if proxy configuration is
required, you must set this up manually before restoring, as described in the following steps.

Note

A full restore of the high availability master cluster disrupts service availability for
the duration of the restore operation
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Restore the cluster configuration and state

1. On the master host, ensure that the latest Docker and Kubernetes versions are installed and that the
master node IP address and hostname match the IP address and hostname used before failure. The
kubeadm package pulls in all of the required dependencies, including the correct version of the Docker
engine.

# yum install kubeadm kubectl kubelet kubeadm-ha-setup

2. Run the kubeadm-ha-setup restore command.

# kubeadm-ha-setup restore /backups/fulldir-1544115826/fullbackup-1544115827.tar
Disaster Recovery
Reading configuration file /usr/local/share/kubeadm/run/kubeadm/ha.yaml ...
CreateSSH /root/.ssh/id_rsa root
Restore  /share/fulldir-1544115826/fullbackup-1544115827.tar 
with binary /usr/bin/kubeadm-ha-setup
Checking etcd clusters health (this will take a few mins) ...
Cleaning up node 10.147.25.195
Cleaning up node 10.147.25.196
Cleaning up node 10.147.25.197
file to be restored from:  /share/fulldir-1544115826/backup-10.147.25.195-1544115826.tar
Configuring keepalived for HA ...
success
success
file to be restored from:  /share/fulldir-1544115826/backup-10.147.25.196-1544115826.tar
[INFO]  /usr/local/share/kubeadm/kubeadm-ha/etcd-extract.sh 
/share/fulldir-1544115826/fullbackup-1544115827.tar 10.147.25.196:22  retrying ...
file to be restored from:  /share/fulldir-1544115826/backup-10.147.25.197-1544115827.tar
[INFO]  /usr/bin/kubeadm-ha-setup etcd 
fullrestore 10.147.25.197 10.147.25.197:22  retrying ...
[COMPLETED] Restore completed, cluster(s) may take a few minutes to get backup!

Substitute /backups/fulldir-1544115826/fullbackup-1544115827.tar with the full path to
the backup file that you wish to restore. Note that the backup directory and file must be accessible to all
master nodes in the cluster during the restore process.

If the script detects that all three master nodes are currently healthy, you need to confirm you wish to
proceed:

[WARNING] All nodes are healthy !!! This will perform a FULL CLUSTER RESTORE
pressing [y] will restore cluster to the state stored 
in /share/fulldir-1544115826/fullbackup-1544115827.tar

Alternatively if the script detects that more than one master node is unavailable then it prompts you
before proceeding with a full cluster restore.
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3. Copy the Kubernetes admin.conf file to your home directory:

$ sudo cp /etc/kubernetes/admin.conf $HOME/ 

Change the ownership of the file to match your regular user profile:

$ sudo chown $(id -u):$(id -g) $HOME/admin.conf

Export the path to the file for the KUBECONFIG environment variable:

$ export KUBECONFIG=$HOME/admin.conf

You cannot use the kubectl command if the path to this file is not set for this environment variable.
Remember to export the KUBECONFIG variable for each subsequent login so that the kubectl and
kubeadm commands use the correct admin.conf file, otherwise you might find that these commands
do not behave as expected after a reboot or a new login. For instance, append the export line to your
.bashrc:

$ echo 'export KUBECONFIG=$HOME/admin.conf' >> $HOME/.bashrc

4. Check that you cluster has been properly restored. Use kubectl to check on the status of the nodes
within the cluster and to check any existing configuration. For example:

$ kubectl get nodes
NAME                  STATUS    ROLES   AGE      VERSION
master1.example.com   Ready     master  1h       v1.12.5+2.1.1.el7
master2.example.com   Ready     master  1h       v1.12.5+2.1.1.el7
master3.example.com   Ready     master  1h       v1.12.5+2.1.1.el7
worker2.example.com   Ready     <none>  1h       v1.12.5+2.1.1.el7
worker3.example.com   Ready     <none>  1h       v1.12.5+2.1.1.el7

4.4 Kubernetes Dashboard
When the kubeadm-setup.sh script or kubeadm-ha-setup utility is used to install master nodes in
the Kubernetes cluster, the Kubernetes Dashboard container is created as part of the kube-system
namespace. This provides an intuitive graphical user interface to Kubernetes that can be accessed using a
standard web browser.

The Kubernetes Dashboard is described in the Kubernetes documentation at https://kubernetes.io/docs/
tasks/access-application-cluster/web-ui-dashboard/.

To access the Dashboard, you can run a proxy service that allows traffic on the node where it is running to
reach the internal pod where the Dashboard application is running. This is achieved by running the kubectl
proxy service:

$ kubectl proxy
Starting to serve on 127.0.0.1:8001

The Dashboard is available on the node where the proxy is running for as long as the proxy runs. To exit
the proxy, use Ctrl+C. You can run this as a systemd service and enable it so that it is always available
after subsequent reboots:

# systemctl start kubectl-proxy
# systemctl enable kubectl-proxy

This systemd service requires that the /etc/kubernetes/admin.conf is present to run. If you want to
change the port that is used for the proxy service, or you want to add other proxy configuration parameters,
you can configure this by editing the systemd drop-in file at /etc/systemd/system/kubectl-
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proxy.service.d/10-kubectl-proxy.conf. You can get more information about the configuration
options available for the kubectl proxy service by running:

$ kubectl proxy ‐‐help

To access the Dashboard, open a web browser on the node where the proxy is running and navigate to
http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/#!/login.

