
Oracle Linux
Connecting to Remote Systems With
OpenSSH

F22963-13
April 2024

Oracle Linux Connecting to Remote Systems With OpenSSH,

F22963-13

Copyright © 2019, 2024, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 About OpenSSH

2 Configuring OpenSSH Server

Installing OpenSSH Server and Enabling sshd 2-1

Working With OpenSSH Server Configuration Files 2-1

Restricting Access to SSH Connections 2-2

Configuring the OpenSSH Server For User Access 2-3

Restricting SSH Key Access to Specific Commands 2-3

Good Practice Recommendations for Configuring OpenSSH Server 2-4

3 Configuring the OpenSSH Client

Installing the OpenSSH Client Packages 3-1

Configuring OpenSSH Client Configuration Files 3-1

Validating Configuration Permissions 3-2

4 Working with SSH Key Pairs

How SSH Key Pairs Work 4-1

Generating Key Pairs Using the ssh-keygen Command 4-1

Enabling Remote System Access Without Requiring a Password 4-2

Copying Public Keys to Remote Servers 4-3

Centralizing Storage of Authorized Keys 4-4

Working With known_hosts 4-5

iii

Good Practice Recommendations for Working with SSH Key Pairs 4-7

5 Using OpenSSH Client Utilities

Connecting to Another System Using the ssh Command 5-1

Setting SSH Client Configuration Options For a Host 5-2

Copying Files Between Systems Using the scp and sftp Commands 5-3

Using the SSH Key Agent to Remember Passphrases 5-5

Using SSH Agent Forwarding for Access Through a Bastion Host 5-5

Using ProxyJump For Access Through a Bastion Host 5-6

Using X11 Forwarding to Load Remote Graphical Applications 5-7

Setting Up Port Forwarding Over SSH 5-8

iv

Preface

Oracle Linux: Connecting to Remote Systems With OpenSSH describes how to configure the
OpenSSH feature and use it to connect to remote systems.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share
Alike 4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or
an adaptation of it, you must provide attribution to Oracle and retain the original copyright
notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an action,
or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to

v

https://docs.oracle.com/en/operating-systems/oracle-linux/openssh/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and
documentation. We are also mindful of the necessity to maintain compatibility with our
customers' existing technologies and the need to ensure continuity of service as
Oracle's offerings and industry standards evolve. Because of these technical
constraints, our effort to remove insensitive terms is ongoing and will take time and
external cooperation.

Preface

vi

1
About OpenSSH

OpenSSH secures communications between networked systems.

Note:

This document includes content that was tested against Oracle Linux 8 and Oracle
Linux 9, but generally applies to most Oracle Linux releases, and might also apply
to other distributions.

OpenSSH is suite of network connectivity tools that provides secure communications
between systems. The tools include:

• scp - Secure file copying. (Deprecated in Oracle Linux 9)

• sftp - Secure File Transfer Protocol (FTP).

• ssh - Secure shell to log on to or run a command on a remote system.

• sshd - Daemon that supports the OpenSSH services.

• ssh-keygen - Creates RSA authentication keys.

Note:

The Digital Signature Algorithm (DSA) is considered deprecated. As such,
authentication mechanisms that depend on DSA keys don't work in the default
configuration for Oracle Linux 8 or later. Note also that OpenSSH clients don't
accept DSA host keys, even at the LEGACY system-wide cryptographic policy level
on Oracle Linux 8 or later.

Unlike utilities such as rcp, ftp, telnet, rsh, and rlogin, OpenSSH tools encrypt all network
packets between the client and server, including password authentication.

To use the OpenSSH tools, a user must have an account on both the client and server
systems. You don't need to configure these accounts identically on each system. OpenSSH
uses the SSH version 2 (SSH2) protocol. You can use any SSH2 client to access an
OpenSSH server and equally you can use the OpenSSH client to access any SSH2 server.

OpenSSH also provides a secure way of using graphical applications over a network by using
X11 forwarding. You can also use port forwarding as another way to secure otherwise
insecure TCP/IP protocols.

1-1

2
Configuring OpenSSH Server

To set up the SSH server, install the openssh and openssh-server packages and enable the
sshd service. Then, you can edit settings within the configuration files found in the /etc/ssh
directory.

Installing OpenSSH Server and Enabling sshd
A default Oracle Linux installation includes the openssh and openssh-server packages, but
the sshd service isn't enabled by default.

1. If the packages aren't installed, run the following command:

sudo dnf install openssh openssh-server

2. Start the sshd service and configure it to start following a system reboot:

sudo systemctl start sshd
sudo systemctl enable sshd

You can set sshd configuration options for features such as Kerberos authentication, X11
forwarding, and port forwarding in the /etc/ssh/sshd_config file. For more information,
see the sshd(8) and sshd_config(5) manual pages.

Working With OpenSSH Server Configuration Files
To configure specific OpenSSH settings, edit the global configuration files in the /etc/ssh
directory. These files include:

• moduli
Contains key-exchange information that's used to set up a secure connection.

• ssh_config
Contains default client configuration settings that can be overridden by the settings in a
user’s ~/.ssh/config file.

• ssh_host_rsa_key
Contains the RSA private key for SSH2.

