
Oracle Linux
Connecting to Remote Systems With
OpenSSH

F22963-15
July 2025

Oracle Linux Connecting to Remote Systems With OpenSSH,

F22963-15

Copyright © 2019, 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 About OpenSSH

2 Configuring OpenSSH Server

Installing OpenSSH Server and Enabling sshd 2-1

Working With OpenSSH Server Configuration Files 2-1

Restricting Access to SSH Connections 2-2

Configuring the OpenSSH Server For User Access 2-3

Restricting SSH Key Access to Specific Commands 2-3

Good Practice Recommendations for Configuring OpenSSH Server 2-4

3 Configuring the OpenSSH Client

Installing the OpenSSH Client Packages 3-1

Configuring OpenSSH Client Configuration Files 3-1

Validating Configuration Permissions 3-2

4 Working with SSH Key Pairs

How SSH Key Pairs Work 4-1

Generating Key Pairs Using the ssh-keygen Command 4-1

Enabling Remote System Access Without Requiring a Password 4-3

Copying Public Keys to Remote Servers 4-4

Centralizing Storage of Authorized Keys 4-5

Working With known_hosts 4-5

iii

Good Practice Recommendations for Working with SSH Key Pairs 4-7

5 Using OpenSSH Client Utilities

Connecting to Another System Using the ssh Command 5-1

Setting SSH Client Configuration Options For a Host 5-2

Copying Files Between Systems Using the scp and sftp Commands 5-3

Using the SSH Key Agent to Remember Passphrases 5-4

Using SSH Agent Forwarding for Access Through a Bastion Host 5-5

Using ProxyJump For Access Through a Jump Host 5-6

Configuring ProxyJump 5-6

Using X11 Forwarding to Load Remote Graphical Applications 5-7

Setting Up Port Forwarding Over SSH 5-8

iv

Preface

Oracle Linux: Connecting to Remote Systems With OpenSSH describes how to configure the
OpenSSH feature and use it to connect to remote systems.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and

v

https://docs.oracle.com/en/operating-systems/oracle-linux/openssh/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

1
About OpenSSH

OpenSSH secures communications between networked systems.

Note:

This document includes content that was tested against Oracle Linux 8, Oracle Linux
9, and Oracle Linux 10, but generally applies to most Oracle Linux releases, and
might also apply to other distributions.

OpenSSH is suite of network connectivity tools that provides secure communications between
systems. The tools include:

• scp - Secure file copying.

• sftp - Secure File Transfer Protocol (FTP).

• ssh - Secure shell to log on to or run a command on a remote system.

• sshd - Daemon that supports the OpenSSH services.

• ssh-keygen - Creates SSH authentication keys.

Note:

The Digital Signature Algorithm (DSA) is considered deprecated. As such,
authentication mechanisms that depend on DSA keys don't work in the default
configuration for Oracle Linux 8 or later. Note also that OpenSSH clients don't accept
DSA host keys, even at the LEGACY system-wide cryptographic policy level on
Oracle Linux 8 or later.

Unlike utilities such as rcp, ftp, telnet, rsh, and rlogin, OpenSSH tools encrypt all network
packets between the client and server, including password authentication.

To use the OpenSSH tools, a user must have an account on both the client and server
systems. You don't need to configure these accounts identically on each system. OpenSSH
uses the SSH version 2 (SSH2) protocol. You can use any SSH2 client to access an OpenSSH
server and equally you can use the OpenSSH client to access any SSH2 server.

OpenSSH also provides a secure way of using graphical applications over a network by using
X11 forwarding. You can also use port forwarding as another way to secure otherwise insecure
TCP/IP protocols.

1-1

2
Configuring OpenSSH Server

To set up the SSH server, install the openssh and openssh-server packages and enable the
sshd service. Then, you can edit settings within the configuration files found in the /etc/ssh
directory.

Installing OpenSSH Server and Enabling sshd
A default Oracle Linux installation includes the openssh and openssh-server packages, but the
sshd service isn't enabled by default.

1. If the packages aren't installed, run the following command:

sudo dnf install openssh openssh-server

2. Start the sshd service and configure it to start following a system reboot:

sudo systemctl start sshd
sudo systemctl enable sshd

You can set sshd configuration options for features such as Kerberos authentication, X11
forwarding, and port forwarding in the /etc/ssh/sshd_config file. For more information,
see the sshd(8) and sshd_config(5) manual pages.

Working With OpenSSH Server Configuration Files
To configure specific OpenSSH settings, edit the global configuration files in the /etc/ssh
directory. Examples of files in this directory might include the following:

• moduli
Contains key-exchange information that's used to set up a secure connection.

• ssh_config
Contains default client configuration settings that can be overridden by the settings in a
user’s $HOME/.ssh/config file.

• ssh_host_ed25519_key
Contains the ed25519 private key for SSH2. Generated by default in Oracle Linux 10.

• ssh_host_ed25519_key.pub
Contains the ed25519 public key for SSH2. Generated by default in Oracle Linux 10.

• ssh_host_rsa_key
Contains the RSA private key for SSH2.

• ssh_host_rsa_key.pub
Contains the RSA public key for SSH2.

2-1

• sshd_config
Contains configuration settings for the sshd service.

Note:

For Oracle Linux 8 or later, files saved in the /etc/ssh/sshd_config.d
directory override any settings defined in the /etc/ssh/sshd_config
configuration file.

You can configure other files in the /etc/ssh directory. For details, see the sshd(8) manual
page.

For more information, see the ssh_config(5), sshd(8), and sshd_config(5) manual pages.

