
Oracle Linux
Podman User's Guide

F30921-28
December 2025

Oracle Linux Podman User's Guide,

F30921-28

Copyright © 2020, 2025, Oracle and/or its affiliates.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike 4.0 (CC-BY-SA) license.
In accordance with CC-BY-SA, if you distribute this content or an adaptation of it, you must provide attribution to Oracle
and retain the original copyright notices.

https://creativecommons.org/licenses/by-sa/4.0/

Contents

 Preface

1 About Podman and Related Utilities

About Podman 1

About Buildah 2

About Skopeo 2

2 Install Podman and Related Utilities

Installing Podman 1

Installing Buildah 2

Installing Skopeo 2

3 Podman Images

Searching for Images in Container Registries 1

Pulling Images From a Container Registry 2

Inspecting an Image 3

Listing Local Images 4

Deleting a Local Image 5

4 Podman Containers

Creating Containers 1

Running Containers 2

Enabling FIPS Mode in Containers 3

Listing and Monitoring Containers 4

Pausing and Resuming Containers 5

Stopping and Removing Containers 5

5 Podman Pods

Creating Pods 1

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page i of iv

Listing and Monitoring Pods 2

Pausing and Resuming Pods 6

Stopping and Starting Pods 6

Removing Pods 7

6 Kubernetes Files

Creating a Kubernetes YAML File 4

Running a Kubernetes YAML File 6

Removing Pods Using a Kubernetes YAML File 6

Deploying to a Kubernetes Cluster 7

Deploying to a Kubernetes Cluster Using kubectl 7

7 Podman Storage

Setting Storage Configuration Options 1

Setting Up Container Mounts 3

8 Podman Networking

Setting a Proxy Server 1

Configuring Port Mapping for Containers 2

Inspecting Container Networking 4

Advanced Networking for Containers 4

About CNI Networks 5

About Netavark Networks 7

Changing the Network Backend 8

Creating and Removing Networks 9

Listing Networks 9

Connecting and Disconnecting Container Networks 10

9 Podman Quadlets

Creating Quadlets 1

Creating Quadlets With the Podman Shell 4

Quadlet Services 5

Starting Services 6

Restarting Services 6

Stopping Services 6

Checking the Service Status 6

Enabling Services 7

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page ii of iv

10

Podman Service Wrappers

Generating Podman Service Wrappers 1

Starting and Restarting Podman Services 2

Stopping Podman Services 3

Checking the Status of Podman Services 3

Enabling Automated Restore for Podman Services 3

Changing Podman Service Wrapper Configuration 4

Setting SELinux Permissions for Service Wrappers 4

11

Buildah

Creating an Image From a Containerfile 2

Creating a Buildah Container from an Image 3

Changing an Image 4

Committing a Buildah Container to an Image 6

Pushing an Image to a Registry 7

Removing a Buildah Container 8

Removing an Image 8

Inspecting an Image or Container 9

12

Skopeo

Inspecting an Image 1

Copying an Image 4

Synchronizing Images 5

Deleting an Image 6

13

Container Registries

Oracle Container Registry 1

Pulling Open Source Software From the Oracle Container Registry 2

Pulling Licensed Software From the Oracle Container Registry 2

Generating an Oracle Container Registry Authentication Token 3

Using Oracle Container Registry Mirrors 4

Oracle Linux Container Image Tagging Conventions 4

The slim Tag 5

General Oracle Linux Release Tags 5

Oracle Linux Update Level Tags 5

The latest Tag 6

Docker Hub 7

Configuring Podman for Signed Images 7

Configuring Registries 9

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page iii of iv

Listing Registries 10

Setting Registry Order 10

Adding Registries 10

Adding Insecure Registries 10

14

Private Container Registries

Creating an Insecure Registry 1

Creating a Secure Registry 2

Distributing X.509 Certificates 4

Importing Images Into a Registry 5

15

Podman Command Reference

16

Security Recommendations

Host 1

Podman Images 2

Podman Containers 2

Containerized Applications 5

17

Known Issues

Quadlets Fail For An Unprivileged User 1

Podman Build Command Fails With "Operation Not Permitted" When Unprivileged Users Try
to Establish Volumes 1

Container Storage is Not Accessible to an Unprivileged User 2

X509 Certificate Relies on Legacy Common Name Field 2

Executing Podman Attach --latest Causes Panic if No Containers Are Available 3

Requirements for Using the Default Podman Detach Key Sequence 3

Authentication Error Occurs Pulling an Image Using an Incorrect Name 4

The Latest Tag Is Missing From the oraclelinux Image on Docker Hub 5

Podman Pod Create Fails on Oracle Linux 9 For An Unprivileged User With IMA Enabled 5

Executing Podman Attach --latest Causes Panic if No Containers Are Available 6

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page iv of iv

Preface

Oracle Linux: Podman User's Guide describes how to use Podman, which is an open source,
distributed-application platform that leverages Linux kernel technology to provide resource
isolation management. Detail is provided on the advanced features of Podman and how it can
be installed, configured, and used on Oracle Linux.

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page i of i

https://docs.oracle.com/en/operating-systems/oracle-linux/podman/

1
About Podman and Related Utilities

Podman, Buildah, and Skopeo are a set of tools to create, run, and manage applications
across compatible Oracle Linux systems using Open Container Initiative compatible
containers.

For information about the Open Container Initiative, see the upstream Open Container Initiative
documentation.

About Podman
Podman provides a lightweight utility to run and manage Open Container Initiative compatible
containers.

Podman deployments can reuse existing container images that are designed for Kubernetes,
Docker, and Oracle Cloud Native Environment.

Podman is also intended as a drop-in replacement for Docker, so the CLI functions the same
way if the podman-docker package is installed.

Similar to Docker, Podman integrates with Docker Hub, GitHub Container Registry, and Oracle
Container Registry to share applications in a software-as-a-service (SaaS) cloud.

Unlike Docker, Podman doesn't require a running daemon to function. Containers run correctly
on systems that are running either the latest Unbreakable Enterprise Kernel (UEK) release, or
the Red Hat Compatible Kernel (RHCK). In addition, Podman containers can start and run
without root permissions.

The Oracle Container Registry provides images for licensed commercial and open source
Oracle software products. Images can also be used for development and testing purposes.
The commercial license covers both production and testing use. The Oracle Container Registry
provides a web interface for selecting Oracle images. If required, you must agree to terms of
use before pulling the images by using the Podman client software. See Container Registries
for more information about this service.

For more general information about Podman, see the upstream Podman documentation and
the podman(1) manual page.

Note

Docker Hub and GitHub Container Registry aren't owned or maintained by Oracle, but
Oracle supplies vendor-approved container images on those services for use with
other software platforms and cloud providers.

For more information, see the upstream Docker documentation and the upstream
GitHub documentation.

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 1 of 2

https://opencontainers.org/
https://opencontainers.org/
https://podman.io
https://docs.docker.com
https://docs.github.com
https://docs.github.com

About Buildah
Buildah is a utility for creating Open Container Initiative compatible container images.

Buildah provides a wider range of customization options than the more generic podman build
command. If you create container images by using Buildah, you don't need a running daemon
for the utility to function.

Buildah also doesn't cache builds by default. In addition, the utility can push container images
to container registries, so it's suited for use with deployment scripts and automated build
pipelines.

For more information, see Buildah.

About Skopeo
Skopeo is a utility for managing container images hosted on remote container registries.

Skopeo is useful for inspecting the contents of a container image without needing to first
download it.

If container images are in a self-hosted (private) container registry, Skopeo can be used to
seamlessly move container images from one location to another. Skopeo can also be used to
bulk-delete container images.

For more information, see Skopeo.

Chapter 1
About Buildah

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 2 of 2

2
Install Podman and Related Utilities

Install Podman and its related utilities such as Buildah and Skopeo on an Oracle Linux host.

To use Podman, the system must have the latest Unbreakable Enterprise Kernel (UEK) version
or Red Hat Compatible Kernel (RHCK) installed.

Podman and the related utilities are available for Oracle Linux on the Oracle Linux yum server
and the Unbreakable Linux Network (ULN).

The container-tools module (or metapackage, in the case of Oracle Linux 9 and Oracle
Linux 10 hosts) is provided for convenience to install Podman and the utilities using a single
command. However, Podman and its related utilities are designed to work independently of
each other, so they can also be installed as individual packages. For example, Buildah has no
dependency on Podman, so it's possible to separate the container build infrastructure from
systems on which the containers are intended to run. You can optionally install Buildah on the
same system that you run Podman, or you can install Buildah on another system. Similarly, you
can install Skopeo separate from the other utilities according to specific requirements. To install
these packages individually, see Installing Podman, Installing Buildah, and Installing Skopeo.

To install Podman and the related utilities on Oracle Linux 8 hosts, run the following command:

sudo dnf module install container-tools:ol8

To install Podman and the related utilities on Oracle Linux 9 and Oracle Linux 10 hosts, run the
following command:

sudo dnf install container-tools

Podman, Buildah, Skopeo, and other related utilities are installed.

Tip

If you're using the Oracle Linux Cockpit Web console, you can install the cockpit-
podman add-on application. This adds a Podman containers page to the Cockpit web
console to monitor and manage Podman images, containers and pods. For example,
the Podman containers page provides up-to-date container performance details,
container CLI interaction ability, and options to create, run, and change container
instances. For information on installing and using this add-on, see Oracle Linux: Using
the Cockpit Web Console.

Installing Podman
Install standalone Podman without installing the associated utilities (Buildah or Skopeo) on an
Oracle Linux host.

You can install either the podman package, or the podman-docker package. The podman-docker
package effectively aliases the docker command to podman. The podman-docker package

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 1 of 3

https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/
https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/

might be helpful if you're more familiar with Docker, or where automation expects the docker
command to be present. If you're installing the podman-docker package, replace this package
name in the first step, and use the docker command instead of the podman command in the
rest of this book.

1. Install Podman.

sudo dnf install podman

2. Check the Podman configuration.

Use the podman info command to display information about the configuration and version
of Podman:

podman info

3. Show the Podman commands.

podman --help

For more information, see the podman(1) manual page.

Installing Buildah
Install the Buildah utility without installing Podman or Skopeo on an Oracle Linux host.

1. Install Buildah.

sudo dnf install buildah

2. Check the Buildah configuration.

Use the buildah info command to display information about the configuration and version
of Buildah:

buildah info

3. Show the Buildah commands.

buildah --help

For more information, see the buildah(1) manual page.

Installing Skopeo
Install the Skopeo utility without installing Podman or Buildah on an Oracle Linux host.

1. Install Skopeo.

sudo dnf install skopeo

2. Show the Skopeo commands.

skopeo --help

Chapter 2
Installing Buildah

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 2 of 3

For more information, see the skopeo(1) manual page.

Chapter 2
Installing Skopeo

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 3 of 3

3
Podman Images

Use Podman to search for, pull, review, and manage images that can be used to start
containers and pods.

A container image is a read-only template that's used to generate a container. The image
contains all the requirements for a service or application to run. Images can be limited in
scope, for example, to host a single service such as a web server application. Or, images can
be extensive enough to include a basic OS environment, such as a minimal Oracle Linux
release.

Images can be tagged to identify different versions of the same image. Some images might
include a default tag called latest so that Podman users can identify the most recent version
of the image, but using those in production environments is considered bad practice because
they might contain breaking changes or create unexpected variations between software
deployments. Oracle Linux images don't provide a latest tag. For more information, see
Oracle Linux Container Image Tagging Conventions.

Images are often hosted on container registries that can be accessed over HTTP/S by Podman
instances to obtain particular image versions. Registries are described in more detail in
Container Registries.

To change an existing image or create custom images, use the Buildah utility. For more
information, see Buildah.

Searching for Images in Container Registries
Use the podman search command to run a search for container images in container registries
that are configured on an Oracle Linux system.

For more information about the podman search command, use the podman-search(1) manual
page.

For more information about how to configure container registries for use with Podman, see
Container Registries.

Example 3-1 Search container registries for a container image

Search the configured registries for an oraclelinux image:

podman search oraclelinux

The output looks similar to:

NAME DESCRIPTION
container-registry.oracle.com/os/oraclelinux Oracle Linux
docker.io/library/oraclelinux Official Docker builds of
Oracle Linux.
docker.io/amd64/oraclelinux Official Docker builds of
Oracle Linux.
docker.io/litmusimage/oraclelinux

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 1 of 5

docker.io/arm64v8/oraclelinux Official Docker builds of
Oracle Linux.
...

Pulling Images From a Container Registry
Pull a copy of a container image from a container registry using the podman pull command.

After you find an image, download a copy of it using the podman pull command, specifying the
image reference as follows:

podman pull registry.host/repository/image_name:tag

• The registry.host domain is the resolvable hostname of the registry where the image is
hosted, such as example.com. Although the registry host is often required, if the registry is
already listed within the Podman configuration then specifying this value is optional.

• The repository value is optional and depends on how images are stored on the registry.

• The image_name value is required to specify which container image to download.

• The tag represents a version of the image and we recommend that this is specified. Many
tools default to using the latest tag if no tag is specified but this can lead to errors and is
considered bad practice. See Oracle Linux Container Image Tagging Conventions for more
information on tags and why the latest tag is unreliable.

Shortcuts to registries and repositories for some commonly used container image names are
stored in /etc/containers/registries.conf.d/000-shortnames.conf. Those
shortcuts enable you to pull an image without needing to know the registry or repository to
search, for example:

Container images are downloaded into the local container image store. This storage is
described in more detail in Podman Storage.

For more information on the podman pull command, use the podman-pull(1) manual page.

Example 3-2 Pull an image from the Oracle Container Registry

Pull a slim Oracle Linux 9 container image from the Oracle Container Registry:

podman pull container-registry.oracle.com/os/oraclelinux:9-slim

The output looks similar to:

Trying to pull container-registry.oracle.com/os/oraclelinux:9-slim...
Getting image source signatures
Copying blob 60539f6b41ad done |
Copying config 46cfa93e02 done |
Writing manifest to image destination
46cfa93e021dd2ca65c70112d8d578484c3a9be71d4b05af6c027d4b7ae43182

Because the Oracle Container Registry is configured for use with Podman by default, the
previous command could equally be specified as follows:

podman pull os/oraclelinux:9-slim

Chapter 3
Pulling Images From a Container Registry

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 2 of 5

Example 3-3 Pull an image using a short name

Pull a slim Oracle Linux 9 container image from the Oracle Container Registry using the image
short name:

podman pull oraclelinux:9-slim

Inspecting an Image
After downloading a container image, use the podman inspect command to review the
container image metadata and default configuration settings.

For more information on the podman inspect command, use the podman-inspect(1) manual
page.

Example 3-4 Inspect a container image

Review the slim Oracle Linux 9 container image:

podman inspect container-registry.oracle.com/os/oraclelinux:9-slim

The command provides similar JSON output and looks similar to the following:

[
 {
 "Id":
"46cfa93e021dd2ca65c70112d8d578484c3a9be71d4b05af6c027d4b7ae43182",
 "Digest":
"sha256:58c00a82b6a523256ecbeefc0f4dfdda11c460c1a2b5bf5ec1288fa0bb2fad68",
 "RepoTags": [
 "container-registry.oracle.com/os/oraclelinux:9-slim"
],
 "RepoDigests": [
 "container-registry.oracle.com/os/
oraclelinux@sha256:58c00a82b6a523256ecbeefc0f4dfdda11c460c1a2b5bf5ec1288fa0bb2
fad68",
 "container-registry.oracle.com/os/
oraclelinux@sha256:c7ba887b97ed69de05320f5b558c4dc42805194814935fa5ba329e6f638
4e06e"
],
 "Parent": "",
 "Comment": "",
 "Created": "2025-07-01T21:09:11.79180435Z",
 "Config": {
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/
sbin:/bin"
],
 "Cmd": [
 "/bin/bash"
],
 "Labels": {
 "io.buildah.version": "1.33.11"
 }
 },

Chapter 3
Inspecting an Image

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 3 of 5

 "Version": "",
 "Author": "",
 "Architecture": "amd64",
 "Os": "linux",
 "Size": 116893435,
 "VirtualSize": 116893435,
 "GraphDriver": {
 "Name": "overlay",
 "Data": {
 "UpperDir": "/home/opc/.local/share/containers/storage/
overlay/d62ccb1665e5b7444fa53147fd18e2a7989fff5f330480711e62445a6443ca92/
diff",
 "WorkDir": "/home/opc/.local/share/containers/storage/
overlay/d62ccb1665e5b7444fa53147fd18e2a7989fff5f330480711e62445a6443ca92/work"
 }
 },
 "RootFS": {
 "Type": "layers",
 "Layers": [

"sha256:d62ccb1665e5b7444fa53147fd18e2a7989fff5f330480711e62445a6443ca92"
]
 },
 "Labels": {
 "io.buildah.version": "1.33.11"
 },
 "Annotations": {},
 "ManifestType": "application/
vnd.docker.distribution.manifest.v2+json",
 "User": "",
 "History": [
 {
 "created": "2025-07-01T21:09:10.947182529Z",
 "created_by": "/bin/sh -c #(nop) ADD
file:6bff5a6139bdf95b00802c939bfcb5e9b8c2324a854e6124b95d3312f3428158 in / "
 },
 {
 "created": "2025-07-01T21:09:11.791909449Z",
 "created_by": "/bin/sh -c #(nop) CMD [\"/bin/bash\"]",
 "comment": "FROM 45b3741d0ae8",
 "empty_layer": true
 }
],
 "NamesHistory": [
 "container-registry.oracle.com/os/oraclelinux:9-slim"
]
 }
]

Listing Local Images
Use the podman images command to review a list of locally stored container images.

For more information on the podman images command, use the podman-images(1) manual
page.

Chapter 3
Listing Local Images

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 4 of 5

Example 3-5 List local container images

List all the locally stored container images that have already been downloaded from a
container registry

podman images

The command provides similar output similar to the following:

REPOSITORY TAG IMAGE ID
CREATED SIZE
container-registry.oracle.com/os/oraclelinux 9-slim 46cfa93e021d 5
days ago 117 MB

Deleting a Local Image
Delete a locally stored container image using the podman rmi command.

Container images can't be deleted if they're still in use by a container, even if that container
isn't running. You must remove all the containers that depend on a container image before you
can remove that container image.

For more information on the podman rmi command, use the podman-rmi(1) manual page.

Example 3-6 Delete a local container image

Delete an image named oraclelinux:9-slim that's stored locally:

podman rmi oraclelinux:9-slim

The command provides output similar to the following:

Untagged: container-registry.oracle.com/os/oraclelinux:9-slim
Deleted: 46cfa93e021dd2ca65c70112d8d578484c3a9be71d4b05af6c027d4b7ae43182

Chapter 3
Deleting a Local Image

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 5 of 5

4
Podman Containers

Use Podman to create, run, and manage containers.

Containers are running instances of images. Each container uses an image as its starting point
and then loads into run time by using the parameters that are provided when it's created or run.

Podman can run containers based on images that comply with the Open Container Initiative
specification. Most Podman commands map directly to the command equivalents that are
available in the Docker CLI.

A key difference between Podman and Docker is that while the Docker Engine runs as a
service on the host and all actions are performed by the service, Podman runs as a standalone
runtime so that each operation is independent. This difference is important, because it changes
the security model around working with images and containers.

As Podman operations aren't dependent on a service daemon running as a particular user on
the system, Podman provides more isolated containers than Docker. This also means that you
can either run Podman with and without root permissions.

Podman respects user namespaces, so several users on a single host can run their own
containers and local image stores without conflicts. Because containers running within a user's
namespace are limited to the permissions available to that user on the host system, Podman
can be more secure in some scenarios than Docker.

When running Podman as a standard user without root permissions, functionality can be more
limited. For example, most container networking is achieved by using port mapping and port
forwarding, and workarounds are required to make that functionality available to standard
users without compromising broader system security. Many such limitations that arise for a
standard user can be mitigated by using the provided network drivers and running groups of
containers inside a pod. For more information about networking and Podman, see Podman
Networking. For more information about pods, see Podman Pods.

In general, the instructions provided here apply similarly regardless of whether Podman is run
by a system administrator or not.

Creating Containers
Create a container from a container image using the podman create command.

You can create a container from an existing image using the podman create command. This
creates, but doesn't start a container.