• ssh_host_rsa_key.pub
Contains the RSA public key for SSH2.

• sshd_config
Contains configuration settings for the sshd service.

You can configure other files in the /etc/ssh directory. For details, see the sshd(8) manual
page.

2-1

For Oracle Linux 8 or later, files saved in the /etc/ssh/sshd_config.d directory
override any settings defined in the /etc/ssh/sshd_config configuration file.

For more information, see the ssh_config(5), sshd(8), and sshd_config(5) manual
pages.

Restricting Access to SSH Connections
The Secure Shell (SSH) provides protected, encrypted communications with other
systems. Because SSH is an entry point into the system, disable SSH if it isn't
required. Optionally, you can edit the /etc/ssh/sshd_config file to restrict its use.

Important:

After applying changes to the configuration file, you must restart the sshd
service for the changes to take effect.

Restrict Root Access

Set PermitRootLogin to no to prohibit root from logging in with SSH. Then, elevate a
user's privileges after logging in.

PermitRootLogin no

Restrict Specific Users

You can restrict remote access to certain users and groups by specifying the
AllowUsers, AllowGroups, DenyUsers, and DenyGroups settings, for example:

DenyUsers carol dan
AllowUsers alice bob

For more information about configuring users and groups, see Oracle Linux 8: Setting
Up System Users and Authentication or Oracle Linux 9: Setting Up System Users and
Authentication.

Set a Timeout Period

The ClientAliveInterval and ClientAliveCountMax settings cause the SSH client to
time out automatically after a period of inactivity, for example:

Disconnect client after 300 seconds of inactivity
ClientAliveCountMax 0
ClientAliveInterval 300

Disable Password Authentication

The PasswordAuthentication and PubkeyAuthentication settings define the method
of authentication the SSH client implements for users: either with a password or with
an SSH public key. By default, OpenSSH uses passwords for authentication. However,

Chapter 2
Working With OpenSSH Server Configuration Files

2-2

https://docs.oracle.com/en/operating-systems/oracle-linux/8/userauth/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/userauth/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/userauth/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/userauth/

if you have configured key based authentication, which is more secure, you can optionally
disable that functionality:

PasswordAuthentication no
PubkeyAuthentication yes

For more information, see the sshd_config(5) manual page.

Configuring the OpenSSH Server For User Access
User specific configuration on the server side of a connection is in the $HOME/.ssh directory
and contains the following files:

• authorized_keys
Contains the authorized public keys for a user. The server uses the signed public key in
this file to authenticate a client.

• environment
Contains definitions of environment variables. This file is optional.

• rc
Contains commands that ssh runs when a user logs in, before the user’s shell or
command runs. This file is optional.

For more information, see the ssh(1) and ssh_config(5) manual pages.

Related Topics

• Validating Configuration Permissions

Restricting SSH Key Access to Specific Commands
You can add user specific configurations on the server side of a connection by editing
the $HOME/.ssh/authorized_key file. In addition to listing SSH keys with which a user can
authenticate, you can optionally impose further restrictions on what that user can do with
each of those keys.

For example, with the command option, you can specify a single command to configure all
connections made with one key, after which the command immediately ends.

command=command ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAQEA6OabJhWABsZ4F3mcjEPT3sxnXx1OoUcvuCiM6fg5s...

By using the command option, security conscious users can restrict system accesses available
to a particular key that might be used for a scripted action and which might not be
passphrase protected.

You can also ensure that the key is only accepted if the inbound connection originates from
the internal network by using the from option to set an authorized range of IPv4 addresses.
For example, to prevent any IP addresses from outside the 192.0.2.0/24 range from

Chapter 2
Configuring the OpenSSH Server For User Access

2-3

connecting with an SSH key, you would append the following line to the $HOME/.ssh/
authorized_key file with the correct key value:

from=192.0.2.0/24 ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAQEA6OabJhWABsZ4F3mcjEPT3sxnXx1OoUcvuCiM6fg5s..
.

For more information, see the sshd(8) manual pages.

Good Practice Recommendations for Configuring OpenSSH
Server

We recommend the following guidelines to secure OpenSSH configuration against the
most common remote exploits:

• Disable remote root user logins over SSH.

• After you have correctly configured key based authentication, Disable SSH
password authentication.

• Consider setting a non standard SSH port for Internet-facing systems.

For more information, see Restricting Access to SSH Connections.

Chapter 2
Good Practice Recommendations for Configuring OpenSSH Server

2-4

3
Configuring the OpenSSH Client

To set up OpenSSH on the client, you need the openssh and openssh-clients packages.

Installing the OpenSSH Client Packages
A default Oracle Linux installation includes both the openssh and openssh-clients packages.
If the packages aren't installed, run the following command:

sudo dnf install openssh openssh-clients

Configuring OpenSSH Client Configuration Files
The $HOME/.ssh directory on the client system contains the OpenSSH client configuration
files for a particular user as follows:

• id_rsa and id_rsa.pub
Contains a user's SSH2 RSA private and public keys. SSH2 RSA is most commonly used
key-pair type. id_rsa and id_rsa.pub are the conventional names for these files, but no
restrictions exist on the file name to use. You can store several key pairs in this directory
to use across different connections.

Caution:

The private key file can be readable and writable by the user but must not be
accessible to other users.