Restricting Access to SSH Connections
The Secure Shell (SSH) provides protected, encrypted communications with other systems.
Because SSH is an entry point into the system, disable SSH if it isn't required. Optionally, you
can edit the /etc/ssh/sshd_config file to restrict its use.

Important:

After applying changes to the configuration file, you must restart the sshd service for
the changes to take effect.

Restrict Root Access

Set PermitRootLogin to no to prohibit root from logging in with SSH. Then, elevate a user's
privileges after logging in.

PermitRootLogin no

Restrict Specific Users

You can restrict remote access to certain users and groups by specifying the AllowUsers,
AllowGroups, DenyUsers, and DenyGroups settings, for example:

DenyUsers carol dan
AllowUsers alice bob

For more information about configuring users and groups, you can visit one of the following
links:

• Oracle Linux 8: Setting Up System Users and Authentication

• Oracle Linux 9: Setting Up System Users and Authentication

• Oracle Linux 10: Setting Up System Users and Authentication

Set a Timeout Period

Chapter 2
Working With OpenSSH Server Configuration Files

2-2

https://docs.oracle.com/en/operating-systems/oracle-linux/8/userauth/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/userauth/
https://docs.oracle.com/en/operating-systems/oracle-linux/10/userauth/

The ClientAliveInterval and ClientAliveCountMax settings cause the SSH client to time
out automatically after a period of inactivity, for example:

Disconnect client after 300 seconds of inactivity
ClientAliveCountMax 0
ClientAliveInterval 300

Disable Password Authentication

The PasswordAuthentication and PubkeyAuthentication settings define the method of
authentication the SSH client implements for users: either with a password or with an SSH
public key. If you have configured key based authentication, which is more secure, you can
disable PasswordAuthentication by setting it to no. To check the current
PasswordAuthentication setting on a server, run the following command:

sudo grep -R PasswordAuthentication /etc/ssh

For more information, see the sshd_config(5) manual page.

Configuring the OpenSSH Server For User Access
User specific configuration on the server side of a connection is in the $HOME/.ssh directory
and contains the following files:

• authorized_keys
Contains the authorized public keys for a user. The server uses the signed public key in
this file to authenticate a client.

• environment
Contains definitions of environment variables. This file is optional.

• rc
Contains commands that ssh runs when a user logs in, before the user’s shell or
command runs. This file is optional.

For more information, see the ssh(1) and ssh_config(5) manual pages.

Related Topics

• Validating Configuration Permissions

Restricting SSH Key Access to Specific Commands
You can add user specific configurations on the server side of a connection by editing
the $HOME/.ssh/authorized_key file. In addition to listing SSH keys with which a user can
authenticate, you can optionally impose further restrictions on what that user can do with each
of those keys.

For example, with the command option, you can specify a single command to configure all
connections made with one key, after which the command immediately ends.

command=command ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAQEA6OabJhWABsZ4F3mcjEPT3sxnXx1OoUcvuCiM6fg5s...

Chapter 2
Configuring the OpenSSH Server For User Access

2-3

By using the command option, security conscious users can restrict system accesses available
to a particular key that might be used for a scripted action and which might not be passphrase
protected.

You can also ensure that the key is only accepted if the inbound connection originates from the
internal network by using the from option to set an authorized range of IPv4 addresses. For
example, to prevent any IP addresses from outside the 192.0.2.0/24 range from connecting
with an SSH key, you would append the following line to the $HOME/.ssh/authorized_key file
with the correct key value:

from=192.0.2.0/24 ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAQEA6OabJhWABsZ4F3mcjEPT3sxnXx1OoUcvuCiM6fg5s...

For more information, see the sshd(8) manual pages.

Good Practice Recommendations for Configuring OpenSSH
Server

We recommend the following guidelines to secure OpenSSH configuration against the most
common remote exploits:

• Disable remote root user logins over SSH.

• After you have correctly configured key based authentication, disable SSH password
authentication.

• Consider setting a non standard SSH port for Internet-facing systems.

For more information, see Restricting Access to SSH Connections.

Chapter 2
Good Practice Recommendations for Configuring OpenSSH Server

2-4

3
Configuring the OpenSSH Client

To set up OpenSSH on the client, you need the openssh and openssh-clients packages.

Installing the OpenSSH Client Packages
A default Oracle Linux installation includes both the openssh and openssh-clients packages.
If the packages aren't installed, run the following command:

sudo dnf install openssh openssh-clients

Configuring OpenSSH Client Configuration Files
A user configured for SSH key-based authentication on a client system typically has the
following configuration files in their $HOME/.ssh directory:

SSH2 private and public key files
The user's private and public keys, created with the ssh-keygen utility, are named as follows
by default:

• id_rsa and id_rsa.pub on Oracle Linux 8 and 9.

• id_ed25519 and id_ed25519.pub on Oracle Linux 10.

The default file names in the preceding list reflect the algorithm (rsa or ed25519) used to
generate the keys.
You can store several key pairs in the $HOME/.ssh directory to use across different
connections.
For more information, see the ssh-keygen (1) manual page.

Caution:

The private key files can be readable and writable by the user but must not be
accessible to other users.

known_hosts file
Contains the public host keys that OpenSSH has obtained from SSH servers. OpenSSH adds
an entry for each new server to which a user connects.

config file
Contains client configuration settings.

3-1

Caution:

A config file can be readable and writable by the user but must not be accessible to
other users.

For more information, see the ssh(1) and ssh-keygen(1) manual pages.