If the image doesn't already exist on the local system, Podman searches the remote registries
for a matching image and pulls the image automatically.

The container is created and the container ID is displayed in the output. The container is
created with the initial state of Created.

You can specify other options when creating a container, such as whether it belongs to a
particular pod or whether it uses a particular network or port mapping. Use the podman help
create command to see more information. Options are extensive and can be used to apply a
wide range of runtime functionality to any container.

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 1 of 6

For more information on the podman create command, use the podman-create(1) manual
page.

Example 4-1 Create a container from an image

Create a container named oracle from an oraclelinux:9-slim image:

podman create --name oracle oraclelinux:9-slim

Show the container is created by listing all the containers:

podman ps --all

The looks similar to:

CONTAINER ID IMAGE
COMMAND CREATED STATUS PORTS NAMES
4fbb572f7dcb container-registry.oracle.com/os/oraclelinux:9-slim /bin/
bash 1 minute ago Created oracle

Running Containers
Podman offers many ways to run a container. The examples here show you a few options.

Use the podman run command to run a container. If you run a container that doesn't already
exist, it's created automatically. If the image that the container uses isn't available locally,
Podman searches the remote registries for a matching image and pulls the image
automatically.

You can create a container and connect to it in a single step by using the -it flag. The -i flag
makes the container interactive and -t connects the local terminal to the container. This flag
combination is commonly used in conjunction when running a specified shell as part of the
podman run command.

You can start a container, and run a single command. When the command is completed, the
container is destroyed. Use the podman run command with the --rm flag to do this.

You can also create Podman containers that continue to run as a background daemon by
including the -d flag in the command.

If a container runs a shell as the primary process (PID 1) and you intend to detach it, run it with
the --stop-signal=SIGHUP command option so that the shell is stopped cleanly when you stop
the container. Many shells ignore the default SIGTERM signal when stopping a container. If the
correct stop-signal isn't used, the container might return the following error when the container
is stopped:

WARN[0010] StopSignal SIGTERM failed to stop container myol9 in 10 seconds,
resorting to SIGKILL

For more information on the podman run command, use the podman-run(1) manual page.

Example 4-2 Run a container and run a system command

podman run --rm oraclelinux:9-slim cat /etc/oracle-release

Chapter 4
Running Containers

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 2 of 6

A container is started, and when the system command completes (the cat command in this
example), the container is destroyed. The output looks similar to:

Oracle Linux Server release 9.6

Example 4-3 Run a container and connect to the Bash shell

podman run --name oracleshell -it oraclelinux:9-slim /bin/bash

A container is started, and the Bash shell is started. The output looks similar to:

bash-5.1#

You can run system command in the shell. For example:

cat /etc/oracle-release

The output looks similar to:

Oracle Linux Server release 9.6

The container stops as soon as you disconnect by typing exit.

To restart the container and connect to it again, run the podmand start command. For
example:

podman start -ai oracleshell

Example 4-4 Running a container in the background

podman run -d --name oracledaemon oraclelinux:9-slim /bin/bash -c 'sleep 1000'

Example 4-5 Running a container with a shell as the primary process

podman run --stop-signal SIGHUP --name myol9 oraclelinux:9-slim

Enabling FIPS Mode in Containers
To run containers in FIPS mode, you must first enable FIPS mode on the Oracle Linux host
system.

After you enable FIPS mode on an Oracle Linux host, Podman runs Oracle Linux containers in
FIPS mode automatically.

For more information about enabling FIPS mode on Oracle Linux hosts, see the following
documents:

• Oracle Linux 8: Enhancing System Security

• Oracle Linux 9: Enhancing System Security

• Oracle Linux 10: Enhancing System Security

Chapter 4
Enabling FIPS Mode in Containers

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 3 of 6

https://docs.oracle.com/en/operating-systems/oracle-linux/8/security/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/security/
https://docs.oracle.com/en/operating-systems/oracle-linux/10/security/

Note

Oracle provides FIPS compliant container images by using the slim-fips tag.
Container images tagged as FIPS compliant include compliant cryptographic package
versions and initial image setup required for container FIPS mode. If you use these
images you don't need to perform any extra steps to configure a container for FIPS
mode. See The slim Tag for more information.

Listing and Monitoring Containers
Podman contains various commands to list and monitor containers. The examples here show
you a few options.

Example 4-6 List the running containers

You can list all the running Podman containers using the podman ps command. Use the --all
flag to also display the stopped and paused containers:

podman ps --all

The command shows similar output to the following:

CONTAINER ID IMAGE
COMMAND CREATED STATUS PORTS
NAMES
dfb0dc74293a container-registry.oracle.com/os/oraclelinux:9-slim /bin/
bash 17 minutes ago Exited (0) 12 minutes ago
oracleshell
1dd4aff270bb container-registry.oracle.com/os/oraclelinux:9-slim /bin/bash -
c slee... 10 minutes ago Up 10 minutes oracledaemon

Example 4-7 Show container logs

To review the logs generated by a container that has already performed actions, use the
podman logs command with the NAME or CONTAINER ID of the container. For example:

podman logs oracleshell

Example 4-8 Show container hardware resources

To review the hardware resource usage statistics for any running container, use the podman
stats command. For example:

podman stats oracleshell

The command provides similar output to the following:

ID NAME CPU % MEM USAGE / LIMIT MEM % NET
IO BLOCK IO PIDS CPU TIME AVG CPU %
bae740b48b53 oracleshell 0.00% 0B / 0B 0.00% 0B /
0B 0B / 0B 0 0s 0.00%

Chapter 4
Listing and Monitoring Containers

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 4 of 6

Note

To review statistics for containers without root permissions, you need to enable
cgroups v2 on the host system. This isn't enabled by default for Oracle Linux 8 hosts,
but is enabled default for Oracle Linux 9 and Oracle Linux 10 hosts. For more
information about cgroups v2, see Run Control Group Version 2 on Oracle Linux.

Pausing and Resuming Containers
Pause and resume Podman containers using the podman pause and podman unpause
commands.

If you need to temporarily halt the operation of a container without destroying its workload, use
the podman pause command and specify the container name or ID.

Running the podman pause command freezes all the running processes inside a container, in
their current state. When you're ready for the container to resume where it was halted, you can
instruct the container to continue with its previous operation from that point by using the podman
unpause command with the container name or ID.

For more information on the podman pause command, use the podman-pause(1) manual page.
For information on the podman unpause command, use the podman-unpause(1) manual page.

Example 4-9 Pause a container

podman pause mycontainer

Example 4-10 Unpause a container

podman unpause mycontainer

Stopping and Removing Containers
Stop and remove Podman containers using the podman stop and podman rm commands.

To stop a container use the podman stop command with the name or container ID. If you need
to temporarily take the server down for maintenance, you can stop every running container that
hasn't already been paused by appending the --all flag to the podman stop command:

To delete a container use the podman rm command with the container name or ID. You can also
use the --all flag to remove all containers.

For more information on the podman stop command, use the podman-stop(1) manual page.
For information on the podman rm command, use the podman-rm(1) manual page.

Example 4-11 Stop a container

podman stop mycontainer

Example 4-12 Stop all containers

podman stop --all

Chapter 4
Pausing and Resuming Containers

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 5 of 6

https://docs.oracle.com/en/learn/ol-cgroup-v2/

Example 4-13 Remove a container

podman rm mycontainer

Example 4-14 Remove all containers

podman rm --all

Chapter 4
Stopping and Removing Containers

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 6 of 6

5
Podman Pods

Podman introduces the concept of the "pod" within the context of a container runtime. This
concept is borrowed from Kubernetes and isn't available in Docker.

A pod is a collection of containers that are grouped together into a single namespace so that
they can share resources, such as local networking, to communicate with each other and
interact. A pod can be used to group a set of services that you need to deploy a complete
application.

In many ways a pod behaves in a similar way to a virtual host on which the services within
each container are run. This means that each container can access the services on each other
container as if they were running on the same host. Running containers in this way can remove
a lot of complexity around networking and can make it easier to limit public exposure of ports
that are only intended for use by services within the application itself.

Podman pods are the smallest compute units that can be created and deployed in a
Kubernetes environment. These pods include an infra container so that Podman can connect
with all the containers within the pod. Podman can manage the containers in the pod, such as
stopping containers, without interfering with the operation of the pod itself.

By running containers within pods, it's more straightforward to set up and tear down entire
application environments using atomic operations. By using pods, you can create service
wrappers to automatically start a set of containers for an application at boot. See Podman
Service Wrappers for more information.

Creating Pods
To create Podman pods, use the podman pod create command, or the podman run command
with the --pod flag.

Create a pod with the podman pod create command. Include the --name flag to give the pod a
human-readable identifier. You can also set the --hostname option if services within the pod
need to use a particular hostname when connecting to each other.

Pods can be created automatically when a container is run for the first time. To do this, use the
podman run command with the --pod option, and prepend the new: option to the name for the
pod.

Attach containers to a pod using the podman run command with the --pod flag.

For more information on the podman pod create command, see the podman-pod-create(1)
manual page.

Example 5-1 Create a pod with a name

Create a pod named mypod:

podman pod create --name mypod

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 1 of 7

Example 5-2 Create a container and an associated pod automatically

Create a pod named mypod that includes a container that runs an NGINX web server:

podman run --pod new:mypod --detach quay.io/libpod/alpine_nginx:latest

Example 5-3 Create and attach containers to a pod

1. Create a pod named mypod:

podman pod create --name mypod

2. Create a container using an nginx image and connect it to the pod named mypod:

podman run --pod mypod --detach quay.io/libpod/alpine_nginx:latest

3. Create a second container, using an oraclelinux image and connect it to the pod named
mypod:

podman run --pod mypod -it --rm oraclelinux:9-slim curl http://localhost:80

The curl command is run in the second container to access the NGINX web service
running on localhost on port 80 (running on the first container). The output from the curl
command shows the HTML output of the NGINX server, and looks similar to:

podman rulez

The containers are both running as a standard user (not root), but can use a reserved port
within the pod without any port mapping required. Furthermore, the containers can both
use the localhost network namespace and can access each other as if they were running
on the same host. This example provides an illustration of how pods can make it easier for
services running within different containers to access each other and work together without
any requirement for complex networking.

Listing and Monitoring Pods
Podman contains various commands to list and monitor pods. The examples here show you a
few options.

Example 5-4 List pods

List all the available and running pods using the podman pod ps or podman pod list
command. For example:

podman pod ps

Or:

podman pod list

Chapter 5
Listing and Monitoring Pods

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 2 of 7

Both commands show similar output to the following:

POD ID NAME STATUS CREATED INFRA ID # OF
CONTAINERS
d2789902abe4 oraclepod Created 9 seconds ago 4e203a8a2f6d 1
d8e8626a058c mypod Running 21 seconds ago c31228fb0310 2

Example 5-5 List the containers in a pod

Review all the containers on the system using the podman ps command. Use the --all flag to
show the containers, and the --pod flag to show the pods they're associated with.

podman ps --all --pod

You can also combine these flags using:

podman ps -ap

The output might look similar to:

CONTAINER ID IMAGE
COMMAND CREATED STATUS PORTS
NAMES POD ID PODNAME
7fefb402a3b8 localhost/podman-
pause:5.4.0-1750143108 45 seconds ago Up 33
seconds 9e746bbc3f6b-infra 9e746bbc3f6b mypod
22061372871d container-registry.oracle.com/olcne/nginx:1.20.1 nginx -g
daemon o... 32 seconds ago Up 33 seconds 80/tcp, 443/tcp
awesome_driscoll 9e746bbc3f6b mypod

In this example, the mypod pod is listed under PODNAME for each of the two containers, so these
two containers are running in the same pod.

Example 5-6 List the containers in a named pod

Show the containers in pod named mypod:

podman pod ps --ctr-names --filter name=mypod

The output lists the containers in the pod, and might look similar to:

POD ID NAME STATUS CREATED INFRA ID NAMES
8f7088f859da mypod Running 13 minutes ago d2bb22029ec9
8f7088f859da-infra,nginxcontainer

Example 5-7 Inspect a pod

To show the configuration information about a pod, use the podman pod inspect command.
For example:

podman pod inspect mypod

Chapter 5
Listing and Monitoring Pods

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 3 of 7

The JSON output looks similar to:

[
 {
 "Id":
"d8e8626a058c4bc538f95542728e6bdc8c44fb34b960ad9b81b06e4a804c4f3e",
 "Name": "mypod",
 "Created": "2025-07-11T03:26:07.8625531Z",
 "CreateCommand": [
 "podman",
 "run",
 "-d",
 "--pod",
 "new:mypod",
 "container-registry.oracle.com/olcne/nginx:1.20.1"
],
 "ExitPolicy": "continue",
 "State": "Running",
 "Hostname": "",
 "CreateCgroup": true,
 "CgroupParent": "user.slice",
 "CgroupPath": "user.slice/user-1000.slice/user@1000.service/
user.slice/user-
libpod_pod_d8e8626a058c4bc538f95542728e6bdc8c44fb34b960ad9b81b06e4a804c4f3e.sl
ice",
 "CreateInfra": true,
 "InfraContainerID":
"c31228fb03102c049f195f07da6415eee14267b55135ce480ef5a8f4d6660bbb",
 "InfraConfig": {
 "PortBindings": {},
 "HostNetwork": false,
 "StaticIP": "",
 "StaticMAC": "",
 "NoManageResolvConf": false,
 "DNSServer": null,
 "DNSSearch": null,
 "DNSOption": null,
 "NoManageHostname": false,
 "NoManageHosts": false,
 "HostAdd": null,
 "HostsFile": "",
 "Networks": null,
 "NetworkOptions": null,
 "pid_ns": "private",
 "userns": "host",
 "uts_ns": "private"
 },
 "SharedNamespaces": [
 "ipc",
 "net",
 "uts"
],
 "NumContainers": 2,
 "Containers": [
 {
 "Id":

Chapter 5
Listing and Monitoring Pods

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 4 of 7

"c31228fb03102c049f195f07da6415eee14267b55135ce480ef5a8f4d6660bbb",
 "Name": "d8e8626a058c-infra",
 "State": "running"
 },
 {
 "Id":
"971bc0b8146584f65f0cb71d93eade808540d9a956d2a2d6c6445d33adf0abea",
 "Name": "eager_pascal",
 "State": "running"
 }
],
 "LockNumber": 0
 }
]

Example 5-8 List processes running in a pod

To list the processes running in a pod, use the podman pod top command. For example:

podman pod top mypod

The output might look similar to:

USER PID PPID %CPU ELAPSED TTY
TIME COMMAND
0 1 0 0.000 15m43.454064014s ?
0s /catatonit -P
root 1 0 0.000 15m42.454997215s ?
0s nginx: master process nginx -g daemon off;
nginx 2 1 0.000 15m42.455054885s ?
0s nginx: worker process
nginx 3 1 0.000 15m42.455123415s ?
0s nginx: worker process

Example 5-9 Show hardware resource usage for pods

To show resource usage for containers in pods, use the podman pod stats command.

podman pod stats -a --no-stream

The output might look similar to:

POD CID NAME CPU % MEM USAGE/
LIMIT MEM % NET IO BLOCK IO PIDS
d8e8626a058c c31228fb0310 d8e8626a058c-infra 0.00% 53.25kB /
16.29GB 0.00% 0B / 1.076kB -- / -- 1
d8e8626a058c 971bc0b81465 eager_pascal 0.00% 2.642MB /
16.29GB 0.02% 0B / 1.076kB -- / -- 3
d2789902abe4 4e203a8a2f6d d2789902abe4-infra 0.00% -- /
-- 0.00% -- / -- -- / -- --

Chapter 5
Listing and Monitoring Pods

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 5 of 7

To show real time resource usage, don't include the --no-stream flag.

podman pod stats -a

To exit the real time resource reporting, use Ctrl+C.

Pausing and Resuming Pods
Pause and resume Podman pods using the podman pod pause and podman pod unpause
commands.

To temporarily halt the operation of a pod without destroying its workload, use the podman pod
pause command and specify the pod name or ID.

Running the previous command freezes all the running processes inside a pod, in their current
state. When you're ready for the pod to resume where it was halted, you can instruct the pod to
continue with its previous operation from that point by using the podman pod unpause
command with the pod name or ID.

For more information on the podman pod pause command, see the podman-pod-pause(1)
manual page. For information on the podman pod unpause command, see the podman-pod-
unpause(1) manual page.

Example 5-10 Pause a pod

podman pod pause mypod

Example 5-11 Unpause a pod

podman pod unpause mypod

Stopping and Starting Pods
Stop and start Podman pods using the podman pod stop and podman pod start commands.

Starting and stopping containers in a pod might affect the entire pod. However, you can use
the podman pod start and podman pod stop commands to start and stop every container in a
pod at the same time.

To stop a pod, use the podman pod stop command with the name or pod ID. If you need to
temporarily take the server down for maintenance, you can stop every running pod by
appending the --all flag to the podman pod stop command.

To start a pod, use the use the podman pod start command with the name or pod ID.

For more information on the podman pod stop command, see the podman-pod-stop(1) manual
page. For information on the podman pod start command, see the podman-pod-start(1)
manual page.

Example 5-12 Stop a pod

podman pod stop mypod

Chapter 5
Pausing and Resuming Pods

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 6 of 7

Example 5-13 Stop all running pods

podman pod stop --all

Example 5-14 Start a pod

podman pod start mypod

Removing Pods
Remove Podman pods using the podman pod rm command.

To delete a pod use the podman pod rm command with the pod name or ID. You can remove
every running pod by appending the --all flag to the podman pod rm command.

Before you remove a pod it must be stopped. Use the podman pod stop command to stop
pods.

Pods can only be removed when all the containers in the pod have been removed, except for
the infra container. By default, an infra container is created for each pod, so a pod normally
contains at least one container which can only be removed by removing the pod itself.

Example 5-15 Remove a pod

podman pod rm mypod

Example 5-16 Remove all running pods

podman pod rm --all

Chapter 5
Removing Pods

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 7 of 7

6
Kubernetes Files

Use the podman kube commands to generate and use YAML files that can be used in both
Podman and Kubernetes to move pods, containers, volumes and other objects between the
two container platforms.

Using Kubernetes YAML files provides several benefits, such as:

• Portability: You can move pods between Podman and Kubernetes, or run the same
containers and pods on both container platforms.

• Readability: You can use the YAML files in programming languages.

• Convenience: The YAML files can contain all the necessary configuration information for
the pods or containers. Thus, you don't need to specify different parameters when issuing
Podman commands.

The following Podman commands are available to work with Kubernetes YAML files:

podman kube generate
Generates a Kubernetes YAML file of an existing pod. The YAML file contains a description of
a Podman pod that can contain many containers, volumes, or other objects. You can use this
YAML file to create pods in either Podman or Kubernetes.

podman kube play
Deploys a pod in Podman, based on a Kubernetes YAML file.

podman kube apply
Deploys a pod into a Kubernetes cluster, based on a Kubernetes YAML file.

podman kube down
Stops the containers in a pod, and removes the pod in Podman, using a Kubernetes YAML
file.

To get more information about these commands, use the --help flag when issuing the
commands. You can also see the podman-kube(1) manual page.

The examples in this section show you how to generate Kubernetes YAML files in Podman,
and use the YAML files in both Podman and Kubernetes.

Tip

For Oracle Linux 8 and Oracle Linux 9 systems, the Oracle Cloud Native Environment
libvirt provider can be useful for testing Kubernetes YAML files. For more
information, see Oracle Cloud Native Environment Quick Start for Release 2.

Some examples in this section use the Kubernetes CLI (kubectl) to interact with a Kubernetes
cluster. You can install the kubectl software package to the local system and use the
Kubernetes configuration file (the kubeconfig file) to connect to the cluster. Information on
installing kubectl is available in the Oracle Cloud Native Environment documentation or in the
upstream Kubernetes documentation.

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 1 of 7

https://docs.oracle.com/en/operating-systems/olcne/2/quickstart/
https://docs.oracle.com/en/operating-systems/olcne/index.html
https://kubernetes.io/docs/tasks/tools/

Podman has commands to generate a Kubernetes YAML file and deploy it to a Kubernetes
cluster, but any further management of Kubernetes objects (such as pods and volumes) must
be done using kubectl commands. For information on kubectl commands and how to use
them, see the Kubernetes upstream documentation.