• known_hosts
Contains the public host keys that OpenSSH has obtained from SSH servers. OpenSSH
adds an entry for each new server to which a user connects.

• config
Contains client configuration settings.

Caution:

A config file can be readable and writable by the user but must not be
accessible to other users.

For more information, see the ssh(1) and ssh-keygen(1) manual pages.

3-1

Validating Configuration Permissions
OpenSSH applies strict permissions to the $HOME/.ssh directory and files stored in this
directory. If the permissions in the directories on either side of the connection are
wrong, OpenSSH prevents the connection and errors out with a Permission Denied
message.

Access to contents $HOME/.ssh directory must be limited to the individual user. An
exception to this rule is the authorized_keys file, which contains public keys that can
be readable to other users.

1. Set the directory and file permissions as follows. Some of these files might not be
present on the system where you're running these commands:

chmod 700 $HOME/.ssh # The user .ssh directory
chmod 600 $HOME/.ssh/id_rsa # A user's private key
chmod 644 $HOME/.ssh/id_rsa.pub # A user's public key
chmod 600 $HOME/.ssh/config # Customized configuration
entries for the ssh client
chmod 644 $HOME/.ssh/authorized_keys # A user's authorized public
key entries to allow login
chmod 600 $HOME/.ssh/known_hosts # A user's known hosts
entries for system fingerprints
chown -R $USER:$USER $HOME/.ssh # Recursively set ownership
of all .ssh files

2. Verify that file permissions are correct.

ls -al .ssh

drwx------+ 2 user group 5 Jun 12 08:33 .
drwxr--r--+ 3 user group 9 Jun 12 08:32 ..
-rw-r--r--+ 1 user group 397 Jun 12 08:33 authorized_keys
-rw-------. 1 user group 2283 Nov 22 13:22 config
-rw-------. 1 user group 963 Aug 22 09:27 id_rsa
-rw-r--r--. 1 user group 221 Aug 22 09:27 id_rsa.pub
-rw-------. 1 user group 85531 Nov 9 10:01 known_hosts

Chapter 3
Validating Configuration Permissions

3-2

4
Working with SSH Key Pairs

SSH can use key pairs for authentication. Key-based authentication is more secure than
password authentication because it helps to avoid brute-force attacks if you disable password
authentication in the server configuration.

How SSH Key Pairs Work
To use key authentication, you must first have a key pair: a public key and a corresponding
private key. You can either use an existing key pair or generate a new one. Typically, you only
generate an SSH key pair one time and only change the key pair if it might have been
compromised or when using a key to access systems with different encryption standards. Not
all key pairs are compatible with OpenSSH and you might need to convert keys as required.
For example, keys generated using the PuTTY ssh client software aren't directly compatible
with OpenSSH and might need to be converted before use. See the client software
documentation if you're unsure about key format.

After you have obtained a key pair, copy the public key to any server to which you want to
connect. Then to connect to the server, provide the matching private key. You can store the
private key on a single client that you use to access the servers. For security, avoid copying
the private key to several locations.

When generating key pairs, you can either configure them to have a password or not. Key
pairs that don't have passphrases, can help with scripted automation as they can access
remote systems instantly so you won't need to enter the passphrase each time you connect.
However, using a key without a passphrase can be poor security practice. Instead, you can
use SSH Agent to remember a key passphrase for the entire login session.

Consider using SSH Agent Forwarding to connect from trusted system to trusted system, or
use the ProxyJump command option where you might need to connect to another system
through an untrusted or heavily shared bastion host.

Generating Key Pairs Using the ssh-keygen Command
Use the ssh-keygen command to generate a public and private authentication key pair.
Authentication keys enable you to connect to a remote system without needing to supply a
password each time that you connect. Each user must generate their own pair of keys.

Running ssh-keygen

To create a public and private SSH2 RSA key pair:

ssh-keygen

Generating public/private rsa key pair.
Enter file in which to save the key (/home/guest/.ssh/id_rsa): <Enter>
Created directory '/home/guest/.ssh'.
Enter passphrase (empty for no passphrase): password

4-1

Enter same passphrase again: password
Your identification has been saved in /home/guest/.ssh/id_rsa.
Your public key has been saved in /home/guest/.ssh/id_rsa.pub.
The key fingerprint is:
5e:d2:66:f4:2c:c5:cc:07:92:97:c9:30:0b:11:90:59 guest@host01
The key's randomart image is:
+--[RSA 2048]----+
| .=Eo++.o |
| o ..B=. |
| o.= . |
| o + . |
| S * o |
| . = . |
| . |
| . |
| |
+-----------------+

To create an SSH key pair by using an algorithm other than the default RSA algorithm,
use the -t option. Possible values that you can specify include the following: dsa,
ecdsa, ed25519, and rsa.

For security, in case an attacker gains access to the private key, you can specify a
passphrase to encrypt the private key. If you encrypt the private key, you must enter
this passphrase each time that you use the key. If you don't specify a passphrase,
you're not prompted for a passphrase.

For more information, see the ssh-keygen(1) manual page.