Validating Configuration Permissions
OpenSSH applies strict permissions to the $HOME/.ssh directory and files stored in this
directory. If the permissions in the directories on either side of the connection are wrong,
OpenSSH prevents the connection and errors out with a Permission Denied message.

Access to contents The following steps show you how to set the recommended permissions on
the $HOME/.ssh directory and its contents.

1. Set the directory and file permissions as follows. Some of these files might not be present
on the system where you're running these commands:

chmod 700 $HOME/.ssh # The user .ssh directory.
chmod 600 $HOME/.ssh/id_sshkey # A user's private key. Typical values
for id_sshkey are id_rsa or id_ed25519.
chmod 644 $HOME/.ssh/id_sshkey.pub # A user's public key. Typical values
for id_sshkey.pub are id_rsa.pub or id_ed25519.pub.
chmod 600 $HOME/.ssh/config # Customized configuration entries
for the ssh client.
chmod 600 $HOME/.ssh/authorized_keys # A user's authorized public key
entries to allow login.
chmod 644 $HOME/.ssh/known_hosts # A user's known hosts entries for
system fingerprints.
chown -R $USER:$USER $HOME/.ssh # Recursively set ownership of
all .ssh files.

2. Verify that file permissions are correct.

ls -al .ssh

drwx------. 2 user group 5 Jun 12 08:33 .
drwx------. 5 user group 9 Jun 12 08:32 ..
-rw-------. 1 user group 397 Jun 12 08:33 authorized_keys
-rw-------. 1 user group 2283 Nov 22 13:22 config
-rw-------. 1 user group 963 Aug 22 09:27 id_sshkey
-rw-r--r--. 1 user group 221 Aug 22 09:27 id_sshkey.pub
-rw-r--r--. 1 user group 85531 Nov 9 10:01 known_hosts

Chapter 3
Validating Configuration Permissions

3-2

Note:

In the preceding output example, the placeholder id_sshkey has the following
default values on Oracle Linux instances:

• id_rsa on Oracle Linux 8 and Oracle Linux 9 instances.

• id_ed25519 on Oracle Linux 10 instances.

Chapter 3
Validating Configuration Permissions

3-3

4
Working with SSH Key Pairs

SSH can use key pairs for authentication. Key-based authentication is more secure than
password authentication because it helps to avoid brute-force attacks if you disable password
authentication in the server configuration.

How SSH Key Pairs Work
To use key authentication, you must first have a key pair: a public key and a corresponding
private key. You can either use an existing key pair or generate a new one. Typically, you only
generate an SSH key pair one time and only change the key pair if it might have been
compromised or when using a key to access systems with different encryption standards. Not
all key pairs are compatible with OpenSSH and you might need to convert keys as required.
For example, keys generated using the PuTTY ssh client software aren't directly compatible
with OpenSSH and might need to be converted before use. See the client software
documentation if you're unsure about key format.

After you have obtained a key pair, copy the public key to any server to which you want to
connect. Then to connect to the server, provide the matching private key. You can store the
private key on a single client that you use to access the servers. For security, avoid copying the
private key to several locations.

When generating key pairs, you can either configure them to have a password or not. Key
pairs that don't have passphrases, can help with scripted automation as they can access
remote systems instantly so you won't need to enter the passphrase each time you connect.
However, using a key without a passphrase can be poor security practice. Instead, you can
use SSH Agent to remember a key passphrase for the entire login session.

Consider using SSH Agent Forwarding to connect from trusted system to trusted system, or
use the ProxyJump command option where you might need to connect to another system
through an untrusted or heavily shared bastion host.

Generating Key Pairs Using the ssh-keygen Command
Use the ssh-keygen command to generate a public and private authentication key pair.
Authentication keys enable you to connect to a remote system without needing to supply a
password each time that you connect. Each user must generate their own pair of keys.

Running ssh-keygen

To create a public and private SSH2 key pair, run the following command:

ssh-keygen

The command output and default key names are as follows:

4-1

• On Oracle Linux 8 and Oracle Linux 9, the ssh-keygen utility generates RSA keys with
base name id_rsa by default. The command output is similar to the following sample
output:

Generating public/private rsa key pair.
Enter file in which to save the key (/home/guest/.ssh/id_rsa): <Enter>
Created directory '/home/guest/.ssh'.
Enter passphrase (empty for no passphrase): password
Enter same passphrase again: password
Your identification has been saved in /home/guest/.ssh/id_rsa.
Your public key has been saved in /home/guest/.ssh/id_rsa.pub.
...

• On Oracle Linux 10, the ssh-keygen utility generates ed25519 keys with base name
id_ed25519 by default. The command output is similar to the following sample output:

Generating public/private ed25519 key pair.
Enter file in which to save the key (/home/opc/.ssh/id_ed25519):
Enter passphrase (empty for no passphrase): password
Enter same passphrase again: password
Your identification has been saved in /home/guest/.ssh/id_ed25519
Your public key has been saved in /home/guest/.ssh/id_ed25519.pub

To create an SSH key pair by using an algorithm other than the default algorithm, use the -t
option. Possible values that you can specify include ecdsa, ed25519, and rsa.

For security, in case an attacker gains access to the private key, you can specify a passphrase
to encrypt the private key. If you encrypt the private key, you must enter this passphrase each
time that you use the key. If you don't specify a passphrase, you're not prompted for a
passphrase.

For more information, see the ssh-keygen(1) manual page.