Example 6-1 Creating and using a Kubernetes YAML file

This example steps through creating a Podman pod, creating a Kubernetes YAML file from the
pod, then deploying the pod to both Podman and Kubernetes using the YAML file.

1. Create a pod and add an NGINX container to the pod.

podman run --pod new:mypod -dt --name nginxcontainer quay.io/libpod/
alpine_nginx:latest

2. Verify the creation of the pod and the container.

List all the pods:

podman pod list

The output looks similar to:

POD ID NAME STATUS CREATED INFRA ID # OF
CONTAINERS
8f7088f859da mypod Running 2 minutes ago d2bb22029ec9 2

Show the containers in the pod:

podman pod ps --ctr-names --filter name=mypod

The output lists the container names in the pod, and looks similar to:

POD ID NAME STATUS CREATED INFRA ID NAMES
8f7088f859da mypod Running 13 minutes ago d2bb22029ec9
8f7088f859da-infra,nginxcontainer

The infra and nginxcontainer are listed in the pod.

3. Create a Kubernetes YAML file from the pod.

podman generate kube mypod --filename mypod.yaml

4. Check the contents of the YAML file. The mypod.yaml file might look similar to:

Save the output of this file and use kubectl create -f to import
it into Kubernetes.
#
Created with podman-5.4.0
apiVersion: v1
kind: Pod
metadata:
 annotations:
 io.kubernetes.cri-o.SandboxID/nginxcontainer: d2bb22029ec98f7...
 creationTimestamp: "2025-07-15T02:18:18Z"

Chapter 6

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 2 of 7

https://kubernetes.io/docs/reference/kubectl/

 labels:
 app: mypod
 name: mypod
spec:
 containers:
 - env:
 - name: TERM
 value: xterm
 image: quay.io/libpod/alpine_nginx:latest
 name: nginxcontainer
 tty: true

5. Remove the containers and pod before trying to run this YAML file in Podman:

podman stop nginxcontainer

podman rm nginxcontainer

podman pod rm mypod

6. Run the YAML in Podman to deploy the pod and its containers:

podman kube play mypod.yaml

You can see the pod is and the containers are running using the steps to verify the pod
shown earlier. For example:

podman pod list

podman pod ps --ctr-names --filter name=mypod

7. Stop the Podman pod using the YAML file:

podman kube down mypod.yaml

8. Run the YAML file in Kubernetes to deploy the pod.

If you have the kubeconfig file for the Kubernetes cluster, you can use the podman kube
apply command. For example:

podman kube apply --kubeconfig mykubeconfig --file mypod.yaml

If you have access to the Kubernetes cluster, you can copy the YAML file to a system that
has access to the Kubernetes CLI, and use the kubectl create command to deploy the
pod. For example:

kubectl create -f mypod.yaml

9. To confirm the pod is running in Kubernetes, run the following command:

kubectl get pods

Chapter 6

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 3 of 7

10. To remove the Kubernetes pod, run the following command:

kubectl delete pod mypod

Creating a Kubernetes YAML File
Use the podman kube generate command to generate a Kubernetes YAML file for a Podman
container, pod, or volume.

The YAML file can be used in a Kubernetes environment to start a Pod, Service, or
PersistentVolumeClaim. It can also be used in Podman to test the Kubernetes objects are
created correctly.

For pods that include volume mounts to start in Kubernetes, a StorageClass must be set up in
Kubernetes with the appropriate configuration for the PersistentVolumeClaim. If the
StorageClass is set up, a volume is automatically created when you run the pod.

For more information on the podman kube generate command, see the podman-kube-
generate(1) manual page.

Example 6-2 Create a YAML file from a container

1. Create a Podman container:

podman create --name myoracle oraclelinux:9-slim

2. Generate a Kubernetes YAML file of the container:

podman generate kube myoracle --filename myoracle.yaml

3. Verify the resulting myoracle.yaml file looks similar to:

Save the output of this file and use kubectl create -f to import
it into Kubernetes.
#
Created with podman-5.4.0
apiVersion: v1
kind: Pod
metadata:
 creationTimestamp: "2025-07-14T07:09:20Z"
 labels:
 app: myoracle-pod
 name: myoracle-pod
spec:
 containers:
 - image: container-registry.oracle.com/os/oraclelinux:9-slim
 name: myoracle

Example 6-3 Create a YAML file from a container with a volume mount

1. Create a Podman container that includes a volume mount:

podman run --name myvolumepod --volume mydata:/data oraclelinux:9-slim

Chapter 6
Creating a Kubernetes YAML File

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 4 of 7

2. Generate a Kubernetes YAML file of the container:

podman generate kube myvolumepod --filename myvolumepod.yaml

3. Verify the resulting myvolumepod.yaml file looks similar to:

Save the output of this file and use kubectl create -f to import
it into Kubernetes.
#
Created with podman-5.4.0

NOTE: If you generated this yaml from an unprivileged and rootless
podman container on an SELinux
enabled system, check the podman generate kube manual page for steps to
follow to ensure that your pod/container
has the right permissions to access the volumes added.

apiVersion: v1
kind: Pod
metadata:
 creationTimestamp: "2025-07-14T07:12:40Z"
 labels:
 app: myvolumepod-pod
 name: myvolumepod-pod
spec:
 containers:
 - image: container-registry.oracle.com/os/oraclelinux:9-slim
 name: myvolumepod
 volumeMounts:
 - mountPath: /data
 name: mydata-pvc
 volumes:
 - name: mydata-pvc
 persistentVolumeClaim:
 claimName: mydata

Example 6-4 Creating a YAML file from a pod

1. Create a pod and add an NGINX container to the pod.

podman run --pod new:mypod -dt --name nginxcontainer quay.io/libpod/
alpine_nginx:latest

2. Create a Kubernetes YAML file from the pod.

podman generate kube mypod --filename mypod.yaml

3. Verify the resulting mypod.yaml file looks similar to:

Save the output of this file and use kubectl create -f to import
it into Kubernetes.
#
Created with podman-5.4.0
apiVersion: v1
kind: Pod

Chapter 6
Creating a Kubernetes YAML File

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 5 of 7

metadata:
 annotations:
 io.kubernetes.cri-o.SandboxID/nginxcontainer: d2bb22029ec98f7...
 creationTimestamp: "2025-07-15T02:18:18Z"
 labels:
 app: mypod
 name: mypod
spec:
 containers:
 - env:
 - name: TERM
 value: xterm
 image: quay.io/libpod/alpine_nginx:latest
 name: nginxcontainer
 tty: true

Running a Kubernetes YAML File
Use the podman kube play command to run a Kubernetes YAML file in Podman. This is useful
to verify the file is generated correctly.

Use the podman kube play command to run a Kubernetes YAML file in Podman.

For more information on the podman kube play command, see the podman-kube-play(1)
manual page.

Example 6-5 Run a Kubernetes YAML file in Podman

podman kube play mypod.yaml

You can verify the pod and containers are running using podman pod commands such as:

podman pod list

podman pod ps --ctr-names --filter name=mypod

Removing Pods Using a Kubernetes YAML File
Use the podman kube down command to stop and remove Podman pods using a Kubernetes
YAML file.

The example here shows you how to stop and remove Podman pods that were created using a
YAML file generated using the podman kube generate command. The podman kube down
command is most likely to be used with the podman kube play command when testing
Kubernetes YAML files. The podman kube down command stops and removes the pod and
associated objects listed in the YAML file, such as secrets and volumes.

For more information on the podman kube down command, see the podman-kube-down(1)
manual page.

Example 6-6 Stop and remove a pod using a YAML file

podman kube down mypod.yaml

Chapter 6
Running a Kubernetes YAML File

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 6 of 7

Deploying to a Kubernetes Cluster
Use the podman kube apply command to run a Kubernetes YAML file and create pods and the
associated objects in a Kubernetes cluster.

Use the podman kube apply command to run the YAML file generated in Podman.

The example here shows how to run a YAML file generated in Podman to create pods and
containers in a Kubernetes cluster. This assumes you have set up a Kubernetes cluster. You
need to provide the Kubernetes configuration file (the kubeconfig file) for the destination
cluster, and this can be copied from the Kubernetes cluster to the local system. You also need
to ensure the Kubernetes Server API port is open on the server running Kubernetes.

When you deploy a YAML file to a Kubernetes cluster, the pods are running on that cluster, not
Podman, so any management of the Kubernetes objects needs to be done using kubectl. No
Podman commands are available to manage objects in a Kubernetes cluster, other than as
shown here, to deploy a YAML file.

For more information on the podman kube apply command, see the podman-kube-apply(1)
manual page.

Example 6-7 Deploy a YAML file to a Kubernetes cluster

podman kube apply --kubeconfig mykubeconfig --file mypod.yaml

If you have access to the Kubernetes cluster, use the Kubernetes CLI (kubectl) to verify the
pod is created using:

kubectl get pods

Deploying to a Kubernetes Cluster Using kubectl
Use the Kubernetes CLI (kubectl) to deploy a Kubernetes YAML file into a Kubernetes cluster.

The example here shows how to run a YAML file generated in Podman to create pods and
associated objects in a Kubernetes cluster. This assumes you have set up a Kubernetes
cluster, and the Kubernetes CLI (kubectl) is configured to access the cluster.

1. Copy the YAML file to the system where kubectl is set up to access the cluster.

2. Use the kubectl create command to run the YAML file generated in Podman.

For example:

kubectl create -f mypod.yaml

3. Verify the pod is created.

kubectl get pods

Chapter 6
Deploying to a Kubernetes Cluster

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 7 of 7

7
Podman Storage

Set up and configure storage for Podman pods and containers, and for Buildah and Skopeo.

By default, container images are stored in $HOME/.local/share/containers/storage/.
If you start a container using root privileges (using the sudo command), the images are stored
in the /var/lib/containers directory. These locations conform to Open Container Initiative
specifications. The separation of the local image repository for standard users ensures that
containers and images maintain the correct permissions and that containers can run
concurrently without affecting other users on the system.

All Podman related utilities take advantage of the same storage configuration. This means that
Podman, Buildah, and Skopeo are all aware of the same storage locations for images available
on the system.

These storage locations can be set up as mount points to take advantage of network storage,
or dedicated local file systems, depending on requirements.

Caution

When containers are run by a standard user (without the sudo command), Podman
doesn't have the necessary permissions to access network shares and mounted
volumes. If you intend to run containers as a standard user, only configure directory
locations on the local file systems.

You can alter the configuration for Podman storage to address other requirements for a
particular use case.

Setting Storage Configuration Options
System-wide Podman storage is configured in the /etc/containers/storage.conf file on
Oracle Linux 8 and Oracle Linux 9 systems, and the /usr/share/containers/
storage.conf file on Oracle Linux 10 systems.

You can override the system-wide storage configuration by creating a
separate $HOME/.config/containers/storage.conf configuration file for any user. This
file must be created as needed. For example, the following is an example of a storage
configuration file for a user in the $HOME/.config/containers/storage.conf file:

[storage]
 driver = "overlay"
 runroot = "/run/user/1000"
 graphroot = "/home/oracle/.local/share/containers/storage"
 [storage.options]
 size = ""
 remap-uids = ""
 remap-gids = ""
 ignore_chown_errors = ""

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 1 of 3

 remap-user = ""
 remap-group = ""
 mount_program = "/usr/bin/fuse-overlayfs"
 mountopt = ""
 [storage.options.thinpool]
 autoextend_percent = ""
 autoextend_threshold = ""
 basesize = ""
 blocksize = ""
 directlvm_device = ""
 directlvm_device_force = ""
 fs = ""
 log_level = ""
 min_free_space = ""
 mkfsarg = ""
 mountopt = ""
 use_deferred_deletion = ""
 use_deferred_removal = ""
 xfs_nospace_max_retries = ""

Configuration options are described in detail in the containers-storage.conf(5) manual
page. The following descriptions describe the information in this example configuration file:

• driver: The storage driver is used to define how images and containers are stored. In
Docker, there were options to use overlay or overlay2 drivers, but Podman treats these
as interchangeable to mean overlay2. Oracle has tested the overlay2 driver with XFS,
Ext4, and Btrfs where kernel support is available. Although you can change the storage
driver to use another file system that's capable of layering, Oracle only supports the
overlay2 driver with the tested file systems.

• graphroot: The storage location where images are stored. As already mentioned, for
standard users images are typically in $HOME/.local/share/containers/storage/.
A legitimate use case to change this location, is where home directories might be NFS
mounted.

Important

If you change the graphroot location, you must ensure that SELinux labeling is
correct for the new location.

You can provide more storage locations for other image repositories by defining the paths
to this in the additionalimagestores parameter within the [storage.options] section of
the configuration file. Use this option to provide read-only access to shared images across
networked storage.

• runroot: The default storage directory for all writable content for a container. The data
within this directory is temporary and exists for the lifetime of the container. For a root user,
the runroot location is often set to /var/run/containers/storage.

Depending on the storage driver that you use, different storage options might be available to
use in the [storage.options] section of the configuration file. Some generic options that
control user and group remapping are available to all drivers, and in all cases you can set a
size parameter to apply quotas to container images.

Chapter 7
Setting Storage Configuration Options

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 2 of 3

Setting Up Container Mounts
Podman caters to automatically mounting particular directories on the host system into each
container. This feature can be useful for sharing host secrets and authentication information
with each container without storing the information within the images themselves. A common
use case is that where system-wide private keys, certificates, or authentication credentials
might be needed during a build process to provide access to external resources that a user
might not have at their privilege level.

You can define other default mounts in /usr/share/containers/mounts.conf or
in /etc/containers/mounts.conf. These entries are formatted as a colon-separated
mapping between the source and destination directories, for example:

/src/dir/on/host:/run/target/on/container

See the containers-mounts.conf(5) manual page for more information.

You can also use the --volume or -v option when building an image or running a container
from an image to mount a local directory into a container directory where required. For
example:

sudo buildah bud -v /path/on/host:/path/on/container:rw -t newimage:1.0 .

sudo podman run --name mycontainer -d -v /path/on/host:/path/on/container:z
newimage:1.0

Other options are available for a volume mount. Notably the -z option helps where you might
need to share an SELinux security context between several containers or between the
container and the host system. Sharing an SELinux security context is useful when running a
container as a non root user. This option is based on the SELinux multi level security (MLS)
feature.

To restrict the volume to only the running container such that the volume's SELinux context
isn't with other containers, use the -Z option. This option is based on the SELinux multi
category security (MCS) feature.

See the podman-run(1) manual page for more information on --volume options. See the
Oracle Linux: Administering SELinux for more information about SELinux contexts.

Chapter 7
Setting Up Container Mounts

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 3 of 3

https://docs.oracle.com/en/operating-systems/oracle-linux/selinux/

8
Podman Networking

Understand how to configure the different networking requirements for containers that run in
Podman, or when working with images and temporary containers within Buildah.

Podman handles the networking of containers differently depending on whether the containers
are run by the root or privileged user or by a standard user on the host system. The root user
has considerably more power to change network infrastructure on the host, but the standard
user has limited ability to alter network infrastructure.

In a network setup for Podman, containers that are running in a pod or a group share the same
networking namespace, and therefore have access to the same IP and MAC addresses and
port mappings. The shared namespace eases network communication between different
containers, or between the host and the containers running on it. For more information about
pods, see Podman Pods.

Unless indicated otherwise, all the networking procedures in this section can only be
performed by the root or privileged user.

Setting a Proxy Server
Configure Podman to use proxy servers, both system wide, and for the Podman systemd
service.

Podman automatically uses the system proxy settings for commands that you run and for any
containers that you provision.

You can apply proxy settings on a system-wide basis by adding these to /etc/profile:

HTTP_PROXY=proxy_URL:port
HTTPS_PROXY=proxy_URL:port

Some services, such as the Cockpit web console, use the Podman API systemd service to
interact with Podman.

Note

The Podman API service isn't required to use Podman. Only run this service if you use
applications that use the API to interact with Podman, such as the Cockpit web
console.

To set the system proxy environment variables for services that use the Podman API, you can
create a systemd service drop-in.

1. Create the /etc/systemd/system/podman.service.d directory, if it doesn't already
exist, to host systemd service drop-in configuration specific to the Podman API service.

sudo mkdir -p /etc/systemd/system/podman.service.d

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 1 of 10

2. Create or edit the /etc/systemd/system/podman.service.d/http-proxy.conf
file to contain contents similar to:

[Service]
Environment="HTTP_PROXY=proxy_URL:port"
Environment="HTTPS_PROXY=proxy_URL:port"

Replace proxy_URL:port with the URL and port number for the proxy server that you need
to use.

3. Reload the systemd configuration changes and restart the Podman API service:

sudo systemctl daemon-reload

sudo systemctl restart podman

Configuring Port Mapping for Containers
Map networking ports to use with unprivileged Podman containers.

For unprivileged containers that are run by the standard user, without root permissions,
Podman relies on port mapping to use the existing network infrastructure that's available on the
host system. A standard user can't, and doesn't need to, configure specific network settings
such as assigning IP addresses for containers. Podman handles the networking functionality
for these containers automatically by performing port forwarding to container-based services.

In previous releases of Oracle Linux and Podman, slirp4netns provided a separate network
configuration for each container, set its own gateway address, and provided Network Address
Translation (NAT) for communication between unprivileged containers and the host when
restricted port access was needed. Port publishing for an unprivileged user was limited to IPv4
port numbers 1024 to 65535, and there was no native IPv6 port mapping functionality.

For systems running Oracle Linux 9.5 or newer, and Podman 5.3 or newer, unprivileged
containers use pasta networking by default. Oracle Linux 10 systems also use pasta
networking by default.

Pasta networking uses the Plug A Simple Socket Transport (passt) network driver to copy the
IP addresses from the host network adapter configuration and provide a translation layer
between layer 2 network interfaces and layer 4 sockets for protocols such as TCP, UDP, and
ICMP. This translation layer is accessible to unprivileged containers, provides access to IPv4
and IPv6 port mappings, and manages network access between containers on the same host.
For more information, see upstream passt documentation.

Note

To learn more about Pasta and slirp4netns networking, see the Use Pasta
Networking with Podman on Oracle Linux tutorial.

Chapter 8
Configuring Port Mapping for Containers

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 2 of 10

https://passt.top/passt/about/
https://docs.oracle.com/en/learn/ol-podman-pasta-networking/
https://docs.oracle.com/en/learn/ol-podman-pasta-networking/

Example 8-1 Verify pasta networking in a container

To verify that a running container on an Oracle Linux 9 host system is using pasta networking,
use the podman inspect command and check the HostConfig.NetworkMode setting. For
example:

podman inspect --format='{{.HostConfig.NetworkMode}}' container_id

Replace container_id with the name or ID of the container. If the container is using pasta
networking, the output looks similar to:

pasta

Example 8-2 Map a port on the host to a container

This example maps port 8080 on the host to the container port 80:

podman run --name mynginx -d -p 8080:80 quay.io/libpod/alpine_nginx:latest

The -P option can be used when running the container to enable Podman to automatically
configure port mappings. However, the resulting configuration might be less predictable than
you intend.

After a port mapping is established, that port can be accessed directly from the host where the
container is running. In this example, the host can access port 80 on the container by opening
a web browser to http://localhost:8080, or using a curl command. For example:

curl http://127.0.0.1:8080

In this example, the output looks similar to:

podman rulez

To view a container's port mappings directly, use the podman port command. For example:

podman port mynginx

If the container has active port mappings, the command output looks similar to:

80/tcp -> 0.0.0.0:8080

You can use the podman port -a command to view all port mappings for all the containers
running on the host.

Example 8-3 Verify port access between containers

Because the containers and the host share the same network namespace, a container can
communicate directly with another container by using the port mapping with the IP address or
host name of the Oracle Linux host system.

Extending the previous example, run a second container with the following command:

podman run -it --rm oraclelinux:9-slim curl http://hostname:8080

Chapter 8
Configuring Port Mapping for Containers

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 3 of 10

Where hostname is the host name or IP address of the Oracle Linux host system.

To review inbound web traffic on the container running a web server, use the podman logs
command:

podman logs container 2> /dev/null | grep "GET /"

Replace container with the container name or ID.