Location of key files

ssh-keygen generates a private key file and a public key file in ~/.ssh (unless you
specify an different directory for the private key file):

ls -l ~/.ssh

total 8
-rw-------. 1 guest guest 1743 Apr 13 12:07 id_rsa
-rw-r--r--. 1 guest guest 397 Apr 13 12:07 id_rsa.pub

Enabling Remote System Access Without Requiring a
Password

You can create a key pair that doesn't require a passphrase, which is useful for
scripted environments where a tool might need SSH access to a remote system but
shouldn't prompt for a passphrase.

For general use, and as a better practice, set a passphrase on the private key and
then to use the SSH Agent to remember key passphrases for the entire login session.
See Using the SSH Key Agent to Remember Passphrases for more information.

Chapter 4
Enabling Remote System Access Without Requiring a Password

4-2

However, using the SSH Agent isn't always practical and for some services that are loaded at
boot time you might need to create a key that doesn't use a passphrase.

To use OpenSSH utilities to access a remote system without supplying a password each time
that you connect:

1. Use ssh-keygen to generate a public and private key pair, for example:

ssh-keygen

Generating public/private rsa key pair.
Enter file in which to save the key (/home/user/.ssh/id_rsa): <Enter>
Created directory '/home/user/.ssh'.
Enter passphrase (empty for no passphrase): <Enter>
Enter same passphrase again: <Enter>
...

Press Enter each time the prompt to enter a passphrase appears.

2. Copy the public key to the remote server. See Copy the public key to the remote server.

3. If the usernames are different on the client and the server systems, create a ~/.ssh/
config file entry for this connection. See Setting SSH Client Configuration Options For a
Host.

4. Validate that permissions for the $HOME/.ssh configuration files are correct on both the
server and client side. See Validating Configuration Permissions for more information.

5. To access the remote system without supplying a password, use ssh to log into the
remote system to verify that the ~/.ssh/authorized_keys file contains only the keys for
the systems from which you expect to connect, for example:

ssh remote_user@host

If the key file is named in a nonstandard way, you can specify which key file to use by using
the -i option when you connect:

ssh -i ~/.ssh/my_private_key remote_user@host

For more information, see the ssh-copy-id(1), ssh-keygen(1), and ssh_config(5) manual
pages.

Copying Public Keys to Remote Servers
Add the public key to the remote server file at $HOME/.ssh/authorized_keys. Various
approaches are available for setting up the contents of this file. You can run ssh-copy-id or
manually configure the file.

Run ssh-copy-id

For systems with password authentication enabled, you can copy the public key from the
client system to the remote server using the ssh-copy-id command. The tool also sets the
permissions of $HOME/.ssh and $HOME/.ssh/authorized_keys appropriately.

Chapter 4
Copying Public Keys to Remote Servers

4-3

1. Use the ssh-copy-id command to append the public key in the local ~/.ssh/
id_rsa.pub file to the ~/.ssh/authorized_keys file on the remote system, for
example:

ssh-copy-id remote_user@host

2. When prompted, enter the password for the remote system.

For more information, see the ssh-copy-id(1) manual page.

Manually Setting the authorized_keys File

If you don't have access to the ssh-copy-id command or are unable to access the
system remotely with a password, you must populate the $HOME/.ssh/
authorized_keys file manually.

1. Copy the contents of the public key file, typically $HOME/.ssh/id_rsa.pub, on the
client system and append the contents to $HOME/.ssh/authorized_keys on the
server system.

2. Ensure that the permissions of $HOME/.ssh and $HOME/.ssh/authorized_keys are
set correctly on the server system.

3. On the remote system, output the ~/.ssh/authorized_keys file:

cat .ssh/authorized_keys

4. Note whether the key entry is included in the output. For example, an entry might
appear as follows:

ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAQEA6OabJhWABsZ4F3mcjEPT3sxnXx1OoUcvuCiM6fg5
s/ER
... FF488hBOk2ebpo38fHPPK1/rsOEKX9Kp9QWH+IfASI8q09xQ==
local_user@local_host

Related Topics

• Validating Configuration Permissions

Centralizing Storage of Authorized Keys
If you have many systems for which you need to provision access for users, consider
options to centralize the storage of the $HOME/.ssh/authorized_keys file so that
revoking a public key for a user with a compromised key pair.

A common approach would be to configure the SSH server to use the System Security
Services Daemon to access keys stored in a central location such as an LDAP or
Identity Management (IPA) service. To configure user authentication against these
services, see Oracle Linux 8: Setting Up System Users and Authentication or Oracle
Linux 9: Setting Up System Users and Authentication.

OpenSSH provides a tool to use SSSD to maintain and automatically update a
separate cache of public keys when authenticating users. The
sss_ssh_authorizedkeys command is responsible for retrieving a user's public
key from the user entries in an Identity Management (IPA) domain. After the key is

Chapter 4
Centralizing Storage of Authorized Keys

4-4

https://docs.oracle.com/en/operating-systems/oracle-linux/8/userauth/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/userauth/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/userauth/

retrieved, the key is stored in the $HOME/.ssh/sss_authorized_keys, in the standard
authorized keys format.

To configure the SSH server to use SSSD to retrieve public keys for users, edit /etc/ssh/
sshd_config and veerify that the following entries are present:

AuthorizedKeysCommand /usr/bin/sss_ssh_authorizedkeys
AuthorizedKeysCommandUser nobody

If you have edited the server configuration, you must restart the service:

sudo systemctl restart sshd

SSD must already be configured and running and the keys must be stored appropriately so
that SSH can use the service.