To login, you must authenticate using a token. See https://github.com/kubernetes/dashboard/tree/master/
docs/user/access-control for more information. If you have not set up specific tokens for this purpose,
you can use a token allocated to a service account, such as the namespace-controller. Run the following
command to obtain the token value for the namespace-controller:

$ kubectl -n kube-system describe $(kubectl -n kube-system \
   get secret -n kube-system -o name | grep namespace) | grep token:
token:      eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2Nvd\
            W50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSI\
            sImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJuYW1lc3BhY2UtY29ud\
            HJvbGxlci10b2tlbi1zeHB3ayIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1h\
            Y2NvdW50Lm5hbWUiOiJuYW1lc3BhY2UtY29udHJvbGxlciIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFj\
            Y291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjM4OTk1MWIyLWJlNDYtMTFlNy04ZGY2LTA4MDAyNzY\
            wOTVkNyIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDprdWJlLXN5c3RlbTpuYW1lc3BhY2UtY2\
            9udHJvbGxlciJ9.aL-9sRGic_b7XW2eOsDfxn9QCCobBSU41J1hMbT5D-Z86iahl1mQnV60zEKOg-45\
            5pLO4aW_RSETxxCp8zwaNkbwoUF1rbi17FMR_zfhj9sfNKzHYO1tjYf0lN452k7_oCkJ7HR2mzCHmw-\
            AygILeO0NlIgjxH_2423Dfe8In9_nRLB_PzKvlEV5Lpmzg4IowEFhawRGib3R1o74mgIb3SPeMLEAAA

Copy and paste the entire value of the token into the token field on the login page to authenticate.

If you need to access the Dashboard remotely, Oracle recommends using SSH tunneling to do port
forwarding from your localhost to the proxy node, as described in the following sections.

SSH Tunneling

The easiest option is to use SSH tunneling to forward a port on your local system to the port configured
for the proxy service running on the node that you wish to access. This method retains some security as
the HTTP connection is encrypted by virtue of the SSH tunnel and authentication is handled by your SSH
configuration. For example, on your local system run:

$ ssh -L 8001:127.0.0.1:8001 192.0.2.10

Substitute 192.0.2.10 with the IP address of the host where you are running kubectl proxy. Once
the SSH connection is established, you can open a browser on your localhost and navigate to http://
localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/#!/login
to access the Dashboard hosted in the remote Kubernetes cluster. Use the same token information to
authenticate as if you were connecting to the Dashboard locally.

4.5 Removing Worker Nodes from the Cluster

4.5.1 Single Master Cluster

At any point, you can remove a worker node from the cluster. Use the kubeadm-setup.sh down
command to completely remove all of the Kubernetes components installed and running on the system.
Since this operation is destructive, the script warns you when you attempt to do this on a worker node and
requires confirmation to continue with the action. The script also reminds you that you need to remove the
node from the cluster configuration:

# kubeadm-setup.sh down
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[WARNING] This action will RESET this node !!!!
          Since this is a worker node, please also run the following on the master (if not already done)
          # kubectl delete node worker1.example.com
          Please select 1 (continue) or 2 (abort) :
1) continue
2) abort
#? 1
[preflight] Running pre-flight checks
[reset] Stopping the kubelet service
[reset] Unmounting mounted directories in "/var/lib/kubelet"
[reset] Removing kubernetes-managed containers
[reset] No etcd manifest found in "/etc/kubernetes/manifests/etcd.yaml", assuming external etcd.
[reset] Deleting contents of stateful directories: [/var/lib/kubelet /etc/cni/net.d /var/lib/dockershim]
[reset] Deleting contents of config directories: [/etc/kubernetes/manifests /etc/kubernetes/pki]
[reset] Deleting files: [/etc/kubernetes/admin.conf /etc/kubernetes/kubelet.conf \
        /etc/kubernetes/controller-manager.conf /etc/kubernetes/scheduler.conf

The cluster must be updated so that it no longer looks for a node that you have decommissioned. Remove
the node from the cluster using the kubectl delete node command:

$ kubectl delete node worker1.example.com
node "test2.example.com" deleted

Substitute worker1.example.com with the name of the worker node that you wish to remove from the
cluster.

If you run the kubeadm-setup.sh down command on the master node, the only way to recover the
cluster is to restore from a backup file. Doing this effectively destroys the entire cluster. The script warns
you that this is a destructive action and that you are performing it on the master node. You must confirm
the action before you are able to continue:

# kubeadm-setup.sh down
[WARNING] This action will RESET this node !!!!
          Since this is a master node, all of the clusters information will be lost !!!!
          Please select 1 (continue) or 2 (abort) :
1) continue
2) abort
#? 1
[preflight] Running pre-flight checks
[reset] Stopping the kubelet service
[reset] Unmounting mounted directories in "/var/lib/kubelet"
[reset] Removing kubernetes-managed containers
[reset] Deleting contents of stateful directories: [/var/lib/kubelet /etc/cni/net.d \
        /var/lib/dockershim /var/lib/etcd]
[reset] Deleting contents of config directories: [/etc/kubernetes/manifests /etc/kubernetes/pki]
[reset] Deleting files: [/etc/kubernetes/admin.conf /etc/kubernetes/kubelet.conf \
        /etc/kubernetes/controller-manager.conf /etc/kubernetes/scheduler.conf]
deleting flannel.1 ip link ...
deleting cni0 ip link ...
removing /var/lib/cni directory ...
removing /var/lib/etcd directory ...
removing /etc/kubernetes directory ...