HTTP requests between Podman containers on the same host are logged with the host system
gateway IP address rather than the public-facing IP address, because the pasta networking
translation layer efficiently routes network traffic to the correct place.

If the host system has firewall software running, inbound traffic must be allowed on the mapped
port for the container to be externally accessible to other host systems and remote clients. For
example:

sudo firewall-cmd --add-port=8080/tcp --permanent
sudo firewall-cmd --reload

You can then connect to the container from a remote host using:

curl http://hostname:8080

Inspecting Container Networking
You can inspect the networking information for any container that you have created to obtain
important information such as IP addressing, networks, or port mappings. Note that where a
container is running under the root account, prefix the following commands with sudo, as
appropriate.

To view IP addresses for a container, run:

podman inspect --format='{{.NetworkSettings.IPAddress}}' container

To view networks that are attached to a container, run:

podman inspect --format='{{.NetworkSettings.Networks}}' container

To view port mappings for a container, run:

podman inspect --format='{{.NetworkSettings.Ports}}' container

Advanced Networking for Containers
Advanced Podman network configuration can only be performed by the root user, and
therefore applies only to containers that are run by the root user.

Advanced networking, which might require assigning IP addresses, enables containers to take
advantage of particular features within the network stack to communicate with other containers
in a pod. In this case, Podman implements a bridged network stack that can handle IP address
assignment and full network access for each container.

Chapter 8
Inspecting Container Networking

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 4 of 10

For containers that are run by the root user, network management is achieved by using one of
two backend network stacks:

• Container Network Interface (CNI): A deprecated networking stack written in Golang and
designed around the concept of plugins that can be used to implement different networking
functions for a wide range of container related projects. For more information, see the
upstream CNI documentation.

• Netavark: A network stack designed for Podman, but compatible with other Open
Container Initiative container management applications. For more information, see the
upstream Netavark documentation.

Podman selects which network stack to use automatically, depending on which network stacks
are available on a system. You can identify which network stack a system is using by running:

podman info --format '{{.Host.NetworkBackend}}'

Caution

The podman network commands that are described in this section only work for
containers that are run with root permissions. Running these commands with standard
user containers returns an error code.

About CNI Networks

Note

The CNI network stack is now deprecated and might be removed in future releases of
Podman. Consider using Netavark instead. To change network stack, see Changing
the Network Backend. Although CNI is deprecated, Netavark doesn't support plugins
available in CNI, such as the ability to connect to Kubernetes networks created using
Flannel. You can continue to use CNI networking to take advantage of this facility, if
required.

CNI is a set of network tooling that caters to container-based network requirements. CNI uses
a plugin development model to accommodate different network functions and requirements.
Podman can use many of these plugins directly to easily set up basic networking for individual
containers, or for containers running within a pod.

You can opt to use CNI as the default network backend to maintain consistent configuration
with older Podman deployments.

To use CNI, you must have the containernetworking-plugins package installed. To check
whether this package is installed, use:

rpm -q containernetworking-plugins

If it's not installed, install it using:

sudo dnf install -y containernetworking-plugins

Chapter 8
Advanced Networking for Containers

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 5 of 10

https://github.com/containernetworking/cni
https://github.com/containers/netavark

For each network you create in Podman, a new configuration file in JSON format is generated
in the /etc/cni/net.d/ directory. In most instances, you don't need to edit or manage the
files in this directory.

A typical network configuration file might look similar to:

{
 "cniVersion": "0.4.0",
 "name": "mynetwork",
 "plugins": [
 {
 "type": "bridge",
 "bridge": "cni-podman1",
 "isGateway": true,
 "ipMasq": true,
 "hairpinMode": true,
 "ipam": {
 "type": "host-local",
 "routes": [
 {
 "dst": "0.0.0.0/0"
 }
],
 "ranges": [
 [
 {
 "subnet": "10.89.0.0/24",
 "gateway": "10.89.0.1"
 }
]
]
 },
 "capabilities": {
 "ips": true
 }
 },
 {
 "type": "portmap",
 "capabilities": {
 "portMappings": true
 }
 },
 {
 "type": "firewall",
 "backend": ""
 },
 {
 "type": "tuning"
 }
]
}

Chapter 8
Advanced Networking for Containers

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 6 of 10

About Netavark Networks
Netavark is a high-performance network stack that can be used to configure network bridges,
firewall rules, and system settings for containers. Netavark doesn't use plugins to perform
configuration setup. All network set up actions are performed directly by the tool itself, which
reduces overhead, and improves network setup performance when you run a container.
Netavark provides improved handling of IPv6, Network Address Translation (NAT) and port
forwarding. DNS is also automatically configured across networks so that containers with
several networks can connect to any other container on any other shared network by using the
container name as a resolvable DNS reference.

Use the Netavark backend if all deployments are using Podman version 4.0 or later and you
intend only to run containers within Podman. Netavark provides better performance and
features that make containers easily integrate into existing network infrastructure and improved
DNS resolution.

To use Netavark, you must have the netavark package installed. To check whether this
package is installed, use:

rpm -q netavark

If it's not installed, install it using:

sudo dnf install -y netavark

For each network that you create within Podman, a new configuration file in JSON format is
generated in the /etc/containers/networks/ directory. In most instances, you don't need
to edit or manage the files within these directories.

A typical network configuration file might appear as follows:

{
 "name": "mynetwork",
 "id": "3977b0c90383b8460b75547576dba6ebcf67e815f0ed0c4b614af5cb329ebb83",
 "driver": "bridge",
 "network_interface": "podman1",
 "created": "2022-09-06T12:08:12.853219229Z",
 "subnets": [
 {
 "subnet": "10.89.0.0/24",
 "gateway": "10.89.0.1"
 }
],
 "ipv6_enabled": false,
 "internal": false,
 "dns_enabled": true,
 "ipam_options": {
 "driver": "host-local"
 }
}

Chapter 8
Advanced Networking for Containers

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 7 of 10

You can display the contents of a network configuration file with the following command:

sudo podman network inspect network_name

Changing the Network Backend
You can switch between using the CNI and Netavark network backend stacks and force
Podman to select one over the other. Switching from one to the other assumes that you have
the packages for both network backend stacks installed, namely containernetworking-
plugins and netavark.

Important

If you change from one network backend to another, you must reset the Podman
configuration. Switching network backends effectively removes all existing containers,
images, networks, and pods from an environment.

To change and permanently set the network backend for a deployment, perform the following
steps.

1. Check whether /etc/containers/containers.conf exists. If not, copy the default
configuration to this location so that you can customize it for the deployment.

sudo cp /usr/share/containers/containers.conf /etc/containers/

2. Edit /etc/containers/containers.conf and find the network_backend entry in the
[network] section of the configuration file. Remove the entry's comment character if it
exists. Change the value to match the network backend that you would prefer to use. For
example, to use the CNI backend, change the entry to match:

network_backend = "cni"

3. Reinitialize the Podman configuration to its pristine state:

sudo podman system reset

This command displays a warning and prompts you for confirmation.

WARNING! This will remove:
 - all containers
 - all pods
 - all images
 - all networks
 - all build cache
 - all machines
Are you sure you want to continue? [y/N] y

Chapter 8
Advanced Networking for Containers

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 8 of 10

Note

If you have non root Podman instances, these also need to be reset individually if
the network stack is changed.

4. Reboot the system to ensure that the networking is running correctly for Podman to
function.

Creating and Removing Networks
Use the podman network create command to generate a new network configuration. Podman
automatically defines network settings based on the default network and any other existing
networks. However, options are available to set the network range, subnet size, and to enable
IPv6. Use the podman help network create command and the podman-network-create(1)
manual page to get more information about these options.

Use the podman network remove command to remove a network. You must first remove any
containers connected to the network. You can use the -f option to force the removal of any
containers that are using the network.

You can also remove all networks that are unused on the system using the podman network
prune command.

Example 8-4 Create a network

podman network create mynetwork

Example 8-5 Remove a network

To remove a network that you have created, run:

sudo podman network rm mynetwork

Example 8-6 Remove unused networks

podman network prune

Listing Networks
Use the podman network ls command to print a list of all the Podman networks.

For more information on the podman network ls command, see the podman-network-ls(1)
manual page.

Example 8-7 List all Podman networks

podman network ls

Chapter 8
Advanced Networking for Containers

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 9 of 10

The output might look similar to:

NETWORK ID NAME DRIVER
2f259bab93aa podman bridge
0b723c8502a2 podman-default-kube-network bridge

Connecting and Disconnecting Container Networks
Use the podman network connect command to add a container to a network. When you create
containers, the network is automatically started and containers are assigned IP addresses
within the range that's defined for a network. Likewise, when you delete a container, the
network is also automatically stopped.

Use the podman network disconnect to remove a container from a network.

For more information on the podman network connect command, see the podman-network-
connect(1) manual page. For information on the podman network disconnect command, see
the podman-network-disconnect(1) manual page.

Example 8-8 Add a container to a network

podman network connect mynetwork mycontainer

Example 8-9 Disconnect a container from a network

podman network disconnect mynetwork mycontainer

Chapter 8
Advanced Networking for Containers

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 10 of 10

9
Podman Quadlets

Create Podman Quadlets to easily generate and manage systemd services for containers,
pods, and other Podman objects.

Instead of generating a Podman service wrapper by using the podman generate systemd
command and then maintaining all the systemd unit files individually, you can maintain a single
Podman Quadlet and rely on the podman-systemd daemon to regenerate those systemd unit
files for you whenever they're needed.

The other practical benefit of using a Quadlet is that when a new version of Podman is
released, you can roll out fixes and enhancements to any templated systemd unit files by
reinitializing the affected services.

Quadlets are managed by using a unit file with and appropriate file extension
(.container, .volume, .network, .build, .pod, or .kube). It must also include a Podman
section (for example, [Container]). For example, a Quadlet for a container might include:

[Unit]
Description=your-description
After=local-fs.target

[Container]
Image=container_image
Exec=your-command-here

[Install]
Start by default on boot
WantedBy=multi-user.target default.target

Creating Quadlets
Create Podman Quadlets that run containers, pods, volumes, and other Podman objects, using
a systemd unit file, either for the root user, or for a user with standard permissions.

A system administrator can create Quadlets that run with root permissions. The Quadlet files
use the file extensions .container, .volume, .network, .build, .pod and .kube. Save the
Quadlet files in /usr/share/containers/systemd/ or /etc/containers/systemd/.

Note

On Oracle Linux 8 hosts, Quadlets can only be run with root permissions. For more
information, see Quadlets Fail For An Unprivileged User.

Quadlet files (with the file extensions of .container, .volume, .network, .build, .pod
and .kube) can be created in the following locations, depending on the level of privilege for the
Quadlet:

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 1 of 7

• A system administrator can create a Quadlet that runs with root permissions in:

/run/containers/systemd/ (temporary Quadlet location used for testing)

/etc/containers/systemd/ (system administrator defined Quadlets)

/usr/share/containers/systemd/ (distribution defined Quadlets)

• A system administrator can create rootless Quadlets that run when any user connects to
the system in:

/etc/containers/systemd/users/

• A system administrator can create rootless Quadlets that run when a user with a specific
user ID connects to the system in:

/etc/containers/systemd/users/$USERID

• A user can create Quadlets in:

$HOME/.config/containers/systemd/

A list of all the options that can be included in a Quadlet file are available in the upstream
Podman documentation, or the podman-systemd.unit(5) manual page.

The Quadlet files are used to generated systemd unit files (with a .service extension).
Podman generates a unit file for each Quadlet file. The unit files can be managed like any
other systemd service using the systemctl command. Each Quadlet file has a custom section
for Podman objects (for example, [Container]) that's handled by Podman, and all other
sections are standard systemd options and are passed on untouched. This means you can use
standard systemd configuration in Quadlet file, including drop in files.

Tip

When a Quadlet starts a systemd service, any included containers are started. When a
container is first started, Podman pulls the container images. To avoid any timeouts, it
might be helpful to pull the container images before you start the systemd service
created by a Quadlet. Or, you can increase the service startup timeout using the
TimeoutStartSec option in the [Service] section of Quadlet files.

Quadlets require cgroup v2. To see if the system provides this, use:

podman info --format {{.Host.CgroupsVersion}}

Note

To learn how to enable cgroups v2 on Oracle Linux 8 hosts, see Run Control Group
Version 2 on Oracle Linux.

Example 9-1 Create a Quadlet for a container

1. Create a unit file with the .container file extension. Save it to the appropriate location for
the level of required user access. For example:

[Unit]
Description=My First Quadlet

Chapter 9
Creating Quadlets

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 2 of 7

https://docs.podman.io/en/latest/markdown/podman-systemd.unit.5.html
https://docs.podman.io/en/latest/markdown/podman-systemd.unit.5.html
https://docs.oracle.com/en/learn/ol-cgroup-v2/
https://docs.oracle.com/en/learn/ol-cgroup-v2/

[Container]
Image=container-registry.oracle.com/os/oraclelinux:9-slim
AutoUpdate=registry
Exec=sleep 60

[Service]
Restart=always
TimeoutStartSec=900

[Install]
WantedBy=multi-user.target default.target

2. Reload the systemd services. To reload all systemd services, use:

sudo systemctl daemon-reload

To reload systemd services for a standard user on an Oracle Linux 9 or Oracle Linux 10
host, use:

systemctl --user daemon-reload

3. Confirm the unit files are created. To examine the unit files that have been created, you
can use the -dryrun option with the quadlet command:

/usr/libexec/podman/quadlet -dryrun

Add the -user option for Quadlet containers that run without root permissions. For
example:

/usr/libexec/podman/quadlet -dryrun -user

4. Start the systemd service. Manage the Quadlet the same way as any other systemd
service using the systemctl command. For example, to start a Quadlet container called
myquadlet, use:

sudo systemctl start myquadlet.service

For a service without root permission, include the --user option. For example:

systemctl --user start myquadlet.service

5. Confirm the systemd service is running. To confirm the service is running, use the
systemctl status command. For example:

sudo systemctl status myquadlet.service

For a service without root permission, include the --user option. For example:

systemctl --user status myquadlet.service

6. Confirm the container is running.

Chapter 9
Creating Quadlets

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 3 of 7

To verify the container is running, use the podman ps command. For example, for a
container running in a service that has root permissions, use:

sudo podman ps

Or, for a container running as a standard user:

podman ps

7. (Optional) Keep the service running after logout.

If you want the systemd service to continue to run when a standard user logs out, enable
lingering. For example:

sudo loginctl enable-linger username

8. (Optional) Remove the service.

To clean up after trying this example, remove the service and container using:

systemctl stop myquadlet.service

Or for a standard user:

systemctl --user stop myquadlet.service

The systemd service is stopped, which also stops the container.

Creating Quadlets With the Podman Shell
On Oracle Linux 9 and Oracle Linux 10 hosts, you can use the Podman login shell to run shell
commands in a container. This feature provides the advantage of ensuring that users are kept
within established boundaries while working inside containers. Users are configured to use
the /usr/bin/podmansh shell instead of normal shells such as /bin/bash. The command starts
the user's session in a rootless container called podmansh. This container continues to run until
the user exits the session, at which point the container is removed.

Administrators configure users to use this feature through Quadlet files. These files define the
parameters for users when they work in containers, such as the visibility of the host system
when users are in the containers, access limitations, security privileges, and resource usage.
For more information, see Podman Quadlets.

All the settings defined for the user in the Quadlet file transparently run without any need for
user or administrator intervention.

The Podman login shell and other defined parameters combine to isolate the user and
therefore ensures container security. The container is removed at the end of a session, and
logging back in re-creates the same confined environment for the user. So, working with
containers becomes more straightforward.

Chapter 9
Creating Quadlets With the Podman Shell

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 4 of 7

The following is an example of how you can configure a user to use the Podman login shell
and other set parameters when working in a container. Assume that the Quadlet applies to a
specific $USERID, and the Quadlet file is named podmansh.container.

[Unit]
Description=The Podmansh container
After=local-fs.target

[Container]
Image=container-registry.oracle.com/os/oraclelinux:9-slim
ContainerName=podmansh
RemapUsers=keep-id
RunInit=yes

Exec=sleep infinity

[Install]
RequiredBy=default.target

A list of all the options that can be included in this file are available in the upstream Podman
documentation, or the podman-systemd.unit(5) manual page.

Note

Note that the name of the container (ContainerName) must be podmansh. This sets
the /usr/bin/podmansh shell to run podman exec in the container.

The user with the ID that matches the Quadlet's $USERID would log in as follows:

ssh user@systemname

More information about using the podmansh shell is available in the upstream Podman
documentation, or the podmansh(1) manual page.

Quadlet Services
All systemd services created by Quadlets are managed using the systemctl command.

After you have created a systemd service for any containers, pods, or other Podman objects,
you can use systemctl commands to manage those services, and therefore all the Podman
objects in the services. In the same way you manage regular systemd services, you can start,
restart, stop and check the service status using systemctl. Enabling services to boot
automatically is a little different as services created using Quadlets are transient services. If
you're running containers as a standard user on an Oracle Linux 9 or Oracle Linux 10 host, all
systemctl commands must include the --user option.

Tip

To try out using systemd services, see the Use Systemd on Oracle Linux tutorial.

Chapter 9
Quadlet Services

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 5 of 7

https://docs.podman.io/en/latest/markdown/podman-systemd.unit.5.html
https://docs.podman.io/en/latest/markdown/podman-systemd.unit.5.html
https://docs.podman.io/en/stable/markdown/podmansh.1.html
https://docs.podman.io/en/stable/markdown/podmansh.1.html
https://docs.oracle.com/en/learn/ol-systemd/

Starting Services
To start a systemd service created by a Quadlet, use the systemctl start command.

Example 9-2 Start a Quadlet service

sudo systemctl start myquadlet.service

As a standard user, include the --user option. For example:

systemctl --user start myquadlet.service

Restarting Services
Restart the service using the systemctl restart command. Restarting the service stops and
re-creates all objects in the service (containers, pods, and so on).

Example 9-3 Restart a Quadlet service

sudo systemctl restart myquadlet.service

For a standard user, include the --user option. For example.

systemctl --user restart myquadlet.service

Stopping Services
Stop a systemd service using the systemctl stop command. Stopping a service created by a
Quadlet stops all objects in the service (containers, pods, and so on).

Example 9-4 Stop a Quadlet service

sudo systemctl stop myquadlet.service

To stop the service as a standard user, include the --user option. For example:

systemctl --user stop myquadlet.service

Checking the Service Status
Check the current status of a systemd service with the systemctl status command.

Example 9-5 Check the status of a Quadlet service

sudo systemctl status myquadlet.service

To see the service status as a standard user, include the --user option. For example:

systemctl --user status myquadlet.service

Chapter 9
Quadlet Services

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 6 of 7

Enabling Services
Services created by Quadlets are considered transient services, and they don't have the same
persistence as regular systemd services. Because of this, you can't use the systemctl enable
command to set them to start when the host OS boots. Instead, the Podman generator uses
the information in the [Install] section of Quadlet files when generating service unit files. For
example, you can set the service to start when the OS boots by including:

[Install]
WantedBy=default.target

If services are running as a standard user, you can enable lingering so services start
automatically when the user signs in to the OS. For example:

sudo loginctl enable-linger user

Chapter 9
Quadlet Services

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 7 of 7

10
Podman Service Wrappers

Podman can integrate with systemd services to manage pods and containers as system
services. By using Podman service wrappers, you can configure containers or pods to start at
system boot and you can manage them similarly as other services that run on the host system.

Caution

The method of generating systemd unit files in this section was deprecated in Podman
4.6. Instead, use Quadlets to create systemd services. For more information, see
Podman Quadlets.

Podman provides the tools to automatically generate systemd service wrapper configuration
files for any containers or pods on the system, so that you can manage container infrastructure
using systemd. You can use the podman generate systemd command to automatically
generate systemd unit files.

You can use systemd user services if you're running containers as a standard user, or you can
configure system level services if you're running containers as the root user.

Generating Podman Service Wrappers
Use the podman generate systemd command to automatically generate systemd unit files for
Podman containers and pods.

Instead of writing a systemd service wrapper from scratch, you can use the podman generate
systemd command to automatically generate the service configuration file.

If you intend to run containers as root user system services, store the container service
wrapper configuration files in /etc/systemd/system/. If you intend to run containers as a
standard user, save the container service wrapper configuration files in $HOME/.config/
systemd/user/.