See the sss_ssh_authorizedkeys(1) manual page for more information.

Working With known_hosts
Whenever you connect to a remote host, the SSH server on the remote host provides a
public key. You can use this key to validate that you're connecting to the same host in the
future to prevent Man-In-The-Middle (MITM) attacks. On the server side, this public key is
stored as part of the HostKey pair. On the client system, the known_hosts database stores the
public key for the host in the file $HOME/.ssh/known_hosts.

RSA key fingerprint

When you connect to a remote system and the known_hosts database doesn't contain a key,
the client prompts you to accept the fingerprint for the key. For example:

The authenticity of host 'server1.example.com (198.51.100.172)' can't be
established.
RSA key fingerprint is SHA256:M/Qa7GZf45KPhXsGgQkCpA5dH8BeY5c6nO87chXBWbk.
Are you sure you want to continue connecting (yes/no/[fingerprint])?

If you accept the fingerprint, the $HOME/.ssh/known_hosts file stores the public key on the
client system and you're no longer prompted every time you connect.

Listing the key fingerprints

You can list the fingerprints for keys stored in the known_hosts database by running:

ssh-keygen -l -f $HOME/.ssh/known_hosts

StrictHostKeyChecking

If the OpenSSH client has the StrictHostKeyChecking option set by default and the public
key returned by the server changes, you're unable to connect to the remote server and a
warning is displayed:

@@@
@ WARNING: POSSIBLE DNS SPOOFING DETECTED! @

Chapter 4
Working With known_hosts

4-5

@@@
The RSA host key for server1.example.com has changed,
and the key for the corresponding IP address 198.51.100.172
is unchanged. This could either mean that
DNS SPOOFING is happening or the IP address for the host
and its host key have changed at the same time.
Offending key for IP in /home/user/.ssh/known_hosts:20
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle
attack)!
It is also possible that a host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
SHA256:qMBpuawaY58v7LrcpY2BwtbXHOwP/LXLV8FVZk7tDxY.
Please contact your system administrator.
Add correct host key in /home/user/.ssh/known_hosts to get rid of this
message.
Offending RSA key in /home/user/.ssh/known_hosts:125
RSA host key for server1.example.com has changed and you have
requested strict checking.
Host key verification failed.

Host keys don't change, so when you see this warning, you might not be connecting to
the same system that you have connected to before. However, the key can be different
for a legitimate reason, such as if the remote system is reinstalled, the OpenSSH
Server keys are regenerated, or the domain name entry or IP address is reassigned to
a new system. In such cases, you might want to remove any existing record of the
system in the known_hosts database.

Removing an existing key

If you're certain that you can trust a new key provided by a remote server, you can
remove an existing key from the known_hosts database by running:

ssh-keygen -R server1.example.com

Disabling StrictHostKeyChecking

In test environments, where servers are constantly reinstalled or replaced, you might
want to disable StrictHostKeyChecking for particular hosts. You can disable host key
checking when you connect to a remote system as follows:

ssh -o StrictHostKeyChecking=no user@server1.example.com

If you need to constantly disable strict host checking, consider adding this option to a
host entry in the client configuration. See Setting SSH Client Configuration Options For
a Host for more information.

Strict host key checking is enabled by default to prevent Man-In-The-Middle (MITM)
attacks, so disabling that functionality isn't considered good security practice and isn't
recommended on production systems.

Chapter 4
Working With known_hosts

4-6

Related Topics

• Working With OpenSSH Server Configuration Files

Good Practice Recommendations for Working with SSH Key
Pairs

Follow these guidelines so that you can manage and use SSH key pairs to connect to remote
hosts securely on the network.

• Set a strong passphrase when you generate the SSH key pair.

For more information, see Generating Key Pairs Using the ssh-keygen Command.

• Verify the SSH key agent to avoid needing to type in the passphrase at every login.

For more information, see Using the SSH Key Agent to Remember Passphrases.

• Restrict access for any SSH key pair that doesm't have a passphrase and is only used for
scripting purposes.

For more information, see Restricting SSH Key Access to Specific Commands.

• Don't share the private key with anyone else. Each member of the team must have their
own SSH key pair so that the system administrator can control access to network
resources.

• Don't copy the private key, or forward the SSH agent, to any other machine, remote
servers, or cloud instances.

For more information, see Copying Public Keys to Remote Servers.

• Don't store a copy of the private key on a bastion or jump host.

For more information, see Using ProxyJump For Access Through a Bastion Host.

Chapter 4
Good Practice Recommendations for Working with SSH Key Pairs

4-7

5
Using OpenSSH Client Utilities

Use the OpenSSH client utilities to connect to a remote system, copy files between systems,
remember passphrases, access through a bastion host, load GUI applications, and port
forward.

Connecting to Another System Using the ssh Command
By default, each time you use the OpenSSH utilities to connect to a remote system, you must
provide a username and password. When you connect to an OpenSSH server for the first
time, the OpenSSH client prompts you to confirm that you're connected to the correct system.