4.5.2 High Availability Cluster

Removing a worker node from a high availability cluster follows a similar process, but uses the kubeadm-
ha-setup down command instead. Since this operation is destructive, the utility warns you when you
attempt to do this on a worker node and requires confirmation to continue with the action. The script also
reminds you that you need to remove the node from the cluster configuration:

# kubeadm-ha-setup down
[WARNING] This operation will clean up all kubernetes installations on this node

76



The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

High Availability Cluster

press [y] to continue ...
y
[INFO] Removing interface flannel.1

The cluster must be updated so that it no longer looks for a node that you have decommissioned. Remove
the node from the cluster using the kubectl delete node command on any of your master nodes:

$ kubectl delete node worker1.example.com
node "worker1.example.com" deleted

Substitute worker1.example.com with the name of the node that you wish to remove from the cluster.

If you run the kubeadm-ha-setup command on any of your master nodes, the only way to recover the
cluster is to restore from a backup file.

77



78



The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 5 Getting Started with Kubernetes

Table of Contents
5.1 kubectl Basics ............................................................................................................................ 79
5.2 Pod Configuration Using a YAML Deployment ............................................................................. 82
5.3 Using Persistent Storage ............................................................................................................ 87

5.3.1 Persistent Storage Concepts ............................................................................................ 87
5.3.2 Configuring NFS .............................................................................................................. 88
5.3.3 Configuring iSCSI ............................................................................................................ 90

This chapter describes how to get started using Kubernetes to deploy, maintain and scale your
containerized applications.

5.1 kubectl Basics

The kubectl utility is a command line tool that interfaces with the API Server to run commands against
the cluster. The tool is typically run on the master node of the cluster. It effectively grants full administrative
rights to the cluster and all of the nodes in the cluster.

The kubectl utility is documented fully at:

https://kubernetes.io/docs/reference/kubectl/overview/

In this section, we describe basic usage of the tool to get you started creating and managing pods and
services within your environment.

Get Information About the Nodes in a Cluster

To get a listing of all of the nodes in a cluster and the status of each node, use the kubectl get
command. This command can be used to obtain listings of any kind of resource that Kubernetes supports.
In this case, the nodes resource:

$ kubectl get nodes
NAME                   STATUS    ROLES   AGE      VERSION
master.example.com     Ready     master  1h       v1.12.5+2.1.1.el7
worker1.example.com    Ready     <none>  1h       v1.12.5+2.1.1.el7
worker2.example.com    Ready     <none>  1h       v1.12.5+2.1.1.el7

You can get more detailed information about any resource using the kubectl describe command.
If you specify the name of the resource, the output is limited to information about that resource alone;
otherwise, full details of all resources are also printed to screen:

$ kubectl describe nodes worker1.example.com
Name:               worker1.example.com
Roles:              <none>   
Labels:             beta.kubernetes.io/arch=amd64
                    beta.kubernetes.io/os=linux
                    kubernetes.io/hostname=worker1.example.com
Annotations:        flannel.alpha.coreos.com/backend-data: {"VtepMAC":"f2:24:33:ab:be:82"}
                    flannel.alpha.coreos.com/backend-type: vxlan
                    flannel.alpha.coreos.com/kube-subnet-manager: true
                    flannel.alpha.coreos.com/public-ip: 10.147.25.196
                    kubeadm.alpha.kubernetes.io/cri-socket: /var/run/dockershim.sock
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                    node.alpha.kubernetes.io/ttl: 0
                    volumes.kubernetes.io/controller-managed-attach-detach: true
...

Run an Application in a Pod

To create a pod with a single running Docker container, you can use the kubectl create command:

$ kubectl create deployment --image nginx hello-world
deployment.apps/hello-world created

Substitute hello-world with a name for your deployment. Your pods are named by using the deployment
name as a prefix. Substitute nginx with a Docker image that can be pulled by the Docker engine.

Tip

Deployment, pod and service names conform to a requirement to match a
DNS-1123 label. These must consist of lower case alphanumeric characters or -,
and must start and end with an alphanumeric character. The regular expression that
is used to validate names is '[a-z0-9]([-a-z0-9]*[a-z0-9])?'. If you use a
name, for your deployment, that does not validate, an error is returned.

There are many additional optional parameters that can be used when you run a new application within
Kubernetes. For instance, at run time, you can specify how many replica pods should be started, or you
might apply a label to the deployment to make it easier to identify pod components. To see a full list of
options available to you, run kubectl run -h.

To check that your new application deployment has created one or more pods, use the kubectl get
pods command:

$ kubectl get pods
NAME                           READY     STATUS    RESTARTS   AGE
hello-world-5f55779987-wd857   1/1       Running   0          1m

Use kubectl describe to show a more detailed view of your pods, including which containers are
running and what image they are based on, as well as which node is currently hosting the pod:

$ kubectl describe pods
Name:               hello-world-5f55779987-wd857
Namespace:          default
Priority:           0
PriorityClassName:  <none>
Node:               worker1.example.com/192.0.2.11
Start Time:         Mon, 10 Dec 2018 08:25:17 -0800
Labels:             app=hello-world
                    pod-template-hash=5f55779987
Annotations:        <none>
Status:             Running
IP:                 10.244.1.3
Controlled By:      ReplicaSet/hello-world-5f55779987
Containers:
  nginx:
    Container ID:   docker://417b4b59f7005eb4b1754a1627e01f957e931c0cf24f1780cd94fa9949be1d31
    Image:          nginx
    Image ID:       docker-pullable://nginx@sha256:5d32f60db294b5deb55d078cd4feb410ad88e6fe77500c87d3970eca97f54dba
    Port:           <none>
    Host Port:      <none>
    State:          Running
      Started:      Mon, 10 Dec 2018 08:25:25 -0800
    Ready:          True
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    Restart Count:  0
    Environment:    <none>
    Mounts:
      /var/run/secrets/kubernetes.io/serviceaccount from default-token-s8wj4 (ro)
Conditions:
  Type              Status   
  Initialized       True
  Ready             True
  ContainersReady   True
  PodScheduled      True
Volumes:
  default-token-s8wj4:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  default-token-s8wj4
    Optional:    false
QoS Class:       BestEffort  
Node-Selectors:  <none>
Tolerations:     node.kubernetes.io/not-ready:NoExecute for 300s
                 node.kubernetes.io/unreachable:NoExecute for 300s
Events:
....

Scale a Pod Deployment

To change the number of instances of the same pod that you are running, you can use the kubectl
scale deployment command:

$ kubectl scale deployment --replicas=3 hello-world
deployment.apps/hello-world scaled

You can check that the number of pod instances has been scaled appropriately:

$ kubectl get pods
NAME                           READY     STATUS    RESTARTS   AGE
hello-world-5f55779987-tswmg   1/1       Running   0          18s
hello-world-5f55779987-v8w5h   1/1       Running   0          26m
hello-world-5f55779987-wd857   1/1       Running   0          18s

Expose a Service Object for Your Application

Typically, while many applications may only need to communicate internally within a pod, or even across
pods, you may need to expose your application externally so that clients outside of the Kubernetes cluster
can interface with the application. You can do this by creating a service definition for the deployment.

To expose a deployment using a service object, you must define the service type that should be used. If
you are not using a cloud-based load balancing service, you can set the service type to NodePort. The
NodePort service exposes the application running within the cluster on a dedicated port on the public IP
address on all of the nodes within the cluster. Use the kubectl expose deployment to create a new
service:

$ kubectl expose deployment hello-world --port 80 --type=LoadBalancer
service/hello-world exposed

Use kubectl get services to list the different services that the cluster is running, and to obtain the
port information required to access the service:

$ kubectl get services
NAME          TYPE           CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE
hello-world   LoadBalancer   10.102.42.160   <pending>     80:31847/TCP   3s
kubernetes    ClusterIP      10.96.0.1       <none>        443/TCP        5h13m
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In this example output, you can see that traffic to port 80 inside the cluster is mapped to the NodePort
31847. The external IP that can be used to access the service is listed as <pending>, meaning that if you
connect to the external IP address for any of the nodes within the cluster on the port 31847, you are able
access the service.

For the sake of the example in this guide, you can open a web browser to point at any of the nodes in
the cluster, such as http://worker1.example.com:31847/, and it should display the NGINX demonstration
application.

Delete a Service or Deployment

Objects can be deleted easily within Kubernetes so that your environment can be cleaned. Use the
kubectl delete command to remove an object.

To delete a service, specify the services object and the name of the service that you want to remove:

$ kubectl delete services hello-world

To delete an entire deployment, and all of the pod replicas running for that deployment, specify the
deployment object and the name that you used to create the deployment:

$ kubectl delete deployment hello-world

Work With Namespaces

Namespaces can be used to further separate resource usage and to provide limited environments for
particular use cases. By default, Kubernetes configures a namespace for Kubernetes system components
and a standard namespace to be used for all other deployments for which no namespace is defined.

To view existing namespaces, use the kubectl get namespaces and kubectl describe
namespaces commands.

The kubectl command only displays resources in the default namespace, unless you set the namespace
specifically for a request. Therefore, if you need to view the pods specific to the Kubernetes system, you
would use the --namespace option to set the namespace to kube-system for the request. For example,
in a cluster with a single master node:

$ kubectl get pods --namespace=kube-system
NAME                                         READY   STATUS    RESTARTS   AGE
coredns-6c77847dcf-77grm                     1/1     Running   2          5h26m
coredns-6c77847dcf-vtk8k                     1/1     Running   2          5h26m
etcd-master.example.com                      1/1     Running   3          5h25m
kube-apiserver-master.example.com            1/1     Running   4          5h25m
kube-controller-manager-master.example.com   1/1     Running   4          5h25m
kube-flannel-ds-4c285                        1/1     Running   0          115m
kube-flannel-ds-ds66r                        1/1     Running   0          115m
kube-proxy-5lssw                             1/1     Running   0          117m
kube-proxy-tv2mj                             1/1     Running   3          5h26m
kube-scheduler-master.example.com            1/1     Running   3          5h25m
kubernetes-dashboard-64458f66b6-q8dzh        1/1     Running   4          5h26m

5.2 Pod Configuration Using a YAML Deployment

To simplify the creation of pods and their related requirements, you can create a deployment file that define
all of the elements that comprise the deployment. This deployment defines which images should be used
to generate the containers within the pod, along with any runtime requirements, as well as Kubernetes
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networking and storage requirements in the form of services that should be configured and volumes that
may need to be mounted.

Deployments are described in detail at https://kubernetes.io/docs/concepts/workloads/controllers/
deployment/.

Kubernetes deployment files can be easily shared and Kubernetes is also capable of creating a
deployment based on a remotely hosted file, allowing anyone to get a deployment running in minutes. You
can create a deployment by running the following command:

$ kubectl create -f https://example.com/deployment.yaml

In the following example, you will create two YAML deployment files. The first is used to create a
deployment that runs MySQL Server with a persistent volume for its data store. You will also configure the
services that allow other pods in the cluster to consume this resource.