Example 10-1 Generate a systemd service wrapper for a container

To generate a systemd service wrapper for an individual container, and store it in
the $HOME/.config/systemd/user directory:

podman generate systemd --name containername > $HOME/.config/systemd/user/
container-containername.service

Example 10-2 Generate a systemd service wrapper for a pod

To generate a Podman service wrapper for a specific pod, use the following command:

podman generate systemd --name podname

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 1 of 4

However, to include generating service wrapper configuration files for all the containers within
a pod itself, use the --file option with the command. In this case, run the command in the
directory where you intend to generate the files.

Suppose that in $HOME/.config/systemd/user, you want to generate Podman service
wrappers for both mypod and its containers. You would run the following commands:

cd $HOME/.config/systemd/user/
podman generate systemd --files --name mypod

With this command, the service wrapper that's responsible for mypod includes dependencies on
each of the container wrappers that are required for the pod to run successfully.

If you start or stop the pod by using its systemd service wrapper, the container services
automatically trigger the same action.

Starting and Restarting Podman Services

Caution

If a container or pod is already running outside of the systemd service wrapper, the
service wrapper is unable to start the container or pod. If so, use the podman stop or
podman pod stop command to stop the container or pod first.

As a root user, you can start a container if its service configuration is stored in /etc/
systemd/system/, for example:

sudo systemctl start container-containername.service

As a standard user, if you stored a service configuration in $HOME/.config/systemd/user, you
can start the container in the same way but you must use the --user option:

systemctl --user start container-containername.service

Starting the service wrapper for a pod uses a parallel command syntax, as follows:

sudo systemctl start pod-podname.service

You can restart the service wrapper for a container or pod by using the systemctl restart
command. The following command restarts a pod as a standard user:

systemctl --user restart pod-podname.service

If you start or restart a pod, all containers that are part of the pod are equally started or
restarted.

Chapter 10
Starting and Restarting Podman Services

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 2 of 4

Stopping Podman Services
You can stop a container or pod by using the systemctl stop command. The following
command stops a pod as a standard user:

systemctl --user stop pod-podname.service

If you start or restart a pod, all containers that are part of the pod are equally started or
restarted.

Checking the Status of Podman Services
You can check the current status of any service wrapper you create for containers or pods with
the systemctl status command, for example:

systemctl --user status container-containername.service

Enabling Automated Restore for Podman Services
You can add custom configuration steps when you generate service wrappers for Podman
containers.

For example, to create a service wrapper that always restarts after a one second timeout, set
the --restart-policy flag with a parameter value, as shown:

sudo systemctl generate systemd --restart-policy=always -t 1 containername
> /etc/systemd/user/container-containername.service

To set the service wrapper to run automatically when the system starts up, type:

sudo systemctl enable container-containername.service

You can use the same commands with the service wrapper for a pod:

sudo systemctl enable pod-podname.service

If services are running as a standard user, you would need to give the user permission to run
processes when they're not logged in. Otherwise, the user can't enable the service. Type the
following command as the root user:

sudo loginctl enable-linger user

Tip

To try out using systemd services, see the Use Systemd on Oracle Linux tutorial.

Chapter 10
Stopping Podman Services

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 3 of 4

https://docs.oracle.com/en/learn/ol-systemd/

Changing Podman Service Wrapper Configuration
The systemd service wrapper configuration files that are generated by Podman follow standard
systemd configuration format and specification. You can change any of the service wrapper
configuration files that are generated by manually editing these files within a text editor.

Change the behavior of systemd services wrappers on Oracle Linux by following the
instructions in these books:

• Oracle Linux 8: Managing the System With systemd

• Oracle Linux 9: Managing the System With systemd

• Oracle Linux 10: System Management with systemd

For more information about how you can make modifications to the service wrapper you have
generated with the podman generate systemd command, see the upstream Podman
documentation.

Setting SELinux Permissions for Service Wrappers
If you have set SELinux to enforcing mode on the system, you must turn on the
container_manage_cgroup permission so that systemd can be used to start, stop, and monitor
containers:

sudo setsebool -P container_manage_cgroup on

Chapter 10
Changing Podman Service Wrapper Configuration

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 4 of 4

https://docs.oracle.com/en/operating-systems/oracle-linux/8/systemd/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/systemd/
https://docs.oracle.com/en/operating-systems/oracle-linux/10/systemd/
https://docs.podman.io/en/latest/markdown/podman-generate-systemd.1.html
https://docs.podman.io/en/latest/markdown/podman-generate-systemd.1.html

11
Buildah

Use the Buildah utility to create custom Open Container Initiative compliant container images
to use with Podman.

The Buildah utility is functionally similar to Podman in the way that it behaves, but maintains
independence from Podman to build Open Container Initiative compliant images. The primary
difference between Buildah and Podman is in the way the run command is handled. Because
the purpose of Buildah is to build images, the run command behaves the same as a RUN
statement within a Containerfile, which is a configuration file that contains the settings to
automate the creation of a container image. This difference makes it easy to separate image
builds from production level container infrastructure, running in Podman, and to easily process
existing Containerfile build instructions.

Use Buildah to pull images from existing registries and to change them to create new images
with more specialized functionality. You can use Buildah with an existing Containerfile to create
an image, or alternately you can pull an image directly and change it within a container running
within the Buildah environment.

Podman and Buildah use the same local image store, which means you can start containers in
Podman from images that you have built in Buildah. You can also use images that have been
pulled locally by Podman as the base images which you use to build new images using
Buildah. While local images are shared, the containers themselves run separately within
Buildah and Podman. Podman is unable to access containers running within Buildah and
Buildah is unable to access containers running within Podman. This is because the containers
that run in Buildah are used precisely to run commands to build a new image.

It might be useful to create a private container registry to store the images you build with
Buildah. A private registry can be used to push the images you create, and pull from other
Podman clients that might need to use the images to build containers. For information on
creating a registry, see Private Container Registries.

For more information about the Containerfile format and build instructions see the
containerfile(5) manual page.

For a complete listing of Buildah commands, use the buildah --help command, or view the
buildah(1) manual page.

Note

Most Buildah operations don't require the use of sudo. We recommend you use
Buildah as a standard user. Where privileged access is required, use the buildah
unshare command to enter into a privileged Buildah shell. For more information, see
the buildah-unshare(1) manual pages.

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 1 of 9

Creating an Image From a Containerfile
Build a container image from a Containerfile using the buildah build command.

Buildah is designed to work directly with an existing Containerfile and processes the file to
build a container image using the buildah build command (which is an alias for the buildah
build-using-dockerfile and buildah bud commands). The buildah build command
behaves similarly to the docker build command.

You can use the default filenames of Containerfile or Dockerfile to specify container
images. If you use a different filename, or a name with a file extension, these aren't recognized
unless you include the -f option with the buildah build command.

To find out more about using the buildah commit command, see the buildah-commit(1)
manual page.

1. Create a Containerfile.

Find or create a Containerfile that specifies the contents of the container image. For
example, create a file named Containerfile that contains:

This image is based on the latest Oracle Linux 9 image
FROM container-registry.oracle.com/os/oraclelinux:9

Install OS updates and the httpd software package
RUN echo "Updating all Oracle packages"; dnf -y update; dnf -y clean all
RUN echo "Installing the httpd software package"; dnf -y install httpd &&
dnf -y clean all

Expose the default httpd server port 80
EXPOSE 80

Run the httpd server
CMD ["/usr/sbin/httpd", "-DFOREGROUND"]

2. Build the image from the Containerfile.

Use the buildah build command to build the Containerfile. Include the --tag option to tag
the image. Include the --file option to specify the Container filename if the file doesn't
use the default naming, or includes a file extension. For example:

buildah build --tag myimage .

The image is built, tagged, and added to the local image list.

3. Validate the image.

To confirm that the new image is available, use the buildah images command. For
example:

buildah images

Chapter 11
Creating an Image From a Containerfile

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 2 of 9

In this example, the image is in the local Podman storage (used by both Buildah and
Podman), and the output looks similar to:

REPOSITORY TAG IMAGE ID
CREATED SIZE
localhost/myimage latest 761c8f4b4f98 6
minutes ago 279 MB

4. Verify the image can be started in a container.

The buildah from command can be used to start a container that uses the image. For
example:

buildah from myimage

5. Verify the container is started.

Use the buildah containers command to show the container is running. For example:

buildah containers

The output looks similar to:

CONTAINER ID BUILDER IMAGE ID IMAGE NAME
CONTAINER NAME
076b44920a9a * 761c8f4b4f98 localhost/myimage:latest
myimage-working-container

Creating a Buildah Container from an Image
Pull an image from a container registry and use it to create a Buildah container.

Buildah can pull images from a container registry using the buildah pull command, in the
same way that you would pull an image using Podman. Start a Buildah container from an
image with the buildah from command. You can run these commands separately, or combine
them.

1. Pull an image.

Use the buildah pull command to pull an image from a container registry. For example:

buildah pull container-registry.oracle.com/os/oraclelinux:9-slim

2. Start a Buildah container from the image.

Use the buildah from command to start a Buildah container from an image. For example:

buildah from oraclelinux:9-slim

Chapter 11
Creating a Buildah Container from an Image

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 3 of 9

Tip

You can combine the buildah pull command with the buildah from command to
start a container from an image hosted on a remote registry. For example:

buildah from container-registry.oracle.com/os/oraclelinux:9-slim

3. Verify the container is started.

Use the buildah containers command to show the container is running. For example:

buildah containers

The output looks similar to:

CONTAINER ID BUILDER IMAGE ID IMAGE NAME
CONTAINER NAME
ea27cc0312ba * bc1c39bd670d localhost:5000/ol9image:v1
oraclelinux-working-container

Changing an Image
Interact with a Buildah container to install software, add files, and mount the container's
volume.

You change images by running them as container instances within Buildah and using the
buildah run command. This command functions in the same way as RUN statements in a
Containerfile. For example, you can use the buildah run command to run shell commands
in the Buildah container, such as installing packages and making OS changes.

You can also use other commands such as buildah copy and buildah mount to interact with
Buildah containers.

Many of the examples here assume a Buildah container is already created and running that
includes an Oracle Linux 9 image. The command to create this container is:

container=$(buildah from container-registry.oracle.com/os/oraclelinux:9)

The Buildah container name is set as a $container variable to make it easier to try the
examples.

Example 11-1 Install a package to the Buildah container

Use the buildah run command to install a software package on a container. This example
installs nginx.

buildah run $container dnf -y install nginx

Chapter 11
Changing an Image

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 4 of 9

Example 11-2 Run a shell command in a Buildah container

Use the buildah run command to display the Oracle Linux release in a Buildah container.

buildah run $container cat /etc/oracle-release

The output looks similar to:

Oracle Linux Server release 9.6

Example 11-3 Copy a file to a Buildah container

Use the buildah copy command to a copy file to a Buildah container.

Create a file named mytext.txt with some content. For example:

This is some text.

Copy the mytext.txt file to the /tmp directory on the container.

buildah copy $container mytext.txt /tmp

Use the buildah run command to show the contents of the file using the cat command.

buildah run $container cat /tmp/mytext.txt

The output looks similar to:

This is some text.

Example 11-4 Mounting a Buildah container's volume

You can make file changes inside the working container by mounting its root file system on the
local host:

First, you need to enter into the Buildah namespace that has elevated permissions. This uses
the overlay driver in rootless mode, and is known as a Buildah unshare session. For more
information, see the buildah-unshare(1) manual pages.

buildah unshare

The command line user changes to show the user is now root.

Create a container in the unshare session and mount the container's volume.

container=$(buildah from oraclelinux:9)
mnt=$(buildah mount $container)

You can now interact with the volume mount. For example, install a software package on the
container's volume:

dnf install --installroot $mnt httpd

Chapter 11
Changing an Image

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 5 of 9

When finished, unmount the container.

buildah unmount $container

Return to the original shell using the exit command.

Committing a Buildah Container to an Image
After completing the changes to a container, use the buildah commit command to generate a
new image based on the current status of the Buildah container.

Changes to a Buildah container are temporary until they're committed to an image. You can
commit a Buildah image to the local storage so it's immediately available in Podman. Buildah
also provides the option to push the image to a container registry, and has options to
authenticate with a registry, such as user authentication and certificate validation. You must
have write access to a registry, so it might be useful to create a private registry for this
purpose. For information on creating and using a private registry, see Private Container
Registries.

To permanently store the changes to a Buildah container in an image, use the buildah commit
command. To find out more about using the buildah commit command, see the buildah-
commit(1) manual page.

Example 11-5 Commit a Buildah image to the local storage

Commit a Buildah container to an image the local storage. Include the --rm option to remove
the working container from the Buildah environment at the same time.

buildah commit --rm oraclelinux-working-container myol9:v1

You can confirm the image is created using:

buildah images

The output looks similar to:

REPOSITORY TAG IMAGE ID
CREATED SIZE
localhost/myol9 v1 6afd745ed1cf 8 seconds
ago 519 MB

Example 11-6 Commit a Buildah image to a private secure registry

Commit a Buildah container and push the image to a private secure registry.

buildah commit --rm oraclelinux-working-container docker://
myregistry.example.com:5000/myol9:v1

Committing directly to a registry is the same as performing a local commit and then pushing it
to a registry later using the buildah push command.

Chapter 11
Committing a Buildah Container to an Image

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 6 of 9

Verify the image can be pulled using Buildah:

buildah pull myregistry.example.com:5000/myol9:v1

Example 11-7 Commit a Buildah image to a private insecure registry

Commit a Buildah container and push the image to a local insecure registry.

buildah commit --tls-verify=false --rm oraclelinux-working-container docker://
localhost:5000/myol9:v1

Verify the image can be pulled using Buildah:

buildah pull --tls-verify=false localhost:5000/myol9:v1

Pushing an Image to a Registry
Use the buildah push command to push container images from the local storage to a
container registry.

Buildah and Podman handle images interchangeably, so most of the commands that you use
to work with images are replicated across these tools and perform the same operation. For
example, the buildah push and podman push commands behave identically. You can use
either of these commands to push an image to a container registry where you have write
access. You might want to create a private registry to push and share images if you don't
already have write access to a registry. For information on creating a registry, see Private
Container Registries.

Buildah and Podman can also push images to other formats. This means you can create
archive formats that you can share and reuse if you don't have access to a registry. For
example, you can create a Docker compatible archive to create an archive file that's similar to
using the docker save command. Use the format:

buildah push imagename docker-archive:/path/to/archive-file:image:tag

Change docker-archive in the command to oci-archive to generate an archive that complies
with the Open Container Initiative specification.

For more information on the buildah push command, see the buildah-push(1) manual page.

Example 11-8 Push an image to a secure private registry

buildah push ol9image:v1 docker://myregistry.example.com:5000/myol9:v1

Verify the image can be pulled using Buildah:

buildah pull myregistry.example.com:5000/myol9:v1

Example 11-9 Commit an image to a private insecure registry

buildah push --tls-verify=false ol9image:v1 docker://localhost:5000/myol9:v1

Chapter 11
Pushing an Image to a Registry

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 7 of 9

Verify the image can be pulled using Buildah:

buildah pull --tls-verify=false localhost:5000/myol9:v1

Example 11-10 Create a Docker compatible archive file

buildah push ol9image:v1 docker-archive:/tmp/ol9image.tar:myol9:v1

An archive file is created in /tmp/ol9image.tar that contains the image.

Removing a Buildah Container
Remove Buildah containers using the buildah rm command. This command doesn't affect
Podman containers.

The buildah rm command stops and removes a container from the Buildah container list. It
removes the working container and unmounts any volume mounts that might have been set up
for it. After the container is removed, any changes you made to the working container are lost
and can't be retrieved, unless you created an image of the container before you removed it.

The buildah rm only removes the working container from the Buildah environment. Any
containers running under Podman, or any existing images are unaffected.

To find out more about using the buildah rm command, see the buildah-rm(1) manual page.

You can also remove containers as you commit them to an image, by including the --rm option
with the buildah commit command to both commit a working container and remove it from the
Buildah container list at the same time. See Committing a Buildah Container to an Image.

Example 11-11 Remove a Buildah container

buildah rm oraclelinux-working-container

Example 11-12 Remove all Buildah containers

buildah rm --all

Removing an Image
Remove images using the buildah rmi command. This also removes images in Podman.

The buildah rmi command removes a images from the Buildah and Podman image list.
Because images are shared between Podman and Buildah, removing an image with this
command also removes it for Podman.

To find out more about using the buildah rmi command, see the buildah-rmi(1) manual
page.

Example 11-13 Remove an image

buildah rmi localhost/myimage:latest

Chapter 11
Removing a Buildah Container

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 8 of 9

Example 11-14 Remove all images

buildah rmi --all

Inspecting an Image or Container
The buildah inspect command prints the metadata and history of an image or container
created with Buildah. The output is a JSON array and might be helpful to identify historical
changes and other information about the image or container.

To find out more about using the buildah inspect command, see the buildah-inspect(1)
manual page.

Example 11-15 Inspect a container

Use the buildah inspect command to inspect a container.

buildah inspect image --type container oraclelinux-working-container

Example 11-16 inspect an image

Use the buildah inspect command to inspect an image.

buildah inspect --type image myol9:v1

Chapter 11
Inspecting an Image or Container

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 9 of 9

12
Skopeo

Use Skopeo to inspect and copy Open Container Initiative compliant images between
container storage types.

Skopeo is an optional utility that you can install in addition to Podman to inspect images in
remote registries, and copy images between different types of Open Container Initiative
compatible container storage. Skopeo doesn't require a running daemon to function.

Note

You don't need root permissions to run Skopeo commands. If any errors are returned,
ensure that you have configured the appropriate proxy server settings, and that you
have the necessary access permissions for the remote registries that you're using.

For more information, see the skopeo(1) manual page.

Inspecting an Image
Use the skopeo inspect command to inspect information about an image in a container
registry.

The skopeo inspect command prints information about a container, such as when it was
created, its SHA digest signature, and the environment variables that are set for the image.
The information can also be useful for inspecting the available tags for an image name in a
registry.

For more information about the skopeo inspect command, see the skopeo-inspect(1)
manual page.

Example 12-1 Inspect an image in a container registry

skopeo inspect docker://container-registry.oracle.com/os/oraclelinux:9

The output looks similar to:

{
 "Name": "container-registry.oracle.com/os/oraclelinux",
 "Digest":
"sha256:afeedad1979892ba77973ea9900dc2604873651b0ee8868bffff8c7987e32bb3",
 "RepoTags": [
 "10-slim",
 "10",
 "5.11",
 "5",
 "6-slim",
 "6.10",
 "6.6",

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 1 of 7

 "6.7",
 "6.8",
 "6.9",
 "6",
 "7-slim-amd64",
 "7-slim-arm64v8",
 "7-slim-fips-amd64",
 "7-slim-fips-arm64v8",
 "7-slim-fips",
 "7-slim",
 "7.0",
 "7.1",
 "7.2",
 "7.3",
 "7.4",
 "7.5",
 "7.6",
 "7.7",
 "7.8",
 "7.9",
 "7",
 "8-arm64v8",
 "8-slim-arm64v8",
 "8-slim-fips-amd64",
 "8-slim-fips-arm64v8",
 "8-slim-fips",
 "8-slim",
 "8.0",
 "8.1",
 "8.10-slim-fips",
 "8.10-slim",
 "8.10",
 "8.2",
 "8.3",
 "8.4",
 "8.5",
 "8.6",
 "8.7",
 "8.8",
 "8.9-slim-fips",
 "8.9-slim",
 "8.9",
 "8",
 "9-slim-fips",
 "9-slim",
 "9",
 "9test",
 "latest"
],
 "Created": "2025-08-01T17:33:19.437546569Z",
 "DockerVersion": "",
 "Labels": {
 "io.buildah.version": "1.33.11"
 },
 "Architecture": "amd64",
 "Os": "linux",

Chapter 12
Inspecting an Image

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 2 of 7

 "Layers": [

"sha256:25ef70384958aefe7777e15722705fbaccd630a1aabe14030e2ad22b3c205c37"
],
 "LayersData": [
 {
 "MIMEType": "application/vnd.docker.image.rootfs.diff.tar.gzip",
 "Digest":
"sha256:25ef70384958aefe7777e15722705fbaccd630a1aabe14030e2ad22b3c205c37",
 "Size": 99740095,
 "Annotations": null
 }
],
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
]
}

Example 12-2 Inspect the default configuration for an image in a container registry

Review the default configuration settings and build history of an image by including the --
config option.

skopeo inspect --config docker://container-registry.oracle.com/os/
oraclelinux:9

The output looks similar to:

{
 "created": "2025-08-01T17:33:19.437546569Z",
 "architecture": "amd64",
 "os": "linux",
 "config": {
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/
bin"
],
 "Cmd": [
 "/bin/bash"
],
 "Labels": {
 "io.buildah.version": "1.33.11"
 }
 },
 "rootfs": {
 "type": "layers",
 "diff_ids": [

"sha256:0ae592ddaa5b488f567f350e0367e2b3f91ea04a23ea8931017916ecc0f922e4"
]
 },
 "history": [
 {
 "created": "2025-08-01T17:33:17.828674963Z",
 "created_by": "/bin/sh -c #(nop) ADD

Chapter 12
Inspecting an Image

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 3 of 7

file:9d2d55843e86c79ec0db8291fe7f516630a7f7fe2f0a90f2af552882cd94c7e9 in / "
 },
 {
 "created": "2025-08-01T17:33:19.437694874Z",
 "created_by": "/bin/sh -c #(nop) CMD [\"/bin/bash\"]",
 "comment": "FROM c50fc3f29ef2",
 "empty_layer": true
 }
]
}

Example 12-3 Inspect an image in an insecure private registry

skopeo inspect --tls-verify=false docker://localhost:5000/myimage:v1

Copying an Image
Use the skopeo copy command to copy container images between container storage types,
such as local storage and container registries.