Use the ssh command to log into a remote system or to run a command on a remote system:

ssh [options] [user@]host [command]

In the command, host is the name of the remote OpenSSH server to which you want to
connect.

For example, you would log in to host04 by using the same username as is on the local
system:

ssh host04

The remote system prompts you for the password on that system.

To connect as a different user, specify the username and @ symbol before the remote host
name, for example:

ssh joe@host04

To run a command on the remote system, specify the command as an argument:

ssh joe@host04 ls ~/.ssh

The ssh command logs you in, runs the command, and then closes the connection.

Example 5-1 Example of Connecting to a System

The following examples show how you would connect to a remote host, host04. You would
need to confirm the command action before establishing the connection.

ssh host04

The authenticity of host ‘host04 (192.0.2.104)’ can’t be
established.

5-1

RSA key fingerprint is 65:ad:38:b2:8a:6c:69:f4:83:dd:3f:8f:ba:b4:85:c7.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ‘host04,192.0.2.104’ (RSA) to the
list of known hosts.

When you type yes to accept the connection to the server, the client adds the server’s
public host key to the $HOME/.ssh/known_hosts file. When you next connect to the
remote server, the client compares the key in this file to the one that the server
supplies. If the keys don't match, you see a warning such as the following:

@@@
@ WARNING: POSSIBLE DNS SPOOFING DETECTED! @
@@@
The RSA host key for host has changed,
and the key for the according IP address IP_address
is unchanged. This could either mean that
DNS SPOOFING is happening or the IP address for the host
and its host key have changed at the same time.
Offending key for IP in /home/user/.ssh/known_hosts:10
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle
attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is fingerprint
Please contact your system administrator.
Add correct host key in /home/user/.ssh/known_hosts to get rid of this
message.
Offending key in /home/user/.ssh/known_hosts:53
RSA host key for host has changed and you have requested strict
checking.
Host key verification failed.

Unless the remote server’s host key has changed for a known reason, such as an
upgrade of either the SSH software or the server, avoid connecting to that machine
until you have contacted its administrator about the situation.

For more information, see the ssh(1) manual page.

Setting SSH Client Configuration Options For a Host
You can set up Host entries in the $HOME/.ssh/config file on a client system. Often
usernames don't align on different systems. Sometimes you might choose to use a
different key pair to the usual key pair for a particular remote system. To connect more
easily with the correct credentials, you can add a host entry similar to the following
example:

Host server1
 Hostname server1.example.com
 User remote_user
 IdentityFile ~/.ssh/id_rsa_example

Chapter 5
Setting SSH Client Configuration Options For a Host

5-2

With the provided configuration entry, the user can run:

ssh server1

The SSH client performs a connection to the remote server server1.example.com with the
username remote_user and uses the private key file at ~/.ssh/id_rsa_example.

This configuration entry lets you connect with the correct credentials each time you want to
connect. Without the configuration entry, you would need to enter the following:

ssh -i ~/.ssh/id_rsa_example remote_user@server1.example.com

You can use the $HOME/.ssh/config file to store other configuration options for any system
that you connect to. For example, if you use the ForwardAgent or ProxyJump options often,
consider adding entries for these for each host where you use them. See the ssh_config(5)
manual page for more information.

Copying Files Between Systems Using the scp and sftp
Commands

Using scp

Note:

Secure Copy Protocol (scp) is deprecated in Oracle Linux 9. If you're using Oracle
Linux 9, use the secure file transfer (SFTP) utility instead. See the Security section
under the Deprecated Features chapter in Oracle Linux 9: Release Notes for Oracle
Linux 9.

With the scp command, you can copy files or directories between systems. scp establishes
a connection, copies the files, and then closes the connection.

The following examples show how you can use the scp command.

• Uploading a local file to a remote system

scp [options] local_file [user @]host[: remote_file]

For example:

– Copy testfile to the home directory on host04.

scp testfile host04

– Copy testfile to the same directory but change its name to new_testfile.

scp testfile host04:new_testfile

Chapter 5
Copying Files Between Systems Using the scp and sftp Commands

5-3

https://docs.oracle.com/en/operating-systems/oracle-linux/9/relnotes9.0/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/relnotes9.0/

• Downloading a file from a remote system to the local system

scp [options] [user@]host[:remote_file] local_file

• Copying files recursively

The -r option recursively copies the contents of directories.

For example, to copy the directory remdir and its contents from the home
directory on remote host04 to the local home directory, you would type:

scp -r host04:~/remdir ~

Using sftp

The sftp command is a secure alternative to the ftp command that's used to
transfer files between systems. Unlike the scp command, the sftp command enables
you to browse the file system on the remote server before copying any files.

To open an FTP connection to a remote system over SSH, use the following
command:

sftp [options] [user@]host

For example, you would open an FTP connect to the system, host04, as follows:

sftp host04

Connecting to host04...
guest@host04’s password: password
sftp>

Type sftp commands at the sftp> prompt.

In the following example, the put command is used to upload the file newfile from the
local system to the remote system, then the ls command is used to list it:

sftp> put newfile
Uploading newfile to /home/guest/newfile
foo 100% 1198 1.2KB/s
00:01
sftp> ls newfile
newfile

Type help or ? to display a list of available commands. Type bye, exit, or quit to
close the connection and exit the sftp interactive session.