The second deployment will run a phpMyAdmin container in a separate pod that will access the MySQL
Server directly. That deployment will also create a NodePort service so that the phpMyAdmin interface
can be accessed from outside of the Kubernetes cluster.

The following example illustrates how you can use YAML deployment files to define the scope and
resources that you need to run a complete application.

Important

The examples provided here are provided for demonstration purposes only. They
are not intended for production use and do not represent a preferred method of
deployment or configuration.

MySQL Server Deployment

To create the MySQL Server Deployment, create a single text file mysql-db.yaml in an editor. The
description here provides a breakdown of each of the objects as they are defined in the text file. All of
these definitions can appear in the same file.

One problem when running databases within containers is that containers are not persistent. This means
that data hosted in the database must be stored outside of the container itself. Kubernetes handles setting
up these persistent data stores in the form of Persistent Volumes. There are a wide variety of Persistent
Volume types. In a production environment, some kind of shared file system that is accessible to all nodes
in the cluster would be the most appropriate implementation choice, however for this simple example you
will use the hostPath type. The hostPath type allows you to use a local disk on the node where the
container is running.

In the Persistent Volume specification, we can define the size of the storage that should be dedicated for
this purpose and the access modes that should be supported. For the hostPath type, the path where
the data should be stored is also defined. In this case, we use the path /tmp/data for demonstration
purposes. These parameters should be changed according to your own requirements.

The definition in the YAML file for the Persistent Volume object should appear similarly to the following:

apiVersion: v1
kind: PersistentVolume
metadata:
  name: mysql-pv-volume
  labels:
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    type: local
spec:
  storageClassName: manual
  capacity:
    storage: 5Gi
  accessModes:
    - ReadWriteOnce
  hostPath:
    path: "/tmp/data"

A Persistent Volume object is an entity within Kubernetes that stands on its own as a resource. For a pod
to use this resource, it must request access and abide by the rules applied to its claim for access. This is
defined in the form of a Persistent Volume Claim. Pods effectively mount Persistent Volume Claims as their
storage.

The definition in the YAML file for the Persistent Volume Claim object should appear similarly to the
following:

---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: mysql-pv-claim
spec:
  storageClassName: manual
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 5Gi

It is important to define a service for the deployment. This specifies the TCP ports used by the application
that we intend to run in our pod. In this case, the MySQL server listens on port 3306. Most importantly,
the name of the service can be used by other deployments to access this service within the cluster,
regardless of the node where it is running. This service does not specify a service type as it uses the
default ClusterIP type so that it is only accessible to other components running in the cluster internal
network. In this way, the MySQL server is isolated to requests from containers running in pods within the
Kubernetes cluster.

The Service definition in the YAML file might look as follows:

---
apiVersion: v1
kind: Service
metadata:
  name: mysql-service
  labels:
    app: mysql
spec:
    selector:
      app: mysql
    ports:
      - port: 3306
    clusterIP: None

A MySQL Server instance can be easily created as a Docker container running in a pod, using the
mysql/mysql-server:latest Docker image. In the pod definition, specify the volume information
to attach the Persistent Volume Claim that was defined previously for this purpose. Also, specify the
container parameters, including the image that should be used, the container ports that are used, volume
mount points and any environment variables required to run the container. In this case, we mount the
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Persistent Volume Claim onto /var/lib/mysql in each running container instance and we specify the
MYSQL_ROOT_PASSWORD value as an environment variable, as required by the image.

---
apiVersion: v1
kind: Pod
metadata:
  name: mysql
  labels:
    app: mysql
spec:
  volumes:
    - name: mysql-pv-storage
      persistentVolumeClaim:
       claimName: mysql-pv-claim
  containers:
    - image: mysql:5.6 
      name: mysql  
      ports:
        - containerPort: 3306
          name: mysql
      volumeMounts:
        - mountPath: /var/lib/mysql
          name: mysql-pv-storage
      env:
        - name: MYSQL_ROOT_PASSWORD   
          value: "password"

Replace the password value specified for the MYSQL_ROOT_PASSWORD environment variable with a better
alternative, suited to your security requirements.

When you have created your YAML deployment file, save it and then run:

$ kubectl create -f mysql-db.yaml
persistentvolume/mysql-pv-volume created
persistentvolumeclaim/mysql-pv-claim created
service/mysql-service created
pod/mysql created

All of the resources and components defined in the file are created and loaded in Kubernetes. You can use
the kubectl command to view details of each component as you require.

phpMyAdmin Deployment

To demonstrate how deployments can interconnect and consume services provided by one another, it is
possible to set up a phpMyAdmin Docker instance that connects to the backend MySQL server that you
deployed in the first part of this example.

The phpMyAdmin deployment uses a standard Docker image to create a container running in a pod,
and also defines a NodePort service that allows the web interface to be accessed from any node in the
cluster.

Create a new file called phpmyadmin.yaml and open it in an editor to add the two component definitions
described in the following text.