Use the skopeo copy command to copy an image between registries without needing to
download it locally first. You can also copy an image to local Podman container storage.

For more information about the skopeo copy command, see the skopeo-copy(1) manual page.

Example 12-4 Copy an image from one registry to another

skopeo copy docker://container-registry.oracle.com/os/oraclelinux:9-slim
docker://myregistry.example.com:5000/oraclelinux:9-slim

Example 12-5 Copy an image from a registry to a private insecure registry

To copy an image to a private insecure registry, include the --dest-tls-verify=false option.

skopeo copy docker://container-registry.oracle.com/os/oraclelinux:9-slim --
dest-tls-verify=false docker://localhost:5000/ol9image:v1

Example 12-6 Copy an image from private secure registry to another registry

To copy an image from a private insecure registry, include the --src-tls-verify=false
option.

skopeo copy --src-tls-verify=false docker://localhost:5000/ol9image:v2
docker://myregistry.example.com:5000/oraclelinux:v2

Example 12-7 Copy an image from a registry to the local storage

To copy an image to the local storage, use the containers-storage: prefix for the destination
image.

skopeo copy docker://container-registry.oracle.com/os/oraclelinux:9-slim
containers-storage:oraclelinux:9-slim

Chapter 12
Copying an Image

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 4 of 7

Example 12-8 Copy an image from local storage to an insecure private registry

To copy an image from the local storage, use the containers-storage: prefix for the source
image.

skopeo copy containers-storage:localhost/oraclelinux:9-slim --dest-tls-
verify=false docker://localhost:5000/ol9image:v2

Example 12-9 Copy an image to the local storage extract it

To download an image and review its internal content offline, specify a directory with the dir:
prefix. For example, to extract the oraclelinux:9-slim image to the oraclelinux folder in a
home directory:

skopeo copy docker://container-registry.oracle.com/os/oraclelinux:9-slim dir:/
home/$USER/oraclelinux

The oraclelinux folder contains a manifest.json file and several tarballs representing the
copied image.

Synchronizing Images
Use the skopeo sync command to synchronize images between storage locations. This can be
useful to create and keep container mirrors synchronized in an air gapped environment.

You can copy images from one image storage location to another to synchronize images using
the skopeo sync command. The images are copied from the source to the destination using a
specified transport. The transport must be specified in the command using one of the following
transport types:

• docker: A container registry. This can be used for either the source or destination. If no
image tag is specified, all the tags found for the image are copied.

• dir: A local directory path. This can be used for either the source or destination. When
used with the destination, a directory is created for each image that's copied.

• yaml: A YAML file that contains the list of images to be copied from one container registry
to another. This can't be used with the dir transport for local file systems.

The --scoped options adds the name of the source as a prefix to images so that many images
with the same name can be stored at the destination image storage type (registry or directory).

Include the --dry-run option with the skopeo sync command to perform a dry run.

The format for a YAML file to use when synchronizing registry images lists the images to copy
from one or more registries. For example:

myregistry.example.com:
 images:
 oraclelinux:
 - "9"
 - "10"
localhost:5000:
 images:
 myimage: []
 tls-verify: false

Chapter 12
Synchronizing Images

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 5 of 7

For more information on the skopeo sync command and the options that can be included in the
YAML file, see the skopeo-sync(1) manual page.

Example 12-10 Synchronize an image from an insecure registry to local disk

Copy all the images named oraclelinux from a local insecure registry to a local directory.

skopeo sync --src docker --dest dir --scoped --src-tls-verify=false
localhost:5000/oraclelinux $HOME/images/

Example 12-11 Synchronize images from the local disk to a container registry

Copy all the images in a local directory to a registry:

skopeo sync --src dir --dest docker --scoped $HOME/images/localhost:5000
myregistry.example.com:5000/

Example 12-12 Synchronize images in a registry to an insecure private registry

Copy all the images named oraclelinux in a registry to a local private registry. The --append-
suffix option adds a suffix to the destination image tag.

skopeo sync --src docker --dest docker --dest-tls-verify=false --append-
suffix '-mirror' myregistry.example.com:5000/oraclelinux localhost:5000/
mirror/

Example 12-13 Synchronize images using a YAML file

Copy the images listed in a YAML file named mysync.yaml to an insecure private registry.

skopeo sync --src yaml --dest docker --dest-tls-verify=false mysync.yaml
localhost:5000/mirror/

Deleting an Image
Use the skopeo delete command to delete an image from a container registry or from local
container storage.

The skopeo delete command might not work with every container registry, and many
registries don't allow this in the default configuration, or at all.

For more information about the skopeo delete command, see the skopeo-delete(1) manual
page.

Example 12-14 Delete an image from local storage

skopeo delete containers-storage:oraclelinux:9-slim

Example 12-15 Delete an image from a private registry

skopeo delete docker://myregistry.example.com/oraclelinux:9

Chapter 12
Deleting an Image

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 6 of 7

Example 12-16 Delete an image from a private insecure registry

skopeo delete --tls-verify=false docker://localhost:5000/myimage:v1

Chapter 12
Deleting an Image

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 7 of 7

13
Container Registries

Use the container registries configured with Podman to pull container images. Create a self-
hosted container registry, and create registry mirrors.

A container registry is a store of Open Container Initiative images. A container image is a read-
only template which is used to create running containers. Container images in the registry can
be deployed as required.

By default, Oracle Linux systems are configured with access to these commonly used
registries:

• Oracle Container Registry (container-registry.oracle.com)

• Docker Hub (docker.io)

You can configure the container runtime to only trust images from container registries if they're
signed to improve security and mitigate against inadvertently running a compromised image.
For more information, see Configuring Podman for Signed Images.

Enterprise environments might also consider setting up a local container registry. The local
container registry can store images converted from customized containers. You can then use
these images for future container deployment. Storing images in a local container registry
reduces the amount of customized configuration that you might need to perform for mass
deployments. A local registry can also cache and host images that are pulled from an
upstream registry, which further reduces network overhead and latency when you deploy
matching containers across a spread of local systems.

Oracle Container Registry
Use the Oracle Container Registry to pull open source and licensed Oracle software container
images.

The Oracle Container Registry is an open standards-based, Oracle-managed container
registry service for securely storing and sharing container images. The Oracle Container
Registry contains both licensed and open source Oracle software, and the images are built and
signed by Oracle. Use of the container images is subject to the terms of their respective
licenses.

The Oracle Container Registry is at https://container-registry.oracle.com. It provides a web
interface to browse and select the images for the software that an organization can use. Oracle
Container Registry hosts container images for both open source and licensed Oracle products.
Licensed content requires you to authenticate and accept license agreement terms before
downloading images. Before you can sign in, you must generate an authentication token.

Note

You don't need to create an authentication token and sign in to Oracle Container
Registry to pull open source container images, as this is only required for licensed
images.

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 1 of 11

https://container-registry.oracle.com

You can use one of the Oracle Container Registry mirrors for faster download in different
geographical regions.

Pulling Open Source Software From the Oracle Container Registry
The correct command to pull an image is provided on the repository information page in the
Oracle Container Registry web interface. Other useful information about the image and how to
run it might also be available on the same page.

If you're using an Oracle Container Registry mirror, change the URL in these steps to use the
URL of the mirror. For more information on using mirrors, see Using Oracle Container Registry
Mirrors.

To pull an image from the Oracle Container Registry, use the following podman pull command:

podman pull container-registry.oracle.com/area/image:tag

Replace area with the repository location in the Oracle Container Registry, and image with the
name of the software image. For example:

podman pull container-registry.oracle.com/os/oraclelinux:9-slim

The area and image are specified in lowercase. When referencing images, we recommend that
you always specify the appropriate tag to use.

For more information on the tagging conventions for Oracle Linux images, see Oracle Linux
Container Image Tagging Conventions.

Pulling Licensed Software From the Oracle Container Registry
The Oracle Container Registry contains images for licensed commercial Oracle software
products. To pull images for licensed software on the Oracle Container Registry, you must have
an Oracle Account and have created an authentication token. You can create an Oracle
Account at https://profile.oracle.com/myprofile/account/create-account.jspx. For information on
creating an authentication token, see Generating an Oracle Container Registry Authentication
Token.

Note

You don't need to sign in to the Oracle Container Registry or accept the Oracle
Standard Terms and Restrictions to pull open source Oracle software images, only for
licensed software images.

If you're using an Oracle Container Registry mirror, change the URL in these steps to use the
URL of the mirror. For more information on using mirrors, see Using Oracle Container Registry
Mirrors.

1. Sign in to the Oracle Container Registry.

In a web browser, sign in to the Oracle Container Registry using an Oracle account at
https://container-registry.oracle.com.

2. Accept the Oracle Standard Terms and Restrictions.

Chapter 13
Oracle Container Registry

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 2 of 11

https://profile.oracle.com/myprofile/account/create-account.jspx
https://container-registry.oracle.com

Accept the Oracle Standard Terms and Restrictions for the Oracle software images you
want to pull. Acceptance of these terms are stored in a database that links the software
images to an Oracle Account. Acceptance of the Oracle Standard Terms and Restrictions
is valid only for the repositories for which you accept the terms. You might need to repeat
this process if you try to pull software from other or newer repositories in the registry. Note
that Oracle Standard Terms and Restrictions are subject to change without notice.

3. Find the image.

Browse or search for Oracle software images in the Oracle Container Registry.

4. Sign in to the Oracle Container Registry in Podman.

On the host system, use the podman login command to authenticate against the Oracle
Container Registry.

podman login container-registry.oracle.com

Provide an Oracle account username, and its associated Oracle Container Registry secret
key as the password value, when prompted.

5. Pull the image.

Pull the images that you require by using the podman pull command, for example:

podman pull container-registry.oracle.com/java/serverjre

The image is pulled from the Oracle Container Registry and stored locally, ready to be
used to deploy containers.

6. Sign out of the Oracle Container Registry in Podman.

After you have pulled images from the Oracle Container Registry, log out of the registry to
prevent unauthorized access and to remove any record of sign in credentials that Podman
might store for future operations:

podman logout container-registry.oracle.com

Generating an Oracle Container Registry Authentication Token
To pull licensed software from the Oracle Container Registry, generate an authentication token
and use it as the password value when using the podman login command.

Caution

From 2025-06-30 onward, authentication tokens are the only accepted credential type
when authenticating Podman with the Oracle Container Registry.

1. Sign in to the Oracle Container Registry.

In a web browser, sign in to the Oracle Container Registry using an Oracle account at
https://container-registry.oracle.com.

2. Select the profile name.

Select the profile name, and in the profile menu that appears select Auth Token.

3. Generate the Secret Key.

Chapter 13
Oracle Container Registry

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 3 of 11

https://container-registry.oracle.com

Select Generate Secret Key and note down the secret key. This is only displayed once,
during the initial generation.

4. (Optional) Regenerate the Secret Key.

If you lose or forget the secret key, generate a new one by selecting Delete Secret Key,
then select Generate Secret Key again.

Using Oracle Container Registry Mirrors
The Oracle Container Registry has many mirror servers around the world. You can use a
registry mirror in a specific global region to improve download performance of container
images.

To list all the available mirrors and the command to use for pulling images from a specific
mirror, see the information page for an image on the Oracle Container Registry web interface.
The Tags table on the information page includes a Download Mirror drop down list to select a
registry mirror. When you select a mirror, the Pull Command column changes to show the
command to pull the image from the selected mirror.

To download licensed Oracle software images from a registry mirror, you must first accept the
Oracle Standard Terms and Restrictions in the Oracle Container Registry web interface, and
sign in to the Oracle Container Registry in Podman. For information on pulling licensed
software images, see Pulling Licensed Software From the Oracle Container Registry.

If you use a mirror regularly, add it to the configuration so that the mirror is used by default for
searches and pull requests. See Configuring Registries for more information.

Example 13-1 Pull an image from a mirror

Pull the Oracle Linux 9 slim image from the Sydney mirror:

podman pull container-registry-sydney.oracle.com/os/oraclelinux:9-slim

Example 13-2 Pull a licensed image from a mirror

To pull licensed Oracle software images, sign in to the Oracle Container Registry mirror with
Oracle SSO username and Oracle Container Registry authentication token as the password
before you pull the image. We recommend you sign out of the registry after the image is pulled.

For example, to pull the latest Java Platform, Standard Edition (Java SE) image:

podman login container-registry-sydney.oracle.com

podman pull container-registry-sydney.oracle.com/java/serverjre:latest

podman logout container-registry-sydney.oracle.com.oracle.com

Oracle Linux Container Image Tagging Conventions
Oracle follows several conventions when tagging container images for Oracle Linux. Users
should be aware of these conventions to ensure that the best image is used for the purpose at
hand to avoid unnecessary breakages in functionality and to help ensure that images continue
to use the most recently patched software.

Chapter 13
Oracle Container Registry

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 4 of 11

The slim Tag
Oracle releases minimal compressed versions of each Oracle Linux release. These images
contain enough of the OS to run within a container and to perform installations of more
packages. These images are the recommended images for general use within builds and
where scripted installation is likely to be used. The images that use this tag are maintained at
the most current update level.

For example, to use the most recent version of an Oracle Linux 9 slim image, use the 9-slim
tag. To use the most recent version of an Oracle Linux 10 slim image, use the 10-slim tag.

FIPS compliant versions of images are tagged with the slim-fips tag. These images include
compliant cryptographic package versions and most of the initial image setup required for
container FIPS compliance. To use these images, you must enable FIPS mode on the host
system.

Example 13-3 Pull an Oracle Linux 9 slim image

Pull the most recent version of an Oracle Linux 9 slim image:

podman pull oraclelinux:9-slim

General Oracle Linux Release Tags
Oracle Linux images are tagged at their release level and are maintained to always map to the
latest corresponding update level. If you need a more complete OS than the version provided
in a slim image, use a release tag to obtain the latest image for that Oracle Linux image.

Example 13-4 Pull the latest Oracle Linux 9 image

Pull the latest update release image for Oracle Linux 9:

podman pull oraclelinux:9

Oracle Linux Update Level Tags
Oracle Linux images are tagged at their update level. The other tags described map onto the
latest or most current update level for an Oracle Linux image.

Warning

Don't directly use update level tags within a Containerfile or within any builds unless
you have a specific use case that requires a particular update level. Typical use cases
involve trying to resolve an issue or bug that's only present at a particular update level
of Oracle Linux.

Using an update level tag can result in containers running unpatched software that
might expose them to security issues and software bugs.

Chapter 13
Oracle Container Registry

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 5 of 11

Update level tags use dot notation to indicate the update level. For example, Oracle Linux 8.10
is indicated using the 8.10 tag:

podman pull oraclelinux:8.10

The latest Tag

Important

Oracle doesn't provide this tag for Oracle Linux images. Use a slim image or a release
tag instead. Oracle also recommends that users avoid dependency on this tag when
working with other distribution or software images.

The use of a default often results in significant confusion and can break builds and scripted
functionality for end users. For this reason, and to help encourage best practice when working
with image tags, Oracle doesn't provide a latest tag for Oracle Linux images.

The following reasons for Oracle's decision on this help explain why this tag isn't available:

• When the latest tag is used, it can result in significant jumps between distribution
releases rather than update levels. This is often not what a user intends when selecting the
latest tag, or depending on tools to fall back to this tag by not specifying a tag at all.
Expected functionality can change dramatically between releases resulting in changes to
commands, options, configurations, and available software.

• No easy way to identify which latest image was used for a particular build exists, making
it difficult to see the differences between two final build images. This problem tracking
changes also makes it difficult to roll back to a known functioning base image if a new build
fails.

• Tagging an image with the latest tag isn't automatic and it's possible for a more recent
image to be available while the image tagged as latest hasn't been updated. This can
lead to unexpected consequences.

• Not all tools treat the latest tag the same. While some tools might default to always
pulling an image tagged as latest from an upstream registry, other tools might default to a
locally stored image also tagged as latest, even if it has fallen out of date.

This decision might result in errors in some tools that fall back to the latest tag when no tag is
specified for an image. For example, the following command returns an error:

podman pull docker.io/library/oraclelinux

The error looks similar to:

Trying to pull docker.io/library/oraclelinux:latest...
Error: initializing source docker://oraclelinux:latest: reading manifest
latest in
docker.io/library/oraclelinux: manifest unknown

Always specify the appropriate tag for the image that you intend to use. For example:

podman pull container-registry.oracle.com/os/oraclelinux:9

Chapter 13
Oracle Container Registry

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 6 of 11

Docker Hub
Use the Docker Hub Registry to pull software container images.

The Docker Hub registry provides many software images, primarily for use with Docker but
which are compatible with Podman. The Docker Hub registry provides a web interface for
browsing available images.

The Docker Hub contains Docker images for licensed commercial Oracle software products
that you might use in an enterprise.

To access images hosted in the Docker Hub, you must sign in with a valid Docker account. To
get more information about creating a Docker account and using the Docker Hub, see the
Docker Hub documentation.

The Docker Hub provides a web interface where you can select the Docker Certified images
that you want to install. For some images, you would need to select Proceed to Checkout to
either agree to any terms and conditions that might apply or to make payment if required
before you can access the image.

At the conclusion of the transaction, the image is stored in the My Content area, which you
can revisit later. Each image provides a description and set up instructions.

Use the podman login command to sign in to Docker Hub and pull images. For example:

podman login docker.io

podman pull docker.io/library/alpine:latest

podman logout docker.io

Configuring Podman for Signed Images
Set up Podman to pull images that are signed by a validated public key for a container registry.
Any unsigned images can't be pulled.

You can configure Podman to only trust images from a remote registry if they're signed and the
provided signature can be validated against a locally stored public key. This configuration
option can help improve security and can mitigate against inadvertently running a
compromised image.

Images are signed in a similar way to packages that are made available on the Oracle Linux
yum server. GPG keys are used to sign images provided at the registry. The digital signatures
for each image are stored in a signature store that's accessible by using HTTPS. A public GPG
key that's used to validate the signature against the image digest must be available on the
system where Podman is installed.

The following steps describe how to configure a Podman host to require that images from a
remote registry are signed and validated before they can be used locally.

1. Create a registry configuration file.

For each registry where you require signature validation, create a YAML format
configuration file in the /etc/containers/registries.d/ directory (or

Chapter 13
Docker Hub

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 7 of 11

https://docs.docker.com/docker-hub/

in $HOME/.config/containers/registries.d/ directory for standard users) and
provide the value for the sigstore for that registry.