Location of key files

ssh-keygen generates a private key file and a public key file in $HOME/.ssh (unless you
specify an different directory for the private key file). To see the keys on a server, run the
following command:

ls -l $HOME/.ssh

...
-rw-------. 1 guest guest 1743 Apr 13 12:07 id_sshkey
-rw-r--r--. 1 guest guest 397 Apr 13 12:07 id_sshkey.pub
...

Chapter 4
Generating Key Pairs Using the ssh-keygen Command

4-2

Note:

In the preceding output example, the placeholder id_sshkey has the following default
values on Oracle Linux instances:

• id_rsa on Oracle Linux 8 and Oracle Linux 9 instances.

• id_ed25519 on Oracle Linux 10 instances.

Enabling Remote System Access Without Requiring a Password
You can create a key pair that doesn't require a passphrase, which is useful for scripted
environments where a tool might need SSH access to a remote system but shouldn't prompt
for a passphrase.

For general use, and as a better practice, set a passphrase on the private key and then to use
the SSH Agent to remember key passphrases for the entire login session. See Using the SSH
Key Agent to Remember Passphrases for more information.

However, using the SSH Agent isn't always practical and for some services that are loaded at
boot time you might need to create a key that doesn't use a passphrase.

To use OpenSSH utilities to access a remote system without supplying a password each time
that you connect:

1. Use ssh-keygen to generate a public and private key pair, for example:

ssh-keygen

The command output is similar to the following sample output.

...
Enter file in which to save the key (/home/user/.ssh/id_sshkey): <Enter>
Created directory '/home/user/.ssh'.
Enter passphrase (empty for no passphrase): <Enter>
Enter same passphrase again: <Enter>
...

Press Enter each time the prompt to enter a passphrase appears.

2. Copy the public key to the remote server. See Copy the public key to the remote server.

3. If the usernames are different on the client and the server systems, create a $HOME/.ssh/
config file entry for this connection. See Setting SSH Client Configuration Options For a
Host.

4. Validate that permissions for the $HOME/.ssh configuration files are correct on both the
server and client side. See Validating Configuration Permissions for more information.

5. To access the remote system without supplying a password, use ssh to sign in to the
remote system to verify that the $HOME/.ssh/authorized_keys file contains only the keys
for the systems from which you expect to connect, for example:

ssh remote_user@host

Chapter 4
Enabling Remote System Access Without Requiring a Password

4-3

If the key file is named in a nonstandard way, you can specify which key file to use by using the
-i option when you connect:

ssh -i $HOME/.ssh/my_private_key remote_user@host

For more information, see the ssh-copy-id(1), ssh-keygen(1), and ssh_config(5) manual
pages.

Copying Public Keys to Remote Servers
Add the public key to the remote server file at $HOME/.ssh/authorized_keys. Various
approaches are available for setting up the contents of this file. You can run ssh-copy-id or
manually configure the file, as shown in the following sections.

Run ssh-copy-id

For systems with password authentication enabled, you can copy the public key from the client
system to the remote server using the ssh-copy-id command. The tool also sets the
permissions of $HOME/.ssh and $HOME/.ssh/authorized_keys appropriately.

1. Use the ssh-copy-id command to append the public key in the local $HOME/.ssh/
id_sshkey.pub file to the $HOME/.ssh/authorized_keys file on the remote system, for
example:

ssh-copy-id remote_user@host

2. When prompted, enter the password for the remote system.

For more information, see the ssh-copy-id(1) manual page.

Manually Setting the authorized_keys File

If you don't have access to the ssh-copy-id command or are unable to access the system
remotely with a password, you must populate the $HOME/.ssh/authorized_keys file manually.

1. Copy the contents of the public key file $HOME/.ssh/id_sshkey.pub, on the client system
and append the contents to $HOME/.ssh/authorized_keys on the server system.

2. Ensure that the permissions of $HOME/.ssh and $HOME/.ssh/authorized_keys are set
correctly on the server system.

3. On the remote system, output the $HOME/.ssh/authorized_keys file:

cat .ssh/authorized_keys

4. Note whether the key entry is included in the output. For example, an entry might appear
as follows:

ssh-key
AAAAB3NzaC1yc2EAAAABIwAAAQEA6OabJhWABsZ4F3mcjEPT3sxnXx1OoUcvuCiM6fg5s/ER
... FF488hBOk2ebpo38fHPPK1/rsOEKX9Kp9QWH+IfASI8q09xQ==
local_user@local_host

Related Topics

• Validating Configuration Permissions

Chapter 4
Copying Public Keys to Remote Servers

4-4

Centralizing Storage of Authorized Keys
If you need to manage many users across different systems, you might consider centralizing
the storage of the authorized keys. Maintaining a single central resource for authorized_keys
makes it easier to perform administration tasks, for example revoking old keys or adding new
keys for sets of servers.

A common approach would be to configure the SSH server to use the System Security
Services Daemon to access keys stored in a central location such as an LDAP or Identity
Management (IPA) service. To configure user authentication against these services, see one of
the following links:

• Oracle Linux 8: Setting Up System Users and Authentication

• Oracle Linux 9: Setting Up System Users and Authentication

• Oracle Linux 10: Setting Up System Users and Authentication

OpenSSH provides a tool to use SSSD to maintain and automatically update a separate cache
of public keys when authenticating users. The sss_ssh_authorizedkeys command is
responsible for retrieving a user's public key from the user entries in an Identity Management
(IPA) domain. After the key is retrieved, the key is stored in the $HOME/.ssh/
sss_authorized_keys, in the standard authorized keys format.