For more information, see the ssh(1) and sftp(1) manual pages.

Chapter 5
Copying Files Between Systems Using the scp and sftp Commands

5-4

Using the SSH Key Agent to Remember Passphrases
Use the SSH Key Agent to enter the passphrases for any of the SSH keys a single time
throughout the login session. In this manner, you avoid the poor security practice of creating
SSH keys without passphrases.

1. After you log in, check that the agent is started:

ps -ef|grep -i ssh-agent

2. Run the ssh-add command to add any of the ssh keys to the agent:

ssh-add $HOME/.ssh/id_rsa

The command prompts you for the key passphrase. The passphrase applies through the
entire login session. If you use the key to connect to another system, the prompt for a
passphrase no longer appears.

Note:

The error message Could not open a connection to your authentication
agent indicates that the agent might not be running. Start it with the eval $
(ssh-agent -s) command.

3. Repeat the command for each key that you want to add.

4. After adding the keys to the agent, you can open SSH connections to any systems that
have the paired public key configured in the authorized_hosts file, without being
prompted for a passphrase. This behavior applies also to any scripts that are run as the
user.

Using SSH Agent Forwarding for Access Through a Bastion
Host

Caution:

Enable agent forwarding with caution. Users with escalated privileges on the remote
host can access the agent through the forwarded SSH session. Although malicious
users can't access the keys directly they can hijack the agent session and use the
keys in the agent to connect to other systems. If you're connecting to a system that
might have untrustworthy users then avoid using agent forwarding.

SSH Agent Forwarding is a powerful tool that can help you keep private keys centralized and
safe. Avoid copying private keys to other systems as much as possible. SSH Agent
Forwarding lets you connect to a remote system and then use the SSH client on that system

Chapter 5
Using the SSH Key Agent to Remember Passphrases

5-5

to connect to another system by using the same key based authentication but without
you needing to copy the private key to the host that you first connected to.

Server-side Configuration

Change the /etc/ssh/sshd_config file to configure SSH Agent forwarding. On the
server, verify the AllowAgentForwarding parameter, which activates SSH agent
forwarding and is enabled by default.

Client Configuration

To enable this functionality you must use the ForwardAgent option when you make a
connection to an intermediate system in the chain of hosts that you connect to. You
must also have the private key already loaded into the SSH Agent on the primary
client host. See Using the SSH Key Agent to Remember Passphrases .

To use SSH Agent Forwarding:

1. Check that the SSH Agent is running and that the SSH key is loaded. Run the
following command on the client system to see what keys the agent has loaded:

ssh-add -L

2. Connect to a host using the ForwardAgent=yes option:

ssh -o ForwardAgent=yes server1.example.com

3. Use the SSH client on the remote host to connect to another server that has the
public key configured in its authorized_keys:

ssh server2.example.com

Consider adding the ForwardAgent option to a Host configuration entry in
the $HOME/.ssh/config file if you use this option often for a particular server. See
Setting SSH Client Configuration Options For a Host for more information.

Using ProxyJump For Access Through a Bastion Host
SSH Agent forwarding lets you connect from one server to the next using key-based
authentication without copying the private key to each server in the chain. This
approach raises some security concerns because users with the appropriate privileges
on the remote server could hijack the agent and use it to connect to other systems
without requiring authentication.

A more secure approach to jumping from one server to the next is to use the
ProxyJump option in the OpenSSH client. The ProxyJump option functions similarly to
an SSH tunnel or port forward in the sense that it proxies all traffic straight through the
bastion or jump host. Unlike port forwarding, ProxyJump option doesn't require server-
side configuration. You only need to have SSH access to the bastion or jump host.

Consider that internal.example.com is a host on an internal network that you don't
have direct access to. bastion.example.com is a host that's connected to the internal
network and is also accessible to the client system. To connect to

Chapter 5
Using ProxyJump For Access Through a Bastion Host

5-6

internal.example.com, you can use the ProxyJump option to connect directly through
bastion.example.com. For example:

ssh -o 'ProxyJump=bastion.example.com' internal.example.com

If you constantly connect to internal.example.com, you can set the ProxyJump option for that
host inside the $HOME/.ssh/config file. See Setting SSH Client Configuration Options For a
Host.

Using X11 Forwarding to Load Remote Graphical Applications
X11 forwarding lets a user start graphical applications installed on a remote Linux system so
that they display within the desktop environment of the local system. The remote system
doesn't need to have an X11 server or graphical desktop environment running, but the local
system must have an X11 compatible service running.

Server-side Configuration

1. Change the /etc/ssh/sshd_config file to enable X11 forwarding. On the server,
verify the following parameters:

X11Forwarding
Allows X11 forwarding. When omitted, the default is no. To enable X11 forwarding, add
an entry that sets the value for this parameter to yes.

2. If you edit the configuration file, you must restart the service for the change to take effect:

sudo systemctl restart ssh

3. The remote system must also be able to run X11 applications and authenticate X11
sessions. The xorg-x11-xauth package is required for this purpose.

dnf install xorg-x11-xauth

If you have never run a graphical application on the remote server, the first time that you
connect to the remote server using X11 forwarding, a warning message is displayed:

/usr/bin/xauth: file /home/user/.Xauthority does not exist

You can ignore this warning as the .Xauthority file is automatically created.