For example, for the Oracle Container Registry, create the /etc/containers/
registries.d/oracle.yaml file and populate it with the following content:

docker:
 container-registry.oracle.com:
 sigstore: https://container-trust.oci.oraclecloud.com/podman

See /etc/containers/registries.d/default.yaml for more information and to
view a template configuration.

2. Download the public GPG key.

Download and store the public GPG key that must be used to validate signatures for
images from the registry. For the Oracle Container Registry, you can download the public
GPG key from https://container-trust.oci.oraclecloud.com/podman/GPG-KEY-oracle. For
example:

sudo mkdir -p /etc/pki/containers

sudo wget -O /etc/pki/containers/GPG-KEY-oracle https://container-
trust.oci.oraclecloud.com/podman/GPG-KEY-oracle

3. Set the container policy.

Edit the container policy configuration to add the location of the public GPG key that must
be used to validate the signatures for images that are pulled from a particular registry.

The policy configuration is in JSON format and is at /etc/containers/policy.json.
Registry configuration appears under the docker key, which you might need to add under
the transports key in the existing configuration. For example, a default policy
configuration that has been edited to include an entry for the Oracle Container Registry
appears as follows:

{
 "default": [
 {
 "type": "insecureAcceptAnything"
 }
],
 "transports":
 {
 "docker-daemon":
 {
 "": [{"type":"insecureAcceptAnything"}]
 },
 "docker":
 {
 "container-registry.oracle.com": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "/etc/pki/containers/GPG-KEY-oracle"
 }

Chapter 13
Configuring Podman for Signed Images

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 8 of 11

https://container-trust.oci.oraclecloud.com/podman/GPG-KEY-oracle

]
 }
 }
}

See the containers-policy.json(5) manual page for more information about the format
of this configuration file.

4. Validate the configuration.

Validate that the configuration is correct by pulling an image from the remote registry. For
example:

podman pull container-registry.oracle.com/os/oraclelinux:9-slim

If the signature requirement is configured correctly, the output isn't different from an output
when you pull an image without signature validation configured.

5. (Optional) Confirm GPG key is used.

You can test that validation is taking place by setting the GPG keyPath in the policy
configuration to use another key. For example, you can configure the path to use the GPG
key used to validate RPM packages at /etc/pki/rpm-gpg/RPM-GPG-KEY-oracle.
When pulling the same image, validation of the signature fails with an error similar to:

Trying to pull container-registry.oracle.com/os/oraclelinux:9-slim...
Error: copying system image from manifest list: Source image rejected:
Invalid GPG signature:
gpgme.Signature{Summary:128,
Fingerprint:"4451CA2B13A2D6522D9E12DF357217938FC350A2",
Status:gpgme.Error{err:0x9}, Timestamp:time.Date(2025, time.July, 16, 19,
18, 22, 0, time.Local),
ExpTimestamp:time.Date(1970, time.January, 1, 0, 0, 0, 0, time.Local),
WrongKeyUsage:false,
PKATrust:0x0, ChainModel:false, Validity:0, ValidityReason:error(nil),
PubkeyAlgo:1, HashAlgo:8}

Configuring Registries
Edit the container registry configuration file to set registry options for the environment. This can
be set system wide, and for users.

To configure default registry settings, edit the /etc/containers/registries.conf file, which is
in TOML format. The configuration file is commented to explain the options that are available.
You can create a user specific registry configuration file by copying the system wide
configuration file (/etc/containers/registries.conf) to a user's directory at $HOME/.config/
containers/registries.conf. For example:

cp /etc/containers/registries.conf $HOME/.config/containers/registries.conf

For detailed information on all options in the container registries configuration file, see the
upstream documentation, or the containers-registries.conf(5) manual page.

Chapter 13
Configuring Registries

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 9 of 11

https://github.com/containers/image/blob/main/docs/containers-registries.conf.5.md

Listing Registries
To see the registries configured to use when searching for container images, use:

podman info --format='{{.Registries}}'

The output looks similar to:

map[search:[container-registry.oracle.com docker.io]]

Setting Registry Order
The registries that are searched when you try to pull or use an image that isn't available locally
are defined in the following configuration block:

unqualified-search-registries = ["container-registry.oracle.com", "docker.io"]

Registries are searched sequentially in the order that they're defined in this list. If a local
registry exists, add it at the beginning of the list to make it the first searched registry.

Adding Registries
To add a registry to Podman, edit the Podman system wide or user configuration file to include
the registry in the unqualified-search-registries entry. Add it in the order you want
container searches and pulls to be performed. For example:

unqualified-search-registries = ["localhost:5000",
"myregistry.example.com:5000", container-registry.oracle.com", "docker.io"]

If the registry is an insecure registry, also edit the [[registry]] section and include the
insecure = true option with the registry location.

[[registry]]
location = "localhost:5000"
insecure = true

Adding Insecure Registries
To use an insecure registry without a valid SSL certificate or that doesn't use SSL, edit the
[[registry]] section and include the insecure = true option with the registry location. For
example:

[[registry]]
location = myregistry.example.com:5000
insecure = true

[[registry]]
location = "localhost:5000"
insecure = true

Chapter 13
Configuring Registries

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 10 of 11

Chapter 13
Configuring Registries

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 11 of 11

14
Private Container Registries

Set up a local, private container registry server to host container images within an organization.
A private registry can also be used to mirror the Oracle Container Registry.

The registry server is a container application. The host must have an Internet connection to
download the registry image from Docker Hub or, if support is required, from the Oracle
Container Registry.

You can create a secure private registry, which requires you to set up TLS. When you set up
TLS, you can use a self signed Certificate Authority (CA) certificate, or a certificate signed by a
CA. Otherwise, the registry can be created as an insecure registry for testing and development
purposes.

Note

The registry image from Docker Hub can be used to set up both an insecure registry
and a secure registry. The registry image from the Oracle Container Registry can only
be used to set up a secure registry.

Creating an Insecure Registry
Create a local container registry without TLS. This can be used for testing or development. A
secure registry that uses TLS is recommended for a production system.

If you create an insecure registry, you can add it to the Podman registry configuration file to
avoid using the --tls-verify=false option when using the registry. For more information, see
Adding Insecure Registries.

1. Create the registry.

Use the podman create command to create the registry. For example:

sudo podman run -d -p 5000:5000 --name registry --restart always registry:2

Or for a standard user:

podman run -d -p 5000:5000 --name registry --restart always registry:2

The -d option runs the container in the background.

The -p option publishes the port mapping. If you're using the default ports, set this to
5000:5000. If port 5000 is already in use, assign another port, for example use 5001:5000.

The --name option sets the name of the registry container. This is commonly set to
registry.

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 1 of 6

The container registry image is pulled from Docker Hub using the short name of
registry:2, though you could also use the full image location of docker.io/library/
registry:2.
For more information on the options, use the podman run --help command.

2. Verify the registry container is running:

Use the podman ps command to verify the registry container is running.

sudo podman ps

Or for a standard user:

podman ps

Creating a Secure Registry
Create a local container registry with TLS. A secure registry that uses TLS is recommended for
a production system.

Before you begin, ensure you have considered the prerequisites:

• The registry server requires at least 15 GB of available disk space to store registry data
in /opt/registry/.

• As a good practice, create a separate file system for the registry, preferably a Btrfs
formatted file system. By using the Btrfs file system, you can easily scale the registry file
system and leverage Btrfs features such as file system snapshots. For information on
setting up Btrfs, see the following documents:

– Oracle Linux 8: Managing the Btrfs File System

– Oracle Linux 9: Managing the Btrfs File System

– Oracle Linux 10: Managing the Btrfs File System

• The registry host requires a valid X.509 certificate and private key to enable Transport
Layer Security (TLS) with the registry, similar to using TLS for a web server. You can use
either a certificate signed by a trusted Certificate Authority (CA), or a self signed certificate.
A self signed certificate can be used for testing purposes. For information about creating a
self signed certificate and private key, see Oracle Linux: Managing Certificates and Public
Key Infrastructure.

If the host already has an X.509 certificate, you can use it with Podman to create the
private registry. If you're using the host's X.509 certificate and it was issued by an
intermediate CA, combine the host's certificate with the intermediate CA's certificate to
create a chained certificate. This creates a certificate that includes the both the host and
intermediate CA certificate so it can be validated by Podman. Use the cat command to do
this, using the format:

sudo cat host_certificate.crt intermediate_certificate.pem >
chained_certificate.crt

For example:

sudo cat myregistry.example.com.crt intermediate-ca.pem > domain.crt

Chapter 14
Creating a Secure Registry

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 2 of 6

https://docs.oracle.com/en/operating-systems/oracle-linux/8/btrfs/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/btrfs/
https://docs.oracle.com/en/operating-systems/oracle-linux/10/btrfs/
https://docs.oracle.com/en/operating-systems/oracle-linux/certmanage/
https://docs.oracle.com/en/operating-systems/oracle-linux/certmanage/

1. Create the required directories.

The /opt/registry/ directory is used to store the registry data. The certs directory
stores the certificate and private key, and the data directory is used to store the images
pushed to the registry.

sudo mkdir -p /opt/registry/{certs,data}

2. Copy the certificate and key to the /opt/registry/certs/ directory.

Use the format:

sudo cp certfile /opt/registry/certs/domain.crt

sudo cp keyfile /opt/registry/certs/domain.key

Replace certfile with the full path to the host's X.509 certificate, or to the chained
certificate. Replace keyfile with the full path to the host's private key. For example:

sudo cp /etc/pki/tls/certs/registry.example.com.crt /opt/registry/certs/
domain.crt

sudo cp /etc/pki/tls/private/registry.example.com.key /opt/registry/certs/
domain.key

3. Set private key permissions.

Set the correct file permissions for the private key.

sudo chmod 600 /opt/registry/certs/domain.key

4. Create the registry.

Use the podman create command to create the registry. For example:

sudo podman run --name registry \
-d \
-p 5000:5000 \
-v /opt/registry/data:/var/lib/registry:z \
-v /opt/registry/certs:/certs:z \
-e "REGISTRY_HTTP_TLS_CERTIFICATE=/certs/domain.crt" \
-e "REGISTRY_HTTP_TLS_KEY=/certs/domain.key" \
-e REGISTRY_AUTH="" \
registry:2

The --name option sets the name of the registry container. This is commonly set to
registry.

The -d option runs the container in the background.

The -p option publishes the port mapping. If you're using the default ports, set this to
5000:5000. If port 5000 is already in use, assign another port, for example use 5001:5000.

The -v options mount local directories in the container.

Chapter 14
Creating a Secure Registry

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 3 of 6

Set environment variables to use with the registry container using the -e option. Use this
option to set the location of the X.509 certificate and key information.

The container registry image is pulled from Docker Hub using the short name of
registry:2, though you could also use the full image location of docker.io/library/
registry:2. You can also set this to pull from the Oracle Container Registry by setting the
container to container-registry.oracle.com/os/registry:latest.

For more information on the options, use the podman run --help command.

5. Verify the registry container is running:

Use the podman ps command to verify the registry container is running.

sudo podman ps

6. Open the registry port in the firewall.

If you're running a firewall, ensure the TCP port you want the container registry to listen on
is accessible. For example:

sudo firewall-cmd --zone=public --permanent --add-port=5000/tcp

sudo firewall-cmd --zone=internal --permanent --add-port=5000/tcp

Reload the firewalld configuration:

sudo firewall-cmd --reload

7. Configure the registry with Podman.

Add the container registry to the Podman configuration file on each host that needs to
access the registry. For information on configuring registries, see Configuring Registries.

Distributing X.509 Certificates
If the registry host uses a self-signed X.509 certificate, you must distribute the certificate to all
the hosts in the deployment for which you intend to use the local container registry.

For the root user, certificates for each registry are stored in /etc/containers/certs.d/
registry_hostname:port/. For standard users, certificates can be stored
in $HOME/.config/containers/certs.d/registry_hostname:port/. Change
registry_hostname to the name of the registry host, and port to the port number for the
container registry server (5000 by default).

Podman, Buildah, and Skopeo commands that interact with registries also often provide a --
cert-dir option to specify an alternate location for these certificates.

1. Create a certs.d directory.

Create the appropriate certs.d location for the registry host and the user. For the root
user, use the format:

sudo mkdir -p /etc/containers/certs.d/registry_hostname:port

Chapter 14
Creating a Secure Registry

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 4 of 6

For a standard user, use the format:

mkdir -p $HOME/.config/containers/certs.d/registry_hostname:port

Replace registry_hostname with the name of the server running the container registry.
Replace port with the port number to access the registry. For example:

sudo mkdir -p /etc/containers/certs.d/myregistry.example.com:5000

Or for the standard user:

mkdir -p $HOME/.config/containers/certs.d/myregistry.example.com:5000

2. Copy the X.509 certificate from the registry host.

sudo scp user@registry_hostname:/opt/registry/certs/domain.crt \
/etc/containers/certs.d/registry_hostname:port/ca.crt

Or for the standard user:

scp user@registry_hostname:/opt/registry/certs/domain.crt \
$HOME/.config/containers/certs.d/registry_hostname:port/ca.crt

Importing Images Into a Registry
When you have set up a private container registry, you can import images into the registry so
that they can be used to deploy containers. You can pull images from a registry, such as the
Oracle Container Registry, and then commit them to a local registry. You can also create
custom images based on upstream images.

1. Pull an image from a registry.

For example, pull an image from the Oracle Container Registry:

podman pull container-registry.oracle.com/os/oraclelinux:9-slim

2. Tag the image.

Tag the image so that it points to the local registry. For example:

podman tag container-registry.oracle.com/os/oraclelinux:9-slim
myregistry.example.com:5000/ol9image:v1

In this example, myregistry.example.com:5000 is the location of the private registry.
Change this to the location of the private registry. If you're using an insecure registry on the
same host, you can use localhost:5000 for the registry location. The repository and tag
name, ol9image:v1 in this example, must all be in lowercase to be a valid tag.

3. Push the image to the registry.

Push the image to the registry, for example:

podman push myregistry.example.com:5000/ol9image:v1

Chapter 14
Importing Images Into a Registry

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 5 of 6

If you're pushing to an insecure registry, include the --tls-verify=false option.

4. Verify the image is loaded.

Check the image is loaded to the container registry by pulling the image.

First, remove the existing local image pushed in the previous step.

podman image rm ol9image:v1

Pull the image from the registry:

podman pull myregistry.example.com:5000/ol9image:v1

Verify the local image pulled from the registry:

podman images

See Buildah for more information about how you can create images. When you have
committed a customized image, you can tag it and push it to the local registry.

Chapter 14
Importing Images Into a Registry

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 6 of 6

15
Podman Command Reference

The following list includes the podman command subcommands.

Each of the listed commands is linked to a manual page that follows the podman-command(1)
pattern. For example, to retrieve information about the attach command, see the podman-
attach(1) manual page. For a full list of all the documentation available for Podman, see the
podman(1) manual page. You can also use the podman help command to get more information
on the command syntax.

artifact
Manage Open Container Initiative artifacts. Not available on Oracle Linux 8 hosts.

attach
Attach to the shell of a running container.

auto-update
Automatically update containers with automatic updating enabled.

build
Build an image from a Containerfile.

commit
Create an image based on an edited container.

compose
Run compose workloads using an external provider such as docker-compose or podman-
compose.

container
Manage existing containers.

cp
Copy files and folders between the container and host file system.

create
Create a container without starting it.

diff
View changes on the container's file system.

events
Show Podman event logs for the running container.

exec
Run a process in a specified container that's already running.

export
Export a container's file system and contents to a compressed archive.

farm
Farm out builds to remove machines that Podman can connect to using a system connection.

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 1 of 4

generate
Generate systemd unit files and pod YAML files.

healthcheck
Run a health check on an existing container.

history
Review the history of a specified image.

image
Manages existing images.

images
Lists images present on the host system.

import
Import a compressed archive to create a container file system.

info
Show system information for Podman.

init
Initialize one or more containers.

inspect
Display the existing configuration values for a container or image.

kill
Stop running containers with a predefined signal.

kube
Generate, and play containers, pods, or volumes using a structured Kubernetes compliant
YAML file.

load
Load an image from a container archive file.

login
Sign in to a container registry.

logout
Sign out of a container registry.

logs
Review logs for a container.

machine
Manage a virtual machine.

manifest
Create and edit manifest lists and image indexes.

mount
Mount a running container's root file system.

network
Manage networks that are accessible to containers.

Chapter 15

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 2 of 4

pause
Suspend all the processes in one or more containers.

play
Start containers, pods, or volumes from a structured file.

pod
Create and manage pods.

port
List network port mappings for a container.

ps
List containers.

pull
Pull an image from a container registry.

push
Push an image to a container registry.

rename
Rename an existing container.

restart
Restart one or more containers.

rm
Remove one or more containers.

rmi
Remove one or more images from local storage on the host system.

run
Run a single command in a new container.

save
Save an image to a compressed archive.

search
Search a container registry for an image.

secret
Manage secrets.

start
Start one or more containers.

stats
Display a real time stream of container resource usage statistics.

stop
Stop one or more containers.

system
Manage Podman configuration settings.

Chapter 15

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 3 of 4

tag
Add another name to an image in local storage on the host system.

top
Display the running processes for a container.

unmount
Unmount a running container's root file system.

unpause
Resume all processes for one or more containers.

unshare
Run a command as a specified user.

untag
Remove a secondary name from an image in local storage on the host system.

update
Update an existing container.

version
Show version information for Podman.

volume
Manage container storage volumes.

wait
Block processes on one or more containers until a specified condition is fulfilled.

Chapter 15

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 4 of 4

16
Security Recommendations

Ensure that infrastructure and containerized applications remain secure by following security
recommendations and guidelines.

Follow security guidelines at all levels within the infrastructure for an environment to best
mitigate against exploitation. Follow the best practice guidelines for each component at play
within the environment.

While containerization provides resource separation between applications running on the same
host, the separation isn't complete and it's possible to break out of a container or to exploit a
container in such a way that it could affect other containers running on the same host. If you
have different tenancies within the organization, or if you have different customers that are
using the same infrastructure, it's imperative that their containers run on different hosts, or on
different virtual machines, to achieve more complete separation and to prevent the likelihood of
a serious data breach.

Host
Regularly update the host kernel and OS software
Security patches and bug fixes for the kernel and OS software are released as issues are
resolved. Keep the OS current with the most recent software updates. Subscribe the system
to the latest software channels or repositories, and run regular DNF update operations.
Consider using Ksplice to keep the system software up-to-date.

Use a minimal OS and ensure that it follows security best practices
Where possible, use a minimal OS installation and ensure that it follows the security best
practices described in the following documents:

• Oracle Linux 8: Enhancing System Security

• Oracle Linux 9: Enhancing System Security

• Oracle Linux 10: Enhancing System Security

Most importantly, reduce the number of services running on the same system. Ideally, move all
other services to reside within containers controlled by Podman or move them to other
systems entirely. This helps to contain damage in the event of container break out.

Regularly scrutinize the OS and kernel for safety
Be vigilant that the OS is regularly scrutinized for safety and potential vulnerabilities.

Use mature system components that provides the best possible security feature set
We recommend keeping all system components, including the kernel, up-to-date so that all
known security and functionality issues have been resolved. If you're using the Unbreakable
Enterprise Kernel (UEK), consider using the latest available UEK generation for the Oracle
Linux release, so that kernel-based features such as kernel namespaces, private networking,
and control groups are mature, reliable, and heavily tested.

Use Linux security modules
Use the appropriate security modules on a host where possible. For example, run SELinux in
enforcing mode to protect the host from the container images you're running. In addition, when

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 1 of 5

https://docs.oracle.com/en/operating-systems/oracle-linux/8/security/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/security/
https://docs.oracle.com/en/operating-systems/oracle-linux/10/security/

using a volume mount, consider using the -z option if you need to share an SELinux security
context between containers or between the container and the host system. This is useful when
running a container as a non root user because the container is evaluated with the same
SELinux context as the host. To restrict the volume to only the running container, use the -Z
option. See Setting Up Container Mounts for more information.

Podman Images
Ensure that images come from verified and trusted sources
Verify that Podman images are received and deployed unchanged from a source with a
trusted reputation and which has been authenticated. For example, see Configuring Podman
for Signed Images.
When pulling images from remote sources, ensure that the connection is protected and that
you're using HTTPS for the pull request. Don't use insecure image registries that aren't
protected by TLS.
Where possible, use Podman images based on a curated, trusted collection of image
suppliers.