To configure the SSH server to use SSSD to retrieve public keys for users, edit /etc/ssh/
sshd_config and verify that the following entries are present:

AuthorizedKeysCommand /usr/bin/sss_ssh_authorizedkeys
AuthorizedKeysCommandUser nobody

If you have edited the server configuration, you must restart the service:

sudo systemctl restart sshd

SSD must already be configured and running and the keys must be stored appropriately so
that SSH can use the service.

See the sss_ssh_authorizedkeys(1) manual page for more information.

Working With known_hosts
Whenever you connect to a remote host, the SSH server on the remote host provides a public
key. You can use this key to validate that you're connecting to the same host in the future to
prevent Man-In-The-Middle (MITM) attacks. On the server side, this public key is stored as part
of the HostKey pair. On the client system, the known_hosts database stores the public key for
the host in the file $HOME/.ssh/known_hosts.

SSH Host key fingerprints from remote systems

When you connect to a remote system and the known_hosts database doesn't contain a key,
the client prompts you to accept the fingerprint for the key. For example:

The authenticity of host 'server1.example.com (198.51.100.172)' can't be
established.

Chapter 4
Centralizing Storage of Authorized Keys

4-5

https://docs.oracle.com/en/operating-systems/oracle-linux/8/userauth/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/userauth/
https://docs.oracle.com/en/operating-systems/oracle-linux/10/userauth/

ED25519 key fingerprint is SHA256:i45KP8BeY5c6nO87hjUrqo1fXsGgQkCpA5dHchXBWbk.
Are you sure you want to continue connecting (yes/no/[fingerprint])?

If you accept the fingerprint, the $HOME/.ssh/known_hosts file stores the public key on the
client system and you're no longer prompted every time you connect.

Listing key fingerprints in local known_hosts

You can list the fingerprints for keys stored in the known_hosts database by running:

ssh-keygen -l -f $HOME/.ssh/known_hosts

StrictHostKeyChecking

If the OpenSSH client has the StrictHostKeyChecking option set by default and the public key
returned by the server changes, you're unable to connect to the remote server and a warning is
displayed:

@@@
@ WARNING: POSSIBLE DNS SPOOFING DETECTED! @
@@@
The ED25519 host key for server1.example.com has changed,
and the key for the corresponding IP address 198.51.100.172
is unchanged. This could either mean that
DNS SPOOFING is happening or the IP address for the host
and its host key have changed at the same time.
Offending key for IP in /home/user/.ssh/known_hosts:20
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that a host key has just been changed.
The fingerprint for the ED25519 key sent by the remote host is
SHA256:qMBpuwP/LXLV8F5awaYtbXHO8v7LrqyY2BwVZk7tDxY.
Please contact your system administrator.
Add correct host key in /home/user/.ssh/known_hosts to get rid of this
message.
Offending ED25519 key in /home/user/.ssh/known_hosts:125
ED25519 host key for server1.example.com has changed and you have requested
strict checking.
Host key verification failed.

Host keys don't change, so when you see this warning, you might not be connecting to the
same system that you have connected to before. However, the key can be different for a
legitimate reason, such as if the remote system is reinstalled, the OpenSSH Server keys are
regenerated, or the domain name entry or IP address is reassigned to a new system. In such
cases, you might want to remove any existing record of the system in the known_hosts
database.

Removing an existing key

Chapter 4
Working With known_hosts

4-6

If you're certain that you can trust a new key provided by a remote server, you can remove an
existing key from the known_hosts database by running:

ssh-keygen -R server1.example.com

Disabling StrictHostKeyChecking

In test environments, where servers are constantly reinstalled or replaced, you might want to
disable StrictHostKeyChecking for particular hosts. You can disable host key checking when
you connect to a remote system as follows:

ssh -o StrictHostKeyChecking=no user@server1.example.com

If you need to constantly disable strict host checking, consider adding this option to a host
entry in the client configuration. See Setting SSH Client Configuration Options For a Host for
more information.

Strict host key checking is enabled by default to prevent Man-In-The-Middle (MITM) attacks, so
disabling that functionality isn't considered good security practice and isn't recommended on
production systems.

Related Topics

• Working With OpenSSH Server Configuration Files

Good Practice Recommendations for Working with SSH Key
Pairs

Follow these guidelines so that you can manage and use SSH key pairs to connect to remote
hosts securely on the network.

• Set a strong passphrase when you generate the SSH key pair.

For more information, see Generating Key Pairs Using the ssh-keygen Command.

• Verify the SSH key agent to avoid needing to type in the passphrase at every login.

For more information, see Using the SSH Key Agent to Remember Passphrases.

• Restrict access for any SSH key pair that doesn't have a passphrase and is only used for
scripting purposes.

For more information, see Restricting SSH Key Access to Specific Commands.

• Don't share the private key with anyone else. Each member of the team must have their
own SSH key pair so that the system administrator can control access to network
resources.

• Don't copy the private key, or forward the SSH agent, to any other machine, remote
servers, or cloud instances.

For more information, see Copying Public Keys to Remote Servers.

• Don't store a copy of the private key on a bastion or jump host.

For more information, see Using ProxyJump For Access Through a Jump Host.

Chapter 4
Good Practice Recommendations for Working with SSH Key Pairs

4-7

5
Using OpenSSH Client Utilities

Use the OpenSSH client utilities to connect to a remote system, copy files between systems,
remember passphrases, access through a bastion host, load GUI applications, and port
forward.

Connecting to Another System Using the ssh Command
By default, each time you use the OpenSSH utilities to connect to a remote system, you must
provide a username and password. When you connect to an OpenSSH server for the first time,
the OpenSSH client prompts you to confirm that you're connected to the correct system.