First, create the Service definition. This service defines the port that is used in the container and the
targetPort that this is mapped to within the internal Kubernetes cluster network. Also specify the Service
type and set it to NodePort, to make the service accessible from outside of the cluster network via any of
the cluster nodes and the port forwarding service that the NodePort service type provides.
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The declaration should look similar to the following:

apiVersion: v1
kind: Service
metadata:
  labels:
    name: phpmyadmin
  name: phpmyadmin
spec:
  ports:
    - port: 80
      targetPort: 80
  selector:
    name: phpmyadmin
  type: NodePort

Finally, define the pod where the phpMyAdmin container is loaded. Here, you can specify the Docker
image that should be used for this container and the port that the container uses. You can also specify
the environment variables required to run this image. Notably, the Docker image requires you to set the
environment variable PMA_HOST, which should provide the IP address or resolvable domain name for the
MySQL server. Since we cannot guess which IP address should be used here, we can rely on Kubernetes
to take care of this, by providing the mysql-service name as the value here. Kubernetes automatically
links the two pods using this service definition.

The Pod definition should look similar to the following:

---
apiVersion: v1
kind: Pod
metadata:
  name: phpmyadmin
  labels:
    name: phpmyadmin
spec:
  containers:
    - name: phpmyadmin
      image: phpmyadmin/phpmyadmin
      env:
        - name: PMA_HOST
          value: mysql-service
      ports:
        - containerPort: 80
          name: phpmyadmin

Save the file and then run the kubectl create command to load the YAML file into a deployment.

$ kubectl create -f phpmyadmin.yaml
service/phpmyadmin created
pod/phpmyadmin created

To check that this is working as expected, you need to determine what port is being used for the port
forwarding provided by the NodePort service:

$ kubectl get services phpmyadmin
NAME         CLUSTER-IP     EXTERNAL-IP   PORT(S)        AGE
phpmyadmin   10.110.16.56   <nodes>       80:31485/TCP   1d

In this example output, port 80 on the cluster network is being mapped to port 30582 on each of the
cluster nodes. Open a browser to point to any of the cluster nodes on the specified port mapping. For
example: http://master.example.com:31485/. You should be presented with the phpMyAdmin
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login page and you should be able to log into phpMyAdmin as root with the password that you specified as
the MYSQL_ROOT_PASSWORD environment variable when you deployed the MySQL server.

5.3 Using Persistent Storage
The concept of using persistent storage for a database deployment was introduced in the previous section,
Section 5.2, “Pod Configuration Using a YAML Deployment”. Persistent storage is essential when working
with stateful applications like databases, as it is important that you are able to retain data beyond the
lifecycle of the container, or even of the pod, itself.

Persistent storage, in Kubernetes, is handled in the form of PersistentVolume objects and are bound
to pods using PersistentVolumeClaims. PersistentVolumes can be hosted locally or can be hosted on
networked storage devices or services.

While it is convenient to us the hostPath persistent volume type to store data on the local disk in a
demonstration or small-scale deployment, a typical Kubernetes environment involves multiple hosts and
usually includes some type of networked storage. Using networked storage helps to ensure resilience and
allows you to take full advantage of a clustered environment. In the case where the node where a pod is
running fails, a new pod can be started on an alternate node and storage access can be resumed. This is
particularly important for database environments where replica setup has been properly configured.

In this section, we continue to explore the Kubernetes components that are used to configure persistent
storage, with the focus on using networked storage to host data.

5.3.1 Persistent Storage Concepts

Persistent storage is provided in Kubernetes using the PersistentVolume subsystem. To configure
persistent storage, you should be familiar with the following terms:

• PersistentVolume.  A PersistentVolume defines the type of storage that is being used and the
method used to connect to it. This is the real disk or networked storage service that is used to store data.

• PersistentVolumeClaim.  A PersistentVolumeClaim defines the parameters that a consumer, like a
pod, uses to bind the PersistentVolume. The claim may specify quota and access modes that should be
applied to the resource for a consumer. A pod can use a PersistentVolumeClaim to gain access to the
volume and mount it.

• StorageClass.  A StorageClass is an object that specifies a volume plugin, known as a provisioner
that allows users to define PersistentVolumeClaims without needing to preconfigure the storage for a
PersistentVolume. This can be used to provide access to similar volume types as a pooled resource that
can be dynamically provisioned for the lifecycle of a PersistentVolumeClaim.

PersistentVolumes can be provisioned either statically or dynamically.

Static PersistentVolumes are manually created and contain the details required to access real storage and
can be consumed directly by any pod that has an associated PersistentVolumeClaim.

Dynamic PersistentVolumes can be automatically generated if a PersistentVolumeClaim does not match
an existing static PersistentVolume and an existing StorageClass is requested in the claim. A StorageClass
can be defined to host a pool of storage that can be accessed dynamically. Creating a StorageClass is an
optional step that is only required if you intend to use dynamic provisioning.

The process to provision persistent storage is as follows:

1. Create a PersistentVolume or StorageClass.
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2. Create PersistentVolumeClaims.

3. Configure a pod to use the PersistentVolumeClaim.

The examples, here, assume that you have configured storage manually and that you are using static
provisioning. In each case, a PersistentVolume is configured, the PersistentVolumeClaim is created, and
finally a pod is created to use the PersistentVolumeClaim.

5.3.2 Configuring NFS

In this example, it is assumed that an NFS appliance is already configured to allow access to all of the
nodes in the cluster. Note that if your NFS appliance is hosted on Oracle Cloud Infrastructure, you must
create ingress rules in the security list for the Virtual Cloud Network (VCN) subnet that you are using
to host your Kubernetes nodes. The rules must be set to allow traffic on ports 2049 and 20049 for NFS
Access and NFS Mount.