Create reliably reproducible images
When using Containerfiles to build new images, review base images, and installed software
for security. To help ensure that new images use base images and software that you have
reviewed for security vulnerabilities:

• Specify a fixed version in the base image in an image Containerfiles.

• Specify fixed versions in package pulls in the build steps of an image Containerfile (note
that dependencies of dependencies can still be a reliability problem).

• Ensure the that package pulls in the build steps are using trusted and verified sources.

Minimize packages installed on images
Don't install unnecessary packages into new image builds. Review Containerfiles to remove
unnecessary installation steps so that images remain limited to their function.

Podman Containers
Run containers as a non root user
Podman runs each container as the host user running the Podman container. The host user
can be the root user or a non root user. For most security, run containers with a non root host
user.

Consider running containers with limited memory and CPU usage
Consider limiting container memory and CPU usage using the -m and --memory-swap options
for memory and swap memory, and the -c option for CPU.

Limit container restarts
To prevent potential denial-of-service resulting from a container that spins out of control, limit
container restarts using the --restart=on-failure:N option when creating or running a
container.

Monitor container resource usage
Podman provides facilities to monitor container resource usage, such as memory
consumption, CPU time, I/O and network usage. Review container resource usage for
performance, error detection, and anomalous behavior. Consider using tools to monitor real-

Chapter 16
Podman Images

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 2 of 5

time resource usage for anomalous activity such as use of resources, suspicious traffic, and
unexpected user activity.

Limit container file access
When creating and running containers, limit container file access using the --read-only flag
or the -v host dir:container dir:ro option. Explicitly create volumes for container
applications to write in and monitor changes to files in these volumes. Ensure that volumes
that are dedicated for container write access are reviewed for sprawl and are cleaned up
regularly. The following example shows how to use the :ro option to mount a host directory
such that the host folder or file is read-only for the container:

podman run -v /host_directory_to_be_mounted:/target_container_directory:ro
oraclelinux:9

In the previous example, host_directory_to_be_mounted is the host directory and files to be
mounted as a volume and target_container_directory is the directory on the container where
the host directory is to be mounted.
Don't mount sensitive host system directories at container runtime:

• /

• /boot

• /dev

• /etc

• /lib

• /proc

• /sys

• /usr

Regularly review containers for safety
Consider using tools that help automate container safety checks and to monitor for changes
within containers.
Systematically remove images and containers that aren't needed from the host system to
avoid image and container sprawl and to help prevent the accidental usage of an old, unused
image or container that has might have avoided security scrutiny. Consider using the Podman
auto-update feature to automate the process of checking for new image versions and
redeploying impacted containers automatically.

Understand kernel capabilities in containers
Oracle Linux divides the root user into distinct units, called capabilities. By default, the
following kernel capabilities are granted to a container:

• CHOWN

• DAC_OVERRIDE

• FSETID

• FOWNER

• NET_RAW

• SETGID

• SETUID

Chapter 16
Podman Containers

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 3 of 5

• SETFCAP

• SETPCAP

• NET_BIND_SERVICE

• SYS_CHROOT

• KILL

By default, the following notable kernel capabilities are removed from a container:

• SYS_TIME

• MKNOD

• NET_ADMIN

• SYS_MODULE

• SYS_NICE

• SYS_ADMIN

• AUDIT_WRITE

Don't use the --privileged option when starting containers because it disables the security
features that isolate the container from the host such as dropped capabilities, limited devices,
read-only mount points, and volumes and so on.

Understand options to limit kernel file handle and process resources in containers
When creating and running containers, limit kernel resources by using the --ulimit option or
set container defaults using the --default-ulimit when starting the Podman service.

Understand options to limit networking access from containers
If you do run a network for a container, when publishing ports to the host, specify the IP
address of the interface that you want the port to bind to so that the attack surface is reduced
to the network interface where the container is listening. Podman publishes to all interfaces
(0.0.0.0) by default if an IP address isn't specified when using the -p or --publish option.
Don't run SSH inside containers.
Don't map privileged ports (< 1024) inside containers.
Don't use the --net=host mode option for containers when they're started or run. This option
gives the container full access to local system services and is insecure.

Understand options to limit system calls in containers
By default, Podman containers limit the system calls available to containers using the system
calls specified in the /usr/share/containers/seccomp.json file. This list is compatible
with most containers and you don't need to add more system calls.

Don't share host namespaces with containers
Don't share host namespaces such as the PID or IPC namespaces when starting or running
containers.

Don't expose host devices into containers
Don't expose host devices into containers when you start or run them.

Chapter 16
Podman Containers

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 4 of 5

Containerized Applications
Minimize kernel calls in containerized applications
Because the kernel is shared between containers, kernel calls increase risk to other
containers running on the host system. Avoid kernel calls within containerized applications
wherever possible.

Run Container applications as a non root user
Ensure that containerized applications run as a non root user. Because the UIDs are shared
across the host, the root user in a container is the root user on the host.

Remove or minimize the use of setuid and setgid in containerized applications
Most applications don't need any setuid or setgid binaries. If you can, disable, or remove
such binaries. By doing so, you remove the chance of them being used for privilege escalation
attacks. If you discover binaries that have setuid or setgid permission flags, remove them
altogether, or try to remove the permission flags to remove the risks that are associated with
these permissions on a binary.

Design containerized applications to be impermanent
As much as is possible, design applications to be stateless, rollable, instantly migrateable
microservices container apps if possible. If using applications outside of your own design, take
this approach into consideration when selecting software that you intend to run within
containers. This quality can be helpful in maintaining service during and in the time following a
breach or accident in the system.

Chapter 16
Containerized Applications

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 5 of 5

17
Known Issues

Ensure you read the known issues using Podman and related utilities.

Quadlets Fail For An Unprivileged User
Quadlets fail to run on Oracle Linux 8 without root permissions. While trying to start a Quadlet
service, you might see the following error message:

Error: mkdir /sys/fs/cgroup/blkio/user.slice/runtime: permission denied

Or, if you're using crun as the runtime, you might see the following error message:

Error: OCI runtime error: crun: the requested cgroup controller `pids` is not
available"

Because of this problem, Podman Shell isn't available for Oracle Linux 8.

(Bug 36076771)

Podman Build Command Fails With "Operation Not Permitted"
When Unprivileged Users Try to Establish Volumes

Oracle Linux 8 hosts running UEK 6 Update 3 or the Red Hat Compatible Kernel (RHCK) can't
mount or umount volumes on rootless Podman containers. Typically, trying to do so causes this
error message:

...
error running container: from /usr/bin/runc creating container for [/bin/sh -
c touch /tmp/myfile1]:
time="2024-02-06T00:22:07Z" level=warning msg="unable to get oom kill count"
error="no directory
specified for memory.oom_control" time="2024-02-06T00:22:07Z" level=error
msg="runc create failed:
unable to start container process: error during container init: error
mounting
\"/home/podman_user/.local/share/containers/storage/overlay-containers/
2f80607e49897c5a2a8020bfbc520ddf2ee48157722fe2e207b3491ada5df0c9/userdata/
overlay/1738053957/merge\"
to rootfs at \"/data\":
mount /home/podman_user/.local/share/containers/storage/overlay-containers/
2f80607e49897c5a2a8020bfbc520ddf2ee48157722fe2e207b3491ada5df0c9/userdata/
overlay/1738053957/merge:
/data (via /proc/self/fd/7),
data: lowerdir=/home/podman_user/.local/share/containers/storage/overlay/
fe866d78514c04dd5df86d3ff2fff3288c675a52874f114c36f7d94aa1666bd6/merged/data,
upperdir=/home/podman_user/.local/share/containers/storage/overlay-containers/

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 1 of 6

2f80607e49897c5a2a8020bfbc520ddf2ee48157722fe2e207b3491ada5df0c9/userdata/
overlay/1738053957/upper,
workdir=/home/podman_user/.local/share/containers/storage/overlay-containers/
2f80607e49897c5a2a8020bfbc520ddf2ee48157722fe2e207b3491ada5df0c9/userdata/
overlay/1738053957/work,
userxattr,context=\"system_u:object_r:container_file_t:s0:c10,c760\":
operation not permitted"
...

If that functionality is required, upgrade the Oracle Linux 8 host to boot from the UEK7. For
more information, see the Unbreakable Enterprise Kernel documentation.

(Bug 36250501)

Container Storage is Not Accessible to an Unprivileged User
Container storage might fail to mount for an unprivileged user in some Oracle Linux 8
environments. Typically this displays in the following way:

$ podman run --name c_uidmap --uidmap 0:10000:10000
localhost:5555/os/oraclelinux:7 true
Error: error creating container storage: error creating an ID-mapped copy of
layer "a8c980a5275b9ef8dc35f68daacc8fc82e463cd25adeb84ccda98b58ce84f122":
exit status 1: error during chown: error mapping container ID pair
idtools.IDPair{UID:10000, GID:10000} for
"usr/lib64/python2.7/SimpleXMLRPCServer.pyo" to host: Container ID 10000
cannot be mapped to a host ID

The issue can be resolved by updating the container mount options to include the index=off
parameter. Edit /etc/containers/storage.conf to make this change, for example:

mountopt = "nodev,metacopy=on,index=off"

(Bug 34161379)

X509 Certificate Relies on Legacy Common Name Field
With the release of Podman version 3.0, included with Oracle Linux 8.4, Podman commands
that require TLS verification for certificates that don't include a proper Subject Alternative
Name (SAN) return the following error:

x509: certificate relies on legacy Common Name field, use SANs or
temporarily enable Common Name matching with GODEBUG=x509ignoreCN=0

This issue is the result of a newer version of the Go compiler used to build Podman. The issue
occurs when working with local or private image registries that use self-signed certificates.

You can either update certificates to use a proper SAN or set the GODEBUG environment
variable x509ignoreCN=0 in the environment where you intend to run Podman. For example

Chapter 17
Container Storage is Not Accessible to an Unprivileged User

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 2 of 6

https://docs.oracle.com/en/operating-systems/uek/

add the following line to $HOME/.bashrc file to continue using self-signed certificates where a
SAN isn't set:

export GODEBUG=x509ignoreCN=0

(Bug 32821677)

Executing Podman Attach --latest Causes Panic if No Containers
Are Available

If you run the podman attach --latest command and no containers exist in an environment, a
runtime error similar to the following occurs:

sudo podman attach --latest

panic: runtime error: index out of range
...

Note that this error no longer occurs as soon as containers exist in the environment. Running
the command when no containers exist is meaningless.

(Bug 29882537)

Requirements for Using the Default Podman Detach Key
Sequence

On Oracle Linux 8 hosts, the default key sequence that you use to detach a container (CTRL+P,
CTRL+Q) requires a console that can handle detachment (pseudo-tty), and an input channel for
passing control signals (stdin). Otherwise, you can't create a container, attach it with the
podman attach -l command, and then quit, or detach the container by using the default key
sequence, as documented in the podman-attach(1) manual page.

To ensure that you can use the default CTRL+P, CTRL+Q key sequence to detach a container,
use either of the following methods to create a container. In both cases ensure that you use the
-t option so that a pseudo-tty is created:

• Create a container in the background:

sudo podman run --rm -dt container-registry.oracle.com/os/oraclelinux:8-
slim top -b

You can then use the podman attach -l command to attach the container and the CTRL+P,
CTRL+Q key sequence to detach the container.

• Create a container interactively:

sudo podman run --rm -it container-registry.oracle.com/os/oraclelinux:8-
slim top -b

Chapter 17
Executing Podman Attach --latest Causes Panic if No Containers Are Available

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 3 of 6

The interactive method creates the container and automatically attaches it. You can then
use the CTRL+P, CTRL+Q key sequence to detach the container.

For more information, see the podman(1) and podman-attach(1) manual pages.

(Bug 29882852)

Authentication Error Occurs Pulling an Image Using an Incorrect
Name

If you try to pull an image by running the podman pull image-name command, but you don't
specify the correct or full name of the image, an authentication error occurs.

For example, the following error is displayed because oracle:ol8-slim was specified as the
name of the image instead of oraclelinux:ol8-slim, which is the correct name for the image:

podman pull oracle:ol8-slim

Displays output similar to:

Trying to pull registry.redhat.io/oracle:latest...Failed
Trying to pull quay.io/oracle:latest...Failed
Trying to pull docker.io/oracle:latest...Failed
error pulling image "oracle:ol8-slim": unable to pull oracle:ol8-slim: 3
errors
occurred:

* Error determining manifest MIME type for
docker://registry.redhat.io/oracle:ol8-slim: unable to retrieve auth token:
invalid username/password
* Error determining manifest MIME type for docker://quay.io/oracle:ol8-slim:
Error reading manifest latest in quay.io/oracle: error parsing HTTP 404
response body: invalid character '<' looking for beginning of value:
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 3.2 Final//EN\">\n<title>404 Not
Found</title>\n<h1>Not Found</h1>\n<p>The requested URL was not found on the
server. If you entered the URL manually please check your spelling and try
again.</p>\n"
* Error determining manifest MIME type for docker://oracle:ol8-slim: Error
reading manifest latest in docker.io/library/oracle: errors:
denied: requested access to the resource is denied
unauthorized: authentication required

To prevent this error from occurring, always specify the correct image name with the podman
pull command.

(Bug 29894231)

Chapter 17
Authentication Error Occurs Pulling an Image Using an Incorrect Name

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 4 of 6

The Latest Tag Is Missing From the oraclelinux Image on Docker
Hub

Trying to search for or pull the oraclelinux image from Docker Hub fail with a manifest
unknown error because the latest tag doesn't exist:

podman pull docker://docker.io/library/oraclelinux:latest

Trying to pull repository docker.io/library/oraclelinux ...
manifest for oraclelinux:latest not found: manifest unknown: manifest unknown
manifest for oraclelinux:latest not found: manifest unknown: manifest unknown

This issue also affects the Skopeo utility, which expects the latest tag to be present by
default:

skopeo inspect docker://docker.io/library/oraclelinux

FATA[0001] Error parsing image name "docker://docker.io/library/oraclelinux":
Error reading manifest latest in docker.io/library/oraclelinux:
manifest unknown: manifest unknown

The latest tag was removed from the Oracle Linux official images in June 2020 to reduce
customer confusion. Downstream images using oraclelinux:latest or no tag should be
updated to oraclelinux:8 for future builds. Note that we recommend using the -slim variants
for the smallest possible image size.

For more information, see Oracle Linux Container Image Tagging Conventions.

(Bug 31524440)

Podman Pod Create Fails on Oracle Linux 9 For An Unprivileged
User With IMA Enabled

On systems, such as Oracle Linux 9, where Integrity Measurement Architecture (IMA) is
enabled and enforcing, running podman pod create as an unprivileged user can fail with an
error similar to:

...
RemoveOptions:copier.RemoveOptions{All:false}}: copier: put: error setting
extended attributes on "/catatonit": error setting value of extended
attribute "security.ima" on "/catatonit": operation not permitted

This issue occurs when the rpm-plugin-ima package is installed before the podman or podman-
catatonit packages. In the case where the rpm-plugin-ima package is installed the
catatonit binary, used by Podman to provide init services to containers, is an IMA signed file
and unprivileged users don't have permissions to set security extended attributes (xattrs) on
the file system.

Chapter 17
The Latest Tag Is Missing From the oraclelinux Image on Docker Hub

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 5 of 6

To work around the issue, uninstall rpm-plugin-ima and reinstall the podman package. Note
that on fresh installations of Oracle Linux 9.2 and later, the rpm-plugin-ima package isn't
installed by default and the issue is unlikely to appear. Also, from Podman version 4.4
onwards, the catatonit binary is included in the podman package and you don't need to install
the podman-catatonit package.

(Bug 34578553)

Executing Podman Attach --latest Causes Panic if No Containers
Are Available

If you run the podman attach --latest command and no containers exist in an environment, a
runtime error similar to the following occurs:

sudo podman attach --latest

panic: runtime error: index out of range
...

Note that this error no longer occurs as soon as containers exist in the environment. Running
the command when no containers exist is meaningless.

(Bug 29882537)

Chapter 17
Executing Podman Attach --latest Causes Panic if No Containers Are Available

Podman User's Guide
F30921-28
Copyright © 2020, 2025, Oracle and/or its affiliates.

December 9, 2025
Page 6 of 6

	Contents
	Preface
	1 About Podman and Related Utilities
	About Podman
	About Buildah
	About Skopeo

	2 Install Podman and Related Utilities
	Installing Podman
	Installing Buildah
	Installing Skopeo

	3 Podman Images
	Searching for Images in Container Registries
	Pulling Images From a Container Registry
	Inspecting an Image
	Listing Local Images
	Deleting a Local Image

	4 Podman Containers
	Creating Containers
	Running Containers
	Enabling FIPS Mode in Containers
	Listing and Monitoring Containers
	Pausing and Resuming Containers
	Stopping and Removing Containers

	5 Podman Pods
	Creating Pods
	Listing and Monitoring Pods
	Pausing and Resuming Pods
	Stopping and Starting Pods
	Removing Pods

	6 Kubernetes Files
	Creating a Kubernetes YAML File
	Running a Kubernetes YAML File
	Removing Pods Using a Kubernetes YAML File
	Deploying to a Kubernetes Cluster
	Deploying to a Kubernetes Cluster Using kubectl

	7 Podman Storage
	Setting Storage Configuration Options
	Setting Up Container Mounts

	8 Podman Networking
	Setting a Proxy Server
	Configuring Port Mapping for Containers
	Inspecting Container Networking
	Advanced Networking for Containers
	About CNI Networks
	About Netavark Networks
	Changing the Network Backend
	Creating and Removing Networks
	Listing Networks
	Connecting and Disconnecting Container Networks

	9 Podman Quadlets
	Creating Quadlets
	Creating Quadlets With the Podman Shell
	Quadlet Services
	Starting Services
	Restarting Services
	Stopping Services
	Checking the Service Status
	Enabling Services

	10 Podman Service Wrappers
	Generating Podman Service Wrappers
	Starting and Restarting Podman Services
	Stopping Podman Services
	Checking the Status of Podman Services
	Enabling Automated Restore for Podman Services
	Changing Podman Service Wrapper Configuration
	Setting SELinux Permissions for Service Wrappers

	11 Buildah
	Creating an Image From a Containerfile
	Creating a Buildah Container from an Image
	Changing an Image
	Committing a Buildah Container to an Image
	Pushing an Image to a Registry
	Removing a Buildah Container
	Removing an Image
	Inspecting an Image or Container

	12 Skopeo
	Inspecting an Image
	Copying an Image
	Synchronizing Images
	Deleting an Image

	13 Container Registries
	Oracle Container Registry
	Pulling Open Source Software From the Oracle Container Registry
	Pulling Licensed Software From the Oracle Container Registry
	Generating an Oracle Container Registry Authentication Token
	Using Oracle Container Registry Mirrors
	Oracle Linux Container Image Tagging Conventions
	The slim Tag
	General Oracle Linux Release Tags
	Oracle Linux Update Level Tags
	The latest Tag

	Docker Hub
	Configuring Podman for Signed Images
	Configuring Registries
	Listing Registries
	Setting Registry Order
	Adding Registries
	Adding Insecure Registries

	14 Private Container Registries
	Creating an Insecure Registry
	Creating a Secure Registry
	Distributing X.509 Certificates

	Importing Images Into a Registry

	15 Podman Command Reference
	16 Security Recommendations
	Host
	Podman Images
	Podman Containers
	Containerized Applications

	17 Known Issues
	Quadlets Fail For An Unprivileged User
	Podman Build Command Fails With "Operation Not Permitted" When Unprivileged Users Try to Establish Volumes
	Container Storage is Not Accessible to an Unprivileged User
	X509 Certificate Relies on Legacy Common Name Field
	Executing Podman Attach --latest Causes Panic if No Containers Are Available
	Requirements for Using the Default Podman Detach Key Sequence
	Authentication Error Occurs Pulling an Image Using an Incorrect Name
	The Latest Tag Is Missing From the oraclelinux Image on Docker Hub
	Podman Pod Create Fails on Oracle Linux 9 For An Unprivileged User With IMA Enabled
	Executing Podman Attach --latest Causes Panic if No Containers Are Available