Use the ssh command to log in to a remote system or to run a command on a remote system:

ssh [options] [user@]host [command]

In the preceding example, host is the name of the remote OpenSSH server to which you want
to connect.

For example, to log on to host04 by using the same username as that being used on the local
system, run the following command:

ssh host04

To connect as a different user, specify the username and @ symbol before the remote host
name, for example:

ssh joe@host04

To run a command on the remote system and return to the local shell, specify the command as
an argument:

ssh joe@host04 ls $HOME/.ssh

The ssh command logs you in, runs the command, and then closes the connection.

Example 5-1 Example of Connecting to a System

The following examples show how you would connect to a remote host, host04. You would
need to confirm the command action before establishing the connection.

ssh host04

The authenticity of host 'host04 (192.0.2.104)'
can't be established.
ED25519 key fingerprint is
SHA256:iunRrbwnhwqkUrahjaodhsngtzwtF+RFHEjiaUdYaP8I.

5-1

Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'host04,192.0.2.104' (ED25519) to the
list of known hosts.

When you type yes to accept the connection to the server, the client adds the server's public
host key to the $HOME/.ssh/known_hosts file. When you next connect to the remote server, the
client compares the key added to $HOME/.ssh/known_hosts to the one that the server supplies.
If the keys do not match, you see a warning such as the following:

...
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that a host key has just been changed.
The fingerprint for the ED25519 key sent by the remote host is
SHA256:fingerprint.
Please contact your system administrator.
Add correct host key in /home/user/.ssh/known_hosts to get rid of this
message.
Offending ED25519 key in /home/user/.ssh/known_hosts:1
Host key for ipa has changed and you have requested strict checking.
Host key verification failed
...

Unless the remote server’s host key has changed for a known reason, such as an upgrade of
either the SSH software or the server, avoid connecting to that machine until you have
contacted its administrator about the situation.

For more information, see the ssh(1) manual page.

Setting SSH Client Configuration Options For a Host
You can set up Host entries in the $HOME/.ssh/config file on a client system. Often usernames
don't align on different systems. Sometimes you might choose to use a different key pair to the
usual key pair for a particular remote system. To connect more easily with the correct
credentials, you can add a host entry similar to the following example:

Host server1
 Hostname server1.example.com
 User remote_user
 IdentityFile $HOME/.ssh/id_sshkeyexample

With the provided configuration entry, the user can run:

ssh server1

The SSH client performs a connection to the remote server server1.example.com with the
username remote_user and uses the private key file at $HOME/.ssh/id_sshkeyexample.

Chapter 5
Setting SSH Client Configuration Options For a Host

5-2

This configuration entry lets you connect with the correct credentials each time you want to
connect. Without the configuration entry, you would need to enter the following:

ssh -i $HOME/.ssh/id_sshkeyexample remote_user@server1.example.com

You can use the $HOME/.ssh/config file to store other configuration options for any system
that you connect to. For example, if you use the ForwardAgent or ProxyJump options often,
consider adding entries for these for each host where you use them. See the ssh_config(5)
manual page for more information.

Copying Files Between Systems Using the scp and sftp
Commands

Using scp

Note:

In Oracle Linux 9 and Oracle Linux 10, the scp utility defaults to SSH File Transfer
Protocol. For more information, see the Security section under the Deprecated
Features chapter in Oracle Linux 9: Release Notes for Oracle Linux 9 and the scp(1)
manual page.

With the scp command, you can copy files or directories between systems. scp establishes a
connection, copies the files, and then closes the connection.

The following examples show how you can use the scp command.

• Uploading a local file to a remote system

scp [options] local_file [user @]host[: remote_file]

For example:

– Copy testfile to the home directory on host04.

scp testfile host04

– Copy testfile to the same directory but change its name to new_testfile.

scp testfile host04:new_testfile

• Downloading a file from a remote system to the local system

scp [options] [user@]host[:remote_file] local_file

• Copying files recursively

The -r option recursively copies the contents of directories.

Chapter 5
Copying Files Between Systems Using the scp and sftp Commands

5-3

https://docs.oracle.com/en/operating-systems/oracle-linux/9/relnotes9.0/

For example, to copy the directory remdir and its contents from the home directory on
remote host04 to the local home directory, you would type:

scp -r host04:/home/user/remdir $HOME

Note that shell expansion of the $HOME variable can result in unintended file paths if used
with the scp command to specify a path on a remote host. Always use the full path to the
remote file in an scp command.

Using sftp

The sftp command is a secure alternative to the ftp command that's used to transfer files
between systems. Unlike the scp command, the sftp command provides functionality for you
to browse the file system on the remote server before copying any files.

To open an FTP connection to a remote system over SSH, use the following command:

sftp [options] [user@]host

For example, you would open an FTP connect to the system, host04, as follows:

sftp host04

Connecting to host04...
guest@host04’s password: password
sftp>

Type sftp commands at the sftp> prompt.

In the following example, the put command is used to upload the file newfile from the local
system to the remote system, then the ls command is used to list it:

sftp> put newfile
Uploading newfile to /home/guest/newfile
foo 100% 1198 1.2KB/s
00:01
sftp> ls newfile
newfile

Type help or ? to display a list of available commands. Type bye, exit, or quit to close the
connection and exit the sftp interactive session.

For more information, see the ssh(1) and sftp(1) manual pages.

Using the SSH Key Agent to Remember Passphrases
Use the SSH Key Agent to enter the passphrases for any of the SSH keys a single time
throughout the login session. In this manner, you avoid the poor security practice of creating
SSH keys without passphrases.