Each worker node within the cluster must also have the nfs-utils package installed:

# yum install nfs-utils

The following steps describe a deployment using YAML files for each object:

1. Create a PhysicalVolume object in a YAML file. For example, on the master node, create a file pv-
nfs.yml and open it in an editor to include the following content:

apiVersion: v1
kind: PersistentVolume
metadata:
  name: nfs
spec:
  capacity:
    storage: 1Gi
  accessModes:
    - ReadWriteMany
  nfs:
    server: 192.0.2.100
    path: "/nfsshare"

Replace 1Gi with the size of the storage available. Replace 192.0.2.100 with the IP address of the
NFS appliance in your environment. Replace /nfsshare with the exported share name on your NFS
appliance.

2. Create the PersistentVolume using the YAML file you have just created, by running the following
command on the master node:

$ kubectl create -f pv-nfs.yml
persistentvolume/nfs created

3. Create a PhysicalVolumeClaim object in a YAML file. For example, on the master node, create a file
pvc-nfs.yml and open it in an editor to include the following content:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: nfs
spec:
  accessModes:
    - ReadWriteMany
  resources:
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    requests:
      storage: 1Gi

Note that you can change the accessModes by changing the ReadWriteMany value, as required.
You can also change the quota available in this claim, by changing the value of the storage option
from 1Gi to some other value.

4. Create the PersistentVolumeClaim using the YAML file you have just created, by running the following
command on the master node:

$ kubectl create -f pvc-nfs.yml
persistentvolumeclaim/nfs created

5. Check that the PersistentVolume and PersistentVolumeClaim have been created properly and that the
PersistentVolumeClaim is bound to the correct volume:

$ kubectl get pv,pvc
NAME      CAPACITY   ACCESSMODES   RECLAIMPOLICY  STATUS   CLAIM         STORAGECLASS   REASON    AGE
pv/nfs    1Gi        RWX           Retain         Bound    default/nfs                            7m

NAME          STATUS    VOLUME    CAPACITY   ACCESSMODES   STORAGECLASS   AGE
pvc/nfs       Bound     nfs       1Gi        RWX                          2m

6. At this point, you can set up pods that can use the PersistentVolumeClaim to bind to the
PersistentVolume and use the resources that are available there. In the example steps that
follow, a ReplicationController is used to set up two replica pods running web servers that use the
PersistentVolumeClaim to mount the PersistentVolume onto a mountpath containing shared resources.

a. Create a ReplicationController object in a YAML file. For example, on the master node, create a file
rc-nfs.yml and open it in an editor to include the following content:

apiVersion: v1
kind: ReplicationController
metadata:
  name: rc-nfs-test
spec:
  replicas: 2
  selector:
    app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx
        ports:
          - name: nginx
            containerPort: 80
        volumeMounts:
            - name: nfs
              mountPath: "/usr/share/nginx/html"
      volumes:
      - name: nfs
        persistentVolumeClaim:
          claimName: nfs

b. Create the ReplicationController using the YAML file you have just created, by running the following
command on the master node:

$ kubectl create -f rc-nfs.yml
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replicationcontroller/rc-nfs-test created

c. Check that the pods have been created:

$ kubectl get pods
NAME                READY     STATUS    RESTARTS   AGE
rc-nfs-test-c5440   1/1       Running   0          54s
rc-nfs-test-8997k   1/1       Running   0          54s

d. On the NFS appliance, create an index file in the /nfsshare export, to test that the web server
pods have access to this resource. For example:

$ echo "This file is available on NFS" > /nfsshare/index.html

e. You can either create a service to expose the web server ports so that you are able to check the
output of the web server, or you can simply view the contents in the /usr/share/nginx/html
folder on each pod, since the NFS share should be mounted onto this directory in each instance.
For example, on the master node:

$ kubectl exec rc-nfs-test-c5440 cat /usr/share/nginx/html/index.html
This file is available on NFS
$ kubectl exec rc-nfs-test-8997k cat /usr/share/nginx/html/index.html
This file is available on NFS

You can experiment further by shutting down a node where a pod is running. A new pod is spawned on
a running node and instantly has access to the data on the NFS share. In this way, you can demonstrate
data persistence and resilience during node failure.

5.3.3 Configuring iSCSI

In this example, it is assumed that an iSCSI service is already configured to expose a block device, as
an iSCSI LUN, to all of the nodes in the cluster. Note that if your iSCSI server is hosted on Oracle Cloud
Infrastructure, you must create ingress rules in the security list for the Virtual Cloud Network (VCN) subnet
that you are using to host your Kubernetes nodes. The rules must be set to allow traffic on ports 860 and
3260.

Each worker node within the cluster must also have the iscsi-initiator-utils package installed:

# yum install iscsi-initiator-utils

You must manually edit the /etc/iscsi/initiatorname.iscsi file on all nodes of cluster to add the
initiator name (iqn) of the device. Restart the iscsid service once you have edited this file.

For more information on configuring iSCSI on Oracle Linux 7, see Oracle® Linux 7: Administrator's Guide.

The following steps describe a deployment using YAML files for each object:

1. Create a PhysicalVolume object in a YAML file. For example, on the master node, create a file pv-
iscsi.yml and open it in an editor to include the following content:

apiVersion: v1
kind: PersistentVolume
metadata:
  name: iscsi-pv
spec:
  capacity:
    storage: 12Gi
  accessModes:
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    - ReadWriteOnce
  iscsi:
     targetPortal: 192.0.2.100:3260
     iqn: iqn.2017-10.local.example.server:disk1
     lun: 0
     fsType: 'ext4'
     readOnly: false

Replace 12Gi with the size of the storage available. Replace 192.0.2.100:3260
with the IP address and port number of the iSCSI target in your environment. Replace
iqn.2017-10.local.example.server:disk1 with the iqn for the device that you wish to use via
iSCSI.