Client Configuration

1. Use the -X option with the SSH client when you connect to a remote server:

ssh -X user@server1.example.com

2. Run a graphical application over the SSH connection by typing the command directly
from the SSH terminal. You might opt to run the process in the background so that the
terminal remains available to you. For example:

gedit &

Chapter 5
Using X11 Forwarding to Load Remote Graphical Applications

5-7

Setting Up Port Forwarding Over SSH
SSH port forwarding creates an encrypted SSH tunnel between a client and a server
system.

Three types of SSH port forwarding are available:

• Local Port Forwarding: Forwards a port from the client to the SSH server and then
to the destination port.

• Dynamic Port Forwarding: Creates a SOCKS proxy server for communications
across a range of ports.

• Reverse Port Forwarding: Forwards a port from the server to the client and then to
the destination port.

Why Use Port Forwarding?

Port forwarding lets remote servers to access devices within a private local-area
network (LAN) and conversely.

You can use port forwarding to access a service that's not exposed to the public
network interface. You might set up a local port forward to access a service (such as a
database) on a remote server. The database on the server isn't exposed to the public
network interface, but you could create a tunnel from a local machine to the internal
database server port. You can then connect to localhost and all traffic would get
forwarded across the SSH tunnel to the remote database.

You can use reverse port forwarding to give someone outside the local network access
to an internal service. For example, you might want to show a fellow developer a web
application that you have developed on the local machine. Because the machine
doesn't have a public IP, the other developer can't access the application over the
internet. However, if you have access to a remote SSH server, you can set up reverse
port forwarding to provide the developer access.

Server-side Configuration

Edit the /etc/ssh/sshd_config file to configure SSH port forwarding. On the
server, at a minimum verify the following parameters:

• AllowTCPForwarding
Allows TCP port forwarding. When omitted, the default is yes which enables single
TCP port forwards and SOCKS proxying

• AllowStreamLocalForwarding
Allows forwarding of UNIX domain sockets. When omitted, the default is yes.

Local Port Forwarding

To create a direct TCP forward tunnel, use the ssh -L option:

ssh -L [bind_address:]port:destination:destination_port
[user@]remote_ssh_server

Chapter 5
Setting Up Port Forwarding Over SSH

5-8

• bind_address is optional and assigns a local interface to listen for connections. If omitted,
ssh only binds on the loopback interfaces. To bind on all interfaces, you can use “0.0.0.0”
or “::”.

• port - The local port number. You can use any port number greater than 1024.

• destination - The IP or hostname of the destination machine. If the destination is on the
remote server itself, you can use localhost.

• destination_port - Port on the destination machine.

• [user@]remote_ssh_server - The remote SSH user and server IP address.

For example:

ssh -L 8080:localhost:8888 user@192.168.1.20

This would open an SSH connection to the remote server at 192.168.1.20 and open a tunnel
to the localhost port 8888.

Dynamic Port Forwarding

Use dynamic port forwarding to have the SSH client listen on a specified binding port and act
as a SOCKS proxy server. You don't need to specify a destination host as all incoming
connections on the specified port forward through the tunnel to a dynamic port on the
destination machine.

To create a dynamic port forward, use the ssh -D option.

ssh -D [bind_address:]port [user@]remote_ssh_server

Reverse Port Forwarding

A reverse tunnel forwards any connection received on the remote SSH server to the local
client network.

To create a reverse port forward, use the ssh -R option.

For local port reverse forwarding:

ssh -R [bind_address:]port:destination:destination_port
[user@]remote_ssh_server

For dynamic port reverse forwarding:

ssh -R [bind_address:]port [user@]remote_ssh_server

Chapter 5
Setting Up Port Forwarding Over SSH

5-9

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About OpenSSH
	2 Configuring OpenSSH Server
	Installing OpenSSH Server and Enabling sshd
	Working With OpenSSH Server Configuration Files
	Restricting Access to SSH Connections

	Configuring the OpenSSH Server For User Access
	Restricting SSH Key Access to Specific Commands

	Good Practice Recommendations for Configuring OpenSSH Server

	3 Configuring the OpenSSH Client
	Installing the OpenSSH Client Packages
	Configuring OpenSSH Client Configuration Files
	Validating Configuration Permissions

	4 Working with SSH Key Pairs
	How SSH Key Pairs Work
	Generating Key Pairs Using the ssh-keygen Command
	Enabling Remote System Access Without Requiring a Password
	Copying Public Keys to Remote Servers
	Centralizing Storage of Authorized Keys
	Working With known_hosts
	Good Practice Recommendations for Working with SSH Key Pairs

	5 Using OpenSSH Client Utilities
	Connecting to Another System Using the ssh Command
	Setting SSH Client Configuration Options For a Host
	Copying Files Between Systems Using the scp and sftp Commands
	Using the SSH Key Agent to Remember Passphrases
	Using SSH Agent Forwarding for Access Through a Bastion Host
	Using ProxyJump For Access Through a Bastion Host
	Using X11 Forwarding to Load Remote Graphical Applications
	Setting Up Port Forwarding Over SSH