Chapter 5
Using the SSH Key Agent to Remember Passphrases

5-4

1. After you log in, check that the agent is started:

ps -ef|grep -i ssh-agent

If the agent is not started, start it by using the running the following command:

eval $(ssh-agent -s)

2. Run the ssh-add command to add any of the ssh keys to the agent. For example:

ssh-add $HOME/.ssh/id_sshkey

The command prompts you for the key passphrase. The passphrase applies through the
entire login session. If you use the key to connect to another system, the prompt for a
passphrase no longer appears.

Note:

The error message Could not open a connection to your authentication
agent indicates that the agent might not be running.

3. Repeat the command for each key that you want to add.

4. After adding the keys to the agent, you can open SSH connections to any systems that
have the paired public key configured in the authorized_hosts file, without being
prompted for a passphrase. This behavior applies also to any scripts that are run as the
user.

Using SSH Agent Forwarding for Access Through a Bastion Host

Caution:

Enable agent forwarding with caution. Users with escalated privileges on the remote
host can access the agent through the forwarded SSH session. Although malicious
users can't access the keys directly they can hijack the agent session and use the
keys in the agent to connect to other systems. If you're connecting to a system that
might have untrustworthy users then avoid using agent forwarding.

SSH Agent Forwarding is a powerful tool that can help you keep private keys centralized and
safe. Avoid copying private keys to other systems as much as possible. SSH Agent Forwarding
lets you connect to a remote system and then use the SSH client on that system to connect to
another system by using the same key based authentication but without you needing to copy
the private key to the host that you first connected to.

Server-side Configuration

Change the /etc/ssh/sshd_config file to configure SSH Agent forwarding. On the server,
verify the AllowAgentForwarding parameter, which activates SSH agent forwarding and is
enabled by default.

Chapter 5
Using SSH Agent Forwarding for Access Through a Bastion Host

5-5

Client Configuration

To enable this functionality you must use the ForwardAgent option when you make a
connection to an intermediate system in the chain of hosts that you connect to. You must also
have the private key already loaded into the SSH Agent on the primary client host. See Using
the SSH Key Agent to Remember Passphrases .

To use SSH Agent Forwarding:

1. Check that the SSH Agent is running and that the SSH key is loaded. Run the following
command on the client system to see what keys the agent has loaded:

ssh-add -L

2. Connect to a host using the ForwardAgent=yes option:

ssh -o ForwardAgent=yes server1.example.com

3. Use the SSH client on the remote host to connect to another server that has the public key
configured in its authorized_keys:

ssh server2.example.com

Consider adding the ForwardAgent option to a Host configuration entry in the $HOME/.ssh/
config file if you use this option often for a particular server. See Setting SSH Client
Configuration Options For a Host for more information.

Using ProxyJump For Access Through a Jump Host
SSH Agent forwarding lets clients connect from one server to the next using key-based
authentication without copying the private key to each server in the chain. This approach is not
considered good security practice, because users with the appropriate privileges on the remote
server could hijack the agent and use it to connect to other systems without requiring
authentication.

It's considered good security practice to use the ProxyJump option in the OpenSSH client to
configure access to remote servers using bastion and jump hosts. The ProxyJump functionality
works similarly to an SSH tunnel or port forward, in that it proxies all traffic straight through the
jump host. Unlike port forwarding, ProxyJump option doesn't require server-side configuration,
so only SSH access to the jump host is required.

Configuring ProxyJump
Jump hosts are configured in the $HOME/.ssh/config file. In the following example, the jump
host at jumphost.example.com is connected to the internal network and jumps to the host
located at internal.example.com:

#File $HOME/.ssh/config with example of ProxyJump configuration

Host myjumphost
 HostName jumphost.example.com

Host myremotehost

Chapter 5
Using ProxyJump For Access Through a Jump Host

5-6

 HostName internal.example.com
 ProxyJump myjumphost

To connect to the remote host via the jump server using the preceding $HOME/.ssh/config file,
run the following command:

ssh myremotehost

If you're connecting to remote hosts on an ad hoc basis, and don't have ProxyJump settings
configured for them in the $HOME/.ssh/config file, you can specify required jump and remote
host details by using the following command options:

• Using ssh -J
The -J flag is used to specify ProxyJump information on the command line. For example:

ssh -J jumphost.example.com internal.example.com

• Using ssh -o
The -o flag provides a more general method (not limited to ProxyJump configuration) that
can be used to pass options to the ssh command in the format that would be used in
the $HOME/.ssh/config file. For example:

ssh -o 'ProxyJump=jumphost.example.com' internal.example.com

For more information, see Setting SSH Client Configuration Options For a Host and the ssh(1)
and ssh_config(5) manual pages.

Using X11 Forwarding to Load Remote Graphical Applications
X11 forwarding lets a user start graphical applications installed on a remote Linux system so
that they display within the desktop environment of the local system. The remote system
doesn't need to have an X11 server or graphical desktop environment running, but the local
system must have an X11 compatible service running.

Server-side Configuration

1. Change the /etc/ssh/sshd_config file to enable X11 forwarding. On the server, verify
the following parameters:

X11Forwarding
Allows X11 forwarding. When omitted, the default is no. To enable X11 forwarding, add an
entry that sets the value for this parameter to yes.