2. Create the PersistentVolume using the YAML file you have just created, by running the following
command on the master node:

$ kubectl create -f pv-iscsi.yml
persistentvolume/iscsi-pv created

3. Create a PhysicalVolumeClaim object in a YAML file. For example, on the master node, create a file
pvc-iscsi.yml and open it in an editor to include the following content:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: iscsi-pvc
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 12Gi

Note that you can change the accessModes by changing the ReadWriteOnce value, as required.
Supported modes for iSCSI include ReadWriteOnce and ReadOnlyMany. You can also change the
quota available in this claim, by changing the value of the storage option from 12Gi to some other
value.

Note that with iSCSI, support for both read and write operations limit you to hosting all of your pods on
a single node. The scheduler automatically ensures that pods with the same PersistentVolumeClaim
run on the same worker node.

4. Create the PersistentVolumeClaim using the YAML file you have just created, by running the following
command on the master node:

$ kubectl create -f pvc-iscsi.yml
persistentvolumeclaim/iscsi-pvc created

5. Check that the PersistentVolume and PersistentVolumeClaim have been created properly and that the
PersistentVolumeClaim is bound to the correct volume:

$ kubectl get pv,pvc
NAME         CAPACITY ACCESSMODES  RECLAIMPOLICY STATUS  CLAIM          STORAGECLASS REASON  AGE
pv/iscsi-pv  12Gi     RWX          Retain        Bound   default/iscsi-pvc                   25s

NAME            STATUS    VOLUME     CAPACITY   ACCESSMODES   STORAGECLASS   AGE
pvc/iscsi-pvc   Bound     iscsi-pv   12Gi       RWX                          21s

6. At this point you can set up pods that can use the PersistentVolumeClaim to bind to the
PersistentVolume and use the resources available there. In the following example, a
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ReplicationController is used to set up two replica pods running web servers that use the
PersistentVolumeClaim to mount the PersistentVolume onto a mountpath containing shared resources.

a. Create a ReplicationController object in a YAML file. For example, on the master node, create a file
rc-iscsi.yml and open it in an editor to include the following content:

apiVersion: v1
kind: ReplicationController
metadata:
  name: rc-iscsi-test
spec:
  replicas: 2
  selector:
    app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx
        ports:
          - name: nginx
            containerPort: 80
        volumeMounts:
            - name: iscsi
              mountPath: "/usr/share/nginx/html"
      volumes:  
      - name: iscsi
        persistentVolumeClaim:
          claimName: iscsi-pvc

b. Create the ReplicationController using the YAML file you have just created, by running the following
command on the master node:

$ kubectl create -f rc-iscsi.yml
replicationcontroller "rc-iscsi-test" created

c. Check that the pods have been created:

$ kubectl get pods
NAME                  READY     STATUS    RESTARTS   AGE
rc-iscsi-test-05kdr   1/1       Running   0          9m
rc-iscsi-test-wv4p5   1/1       Running   0          9m

d. On any host where the iSCSI LUN can be mounted, mount the LUN and create an index file, to test
that the web server pods have access to this resource. For example:

# mount /dev/disk/by-path/ip-192.0.2.100\:3260-iscsi-iqn.2017-10.local.example.server\:disk1-lun-0 /mnt
$ echo "This file is available on iSCSI" > /mnt/index.html

e. You can either create a service to expose the web server ports so that you are able to check the
output of the web server, or you can simply view the contents in the /usr/share/nginx/html
folder on each pod, since the NFS share should be mounted onto this directory in each instance.
For example, on the master node:

$ kubectl exec rc-nfs-test-c5440 cat /usr/share/nginx/html/index.html
This file is available on iSCSI
$ kubectl exec rc-nfs-test-8997k cat /usr/share/nginx/html/index.html
This file is available on iSCSI
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Chapter 6 For More Information About Kubernetes
For more information about Kubernetes, see https://kubernetes.io/ and https://github.com/kubernetes/
kubernetes.
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Appendix A Developer Preview Releases
Warning

Oracle does not support Kubernetes on systems where the ol7_preview,
ol7_developer or ol7_developer_EPEL yum repositories or ULN channels
are enabled, or where software from these repositories, or channels, is currently
installed on the systems where Kubernetes runs. If you follow the instructions in this
section, you may render your platform unsupported if these repositories or channels
are enabled or software from these channels or repositories is installed on your
system.

Oracle makes interim releases of Oracle Linux Container Services for use with Kubernetes available as
technical previews. These releases are not supported by Oracle and are not intended for production use.

Developer preview releases can be obtained by enabling the ol7_developer repository on the Oracle
Linux yum server:

# yum-config-manager --enable ol7_developer

The packages from this repository are intended for use with the images provided in the Container Services
(Developer) Repositories on the Oracle Container Registry. You must login and accept the terms and
conditions to use these.

If you install developer preview packages, make sure that you are pulling the correct images for the release
by setting the KUBE_REPO_PREFIX environment variable:

# export KUBE_REPO_PREFIX=container-registry.oracle.com/kubernetes_developer

The installation procedures described in this guide should continue to apply for each developer preview
release. You can find older preview releases in ol7_preview , but the use of that channel for Oracle
Linux Container Services for use with Kubernetes is now deprecated.

Important

Oracle does not support any upgrade from a developer preview release to a stable
and supported release. Oracle does not support upgrade from a supported release
to a newer developer preview.
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