2. If you edit the configuration file, you must restart the service for the change to take effect:

sudo systemctl restart sshd

3. The remote system must also can run X11 applications and authenticate X11 sessions.
The xorg-x11-xauth package is required for this purpose.

dnf install xorg-x11-xauth

Chapter 5
Using X11 Forwarding to Load Remote Graphical Applications

5-7

If you have never run a graphical application on the remote server, the first time that you
connect to the remote server using X11 forwarding, a warning message is displayed:

/usr/bin/xauth: file /home/user/.Xauthority does not exist

You can ignore this warning as the .Xauthority file is automatically created.

Client Configuration

1. Use the -Y option with the SSH client when you connect to a remote server:

ssh -Y user@server1.example.com

2. Run a graphical application over the SSH connection by typing the command directly from
the SSH terminal. For example, if gedit is installed on the remote system, you might run
the following command:

gedit &

Tip:

Use the & operator, as shown in the preceding example, to start process in the
background so that the terminal remains available to you.

Setting Up Port Forwarding Over SSH
SSH port forwarding creates an encrypted SSH tunnel between a client and a server system.

Three types of SSH port forwarding are available:

• Local Port Forwarding: Forwards a port from the client to the SSH server and then to the
destination port.

• Dynamic Port Forwarding: Creates a SOCKS proxy server for communications across a
range of ports.

• Reverse Port Forwarding: Forwards a port from the server to the client and then to the
destination port.

Why Use Port Forwarding?

Port forwarding lets remote servers to access devices within a private local-area network (LAN)
and conversely.

You can use port forwarding to access a service that's not exposed to the public network
interface. You might set up a local port forward to access a service (such as a database) on a
remote server. The database on the server isn't exposed to the public network interface, but
you could create a tunnel from a local machine to the internal database server port. You can
then connect to localhost and all traffic would get forwarded across the SSH tunnel to the
remote database.

You can use reverse port forwarding to give someone outside the local network access to an
internal service. For example, you might want to show a fellow developer a web application
that you have developed on the local machine. Because the machine doesn't have a public IP,

Chapter 5
Setting Up Port Forwarding Over SSH

5-8

the other developer can't access the application over the internet. However, if you have access
to a remote SSH server, you can set up reverse port forwarding to provide the developer
access.

Server-side Configuration

Edit the /etc/ssh/sshd_config file to configure SSH port forwarding. On the server, at a
minimum verify the following parameters:

• AllowTCPForwarding
Allows TCP port forwarding. When omitted, the default is yes which enables single TCP
port forwards and SOCKS proxying

• AllowStreamLocalForwarding
Allows forwarding of UNIX domain sockets. When omitted, the default is yes.

Local Port Forwarding

To create a direct TCP forward tunnel, use the ssh -L option:

ssh -L [bind_address:]port:destination:destination_port
[user@]remote_ssh_server

• bind_address is optional and assigns a local interface to listen for connections. If omitted,
ssh only binds on the loopback interfaces. To bind on all interfaces, you can use “0.0.0.0”
or “::”.

• port - The local port number. You can use any port number greater than 1024.

• destination - The IP or hostname of the destination machine. If the destination is on the
remote server itself, you can use localhost.

• destination_port - Port on the destination machine.

• [user@]remote_ssh_server - The remote SSH user and server IP address.

For example:

ssh -L 8080:localhost:8888 user@192.168.1.20

This would open an SSH connection to the remote server at 192.168.1.20 and open a tunnel to
the localhost port 8888.

Dynamic Port Forwarding

Use dynamic port forwarding to have the SSH client listen on a specified binding port and act
as a SOCKS proxy server. You don't need to specify a destination host as all incoming
connections on the specified port forward through the tunnel to a dynamic port on the
destination machine.

To create a dynamic port forward, use the ssh -D option.

ssh -D [bind_address:]port [user@]remote_ssh_server

Chapter 5
Setting Up Port Forwarding Over SSH

5-9

Reverse Port Forwarding

A reverse tunnel forwards any connection received on the remote SSH server to the local client
network.

To create a reverse port forward, use the ssh -R option.

For local port reverse forwarding:

ssh -R [bind_address:]port:destination:destination_port
[user@]remote_ssh_server

For dynamic port reverse forwarding:

ssh -R [bind_address:]port [user@]remote_ssh_server

Chapter 5
Setting Up Port Forwarding Over SSH

5-10

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About OpenSSH
	2 Configuring OpenSSH Server
	Installing OpenSSH Server and Enabling sshd
	Working With OpenSSH Server Configuration Files
	Restricting Access to SSH Connections

	Configuring the OpenSSH Server For User Access
	Restricting SSH Key Access to Specific Commands

	Good Practice Recommendations for Configuring OpenSSH Server

	3 Configuring the OpenSSH Client
	Installing the OpenSSH Client Packages
	Configuring OpenSSH Client Configuration Files
	Validating Configuration Permissions

	4 Working with SSH Key Pairs
	How SSH Key Pairs Work
	Generating Key Pairs Using the ssh-keygen Command
	Enabling Remote System Access Without Requiring a Password
	Copying Public Keys to Remote Servers
	Centralizing Storage of Authorized Keys
	Working With known_hosts
	Good Practice Recommendations for Working with SSH Key Pairs

	5 Using OpenSSH Client Utilities
	Connecting to Another System Using the ssh Command
	Setting SSH Client Configuration Options For a Host
	Copying Files Between Systems Using the scp and sftp Commands
	Using the SSH Key Agent to Remember Passphrases
	Using SSH Agent Forwarding for Access Through a Bastion Host
	Using ProxyJump For Access Through a Jump Host
	Configuring ProxyJump

	Using X11 Forwarding to Load Remote Graphical Applications
	Setting Up Port Forwarding Over SSH

